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1. Introduction 

Drug discovery research has been primarily focused on structure-activity relation- 
ships (SAR). Compounds from libraries are screened for activity and the "hits" are 
used as the starting point for the synthesis of analogs that explore the chemical space 
around the core structure in order to increase activity. Thus, the relationship of struc- 
ture to function is mapped using various bio-assays of increasing sophistication. 
Molecular modeling assists in the planning of structural modifications by visualizing 
the active site of the target protein and modeling small-molecule structures that would 
have higher binding affinity for the target. 

A n  increasing interest has ariscn in an alternate means of increasing activity: the 
improved delivery of drug to the therapeutic target (1-12). Many barriers oppose the 
access of drug molecules to the target. In living systems, access to the target can be 
estimated via pharrnacokmetics (PK). Thus, PK is used as a tool during drug discovery 
to monitor drug exposure after dosing. When PK characteristics are acceptable, then 
delivery is not considered a hurdle. However, in a large number of cases, PK is a hurdle 
and improvement must be undertaken for the compound series to be improved to reach 
the goal of discovering an effective development candidate. In order to diagnose the 
cause(s) of inadequate PK (1,3-5,13,14), discovery researchers recognized the role of 
physicochemical and structural ("drug-like") properties. Some of the physicochemical 
properties most responsible for systemic exposure are solubility, permeability, 
lipophilicity, pKa, and stability. Screening of these properties is often termed "pharma- 
ceutical profiling." Measurement of properties in vitro was initiated in order to diag- 
nose or predict PK properties. 

The availability of data from the measurement from pharmaceutical profiling has 
opened new opportunities in other arcas of pharmaceutical research beyond in vivo 
animal experiments. Properties also affect in vitro experiments using enzyrneslrecep- 
tors and cell-bascd assays (9,15). In the past, the lack of compound activity in an in 
vitro assay led to its removal from further consideration. However, binding to the active 
site of an enzyme or receptor target is not the only variable in an in  vitro assay. Activity 
is also affected by barriers that attenuate compound delivery to the protein targct. As 
with in vivo systems, physicochemical properties affect how thc compound performs 
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Fig. 1. Barriers to cellular drug delivery. Barriers are shown in bold. Detailed aspects of a 
barrier are listed as bullets. Pharmaceutical profiling assays that provide information on perfor- 
mance of compounds at the barriers are shown. 

at these barriers and determine the ultimate concentration of compound reaching the 
target protein. 

In this chapter, physicochemical and biochemical properties that affect cellular drug 
delivery will be discussed, along with automated assays that are used to measure them, 
and how this information may be used effectively. 

2. Barriers to Cellular Drug Delivery 
Several barriers exist between the drug that is in solution around the cell (in the 

interstitial fluid or cell-culture medium) and the target protein. These barriers are dia- 
grammed in Fig, l .  The drug candidate first encounters the aqueous environment and 
its solubility at the pH of the solution depends on its intrinsic solubility and its pKa(s). 
For some compounds, poor solubility limits the concentration of compound surround- 
ing the cells. Next the compound encounters the possibility of chemical conversion 
owing to chemical reactions. Its stability against hydrolysis by water, reactions with a 
substance in the solution, or catalysis by an enzyme (e.g., esterase) determines the 
dosed compound concentration available for cell penetration. Binding to proteins also 
limits the free compound in solution. Perrneability of the cell membrane determines 
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how much compound is accessible to intracellular targets. The total rate of permeabil- 
ity is a composite of several permeability mechanisms. The compound pKa and the pH 
of the solution determines the fraction of compound that is in the neutral form, that 
penetrates the lipid bilayer membrane. Passive diffusion through the lipid membrane is 
typically the predominant route of permeation. Active transport by membrane proteins 
can be a factor in the uptake of some compounds. Conversely, efflux by other mem- 
brane proteins (e.g., p-glycoprotein [P-gp]), removes drug candidate after it has gotten 
into the cell. Inside the cell, the compound may encounter other stability barriers, such 
as the intracellular pH and enzymes (e.g., esterase and cytochrome P450). Binding to 
other intracellular components owing to high lipophilicity distributes the compound 
and can limit the free movement of the compound to the target protein. Knowledge of 
these barriers and how the compound's properties perform at the barriers can help to 
interpret the net observed activity in cell culture experiments relative to noncellular in 
vitro enzyme and receptor-binding studies. 

3. Pharmaceutical Profiling Assays for Cellular Delivery 

As we have seen, compound properties can greatly affect cellular activity assays and 
should be taken into consideration in planning and interpreting experiments. In a later 
section, tactics for applying property information to cell-based research will be dis- 
cussed. In this section, individual properties and how they can be screened for a large 
number of compounds is discussed (1,4,Y). Property screening can begin as soon as 
compounds are first studied, such as "hits" from high throughput screening, and car- 
ried through during the synthesis of analogs in a chemical series. 

3.1. Integrity 

For any compound that is new to a research project, it is first important to establish 
the integrity (identity and purity) of the material. A compound may have been synthe- 
sized several years before and could have been mis-identified or could have degraded 
during storage owing to oxidation or hydrolysis. Sometimes compounds are mislabeled. 
If an activity or property is attributed to the wrong structure, any subsequent SAR or 
structure-property relationships (SPR) will be incorrect. Liquid chromatographylultra- 
violetlmass spectrometry (LCIUVIMS) methodology typically is used to check integ- 
rity. Recent methods (16) use a rapid (<5 min) high-performance liquid chromatography 
(HPLC) analysis with a wide solvent-polarity gradient to separate sample components, 
detection, and quantitation by UV, and alternating positive and negative ion mass spec- 
trometry for the molecular weight of each component (Fig. 2). Typically, only com- 
pounds with identity verified by molecular weight and having high purity should be 
studied. Tntegrity profiling should be performed for all compounds tested in cell-based 
activity assays. 

3.2. Solubility 

Sufficient solubility is necessary for most experiments performed in drug discovery 
and development (2,10,11). The maximum concentration at which a compound can be 
studied is determined by its solubility. Formulations can be developed to solubilize 
compounds at higher levels, if necessary, for in vivo dosing experiments. In drug dis- 
covery it is increasingly common for compounds to have low solubility. solubility can 
affect activity as well as property assays (10,ll). Solubility experiments traditionally 
have been conducted by placing solid material into an aqueous buffer, followed by 
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Fig. 2. Integrity profiling involves the estimation of sample purity from an HPLC chromato- 
gram (A) and confirmation of identity from a mass spectrum (B). 

Fig. 3. Solubility profiling involves measurement of compound in aqueous buffer after a 
small volume of DMSO solution is added. Insoluble compound precipitates. 

stirring and assaying using HPLC. This is typically called thermodynamic or equilib- 
rium solubility measurement. However, for in vitro research it is more relevant to mea- 
sure solubility when a dimethyl sulfoxide (DMSO) solution of the compound is added 
to an aqueous buffer (Fig. 3). This is because in vitro experiments are usually con- 
ducted by adding compound that has already been dissolved in organic solvent. This is 
a very different experiment and can produce very different solubility estimates. Thc 
experiment is typically called kinetic solubility measurement. Several automated assays 
for solubility have been described. These include turbidimetry (2), nephalometry ( 1  7), 
and direct UV (18) analysis. The turbidimetric and nephalometric methods involve the 
addition of DMSO compound solution to aqueous buffer. The solubility is determined 
from the appearance of precipitate, which is detected by light scattering. Tn the direct 
UV method, a 20 mg/mL solution of compound in DMSO is added to aqueous buffer in 
a 96-well plate. The final DMSO concentration is critical in  any solubility assay because 
DMSO enhances aqueous solubility of organics. In this assay the final DMSO concen- 
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Fig. 4. Diagram of direct UV solubility assay. A DMSO solution of test compound is added 
to an aqueous buffer and allowed to equilibrate. The buffer is filtered to remove precipitate and 
the UV absorbance is obtained on a plate reader to measure concentration. 

tration is less than 0.5% volume/volume. The solution equilibrates for a period of time 
(e.g., 18 h), the solution is filtered to remove precipitate, and the concentration of com- 
pound in solution is measured using a UV plate reader (see Fig. 4). Solubility measure- 
ment at the pH of the in vitro experiment is most valuable, because the compound's 
pKa and the solution pH can dramatically affect solubility. This is because compounds 
are most soluble in their charged form. 

Lipinski (10) discussed how Caco-2 cellular experiments are affected by the corn- 
pound solubility. For prediction of gastrointestinal (GI) drug absorption, Caco-2 should 
be run at a concentration of 100 ELM, because this is the approximate GI concentration 
for a 1 mglkg orally administered drug. However, many labs perfom the experiment at 
10 pM. A concentration of 100 pM can saturate transporter proteins, which is not as 
likely at 10 pM. Moreover, even at 10 pM, up to one-third of compounds are not fully 
soluble, leading to inaccurate results. 

Solubility should be screened as early as possible, owing to its great effect on activ- 
ity assays. Currently, in silico methods Sor solubility are improving, but a measurement 
will assure greatest confidence for planning and interpreting experiments. 

3.3. Permeability 

In order for a compound to be active at intracellular therapeutic targets, it must per- 
meate cellular lipid bilayer membranes. There are several major mechanisms of perme- 
ation into cells: passive diffusion, active uptake by membrane transporters, and active 
efflux by other membrane transporters. If the concentration of drug is high enough, 
protein transporters can become saturated, making passive diffusion the predominant 
permeation mechanism (1 9). Currently, it is very difficult to predict by software whether 
or not a compound will be a substrate for an active transport protein. 

Several assays have been described for predicting permeability by passive diffusion 
through lipid membranes (see Fig. 5). Early methods used liposomes (20). Immobilized 
artificial membrane (IAM) chromatography has been used to simulate interactions of 
compounds with lipid membranes in a convenient, high-throughput format (21-23). Cel- 
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Fig. 5 ,  Passive diffusion permeability profiling measures the rate of compound movement 
from the donor aqueous compound solution into the acceptor after passing through a membrane 
consisting of a cell monolayer or artificial lipid membrane. 

Acceptor Filter Plate 
Wlth Buffer 

/ 
Phosphatidyi 
CholIne In 
Dodecane 

\ 50pM 

Fig. 6. Diagram of PAMPA assay. Test compound is placed in an aqueous buffer at 50 pM 
concentration in the donor well of a 96-well plate. A porous filter plate is placed on top in 
contact with the water and the pours are filled with a solution of phoshpatidyl choline in 
dodecane. The test compound diffuses through the lipid and penetrates into the buffer in the 
acceptor wells. 

lular-based models for permeability have been widely implemented using Caco-2 (24,25) 
and Madin-Darby canine kidney (MDCK) (26) cells. A monolayer of cells is grown to 
confluence on a porous filter surface and the test compound is placed in the buffer on one 
side of the monolayer (e.g., apical side). The rate of appearance of the compound on the 
other side of the monolayer (e.g., basolateral side) is measured using HPLC or LC/MS to 
calculate the permeability of the compound. Cellular models combine many mechanisms 
of permeability, so diagnosis of each mechanism for structural optimization requires 
additional studies. Expression of transporters varies with the lab or passage and should 
be monitored. Higher-throughput 96-we11 versions of Caco-2 have been reported (27). 
Caco-2 cells are polarized, in that the transport proteins are typically found on the apical 
side. Thus, they may not accurately predict the intracellular concentration and may be 
most appropriate for studying mechanisms of GI absorption for a compound. 

Parallel artificial membrane permeability assay (PAMPA) is receiving increasing 
attention in drug discovery (28-31) (see Fig. 6). In place of a cellular monolayer of 
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Fig. 7. Lipophilicity profiling measures the ratio of compound in the octanol and aqueous 
buffer layers after equilibration. 

Caco-2, an artificial membrane is created using lipid in an organic diluent and sup- 
ported within the pours of a 96-well filter plate. Because of the simpler aqueous matrix, 
a 96-well UV plate reader can be used for accelerated quantitation. The PAMPA assay 
is typically higher-throughput than Caco-2 and uses as little as 5% of the resources. A 
useful strategy for permeability is to use PAMPA for high-throughput assessment of 
passive diffusion for all compounds, then to use Caco-2 or another assay to probe other 
permeability mechanisms for a limited set of compounds. Permeability data has been 
used to correlate permeability to activity in cell-based activity assays and to diagnose 
mechanisms of permeability (32). 

Permeability through specialized in vivo membranes, such as the blood-brain bar- 
rier (BBB), may be predicted using specialized cell-culture models (33), or with 
PAMPA using modified assay conditions (34). Some in silico methods for pemeabil- 
ity have been developed, including QMPRplus (Simulations Plus Tnc.) for MDCK cell 
permeability. 

3.4. Lipophilicity 

Many properties are affected by the fundamental molecular property lipophilicity, 
the tendency of a compound to partition into nonpolar vs aqueous environments (see 
Fig. 7). Increasing lipophilicity generally has the following effects on barriers: increas- 
ing permeability, decreasing solubility, decreasing metabolic stability, increasing pro- 
tein binding, and increasing distribution to lipophilic sites. The typical measure of 
lipophilicity is the log of the coefficient of partitioning between octanol and water, 
termed "Log P." Log P is used for the partitioning when all of the compound is in the 
neutral state. A related term, "Log D," is used to describe the distribution when the 
aqueous phase is at a pH where part or all of the solute is charged. Log P and Log D 
values have been compiled from the literature by Hansch (35). For automation, the 
traditional "shake tlask" method for Log P (36-38) was scaled down to 96-deep-well 
plate format (39). Tn this assay, a sample in DMSO is added to a plate well containing 
octanol and aqueous buffer, equilibrium is established between the phases, and each 
phase is sampled and quantitated. Other methods for lipophilicity include the pH-met- 
ric method (40,41), reversed-phase (RP)-HPLC (16,4248) and microemulsion elec- 
trokinetic chromatography (49). In the chromatographic methods, retention time is 
calibrated to Log P or Log D using standards and the lipophilicity of test compounds is 
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Fig. 8. Physicochemical stability measures the ratio of conversion product to unchanged 
compound after incubation in a physicochemical environment. 

estimated from their retention time. Good calculations of Log B can be obtained from 
in silico programs such as Prolog D (CompuDrug Chemistry Ltd.). 

3.5. Physicochemical Stability 

Compounds can be chemically converted in aqucous solutions (see Fig. 8). These 
reactions can produce permanent products or reversible products in equilibrium with 
the starting material. Chemical conversion can cause variability in assay results. Con- 
version can be screened by incubating the compounds with buffer and testing for the 
percent of starting compound compared to an unincubated control. Components in 
some assay buffers, such as dithiothreitol (DTT), can react directly with compounds. 
Physical conditions in the laboratory can cause compound reactions also. These in- 
clude basicity of some glasswarc, buffer pH, laboratory light exposure, solution tem- 
perature, and air oxidation or hydrolysis (50-52). Tf compound degradation is a 
potential problem, compounds can be incubated under various pHs, high-intensity 
light, or elevated temperature to measure their rate of degradation. Quantitation typi- 
cally uses LCIMS or HPLC. 

Many compounds of interest in biomedical research have one or more pKas (the 
negative exponent of the equilibrium constant between the charged and uncharged 
forms of a particular functional group of the compound). The pKa and pH of the solu- 
tion dictate the degree of compound ionization in solution (see Fig. 9). The ionized 
form is more soluble in water, because it is mote polar. The neutral form is more per- 
meable through lipid bilayer membranes. The pKa can also affect binding energies of a 
compound to the active site of the target protein. The pKa of a typical amine is in the 
range of 9-10; weaker bases have lower pkas. When the pH is below the pKa, the base 
will have more of its population in the protonated form. The pKa of a carboxylic acid is 
in the range of 3-4; weaker acids (e.g., phenols) have higher pKas. When the pH is 
below the pKa, the acid will have more of its molecules in the neutral form. A useful 
rule of thumb is that an equal concentration of the neutral and charged species is found 
in solution when the pH equals the pKa. 

pKa has been measured in automated mode using techniques involving potentiomet- 
ric titration (40), capillary electrophoresis (CE) (53), and spectral gradient analysis 
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Fig. 9. pKa profiling measures the ratio of neutral compound to charged compound at a 
range of pHs. 

valve & syrrnge 

buffer buffer 

valve & syringe - 
valve & 
syringe 

[UUUl 
diluted 

-- 

1 Diode Arrav I 

sample sample in 
DMSO solution 

Fig. 10. Diagram of the SGA pKa analysis method. Sample in DMSO is diluted in aqueous 
buffer and injected into a flowing stream created by gradient mixing of acid and base buffers. 
pka is determined from the change in UV absorbance across the pH range. 

(SGA) (54) (see Fig. 10). The SGA method creates a pH gradient in a flowing liquid 
stream over a 2 min period; the compound is injected continually into the stream and 
the UV absorbance of any chrornophore in  the near vicinity of the ionizable. group 
changes with the ionization. This change is used to determine the pKa, pKa is calcu- 
lated as the pH at which equal concentrations of charged and uncharged species are 
present. When the pKa is known, chemists can modify the ionizable functional groups 
on a molecule to change the solubility and permeability characteristics. Good calcula- 
tions of pKa can be obtained from some in silico programs, such as Advanced Chemis- 
try Development Inc. 

3.7. Biochemical Stability 

Many compounds in biomedical research are susceptible to biochemical conversion 
(i.e., metabolism) (see Fig. 1 1). Conversions can be caused by cytochrome P450 oxida- 
tions within the cell or other enzymatic reactions (e.g., phosphorylation, hydrolysis). 
Biochemical reactions reduce the concentration of compound. Significant instability 
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Fig. 1 I. Biochemical stability measures the ratio of metabolic product to unchanged com- 
pound after incubation in a biochemical environment. 

compromises the proper interpretation of experiments and indicates a poor compound 
for in vitro studies. Metabolic stability assays are often conducted with liver mi- 
crosomes containing the cytochrome P450 enzymes (55-57), plasma (58), or specific 
enzymes. Various animal species are often tested. It is useful to test stability in the 
same species as is being used in the cell culture or in vivo experiment. Stability assays 
are readily automated using standard laboratory robots (e.g., Packard, Tecan). Follow- 
ing incubation, the samples are typically quantitated using LCMS. 

Stability assays require high analytical sensitivity (owing to the low concentrations 
used to ensure that the enzymes are not saturated [e.g., 1 pMI) and selectivity to resolve 
the test compound signal from interfering signals of sample matrix components. Often 
high-throughput stability assays can only be achieved using mass spectrometry-based 
methods. Janizewski (59) described a customized LCMS method having throughput 
on the order of 30 stsample. Recently introduced instruments and software make imple- 
mentation of high-throughput LC/MS/MS analysis easier for the average scientist (60). 

As with other profiling methods, the assay seems uncomplicated and easy to imple- 
ment, However, experience has shown that results can vary widely, depending on the 
conditions and their day-to-day control. Factors such as DMSO concentration, sample 
concentration, species, and biochemical reagent (e.g., microsome) preparation can 
greatly affect the rate of biochemical reactions (57). The data can be misleading if the 
assay is performed improperly. 

3.8. Conversion Product Identification 
When significant instability is indicated for a compound, useful information can be 

obtained by identifying the conversion products (see Fig. 12). This information allows 
redesign of structures in order to reduce reactions at the labile site of the molecule and 
reduce the conversion barrier. By identifying and isolating or synthesizing the conver- 
sion products, they can be tested for activity andlor toxicity. The use of LCMSMS 
for rapid structure elucidation has been described (61-64). By using the MSMS frag- 
mentation of the parent compound as a template, the structures of major metabolites 
can be determined, MS techniques have the advantage of high throughput and low 
sample consumption (1-100 ng). Modern instrumentation and software allow the 
trained analytical chemist to rapidly identify the major conversion products of several 
compounds each day (see Fig. 13). When MS techniques do not indicate sufficient 
structural detail, nuclear magnetic resonance (NMR) or LCINMR techniques (65) are 
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Fig. 12. Conversion product identification uses spectroscopic methods to rapidly identify 
the structure of the conversion product(s) from stability profiling. 

used. This technique has made strides over the past 5 yr for trace compounds, but 
significantly higher amount of sample (0.1-10 pg) is needed and throughput is low 
compared to LC/MS/MS. 

3.9. Active Transporters 

The effect of active transport (see Fig. 14) on compound permeability is being stud- 
ied more frequently in biomedical research. Cell-based assays can provide deeper un- 
derstanding of transporter effects. Unknown affinity for transporters can cause errant 
prediction of membrane permeability if passive diffusion alone is considered. One of 
the most studied transporters, P-gp, is active in the intestine, BBB, and drug-resistant 
cancer cells. Polli (66) described and compared three methods for P-gp affinity: AT- 
Pase, Calcein AM, and MDRl-MDCK cell permeation. Many groups also use Caco-2 
to study transport by use of apical to basolateral (A+B), basolateral to apical (B+A), 
and inhibitor studies (e.g., verapamil inhibits P-gp). Reduced P-gp affinity will likely 
improve performance in bioavailability, brain penetration, or activity in cancer cells. 

Uptake transporters (e.g., OCTl, OATPI, OATP2, MOAT) and efflux transporters 
(MRPs) are under intensive study (67). Not only will this research help to explain 
compound behavior in cell-culture experiments, but it will provide opportunities to 
enhance intracellular concentrations and permeation rates by reducing efflux or 
increasing uptake. 

3.10. Cell Uptake 

Because intracellular concentration often correlates with compound activity, assays 
for cell concentration are sometimes used (see Fig. 15). If the cellular activity is lower 
than expected from cell-free in vitro studies, the cellular concentration may be the cause, 
not the intrinsic activity. Low cellular concentration of drug may be owing to P-gp efflux, 
poor passive membrane permeation, or intracellular conversion/metabolism. In some 
cases, metabolic conversion may be necessary for activity and formation of the active 
species can be monitored. Cellular-exposure experiments have often utilized radiola- 
beled compounds for sensitive and rapid analysis. However, radiolabeling can be expen- 
sive and is not feasible in research involving the study of hundreds to thousands of 
compounds per year. Increasingly, LC/MS/MS techniques are being used to measure the 



Fig. 13. Some common routes of metabolic degradation of busiprone catalyzed by cyto- 
chrome P450 enzymes in liver microsomes. 
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Fig. 14. Active transporter profiling indicates if cellular-membrane permeation is enhanced 
by active uptake or reduced by membrane eff-lux-transporter proteins. 

Fig. 15. Cell-uptake profiling measures the intracellular concentration o f  compound after it 
is added to the culture medium. 

intracellular concentration of compounds, following incubation, washing, and harvest- 
ing of cells in culture plates (68,69) (see Fig. 16). Sensitive and selective LC/MS/MS 
methods can be rapidly and inexpensively developed, compared to radiolabeled detec- 
tion schemes. The measured cellular concentration is the sum of compound bound to the 
cell membranes and proteins, as well as that dissolved in the cytoplasm. 

3.1 1. Plasma Protein Binding 

Binding of drug molecules to proteins (PPB) in plasma, cell-culture medium (e.g., 
serum albumin, a-acid glycoprotein), on the cell surface, or inside cells limits their 
free motion to the target protein (see Fig. 17). Several of the effects of binding offset 
each other, with regard to compound concentration at the therapeutic target, so applica- 
tion of PPB information can be confusing for chemists and pharmacologists and can be 
misinterpreted as a negative characteristic. PPB can be estimated using higher-through- 
put techniques, such as HPLC with HSA columns (70), 96-well equilibrium dialysis 
(71), Biacore (72), or ultrafiltration (Millipore Microconm). 
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Fig. 16. Tntracellular concentration of paclitaxel in normal cells (A) and multidrug resistant 
cells (B) in culture after dosing paclitaxel in cell-culture medium. 

Fig. 17. Plasma protein-binding measures the ratio of compound that is bound to plasma 
proteins vs unbound in aqueous buffer solution. 

4. Applying Pharmaceutical Profiling Data 
In drug discovery, favorable properties are often termed "drug-like" and are predic- 

tive of potential drug-candidate success. This is because these properties are necessary 
for the delivery of compound to the target protein, which is often within the cell. Early 
knowledge of compound properties will aid any biomedical research because property 
information can be applied in several important ways. 

There is a tradeoff between properties and potency. Lipinski (2) discussed the close 
relationship between properties and potency; poorer properties (solubility and perme- 
ability) can be tolerated for drugs with high potency (low rnglkg dose), hut more favor- 
able properties are necessary for drugs with lower potency. Van de Waterbeemd (I) 
provided a very informative discussion on "property-based design." This looks at opti- 
mizing the properties of compounds by structural modification, in order to improve the 
delivery of compound to the target protein. This can be done in parallel with structure- 
based design, in which SARs are a primary focus. 
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A key opportunity for the application of property information is better-informed 
research, by having more information to use in experimental design and interpretation. 
For example, solubility has a major effect on cellular experiments, so experiments can 
be planned at concentrations that are consistent with compound solubility. Unfavor- 
able properties limit delivery of compound to the target protein, so properties greatly 
affect the perceived activity of compounds. Observed activity is a function of intrinsic 
target-protein binding, as well as delivery of compound to the intracellular target. With- 
out property information, the cellular activity experiment may be incorrectly inter- 
preted and limit research progress. 

Complex processes, such as activity in cell-based assays, are functions of several 
properties. Thus, measurement of the individual properties that are components of a 
complex process allows the researcher to diagnose the limiting properties. Gan and 
Thakker (12) discussed how poor compound performance in complex systems can be 
diagnosed by examining individual properties. When this screening reveals the prop- 
erty responsible fbr the poor performance, then this property can be targeted for syn- 
thetic improvement. As new compounds are synthesized, the automated property 
profiling assays can be used to monitor improvement. 

The dependence of a given biological activity assay on properties can be correlated 
using mathematical analysis techniques such as multivariate analysis (MVA). In one 
example (9),  MVA revealed that a cell-based potency assay correlated well with solu- 
bility and permeability, but not with stability. Once such correlations are recognized, 
then the properties most favorable to enhanced activity can be improved. 

Early warning of major faults with a compound can save significant resources, time, 
and emotional investment. Research scientists can redirect their energies into more 
promising directions. If research focuses solely on SAR, time and resources can be 
wasted on compounds that have unfavorable properties. SAR is often favored by higher 
lipophilicity to promote better binding to the target protein, but such compounds can 
have low solubility and instability. An early alert to poor properties can help to avoid 
costly mistakes. 

Often cellular experiments are performed in advance of in vivo experiments with 
sophisticated models such as transgenics or models that require weeks to complete. 
These models provide critical information, but are expensive and/or time-consuming. 
Property information can be included in the multifaceted information used to select 
compounds for advancement from cellular to sophisticated in vivo models. 

If properties are well-characterized, they can also be used to guide optimization of 
compounds to improve cellular delivery. Sometimes the most promising leads have 
poor properties and this information helps to highlight the resources that will be needed 
to improve the properties. Drug-likeness has received increasing attention as an impor- 
tant predictor of success. The lack of drug-likeness reaches the attention of decision- 
makers who insure that a particular deficiency is addressed as the project proceeds. 
The SAR approach modifies the compound structure to make it bind better to the thera- 
peutic enzyme or receptor. The SPR approach modifies the structure to improve prop- 
erties that increase the delivery of the compound to the therapeutic target and sustain 
its concentration there. Thus, properties can help to guide synthetic chemistry efforts 
aimed at optimizing compounds during drug discovery. Examples of successful syn- 
thetic modifications include molecular size, hydrogen bonding, pKa, adding an ioniz- 
able group, and blocking substructures that are unstable. The optimum candidates are 
now optimized for both activjty and properties. 
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At the same time, one must be aware that structural modifications that improve one 
property may diminish another property (13). For example, increasing metabolic sta- 
bility at one site may increase metabolism at another site, reduce permeability, or in- 
crease renal or biliary extraction. Also, in some cases, a property cannot be improved 
through structural modification without significantly reducing the activity. A rule of 
thumb is that if the poor properties result from a substructure that is critical for the 
activity, it will be difficult to both improve properties and maintain activity. Medicinal 
chemists can initiate property improvements by focusing on the modification of sub- 
structures that are shown, through SAR studies, to have little effect on activity. 

Improvement of properties such as permeability through prodrugs is an established 
strategy. Profiling assays can be used to compare prodrug conversion rates. Special- 
ized assays for the targeted conversion mechanism can be developed. 

Activity response at the cellular level follows a dose-response relationship. Thus, a 
compound that is very active in an enzymelreceptor assay may not be active in cell 
culture if sufficient concentration is not established in the cells. A less potent com- 
pound may provide a better activity if its properties permit enhanced intracellular con- 
centration over a longer time. 

Lipinski discussed how solubility greatly affects activity assays (10,ll).  In addition, 
if a compound has poor permeability it will not perform well in cell-based assays. 
Thus, the perceived activity of the compound in cells would be low, and the actual 
mechanism of the low activity, whether biochemical or physicochemical, would not be 
understood. In the past, property information was not available, but now researchers 
can take advantage of the improved methods for obtaining this information to enhance 
their research. 

5. Method Selection Considerations 
Several methods are available to researchers for assessing properties. The researcher 

should carefully examine how a method was developed and validated, such as the qual- 
ity of the data set used and the quality of the correlation. Many methods are developed 
using a diverse set of compounds, but the compounds used may not be relevant to the 
researchers compound class and thus produce poor results. It is generally agreed that 
data and predictions are most accurate within a chemical series. 

Rules and filters, such as the "rule of 5" (2), rotatable bonds (73), and polar surface 
area (74) provide a quick and easy guide for whether compounds are likely to have 
favorable properties for penetration into cellular targets (10). 

In silico models (75) are fast to use. They are inexpensive if the software cost can be 
spread over many compounds or research projects. They can be used in planning prior 
to chemical synthesis and to estimate the properties of compounds for which there is 
insufficient material for analysis, or when a particular property assay is not available. 

Automated assays provide actual measurements of properties. The assays are rap- 
idly performed and little material (mg level) is required. These assays are most effi- 
cient when a large number of compounds or several projects share the expense. 
Measurements provide an increased level of data assurance over in silico methods, but 
the assays need to be carefully developed, validated, and controlled for quality. 

In-depth analyses provide the most definitive and reliable information. These assays 
require large quantities of material (10-100 mg), often require weeks to complete, and 
can only be performed on a limited number of compounds. Careful quality control 
(QC) must be performed. 
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Fig. 18. Stratcgy for optimization involving parallel SAR and SPR studies, leading to holis- 
tic understanding of the compound and redesign of the structure for the next cycle of synthesis 
and testing. 

The predictivity of in silico methods is rapidly improving as academic and commer- 
cial groups focus on their improvement. They rcly on high-quality data from diverse 
compound structures. As in silico methods improve, they will provide sufficient infor- 
mation for early studies and measurement resources can be repositioned to assess other 
critical properties. Combination of in silico and measurement methods appears to pro- 
vide the solution for obtaining the optimum property information with the available 
resources at this time. 

Automated assays are often applied in a stepwise approach. Clearly, certain assays 
should be performed as early in research as possible: integrity to insure that the SAR is 
correct, and solubility and permeability to insure that biological activity measurements 
are not compromised by inappropriate assay conditions. Without this knowledge, active 
pharrnacophores that were studied at levels above their actual solubility, may be elimi- 
nated prematurely from consideration. As research projects progress, additional property 
information can be obtained, or "full" profiles can be done on all new series compounds. 

The effective application of pharmaceutical properties in drug discovery requires 
acceptance by discovery chemists and biologists. Several elements are necessary to 
gain buy-in. Pharmaceutical profiling must be as rapid as biological assays. Measure- 
ment of properties can occur in parallel with activity (Fig. 18) so that all the informa- 
tion is considered in redesigning structures for series optimization. Rapid and effective 
data communication to the researcher is critical. Tables of data that allow compound 
comparison are useful. Color coding of results, according to "bins" of favorable, mod- 
erate, and unfavorable property values allow researchers to rapidly review the data to 
prioritize compounds (9). Visualization tools such as Spotfire (76) and multivariate 
analysis tools such as Simca (77) can provide additional insight that is not discerned by 
inspection of tables or single dimensional data. Lipinski (1 1)  has discussed how simple 
graphical presentations are most effective for data communication. The research leader 
and scientists must be trained to understand the properties and their effects on the bar- 
riers encountered by the compound. Property data must be relevant to chemical struc- 
ture, so that medicinal chemists can design new structures that improve lipophilicity, 
pKa, molecular weight (MW), hydrogen bonding, and stability. Effective automation 
of pharmaceutical profiling assays is necessary for efficiency, accuracy, and precision. 
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6. Conclusions 

Pharmaceutical profiling is an emerging field in drug discovery. It complements the 
current SAR paradigm by providing SPR information. This is useful because proper- 
ties have a major effect on the delivery of compounds to cellular therapeutic targets. 
Automated property assays have been developed for the critical properties so that data 
can be provided rapidly for researchers. The information allows researchers to plan and 
interpret their experiments in greater depth. It also allows the diagnosis of compound 
performance at barriers that limit cellular delivery. Compound properties can be im- 
proved via structural modifications guided by the assay data. 
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