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yca, at that very nioment 
Consideration, like an angcl, came 

And whipp'd the offending Adam out of him, 
Leaving his body as a paradise, 
To envelop and contain celestial spirits ... 

King H m y  V 

1. Introduction 

Mammalian cells possess a natural battery of dcfcnse mechanisms against xenobiotic 
assault. A class of proteins actjvely transports an extensive array of structurally unre- 
lated large ljpophilic compounds from the cell, providing what is often known as mul- 
tiple drug resistance (MDR) (I). MDR is characterized by active efflux or pumping of 
xenobiotics and pharmaceuticals via transmembrane proteins acting as hydrophobic 
"vacuum cleaners" (2,3). The MDRl gene encodes a 170 kD integral plasma mem- 
brane phosphorylated glycoprotein, P-glycoprotein (P-gp), which is the best known 
and most extensively studied among these transporters, and which thus far has the 
largest substrate list. The gross structural features of P-gp are shared by a large family 
of membrane transporters known as adenosine Ytriphosphate (ATP)-binding cassette 
(ABC) transporters, which evidently act as ATP-driven pumps that remove xenobiotics 
from the interior of cells. Expression of P-gp in normal human tissues-particularly 
within the cellular membranes of thc gastrointeslinal tract, liver, blood-brain barrier 
(BBB), adrenal glands, and kidneys-suggests that the protein playq a role in cellular 
protection as well as in sccrction (1-4). Although the primary function of this protein is 
unknown, its ability to conl'er resistance to a wide variety of structurally and chemi- 
cally unrclated compounds remains impressive. Indeed, the substrate list for this trans- 
porter reveals that P-gp shares a similar tolcrancc or acceptance for chemicals as 
cytochrome P450 3A4 (CYP3A4), the predominant intestinal and hepatic cytochrome 
P450 oxygenase enzyme, and may even prove to be more extensive in its substrate 
recognition and as an avenue ol'drug elimination (5). 

Tt is becoming evident that drug interactions ostensibly mediated by the cytochrome 
P450 3A4 oxidative pathway are also the result of P-gp inhibition (6,7). Given the 
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enormous number of substrates now known to be recognized by P-gp, and a binding 
site that is evidently hydrophobic, the substrates for CYP3A4 and P-gp clearly overlap. 
Among the more grave examples of clinical drug interactions are those of the HI-re- 
ceptor antagonist terfenadine (Seldane) with ketoconazole and erythromycin (8), as 
well as those of simvastatjn with itraconazole and mibefradil (9); all are substrates1 
inhibitors of P-gp (4-6). Additionally, P-gp polymorphisms may cause compound-spe- 
cific drug reactions to treatment with P-gp substrates. If a polymorphic gene product of 
MDRl has inferior selectivity toward a therapy, increased systemic exposure to that 
erstwhile P-gp substrate could be expected (10-12). 

1.1. Function and Mechanism 
One of the many intractable aspects of investigating P-gp is an absence of chemical 

change to its substrates and hence no product formation or gross substrate depletion to 
monitor or analyze. Because extensive in vitro and in vivo studies indicate that MDR 
enzymes transportlmove lipophiles across a lipid bilayer against a concentration gradi- 
ent, P-gp has been described as a translocase, a flippase, or even a hydrophobic vacuum 
cleaner. The purpose of this enzyme ostensibly is: (1) protection against exogenous 
toxins ingested with food; (2) excretion of (endogenous) metabolites or toxins; (3) 
prevention of toxic materials from entering the brain, gonads, and fetus; (4) transporta- 
tion of steroid hormones; and ( 5 )  extrusion of peptides (cytokines) not exported via 
signallcleavage. 

As a member of the ABC superfamily of transporters, P-gp possesses two ATP bind- 
ing sites and uses ATP (via hydrolysis) as the source of energy for "translocating" 
substrates (4). The large transmembrane protein P-gp has two homologous domains, 
each containing a nucleotide binding site (ATP) and a substrate binding site near or 
within the inner leaflet of the membrane. With ATP hydrolysis providing the energy 
for function, experimental quantitation of the coupling of ATP hydrolysis to efflux 
events indicates a ratio of approx 1 or 2 ATP per substrate molecule transported (13- 
19). Hence, measurement of the rate of ATP hydrolysis serves as an indirect assay of 
cnzyrnatic activity. The inactivation at only one of the two ATP binding sites is suffi- 
cient to abolish entirely the activity of the transporter (20). An allosteric linkage has 
been shown between one ATP binding site and catalysis at the other homologous site; 
these sites appear to drive substrate transport in tandem. 

The substrates enter the active transport sites from the inner-leaflet, cell-membrane 
lipid bilayer (21) and can bind to two (or more) nonidentical sites (17). Kinetic data 
indicating noncompetitive inhibition of P-gp-mediated transport by substrates and in- 
hibitors suggest differing substrate specificity between the binding sites (1 7). Many of 
these studies show V,,, changes that are consistent with nonexclusive binding of an 
inhibitor or alternative substrate, whereas photoaffinity labeling has indicated noniden- 
tical substrate binding sites (22). Indeed, binding studies also show biphasic binding 
curves and hence two distinct Kd's for many P-gp substrates, further indications of 
affinities that are unique to the two binding sites (23). Moreover, allosteric and perhaps 
synergistic effects have been observed for certain substrate combinations and condi- 
tions (24,25), with recent evidence even suggesting interactjon between the two bind- 
ing sites (26,27) andlor the nucleotide binding sites (20,28,29). Such an allosteric 
linkage between sites could affect the inhibition characteristics of marker-substrate 
transport out of the cell by particular inhibitors. Under these circumstances, the inhibi- 
tion of transport might differ from that observed by simple Henri-Michaelis-Menten 
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hyperbolic saturation plot of inhibition. Moreover, in light of the substantive evidence 
for two binding sites, it is probable that some substrates are uniquely recognized and/or 
transported by P-gp. This responsiveness or sensitivity would, in turn, determine the 
extent of intluence (including concentration dependency) a particular inhibitor will 
have on such substrates (30). 

2. Clinical Impact 
Numerous examples illuminating the critical and potent physiological impact of P- 

gp have been described. Striking effects on bioavailability are shown by genetic knock- 
out (KO) animals as well as the therapeutic intervention of P-gp function. KO animals 
have no functional mdrla (P-gp null) and are highly sensitive to the neurotoxin 
ivermectin and many other P-gp substrates. Dramatic effects on exposure have been 
observed in particular sanctuaries protected by the activity of P-gp. For example, brain- 
tissue levels of ivermectin were 87-fold higher, and those of the carcinostatic drug 
vinblastine were 22-fold higher, in the KO animal vs wild-type (31). Furthermore, 
paclitaxel and digoxin (cardio-toxin) oral uptake is markedly increased. Indeed, even 
systemic plasma concentrations are increased 2-, 3.5-,5.7-, and 4.1-fold, respectively, 
for cyclosporin A, digoxin, erythromycin, and saquinavir in the P-gp null mouse (32). 
Co-administration of the potent P-gp inhibitor PSC833 with digoxin in wild-type mouse 
increased brain exposure to levels almost that of KO mice by abolishing intestinal P-gp 
function (33). An example of the dramatic impact of P-gp on physiological exposure to 
xenobiotics in humans is the remarkable decrease of the cyclosporin A plasma area 
under the curve (AUC)-dependent on the location of absorption in the rank order 
stomach>~e~unum/ileum>colon (intubation) (34). The decrease in absorption exhibited 
a marked correlation (r = 0.994) to expression of mRNA for P-gp over the gastrointes- 
tinal (GI) tract (stomach<jejunum<colon). 

2.1. Tissue Distribution and Toxicity 

The evidence thus far shows that P-gp has been found virtually wherever invcstiga- 
tors have searched for it. P-gp has been detected in: adrenal glands (endothelial cells); 
kidney (brush border of proximal renal tubule); liver (biliary canaliculi); intestine (co- 
lumnar epithelium); jejunum, ileum, pancreas (epithelia); colon, central nervous sys- 
tem (CNS; endothelial cells); pregnant uterus (glandular epithelial cells of the 
endometrium); CD34+ bone marrow cells, circulating lymphocytes, and haematopoietic 
stem cells (1-4). 

2.2. Blood-Brain Barrier and Neurotoxicity 

P-gp is expressed at the apical surface of the capillary endothelial cells that form the 
BBB, where it seems to play a dramatic role in the exclusion of many drugs from the 
brain. Studies have shown that the sensitivity of homozygous P-gp KO mice to the 
neurotoxicity (and CNS concentration) of ivermectin and vinblastine is increased 100- 
fold compared with that of wild-type animals (31). In addition to MDRI, another isoen- 
zyme of the drug/xenobiotic eftlux family, multidrug resistance-associated protein 
(MRPI), has been detected in about 30% of head and neck squamous cell carcinomas 
by immunohistochemistry. 

A comparative analysis of 18 physicochemical properties revealed that drugs for 
CNS indications had fewer hydrogen bond donors, fewer positive charges, greater 
lipophilicity, lower polar surface area, and reduced flexibility compared with the non- 
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CNS group (properties that enhance membrane permeability) (35). Because a CNS 
drug should ideally have high passive permeability and not be a substrate of P-gp, it is 
not surprising that there was a threefold lower incidence of P-gp-mediated efflux of 
CNS drugs (n  = 7 of 48, 14.6%) than of non-CNS drugs (n = 19 of 45,42%) (3.5). 

The striking differences in brain concentrations of P-gp substrate drugs between 
wild-type and KO mice is impressive even compared with plasma differences, indicat- 
ing P-gp is more critical to brain exposure than intestinal absorption (see below). 
Administration of ivermectin (oral), digoxin intravenous, or cyclosporin intravenous 
in wild-type and KO mice resulted in 87-, 27-, or 55-fold higher brain levels in the KO 
over wild-type (32), yet the increases were less than fourfold in liver, kidney, and 
plasma. These results indicate that P-gp inhibitors should be used with caution to avoid 
potential neurotoxicity. 

2.3. Intestinal Absorption and Bioa vailability 

Tt is noteworthy that poor pharmacokinetic (PK) properties, such as poor oral 
bioavailability or duration of action (clearance), account for nearly half of the failures 
in clinical development (36). MDRl (P-gp) and MRPl are constitutively expressed in 
epithelia throughout the GI tract and are often overexpressed in carcinomas originating 
from these tissues. Double MDRI genetic KO mice have shown decreased elimination 
of drugs resulting from impaired excretion by liver, kidney, or gut (depending on which 
route is important in the P-gp-mediated excretion of the drug), andlor enhanced reab- 
sorption of drug from bile, gut lumen, or urine prior to elimination from the body (32). 

For drugs that are excreted unaltered or as a conjugate that can be hydrolyzed after 
secretion, P-gp i n  the epithelial surfaces of bile ducts, gut, and kidney proximal tubule 
may prevent reabsorption of the excreted drug. P-gp generally has greater impact on 
drug uptake than on drug excretion. Clinical results with the (relatively low potency) 
inhibitors tested so far demonstrate, for instance, that these agents interfere with the 
elimination of anthracyclines, a process that results in considerable increases in AUC 
and concomitant toxicity (37). Moreover, oral bioavailability of paclitaxel (MDR sub- 
strate) increased from 0.3% to 67% with either intravenous or oral co-administration of 
the MDR inhibitor cyclosporin A (35). Similarly, high levels of bioavailability were 
observed with the P-gp KO mice (32). 

There arc many instances where absorption from the small intestine may be com- 
plete but bioavailability is poor owing to enterocytc recycling via P-gp (34,3941). 
Reabsorbtion after ejection increases the compound exposure to enterocyte drug- 
metabolising enzymes, and P-gp may enhance intestinal metabolism of drugs. 
Midazolam (42) and cyclosporin (43) endure extensive first-pass gut elimination ow- 
ing to active transport and recycling. The efficient P-gp substrate verapamil has a low 
oral bioavailability of about 20% at doses of at least 120 mg, and propranolol has a low 
bioavailability of about 26%. 

The poor bioavailability of HTV protease inhibitors (44), digoxin (to the brain [45]), 
and taxol (46) is apparently owing to efficient transport by P-gp, with paclitaxel oral 
bioavailability of less than 5% (47). The tacrolimus (bioavailability 18%) concentra- 
tionldosc ratios in a recipient of a small-bowel transplant correlated well with the lev- 
els of MDRl mRNA, but not with CYP3A4, indicating that P-gp determines 
intraindividual variability in tacrolimus phannacokinetics (48). Moreover, the phar- 

macokinetics of the (-;-blocking agents celiprolol, pafenolol, and talinolol are also sig- 
nificantly affccted by P-gp in the intestine (49-53); the H2 receptor antagonists 
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ranitidine and cimctidine are similarly affected (54). though 50% absorbed at the high 
therapeutic doses. 

However, intestinal P-gp may be saturated when drug concentrations in the intesti- 
nal lumen exceed the K, ,  values after high oral doses. Whereas P-gp substrate drugs, 
such as digoxin, given at low doses result in low and variable absorption, many of 
these drugs (talinolol, indinavir, etc.) exhibit dose-dependent absorption owing to P- 
gp saturation. Chiou et al. (55) recently concluded that 13 P-gp substrate drugs are not 
significantly impeded by efflux transport in vivo. Yet the absorption of some drugs 
that arc administered at high doses is still significantly affected by intestinal P-gp. 
Despite the high clinical oral dose of cyclosporin and paclitaxel (200-700 mg and 
100-200 mg, respectively), P-gp significantly limits their oral absorption (34,46), per- 
haps owing to poor solubility. Therefore, drug absorption is unlikely to be quantita- 
tively limited by active efflux transport unless a very small oral dose is given, or the 
dissolution and/or membrane diffusion rates of the drug are very slow. To highlight 
further the importance of oral absorption, poor absorption is asserted to be causing a 
new public health issue bccausc it increases the chemical burden on municipal waste 
treatment facilities (56). 

2.4. Excipients Affect Permeability by Inhibiting Transporters 

Nonabsorbable pharmaceutical excipients such as Tween-20, Tween-80, pluronic 
P85, or TPGS have been shown to be potent modulating agents of membrane transport- 
ers (57,58). Other nonionic surfactants affecting transport pumps include Cremophors, 
pluronic block copolymers, Nonidet P-40, and Spans. Surfactants that are commonly 
used as vehicles for solubilizing certain drugs can inhibit MBR i n  resistant cells at 
clinically achievable concentrations (59). Addition of the surfactants Solutol HS-15, 
Tween-40, and Cremophor EL (10 mg/mL each) decreased lipid fluidity of isolated 
crude plasma membranes of resistant cells (60), whereas noninhibiting surl'actants 
(octylgucoside, hecameg) did not affect mcmbrane fluidity. Furthermore, Tween-80 
and Cremophor EL fluidized cell-lipid bylayers, whereas vitamin E TPGS rigidized 
lipid bilayers reducing the BL-AP permeability of rhodamine 123, and the noninhibitor 
N-octyl gulcosidc did not modulate membrane fluidity (61). PEG300 (polyethylene 
glycol) inhibited efflux-transporter activity in Caco-2 cell monolayers, probably caused 
by changes in the microenvironment of the cell membranes, perturbing the ability of 
these transporters to eftlux substrates such as tax01 and doxorubicin (62). Inhibition is 
observed at concentrations below the critical micelle concentration (cmc) for the dif- 
ferent surfactants, suggesting that the monomer is responsible and may be partitioning 
into the membrane and inhibiting P-gp through a membrane-fluidizing mechanism. 
Indeed, low concentrations of the nonionic surfactant Triton X-100 inhibited addopine 
binding to P-gp in vinblastine-resistant human lymphoma (63). 

2.5. Liver, Kidney, and Excretion 

P-gp plays a significant role in the biliary excretion of digoxin, doxorubicin, vincris- 
tine, and vinblastine in mice (64). The biliary clearance of digoxin is substantially 
greater in wild-type mice (2.3 mL/min/kg) than in KO mice (0.84 mL/min/kg) (65). 
Approximately 45% of digoxin is excreted in the bile of wild-type mice. 

Digoxin is also actively secreted in thc isolated perfused rat kidney with the P-gp 
inhibitors quinidine and verapamil inhibiting tubular secretion (66). The renal clear- 
ance of digoxin in wild-type mice was three times greater than that in KO mice (65). 
Therefore, digoxin appears to be actively secreted into the renal tubular lumen by P-gp. 
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2.6. Placenta and Teratagenicity 

MDRl functions as a critical component of the maternal blood-placental barrier, 
protecting the fetus from exposure to various maternal blood-borne chemicals. Preg- 
nant dams of a mouse CF-1 subpopulation, known to lack P-gp, exposed to an 
avermectin were highly sensitive to fetal cleft palate (67). The degree of chemical 
exposure of fetuses within each litter was inversely related to expression of placental 
P-gp, which was determined by the fetal genotype. 

3. Substrates, Their Diversity, and Drug-Drug Interactions 

It is, as yet, unclear how P-gp can recognize and transport such a structurally diverse 
spectrum of compounds ranging in size from less than 250 Da (cirnetidine) to more 
than 1800 Da (Gramicidin D). The only structural common denominator identified so 
far is that all transported substrates are at least somewhat hydrophobic and/or 
amphipathic in nature, containing a hydrophobic and often a polar or even a (generally 
positively) charged domain (1-4) .  

The ability of transported substrates to insert into biological membranes may be an 
essential requirement for recognition of the compound by P-gp. Favored partitioning 
into the lipid membrane would increase the effective substrate concentration at the 
transport binding site. Distinct but overlapping specificities of the drug bindingltrans- 
port sites may help explain the broad substrate tolerance or lack of specificity (30). 

3.1. Substrate Recognition 

The substrate recognition abilities of P-gp are broad and tolerant, even among most 
xenobiotic-defense enzymes. The purported xenobiotic-protection role of P-gp (1,2) 
mimics that of CYP3A4. Both enzymes provide a protective role to many of the same 
cells and defend against a generally shared list of xenobiotic substrates. The extensive 
overlap between these two enzymes is probably fortuitous, as opposed to concerted, 
because of their great tolerance for and acceptance of large lipophilic substrates. Both 
enzymes appear to have large accommodating hydrophobic binding sites that do not 
discriminate among many lipophilic compounds. However, substrate recognition and 
preference are not this simple, because both enzymes have shown cooperativity and a 
role for decisively oriented hydrogen bonding in the substrate binding sites (7,68). 

Most P-gp pharmacophore models can only address very general properties such as 
lipophilicity and size owing to the multiple binding sites, different assays, binding toler- 
ance, and other complications. General properties appear to converge around hydropho- 
bicity, presence of rings, size, and in particular, tertiary amines (extensively reviewed in 
refs. 4,69,70). Indeed, it appears that P-gp recognizes its substrates directly from the 
lipid phase (21,71-74), where they are expected to be much more concentrated owing to 
partitioning of the lipophilic compounds (75). However, the lipophili-city factor logP (a 
partition coefficient phase preference) often is not correlated with P-gp binding affinity, 
and certainly not across compound classes or series (70,76). Structure activity relation- 
ships have shown direct correlation of MDR inhibition to logP only for compounds within 
a closely related series (4). Litman et al. (77) showed that 34 inhibitors from different 
pharmacological classes have no significant correlation with calculated partition coeffi- 
cients and that the size of the molecule (van der Waals surface area) was a better corol- 
lary. In fact, a P-gp inhibitor has been has been defined as a compound containing at least 
two aromatic rings separated by a basic chain with a secondary or tertiary amine(78-80), 
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and even stereospecific interactions have often been observed for pairs of chiral com- 
pounds (81-85). Furthermore, the contribution of hydrogen bonding has been shown for 
P-gp substrates (86-88). Important features of molecular recognition of substrates in- 
clude multiple hydrophobic and hydrogen-bond acceptor features (89). Indeed, Seelig 
has described a pharrnacophore with two general patterns for substrate recognition: the 
"type T unit" of two electron-donor groups (hydrogen-bond acceptors) with a spatial sepa- 
ration of 2.5 -. 0.3 A and the "type JI unit" of three electron-donor groups with a spatial 
separation of 4.6 -. 0.6 A (87). A recent computational ensemble pharmacophore model 
supports these recognition patterns (90), although the less restrictive van der Waal's 
interactions, stacking interactions, and the hydrophobic effect may generally combine to 
provide affinity with multiple diverse compounds (91). Although P-gp does not possess 
acidic residues in their membrane domains, it transports cationic amphipathic com- 
pounds. Therefore, another physical quality must provide this selectivity and the face of 
the aromatic ring structures of tyrosine, phenylalanine, and tryptophan residues can bind 
to cations (92,93). Furthermore, binding interactions are modulated by the membrane- 
lipid environment (75,94,95). 

3.2. P-gp Inhibition and Pharmacokinetic Drug Interactions 

Because of the likelihood of co-administered drugs sharing recognition by the trans- 
port site, the inhibition of P-gp causes many PK interactions (vide supra), such as the 
increase of the oral bioavailability of paclitaxel from 9.3% to 67% with co-administra- 
tion of cyclosporin A (38). Cyclosporin A also inhibits the renal secretion of vincris- 
tine and vinblastine, and other P-gp inhibitors reduce the active biliary excretion of 
colchicine, doxorubicin, and etoposide by the liver (96,97). Tntravenous administration 
of potent P-gp inhibitors resulted in up to 37-fold increase in HIV-1 protease inhibitor 
concentrations in the brain of mice (98); and the P-gp inhibitor GF120918 raised the 
HTV drugs' brain-plasma ratio about 100-fold (99). These and many further examples 
of significant clinical drug-herb interactions mediated by P-gp indicate that this trans- 
porter should be routinely examined in drug development for binding and inhibition 
caused by proposed therapies. 

4. P-gp Elevation 

Increased P-gp expression andlor activity will naturally have the opposite effect of 
thwarting the P-gp activity described earlier. Dramatic examples of PK interactions 
mediated by P-gp induction have been reported. Significant elevation of intestinal P-gp 
quantity and the suppression of talinolol (100) or digoxin (101) exposure with co-ad- 
ministration of rifampin, a P-gp inducer, were remarkably well-correlated. P-gp and 
CYP3A regulation appear to respond similarly to PXR binding and share some mo- 
lecular-regulation signals (102). Following chemotherapy, tumor cells may mutate to 
present supernormal quantities of P-gp, although many malignancies are already MDR- 
positive at diagnosis (chemotherapy nai've). For example, in a clinical study, P-gp lev- 
els increased 3- to 15-fold, showing that tumors adjust rapidly to anticancer drugs (103). 
A major obstacle for successful chemotherapy of cancer is the resistance of tumors to 
multiple anticancer drugs (MDR). Because P-gp can account for up to a 100-fold 
increase in drug resistance, overexpression or upregulation of this transporter can be 
applied as a prognostic marker in certain diseases, such as leukemia, breast cancer, 
neuroblastoma, pancreatic cancer, or ovarian cancer. Indeed, many compounds are in 
clinical trials to inhibit P-gp, with the goal of overcoming MDR (vida infra). 
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Many other cytotoxic (xenobiotic) compounds are also inducers of P-gp quantity; 
for cxample, verapamil, nifedipinc, nicardipine, diltiaxem, rifampicin, cyclosporin A, 
progesterone, estradiol, phenobarbital, insulin, clotrimazole, reserpine, isosafrole, St. 
John's Wort, hyperforin, dexamethasone, androstanol, troglitazone, ecteinascidin, 
digoxin, somc PAHs, 2-acetylaminofluorene, and anthracyclins (1 04,105). Many re- 
sults indicate a tissue-dependent inductive response of P-gp to inducer exposure (106). 

5. Genetics and Variability 

5.1. Polymorphisms 
As with thc cytochrome P450 superfamily, MDRl genetic polymorphism might re- 

sult in observed outcomes in unique subpopulations, with naturally occurring MDRl 
single-nucleotide polymorphisms (SNPs) having clinical and pharmacological rel- 
evance. 1n the 28 exons of MDRl genomic DNA of healthy Caucasians, 15 SNPs were 
detected, including six in the coding region (11). Three of these altered the primary 
amino acid sequence of the protein. Phcnotypical consequences for C3435T in exon 26 
correlated with intestinal P-gp expression and uptake of orally administered P-gp sub- 
strates (12,107). Tndividuals homozygous for this polymorphism (TT, -25%, n = 188) 
showed significantly lower duodenal P-gp expression, lower in vivo activity of P-gp 
(approximately twofold), and increased digoxin plasma levels, However, C3435T is 
located at a noncoding, nonpromoter position in the MDRl gene and is unlikely to 
influence P-gp expression. It is more likely linked to other as-yet-unidentified changes 
in regions of the MDRl gene that control expression, e.g., in the promoter or enhancer 
region, or in scquences that are important for mRNA processing. Serving as a surrogate 
for the estimation of other tissue levels, the concentration of P-gp in a subset of lym- 
phoid cells (CD56' natural killer [NK] cells) is also substantially lower in the TIT 
genotypes. 

The frequency of CIC genotype (higher activity or function) in West Africans and 
African Americans is 83% (n = 172) and 61 % (n = 41), respectively, whereas in Cau- 
casians it is 26% (n = 537) (108) (see Table l).  

Higher doses of tacrolimus or cyclosporine were required in African Americans than 
Caucasians to attain similar plasma levels. Conversely, the TIT genotype patients at- 
tain lower plasma concentrations of the P-gp substrates nclfinavir and efavirenz-anti- 
HIV drugs (despite low expression of the MDR I transcript and P-gp) (110)-although 
the TIT genotype responded better and faster (greater rise in CD4-cell count) to therapy. 
The 3435ClT polymorphism is noncoding and could be in linkage disequilibrium with 
a polymorphism clscwhere in the genome that modifies MDRI expression or function. 
Tn another study, the TIT genotype (in the context of a C123BT, G2677T haplotype) 
was associated with high P-gp exprcssion in vitro and low plasma concentrations of 
fexofenadine (1 11). The reason for this discrepancy with the C3435T allele subject 
observations (12) described earlier is currently unclear. There could be an indirect effect 
of the 3435 genotype, i.e., low P-gp could be compensated for by induction of other 
transporters (or CYP3A4) and dietarylenvironmental differences could contribute. The 
allelic variant MDR1*2 (haplotype) cxhibits enhanced efflux of digoxin, is statistically 
associated with lower fexofenadine exposure, and includes C1236T, C3435T, and 
G2677T[Ala893Scr] (62% of European Americans, 13% of African Americans). A 
recent haplotype analysis has been able to reconcile conflicting results of studies whose 
analysis is based solely in individual SNPs (1 12). Haplotype 12 (2677613435T) codes 
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Table 1 
Prevalence of CIC Genotype in Different Ethnic Groups 

Ethic Group C/C Genotype (%) 

Ghanaian 
Kenyan 
African-American 
Sudanese 
British Caucasian 
Portuguese 
Southwest Asian 
Chinese 
Filipino 
Saudi 

Adapted from re[. IOY. 

for elevated concentrations of digoxin after oral dose and the superior haplotype analy- 
sis results match data of other MDRl studies (1 12). 

However, 20+ million humans in Africa and South America have been treated with 
ivermectin (with no evidence of neurotoxicity), an antiparasitic P-gp substrate and 
potent neurotoxin in P-gp-null genotype KO mouse. This suggcsts that: ( 1 )  MDRI P- 
gp expression is highly conserved in humans overall and (2) defining a subgroup of 
humans with complete absence of P-gp expression is unlikely. Indeed, 10 SNPs do not 
result in amino acid changes or are in noncoding regions, and three have an unknown 
effect on function. 

5.2. Expression Variability 
Humans exhibit wide variation in liver expression of MDRl mRNA and P-gp pro- 

tein. The variability of enterocyte P-gp concentration is about 10-fold in transplant 
patients and a bit less in normal nonrnedicated adults (about fourfold, interpatient); 
males expressed twofold higher amounts of P-gp than females (1 13,114). There is even 
an indication of up to eightfold interindividual variability in P-gp content (115), with 
more than eightfold differences in the P-gp expression observed in a small population 
(25 patients [ I  161). This variability is roughly similar to, or perhaps more than, what is 
observed for CYP3A4, though these studies are from a limited sample population. Tem- 
poral variation of P-gp levels is expected (vidr supru), such as a threefold intrapatient 
variability that was observcd in a transplant case study (48)! 

6. Role of P-gp Polymorphisms and Mutation in Cancer 
Many cancer types have provided examples of  gene modifications associated with 

drug resistance and P-gp primary structure. Naturally occurring mutations in the MDRl 
gene associated with colorectal cancers with high microsatellite instability (MSI-H) were 
found in both the coding and promoter regions (11 7). A mutation in the promotcr of the 
MDRl gene in human hematological malignancies may contribute to the pathogenesis of 
resistant disease (118). Similarly, point mutations in the MDRl promoter have been 
found in osteogenic sarcoma and various types of leukemia (119) and are associated with 
diminished in vitro responsiveness to MDR relevant drugs. Moreover, DNA methylation 
and hypermethylation can affect transcription and gene-product levels (120). 
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7. In Vitro to In Vivo Correlation 

Although observations must be carefully judged in the context of contrived elemen- 
tal systems, the correlation of in vitro experiments to clinical observations generally is 
quite good owing to the dramatic role or influence of P-gp. The significant impact of P- 
gp inhibition has been illustrated ealier, including some corollary to in vitro experi- 
ments. There are many further examples, including the increased digoxin 
concentrations in the brain of PSC833 (very potent P-gp inhibitor in vitro) orally 
treated, wild-type mice near the levels found in mdrl d l  b(-I-) double KO mice (33). 
The relative P-gp inhibition potencies of many herbs and drugs such as the azole anti- 
fungals (itraconazole, etc.) and statins (HMG-CoA reductase inhibitors) are consistent 
with their observed PK effects (121-124). Additionally, correlation between in vitro 
transcellular molecule transport ratios from transfected (L-mdrla) cells (efficiency as a 
P-gp substrate) and brain concentration ratios of mdrl a (-I-) to mdrla (+I+) CF-1 mice 
is remarkable and predictive (r2 = 0.93; 125). The cellular accumulation ratio and 
transcellular transport ratio methods for substrate characterizationlquantification also 
correlated well and consistently (125). Sandwich-Cultured (SC) rat hepatocytes have 
been shown to be an in vitro model to assess and predict the biliary excretion of 
xenobiotics with notable correlation (126). 

To evaluate substrate-transport kinetics, ATP hydrolysis is a useful assay for P-gp 
substrates (1 7,127), although some substrates do not significantly alter P-gp-mediated 
ATP hydrolysis (from baseline activity ostensibly caused by co-purified endogenous 
substrate) in the presence of standard lipid constituents (128). However, Caco-2 cells 
apparently do not afford good general correlation with gastrointestinal (GI) absorption 
owing to variable expression of P-gp, other ABC transporters, plasma protein binding, 
rates of passive diffusion, luminal saturation of P-gp, and so forth (55). Moreover, 
physiological factors such as gastric emptying, GI motility, mucus dissolution, intesti- 
nal pH, and blood flow, and lymph flow can uniquely impact each transport mecha- 
nism. Yet Caco-2 cells can be a useful indicator of jejunal drug efflux, if the low 
expression of BCRP (ABC-G2) and CYP3A is accounted for (129). Caco-2, HT-29, 
MDCK, TC7 can reproducibly display some properties of differentiated intestinal cells 
(130) and, therefore, suitable for qualitative predictions and molecular-permeability 
screening studies. Indeed, the in vivo to in vitro Caco-2 drug transport permeability 
measurements correlate well for passively or highly absorbed drugs (r2 = 85%) 
(131,132; also see below) or small molecules (133). However, even some studies of 
peptidomimetics have resulted in reasonable correlations for slowly and incompletely 
absorbed drugs (134,135). 

7.1. Overall Efficiency of Transport 
The implications of P-gp activity and function must account for the ratio of perme- 

abilitylactive-transport for the distinction of a substrate from an inhibitor (136). 
Although a substrate typically competes with alternate substrates for the active site of a 
xenobiotic-disposition enzyme, many P-gp substrates are not competitive inhibitors 
for overall efflux. We have shown that many P-gp substrates have no effect on the 
ultimate ability of P-gp to cause removal of the marker substrates from a viable cell 
(136), and others have indicated a potentially similar distinction for other compounds 
(137-139). It is very important to properly define a compound as a substrate, inhibitor, 
or both in the context of evaluating the potential for drug interactions and drug-herb 
interactions as well as exposure to toxins and drugs. This disconnect between a sub- 
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strate and its ability to inhibit P-gp can be explained by an element of the natural sys- 
tem: P-gp exports its substrates across a lipid bilayer that is intended to preclude per- 
meation of adverse xenobiotics. A requirement for a P-gp substrate also to be an 
inhibitor is the rapid passive transbilayer movement across the membrane bilayer, a 
process that allows the substrate to re-enter the cell quickly and hence effectively 
occupy the P-gp active site. 

Many studies indicate the critical role of membrane permeation or passive trans- 
membrane movement rate of a substrate toward the inhibition of P-gp (140,141). Al- 
though P-gp-mediated active rate of compound transfer or efflux is slow (- 900 m i d ;  
142), the "flip-flop" rate of its many substrates is even slower (tv2 > 2 min) against 
thosc for which there is "resistance." In other words, to create a concentration gradient, 
the P-gp substrate must have a relatively slow transmembrane passive transport rate. 
Conversely, P-gp substrates with relatively rapid permeation will overcome the pace of 
P-gp to re-enter the binding site and competitively inhibit function. The rate of active 
efflux transport relative to the rate of passive permeation or influx determines the net 
movement of drug from inside to outside of the cell membrane; a substrate cycling 
rapidly back into cytosol will compete for P-gp binding site access. MDR-type drugs 
are amphipathic (hydrophobic and positively charged) and as such bind readily to nega- 
tively charged phospholipid head groups of the membrane. Therefore, transmembrane 
movement often requires a "flip-flop" through the membrane bilayer and is slow. In- 
deed, the passive transbilayer diffusion of phosphatidylcholine (PC), the most abun- 
dant membrane lipid, is very slow (tr,z - d) in both artificial and natural membranes 
(143). By measuring the transport rate and passive transbilayer permeation rate of five 
inhibitors and five substrates, it was shown that P-gp inhibitors cross the bilayer mem- 
brane faster than the egress rate of P-gp, thereby resulting in rapid equilibration rates 
(139). At an approximated turnover rate of 900 min-l, P-gp can keep pace with a com- 
pound like Rho with a transbilayer movement lifetime of minutes. Conversely, P-gp is 
inefficient in protecting MDR cells against molecules rapidly permeating through lipid 
bilayer membranes; for example, potent P-gp inhibitors such as the carrier-type iono- 
phore valinomycin, which traverse membranes within microseconds (k > 25 x lo4 s-I). 
Conversely, gramicidin, effectively excluded by P-gp, has a transmembrane "flip-flop" 
rate with a lifetime of minutes. Additionally, the transmembrane movement rate is 
critical to the overall efficiency of P-gp removal of rhodamine dyes from MDR cells. 
Indeed, rhodamine I3 and tetrarnethylrosamine exhibit high affinity for P-gp, but 
rhodamine B was the fastest membrane-traversing dye and the least efficiently excluded 
from the cell. There was a similar corollary for all of the related dyes tested (144). 
Another efficient marker of efflux, doxorubicin exhibits a "flip-flop" rate with a tl12 of 
approx 1.7 min, and 30% cholesterol addition to the vesicles to reduce membrane flu- 
idity decreased the rate sevenfold (145). The fluidizer benzyl alcohol accelerated the 
rate, consistent with the role of membrane bilayer permeability dictating the rate of 
equilibration. Consequently, of compounds ejected by P-gp, those that are relatively 
slow to cross the lipid bilayer are efficient "substrates," and those that rapidly permeate 
the membrane are (also) good "inhibitors." This effect has been modeled using the 
highly permeable compound nicardipine and further supports this conclusion (39,146), 
as does ranitidine, which exhibits very low passive permeability (147) and is not a P-gp 
inhibitor. 

Lipophilicity could sometimes be used to discriminate between P-gp substrates and 
inhibitors. Among a series of anthracyclines, the less lipophilic derivatives were corre- 
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lated with slower passive diffusion and resulted in lower intracellular accumulation 
(140,141,148,149). Indeed, lipophilicity is inversely correlated with P-gp efflux effi- 
ciency of some vinca alkaloids (1.50), stcroids (151), and peptides (152); and directly 
relates to P-gp inhibition for cyclosporins (1.531, steroids (IS]), and linear hydrophobic 
peptides (154). Although more lipophilic compounds appear to be better inhibitors gen- 
erally (as opposed to ejected efficiently as substrates), this correlation does not apply 
outside of a particular set of analogs (l5S,I56). This result is probably owing to the fact 
that lipophilicity parameters are inadequate for judging thc interaction of structurally 
diverse compounds with the complexities of membranes (76). 

We can now appreciate that the number of P-gp substrates that are not also inhibitors 
is striking, and many substrates could be expected to have no substantial effect on P-gp 
function in the viable cell. Despite this absence of effect on P-gp overall function by 
many substratcs, these P-gp substratcs can still he affected pharmacokinetically by the 
modulators of P-gp activity. Tt is therefore important to characterize both the efllux- 
rate parameters and those of inhibition. 

8. Pharmacological Modulation 

Of the types of cellular multidrug resistance (resistance to unrelated drugs), the ATP- 
dependent efflux pumps are the dominant factor (157). Early studies showed that P-gp 
was highly expressed in colon, kidney, adrenocortical, and hepatocellular cancers (IS$), 
and P-gp expression is correlated with a reduccd complete remission rate of acute my- 
clogenous leukemia (AML) and a higher incidence of refractory disease (159). High P- 
gp expression is also well-correlated with the poor clinical outcome in childhood acute 
lymphoblastic leukemia (ALL) (119). Additionally, breast tumors, and possibly ova- 
rian canccrs and lung canccrs, that expressed increased levels of P-gp after therapy 
were associated with over a threefold greater likclihood of treatment failure (160). 
After chcmolherapy, a significant proportion of breast cancer patients express increased 
tumor levels of P-gp (161). In ovarian cancer samples, lti-M% wcre found to express 
P-gp, as measured by immunohistochemistry (162). Studies using mRNA detection or 
immunohistochcmistry methods, ex vivo functional assays, or in vivo tumor imaging 
all show a strong association bctween therapy with MDR drugs, intrinsic or acquired 
expression of P-gp, reduced tumor-cell drug retention, and a poor treatment response 
in brcast cancer patients (163,164). Owing to significant resistance to anticancer drugs, 
the mitigation of P-gp has been ardently sought for more than 20 yr (165). As men- 
tioned ealier, PSC833 (cyclosporin analog) is a potent P-gp inhibitor and has been 
investigated in the clinic as an adjuvant therapy toward overcoming chemotherapy 
resistance (166), although it also causcs profound PK effccts (33). Most of thcse com- 
pounds, however, emerged as weak inhibitors that wcre toxic at high doscs. The poor 
activity of current P-gp-inhibition compounds in patients has also been attributed to the 
prescnce of resistance factors in addition to P-gp (e.g., other ABC transporters), inap- 
propriate design of clinical trials, toxicity, bioavailability, and/or lack of specificity of 
anti-P-gp reagents. Yet a Phase 1/11 trial of cyclosporin A added to daunorubicin and 
cytarabine in "poor-risk" patients with AML resultcd in 62% completc remissions and 
a 69% ovcrall response rate (167). Combinations of suboptimal doses of P-gp inhibi- 
tors were shown to be cffective at 15-100 times less than the optimal doses, suggesting 
the possibility of avoiding associated toxicities of these agents (168). 
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An intriguing possibility of a dual-acting chemotherapy is found in SCH66336 
(lonafarnib), an orally active, potent, and selective inhibitor of the farnesyl protein 
transferase (FPT) enzyme (169). This novel thcrapeutic agent has activity against a 
wide variety of human tumor xenografts and also causcs regression of tumors in wap- 
H-ras transgenic mice. Enhanced antitumor activity has becn reported in preclinical 
cancer models when SCH66336 is combined with cyclophosphamide, 5-fluorouracil 
(5-FU), or vincristine (169,170), all substrates of P-gp. Furthermore, a synergistic ef- 
fect on antitumor activity of SCH66336 and taxanes (also P-gp substrates) has recently 
been described (171). Moreover, a recent report shows a synergy with co-administra- 
tion of SCH 66336 with paclitaxel or docetaxel (two known substrates of P-gp) in vitro 
and in vivo (171). SCH66336 significantly enhanced the effect of paclitaxel in the 
NCIH460 lung-cancer xenograft model and was able to sensitize wap-ras/F mammary 
tumors as well as tumor cell lines to paclitaxel (171). We have directly characterized 
and quantified a specific synergy on P-gp function between SCH66336 and either 
tamoxifen, paclitaxel, or vinblastine (124). Relatively srnall concentrations of 
SCH66336 can increase the affinity (potency) of these additional compounds as inhibi- 
tors of P-gp function. Treatment with SCH66336 would be predictcd to be synergistic 
with co-administered cancer therapeutics that are substrates of P-gp. A further benefit 
of co-administration of SCH66336 could be reduced chemotherapy dosage, hence, 
lower exposure to normal cells, and therefore less undesired toxicity. 

8.1. Classes of Modulators 

Many of the characterized MDR modulators (inhibitors) can be categorized in vari- 
nus compound classes and this has been very well-reviewcd (4,172,173). The classes 
include: ( I  ) calcium-channel blockers (dihydropyridine analogs, i.e., verapamil); (2) 
calmodulin antagonists (phenothiazines and thioxanthenes, i s . ,  trifluoperazine); (3) 
cyclic peptidcs (cyclosporin A, PSC833); (4) steroids and hormonal analogs (progest- 
erone, tamoxifen); (5) dipyridamole; (6) anthracycline/vinca alkaloid analogs; and (7) 
miscellaneous other compounds. 

8.2. Toxicity and Pharmacokinetic Interactions 

Dose-limitjng toxicities of the MDR modulators have often precluded their further 
clinical development (1 74). Ventricular arrhythmia (verapamil), myelosuppression, 
cerebellar ataxia (PSC833, valspodar), and hypertension (cyclosporin A), have been 
observed, but may be owing to PK intcractions caused by P-gp inhibition (6). The 
antidiarrheal agent loperamide is a P-gp substrate, hence brain exposure is very limited 
normally; yet in the presence of quinidine (potent P-gp inhibitor), the brain lopcramide 
concentrations increase resulting in serious neurotoxicity (1 75). Moreover, PK interac- 
tion could bc caused by inhibition of other xenobiotic-defense enzymes such as the 
cytochromc P450s, and could also enhance exposure of the chemotherapy to "sanctu- 
ary" sites such as CNS and testis, thus unvciling new toxicities not previously seen 
with the cytotoxin alone. This suggests that a significant fraction of patients have been 
under-dosed, thus making efficacy interpretations difficult. 

8.3. Clinical Success or "Proof of Principle" 

Clinical trials with some of the second-generation modulators are in progress, and 
some studies show clinical benefit from the use of modulators such as Valspodar 
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(PSC833) (1 76), although Valspodar is saddled with enhancement of toxicity owing to 
PK interactions, Furthermore, the more potent and specific modulators (GF120918 
[elacridar], LY335979 [zosuquidar]) do not show significant PK interaction with doxo- 
rubicin, etoposide, and paclitaxel in animal studies (1 77-179). Tn a human Phase I1 
study, a subgroup of paclitaxel-refractory advanced breast-cancer patients was 
resensitized by biricodar (VX-710) with adequate safety margins and PK parameters 
(180). Trials in multiple myeloma, non-Hodgkin's lymphoma (NHL), and acute leuke- 
mia have shown that positive responses to P-gp modulators may occur in patients who 
are refractory to standard chemotherapy regimens (1 80u-182). 

These studies clearly indicate that the development of potent and selective P-gp 
inhibitors is an important approach to reversing MDR in the clinic. MDR of cancer 
cells is a potentially surmountable obstacle to effective chemotherapy of cancer. 

9. MDR Pharmacological Inhibitors and Development Phase 

The extensive list of MDR modulators cataloged in Table 2 serves as a strong illus- 
tration of the pursuit of an adjuvant cancer therapy to mitigate the action of P-gp. This 
table includes the pharmacological product classifications, compound name, pharma- 
cological activity with parameter value, the evaluation stage as development phase, 
and the reference. This catalog was generated from the MF-line database and data man- 
agement software. 

10. Other ABC Transporters and the MDR Protein Multi-Gene Family 

Much like the genetic superfamilies for cytochromes P450 and glutathione S-trans- 
ferases, the xenobiotic transport enzymes are significantly contributing members of an 
extensive family that affects the overall disposition of many compounds. MDRl and 
MRPl exhibit much overlapping substrate specificity, although MDRl currently seems 
to be broader in scope. However, MRPl can act as a GS-X pump, i.e., it can transport 
drugs conjugated with GSH and glucuronide. MRP2 (also known as cMOAT; canali- 
cular multispecific organic anion transporter) almost exclusively pumps out conjugates. 
Rats deficient in MRP2 show a chronic conjugated hyperbilirubinemia (model for the 
human disorder Dubin-Johnson syndrome). MRP homologs recently identified are 
MRP3, MRP4, MRP5, MRP6, MRP7, MDR3, BSEP, and MXR (205-208). MDR2 
apparently translocates only phospholipids, e.g., phosphatidylcholine. It is believed 
that humans possess 48 genes encoding ABC transporters. 

The presence of other cellular drug-resistance mechanisms in addition to P-gp is 
most likely responsible for the apparent ineffectiveness of some P-gp modulators to 
date. The expression of MRP, P-gp, or both can account for diminished accumulation 
and retention of daunorubicin in blast cells from AML patients (209). MRP2 is capable 
of mediating drug efflux, and a recent study showed increased bioavailability of sev- 
eral drugs and carcinogens in MrpZnull rats (210). 

10.1. MRP1, MRP2, and MRP3 

The multi-drug resistance protein (MRP) transporters are a subfamily of ABC trans- 
porters (ABC-C) related further to P-gp as expellers of various xenobiotics such as 
chemotherapy (1 94,20.5,208,21 1,2 12). Extruding many anionic amphipathic com- 
pounds and conjugates from cells, the MRPs have become well-appreciated for their 
significant role in chemotherapy resistance (213-215). MRPl (ABC-Cl) and MRP2 
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Table 2 
P-Glycoprotein (P-gp) Interaction of Se lec ted  Multldrug-Resistance Modulators  (MDRMs) a n d  Other  
Se lec ted  C o m p o u n d s  With Slgnlflcant Activity o n  P-gp 

P-gp inhihitiona P-gp affinityh 
Compound ICSo[K,]*(pM)IReferences TC50[K,] *(kM)/Referenceq 

MnRMs 
Bir~codar dicitrate 

(VX-7 10) 
B9109-012 
CP- I00356 
Dexniguldipme(HC1 

Elacridar, CF120918 
Lan~qu~dar  
MS-209 
ONT-093 
OC144-093 
Progesterone derivative 
S-9788 
Tariquidar (XR9576) 

Timcodar2CH3S03H 
Valspodar 
XR-905 I 
XK-9576 
Zosuquidar(3HCI 

(TdY-335979) 
Oncolytic drugs 
Paclitaxel 
Vinblastine.HfiO, 
Mitotane 
Immunosupressants 
Cyclosporine 
FR-901459 
Antifungal agents 
Ttraconazole 
Keloconazole 
Calcium antagonists 
Fantofarone (SR33557) 
Nicardipine(HC1 
Verapamil 
Farncsyltransferase inhibitors 
Lonafarnib 

(SCH-66336) 
Calmodulin antagonists, 

Dopriminc antagonists 
Tritluoperazine(llC1 
Others 
Silybin 
Taxirolin 
CUT- I (NSC-77037) 

"Inh~hitory activity measured in different cell lines exprcsslng P-gp and/or exhibiting mult~drug resibtitnce by means of different 
assays. 
hAffinity to P-gp evaluated by displacement ot d~fferent radioligands in different cell lines expressing P-gp and/or exhibiting 
MDR. 
Data used with permission from Prous Science Integrity". 
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(ABC-C2) have been shown to be expressed in cancers such as lung (2l6,217), leuke- 
mia, bladder, neuroblastoma, breast, ovarian, hepatic, gastric, and prostate 
(211,212,218-220) and have confcrred resistance against various chemotherapeutics. 
Accordingly, MRPl is ubiquitously distributed among many organs predominantly in 
the basal and lateral plasma membranes, whereas MRP2 is in intestine, liver, kidney, 
placenta, BBB, pancreas, spleen, and choroid plexus and localized in the apical mem- 
brane of these cells (211,212). The role in these locations is exemplified by the signifi- 
cant contribution of MRP2 to BBB function that was recently reported (221). MRPl 
and P-gp share only modest amino acid sequence identity (15%), whereas MRPl and 
MRP2 share 50% amino acid identity, with MRPl and MRP3 sharing even more (58%) 

Because MRPl secretes compounds into the system or body on the basolateral side, 
its role is more of a cellular defense than one of total organism defcnse such as P-gp 
and MRP2 (eliminated drugs from the body). Absence of MRPl causes etoposide lev- 
els to increase 10-fold in the cerebrospinal fluid (CSF) after intravenous administration 
of the drug (222). The body must have a basolateral transporter to protect sperm or 
CSF, because P-gp or other apical side efflux transporters would extrude drug into the 
sanctuary. 

Substrate recognition by MRPl and MRP2 is generally similar, with known 
examples being glucuronosyl-etoposide, escrone-3-sulfate, estradiol-l7P-glucuronidc, 
etoposide, vincristine (vinca alkaloids), sulfinpyrazone, methotrexate, leukotriene C4 
(perhaps as a GSH conjugate), and anthracyclines. MRPl can, however, exhibit 
remarkable selectivity, which probably contributes to cancer-therapy resistance. 
Whereas estradiol 170-glucuronide is a good substrate, the 3-isomer is not (223). Fur- 
thermore, MRP2 transports HIV protease inhibitors, whereas MRPl does not (224). 

Cisplatin is an actively transported substrate of MRP2 (214,225-232). The introduc- 
tion of MRP2 antisense cDNA into human hepatic cancer HepG2 cells results in 
increased sensitivity to cisplatin, vincristine, doxorubicin, and the camptothecin 
derivatives (231), with re-inoculated rats confirming an in vivo MRP2-mediated resis- 
tance to cisplatin (229). MRP2 mRNA expression is significantly associated with the 
resistance of colorectal cancer to cisplatin (227). In transfected cells, the overexpression 
of MRP2 resulted in resistance to cisplatin (10-fold), etoposide, doxorubicin, 
epirubicin, and MTX (225). Moreover, MRP2 mRNA levels correlate with cisplatin 
resistance in a subset of resistant cell lines (214), whereas cellular accumulation and 
drug sensitivity to cisplatin in human MRP2 transfectants decreased (214). 

5-FU is a possible substrate for the MRPl transporter. HL-60 cells selected for over- 
production of MRPl (1 Ox the level of parent HL-60 cells) showed resistance to 5-FU 
(233), and MRPl expression is correlated with 5-FU resistance in seven GT cancer-cell 
lines (234). Treatment of cisplatin-resistant cell line with 5-FU increased the cytotox- 
icity of cisplatin fourfold, indicating that 5-FU may interact with MRP2 as well (235). 

Tyrosine kinase inhibitors, particularly ST1571 (imatinib mesylate; Gleevec), have 
been shown to interact directly with MRPl and P-gp (236). 1n transfected cell lines 
expressing high levels of either MRPl or P-gp, several tyrosine kinase inhibitors can 
inhibit transport function as well as substrate-stimulated ATP hydrolysis (236). More- 
over, P-gp has been detected in cell lines resistant to STT571 (237). 

A substrate of a trans-membrane transporter may not also be an inhibitor; conversely, 
inhibitors may not also be transported. Therefore, the list of substrates may not equal 
that of substrates. The known MRPl inhibitors are nonspecific and include 
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sulfinpyrazine, probenecid, benzbromarone, indomethacin (nonsteroidal anti-inflam- 
matory drugs [NSATD]), some flavonoids, and even ritonavir (238). 

MRP3 also transports amphipathic anions on the basolateral side, like MRP1 (219); 
is found largely in the liver, gut, and kidney, like MRP2; and is also present in the 
adrenal gland, pancreas, gallbladder, lung, and ovary (239). MRP3 may contribute to 
enterohepatic recycling of bile salts (e.g,, glycocholate) and removal of toxic anions 
during cholestasis (240). Substrates include estradiol-l7p-glucuronide, glucuronosyl- 
drug conjugates, vinca alkaloids, mcthotrexate, etoposide, and teniposide and may con- 
tribute to chemotherapy resistance. During cholestatic conditions the high MRP2 levels 
drop, whereas MRP3 is significantly elevated. Therefore, many amphipathic anions 
(including bile salts) secrete to the basolateral instead of the apical direction, prevent- 
ing intrahepatic accumulation to toxic concentrations (240). 

10.2. MRP4 and MRP5 

MRP4 and MRPS arc on the basolateral side of cells in many tissue types and are 
able to transport therapeutic nucleoside-based compounds (241,242). Indeed, HIV was 
less effectively inhibited by the modified nucleosidc analogs in cells overexpressing 
MRP4 (241). MRP4 expression may also affect cancer chemotherapy. MRP4- 
overexprcssing cells were resistant to cytotoxic effects of 6-mercaptopurine and 6- 
thioguanine (and AZT , MTX), important drugs in the treatment of childhood leukemias 
(242). A role for MRP4 in the transport of DHEA (dehydroepiandrosterone 3-sulphate) 
and other conjugated steroids has recently been suggested (243). 

With MRP5 transporting not only PMEA (adenine nucleotide analog, acyclic nucleo- 
side phosphonate) but also monophosphate diphospho-thiopurines (244), this trans- 
porter may have a role in cancer chemotherapy as well. It was recently demonstrated 
that MRPS is a cCMP transporter, yet a comparitively poor CAMP transporter (245). 
Because sildenafil (i.e., Viagra, as well as trequinsin and zaprinast), a potent phos- 
phodiesterase inhibitor, is also a very effective MRPS inhibitor, speculation suggests 
that the vasodilatory effects could be owing to inhibition of MRPS-mediated cyclic 
nucleotide transport. Although MRP4 seems to prefer methylated thio-IMP, MRP5 
prefers the unmcthylated thioinucleotides. Moreover, MRP4 mediates transport of 
glucuronatc conjugates and methotrexate, whereas MRP5 apparently does not (246). 

Many of the ABC transporters have been shown to be temporally regulating, or 
induced by exposure to xenobiotics, MRP4 transcription regulation may be controlled 
by its natural substrates, cyclic nucleotides (247), and MRP4 is upregulated in response 
to clcvated levels of hepatic bile acids (248). 

MRP6, located in the basolateral membranes of cells in the liver and kidney, trans- 
ports an anionic cyclopentapeptide BQ- 123 and certain glutathione conjugates (249). 
Possibly a highly selective pump for amphipathic anions (250), MRP6 can cause low 
levels of resistance to some anticancer agents (etoposide, teniposide, doxorubicin) 
(249). The absence of MRP6 causes pseudoxanthoma elasticum, a heritable disorder 
characterized by calcification of elastic fibers in skin, arteries, and retina (251). 

The ABC transporter breast cancer resistance protein (BCRP), also known as 
rnitoxantrone-resistance protein (MXR) (252), is overproduced in MCF7 breast can- 
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cer cells (253). As part of the ABC-G subfamily, this transporter has been renamed 
ABCG2 and apparently functions as a homodimer. It is not known if ABC-G2 can 
also heterodimerize with other proteins, such as those of the AGC-G class. Though 
possibly more selective in substrate recognition than P-gp, ABCG2 ejects mitoxan- 
trone, topotecan derivatives, anthracyclines, bisantrene, etoposide, prazosin, and 
flavopiridol (254), as well as HIV-1 nucleoside reverse-transcriptase inhibitor 
zidovidine (AZT) (255). The active transport of indolocarbazole compound A was 
inhibited by indolocarbazole analogs but not by mitoxantrone, suggesting unique 
binding sites (256) reminiscent of P-gp. Other likely substrates include the experi- 
mental indolocarbazole topoisomerase inhibitors NB-506 and J-107088 and the ac- 
tive metabolite of the camptothecin analogue irinotecanICPT-11 (257). However, 
vincristine, vinblastine, paclitaxel, cisplatin, colchicine, verapamil, calcein-AM, 
rhodamine 123, and doxorubicin are not significantly transported by AGC-G2 (258). 
It appears that P-gp, MRPl, and ABCG2 can account for most of the known active 
MDR (259), with relatively high expression of BCRP mRNA observed in approx 
30% of AML cases (260). ABC-G2 mRNA also increased significantly from diag- 
nosis to relapse or refractory disease, indicating that ABC-G2 levels may correlate 
with clinical resistance in AML (261). ABCG2 has been detected in the apical mem- 
branes of placental syncytiotrophoblasts, hepatocytes, the epithelia1 lining of the 
small intestine and colon, brain microvessel endothelium (262), the ducts and lob- 
ules of the mammary gland (263), and hematopoietic progenitor cells (264). Drug- 
resistant cell lines overexpressing ABC-G2 are derived from parent cells of 
fibroblasts, breast, colon, gastric, lung, or ovarian carcinomas, fibrosarcomas, and 
myelomas, which suggests that ABC-G2 may contribute to drug resistance in tu- 
mors of various tissue types. 

ABC-G2 inhibitors may be useful to improving chemotherapy response, analogous 
to P-gp inhibitors. The P-gp inhibitors reserpine, GF120918, are potent inhibitors of 
the ABC-G2. Other inhibitors include fumitremorgin C and the tyrosine kinase inhibi- 
tor CIlO33, whereas verapamil, cyclosporin A, PSC833 and some other P-gp inhibtors 
have little effect on ABC-G2. 

Similar to P-gp, ABC-G2 could limit oral bioavailability. Indeed, the mRNA level 
of BCRP is significantly higher than that of MDRI in jejunum (125). Morever, inhibtion 
of ABC-G2 by oral dose of GF120918 has been shown to cause a drug interaction with 
oral topotecan, rasing plasma concentrations approximately sixfold. Biliary ABC-G2 
also seems to contribute bioavailability and drug interactions because the GF120918 
dose decreased hepatobiliary excretion of intravenously administered topotecan by 
approximately twofold (265). Furthermore, brain exclusion of xenobiotics may be sig- 
nificantly dependent on AGC-G2, with its mRNA more highly expressed than P-gp 
and MRPl in porcine brain (266). 

Differences in ABC-G2 function or expression among the population may result in 
diverse (and possibly dangerous) clinical exposure to substrate drugs, analogous to 
other polymorphic xenobiotic-metabolism enzymes. Analysis of DNA from 11 differ- 
ent ethnic populations revealed that there are several common natural allelic variants 
of ABC-G2, but their effect on function is yet to be examined (267). A 78-fold varia- 
tion in expression of BCRP mRNA and significant variation in protein expression in 
human intestine could not be accounted for by one of the common allelic variants (267) 
(see Table 3 j. 
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10.5. Sister-P-gp (SPGP)/Bile Salt Export Protein (BSEP)/ABGBlI 
Sharing 50% amino acid identity with P-gp, sister-P-gp (SPGP), also known as the 

Bile Salt Export Pump (BSEP, ABC-B 1 I), is significantly more selective with respect 
to substrate recognition. Expressed exclusively in the liver (268), BSEP appears to 
have a role in efflux of endogenous compounds (bile acids) and exogenous compounds 
(xenobiotics) into the bile (269,270). Some examples of endogenous substrates thought 
to be exported by BSEP include taurocholate, estradiol-17p-glucuronide, cholic acid, 
muricholates, and other monoanionic bile salts. Canalicular secretion of bile acids from 
the liver in the form of bile facilitates the emulsification of dietary lipids and fat-soluble 
vitamins. Defective bile secretion results in cholestasis with accumulation of bile salts 
and other toxic bile constituents within hepatocytes and blood plasma. Mutations in the 
BSEP gene can result in the absence of BSEP expression and are the cause of certain 
forms of progressive familial intrahepatic cholestasis (PFTC-2) (271,272). PFIC mani- 
festations are jaundicc, fibrosis, cirrhosis (caused by <I% of normal biliary bile salts), 
hyperbilirubinemia, suppressed lipid and cholestcrol metabolism, and intestinal mal- 
absorption of fat and fat-soluble vitamins. 

BSEP has recently been characterized as a transporter that interacts with drugs and 
xenobiotics, including vinblastine, ditekiren, troglitazone, troglitazone sulfate, 
cyclosporin, rifamycin, glibenclamide (273), sulindac, and tax01 (274). Moreover, the 
administration of troglitazone (275,276), cyclosporin, rifampicin, and bosentan (277)- 
all inhibitors of BSEP-has been linked with cholestasis, Xenobiotic-induced 
cholestasis is a significant clinical problem, though drug interactions mediated by BSEP 
may also have dangerous consequences. Because P-gp and BSEP are both expressed in 
the liver, it is clear that the extent of overlap between P-gp and BSEP drug substrates 
and inhibitors needs to be established to cstimate the BSEP role in drug disposition. 
The importance of BSEP interactions at the level of hepatobiliary export processes 
should thus be considered in the evaluation of drug interactions. 

Several cholestatic drugs have already been shown to potently inhibit BSEP: 
cyclosporine A, rifampicin, glibenclamide, estradiol-17fLglucuronide, bosentan, 
troglitazone, and sulindac all can cause increased bile-salt concentrations in serum and 
eventually cholestatic liver injury and are BSEP inhibitors (273,275,278) and probably 
substrates (279). Thus far, the most potent inhibitors seem to be cyclosporin, tamoxifen, 
and valinomycin (280). There are likely to be much more potent inhibitors, and other 
substrates also may be more sensitive to inhibition of transport. 

MDR3 is also involved in bile transport and another form of progressive familial 
intrahepatic cholestasis (PFTC-3). Sharing 75% amino acid identity with P-gp, it is 
inhibited by some known P-gp inhibitors and can also transport some amphipathic 
drugs (281). However, it is generally considered selective for efflux of biliary phos- 
pholipids (phosphorylcholine). 

11. Conclusion 
Because of the wide tolerance of substrate recognition, P-gp can often be the mecha- 

nism for significant phannacokinetic drug interactions when two or more drugs are 
competing for the P-gp transport site. P-gp levels are also inducible and can be even 
further elevated in cancer cells, thus contributing to the confounding pleiotropic resis- 
tance to chemotherapy and poor treatment prognosis. Consequently, a broad scope of 
research over 20 years has led to the evaluation of co-therapies intended to augment 



Table 3 
ABC Transporters Relevant to Xenobiotic Disposition 

Name AKA Tissue Side Substrates Notes 

MDRl 

MDR2 

BSEP 

MRP 1 

MRP2 

-L 
A 
CD MRP3 

p-gp. 
ABC-B 1 

MDR3, 
ABC-B4 
SPGP, 
ABC-B 1 1 
ABC-C1 

CMOAT 
ABC-C2 

ABC-C3 

MRP4 ABC-C4 

MRP5 ABC-C5 

MRP6 ABC-C6 

CFTR ABC-C7 

BCRPhIXR ABC-G2 

Ubiquitous 

Liver 

Ubiquitous (low 
liver) 

Liver, kidney, 
gut: placenta, brain 

Liver. brain, 
adrenals, 
pancreas 
kidney, gut. 
ovary, lung 

Ubiquitous 

Ubiquitous 

Liver, kidney, 
brain 

Exocrine tissue 

Ubiquitous 

Apical 

Apical 

Apical 

Lateral 

Apical 

Basolateral 

Basolateral 

Basolateral 

Lateral 

Apical 

Hydrophobic 

Bile salts 

Lipophilic anions, 
leukotriene. 
conjugates 

Conjugates, 
lipophilic anions, 
Bilirubin 

Etoposide, 
vincristine, 
methotrezate, 
glycocholate, 
conjugates (anionic) 

Anti BIV 

Anti HW 
conjugates 

Amphipathic anions, 
conjugates 

Anions bicarbonate 

Amphipathic, 
Chemotherapy 

Induced 
cholestasis 

xenobiotics 

PFIC 

Induced 
cholestasis 

Suppressed 
cholestasis 

Induced 
cholestasis 

Conjugates 
Nucleoside 

antiviral 
Nucleoside 

antiviral 

Cystic 
fibrosis 

Chemotherapy 
resistance 
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chemotherapy by inhibiting P-gp. This review includes a list of the currently known P- 
gp inhibiting adjuvant candidates described in the literature, with associated references 
and summary data. The summary catalog of P-gp modulators illustrates the ardent pur- 
suit to overcome this form of therapy resistance and gives examples of clinical success 
and failure. Significant in vivo and in vitro experimental observations as well as the 
exlensive catalog of P-gp inhibitors shown earlier illuminate the critical pursuit of im- 
peding MDR by inhibiting P-gp. However, there remain many difficulties and hurdles 
to effective and safer therapies intended to block the active efflux provided by P-gp 
owing to its broad selectivity and tissue distribution as well as clinical liabilities of the 
compounds. 
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