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ABC Transporter Proteins and Cellular Drug Resistance
P-Glycoprotein and Analogous Transporters

William W. Johnson

yea, al that very moment
Consideration, like an angel, came
And whipp’d the offending Adam out of him,
Leaving his body as a paradise.
To envelop and contain celestial spirils...
King Henry V

1. Introduction

Mammalian cells possess a natural battery of detfense mechanisms against xenobiotic
assaull. A class of proteins actively transports an exlensive array of structurally unre-
lated large lipophilic compounds from the cell, providing what is often known as mul-
tiple drug resistance (MDR) (). MDR is characterized by active cfflux or pumping of
xenobiotics and pharmaceuticals via transmembrane proteins acting as hydrophobic
“vacuum clecaners” (2,3). The MDR1 gene encodes a 170 kD integral plasma mem-
brane phosphorylated glycoprotein, P-glycoprotein (P-gp), which is the best known
and most extensively studied among these transporters, and which thus far has the
largest substrate list. The gross structural features of P-gp are shared by a large family
of membrane transporters known as adenosine 5'-triphosphate (ATP)-binding cassette
(ABC) transporters, which evidently act as ATP-driven pumps that remove xenobiotics
from the interior of cells. Expression of P-gp in normal human tissues—particularly
within the cellular membranes of the gastrointestinal tract, liver, blood-brain barricr
(BBB), adrenal glands, and kidneys—suggests that the protein plays a role in ccllular
protection as well as in secretion (/—4). Although the primary function of this protein is
unknown, its ability Lo conler resistance to a wide variety of structurally and chemi-
cally unrelated compounds remains impressive. Indecd, the substrate list for this trans-
portcr reveals that P-gp shares a similar tolerance or acceptance for chemicals as
cylochrome P450 3A4 (CYP3A4), the predominant intestinal and hepatic cytochrome
P450 oxygenase ¢nzyme, and may even prove to be more extensive in its substrale
recognition and as an avenue ol drug elimination (5).

It is becoming evident that drug interactions ostensibly mediated by the cytochrome
P450 3A4 oxidative pathway are also the result of P-gp inhibition (6,7). Given the
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enormous number of substratcs now known to be recognized by P-gp, and a binding
site that is evidently hydrophobic, the substrates for CYP3A4 and P-gp clearly overlap.
Among the more grave examples of clinical drug interactions are those of the H-re-
ceptor antagonist terfenadine (Seldane) with ketoconazole and erythromycin (8), as
well as those of simvastatin with itraconazole and mibefradil (9); all are substrates/
inhibitors of P-gp (4-6). Additionally, P-gp polymorphisms may cause compound-spe-
cific drug reactions to treatment with P-gp substrates. If a polymorphic gene product of
MDRI has inferior selectivity toward a therapy, incrcased systemic exposure to that
erstwhile P-gp substrate could be expected (10-12).

1.1. Function and Mechanism

Onc of the many intractable aspects of investigating P-gp is an absence of chemical
change to its substrates and hence no product formation or gross substrate depletion to
monitor or analyze. Because extensive in vitro and in vivo studies indicate that MDR
enzymes transport/move lipophiles across a lipid bilayer against a concentration gradi-
ent, P-gp has been described as a translocase, a flippase, or even a hydrophobic vacuum
cleaner. The purposc of this enzyme ostensibly is: (1) protection against exogenous
toxins ingested with food; (2) excretion of (endogenous) metabolites or toxins; (3)
prevention of toxic materials from entering the brain, gonads, and fetus; (4) transporta-
tion of steroid hormones; and (5) extrusion of peptides (cytokines) not exported via
signal/clcavage.

As a member of the ABC supertamily of transporters, P-gp possesses two ATP bind-
ing sites and uses ATP (via hydrolysis) as the source of energy for “translocating”
substrates (4). The large transmembrane protein P-gp has two homologous domains,
each containing a nucleotide binding site (ATP) and a substrate binding site near or
within the inner leaflet of the membrane. With ATP hydrolysis providing the energy
for function, experimental quantitation of the coupling of ATP hydrolysis to ettlux
events indicates a ratio of approx 1 or 2 ATP per substratc molecule transported (73—
/9). Hence, measurement of the rate of ATP hydrolysis serves as an indirect assay of
cnzymatic activity. The inactivation at only one of the two ATP binding sites is suffi-
cient to abolish entirely the activity of the transporter (20). An allosteric linkage has
been shown between one ATP binding site and catalysis at the other homologous site;
these sites appear to drive substrate transport in tandem.

The substrates enter the active transport sites from the inner-leaflet, cell-membrane
lipid bilayer (27) and can bind to two (or more) nonidentical sites (/7). Kinetic data
indicating noncompetitive inhibition of P-gp-mediated transport by substrates and in-
hibitors suggest differing substrate specificity between the binding sites (17). Many of
these studics show V.., changes that are consistent with nonexclusive binding of an
inhibitor or allernative substratc, whercas photoaffinity labeling has indicated noniden-
tical substrate binding sites (22). Indced, binding studies also show biphasic binding
curves and hence two distinct Ky's for many P-gp substrates, further indications of
affinitics that arc unique to the two binding sites (23). Moreover, allosteric and perhaps
synergistic effects have been observed for certain substrate combinations and condi-
tions (24,25), with recent evidencc even suggesting interaction between the two bind-
ing sites (26,27) and/or the nucleotide binding sites (20,28,29). Such an allosteric
linkage between sites could affect the inhibition characteristics of marker-substrate
transport out of the cell by particular inhibitors. Under these circumstances, the inhibi-
tion of transport might differ from that observed by simple Henri-Michaelis-Menten
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hyperbolic saturation plot of inhibition. Moreover, in light of the substantive cvidence
for two binding sites, it is probable that some substrates are uniquely recognized and/or
transported by P-gp. This responsiveness or sensitivity would, in turn, determine the
extent of influence (including concentration dependency) a particular inhibitor will
have on such substrates (30).

2. Clinical Impact

Numerous examples illuminating the critical and potent physiological impact of P-
ep have been described. Striking effects on bioavailability are shown by genetic knock-
out (KO) animals as well as the therapeutic intervention ot P-gp function. KO animals
have no functional mdrla (P-gp null) and are highly sensitive to the neurotoxin
ivermectin and many other P-gp substrates. Dramatic effects on exposure have been
observed in particular sanctuaries protected by the actlivity of P-gp. For example, brain-
tissue levels of ivermectin were 87-fold higher, and those of the carcinostatic drug
vinblastine were 22-fold higher, in the KO animal vs wild-type (3/). Furthermore,
paclitaxel and digoxin (cardio-toxin) oral uptake is markedly incrcased. Indeed, even
systcmic plasma concentrations are increased 2-, 3.5-, 5.7-, and 4.1-fold, respectively,
for cyclosporin A, digoxin, erythromycin, and saquinavir in the P-gp null mouse (32).
Co-administration of the potent P-gp inhibitor PSC833 with digoxin in wild-type mouse
increased brain exposure to levels almost that of KO mice by abolishing intestinal P-g
function (33). An example of the dramatic impact of P-gp on physiological exposure to
xenobiotics in humans is thc remarkable decrcase of the cyclosporin A plasma area
under the curve (AUC)-dependent on the location of absorption in the rank order
stomach>jejunum/ileum>colon (intubation) (34). The decrease in absorption exhibited
a marked correlation (r = 0.994) (o expression of mRNA for P-gp over the gastrointes-
tinal (GI) tract (stomach<jejunum<colon).

2.1. Tissue Distribution and Toxicity

The evidence thus far shows that P-gp has been found virtually wherever investiga-
lors have searched for it. P-gp has been detected in: adrenal glands (endothelial cells);
kidney (brush border ot proximal renal tubule); liver (biliary canaliculi); intestine (co-
lumnar epithelium); jejunum, ileum, pancreas (epithelia); colon, central nervous sys-
tem (CNS; cndothelial cells); pregnant uterus (glandular epithelial cells of the
endometrium); CD34* bone marrow cells, circulating lymphocytes, and haematopoietic
stem cells (1—).

2.2. Blood—Brain Barrier and Neurotoxicity

P-gp is expressed at the apical surface of the capillary endothelial cells that form the
BBB, where it seems to play a dramatic role in the exclusion of many drugs {rom the
brain. Studies have shown that the sensitivity of homozygous P-gp KO mice to the
neurotoxicity (and CNS concentration) of ivermectin and vinblastine is increased 100-
fold compared with that of wild-type animals (3/). In addition to MDR 1, another isoen-
zyme of the drug/xenobiotic efflux family, multidrug resistance-associaled protein
(MRP1), has been detected in about 30% ot head and neck squamous cell carcinomas
by immunohistochemistry.

A comparative analysis of 18 physicochemical properties revealed that drugs for
CNS indications had fewer hydrogen bond donors, fewer positive charges, greater
lipophilicity, lower polar surface area, and reduced flexibility compared with the non-
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CNS group (properties that enhance membrane permeability) (35). Because a CNS
drug should ideally have high passive permeability and not be a substrate of P-gp, it is
not surprising that there was a threefold lower incidence ol P-gp-mediated efflux of
CNS drugs (n =7 ot 48, 14.6%) than of non-CNS drugs (n =19 ot 45, 42%) (35).

The striking difterences in brain concentrations of P-gp substrate drugs between
wild-type and KO mice is impressive even compared with plasma differences, indicat-
ing P-gp is more critical to brain exposurc than intcstinal absorption (see below).
Administration of ivermectin (oral), digoxin intravenous, or cyclosporin intravenous
in wild-type and KO mice resulted in 87-, 27-, or 55-fold higher brain levels in the KO
over wild-type (32), yet the increases were less than fourfold in liver, kidney, and
plasma. These results indicate that P-gp inhibitors should be used with caution to avoid
potential neurotoxicity.

2.3. Intestinal Absorption and Bioavailability

It is noteworthy that poor pharmacokinetic (PK) properties, such as poor oral
bioavailability or duration of action (clearance), account for nearly half ot the failures
in clinical development (36). MDR1 (P-gp) and MRP1 are constitutively expressed in
cpithelia throughout the GI tract and are often overexpresscd in carcinomas originating
from thesc tissues. Double MDR1 genetic KO mice have shown decreased elimination
of drugs resulting from impaired excretion by liver, kidney, or gut (depending on which
route is important in the P-gp-mediated excretion of the drug), and/or enhanced rcab-
sorption of drug {rom bile, gut lumen, or urine prior to ¢limination from the body (32).

For drugs that are excreted unaltercd or as a conjugate that can be hydrolyzed after
secretion, P-gp in the epithelial surfaces of bile ducts, gut, and kidney proximal tubule
may prevent reabsorption of the excreted drug. P-gp generally has greater impact on
drug uptake than on drug cxcretion. Clinical results with the (relatively low potency)
inhibitors tested so far demonstrate, for instance, that these agents interfere with the
elimination of anthracyclines, a process that results in considerable increascs in AUC
and concomitant toxicity (37). Moreover, oral bioavailability of paclitaxel (MDR sub-
strate) increased from 9.3% to 67% with either intravenous or oral co-administration of
the MDR inhibitor cyclosporin A (38). Similarly, high levels of bioavailability were
observed with the P-gp KO mice (32).

There are many instances where absorption from the small intestine may be com-
plete but bioavailability is poor owing to cnterocyte recycling via P-gp (34,39-41).
Reabsorbtion after ejection increases the compound exposure 10 enterocyte drug-
metabolising enzymes, and P-gp may cnhance intestinal metabolism of drugs.
Midazolam (42) and cyclosporin (43) endurc extensive first-pass gut elimination ow-
ing 1o active transport and recycling. The efficient P-gp substrate verapamil has a low
oral bioavailability of about 20% at doses of at least 120 mg, and propranolol has a low
bioavailability of about 26%.

The poor bioavailability of HI'V proteasc inhibitors (44), digoxin (10 lhe brain [45]),
and taxol (46) is apparently owing to cfficient transport by P-gp, with paclitaxel oral
bioavailability of less than 5% (47). The tacrolimus (bioavailability 18%) concentra-
tion/dosc ratios in a recipient of a small-bowel transplant corrclated well with the lev-
cls of MDR1 mRNA, but not with CYP3A4, indicating thal P-gp determines

intraindividual variability in tacrolimus pharmacokinetics (48). Moreover, the phar-
macokinetics of the -blocking agents celiprolol, pafenolol, and talinolol are also sig-
nificantly affccted by P-gp in the intestine (49-53); the H2 rceeplor antagonists
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ranitidine and cimetidine arc similarly affected (54), though 50% absorbed at the high
therapeutic doses.

However, intestinal P-gp may be saturated when drug concentrations in the intesti-
nal lumen exceed the K, values after high oral doses. Whereas P-gp substrate drugs,
such as digoxin, given at low doses result in low and variable absorption, many of
these drugs (talinolol, indinavir, etc.) exhibit dose-dependent absorption owing to P-
gp saturation. Chiou et al. (55) recently concluded that 13 P-gp substrate drugs are not
significantly impeded by efflux transport in vivo. Yet the absorption of some drugs
that arc administerced at high doses is still significantly affected by intestinal P-gp.
Despite the high clinical oral dose of cyclosporin and paclitaxel (200-700 mg and
100-200 mg, respectively), P-gp significantly limits their oral absorption (34,46), per-
haps owing to poor solubility. Therefore, drug absorption is unlikely to be quantita-
tively limited by active efflux transport unless a very small oral dosc is given, or the
dissolution and/or membrane difTusion rates of the drug are very slow. To highlight
further the importance of oral absorption, poor absorption is asscrted to be causing a
new public health issue because it increases the chemical burden on municipal waste
treatment facilities (56).

2.4. Excipients Affect Permeability by Inhibiting Transporters

Nonabsorbable pharmaceutical excipients such as Tween-20, Tween-80, pluronic
P85, or TPGS have been shown to be potent modulating agents of membrane transport-
ers (57,58). Other nonionic surfactants affecting transport pumps include Cremophors,
pluronic block copolymers, Nonidet P-40, and Spans. Surfactants that are commonly
used as vehicles for solubilizing certain drugs can inhibit MDR in resistant cells at
clinically achicvable concentrations (59). Addition of the surfactants Solutol HS-15,
Tween-40, and Cremophor EL (10 mg/ml. each) decreased lipid (luidity of isolated
crude plasma membranes of resistant cells (60), whereas noninhibiting surfactants
(octylgucoside, hecameg) did not affect membrane fluidity. Furthermore, Tween-80
and Cremophor EL fluidized cell-lipid bylayers, whereas vitamin E TPGS rigidized
lipid bilayers reducing the BL-AP permeability of rhodamine 123, and the noninhibitor
N-octyl gulcoside did not modulate membrane fluidity (67). PEG-300 (polycthylene
glycol) inhibited efflux-transporter activity in Caco-2 cell monolayers, probably caused
by changes in the microenvironment of the cell membranes, perturbing the ability of
these transporters to efflux substrates such as taxol and doxorubicin (62). Inhibition is
obscrved at concentrations below the critical micelle concentration (cme) for the dit-
ferent surfactants, suggesting that the monomer is responsible and may be partitioning
into the membrane and inhibiting P-gp through a membrane-fluidizing mechanism.
Indeed, low concentrations of the nonionic surfactant Triton X-100 inhibited azidopine
binding to P-gp in vinblastine-resistant human lymphoma (63).

2.5. Liver, Kidney, and Excretion

P-gp plays a significant role in the biliary excretion of digoxin, doxorubicin, vincris-
tine, and vinblastine in mice (64). The biliary clearance of digoxin is substantially
greater in wild-type mice (2.3 ml./min/kg) than in KO mice (0.84 mL/min/kg) (65).
Approximately 45% of digoxin is cxcreted in the bile of wild-type mice.

Digoxin is also actively secreted in the isolated perfused rat kidney with the P-gp
inhibitors quinidine and verapamil inhibiting tubular secrction (66). The renal clear-
ance of digoxin in wild-type mice was three times greater than that in KO mice (65).
Therefore, digoxin appears to be actively secreted into the renal tubular lumen by P-gp.
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2.6. Placenta and Teratogenicity

MDRI1 functions as a critical component of the maternal blood-placental barrier,
protecting the fetus from exposure to various maternal blood-borne chemicals. Preg-
nant dams of a mouse CF-1 subpopulation, known to lack P-gp, exposed to an
avermectin were highly sensitive to fetal cleft palate (67). The degree of chemical
exposure of fetuses within each litter was inversely related to expression of placental
P-gp, which was determined by the fetal genotype.

3. Substrates, Their Diversity, and Drug—-Drug Interactions

It is, as yet, unclear how P-gp can recognize and transport such a structurally diverse
spectrum of compounds ranging in size from less than 250 Da (cimetidine) to more
than 1800 Da (Gramicidin D). The only structural common denominator identified so
far is that all transported substrates are at least somewhat hydrophobic and/or
amphipathic in nature, containing a hydrophobic and often a polar or even a (generally
positively) charged domain (/—4).

The ability of transported substrates to insert into biological membrancs may be an
essential requirement for recognition of the compound by P-gp. Favored partitioning
into the lipid membrane would increase the etfective substrate concentration at the
transport binding site. Distinct but overlapping specificities of the drug binding/trans-
port sites may help explain the broad substrate tolerance or lack of specificity (30).

3.1. Substrate Recognition

The substrate recognition abilities of P-gp are broad and tolerant, even among most
xcnobiotic-defense enzymes. The purported xenobiotic-protcetion role of P-gp (/,2)
mimics that of CYP3A4. Both enzymes provide a protective role 1o many of the same
cells and defend against a gencrally shared list of xenobiotic substrates, The extensive
overlap between these two enzymes is probably fortuitous, as opposed to concerted,
because of their great tolerance for and acceptance of large lipophilic substrates. Both
enzymes appear (o have large accommodalting hydrophobic binding sites that do not
discriminate among many lipophilic compounds. However, substrate recognition and
preference are not this simple, because both enzymes have shown cooperativity and a
role for decisively oriented hydrogen bonding in the substrate binding sites (7,68).

Most P-gp pharmacophore models can only address very general properties such as
lipophilicity and size owing to the multiple binding sites, different assays, binding toler-
ance, and other complications. General properties appear to converge around hydropho-
bicity, presence of rings, size, and in particular, tertiary amines (exlensively reviewed in
refs. 4,69,70). Indeed, it appears that P-gp recognizes its substrates directly from the
lipid phase (21,71-74), where they are expected to be much more concentrated owing to
partitioning of the lipophilic compounds (75). However, the lipophili-city factor logP (a
partition coefficient phase preference) often is not correlated with P-gp binding affinity,
and certainly not across compound classes or series (70,76). Structure activity relation-
ships have shown direct correlation of MDR inhibition to logP only for compounds within
a closely related series (4). Litman et al. (77) showed that 34 inhibitors from different
pharmacological classes have no significant correlation with calculated partition coefti-
cients and that the size of the molecule (van der Waals surface arca) was a better corol-
lary. In fact, a P-gp inhibitor has been has been defined as a compound containing at least
lwo aromatic rings separated by a basic chain with a secondary or tertiary amine (78-80),
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and even stereospecific interactions have often been observed for pairs of chiral com-
pounds (87-85). Furthermore, the contribution of hydrogen bonding has been shown for
P-gp substrates (86—88). Important features of molecular recognition of substrates in-
clude multiple hydrophobic and hydrogen-bond acceptor teatures (89). Indeed, Seelig
has described a pharmacophore with two gencral patterns for substrate recognition: the
“type I unit” of two electron-donor groups (hydrogen-bond acceptors) with a spatial sepa-
ration of 2.5 = 0.3 A and the “type 1T unit” of three electron-donor groups with a spatial
separation of 4.6 + 0.6 A (87). A recent computational ensemble pharmacophore model
supports these recognition patterns (90), although the less restrictive van der Waal’s
interactions, stacking interactions, and the hydrophobic effect may generally combine (o
provide affinity with multiple diverse compounds (9/). Although P-gp does not possess
acidic residues in their membrane domains, it transports cationic amphipathic com-
pounds. Therefore, another physical quality must provide this selectivity and the face of
the aromatic ring structures of tyrosine, phenylalanine, and tryptophan residues can bind
to cations (92,93). Furthermore, binding interactions are modulated by the membrane-
lipid environment (75,94,95).

3.2. P-gp Inhibition and Pharmacokinetic Drug Interactions

Because of the likelihood ot co-administered drugs sharing recognition by the trans-
port site, the inhibition of P-gp causes many PK interactions (vide supra), such as the
increase of the oral bioavailability of paclitaxel from 9.3% to 67% with co-administra-
tion of cyclosporin A (38). Cyclosporin A also inhibits the renal secretion of vincris-
tinc and vinblastine, and other P-gp inhibitors reduce the active biliary excretion of
colchicine, doxorubicin, and ctoposide by the liver (96,97). Intravenous administration
of potent P-gp inhibitors resulted in up to 37-told increasc in HIV-1 protease inhibitor
concentrations in the brain of mice (98); and the P-gp inhibitor GF120918 raised the
HIV drugs’ brain—plasma ratio about 100-fold (99). These and many further examples
of significant clinical drug—herb interactions mediated by P-gp indicate that this trans-
porter should bc routinely examined in drug development for binding and inhibition
caused by proposed therapies.

4. P-gp Elevation

Increased P-gp cxpression and/or activity will naturally have the opposite effect of
thwarting thc P-gp activity described earlier. Dramatic examples of PK intcractions
mediated by P-gp induction have been reported. Significant elevation of intestinal P-gp
quantity and the suppression of talinolol (100) or digoxin (10/) cxposure with co-ad-
ministration of rifampin, a P-gp inducer, were remarkably well-correlated. P-gp and
CYP3A regulation appear to respond similarly to PXR binding and share some mo-
lecular-regulation signals (102). Following chemotherapy, tumor cells may mutate to
present supernormal quantities of P-gp, although many malignancies are already MDR-
positive at diagnosis (chemotherapy naive). For example, in a clinical study, P-gp lev-
els increased 3- to 15-fold, showing that tumors adjust rapidly to anticancer drugs (103).
A major obstacle for successful chemotherapy of cancer is the resistance of tumors to
multiple anticancer drugs (MDR). Because P-gp can account for up to a 100-fold
increasc in drug resistance, overexpression or upregulation of this transporter can be
applied as a prognostic marker in certain diseases, such as leukemia, breast cancer,
neuroblastoma, pancreatic cancer, or ovarian cancer. Indeed, many compounds are in
clinical trials to inhibit P-gp, with the goal of overcoming MDR (vida infra).
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Many other cytotoxic (xenobiotic) compounds are also inducers of P-gp quantity;
for example, verapamil, nifedipine, nicardipine, diltiazem, rifampicin, cyclosporin A,
progesterone, estradiol, phenobarbital, insulin, clotrimazole, reserpine, isosafrole, St.
John’s Wort, hyperforin, dexamethasone, androstanol, troglitazone, ecteinascidin,
digoxin, somc PAHs, 2-acetylaminofluorene, and anthracyclins (/04,7105). Many re-
sults indicate a tissue-dependent inductive response of P-gp to inducer exposure (706).

5. Genetics and Variability
5.1. Polymorphisms

As with the cytochrome P450 superfamily, MDR1 genetic polymorphism might re-
sult in observed outcomes in unique subpopulations, with naturally occurring MDR
single-nucleotide polymorphisms (SNPs) having clinical and pharmacological rel-
evance. In the 28 cxons of MDR genomic DNA of healthy Caucasians, 15 SNPs were
detected, including six in the coding region (/7). Three of these altered the primary
amino acid sequence of the protein. Phenotypical consequences for C34357T in exon 26
corrclated with intestinal P-gp expression and uptake of ovally administered P-gp sub-
strates (72,107). Individuals homozygous for this polymorphism (1T, ~25%, n = 188)
showed significantly lower duodenal P-gp expression, lower in vivo activity of P-gp
(approximately twofold), and increased digoxin plasma levels. However, C3435T is
located at a noncoding, nonpromoter position in the MDRI gene and is unlikely to
influence P-gp expression. It is more likely linked to other as-yct-unidentified changes
in regions of the MDR1 gene that control expression, ¢.g., in the promoter or enhancer
region, or in scquences that are important for mRNA processing. Serving as a surrogate
tor the estimation of other tissue levels, the concentration of P-gp in a subset of lym-
phoid cells (CD56* natural killer [NK] cells) is also substantially lowcr in the T/T
genotypes.

The {requency of C/C genotype (higher activity or function) in West Africans and
African Americans is 83% (n =172) and 61 % (n = 41), respectively, whereas in Cau-
casians it is 26% (n = 537) (108) (see Table 1).

Lligher doses of tacrolimus or cyclosporine were required in African Americans than
Caucasians to attain similar plasma levels. Conversely, the T/T genotype patients at-
tain lower plasma concentrations of the P-gp substrates nelfinavir and efavirenz—anti-
HIV drugs (despite low expression of the MDR 1 transcript and P-gp) (/10)—although
the T/T genotype responded better and laster (greater rise in CD4-cell count) to therapy.
The 3435C/T polymorphism is noncoding and could be in linkage disequilibrium with
a polymorphism clsewhere in the genome that modifies MDR 1 expression or function.
In another study, the T/T genotype (in the context of a C1236T, G2677T haplotype)
was associated with high P-gp expression in vitro and low plasma concentrations of
fexofenadine (/77). The reason for this discrepancy with the C3435T allele subject
observations (/2) described earlier is currently unclear. There could be an indirect effect
of the 3435 genotype, 1.e., low P-gp could be compensated for by induction of other
transporters (or CYP3A4) and dietary/environmental differences could contribute. The
allelic variant MDR1%#2 (haplotype) exhibits enhanced efflux of digoxin, is statistically
associated with lower fexotenadine exposure, and includes C1236T, C3435T, and
G2677T[Ala893Ser| (62% of European Americans, 13% of African Americans). A
recent haplotype analysis has been able to reconcile conflicting results of studies whose
analysis is based solely in individual SNPs (772). Haplotype 12 (2677G/3435T) codes
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Table 1

Prevalence of C/C Genotype in Different Ethnic Groups
Ethic Group C/C Genotype (%)
Ghanaian 83
Kenyan 83
Alrican-American 84
Sudanese 73

British Caucasian 48
Portuguese 43
Southwest Asian 34
Chinese 53
Filipino 59

Saudi 55

Adapted from ref. 109.

for elevated concentrations of digoxin after oral dose and the superior haplotype analy-
sis results match data of other MDR 1 studies (/72).

However, 204 million humans in Africa and South America have been treated with
ivermectin (with no evidence of neurotoxicily), an antiparasitic P-gp subsirate and
potent neurotoxin in P-gp-null genotype KO mouse. This suggests that: (1) MDR1 P-
gp expression is highly conserved in humans overall and (2) defining a subgroup of
humans with complete absence of P-gp expression is unlikely. Indeed, 10 SNPs do not
result in amino acid changes or are in noncoding regions, and three have an unknown
elfect on function.

5.2. Expression Variability

Humans exhibit wide variation in liver expression of MDR1 mRNA and P-gp pro-
tein. The variability of cnterocyte P-gp concentration is about 10-fold in transplant
patients and a bit less in normal nonmedicated adults (about fourfold, interpatient);
males expressed twofold higher amounts of P-gp than females (1/3,1/4). There is even
an indication of up to eightfold interindividual variability in P-gp content (//5), with
morc than cightfold differences in the P-gp cxpression observed in a small population
(25 patients [//6]). This variability is roughly similar to, or perhaps more than, what is
obscrved for CYP3A4, though these studics arc from a limited sample population. Tem-
poral variation of P-gp levels is expected (vide supra), such as a threefold intrapatient
variability that was obscrved in a transplant case study (48)!

6. Role of P-gp Polymorphisms and Mutation in Cancer

Many cancer types have provided examples of gene modifications associated with
drug resistance and P-gp primary structure. Naturally occurring mutations in the MDRI1
gene associated with colorectal cancers with high microsatellite instability (MSI-H) were
found in both the coding and promoter regions (//7). A mutation in the promoter of the
MDRI gene in human hematological malignancies may contribute to the pathogenesis of
resistant disease (//8). Similarly, point mutations in the MDRI1 promoter have been
found in osteogenic sarcoma and various types of leukemia (/79) and arc associated with
diminished in vitro responsiveness to MDR relevant drugs. Moreover, DNA methylation
and hypermethylation can affect transcription and gene-product levels (720).
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7. In Vitro to In Vivo Correlation

Although observations must be carefully judged in the context of contrived elemen-
tal systems, the correlation of in vitro experiments to clinical observations generally is
quite good owing to the dramatic role or influence of P-gp. The significant impact of P-
gp inhibition has been illustrated calier, including some corollary Lo in vitro experi-
ments. There are many further examples, including the increased digoxin
concentrations in the brain of PSC833 (very potent P-gp inhibitor in vitro) orally
treated, wild-type mice near the levels found in mdrla/l1b(—/-) double KO mice (33).
The relative P-gp inhibition potencies of many herbs and drugs such as the azole anti-
fungals (itraconazole, etc.) and statins (HMG-CoA reductase inhibitors) are consistent
with their observed PK effects (/27/-7124). Additionally, correlation between in vitro
transcellular molecule transport ratios from transfected (L-mdrla) cells (efficiency as a
P-gp substrate) and brain concentration ratios of mdrla (/=) to mdrla (+/4) CF-1 mice
is remarkable and predictive (r? = 0.93; 125). The cellular accumulation ratio and
transcellular transport ratio methods for substrate charactcrization/quantification also
correlated well and consistently (/25). Sandwich-Cultured (SC) rat hepatocytes have
been shown to be an in vitro model to assess and predict the biliary excretion of
xenobiotics with notable correlation (126).

To evaluate substrate-transport kinetics, ATP hydrolysis is a useful assay for P-gp
substrates (/7,127), although some substrates do not significantly alter P-gp-mediated
ATP hydrolysis (from baseline activity ostensibly caused by co-purified endogenous
substratc) in the presence of standard lipid constituents (/28). However, Caco-2 cells
apparently do not afford good gencral correlation with gastrointestinal (GI) absorption
owing to variable expression of P-gp, other ABC transporters, plasma protein binding,
rates of passive diffusion, luminal saturation of P-gp, and so forth (55). Moreover,
physiological factors such as gastric emptying, Gl motility, mucus dissolution, intesti-
nal pH, and blood flow, and lymph flow can uniquely impact each transport mecha-
nism. Yet Caco-2 cells can be a useful indicator of jejunal drug efflux, if the low
expression of BCRP (ABC-G2) and CYP3A is accounted for (729). Caco-2, HT-29,
MDCK, TC7 can reproducibly display some properties of ditferentiated intestinal cells
(130) and, therefore, suitable for qualitative predictions and molecular-permeability
screening studies. Indeed, the in vivo to in vitro Caco-2 drug transport permeability
measurements corrclate well for passively or highly absorbed drugs (r? = 85%)
(131,132; also see below) or small molecules (/33). However, even some studies of
peptidomimetics have resulted in reasonable correlations for slowly and incompletely
absorbed drugs (734,135).

7.1. Overall Efficiency of Transport

The implications of P-gp activity and function must account for the ratio of perme-
ability/active-transport for the distinction of a substrate from an inhibitor (736).
Although a substrate typically competes with alternate substrates for the active site of a
xenobiotic-disposition enzyme, many P-gp substrates are not competitive inhibitors
for overall efflux. We have shown that many P-gp substrates have no effect on the
ultimate ability of P-gp to cause removal of the marker substrates from a viable cell
(136), and others have indicated a potentially similar distinction for other compounds
(137-139). It is very important to properly define a compound as a substrate, inhibitor,
or both in the context of evaluating the potential for drug interactions and drug—herb
interactions as well as exposure to toxins and drugs. This disconnect between a sub-
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strate and its ability to inhibit P-gp can be explained by an element of the natural sys-
tem: P-gp exports its substrates across a lipid bilayer that is intended to preclude per-
meation of adverse xenobiotics. A requirement for a P-gp substrate also to be an
inhibitor is the rapid passive transbilayer movement across the membrane bilayer, a
process that allows the substrate to re-enter the cell quickly and hence effectively
occupy the P-gp active site.

Many studies indicate the critical role of membrane permeation or passive trans-
membrane movement rate of a substrate toward the inhibition of P-gp (/40,141). Al-
though P-gp-mediated active rate of compound transfer or eftlux is slow (~ 900 min~';
142), the “tlip-flop” rate of its many substrates is even slower (t;,, > 2 min) against
thosc for which there is “resistance.” In other words, to create a concentration gradient,
the P-gp substrate must have a relatively slow transmembrane passive transport rate.
Conversely, P-gp substrates with relatively rapid permeation will overcome the pace of
P-gp to re-enter the binding site and competitively inhibit function. The rate of active
efflux transport relative to the rate of passive permeation or influx determines the nct
movement of drug from inside to outside of the cell membranc; a substrate cycling
rapidly back into cytosol will compete for P-gp binding site access. MDR-type drugs
are amphipathic (hydrophobic and positively charged) and as such bind rcadily to nega-
tively charged phospholipid head groups of the membrane. Therefore, transmembrane
movement often requires a “flip-flop” through the membranc bilayer and is slow. In-
deed, the passive transbilayer diffusion of phosphatidylcholine (PC), the most abun-
dant membrane lipid, is very slow (t;» ~ d) in both artificial and natural membranes
(143). By measuring the transport rate and passive transbilayer permeation rate of five
inhibitors and five substrates, it was shown that P-gp inhibitors cross the bilayer mem-
brane faster than the egress rate of P-gp, thereby resuiting in rapid equilibration rates
(139). At an approximated turnover rate of 900 min !, P-gp can keep pace with a com-
pound like Rho with a transbilayer movement lifetime of minutes. Conversely, P-gp is
inefticient in protecting MDR cells against molecules rapidly permeating through lipid
bilayer membranes; for example, potent P-gp inhibitors such as the carrier-type iono-
phore valinomycin, which traverse membranes within microseconds (k > 25 x 10*s 1),
Conversely, gramicidin, effectively excluded by P-gp, has a transmembrane “flip-flop”
rate with a lifetime of minutes. Additionally, the transmembrane movement rate is
critical to the overall eftficiency of P-gp removal of rhodamine dyes from MDR cells.
Indeed, rhodamine B and tctramethylrosamine exhibit high affinity for P-gp, but
rhodaminc B was the fastest membrane-traversing dye and the least efticiently excluded
from the ccll. There was a similar corollary for all of the related dyes tested (144).
Another efficient marker of efflux, doxorubicin exhibits a “{lip-flop” rate with a t;;, of
approx 1.7 min, and 30% cholesterol addition to the vesicles to reduce membrane flu-
idity decreased the rate sevenfold (145). The fluidizer benzyl alcohol accelerated the
rate, consistent with the role of membrane bilayer permeability dictating the rate of
cquilibration. Consequently, of compounds ejected by P-gp, those that are relatively
slow to cross the lipid bilayer are efficient “substrates,” and those that rapidly permeatc
the membrane are (also) good “inhibitors.” This effect has been modeled using the
highly permeable compound nicardipine and further supports this conclusion (39,746),
as does ranitidine, which exhibits very low passive permeability (/47) and is not a P-gp
inhibitor.

Lipophilicity could sometimes be used to discriminate between P-gp substrates and
inhibitors. Among a series of anthracyclines, the less lipophilic derivatives were corre-
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lated with slower passive diffusion and resulted in lower intracellular accumulation
(140,141,148,149). Indeed, lipophilicity is inversely correlated with P-gp eftlux effi-
ciency of some vinca alkaloids (/750), steroids (151), and peptides (7152); and dircctly
relates to P-gp inhibition for cyclosporins (/53), steroids (/517), and linear hydrophobic
peptides (154). Although more lipophilic compounds appear to be better inhibitors gen-
erally (as opposed to ejected cificiently as substrates), this correlation does not apply
outside of a particular sel of analogs (155,156). This result is probably owing to the fact
that lipophilicity parameters are inadequalte for judging the interaction of structurally
diverse compounds with the complexities of membrancs (76).

We can now appreciate that the number of P-gp substrates that are not also inhibitors
is striking, and many substrates could be expected to have no substantial effect on P-gp
function in the viable cell. Despite this absence of effect on P-gp overall function by
many substratcs, these P-gp substratcs can still be affectcd pharmacokinetically by the
modulators of P-gp activity. It is therefore important to characterize both the elflux-
ratc paramelters and those of inhibition.

8. Pharmacological Modulation

Of the types of cellular multidrug resistance (resistance to unrelated drugs), the ATP-
dependent etflux pumps are the dominant factor (/57). Early studies showed that P-gp
was highly expressed in colon, kidney, adrenocortical, and hepatocellular cancers (158),
and P-gp expression is correlated with a reduccd complete remission rate of acute my-
clogenous leukemia (AML) and a higher incidence of refractory disease (759). High P-
gp expression is also well-correlated with the poor clinical outcome in childhood acute
lymphoblastic leukemia (ALL) (179). Additionally, breast tumors, and possibly ova-
rian cancers and lung cancers, that expressed increased levels of P-gp after therapy
were associated with over a threefold greater likclihood of treatment failure (760).
After chemotherapy, a significant proportion of breast cancer paticnts express increased
tumor levels of P-gp (767). In ovarian cancer samples, 16-47% were found to express
P-gp, as measured by immunohistochemistry (/62). Studies using mRNA detection or
immunohistochemistry methods, ¢x vivo functional assays, or in vivo tumor imaging
all show a strong association between therapy with MDR drugs, intrinsic or acquired
expression of P-gp, reduced tumor-cell drug retention, and a poor treatment responsc
in breast cancer patients (/63,164). Owing to significant resistance to anticancer drugs,
the mitigation of P-gp has been ardently sought for more than 20 yr (765). As men-
tioned ealier, PSC833 (cyclosporin analog) is a potent P-gp inhibitor and has been
investigated in the clinic as an adjuvant therapy toward overcoming chemotherapy
resistance (/66), although it also causes profound PK cffects (33). Most of these com-
pounds, however, emerged as weak inhibitors that were toxic at high doscs. The poor
activity of current P-gp-inhibition compounds in patients has also been attributed to the
prescnce of resistance factors in addition to P-gp (e.g., other ABC transporters), inap-
propriate design of clinical trials, toxicity, bioavailability, and/or lack of specificity of
anti-P-gp reagents. Yet a Phase I/11 trial of cyclosporin A added to daunorubicin and
cytarabine in “poor-risk” patients with AML. resulted in 62% complete remissions and
a 69% overall response rate (167). Combinations of suboptimal doses of P-gp inhibi-
tors were shown to be effective at 15-100 times less than the optimal doses, suggesting
the possibility of avoiding associated toxicities of these agents (168).



P-Glycoprotein Influence on Xenobiotics 141

An intriguing possibility of a dual-acting chemotherapy is found in SCH66336
(lonafarnib), an orally active, potent, and sclective inhibitor of the farnesyl protein
transferase (FPT) cnzyme (/69). This novel therapeutic agent has activity against a
wide variety of human tumor xenografts and also causcs regression of tumors in wap-
H-ras transgenic mice. Enhanced antitumor activity has been reported in preclinical
cancer models when SCH66336 is combined with cyclophosphamide, 5-fluorouracil
(5-FU), or vincristine (7169,170), all substrates of P-gp. Furthermore, a synergistic ef-
fect on antitumor activity ot SCH66336 and taxancs (also P-gp substrates) has recently
been described (171). Morcover, a recent report shows a synergy with co-administra-
tion of SCH 66336 with paclitaxel or docetaxel (two known substrates of P-gp) in vitro
and in vivo (/71). SCH66336 significantly enhanced the effect of paclitaxel in the
NCIH460 lung-cancer xenograft model and was able to sensitize wap-ras/[' mammary
tumors as well as tumor cell lines to paclitaxel (/71). We have directly characterized
and quantified a specific synergy on P-gp function between SCH66336 and either
tamoxifen, paclitaxcl, or vinblastine (/24). Relatively small concentrations of
SCH66336 can increase the affinity (potency) of these additional compounds as inhibi-
tors of P-gp function. Treatment with SCH66336 would be predicted to be synergistic
with co-administered cancer therapeutics that are substrates of P-gp. A further benefit
of co-administration of SCH66336 could be reduced chemotherapy dosage, hence,
lower exposure to normal cells, and therefore less undesired toxicity.

8.1. Classes of Modulators

Many of the characterized MDR modulators (inhibitors) can be categorized in vari-
ous compound classes and this has been very well-reviewed (4,172,173). The classes
include: (1) calcium-channel blockers (dihydropyridine analogs, i.e.. verapamil); (2)
calmodulin antagonists (phenothiazines and thioxanthenes, i.c., trifluoperazine); (3)
cyclic peptides (cyclosporin A, PSC833): (4) steroids and hormonal analogs (progest-
erone, tamoxifen); (5) dipyridamole; (6) anthracycline/vinca alkaloid analogs; and (7)
miscellaneous other compounds.

8.2. Toxicity and Pharmacokinetic Interactions

Dose-limiting toxicities of the MDR modulators have often precluded their further
clinical development (/74). Ventricular arrhythmia (verapamil), myelosuppression,
cerebellar ataxia (PSC833, valspodar), and hypertension (cyclosporin A), have been
observed, but may be owing to PK interactions caused by P-gp inhibition (6). The
antidiarrheal agent loperamide is a P-gp substrate, hence brain exposure is very limited
normally; yet in the presence of quinidine (potent P-gp inhibitor), the brain loperamide
concentrations increase resulting in serious neurotoxicity (175). Moreover, PK interac-
tion could be caused by inhibition of other xenobiotic-defense enzymes such as the
cylochrome P450s, and could also enhance exposure of the chemotherapy to “sanctu-
ary” sites such as CNS and testis, thus unveiling new toxicities not previously seen
with the cytotoxin alone. This suggests that a significant fraction of patients have been
under-dosed, thus making cfficacy interpretations difficult.

8.3. Clinical Success or “Proof of Principle”

Clinical trials with some of the second-generation modulators are in progress, and
some studies show clinical benefit from the use of modulators such as Valspodar
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(PSC833) (176), although Valspodar is saddled with enhancement of toxicity owing to
PK interactions. Furthermore, the more potent and specific modulators (GF120918
[elacridar], LY 335979 [zosuquidar]) do not show significant PK interaction with doxo-
rubicin, etoposide, and paclitaxel in animal studies (/77-779). In a human Phase 11
study, a subgroup of paclitaxel-refractory advanced breast-cancer patients was
resensitized by biricodar (VX-710) with adequate safety margins and PK parameters
(180). Trials in multiple myeloma, non-Hodgkin’s lymphoma (NHL), and acute leuke-
mia have shown that positive responses to P-gp modulators may occur in patients who
are refractory to standard chemotherapy regimens (/80a-182).

These studies clearly indicate that the development of potent and selective P-gp
inhibitors is an important approach to reversing MDR in the clinic. MDR of cancer
cells is a potentially surmountable obstacle to effective chemotherapy of cancer.

9. MDR Pharmacological Inhibitors and Development Phase

The extensive list of MDR modulators cataloged in Table 2 serves as a strong illus-
tration of the pursuit of an adjuvant cancer therapy to mitigate the action of P-gp. This
table includes the pharmacological product classifications, compound name, pharma-
cological activity with parameter value, the evaluation stage as development phase,
and the reference. This catalog was generated from the MF-line database and data man-
agement software.

10. Other ABC Transporters and the MDR Protein Multi-Gene Family

Much like the genetic superfamilies for cytochromes P450 and glutathione S-trans-
ferases, the xenobiotic transport enzymes are significantly contributing members of an
extensive family that affects the overall disposition of many compounds. MDR1 and
MRPI1 exhibit much overlapping substrate specificity, although MDR1 currently seems
to be broadcr in scope. However, MRP1 can act as a GS-X pump, i.e., it can transport
drugs conjugated with GSH and glucuronide. MRP2 (also known as cMOAT; canali-
cular multispecific organic anion transporter) almost exclusively pumps out conjugates.
Rats deficient in MRP2 show a chronic conjugated hyperbilirubinemia (model for the
human disorder Dubin-Johnson syndrome). MRP homologs recently identified are
MRP3, MRP4, MRP5, MRP6, MRP7. MDR3, BSEP, and MXR (205-208). MDR2
apparently translocates only phospholipids, e.g., phosphatidylcholine. It is believed
that humans possess 48 genes encoding ABC transporters.

The presence of other cellular drug-resistance mechanisms in addition to P-gp is
most likely responsible for the apparent ineffectiveness of some P-gp modulators to
date. The expression of MRP, P-gp, or both can account for diminished accumulation
and retention of daunorubicin in blast cells from AML patients (209). MRP2 is capable
of mediating drug efflux, and a recent study showed increased bioavailability of sev-
eral drugs and carcinogens in Mrp2-null rats (270).

10.1. MRP1, MRP2, and MRP3

The multi-drug resistance protein (MRP) transporters are a subfamily of ABC trans-
porters (ABC-C) related further to P-gp as expcellers of various xcnobiotics such as
chemotherapy (7194,205,208,211,212). Extruding many anionic amphipathic com-
pounds and conjugates from cells, the MRPs have become well-appreciated for their
significant role in chemotherapy resistance (2/3-2/5). MRP1 (ABC-C1) and MRP2
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Table 2
P-Glycoprotein (P-gp) Interaction of Selected Multidrug-Resistance Modulators (MDRMs) and Other
Selected Compounds With Significant Activity on P-gp

P-gp inhibition? P-gp atfinity?

Compound 1Csol K;J*(uM)/References 1C5o[K;1#(uM)/References
MDRMs
Biricodar dicitrate

(VX-710) 2.5 (183) 0.75 (183)
B9109-012 0.0107# (184)
CP-100356 3.50 (186)
Dexniguldipine(HCI 0.45 (184) 2.5 (185)

0.0112# (184)
Elacridar, GF120918 0.044-0.51  (187,191) 0.0014-0.0025*  (187)
Laniquidar 0.2 (192)
MS-209 0.4% (193)
ONT-093 0.03 (194,195)
0OC144-093
Progesterone derivative 0.6-0.8 (196)
S-9788 0.3 (197) 60 (92)
Tariquidar (XR9576) 0.025-0.49  (187,191,198) 0.55 (191)
0.0026-0.0042* (187)

Timcodar-2CH;S03H 0.2-0.4 (199)
Valspodar 0.29-1.06 (200)
XR-9051 0.70 (188,189,190) 0.0018-0.0106% (190)
XR-9576 0.0018-0.0106% (190)
Zosuquidar(3HCI

(1.Y-335979) 0.059* (178) 0.03-0.06 (179)
Oncolytic drugs
Paclitaxcel 0.335% (187)
Vinblastine-H,SOy 0.02* (187)
Mitotane 10- 30 (180a)
Immunosupressants
Cyclosporine 0.44-5.10 (200,201,203) 0.6 1.17 (191)
FR-901459 6.0 (201)
Antifungal agents
Itraconazole 1.7 (202)
Ketoconazole 5.6 (202)
Calcium antagonists
Fantotarone (SR33557) 2.5-20 (203) 0.0083 (203)
Nicardipine(HCI 0.011-0.182* (187)
Verapamil 0.58-15.3 (124,196,198,203) 1.27-110 (124,179,203)
Farnesyltransferase inhibitors
Lonafarnib

(SCH-66336) 2.7 (124)
Calmodulin antagonists,

Dopamine antagonists
Triftuoperazine(HC! 7.2 (124)
Others
Sitybin 6.8% (204)
Taxitohn 37.4% (204)
CBT-1 (NSC-77037) (204a)

4Inhibitory activity measured in different cell lines cxpressing P-gp and/or exhibiting multidrug resistance by means of diftcrent
assays.

bAffinity to P-gp evaluated by displacement of difterent radioligands in different cell lines expressing P-gp and/or exhibiting
MDR.

Data used with permission from Prous Science Integrity®.
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(ABC-C2) have been shown to be expressed in cancers such as lung (276,217), leuke-
mia, bladder, neuroblastoma, breast, ovarian, hepatic, gastric, and prostate
(211,212,218-220) and have conferred resistance against various chemotherapeutics.
Accordingly, MRPI is ubiquitously distributed among many organs predominantly in
the basal and lateral plasma membranes, whercas MRP2 is in intestine, liver, kidney.
placenta, BBB, pancreas, spleen, and choroid plexus and localized in the apical mem-
brane of these cells (2//,2/2). The role in these locations is cxemplified by the signifi-
cant contribution of MRP2 to BBB function that was recently reported (227). MRP1
and P-gp share only modest amino acid sequence identity (15%). whercas MRP1 and
MRP2 sharc 50% amino acid identity, with MRP1 and MRP3 sharing even more (58%)

Because MRP1 secretes compounds into the system or body on the basolateral side,
its role is more of a cellular defense than one of total organism defense such as P-gp
and MRP2 (eliminated drugs {rom the body). Absence of MRP1 causes etoposide lev-
els o incrcase 10-fold in the cerebrospinal fluid (CSF) after intravenous administration
of the drug (222). The body must have a basolateral transporter to protect sperm or
CSF, because P-gp or other apical side efflux transporters would extrude drug into the
sanctuary.

Substrate recognition by MRP1 and MRP2 is generally similar, with known
examples being glucuronosyl-etoposide, estrone-3-sulfate, estradiol-17p3-glucuronide,
etoposide, vincristine (vinca alkaloids), sulfinpyrazone, mcthotrexate, leukotriene C4
(perhaps as a GSH conjugate), and anthracyclines. MRP1 can, however, exhibit
remarkable selectivity, which probably contributes to cancer-therapy resistance.
Whereas estradiol 178-glucuronide is a good substrate, the 3-isomer is not (223). Fur-
thermore, MRP2 transports HIV protease inhibitors, whereas MRP1 does not (224).

Cisplatin is an actively transported substrate of MRP2 (2/4,225-232). The introduc-
tion of MRP2 antisense cDNA into human hepatic cancer HepG2 cells resulls in
increased sensitivity to cisplatin, vincristine, doxorubicin, and the camptothecin
derivatives (23/), with re-inoculated rats confirming an in vivo MRP2-mediated resis-
tance to cisplatin (229). MRP2 mRNA expression is significantly associated with the
resistance of colorectal cancer to cisplatin (227). In transfected cells, the overexpression
of MRP2 resulted in resistance to cisplatin (10-fold), etoposide, doxorubicin,
epirubicin, and MTX (225). Moreover, MRP2 mRNA levels correlate with cisplatin
resistance in a subset of resistant cell lines (274), whereas cellular accumulation and
drug sensitivity to cisplatin in human MRP2 transfectants decreased (274).

5-FU is a possible substrate for the MRP1 transporter. HL-60 cells selected for over-
production of MRP1 (10x the level of parent HL-60 cells) showed resistance to 5-FU
(233), and MRP1 expression is correlated with 5-FU resistance in scven GI cancer-cell
lines (234). Treatment of cisplatin-resistant cell line with 5-FU incrcased the cytotox-
icity of cisplatin fourfold, indicating that 5-FU may interact with MRP2 as well (235).

Tyrosine kinase inhibitors, particularly STIS71 (imatinib mesylate; Gleevec), have
been shown to interact directly with MRP1 and P-gp (236). In transfected cell lines
expressing high levels of either MRP1 or P-gp, several tyrosine kinase inhibitors can
inhibit transport function as well as substrate-stimulated ATP hydrolysis (236). More-
over, P-gp has been detected in cell lines resistant to STIS71 (237).

A substrate of a trans-membrane transporter may not also be an inhibitor; converscly,
inhibitors may not also be transported. Therefore, the list of substrates may not equal
that of substrates. The known MRPI inhibitors are nonspecific and include
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sulfinpyrazine, probenecid, benzbromarone, indomethacin (nonsteroidal anti-inflam-
matory drugs [NSAID]), some flavonoids, and even ritonavir (238). '

MRP3 also transports amphipathic anions on the basolateral side, likc MRPI (219);
is found largely in the liver, gut, and kidney, like MRP2; and is also present in the
adrenal gland, pancreas, gallbladder, lung, and ovary (239). MRP3 may contribute to
enterohcpatic recycling of bile salts (e.g., glycocholate) and removal of toxic anions
during cholestasis (240). Substrates include estradiol-17f3-glucuronide, glucuronosyl-
drug conjugates, vinca alkaloids, methotrexate, etoposide, and teniposide and may con-
tribute to chemotherapy resistance. During cholestatic conditions the high MRP2 levels
drop, whereas MRP3 is significantly elevated. Therefore, many amphipathic anions
(including bile salts) secrete to the basolateral instead of the apical direction, prevent-
ing intrahepatic accumulation to toxic concentrations (240).

10.2. MRP4 and MRP5

MRP4 and MRP5 arc on the basolateral side of cells in many tissue types and are
able to transport therapeutic nucleoside-based compounds (241,242). Indeed, HIV was
less effectively inhibited by the moditied nuclcoside analogs in cells overexpressing
MRP4 (24/). MRP4 expression may also affect cancer chemotherapy. MRP4-
overexpressing cells were resistant to cytotoxic effects of 6-mercaptopurine and 6-
thioguanine (and AZT , MTX), important drugs in the treatment of childhood leukemias
(242). A role for MRP4 in the transport of DHEA (dehydroepiandrosterone 3-sulphate)
and other conjugated steroids has recently been suggested (243).

With MRPS5 transporting not only PMEA (adenine nucleotide analog, acyclic nucleo-
side phosphonate) but also monophosphate diphospho-thiopurines (244), this trans-
porter may have a role in cancer chemotherapy as well. It was recently demonstrated
that MRP5 is a cGMP transporter, yet a comparitively poor cAMP transporter (245).
Becausc sildenalil (i.e., Viagra, as well as trequinsin and zaprinast), a potent phos-
phodiesterasc inhibitor, is also a very effective MRP5 inhibitor, speculation suggests
that the vasodilatory effects could be owing to inhibition of MRPS5-mediated cyclic
nucleotide transport. Although MRP4 seems to prefer methylated thio-IMP, MRP5
prefers the unmcthylated thioinucleotides. Moreover, MRP4 mediates transport of
glucuronate conjugates and methotrexate, whereas MRP5 apparently does not (246).

Many of the ABC transporters have been shown to be temporally regulating, or
induced by exposure to xenobiotics. MRP4 transcription regulation may be controlled
by its natural substrates, cyclic nucleotides (247), and MRP4 is upregulated in response
to clevated levels of hepatic bile acids (248).

10.3. MRP6

MRP6, located in the basolateral membranes of cells in the liver and kidney, trans-
ports an anionic cyclopentapeptide BQ-123 and certain glutathione conjugates (249).
Possibly a highly selective pump for amphipathic anions (250), MRP6 can cause low
levels of resistance to some anticancer agents (etoposide, teniposide, doxorubicin)
(249). The absence of MRP6 causes pseudoxanthoma elasticum, a heritable disorder
characterized by calcification of elastic fibers in skin, arteries, and retina (2517).

10.4. BCRP/MXR/ABCG2

The ABC transporter breast cancer resistance protein (BCRP), also known as
mitoxantrone-resistance protein (MXR) (252), is overproduced in MCF7 breast can-
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cer cells (253). As part of the ABC-G subfamily, this transporter has been renamed
ABCG?2 and apparently functions as a homodimer. It is not known if ABC-G2 can
also heterodimerize with other proteins, such as those of the AGC-G class. Though
possibly more selective in substrate recognition than P-gp, ABCG2 ¢jects mitoxan-
trone, topotecan derivatives, anthracyclines, bisantrene, etoposide, prazosin, and
flavopiridol (254), as well as HIV-1 nucleoside reverse-transcriptase inhibitor
zidovidine (AZT) (255). The active transport of indolocarbazolc compound A was
inhibited by indolocarbazole analogs but not by mitoxantrone, suggesting unique
binding sites (256) reminiscent of P-gp. Other likely substrates include the experi-
mental indolocarbazole topoisomerase inhibitors NB-506 and J-107088 and the ac-
tive metabolitc of thc camptothecin analogue irinotecan/CPT-11 (257). However,
vincristine, vinblastine, paclitaxel, cisplatin, colchicine, verapamil, calcein-AM,
rhodamine 123, and doxorubicin are not significantly transported by AGC-G2 (258).
It appears that P-gp, MRP1, and ABCG2 can account for most of the known active
MDR (259), with relatively high expression of BCRP mRNA observed in approx
30% of AML cases (260). ABC-G2 mRNA also increased significantly from diag-
nosis to relapse or refractory disease, indicating that ABC-G2 levels may correlate
with clinical resistance in AML (26/). ABCG2 has been detected in the apical mem-
branes of placental syncytiotrophoblasts, hepatocytes, the epithelial lining of the
small intestine and colon, brain microvessel endothelium (262), the ducts and lob-
ules of the mammary gland (263), and hematopoietic progenitor cells (264). Drug-
resistant cell lines overexpressing ABC-G2 are derived from parent cells of
fibroblasts, breast, colon, gastric, lung, or ovarian carcinomas, fibrosarcomas, and
myeclomas, which suggests that ABC-G2 may contribute to drug resistance in tu-
mors of various tissue types.

ABC-G2 inhibitors may be useful to improving chemotherapy response, analogous
to P-gp inhibitors. The P-gp inhibitors reserpine, GF120918, are potent inhibitors of
the ABC-G2. Other inhibitors include fumitremorgin C and the tyrosine kinase inhibi-
tor CI1033, whereas verapamil, cyclosporin A, PSC833 and some other P-gp inhibtors
have little effect on ABC-G2.

Similar to P-gp, ABC-G2 could limit oral bioavailability. Indeed, the mRNA Ievel
of BCRP is significantly higher than that of MDR in jejunum (/25). Morever, inhibtion
of ABC-G2 by oral dose of GF120918 has been shown to cause a drug interaction with
oral topotecan, rasing plasma concentrations approximately sixfold. Biliary ABC-G2
also seems to contribute bioavailability and drug interactions because the GF120918
dose decreased hepatobiliary excretion of intravenously administered topotecan by
approximately twofold (265). Furthermore, brain exclusion of xenobiotics may be sig-
nificantly dependent on AGC-G2, with its mRNA more highly expressed than P-gp
and MRP1 in porcine brain (266).

Differences in ABC-G2 function or expression among the population may result in
diverse (and possibly dangerous) clinical exposure to substrate drugs, analogous to
other polymorphic xenobiotic-metabolism enzymes. Analysis of DNA from 11 differ-
ent ethnic populations revcaled that there are several common natural allelic variants
of ABC-G2, but their effect on function is yct to be examined (267). A 78-fold varia-
tion in expression of BCRP mRNA and significant variation in protein cxpression in
human intestine could not be accounted for by one of the common allelic variants (267)
(see Table 3).
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10.5. Sister-P-gp (SPGP)/Bile Salt Export Protein (BSEP)/ABC-B11

Sharing 50% amino acid identity with P-gp, sister-P-gp (SPGP), also known as the
Bile Salt Export Pump (BSEP, ABC-B11), is significantly more selective with respect
to substrate recognition. Expresscd exclusively in the liver (268), BSEP appears to
have a role in efflux of endogenous compounds (bile acids) and exogenous compounds
(xenobiotics) into the bile (269,270). Some examples of endogenous substrates thought
to be exported by BSEP include taurocholate, estradiol-17p-glucuronide, cholic acid,
muricholates, and other monoanionic bile salts. Canalicular secretion of bilc acids from
the liver in the form of bile facilitates the emulsification of dictary lipids and {at-soluble
vitamins. Defective bile secretion results in cholestasis with accumulation of bile salts
and other toxic bile constituents within hepatocytes and blood plasma. Mutations in the
BSEP gene can result in the abscnce of BSEP expression and are the cause of certain
forms of progressive familial intrahepatic cholestasis (PFIC-2) (271,272). PFIC mani-
festations are jaundice, fibrosis, cirrhosis (caused by <1% of normal biliary bile salts),
hyperbilirubinemia, suppressed lipid and cholesterol metabolism, and intestinal mal-
absorption of fat and fat-soluble vitamins.

BSEP has recently been characterized as a transporter that interacts with drugs and
xenobiotics, including vinblastine, ditekiren, troglitazone, troglitazone sulfate,
cyclosporin, rifamycin, glibenclamide (273), sulindac, and taxol (274). Moreover, the
administration of troglitazone (275,276), cyclosporin, rifampicin, and bosentan (277)—
all inhibitors of BSEP—has been linked with cholestasis. Xenobiotic-induced
cholestasis is a significant clinical problem, though drug interactions mediated by BSEP
may also have dangerous consequences. Because P-gp and BSEP are both expressed in
the liver, it is clear that the extent of overlap between P-gp and BSEP drug substrates
and inhibitors needs to be established to cstimate the BSEP role in drug disposition.
The importance of BSEP intcractions at the level of hepatobiliary export processes
should thus be considered in the evaluation of drug interactions.

Several cholestatic drugs have already been shown to potently inhibit BSEP:
cyclosporine A, rifampicin, glibenclamide, estradiol-173-glucuronide, bosentan,
troglitazone, and sulindac all can cause increased bile-salt concentrations in serum and
eventually cholestatic liver injury and are BSEP inhibitors (273,275,278) and probably
substrates (279). Thus far, the most potent inhibitors seem to be cyclosporin, tamoxifen,
and valinomycin (280). There are likely to be much more potent inhibitors, and other
substrates also may be more sensitive to inhibition of transport.

MDR3 is also involved in bile transport and another form of progressive familial
intrahepatic cholestasis (PFIC-3). Sharing 75% amino acid identity with P-gp, it is
inhibited by some known P-gp inhibitors and can also transport some amphipathic
drugs (281). However, it is generally considered selective for etflux of biliary phos-
pholipids (phosphorylcholine).

11. Conclusion

Because of the wide tolerance of substrate recognition, P-gp can often be the mecha-
nism for significant pharmacokinetic drug interactions when two or more drugs are
competing for the P-gp transport site. P-gp levels are also inducible and can be even
further elevated in cancer cells, thus contributing to the confounding pleiotropic resis-
tance to chemotherapy and poor treatment prognosis. Consequently, a broad scope of
research over 20 years has led to the evaluation of co-therapies intended to augment
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Table 3

ABC Transporters Relevant to Xenobiotic Disposition

Name AKA Tissue Side Substrates Notes
MDRI P-gp, Ubiquitous Apical Hydrophobic Induced
ABC-B1 cholestasis
MDR2 MDR3, ? Apical PL xenobiotics
ABC-B4
BSEP SPGP, Liver Apical Bile salts PFIC
ABC-BI1
MRPI ABC-ClI Ubiquitous (low Lateral Lipophilic anions, Induced
liver) leukotriene, cholestasis
conjugates
MRP2 CMOAT Liver, kidney, Apical Conjugates, Suppressed
ABC-C2 gut. placenta, brain lipophilic anions, cholestasis
Bilirubin
MRP3 ABC-C3 Liver, brain, Basolateral Etoposide, Induced
adrenals, vincristine, cholestasis
pancreas methotrezate,
kidney, gut, glycocholate,
ovary, lung conjugates (anionic) Conjugates
MRP4 ABC-C4 Ubiquitous Basolateral Anti HIV Nucleoside
antiviral
MRP3 ABC-C5 Ubiquitous Basolateral Anti HIV Nucleoside
conjugates antiviral
MRP6 ABC-C6 Liver, kidney, Lateral Amphipathic anions,
brain conjugates
CFTR ABC-C7 Exocrine tissue Anions bicarbonate Cystic
fibrosis
BCRP/MXR ABC-G2 Ubiquitous Apical Amphipathic, Chemotherapy
Chemotherapy resistance
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chemotherapy by inhibiting P-gp. This review includes a list of the currently known P-
gp inhibiting adjuvant candidates described in the literature, with associated references
and summary data. The summary catalog of P-gp modulators illustrates the ardent pur-
suit to overcome this form of therapy resistance and gives examples of clinical success
and failure. Significant in vivo and in vitro experimental observations as well as the
extensive catalog of P-gp inhibitors shown earlier illuminate the critical pursuit of im-
peding MDR by inhibiting P-gp. However, there remain many difficultics and hurdles
to effective and safer therapics intended to block the active efflux provided by P-gp
owing to its broad selectivity and tissue distribution as well as clinical liabilities of the
compounds.
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