Color Atlas of Biochemistry

J. Koolman K. H. Roehm

The Flexibook

Second edition, revised and enlarged

Thieme

basic sciences

Color Atlas of Biochemistry

Second edition, revised and enlarged

Jan Koolman

Professor Philipps University Marburg Institute of Physiologic Chemistry Marburg, Germany

Klaus-Heinrich Roehm

Professor Philipps University Marburg Institute of Physiologic Chemistry Marburg, Germany

215 color plates by Juergen Wirth

Thieme Stuttgart · New York

This book is an authorized and updated translation of the 3rd German edition published and copyrighted 2003 by Georg Thieme Verlag, Stuttgart, Germany. Title of the German edition: Taschenatlas der Biochemie

Illustrator: Juergen Wirth, Professor of Visual Communication, University of Applied Sciences, Darmstadt, Germany

Translator: Michael Robertson, BA DPhil, Augsburg, Germany

1 st Dutch edition 2004 1 st English edition 1996 1 st French edition 1994 2 nd French edition 1999 3 rd French edition 2004 1 st German edition 1994 2 nd German edition 1997 1 st Greek edition 1999 1 st Indonesian edition 2002 1 st Italian edition 1997 1 st Japanese edition 1996 1 st Portuguese edition 2004 1 st Russian edition 2000 1 st Spanish edition 2004

© 2005 Georg Thieme Verlag Rüdigerstrasse 14, 70469 Stuttgart, Germany http://www.thieme.de Thieme New York, 333 Seventh Avenue, New York, NY 10001 USA http://www.thieme.com

Cover design: Cyclus, Stuttgart Cover drawing: CAP cAMP bound to DNA Typesetting by primustype Hurler GmbH, Notzingen Printed in Germany by Appl, Wemding

ISBN 3-13-100372-3 (GTV) ISBN 1-58890-247-1 (TNY) **Important note:** Medicine is an ever-changing science undergoing continual development. Research and clinical experience are continually expanding our knowledge, in particular our knowledge of proper treatment and drug therapy. Insofar as this book mentions any dosage or application, readers may rest assured that the authors, editors, and publishers have made every effort to ensure that such references are in accordance with the state of knowledge at the time of production of the book. Nevertheless, this does not involve, imply, or express any guarantee or responsibility on the part of the publishers in respect to any dosage instructions and forms of applications stated in the book. Every user is requested to examine carefully the manufacturers' leaflets accompanying each drug and to check, if necessary in consultation with a physician or specialist, whether the dosage schedules mentioned therein or the contraindications stated by the manufacturers differ from the statements made in the present book. Such examination is particularly important with drugs that are either rarely used or have been newly released on the market. Every dosage schedule or every form of application used is entirely at the user's own risk and responsibility. The authors and publishers request every user to report to the publishers any discrepancies or inaccuracies noticed. If errors in this work are found after publication, errata will be posted at www.thieme.com on the product description page.

Some of the product names, patents, and registered designs referred to in this book are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

This book, including all parts thereof, is legally protected by copyright. Any use, exploitation, or commercialization outside the narrow limits set by copyright legislation, without the publisher's consent, is illegal and liable to prosecution. This applies in particular to photostat reproduction, copying, mimeographing, preparation of microfilms, and electronic data processing and storage.

About the Authors

Jan Koolman (left) was born in Lübeck, Germany, and grew up with the sea wind blowing off the Baltic. The high school he attended in the Hanseatic city of Lübeck was one that focused on providing a classical education, which left its mark on him. From 1963 to 1969, he studied biochemistry at the University of Tübingen. He then took his doctorate (in the discipline of chemistry) at the University of Marburg, under the supervision of biochemist Peter Karlson. In Marburg, he began to study the biochemistry of insects and other invertebrates. He took his postdoctoral degree in 1977 in the field of human medicine, and was appointed Honorary Professor in 1984. His field of study today is biochemical endocrinology. His other interests include educational methods in biochemistry. He is currently Dean of Studies in the Department of Medicine in Marburg; he is married to an art teacher.

Klaus-Heinrich Röhm (right) comes from Stuttgart, Germany. After graduating from the School of Protestant Theology in Urach —another institution specializing in classical studies—and following a period working in the field of physics, he took a diploma in biochemistry at the University of Tübingen, where the two authors first met. Since 1970, he has also worked in the Department of Medicine at the University of Marburg. He

took his doctorate under the supervision of Friedhelm Schneider, and his postdoctoral degree in 1980 was in the Department of Chemistry. He has been an Honorary Professor since 1986. His research group is concerned with the structure and function of enzymes involved in amino acid metabolism. He is married to a biologist and has two children. Jürgen Wirth (center) studied in Berlin and at the College of Design in Offenbach, Germany. His studies focused on free graphics and illustration, and his diploma topic was "The development and function of scientific illustration." From 1963 to 1977, Jürgen Wirth was involved in designing the exhibition space in the Senckenberg Museum of Natural History in Frankfurt am Main, while at the same time working as a freelance associate with several publishing companies, providing illustrations for schoolbooks, non-fiction titles, and scientific publications. He has received several awards for book illustration and design. In 1978, he was appointed to a professorship at the College of Design in Schwäbisch Gmünd, Germany, and in 1986 he became Professor of Design at the Academy of Design in Darmstadt, Germany. His specialist fields include scientific graphics/information graphics and illustration methods. He is married and has three children.

Preface

Biochemistry is a dynamic, rapidly growing field, and the goal of this color atlas is to illustrate this fact visually. The precise boundaries between biochemistry and related fields, such as cell biology, anatomy, physiology, genetics, and pharmacology, are dif cult to define and, in many cases, arbitrary. This overlap is not coincidental. The object being studied is often the same—a nerve cell or a mitochondrion, for example—and only the point of view differs.

For a considerable period of its history, biochemistry was strongly influenced by chemistry and concentrated on investigating metabolic conversions and energy transfers. Explaining the composition, structure, and metabolism of biologically important molecules has always been in the foreground. However, new aspects inherited from biochemistry's other parent, the biological sciences, are now increasingly being added: the relationship between chemical structure and biological function, the pathways of information transfer, observance of the ways in which biomolecules are spatially and temporally distributed in cells and organisms, and an awareness of evolution as a biochemical process. These new aspects of biochemistry are bound to become more and more important.

Owing to space limitations, we have concentrated here on the biochemistry of humans and mammals, although the biochemistry of other animals, plants, and microorganisms is no less interesting. In selecting the material for this book, we have put the emphasis on subjects relevant to students of human medicine. The main purpose of the atlas is to serve as an overview and to provide visual information quickly and ef ciently. Referring to textbooks can easily fill any gaps. For readers encountering biochemistry for the first time, some of the plates may look rather complex. It must be emphasized, therefore, that the atlas is not intended as a substitute for a comprehensive textbook of biochemistry.

As the subject matter is often dif cult to visualize, symbols, models, and other graphic elements had to be found that make complicated phenomena appear tangible. The graphics were designed conservatively, the aim being to avoid illustrations that might look too spectacular or exaggerated. Our goal was to achieve a visual and aesthetic way of representing scientific facts that would be simple and at the same time effective for teaching purposes. Use of graphics software helped to maintain consistency in the use of shapes, colors, dimensions, and labels, in particular. Formulae and other repetitive elements and structures could be handled easily and precisely with the assistance of the computer.

Color-coding has been used throughout to aid the reader, and the key to this is given in two special color plates on the front and rear inside covers. For example, in molecular models each of the more important atoms has a particular color: gray for carbon, white for hydrogen, blue for nitrogen, red for oxygen, and so on. The different classes of biomolecules are also distinguished by color: proteins are always shown in brown tones, carbohydrates in violet, lipids in yellow, DNA in blue, and RNA in green. In addition, specific symbols are used for the important coenzymes, such as ATP and NAD⁺. The compartments in which biochemical processes take place are colorcoded as well. For example, the cytoplasm is shown in yellow, while the extracellular space is shaded in blue. Arrows indicating a chemical reaction are always black and those representing a transport process are gray.

In terms of the visual clarity of its presentation, biochemistry has still to catch up with anatomy and physiology. In this book, we sometimes use simplified ball-and-stick models instead of the classical chemical formulae. In addition, a number of compounds are represented by space-filling models. In these cases, we have tried to be as realistic as possible. The models of small molecules are based on conformations calculated by computer-based molecular modeling. In illustrating macromolecules, we used structural infor-

mation obtained by X-ray crystallography that is stored in the Protein Data Bank. In naming enzymes, we have followed the of cial nomenclature recommended by the IUBMB. For quick identification, EC numbers (in italics) are included with enzyme names. To help students assess the relevance of the material (while preparing for an examination, for example), we have included symbols on the text pages next to the section headings to indicate how important each topic is. A filled circle stands for "basic knowledge," a halffilled circle indicates "standard knowledge," and an empty circle stands for "in-depth knowledge." Of course, this classification only reflects our subjective views.

This second edition was carefully revised and a significant number of new plates were added to cover new developments. We are grateful to many readers for their comments and valuable criticisms during the preparation of this book. Of course, we would also welcome further comments and suggestions from our readers.

August 2004

Jan Koolman, Klaus-Heinrich Röhm Marburg

Jürgen Wirth Darmstadt

Contents

Introduction	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Basics

Chemistry
Periodic table
Bonds
Molecular structure
Isomerism
Biomolecules I
Biomolecules II
Chemical reactions
Physical Chemistry

Energetics	16
Equilibriums	18
Enthalpy and entropy	20
Reaction kinetics	22
Catalysis	24
Water as a solvent	26
Hydrophobic interactions	28
Acids and bases	30
Redox processes	32

Biomolecules

Carbohydrates

Overview	34
Chemistry of sugars	36
Monosaccharides and disaccharides	38
Polysaccharides: overview	40
Plant polysaccharides	42
Glycosaminoglycans and glycoproteins.	44

Lipids

46
48
50
52
54
56
58
60
62
64
66
68

Structural proteins	70
Globular proteins	72
Protein folding	74
Molecular models: insulin	76
Isolation and analysis of proteins	78
Nucleotides and Nucleic Acids	
Bases and nucleotides	80
Bases and nucleotidesRNA	80 82
	00

Metabolism

Enzymes п

Basics	88
Enzyme catalysis	90
Enzyme kinetics I	92
Enzyme kinetics II	94
Inhibitors	96
Lactate dehydrogenase: structure	98
Lactate dehydrogenase: mechanism	100
Enzymatic analysis	102
Coenzymes 1	104
Coenzymes 2	106
Coenzymes 3	108
Activated metabolites	110
Metabolic Regulation	
Intermediary metabolism	112
Regulatory mechanisms	114
Allosteric regulation	116
Transcription control	118
Hormonal control	120
Energy Metabolism	
ATP	122
Energetic coupling	124
Energy conservation at membranes	126
Photosynthesis: light reactions	128
Photosynthesis: dark reactions	130
Molecular models: membrane proteins.	132
Oxoacid dehydrogenases	134
Tricarboxylic acid cycle: reactions	136
Tricarboxylic acid cycle: functions	138
Respiratory chain	140
ATP synthesis	142
Regulation	144
Respiration and fermentation	146
Fermentations	148

Carbohydrate Metabolism

Glycolysis	150
Pentose phosphate pathway	
Gluconeogenesis	154
Glycogen metabolism	156
Regulation	158
Diabetes mellitus	160

Lipid Metabolism

Overview	162
Fatty acid degradation	164
Minor pathways of fatty acid	
degradation	166
Fatty acid synthesis	168
Biosynthesis of complex lipids	170
Biosynthesis of cholesterol	172

Protein Metabolism

Protein metabolism: overview	174
Proteolysis	176
Transamination and deamination	178
Amino acid degradation	180
Urea cycle	182
Amino acid biosynthesis	184

Nucleotide Metabolism

Nucleotide degradation	186
Purine and pyrimidine biosynthesis	188
Nucleotide biosynthesis	190

Porphyrin Metabolism

Heme	biosyntl	nesis	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	192
Heme	degrada	tion	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	194

Organelles

Basics

Structure of cells	196
Cell fractionation	198
Centrifugation	
Cell components and cytoplasm	202
Cytoskeleton	
Components	204
Structure and functions	206
Nucleus	208
Mitochondria	
Structure and functions	210
Transport systems	212
Biological Membranes	
Structure and components	214
Functions and composition	216
Transport processes	218
Transport proteins	220
Ion channels	222

Membrane receptors 224

Endoplasmic Reticulum and Golgi Apparatus

Lysosomes	234
Protein maturation	232
Protein synthesis and maturation	230
Protein sorting	228
ER: structure and function	226

Molecular Genetics

Overview	236
Genome	238
Replication	240
Transcription	242
Transcriptional control	244
RNA maturation	246
Amino acid activation	248
Translation I: initiation	250
Translation II: elongation and	
termination	252
Antibiotics	254
Mutation and repair	256
Genetic engineering	
DNA cloning	258
DNA sequencing	260
PCR and protein expression	262
Genetic engineering in medicine	264

Tissues and organs

Digestion

Overview	266
Digestive secretions	268
Digestive processes	270
Resorption	272
Blood	
Composition and functions	274
Plasma proteins	276
Lipoproteins	278
Hemoglobin	280
Gas transport	282
Erythrocyte metabolism	284
Iron metabolism	286
Acid–base balance	288
Blood clotting	290
Fibrinolysis, blood groups	292
Immune system	
Immune response	294
T-cell activation	296
Complement system	298
Antibodies	300
Antibody biosynthesis	302
Monoclonal antibodies, immunoassay.	304

Liver

306
308
310
312
314
316
318
320

Kidney

Functions	322
Urine	324
Functions in the acid-base balance	326
Electrolyte and water recycling	328
Renal hormones	330

Muscle

Muscle contraction	332
Control of muscle contraction	334
Muscle metabolism I	336
Muscle metabolism II	338

Connective tissue

Bone and teeth	340
Calcium metabolism	342
Collagens	344
Extracellular matrix	346

Brain and Sensory Organs

Signal transmission in the CNS	348
Resting potential and action potential	350
Neurotransmitters	352
Receptors for neurotransmitters	354
Metabolism	356
Sight	358

Nutrition

Nutrients

Organic substances	
Vitamins	
Lipid-soluble vitamins	364
Water-soluble vitamins I	366
Water-soluble vitamins II	368

Hormones

372
374
376
378

Hydrophilic hormones	380
Metabolism of peptide hormones	382
Mechanisms of action	384
Second messengers	386
Signal cascades	388
Other signaling substances	
Eicosanoids	390
Cytokines	392

Growth and development

Cell proliferation

Cell cycle	394
Apoptosis	396
Oncogenes	398
Tumors	400
Cytostatic drugs	402
Viruses	404
Metabolic charts	406
Calvin cycle	407
Carbohydrate metabolism	408
Biosynthesis of fats and	
membrane liquids	409
5	410
Degradation of fats and phospholipids .	411
Biosynthesis of the essential	
amino acids	412
Biosynthesis of the non-essential	
amino acids	413
Amino acid degradation I	414
Amino acid degradation II	415
Ammonia metabolism	416
Biosynthesis of purine nucleotides	417
Biosynthesis of the pyrimidine nucleotid	
and C_1 metabolism	418
Nucleotide degradation	419
Annotated enzyme list	420
Abbreviations	431
Quantities and units	433
Further reading	434
Source credits	435
Index	437

Key to color-coding:

see front and rear inside covers

Introduction

This paperback atlas is intended for students of medicine and the biological sciences. It provides an introduction to biochemistry, but with its modular structure it can also be used as a reference book for more detailed information. The 216 color plates provide knowledge in the field of biochemistry, accompanied by detailed information in the text on the facing page. The degree of dif culty of the subject-matter is indicated by symbols in the text:

- stands for "basic biochemical knowledge"
- indicates "standard biochemical knowledge"
- means "specialist biochemical knowledge."

Some general rules used in the structure of the illustrations are summed up in two explanatory plates inside the front and back covers. Keywords, definitions, explanations of unfamiliar concepts and chemical formulas can be found using the *index*. The book starts with a few **basics** in biochemistry (pp. 2–33). There is a brief explanation of the concepts and principles of chemistry (pp. 2–15). These include the periodic table of the elements, chemical bonds, the general rules governing molecular structure, and the structures of important classes of compounds. Several basic concepts of physical chemistry are also essential for an understanding of biochemical processes. Pages 16-33 therefore discuss the various forms of energy and their interconversion, reaction kinetics and catalysis, the properties of water, acids and bases, and redox processes.

These basic concepts are followed by a section on the structure of the important biomolecules (pp. 34–87). This part of the book is arranged according to the different classes of metabolites. It discusses carbohydrates, lipids, amino acids, peptides and proteins, nucleotides, and nucleic acids. The next part presents the reactions involved in the interconversion of these compounds—the part of biochemistry that is commonly referred to as **metabolism** (pp. 88–195). The section starts with a discussion of the enzymes and coenzymes, and discusses the mechanisms of metabolic regulation and the so-called *energy metabolism*. After this, the central metabolic pathways are presented, once again arranged according to the class of metabolite (pp. 150–195).

The second half of the book begins with a discussion of the functional compartments within the cell, the **cellular organelles** (pp. 196–235). This is followed on pp. 236–265 by the current field of **molecular genetics** (*molecular biology*). A further extensive section is devoted to the biochemistry of individual **tissues and organs** (pp. 266–359). Here, it has only been possible to focus on the most important organs and organ systems—the digestive system, blood, liver, kidneys, muscles, connective and supportive tissues, and the brain.

Other topics include the biochemistry of **nutrition** (pp. 360–369), the structure and function of important **hormones** (pp. 370–393), and **growth and development** (pp. 394–405).

The paperback atlas concludes with a series of schematic **metabolic** "charts" (pp. 407-419). These plates, which are not accompanied by explanatory text apart from a brief introduction on p.406, show simplified versions of the most important synthetic and degradative pathways. The charts are mainly intended for reference, but they can also be used to review previously learned material. The enzymes catalyzing the various reactions are only indicated by their EC numbers. Their names can be found in the systematically arranged and annotated enzyme list (pp. 420-430).

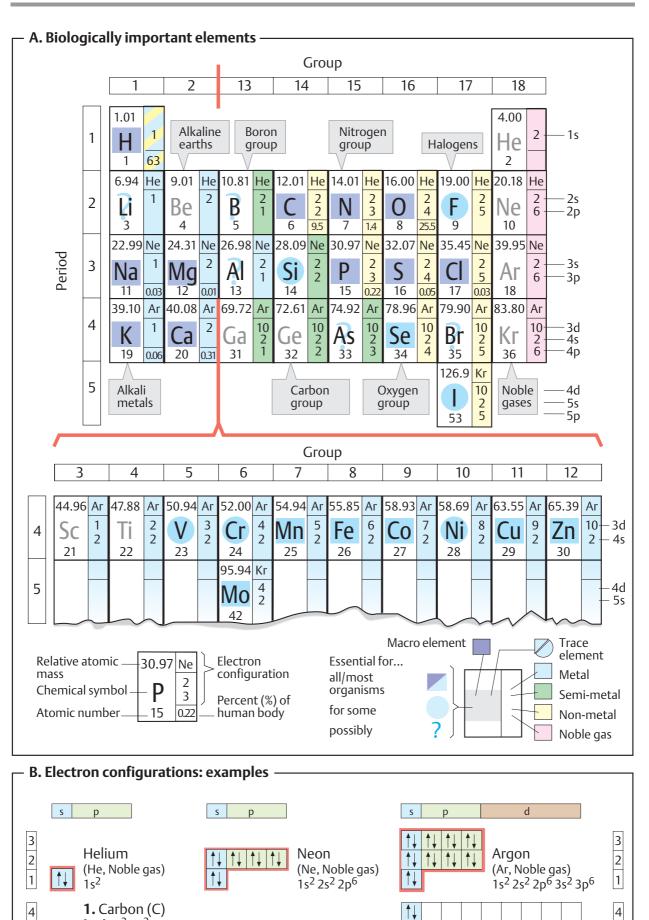
Periodic table

A. Biologically important elements ①

There are 81 stable elements in nature. Fifteen of these are present in all living things, and a further 8–10 are only found in particular organisms. The illustration shows the first half of the **periodic table**, containing all of the biologically important elements. In addition to physical and chemical data, it also provides information about the distribution of the elements in the living world and their abundance in the human body. The laws of atomic structure underlying the periodic table are discussed in chemistry textbooks.

More than 99% of the atoms in animals' bodies are accounted for by just four elements—hydrogen (H), oxygen (O), carbon (C) and nitrogen (N). Hydrogen and oxygen are the constituents of water, which alone makes up 60–70% of cell mass (see p. 196). Together with carbon and nitrogen, hydrogen and oxygen are also the major constituents of the **organic compounds** on which most living processes depend. Many biomolecules also contain sulfur (S) or phosphorus (P). The above **macroelements** are essential for all organisms.

A second biologically important group of elements, which together represent only about 0.5% of the body mass, are present almost exclusively in the form of **inorganic ions**. This group includes the alkali metals sodium (Na) and potassium (K), and the *alkaline earth* metals magnesium (Mg) and calcium (Ca). The halogen chlorine (Cl) is also always ionized in the cell. All other elements important for life are present in such small quantities that they are referred to as trace elements. These include transition metals such as iron (Fe), zinc (Zn), copper (Cu), cobalt (Co) and manganese (Mn). A few nonmetals, such as iodine (I) and selenium (Se), can also be classed as essential trace elements.


B. Electron configurations: examples **O**

The chemical properties of atoms and the types of bond they form with each other are determined by their electron shells. The **electron configurations** of the elements are therefore also shown in Fig. **A**. Fig. **B** explains the symbols and abbreviations used. More de-

tailed discussions of the subject are available in chemistry textbooks.

The possible states of electrons are called orbitals. These are indicated by what is known as the principal quantum number and by a letter-s, p, or d. The orbitals are filled one by one as the number of electrons increases. Each orbital can hold a maximum of two electrons, which must have oppositely directed "spins." Fig. A shows the distribution of the electrons among the orbitals for each of the elements. For example, the six electrons of carbon (B1) occupy the 1s orbital, the 2s orbital, and two 2p orbitals. A filled 1s orbital has the same electron configuration as the noble gas helium (He). This region of the electron shell of carbon is therefore abbreviated as "He" in Fig. A. Below this, the numbers of electrons in each of the other filled orbitals (2s and 2p in the case of carbon) are shown on the right margin. For example, the electron shell of chlorine (B2) consists of that of neon (Ne) and seven additional electrons in 3s and 3p orbitals. In iron (B3), a transition metal of the first series, electrons occupy the 4s orbital even though the 3d orbitals are still partly empty. Many reactions of the transition metals involve empty d orbitals-e.g., redox reactions or the formation of complexes with bases.

Particularly stable electron arrangements arise when the outermost shell is fully occupied with eight electrons (the "**octet rule**"). This applies, for example, to the noble gases, as well as to ions such as $Cl^-(3s^23p^6)$ and Na^+ $(2s^22p^6)$. It is only in the cases of hydrogen and helium that two electrons are already suf cient to fill the outermost 1s orbital.

î↓

2. Chlorine (Cl)

[Ne] 3s² 3p⁵

[Ar]

1↓ î↓

Î↓

3. Iron (Fe)

 $[Ar] 4s^2 3d^6$

Koolman, Color Atlas of Biochemistry, 2nd edition © 2005 Thieme All rights reserved. Usage subject to terms and conditions of license.

î↓

|↑↓ |↑↓ |↑

[Ne]

 $[He] 2s^2 2p^2$

3 2 1

↑↓

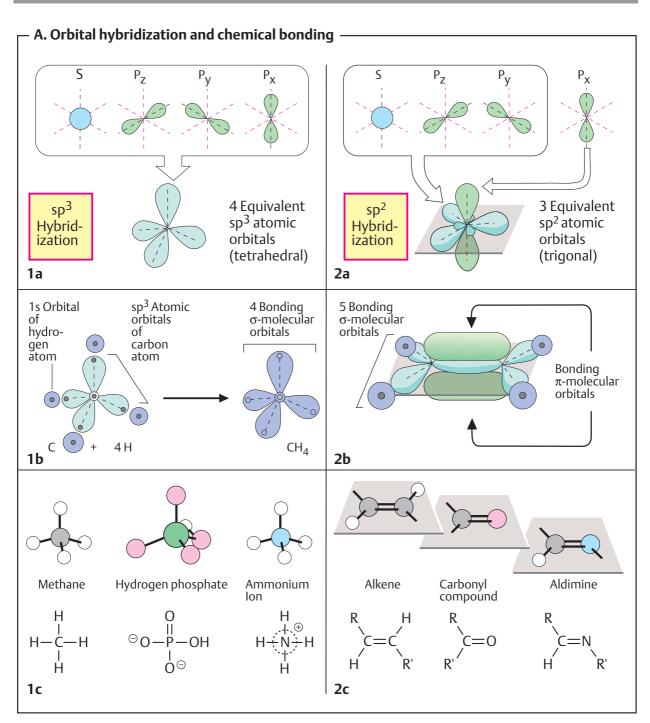
[He]

3 2 1

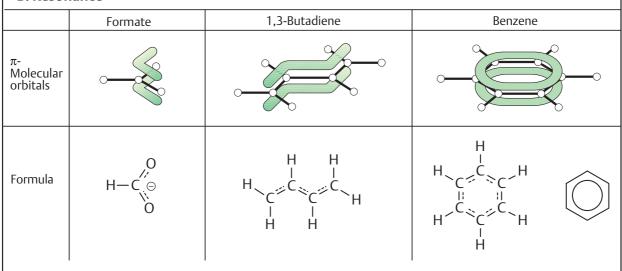
Bonds

A. Orbital hybridization and chemical bonding \bigcirc

Stable, covalent bonds between nonmetal atoms are produced when orbitals (see p.2) of the two atoms form molecular orbitals that are occupied by one electron from each of the atoms. Thus, the four bonding electrons of the carbon atom occupy 2s and 2p atomic orbitals (1a). The 2s orbital is spherical in shape, while the three 2p orbitals are shaped like dumbbells arranged along the x, y, and z axes. It might therefore be assumed that carbon atoms should form at least two different types of molecular orbital. However, this is not normally the case. The reason is an effect known as orbital hybridization. Combination of the s orbital and the three p orbitals of carbon gives rise to four equivalent, tetrahedrally arranged sp³ atomic orbitals (**sp³ hybridization**). When these overlap with the 1s orbitals of H atoms, four equivalent σ -molecular orbitals (1b) are formed. For this reason, carbon is capable of forming four bonds-i.e., it has a valency of four. Single bonds between nonmetal atoms arise in the same way as the four σ or single **bonds** in methane (CH₄). For example, the hydrogen phosphate ion (HPO₄²⁻) and the ammonium ion (NH₄⁺) are also tetrahedral in structure (1c).


A second common type of orbital hybridization involves the 2s orbital and only two of the three 2p orbitals (2a). This process is therefore referred to as sp² hybridization. The result is three equivalent sp² hybrid orbitals lying in one plane at an angle of 120° to one another. The remaining $2p_x$ orbital is oriented perpendicular to this plane. In contrast to their sp³ counterparts, sp²-hybridized atoms form two different types of bond when they combine into molecular orbitals (**2b**). The three sp² orbitals enter into σ bonds, as described above. In addition, the electrons in the two $2p_x$ orbitals, known as π electrons, combine to give an additional, elongated π molecular orbital, which is located above and below the plane of the σ bonds. Bonds of this type are called **double bonds**. They consist of a σ bond and a π bond, and arise only when both of the atoms involved are capable of sp² hybridization. In contrast to single bonds, double bonds are not freely rotatable, since rotation would distort the π molecular orbital. This is why all of the atoms lie in one plane (**2c**); in addition, *cis–trans* isomerism arises in such cases (see p.8). Double bonds that are common in biomolecules are C=C and C=O. C=N double bonds are found in aldimines (Schiff bases, see p. 178).

B. Resonance ①


Many molecules that have several double bonds are much less reactive than might be expected. The reason for this is that the double bonds in these structures cannot be localized unequivocally. Their π orbitals are not confined to the space between the double-bonded atoms, but form a shared, extended π -molecular orbital. Structures with this property are referred to as resonance hybrids, because it is impossible to describe their actual bonding structure using standard formulas. One can either use what are known as resonance structures—i.e., idealized configurations in which π electrons are assigned to specific atoms (cf. pp. 32 and 66, for example)-or one can use dashed lines as in Fig. B to suggest the extent of the delocalized orbitals. (Details are discussed in chemistry textbooks.)

Resonance-stabilized systems include carboxylate groups, as in *formate*; aliphatic hydrocarbons with conjugated double bonds, such as *1,3-butadiene*; and the systems known as **aromatic ring systems**. The best-known aromatic compound is *benzene*, which has six delocalized π electrons in its ring. Extended resonance systems with 10 or more π electrons absorb light within the visible spectrum and are therefore *colored*. This group includes the aliphatic carotenoids (see p. 132), for example, as well as the heme group, in which 18 π electrons occupy an extended molecular orbital (see p. 106).

5

Molecular structure

The physical and chemical behavior of molecules is largely determined by their **constitution** (the type and number of the atoms they contain and their bonding). Structural formulas can therefore be used to predict not only the chemical reactivity of a molecule, but also its size and shape, and to some extent its conformation (the spatial arrangement of the atoms). Some data providing the basis for such predictions are summarized here and on the facing page. In addition, L-dihydroxyphenylalanine (L-dopa; see p. 352), is used as an example to show the way in which molecules are illustrated in this book.

A. Molecule illustrations ①

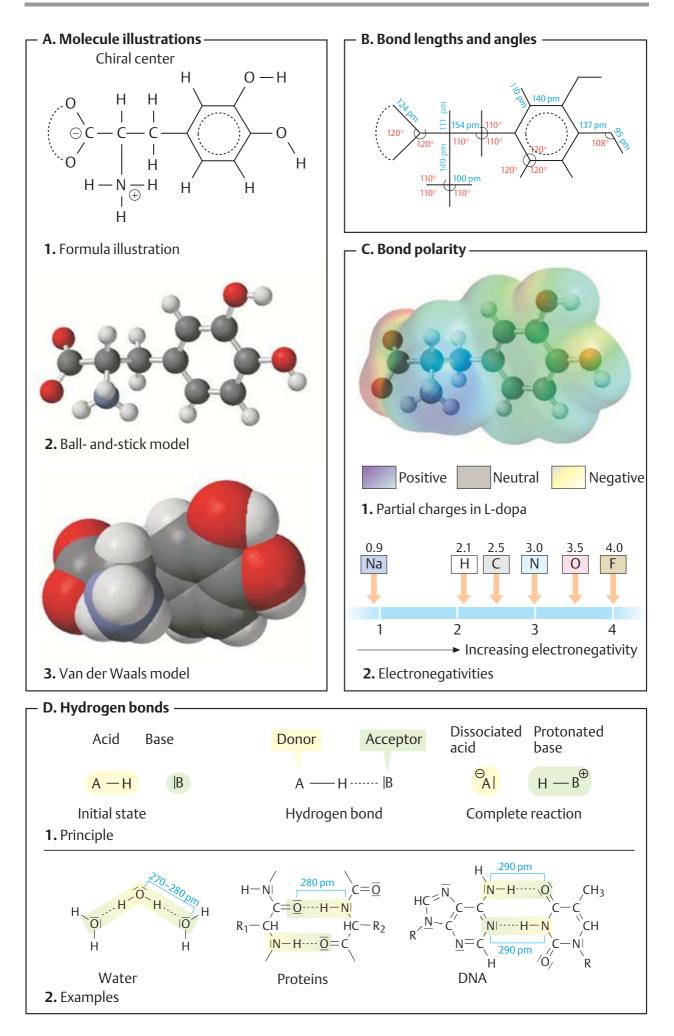
In traditional two-dimensional **structural formulas** (A1), atoms are represented as letter symbols and electron *pairs* are shown as lines. Lines between two atomic symbols symbolize two **bonding electrons** (see p. 4), and all of the other lines represent **free electron pairs**, such as those that occur in O and N atoms. Free electrons are usually not represented explicitly (and this is the convention used in this book as well). Dashed or continuous circles or arcs are used to emphasize delocalized electrons.

Ball-and-stick models (A2) are used to illustrate the spatial structure of molecules. Atoms are represented as colored balls (for the color coding, see the inside front cover) and bonds (including multiple bonds) as gray cylinders. Although the relative bond lengths and angles correspond to actual conditions, the size at which the atoms are represented is too small to make the model more comprehensible.

Space-filling **van der Waals models** (A3) are useful for illustrating the actual shape and size of molecules. These models represent atoms as truncated balls. Their effective extent is determined by what is known as the van der Waals radius. This is calculated from the energetically most favorable distance between atoms that are not chemically bonded to one another.

B. Bond lengths and angles \bigcirc

Atomic radii and distances are now usually expressed in picometers (pm; 1 pm = 10^{-12} m). The old angstrom unit (Å, Å = 100 pm) is now obsolete. The length of single bonds approximately corresponds to the sum of what are known as the **covalent radii** of the atoms involved (see inside front cover). Double bonds are around 10-20% shorter than single bonds. In sp³-hybridized atoms, the angle between the individual bonds is approx. 110° ; in sp²-hybridized atoms it is approx. 120° .


C. Bond polarity O

Depending on the position of the element in the periodic table (see p.2), atoms have different **electronegativity**—i.e., a different tendency to take up extra electrons. The values given in **C2** are on a scale between 2 and 4. The higher the value, the more electronegative the atom. When two atoms with very different electronegativities are bound to one another, the bonding electrons are drawn toward the more electronegative atom, and the **bond** is **polarized**. The atoms involved then carry positive or negative partial charges. In C1, the van der Waals surface is colored according to the different charge conditions (red = negative, blue = positive). Oxygen is the most strongly electronegative of the biochemically important elements, with C=O double bonds being especially highly polar.

D. Hydrogen bonds **①**

The **hydrogen bond**, a special type of noncovalent bond, is extremely important in biochemistry. In this type of bond, hydrogen atoms of OH, NH, or SH groups (known as hydrogen bond **donors**) interact with free electrons of **acceptor** atoms (for example, O, N, or S). The bonding energies of hydrogen bonds (10–40 kJ mol⁻¹) are much lower than those of covalent bonds (approx. 400 kJ mol⁻¹). However, as hydrogen bonds can be very numerous in proteins and DNA, they play a key role in the stabilization of these molecules (see pp. 68, 84). The importance of hydrogen bonds for the properties of water is discussed on p. 26.

7

Isomerism

Isomers are molecules with the same composition (i. e. the same molecular formula), but with different chemical and physical properties. If isomers differ in the way in which their atoms are bonded in the molecule, they are described as **structural isomers** (cf. citric acid and isocitric acid, **D**). Other forms of isomerism are based on different arrangements of the substituents of bonds (**A**, **B**) or on the presence of chiral centers in the molecule (**C**).

A. cis-trans isomers **①**

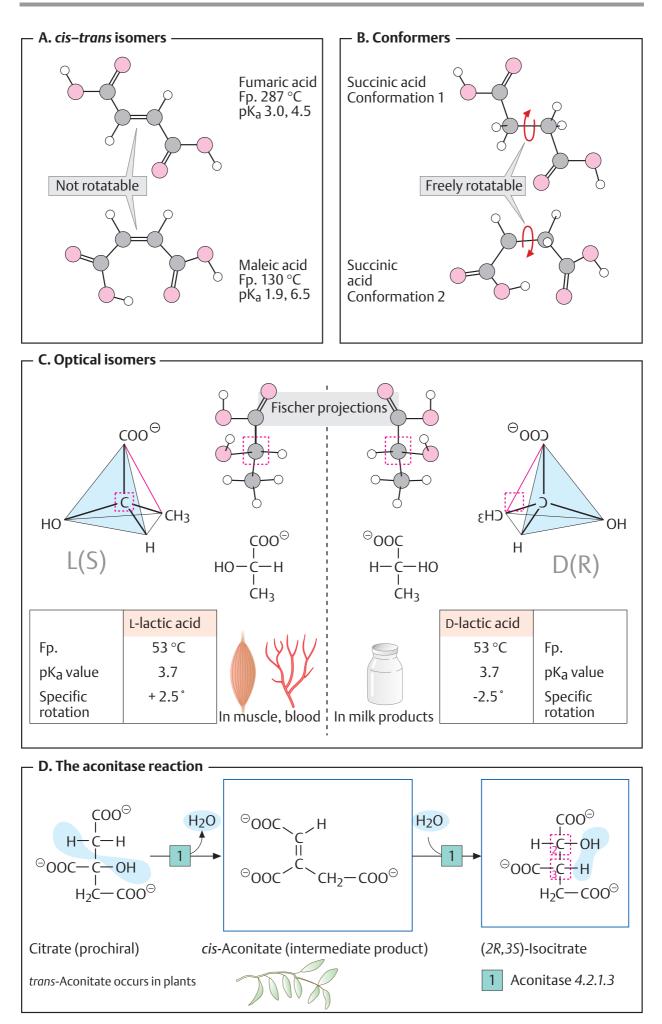
Double bonds *are not freely rotatable* (see p. 4). If double-bonded atoms have different substituents, there are two possible orientations for these groups. In **fumaric acid**, an intermediate of the tricarboxylic acid cycle (see p. 136), the carboxy groups lie on *different* sides of the double bond (*trans* or *E* position). In its isomer **maleic acid**, which is not produced in metabolic processes, the carboxy groups lie on the *same* side of the bond (*cis* or *Z* position). *Cis–trans* isomers (**geometric isomers**) have different chemical and physical properties—e.g., their melting points (Fp.) and pK_a values. They can only be interconverted by chemical reactions.

In lipid metabolism, *cis–trans* isomerism is particularly important. For example, double bonds in natural fatty acids (see p. 48) usually have a *cis* configuration. By contrast, unsaturated intermediates of β oxidation have a *trans* configuration. This makes the breakdown of unsaturated fatty acids more complicated (see p. 166). Light-induced *cis–trans* isomerization of retinal is of central importance in the visual cycle (see p. 358).

B. Conformation ①

Molecular forms that arise as a result of rotation around freely rotatable bonds are known as **conformers**. Even small molecules can have different conformations in solution. In the two conformations of **succinic acid** illustrated opposite, the atoms are arranged in a similar way to fumaric acid and maleic acid. Both forms are possible, although conformation 1 is more favorable due to the greater distance between the COOH groups and therefore occurs more frequently. Biologically active macromolecules such as proteins or nucleic acids usually have well-defined ("native") conformations, which are stabilized by interactions in the molecule (see p. 74).

C. Optical isomers ①


Another type of isomerism arises when a molecule contains a **chiral center** or is chiral as a whole. Chirality (from the Greek *cheir*, hand) leads to the appearance of structures that behave like image and mirror-image and that cannot be superimposed ("mirror" isomers). The most frequent cause of chiral behavior is the presence of an asymmetric C atom—i.e., an atom with four *different* substituents. Then there are two forms **(enantiomers)** with different **configurations**. Usually, the two enantiomers of a molecule are designated as L and D forms. Clear classification of the configuration is made possible by the *R/S system* (see chemistry textbooks).

Enantiomers have very similar chemical properties, but they rotate polarized light in opposite directions (**optical activity**, see pp. 36, 58). The same applies to the enantiomers of **lactic acid**. The dextrorotatory L-lactic acid occurs in animal muscle and blood, while the D form produced by microorganisms is found in milk products, for example (see p. 148). The Fischer projection is often used to represent the formulas for chiral centers (cf. p. 58).

D. The aconitase reaction \bigcirc

Enzymes usually function *stereospecifically*. In chiral substrates, they only accept one of the enantiomers, and the reaction products are usually also sterically uniform. *Aconitate hydratase* (aconitase) catalyzes the conversion of citric acid into the constitution isomer isocitric acid (see p. 136). Although citric acid is not chiral, aconitase only forms one of the four possible isomeric forms of isocitric acid (*2R,3S*-isocitric acid). The intermediate of the reaction, the unsaturated tricarboxylic acid *aconitate*, only occurs in the *cis* form in the reaction. The *trans* form of aconitate is found as a constituent of certain plants.

9

Biomolecules I

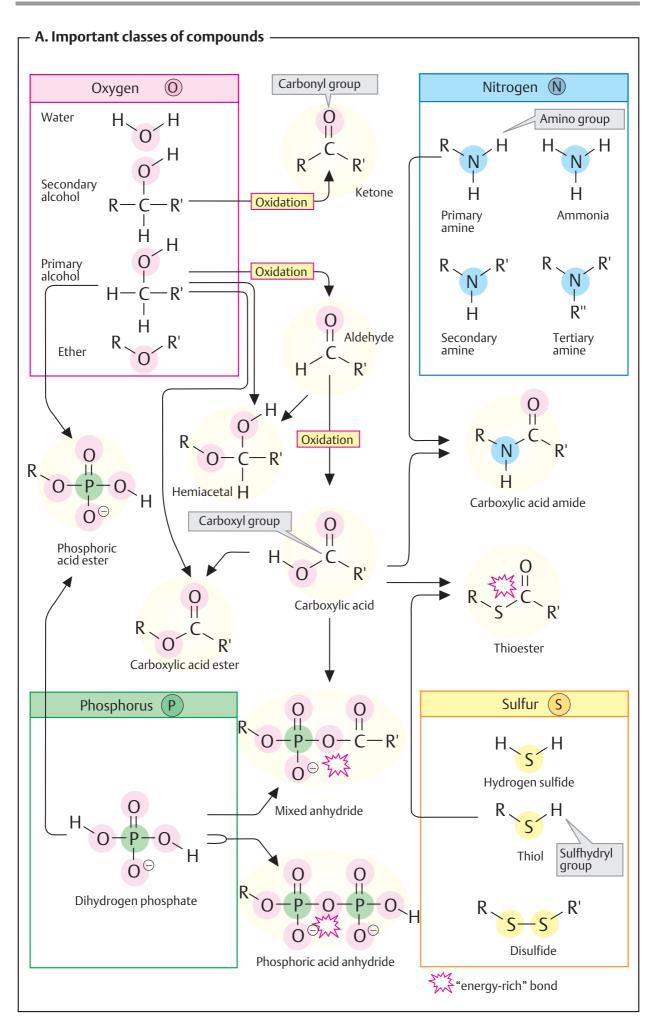
A. Important classes of compounds

Most biomolecules are derivatives of simple compounds of the non-metals oxygen (O), hydrogen (H), nitrogen (N), sulfur (S), and phosphorus (P). The biochemically important oxygen, nitrogen, and sulfur compounds can be formally derived from their compounds with hydrogen (i. e., H₂O, NH₃, and H₂S). In biological systems, phosphorus is found almost exclusively in derivatives of phosphoric acid, H₃PO₄.

If one or more of the hydrogen atoms of a non-metal hydride are replaced formally with another group, R-e.g., alkyl residues-then derived compounds of the type $R-XH_{n-1}$, $R-XH_{n-2}-R$, etc., are obtained. In this way, alcohols (R-OH) and ethers (R-O-R) are derived from water (H₂O); primary **amines** (R-NH₂), secondary amines (R-NH-R) and tertiary amines (R-N-R'R") amines are obtained from ammonia (NH₃); and thiols (R-SH) and thioethers (R-S-R') arise from hydrogen sulfide (H₂S). Polar groups such as -OH and -NH₂ are found as substituents in many organic compounds. As such groups are much more reactive than the hydrocarbon structures to which they are attached, they are referred to as functional groups.

New functional groups can arise as a result of **oxidation** of the compounds mentioned above. For example, the oxidation of a thiol yields a **disulfide** (R-S-S-R). Double oxidation of a primary alcohol (R-CH₂-OH) gives rise initially to an **aldehyde** (R-C(O)-H), and then to a **carboxylic acid** (R-C(O)-OH). In contrast, the oxidation of a secondary alcohol yields a **ketone** (R-C(O)-R). The carbonyl group (C=O) is characteristic of aldehydes and ketones.

The addition of an amine to the carbonyl group of an aldehyde yields—after removal of water—an **aldimine** (not shown; see p. 178). Aldimines are intermediates in amino acid metabolism (see p. 178) and serve to bond aldehydes to amino groups in proteins (see p. 62, for example). The addition of an alcohol to the carbonyl group of an aldehyde yields a **hemiacetal** (R-O-C(H)OH-R). The cyclic forms of sugars are well-known examples of hemi-


acetals (see p. 36). The oxidation of hemiacetals produces carboxylic acid esters.

Very important compounds are the **carboxylic acids** and their derivatives, which can be formally obtained by exchanging the OH group for another group. In fact, derivatives of this type are formed by nucleophilic substitutions of activated intermediate compounds and the release of water (see p. 14). **Carboxylic acid esters** (R-O-CO-R') arise from carboxylic acids and alcohols. This group includes the fats, for example (see p. 48). Similarly, a carboxylic acid and a thiol yield a **thioester** (R-S-CO-R'). Thioesters play an extremely important role in carboxylic acid metabolism. The best-known compound of this type is acetyl-coenzyme A (see p. 12).

Carboxylic acids and primary amines react to form **carboxylic acid amides** (R-NH-CO-R'). The amino acid constituents of peptides and proteins are linked by carboxylic acid amide bonds, which are therefore also known as peptide bonds (see p. 66).

Phosphoric acid, H_3PO_4 , is a tribasic (threeprotic) acid—i.e., it contains three hydroxyl groups able to donate H^+ ions. At least one of these three groups is fully dissociated under normal physiological conditions, while the other two can react with alcohols. The resulting products are phosphoric acid monoesters (R-O-P(O)O-OH) and diesters (R-O-P(O)O-O-R'). **Phosphoric acid monoesters** are found in carbohydrate metabolism, for example (see p.36), whereas **phosphoric acid diester** bonds occur in phospholipids (see p. 50) and nucleic acids (see p. 82).

Compounds of one acid with another are referred to as **acid anhydrides**. A particularly large amount of energy is required for the formation of an acid—anhydride bond. Phosphoric anhydride bonds therefore play a central role in the storage and release of chemical energy in the cell (see p. 122). Mixed anhydrides between carboxylic acids and phosphoric acid are also very important "energyrich metabolites" in cellular metabolism.

Biomolecules II

Many biomolecules are made up of smaller units in a modular fashion, and they can be broken down into these units again. The construction of these molecules usually takes place through condensation reactions involving the removal of water. Conversely, their breakdown functions in a hydrolytic fashion—i.e., as a result of water uptake. The page opposite illustrates this modular principle using the example of an important coenzyme.

A. Acetyl CoA 🛈

Coenzyme A (see also p. 106) is a nucleotide with a complex structure (see p. 80). It serves to activate residues of carboxylic acids (acyl residues). Bonding of the carboxy group of the carboxylic acid with the thiol group of the coenzyme creates a **thioester bond** (-S-CO-R; see p. 10) in which the **acyl residue** has a **high chemical potential**. It can therefore be transferred to other molecules in exergonic reactions. This fact plays an important role in lipid metabolism in particular (see pp. 162 ff.), as well as in two reactions of the tricarboxylic acid cycle (see p. 136).

As discussed on p. 16, the **group transfer potential** can be expressed quantitatively as the change in free enthalpy (ΔG) during hydrolysis of the compound concerned. This is an arbitrary determination, but it provides important indications of the chemical energy stored in such a group. In the case of acetyl-CoA, the reaction to be considered is:

Acetyl CoA + $H_2O \rightarrow$ acetate + CoA

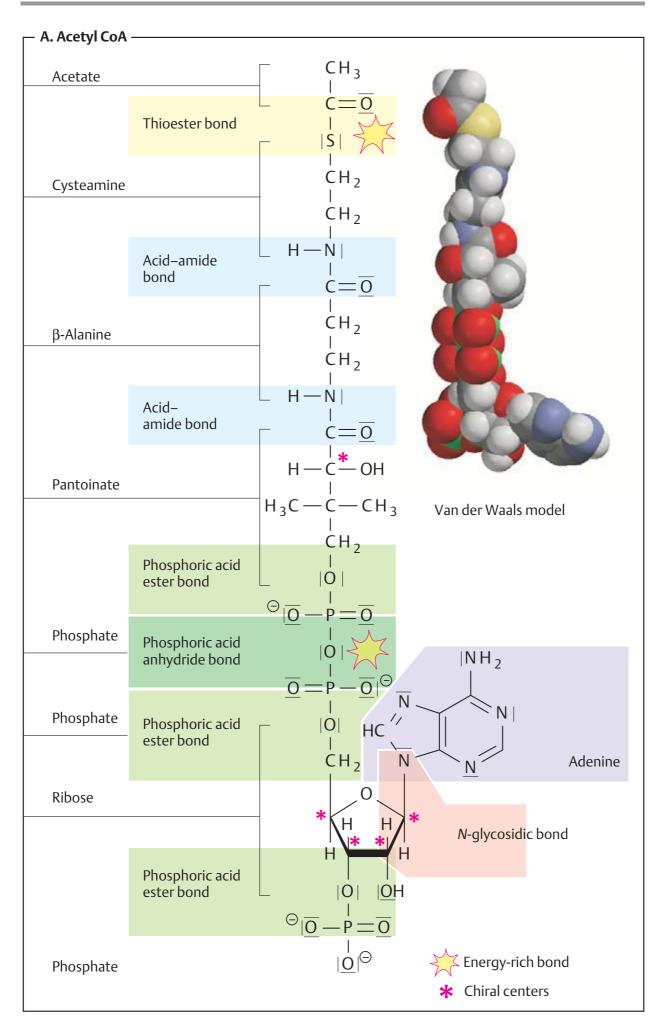
In standard conditions and at pH 7, the change in the chemical potential G (ΔG^0 , see p. 18) in this reaction amounts to -32 kJ mol⁻¹ and it is therefore as high as the ΔG^0 of ATP hydrolysis (see p. 18). In addition to the "energy-rich" **thioester bond**, acetyl-CoA also has seven other hydrolyzable bonds with different degrees of stability. These bonds, and the fragments that arise when they are hydrolyzed, will be discussed here in sequence.

(1) The reactive thiol group of coenzyme A is located in the part of the molecule that is derived from **cysteamine**. Cysteamine is a *bio*-

genic amine (see p.62) formed by decarboxylation of the amino acid cysteine.

(2) The amino group of cysteamine is bound to the carboxy group of another biogenic amine via an **acid amide bond** (-CO-NH-). β -**Alanine** arises through decarboxylation of the amino acid aspartate, but it can also be formed by breakdown of pyrimidine bases (see p. 186).

(3) Another acid amide bond (-CO-NH-) creates the compound for the next constituent, pantoinate. This compound contains a *chiral center* and can therefore appear in two enantiomeric forms (see p.8). In natural coenzyme A, only one of the two forms is found, the (R)-pantoinate. Human metabolism is not capable of producing pantoinate itself, and it therefore has to take up a compound of *β*-alanine and pantoinatepantothenate ("pantothenic acid")--in the form of a vitamin in food (see p. 366).


(4) The hydroxy group at C-4 of pantoinate is bound to a **phosphate** residue by an **ester bond**.

The section of the molecule discussed so far represents a functional unit. In the cell, it is produced from pantothenate. The molecule also occurs in a protein-bound form as **4'-phosphopantetheine** in the enzyme *fatty acid synthase* (see p. 168). In coenzyme A, however, it is bound to 3',5'-adenosine diphosphate.

(5) When two phosphate residues bond, they do not form an ester, but an "energy-rich" **phosphoric acid anhydride bond**, as also occurs in other nucleoside phosphates. By contrast, (6) and (7) are ester bonds again.

(8) The base **adenine** is bound to C-1 of **ribose** by an **N-glycosidic** bond (see p. 36). In addition to C-2 to C-4, C-1 of ribose also represents a *chiral* center. The β -configuration is usually found in nucleotides.

Koolman, Color Atlas of Biochemistry, 2nd edition © 2005 Thieme All rights reserved. Usage subject to terms and conditions of license.

Chemical reactions

Chemical reactions are processes in which electrons or groups of atoms are taken up into molecules, exchanged between molecules, or shifted within molecules. Illustrated here are the most important types of reaction in organic chemistry, using simple examples. Electron shifts are indicated by red arrows.

A. Redox reactions ①

In redox reactions (see also p. 32), **electrons** are **transferred** from one molecule (the reducing agent) to another (the oxidizing agent). One or two protons are often also transferred in the process, but the decisive criterion for the presence of a redox reaction is the electron transfer. The reducing agent is oxidized during the reaction, and the oxidizing agent is reduced.

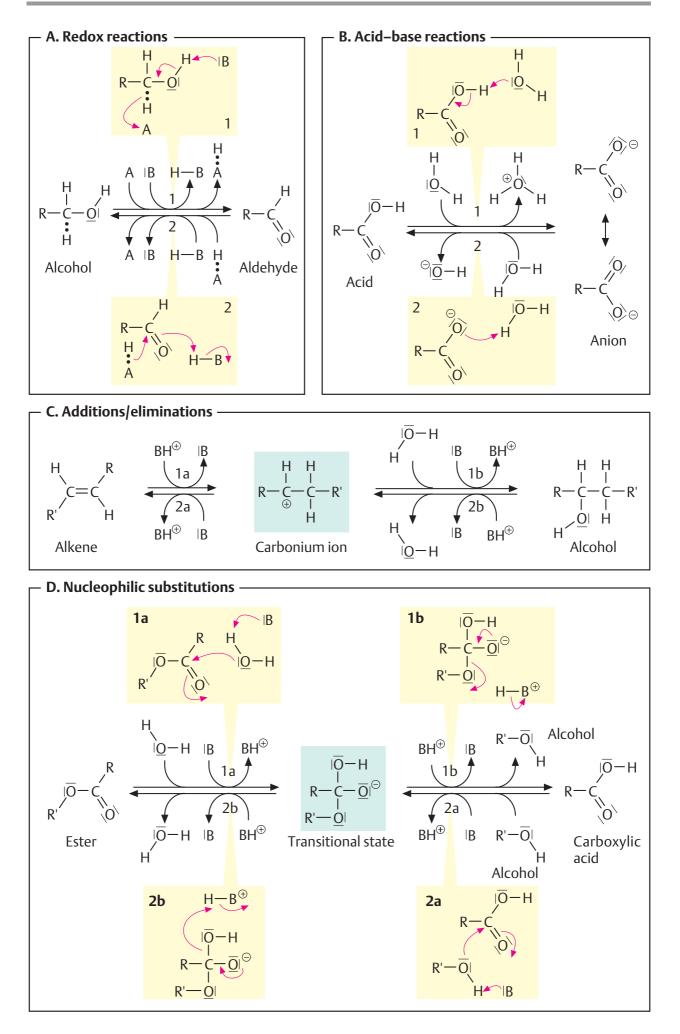
Fig. **A** shows the oxidation of an alcohol into an aldehyde (**1**) and the reduction of the aldehyde to alcohol (**2**). In the process, one *hydride ion* is transferred (two electrons and one proton; see p. 32), which moves to the oxidizing agent A in reaction **1**. The superfluous proton is bound by the catalytic effect of a base B. In the reduction of the aldehyde (**2**), A-H serves as the reducing agent and the acid H-B is involved as the catalyst.

B. Acid-base reactions ①

In contrast to redox reactions, only **proton transfer** takes place in acid–base reactions (see also p. 30). When an acid dissociates (1), water serves as a proton acceptor (i. e., as a base). Conversely, water has the function of an acid in the protonation of a carboxylate anion (**2**).

C. Additions/eliminations ①

A reaction in which atoms or molecules are taken up by a multiple bond is described as **addition**. The converse of addition—i.e., the removal of groups with the formation of a double bond, is termed **elimination**. When water is added to an alkene (**1a**), a proton is first transferred to the alkene. The unstable carbenium cation that occurs as an intermediate initially takes up water (not shown), before the separation of a proton produces alcohol (**1b**). The elimination of water from the alcohol (**2**, dehydration) is also catalyzed by an acid and passes via the same intermediate as the addition reaction.


D. Nucleophilic substitutions ①

A reaction in which one functional group (see p. 10) is replaced by another is termed **substitution**. Depending on the process involved, a distinction is made between nucleophilic and electrophilic substitution reactions (see chemistry textbooks). Nucleophilic substitutions start with the addition of one molecule to another, followed by elimination of the socalled *leaving group*.

The hydrolysis of an ester to alcohol and acid (1) and the esterification of a carboxylic acid with an alcohol (2) are shown here as an example of the S_N2 mechanism. Both reactions are made easier by the marked polarity of the C=O double bond. In the form of ester hydrolysis shown here, a proton is removed from a water molecule by the catalytic effect of the base B. The resulting strongly nucleophilic OH⁻ ion attacks the positively charged carbonyl C of the ester (1a), and an unstable sp³-hybridized transition state is produced. From this, either water is eliminated (2b) and the ester re-forms, or the alcohol ROH is eliminated (1b) and the free acid results. In esterification (2), the same steps take place in reverse.

Further information

In **rearrangements** (isomerizations, not shown), groups are shifted within one and the same molecule. Examples of this in biochemistry include the isomerization of sugar phosphates (see p. 36) and of methylmalonyl-CoA to succinyl CoA (see p. 166).

Koolman, Color Atlas of Biochemistry, 2nd edition © 2005 Thieme All rights reserved. Usage subject to terms and conditions of license.

Energetics

To obtain a better understanding of the processes involved in energy storage and conversion in living cells, it may be useful first to recall the physical basis for these processes.

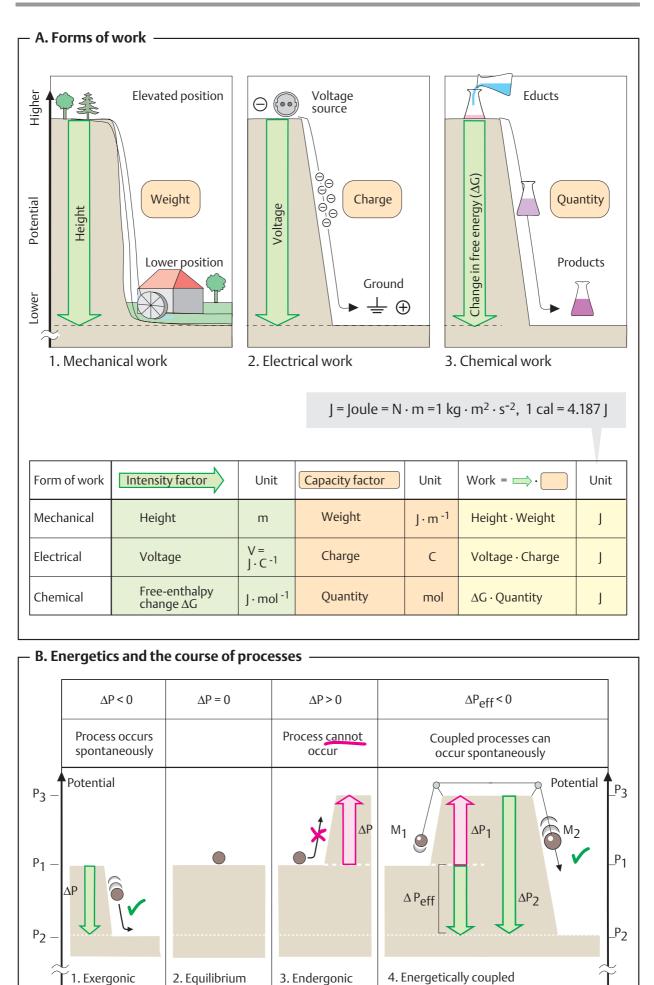
A. Forms of work

There is essentially no difference between work and energy. Both are measured in **joule** (J = 1 N m). An outdated unit is the **calorie** (1 cal = 4.187 J). **Energy is defined as the ability of a system to perform work.** There are many different forms of energy—e.g., mechanical, chemical, and radiation energy.

A system is capable of performing work when matter is moving along a potential gradient. This abstract definition is best understood by an example involving mechanical work (**A1**). Due to the earth's gravitational pull, the mechanical potential energy of an object is the greater the further the object is away from the center of the earth. A **potential difference** (ΔP) therefore exists between a higher location and a lower one. In a waterfall, the water spontaneously follows this potential gradient and, in doing so, is able to perform work—e.g., turning a mill.

Work and energy consist of two quantities: an **intensity** factor, which is a measure of the potential difference—i.e., the "driving force" of the process—(here it is the height difference) and a **capacity factor**, which is a measure of the quantity of the substance being transported (here it is the weight of the water). In the case of electrical work (**A2**), the intensity factor is the voltage—i.e., the electrical potential difference between the source of the electrical current and the "ground," while the capacity factor is the amount of charge that is flowing.

Chemical work and chemical energy are defined in an analogous way. The intensity factor here is the **chemical potential** of a molecule or combination of molecules. This is stated as **free enthalpy** *G* (also known as "Gibbs free energy"). When molecules spontaneously react with one another, the result is products at lower potential. The difference in the chemical potentials of the educts and products (the **change in free enthalpy**, ΔG) is a measure of the "driving force" of the reaction. The capacity factor in chemical work is


the amount of matter reacting (in mol). Although absolute values for free enthalpy G cannot be determined, ΔG can be calculated from the equilibrium constant of the reaction (see p. 18).

B. Energetics and the course of processes ●

Everyday experience shows that water never flows uphill *spontaneously*. Whether a particular process can occur spontaneously or not depends on whether the potential difference between the final and the initial state, $\Delta P = P_2 - P_1$, is positive or negative. If P_2 is smaller than P_1 , then ΔP will be negative, and the process will take place and perform work. Processes of this type are called **exergonic** (**B1**). If there is no potential difference, then the system is in **equilibrium** (**B2**). In the case of **endergonic** processes, ΔP is positive (**B3**). Processes of this type do *not* proceed spontaneously.

Forcing endergonic processes to take place requires the use of the principle of **energetic coupling**. This effect can be illustrated by a mechanical analogy (**B4**). When two masses M_1 and M_2 are connected by a rope, M_1 will move upward even though this part of the process is endergonic. The *sum* of the two potential differences ($\Delta P_{eff} = \Delta P_1 + \Delta P_2$) is the determining factor in coupled processes. When ΔP_{eff} is negative, the entire process can proceed.

Energetic coupling makes it possible to convert different forms of work and energy into one another. For example, in a flashlight, an exergonic chemical reaction provides an electrical voltage that can then be used for the endergonic generation of light energy. In the luminescent organs of various animals, it is a chemical reaction that produces the light. In the musculature (see p. 336), chemical energy is converted into mechanical work and heat energy. A form of storage for chemical energy that is used in all forms of life is adenosine triphosphate (ATP; see p.122). Endergonic processes are usually driven by coupling to the strongly exergonic breakdown of ATP (see p. 122).

Equilibriums

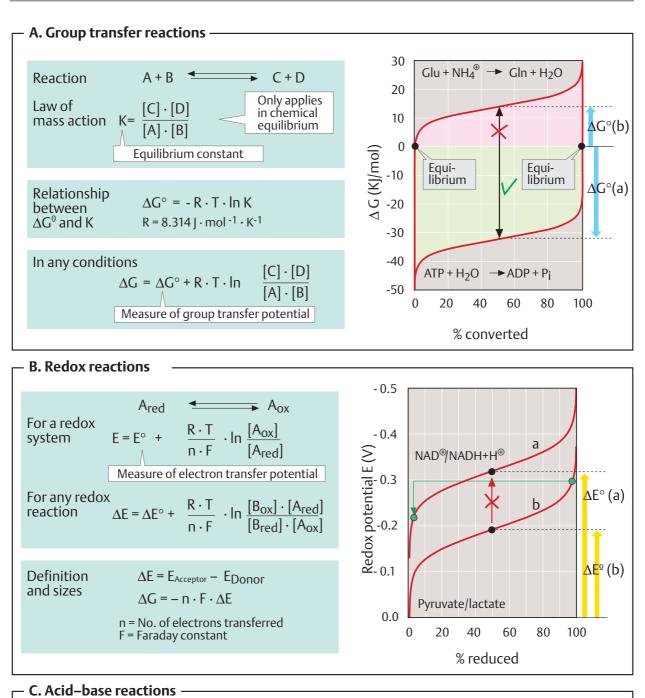
A. Group transfer reactions ①

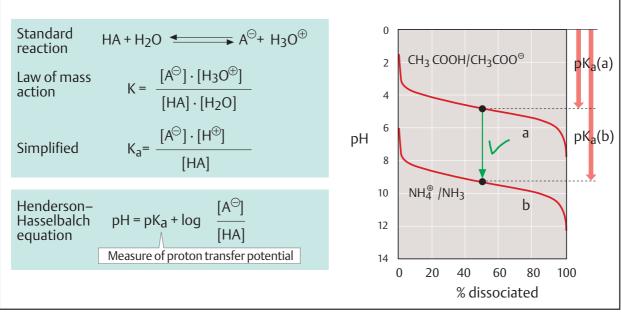
Every chemical reaction reaches after a time a state of equilibrium in which the forward and back reactions proceed at the same speed. The law of mass action describes the concentrations of the educts (A, B) and products (C, D) in equilibrium. The equilibrium constant K is directly related to ΔG^0 , the change in free enthalpy G involved in the reaction (see p. 16) under standard conditions ($\Delta G^0 = -R$ T ln K). For any given concentrations, the lower equation applies. At $\Delta G < 0$, the reaction proceeds spontaneously for as long as it takes for equilibrium to be reached (i.e., until $\Delta G = 0$). At $\Delta G > 0$, a spontaneous reaction is no longer possible (endergonic case; see p. 16). In biochemistry, ΔG is usually related to pH 7, and this is indicated by the "prime" symbol (ΔG^{0} ' or $\Delta G'$).

As examples, we can look at two group transfer reactions (on the right). In ATP (see p. 122), the terminal phosphate residue is at a high chemical potential. Its transfer to water (reaction **a**, below) is therefore strongly **exergonic**. The equilibrium of the reaction ($\Delta G = 0$; see p. 122) is only reached when more than 99.9% of the originally available ATP has been hydrolyzed. ATP and similar compounds have a high **group transfer potential** for phosphate residues. Quantitatively, this is expressed as the ΔG of hydrolysis ($\Delta G^{0_{7}} = -32$ kJ mol⁻¹; see p. 122).

In contrast, the **endergonic** transfer of ammonia (NH₃) to glutamate (Glu, reaction **b**, $\Delta G^{0'} = +14 \text{ kJ} \text{ mol}^{-1}$) reaches equilibrium so quickly that only minimal amounts of the product glutamine (Gln) can be formed in this way. The synthesis of glutamine from these preliminary stages is only possible through **energetic coupling** (see pp. 16, 124).

B. Redox reactions ①


The course of electron transfer reactions (redox reactions, see p. 14) also follows the law of mass action. For a single redox system (see p. 32), the Nernst equation applies (top). The **electron transfer potential** of a redox system (i. e., its tendency to give off or take up electrons) is given by its **redox potential E** (in standard conditions, E^0 or $E^{0'}$). The *lower* the redox potential of a system is, the *higher* the chemical potential of the transferred electrons. To describe reactions between two redox systems, ΔE —the difference between the two systems' redox potentials—is usually used instead of ΔG . ΔG and ΔE have a simple relationship, but opposite signs (below). A redox reaction proceeds spontaneously when $\Delta E > 0$, i.e. $\Delta G < 0$.


The right side of the illustration shows the way in which the redox potential E is dependent on the composition (the proportion of the reduced form as a %) in two biochemically important redox systems (pyruvate/lactate and NAD⁺/NADH+H⁺; see pp. 98, 104). In the standard state (both systems reduced to 50%), electron transfer from lactate to NAD⁺ is *not* possible, because ΔE is negative ($\Delta E = -0.13$ V, red arrow). By contrast, transfer can proceed successfully if the pyruvate/lactate system is reduced to 98% and NAD⁺/NADH is 98% oxidized (green arrow, $\Delta E = +0.08$ V).

C. Acid–base reactions ①

Pairs of *conjugated* acids and bases are always involved in proton exchange reactions (see p. 30). The dissociation state of an acid–base pair depends on the H⁺ concentration. Usually, it is not this concentration itself that is expressed, but its negative decadic logarithm, the **pH value**. The connection between the pH value and the dissociation state is described by the *Henderson–Hasselbalch equation* (below). As a measure of the **proton transfer potential** of an acid–base pair, its **pK_a value** is used—the negative logarithm of the acid constant K_a (where "a" stands for acid).

The *stronger* an acid is, the *lower* its pK_a value. The acid of the pair with the lower pK_a value (the stronger acid—in this case acetic acid, CH_3COOH) can protonate (green arrow) the base of the pair with the higher pK_a (in this case NH_3), while ammonium acetate (NH_4^+ and CH_3COO^-) only forms very little CH_3COOH and NH_3 .

Enthalpy and entropy

The change in the free enthalpy of a chemical reaction (i. e., its ΔG) depends on a number of factors—e.g., the concentrations of the reactants and the temperature (see p. 18). Two further factors associated with molecular changes occurring during the reaction are discussed here.

A. Heat of reaction and calorimetry **①**

All chemical reactions involve heat exchange. Reactions that release heat are called **exothermic**, and those that consume heat are called **endothermic**. Heat exchange is measured as the enthalpy change ΔH (the heat of reaction). This corresponds to the heat exchange at constant pressure. In exothermic reactions, the system *loses* heat, and ΔH is negative. When the reaction is endothermic, the system gains heat, and ΔH becomes positive.

In many reactions, ΔH and ΔG are similar in magnitude (see **B1**, for example). This fact is used to estimate the caloric content of foods. In living organisms, nutrients are usually oxidized by oxygen to CO₂ and H₂O (see p. 112). The maximum amount of chemical work supplied by a particular foodstuff (i. e., the ΔG for the oxidation of the utilizable constituents) can be estimated by burning a weighed amount in a **calorimeter** in an oxygen atmosphere. The heat of the reaction increases the water temperature in the calorimeter. The reaction heat can then be calculated from the temperature difference ΔT .

B. Enthalpy and entropy **①**

The reaction enthalpy ΔH and the change in free enthalpy ΔG are not always of the same magnitude. There are even reactions that occur spontaneously ($\Delta G < 0$) even though they are endothermic ($\Delta H > 0$). The reason for this is that changes in the degree of order of the system also strongly affect the progress of a reaction. This change is measured as the **entropy change (\Delta S)**.

Entropy is a physical value that describes the **degree of order of a system**. The *lower* the degree of order, the larger the entropy. Thus, when a process leads to increase in disorder—and everyday experience shows that this is the normal state of affairs— ΔS is positive for this process. An increase in the order in a system ($\Delta S < 0$) always requires an input of energy. Both of these statements are consequences of an important natural law, the Second Law of Thermodynamics. The connection between changes in enthalpy and entropy is described quantitatively by the **Gibbs–Helmholtz equation** ($\Delta G = \Delta H - T \Delta S$). The following examples will help explain these relationships.

In the *knall-gas* **(oxyhydrogen) reaction (1)**, gaseous oxygen and gaseous hydrogen react to form liquid water. Like many redox reactions, this reaction is strongly exothermic (i. e., $\Delta H < 0$). However, during the reaction, the degree of order increases. The total number of molecules is reduced by one-third, and a more highly ordered liquid is formed from freely moving gas molecules. As a result of the increase in the degree of order ($\Delta S < 0$), the term -T ΔS becomes positive. However, this is more than compensated for by the decrease in enthalpy, and the reaction is still strongly exergonic ($\Delta G < 0$).

The **dissolution of salt in water** (2) is endothermic ($\Delta H > 0$)—i. e., the liquid cools. Nevertheless, the process still occurs spontaneously, since the degree of order in the system decreases. The Na⁺ and Cl⁻ ions are initially rigidly fixed in a crystal lattice. In solution, they move about independently and in random directions through the fluid. The decrease in order ($\Delta S > 0$) leads to a negative $-T \Delta S$ term, which compensates for the positive ΔH term and results in a negative ΔG term overall. Processes of this type are described as being **entropy-driven**. The folding of proteins (see p.74) and the formation of ordered lipid structures in water (see p. 28) are also mainly entropy-driven.