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Preface

Computational chemistry and molecular modeling is a fast emerging area which is
used for the modeling and simulation of small chemical and biological systems in
order to understand and predict their behavior at the molecular level. It has a wide
range of applications in various disciplines of engineering sciences, such as materi-
als science, chemical engineering, biomedical engineering, etc. Knowledge of com-
putational chemistry is essential to understand the behavior of nanosystems; it is
probably the easiest route or gateway to the fast-growing discipline of nanosciences
and nanotechnology, which covers many areas of research dealing with objects that
are measured in nanometers and which is expected to revolutionize the industrial
sector in the coming decades.

Considering the importance of this discipline, computational chemistry is being
taught presently as a course at the postgraduate and research level in many universi-
ties. This book is the result of the need for a comprehensive textbook on the subject,
which was felt by the authors while teaching the course. It covers all the aspects of
computational chemistry required for a course, with sufficient illustrations, numeri-
cal examples, applications, and exercises. For a computational chemist, scientist, or
researcher, this book will be highly useful in understanding and mastering the art of
chemical computation. Familiarization with common and commercial software in
molecular modeling is also incorporated. Moreover, the application of the concepts
in related fields such as biomedical engineering, computational drug designing, etc.
has been added.

The book begins with an introductory chapter on computational chemistry and
molecular modeling. In this chapter (Chap. 1), we emphasize the four computa-
tional criteria for modeling any system, namely stability, symmetry, quantization,
and homogeneity. In Chap. 2, “Symmetry and Point Groups”, elements of molec-
ular symmetry and point group are explained. A number of illustrative examples
and diagrams are given. The transformation matrix for each symmetry operation
is included to provide a computational know-how. In Chap. 3, the basic princi-
ples of quantum mechanics are presented to enhance the reader’s ability to under-
stand the quantum mechanical modeling techniques. In Chaps. 4–10, computational
techniques with different levels of accuracy have been arranged. The chapters also
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cover Huckel’s molecular orbital theory, Hartree-Fock (HF) approximation, semi-
empirical methods, ab initio techniques, density functional theory, reduced density
matrix, and molecular mechanics methods.

Topics such as the overlap integral, the Coulomb integral and the resonance inte-
gral, the secular matrix, and the solution to the secular matrix have been included in
Chap. 4 with specific applications such as aromaticity, charge density calculation,
the stability and delocalization energy spectrum, the highest occupied molecular or-
bital (HOMO), the lowest unoccupied molecular orbital (LUMO), bond order, the
free valence index, the electrophilic and nucleophilic substitution, etc. In the chap-
ter on HF theory (Chap. 5), the formulation of the Fock matrix has been included.
Chapter 6 concerns different types of basis sets. This chapter covers in detail all
important minimal basis sets and extended basis sets such as GTOs, STOs, double-
zeta, triple-zeta, quadruple-zeta, split-valence, polarized, and diffuse. In Chap. 7,
semi-empirical methods are introduced; besides giving an overview of the theory
and equations, a performance of the methods based on the neglect of differential
overlap, with an emphasis on AM1, MNDO, and PM3 is explained. Chapter 8 is
on ab initio methods, covering areas such as the correlation technique, the Möller-
Plesset perturbation theory, the generalized valence bond (GVB) method, the multi-
configurations self consistent field (MCSCF) theory, configuration interaction (CI)
and coupled cluster theory (CC).

Density functional theory (DFT) seems to be an extremely successful approach
for the description of the ground state properties of metals, semiconductors, and in-
sulators. The success of DFT not only encompasses standard bulk materials but also
complex materials such as proteins and carbon nanotubes. The chapter on density
functional theory (Chap. 9) covers the entire applications of the theory.

Chapter 10 explains reduced density matrix and its applications in molecular
modeling. While traditional methods for computing the orbitals are scaling cubically
with respect to the number of electrons, the computation of the density matrix offers
the opportunity to achieve linear complexity. We describe several iteration schemes
for the computation of the density matrix. We also briefly present the concept of the
best n-term approximation.

Chapter 11 is on molecular mechanics and modeling, in which various force
fields required to express the total energy term are introduced. Computations using
common molecular mechanics force fields are explained.

Computations of molecular properties using the common computational tech-
niques are explained in Chap. 12. In this chapter, we have included a section on
a comparison of various modeling techniques. This helps the reader to choose the
method for a particular computation.

The need and the possibility for high performance computing (HPC) in molecular
modeling is explained in Chap. 13. This chapter explains HPC as a technique for
providing the foundation to meet the data and computing demands of Research and
Development (R&D) grids. HPC helps in harnessing data and computer resources
in a multi-site, multi-organizational context effective cluster management, making
use of maximum computing investment for molecular modeling.
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Some typical projects/research topics on molecular modeling are included in
Chap. 14. This chapter helps the reader to familiarize himself with the modern trends
in research connected with computational chemistry and molecular modeling.

Chapter 15 is on basic mathematics and contains an introduction to compu-
tational tools such as Microsoft Excel, MATLAB, etc. This helps even a non-
mathematics person to understand the mathematics used in the text to appreciate
the real art of computing. Sufficient additions have been included as an appendix
to cover areas such as operators, HuckelMO hetero atom parameters, Microsoft Ex-
cel in the balancing of chemical equations, simultaneous spectroscopic analysis, the
computation of bond enthalpy of hydrocarbons, graphing chemical analysis data,
titration data plotting, the application of curve fitting in chemistry, the determina-
tion of solvation energy, and the determination of partial molar volume.

An exclusive URL (http://www.amrita.edu/cen/ccmm) for this book with the re-
quired support materials has been provided for readers which contains a chapterwise
PowerPoint presentation, numerical solutions to exercises, the input/output files of
computations done with software such as Gaussian, Spartan etc., HTML-based pro-
gramming environments for the determination of eigenvalues/eigenvectors of sym-
metrical matrices and interconversion of units, and the step-by-step implementation
of cluster computing. A comprehensive survey covering the possible journals, pub-
lications, software, and Internet support concerned with this discipline have been
included.

The uniqueness of this book can be summarized as follows:

1. It provides a comprehensive background theory for molecular modeling.
2. It includes applications from all related areas.
3. It includes sufficient numerical examples and exercises.
4. Numerous explanatory illustrations/figures are included.
5. A separate chapter on basic mathematics and application tools such as MAT-

LAB is included.
6. A chapter on high performance computing is included with examples from

molecular modeling.
7. A chapter on chemical computation using the reduced density matrix method is

included.
8. Sample projects and research topics from the area are included.
9. It includes an exclusive web site with required support materials.

With the vast teaching expertise of the authors, the arrangement and designing
of the topics in the book has been made according to the requirements/interests
of the teaching/learning community. We hope that the reader community appre-
ciates this. Computational chemistry principles extended to molecular simulation
are not included in this book; we hope that a sister publication of this book cov-
ering that aspect will be released in the near future. We have tried to make the
explanations clear and complete to the satisfaction of the reader. However, re-
garding any queries, suggestions, corrections, modifications and advice, the read-
ers are always welcome to contact the authors at the following email address:
n_krishnan@ettimadai.amrita.edu.



x Preface

The authors would like to take this opportunity to acknowledge the following
persons who spend their valuable time in discussions with the authors and helped
them to enrich this book with their suggestions and comments:

1. Brahmachari Abhayamrita Chaitanya, the Chief Operating Officer of Amrita
University, and Dr. P. Venkata Rangan, the Vice Chancellor of Amrita Univer-
sity, for their unstinted support and constant encouragement in all our endeav-
ours.

2. Dr. C. S. Shastry, Professor of the Department of Science, for his insightful
lectures on quantum mechanics.

3. Mr. K. Narayanan Kutty of the Department of Science, for his contribution to
the chapter on quantum mechanics.

4. Mr. G. Narayanan Nair of the Systems Department, for his contribution to the
section on HPC.

5. Mr. M. Sreevalsan, Mr. P. Gopakumar and Mr. Ajai Narendran of the Systems
Department, for their help in making the website for the book.

6. Dr. K. P. Soman, Head of the Centre for Computational Engineering and Net-
working, for his continuous support and encouragement.

7. Mr. K. R. Sunderlal and Mr. V. S. Binoy from the interactive media group of
‘Amrita Vishwa Vidyapeetham-University’ for drawing excellent diagrams in-
cluded in the book.

8. All our colleagues, dear and near ones, friends and students for their cooperation
and support.

9. All the officials of Springer-Verlag Berlin Heidelberg and le-tex publishing
services oHG, Leipzig for materializing this project in a highly appreciable man-
ner.

Coimbatore, March 2008 K. I. Ramachandran

Gopakumar Deepa

Krishnan Namboori P.K.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 A Definition of Computational Chemistry . . . . . . . . . . . . . . . . . . . . . 1
1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Computational Chemistry Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Ab Initio Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Semiempirical Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.3 Modeling the Solid State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.4 Molecular Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.5 Molecular Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.6 Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.7 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.8 Structure-Property Relationships . . . . . . . . . . . . . . . . . . . . . 8
1.5.9 Symbolic Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.10 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.11 The Design of a Computational Research Program . . . . . . 9
1.5.12 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Journals and Book Series Focusing
on Computational Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Journals and Book Series
Often Including Computational Chemistry . . . . . . . . . . . . . . . . . . . . . 11

1.8 Common Reference Books Available
on Computational Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 Computational Chemistry on the Internet . . . . . . . . . . . . . . . . . . . . . . 13
1.10 Some Topics of Research Interest Related

to Computational Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

xi



xii Contents

2 Symmetry and Point Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Symmetry Operations and Symmetry Elements . . . . . . . . . . . . . . . . . 17
2.3 Symmetry Operations and Elements of Symmetry . . . . . . . . . . . . . . 18

2.3.1 The Identity Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Rotation Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Reflection Planes (or Mirror Planes) . . . . . . . . . . . . . . . . . . 22
2.3.4 Inversion Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.5 Improper Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Consequences for Chirality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Point Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 The Procedure for Determining the Point Group of Molecules . . . . 28
2.7 Typical Molecular Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Group Representation of Symmetry Operations . . . . . . . . . . . . . . . . 32
2.9 Irreducible Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Labeling of Electronic Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11.1 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.11.2 Answers to Selected Questions . . . . . . . . . . . . . . . . . . . . . . . 34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Quantum Mechanics: A Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 The Ultraviolet Catastrophe . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 The Photoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.3 The Quantization of the Electronic Angular Momentum . . 39
3.1.4 Wave-Particle Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 The Time-Independent Schrödinger Equation . . . . . . . . . . 41
3.2.2 The Time-Dependent Schrödinger Equation . . . . . . . . . . . 43

3.3 The Solution to the Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . 45
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Answer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.4 Answer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.5 Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.6 Answer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.7 Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.8 Answer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.9 Question 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.10 Answer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.11 Question 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.12 Answer 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.13 Question 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Contents xiii

3.4.14 Answer 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.15 Question 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.16 Answer 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.17 Question 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.18 Answer 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.19 Question 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.20 Answer 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Hückel Molecular Orbital Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 The Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Independent Particle Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 π-Electron Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Hückel’s Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 The Variational Method and the Expectation Value . . . . . . . . . . . . . . 59
4.7 The Expectation Energy and the Hückel MO . . . . . . . . . . . . . . . . . . . 60
4.8 The Overlap Integral (Si j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.9 The Coulomb Integral (α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 The Resonance (Exchange) Integral (β ) . . . . . . . . . . . . . . . . . . . . . . . 63
4.11 The Solution to the Secular Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.12 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.13 The Eigenvector Calculation of the Secular Matrix . . . . . . . . . . . . . . 66
4.14 The Chemical Applications of Hückel’s MOT . . . . . . . . . . . . . . . . . . 66
4.15 Charge Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.16 The Hückel (4n + 2) Rule and Aromaticity . . . . . . . . . . . . . . . . . . . . 69
4.17 The Delocalization Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.18 Energy Levels and Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.19 Wave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.19.1 Step 1: Writing the Secular Matrix . . . . . . . . . . . . . . . . . . . . 74
4.19.2 Step 2: Solving the Secular Matrix . . . . . . . . . . . . . . . . . . . . 74

4.20 Bond Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.21 The Free Valence Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.22 Molecules with Nonbonding Molecular Orbitals . . . . . . . . . . . . . . . . 80
4.23 The Prediction of Chemical Reactivity . . . . . . . . . . . . . . . . . . . . . . . . 81
4.24 The HMO and Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.25 Molecules Containing Heteroatoms . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.26 The Extended Hückel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.27 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



xiv Contents

5 Hartree-Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 The Hartree Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Bosons and Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Spin Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 The Slater Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Properties of the Slater Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7 The Hartree-Fock Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.8 The Secular Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.9 Restricted and Unrestricted HF Models . . . . . . . . . . . . . . . . . . . . . . . 104
5.10 The Fock Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.11 Roothaan-Hall Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.12 Elements of the Fock Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.13 Steps for the HF Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.14 Koopman’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.15 Electron Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.16 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 The Energy Calculation from the STO Function . . . . . . . . . . . . . . . . 117
6.3 The Energy Calculation of Multielectron Systems . . . . . . . . . . . . . . 120
6.4 Gaussian Type Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5 Differences Between STOs and GTOs . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Classification of Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.7 Minimal Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.8 A Comparison of Energy Calculations of the Hydrogen Atom

Based on STO-nG Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.8.1 STO-2G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.8.2 STO-3G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.8.3 STO-6G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.9 Contracted Gaussian Type Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.10 Double- and Triple-Zeta Basis Sets

and the Split-Valence Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.11 Polarized Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.12 Basis Set Truncation Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.13 Basis Set Superposition Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.14 Methods to Overcome BSSEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.14.1 The Chemical Hamiltonian Approach . . . . . . . . . . . . . . . . . 135
6.14.2 The Counterpoise Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.15 The Intermolecular Interaction Energy
of Ion Water Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.16 A List of Commonly Available Basis Sets . . . . . . . . . . . . . . . . . . . . . 137
6.17 Internet Resources for Generating Basis Sets . . . . . . . . . . . . . . . . . . . 137



Contents xv

6.18 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Semiempirical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 The Neglect of Differential Overlap Method . . . . . . . . . . . . . . . . . . . 140
7.3 The Complete Neglect of Differential Overlap Method . . . . . . . . . . 140
7.4 The Modified Neglect of the Diatomic Overlap Method . . . . . . . . . . 140
7.5 The Austin Model 1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.6 The Parametric Method 3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.7 The Pairwize Distance Directed Gaussian Method . . . . . . . . . . . . . . 142
7.8 The Zero Differential Overlap Approximation Method . . . . . . . . . . 142
7.9 The Hamiltonian in the Semiempirical Method . . . . . . . . . . . . . . . . . 143

7.9.1 The Computation of Hcore
rAsB

. . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.9.2 The Computation of Hcore

rArA
. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.10 Comparisons of Semiempirical Methods . . . . . . . . . . . . . . . . . . . . . . 148
7.11 Software Used for Semiempirical Calculations . . . . . . . . . . . . . . . . . 153
7.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8 The Ab Initio Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2 The Computation of the Correlation Energy . . . . . . . . . . . . . . . . . . . 156
8.3 The Computation of the SD of the Excited States . . . . . . . . . . . . . . . 157
8.4 Configuration Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.5 Secular Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.6 Many-Body Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.7 The Möller-Plesset Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.8 The Coupled Cluster Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.9 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.2 Electron Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.3 Pair Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.4 The Development of DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.5 The Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.6 The Hohenberg and Kohn Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.7 The Kohn and Sham Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.8 Implementations of the KS Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.9 Density Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.10 The Dirac-Slater Exchange Energy Functional and the Potential . . . 182



xvi Contents

9.11 The von Barth-Hedin Exchange Energy Functional
and the Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.12 The Becke Exchange Energy Functional and the Potential . . . . . . . . 183
9.13 The Perdew-Wang 91 Exchange Energy Functional

and the Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.14 The Perdew-Zunger LSD Correlation Energy Functional

and the Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.15 The Vosko-Wilk-Nusair Correlation Energy Functional . . . . . . . . . . 186
9.16 The von Barth-Hedin Correlation Energy Functional

and the Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.17 The Perdew 86 Correlation Energy Functional and the Potential . . . 187
9.18 The Perdew 91 Correlation Energy Functional and the Potential . . . 187
9.19 The Lee, Yang, and Parr Correlation Energy Functional

and the Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.20 DFT Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.21 Applications of DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.22 The Performance of DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.23 Advantages of DFT in Biological Chemistry . . . . . . . . . . . . . . . . . . . 192
9.24 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10 Reduced Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.2 Reduced Density Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.3 N-Representability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

10.3.1 G-Condition (Garrod) and Percus . . . . . . . . . . . . . . . . . . . . . 198
10.3.2 T-Conditions (Erdahl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.3.3 T2 Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.4 Computations Using the RDM Method . . . . . . . . . . . . . . . . . . . . . . . 199
10.5 The SDP Formulation of the RDM Method . . . . . . . . . . . . . . . . . . . . 199
10.6 Comparison of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.7 Research in RDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

11 Molecular Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.2 Triad Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
11.3 The Morse Potential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.4 The Harmonic Oscillator Model for Molecules . . . . . . . . . . . . . . . . . 208
11.5 The Comparison of the Morse Potential

with the Harmonic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
11.6 Two Atoms Connected by a Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11.7 Polyatomic Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.8 Energy Due to Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



Contents xvii

11.9 Energy Due to Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
11.10 Energy Due to Stretch-Bend Interactions . . . . . . . . . . . . . . . . . . . . . . 212
11.11 Energy Due to Torsional Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
11.12 Energy Due to van der Waals Interactions . . . . . . . . . . . . . . . . . . . . . 213
11.13 Energy Due to Dipole-Dipole Interactions . . . . . . . . . . . . . . . . . . . . . 213
11.14 The Lennard-Jones Type Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
11.15 The Truncated Lennard-Jones Potential . . . . . . . . . . . . . . . . . . . . . . . 214
11.16 The Kihara Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
11.17 The Exponential -6 Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
11.18 The BFW Two-Body Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.19 The Ab Initio Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.20 The Ionic and Polar Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.21 Commonly Available Force Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

11.21.1 MM2, MM3, and MM4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.21.2 AMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.21.3 CHARMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.21.4 Merck Molecular Force Field . . . . . . . . . . . . . . . . . . . . . . . . 219
11.21.5 The Consistent Force Field . . . . . . . . . . . . . . . . . . . . . . . . . . 222

11.22 Some Other Useful Potential Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 222
11.23 The Merits and Demerits of the Force Field Approach . . . . . . . . . . . 223
11.24 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11.25 Some MM Software Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
11.26 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

12 The Modeling of Molecules Through Computational Methods . . . . . . . 229
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
12.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

12.2.1 Multivariable Optimization Algorithms . . . . . . . . . . . . . . . . 229
12.2.2 Level Sets, Level Curves, and Gradients . . . . . . . . . . . . . . . 230
12.2.3 Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
12.2.4 The Unidirectional Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.2.5 Finding the Minimum Point Along St . . . . . . . . . . . . . . . . . 233
12.2.6 Gradient-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
12.2.7 The Method of Steepest Descent . . . . . . . . . . . . . . . . . . . . . 235
12.2.8 The Method of Conjugate Directions . . . . . . . . . . . . . . . . . . 238
12.2.9 The Gram-Schmidt Conjugation Method . . . . . . . . . . . . . . . 240
12.2.10 The Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . 241

12.3 Potential Energy Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
12.3.1 Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
12.3.2 Characterizing Stationary Points . . . . . . . . . . . . . . . . . . . . . . 245

12.4 The Search for Transition States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
12.4.1 Computing the Activated Complex Formation . . . . . . . . . . 246

12.5 The Single Point Energy Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 249
12.6 The Computation of Solvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250



xviii Contents

12.6.1 The Theory of Solvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
12.6.2 The Solvent Accessible Surface Area . . . . . . . . . . . . . . . . . . 251
12.6.3 The Onsager Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
12.6.4 The Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
12.6.5 The Self-Consistent Reaction Field Calculation . . . . . . . . . 251
12.6.6 The Self-Consistent Isodensity

Polarized Continuum Model . . . . . . . . . . . . . . . . . . . . . . . . . 252
12.7 The Population Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

12.7.1 The Mulliken Population Analysis Method . . . . . . . . . . . . . 253
12.7.2 The Merz-Singh-Kollman Scheme . . . . . . . . . . . . . . . . . . . . 254
12.7.3 Charges from Electrostatic Potentials

Using a Grid-Based Method (CHELPG) . . . . . . . . . . . . . . . 255
12.7.4 The Natural Population Analysis Method . . . . . . . . . . . . . . 255

12.8 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
12.9 Electric Multipoles and Multipole Moments . . . . . . . . . . . . . . . . . . . 257

12.9.1 The Quantum Mechanical Dipole Operator . . . . . . . . . . . . . 258
12.9.2 The Dielectric Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 259

12.10 Vibrational Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
12.11 Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
12.12 Molecular Orbital Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
12.13 Input Formats for Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

12.13.1 The Z-Matrix Input as the Common Standard Format . . . . 264
12.13.2 Multipurpose Internet Mail Extensions . . . . . . . . . . . . . . . . 265
12.13.3 Converting Between Formats . . . . . . . . . . . . . . . . . . . . . . . . 266

12.14 A Comparison of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
12.14.1 Molecular Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
12.14.2 Energy Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
12.14.3 Dipole Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
12.14.4 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

12.15 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

13 High Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
13.1 Introduction – Supercomputers vs. Clusters . . . . . . . . . . . . . . . . . . . . 275
13.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
13.3 How Clusters Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
13.4 Computational Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
13.5 Clustering Tools and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
13.6 The Cluster Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
13.7 Clustermatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
13.8 LinuxBIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
13.9 BProc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
13.10 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
13.11 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
13.12 The Steps to Configure a Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281



Contents xix

13.13 Clustering Through Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
13.13.1 Network Load Balancing Clusters . . . . . . . . . . . . . . . . . . . . 282
13.13.2 Server Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
13.13.3 Component Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . 283

13.14 Installing the Windows Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
13.15 Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

13.15.1 Exploiting Underutilized Resources . . . . . . . . . . . . . . . . . . . 284
13.15.2 Parallel CPU Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

13.16 Types of Resources Required to Create a Grid . . . . . . . . . . . . . . . . . . 285
13.16.1 Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
13.16.2 Storage Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
13.16.3 Communications Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 287
13.16.4 The Software and Licenses Required

to Create the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
13.17 Grid Types – Intragrid to Intergrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
13.18 The Globus Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
13.19 Bundles and Grid Packaging Technology . . . . . . . . . . . . . . . . . . . . . . 289
13.20 The HPC for Computational Chemistry . . . . . . . . . . . . . . . . . . . . . . . 291

13.20.1 The Valence-Electron Approximation . . . . . . . . . . . . . . . . . 291
13.20.2 The Effective Core Potential . . . . . . . . . . . . . . . . . . . . . . . . . 291
13.20.3 The Direct SCF Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
13.20.4 The Partially Direct SCF Method . . . . . . . . . . . . . . . . . . . . . 292

13.21 The Pseudopotential Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
13.21.1 The Block-Localized Wavefunction Method . . . . . . . . . . . . 293

13.22 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

14 Research in Computational Chemistry and Molecular Modeling . . . . . 297
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
14.2 Molecular Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
14.3 Shape Selective Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
14.4 Optimized Basis Sets for Lanthanide and Actinide Systems . . . . . . 299
14.5 Designing Biomolecular Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
14.6 Protein Folding and Distributed Computing . . . . . . . . . . . . . . . . . . . . 301
14.7 Computational Drug Designing and Biocomputing . . . . . . . . . . . . . . 302
14.8 Artificial Photo Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
14.9 Quantum Dynamics of Enzyme Reactions . . . . . . . . . . . . . . . . . . . . . 304
14.10 Other Important Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

15 Basic Mathematics for Computational Chemistry . . . . . . . . . . . . . . . . . . 311
15.1 Introduction and Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

15.1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
15.1.2 Example 2 Using MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . 313

15.2 Matrix Addition and Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
15.2.1 Example 3: Matrix Addition Using MATLAB . . . . . . . . . . 314



xx Contents

15.3 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
15.3.1 Example 4: Matrix Multiplication Using MATLAB . . . . . . 316

15.4 The Matrix Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
15.4.1 Example 5: The Transpose of a Matrix Using MATLAB . . 317

15.5 The Matrix Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
15.5.1 Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
15.5.2 MATLAB Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 319

15.6 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
15.6.1 Example 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
15.6.2 Example 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
15.6.3 Example 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
15.6.4 Example 10: A MATLAB Solution

of the Linear System of Equations . . . . . . . . . . . . . . . . . . . . 323
15.7 The Least-Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

15.7.1 Example 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
15.8 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

15.8.1 Example 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
15.8.2 Example 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
15.8.3 The Computation of Eigenvalues . . . . . . . . . . . . . . . . . . . . . 335
15.8.4 Example 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
15.8.5 The Computation of Eigenvectors . . . . . . . . . . . . . . . . . . . . 336
15.8.6 Example 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

15.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
15.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

A Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
A.2 Operators and Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 343
A.3 Basic Properties of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
A.4 Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
A.5 Eigenfunctions and Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

B Hückel MO Heteroatom Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

C Using Microsoft Excel to Balance Chemical Equations . . . . . . . . . . . . . 349
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
C.2 The Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

C.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
C.2.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

C.3 Undermined Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
C.4 Balancing as an Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 352

C.4.1 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
C.4.2 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
C.4.3 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355



Contents xxi

D Simultaneous Spectrophotometric Analysis . . . . . . . . . . . . . . . . . . . . . . . 357
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
D.2 The Absorption Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

E Bond Enthalpy of Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

F Graphing Chemical Analysis Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
F.1 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
F.2 Example: Beer’s Law Absorption Spectra Tools . . . . . . . . . . . . . . . . 363

F.2.1 Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
F.2.2 Beer’s Law Scatter Plot and Linear Regression . . . . . . . . . . 364

F.3 Creating a Linear Regression Line (Trendline) . . . . . . . . . . . . . . . . . 369
F.4 Using the Regression Equation to Calculate Concentrations . . . . . . 369

F.4.1 Adjusting the Chart Display . . . . . . . . . . . . . . . . . . . . . . . . . 371

G Titration Data Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
G.1 Creating a Scatter Plot of Titration Data . . . . . . . . . . . . . . . . . . . . . . . 375
G.2 Curve Fitting to Titration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
G.3 Changing the Scatter Plot to a Line Graph . . . . . . . . . . . . . . . . . . . . . 378
G.4 Adding a Reference Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
G.5 Modifying the Chart Axis Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
G.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

H Curve Fitting in Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
H.1 Membrane Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
H.2 The Determination of the E0 of the Silver-Silver Chloride

Reference Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

I The Solvation of Potassium Fluoride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

J Partial Molal Volume of ZnCl2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391



Chapter 1
Introduction

1.1 A Definition of Computational Chemistry

Computational chemistry is an exciting and fast-emerging discipline which deals
with the modeling and the computer simulation of systems such as biomolecules,
polymers, drugs, inorganic and organic molecules, and so on. Since its advent, com-
putational chemistry has grown to the state it is today and it became popular being
immensely benefited from the tremendous improvements in computer hardware and
software during the last several decades. With high computing power using parallel
or grid computing facilities and with faster and efficient numerical algorithms, com-
putational chemistry can be very effectively used to solve complex chemical and
biological problems. The major computational requirements are:

1. Molecular energies and structures
2. Geometry optimization from an empirical input
3. Energies and structures of transition states
4. Bond energies
5. Reaction energies and all thermodynamic properties
6. Molecular orbitals
7. Multipole moments
8. Atomic charges and electrostatic potential
9. Vibrational frequencies

10. IR and Raman spectra
11. NMR spectra
12. CD spectra
13. Magnetic properties
14. Polarizabilities and hyperpolarizabilities
15. Reaction pathway
16. Properties such as the ionization potential electron affinity proton affinity
17. Modeling excited states
18. Modeling surface properties and so on

K. I. Ramachandran et al., Computational Chemistry and Molecular Modeling 1
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Meeting these challenges could eliminate time-consuming and costly experimen-
tations. Software tools for computational chemistry are often based on empirical
information. To use these tools effectively, we need to understand the method of
implementation of this technique and the nature of the database used in the parame-
terization of the method. With this knowledge, we can redesign the tools for specific
investigations and define the limits of confidence in results.

In the real modeling procedure of a system, we have to bear in mind the natural
criteria associated with the formation of that system and incorporate all these factors
to make the model close to the natural system. All natural processes are associated
with at least one of the following criteria:

1. An increase in stability: Stability is a very broad term comprising structural
stability, energy stability, potential stability, and so on. During modeling, the
thermodynamic significance (energetics) of stability, is to make the energy of
the system as low as possible.

2. Symmetry: Nature likes symmetry and dislikes identity. To be more precise, we
can say that in nature no two materials are identical, but they may be symmetri-
cal.

3. Quantization: This term stands for fixation. For a stable system, everything is
quantized. Properties, qualities, quantities, influences, etc. are quantized.

4. Homogeneity: A number of natural processes are there such as diffusion, disso-
lution, etc., which are associated with the reallocation of particles in a homoge-
neous manner.

The qualitative and quantitative analysis of molecules on the basis of these cri-
teria are the main objectives of computational chemistry and molecular modeling.
Now we shall familiarize ourselves with some of the computational terms.

1.2 Models

A scientific method of explaining anything involves a hypothesis, theory and laws.
A hypothesis is just an educated guess or logical conclusion from known facts. The
hypothesis is then compared with all available data and the details are developed. If
the hypothesis is found to be consistent with known facts it is called a theory and
is usually published. Most of the theories explain observed phenomena, predict the
results of future experiments, and can be presented in mathematical form. When
a theory is found to be always correct for a long time, it is eventually referred to as
a scientific law. This process is very useful; however, we often use some constructs,
which do not fit in the scheme of the scientific method. However, a construct is
a very useful tool, and can be used to communicate in science. One of the most
commonly used constructs is a model. A model is a simple way of describing and
predicting scientific results. Models may be simple mathematical descriptions or
completely non-mathematical visuals. Models are very useful because they allow us
to predict and understand phenomena without performing the complex mathemati-
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Fig. 1.1 The Lewis represen-
tation of the oxygen atom

cal manipulations dictated by a rigorous theory. A model, in fact, is simpler than the
system it mimics. It is a subset or subsystem of the original system. Experienced re-
searchers continue to use models that were taught in the introductory level; however,
they realize that there will always be exceptions to the rules of these models.

A simple model, which we consider at an elementary level, is the Lewis dot
(electron dot) representation. For example, the Lewis Dot Structure of the oxygen
atom is given in Fig. 1.1. Electron dot formulation (also referred to as the Lewis Dot
formula) seeks to designate the atom as a symbol representing what is called the
“core” which includes the part of the atom other than the valence electrons.

This model is not a complete description of the system, since it does not provide
the kinetic energies of the particles or Coulombic interactions between the electrons
and nuclei and so on. The theory of quantum mechanics, which accounts correctly
for all these properties, needs to be included. The Lewis model accounts for the pair-
ing of electrons keeping opposite spin and for the number of energy levels available
to the electrons under normal temperature and pressure. The Lewis model is able to
predict chemical bonding patterns and give some indication of the strength of the
bonds (single bonds, double bonds, etc.). However, none of the quantum mechanics
equations are used in applying this technique.

1.3 Approximations

Approximations are other types of constructs that are often seen. Even though
a theory may give a rigorous mathematical description of chemical phenomena,
the mathematical complexities might be so great that it is just not feasible to solve
a problem exactly. If a quantitative result is desired, the best technique is often to
do only part of the work. One of the techniques applied in approximation is to com-
pletely leave out the complex part of the calculation. Another type of approximation
is to use an average rather than an exact mathematical description. Some other com-
mon approximation methods are variations, perturbations, simplified functions, and
fitting parameters to reproduce experimental results.

Quantum mechanics gives a mathematical description of the behavior of elec-
trons, which has never been found to be wrong. However, the quantum mechani-
cal equations have never been solved exactly for any chemical system other than
for the hydrogen atom. Thus, the entire field of computational chemistry is built
around approximate solutions. Some of these solutions are very crude, and others
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are more accurate than any experiment that has yet been designed. There are several
implications of this situation. Firstly, computational chemists require knowledge of
each approximation being used in the computation and the level of computational
accuracy that can be expected. Secondly, to get very accurate results, we require ex-
tremely powerful computers. Thirdly, if the equations could be solved exactly, much
of the work now done on supercomputers could be done faster and more accurately
on a PC.

1.4 Reality

There are certain things known to us exactly. For example, the quantum mechanical
description of the hydrogen atom matches the observed spectrum as accurately as
any experimental result. If an approximation is used, one must ask how accurate
an answer must be. Computations of energetics of molecules and reactions often
attempt to achieve what is called “chemical accuracy,” meaning an error less than
about 1 kcal/mol, since this is sufficient to describe van der Waals interactions, the
weakest interaction possible between molecules. Most of the computational scien-
tists do not have any interest in results more accurate than this, as even biological
modeling such as drug designing can be done within that limit. A student of compu-
tational chemistry must realize that theories, models, and approximations are power-
ful tools for understanding and achieving research goals. But one should remember
that results obtained from none of these tools are perfect. This may not be an ideal
situation, but it is the best that the scientific community can offer.

The term theoretical chemistry may be defined as the mathematical description of
chemistry. Very few aspects of chemistry can be computed exactly, but almost every
aspect of chemistry has been described in a qualitative or approximate quantitative
computational scheme. The biggest mistake that a computational chemist may make
is to assume that any computed number is exact. However, just as not all spectra are
perfectly resolved, often a qualitative or approximate computation can give useful
insight into chemistry if you understand what it tells you and what it does not.

1.5 Computational Chemistry Methods

Computational chemistry is comprised of a theoretical (or structural) modeling part,
known as molecular modeling, and a modeling of processes (or experimentations)
known as molecular simulation. The former alone is the topic of this book. De-
pending upon the level of theory that we observe in a computation, the following
methods have been identified.
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1.5.1 Ab Initio Calculations

The term Ab initio is the Latin term meaning “from the beginning.” This name is
given to computations which are derived directly from theoretical principles (such
as the Schrödinger equation), with no inclusion of experimental data. This method,
in fact, can be seen as an approximate quantum mechanical method. The approx-
imations made are usually mathematical approximations, such as using a simpler
functional form for a function, or getting an approximate solution to a differential
equation.

The most common type of ab initio calculation is called a Hartree Fock calcu-
lation (HF), in which the primary approximation is called the central field approxi-
mation. This method does not include Coulombic electron-electron repulsion in the
calculation. However, its net effect is included in the calculation. This is a varia-
tional calculation, meaning that the approximate energies calculated are all equal to
or greater than the exact energy. The energies calculated are usually in units called
Hartrees (1 Hartree = 27.2114 eV – An HTML-based GUI for energy conversion is
made available in the text URL). Because of the central field approximation, the
energies from HF calculations are always greater than the exact energy and tend to
a limiting value called the Hartree Fock limit.

The second approximation in HF calculations is that the wavefunction must be
described by some functional form, which is only known exactly for a few one-
electron systems. The functions used most often are linear combinations of Slater

type orbitals (e−ax) or Gaussian type orbitals
(

e(−ax2)
)

, abbreviated as, respec-

tively, STO and GTO. The wavefunction is formed from linear combinations of
atomic orbitals, or more often from linear combinations of basis functions. Because
of this approximation, most HF calculations give a computed energy greater than
the Hartree Fock limit. The exact set of basis functions used is often specified by an
abbreviation, such as STO-3G or 6-311++g**.

Most of these computations begin with a HF calculation, followed by further
corrections for the explicit electron-electron repulsion, referred to as correlations.
Some of these methods are the Möller-Plesset perturbation theory (MPn, where n
is the order of correction), the Generalized Valence Bond (GVB) method, Multi-
Configurations Self Consistent Field (MCSCF), Configuration Interaction (CI) and
Coupled Cluster theory (CC). As a group, these methods are referred to as correlated
calculations.

A method, which avoids making the HF mistakes in the first place, is called
Quantum Monte Carlo (QMC). There are several flavors of QMC, namely vari-
ational, diffusion, and Green’s functions. These methods work with an explicitly
correlated wavefunction and evaluate integrals numerically using a Monte Carlo in-
tegration. These calculations can be very time-consuming, but they are probably the
most accurate methods known today.
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An alternative ab initio method is the Density Functional Theory (DFT), in which
the total energy is expressed in terms of the total electron density, rather than the
wavefunction. In this type of calculation, there is an approximate Hamiltonian and
an approximate expression for the total electron density.

The favorable aspect of ab initio methods is that they eventually converge to the
exact solution, once all the approximations are made sufficiently small in magnitude.
However, this convergence is not monotonic. Sometimes, the smallest calculation
gives the best result for a given property.

The unfavorable aspect of ab initio methods is that they are expensive. These
methods often take enormous amounts of computer CPU time, memory, and disk
space. The HF method scales as N4, where N is the number of basis functions, so
a calculation twice as big takes 16 times as long to complete. Correlated calcula-
tions often scale much worse than this. In practice, extremely accurate solutions are
obtainable only when the molecule contains half a dozen electrons or less.

In general, ab initio calculations give very good qualitative results and can
give increasingly accurate quantitative results as the molecules in question become
smaller.

1.5.2 Semiempirical Calculations

Semiempirical calculations are set up with the same general structure as a HF cal-
culation. Within this framework, certain pieces of information, such as two electron
integrals, are approximated or completely omitted. In order to correct for the er-
rors introduced by omitting part of the calculation, the method is parameterized, by
curve fitting in a few parameters or numbers, in order to give the best possible agree-
ment with experimental data. The merit of semiempirical calculations is that they
are much faster than the ab initio calculations. The demerit of semiempirical calcu-
lations is that the results can be slightly defective. If the molecule being computed
is similar to molecules in the database used to parameterize the method, then the
results may be very good. If the molecule being computed is significantly different
from anything in the parameterization set, the answers may be very poor.

Semiempirical calculations have been very successful in the description of or-
ganic chemistry, where there are only a few elements used extensively and the
molecules are of moderate size. However, semiempirical methods have been de-
vised specifically for the description of inorganic chemistry as well.

1.5.3 Modeling the Solid State

The electronic structure of an infinite crystal is defined by a band structure plot,
which gives energies of electron orbitals for each point in k-space, called the Bril-
louin zone. Since ab initio and semiempirical calculations yield orbital energies,
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they can be applied to band structure calculations. However, if it is time-consuming
to calculate the energy for a molecule, it is even more time-consuming to calculate
energies for a list of points in the Brillouin zone.

Band structure calculations have been done for very complicated systems; how-
ever, the software is not yet automated enough or sufficiently fast enough that any-
one does band structures casually.

1.5.4 Molecular Mechanics

If a molecule is too big to effectively use a semiempirical treatment, it is still pos-
sible to model its behavior by totally avoiding quantum mechanics. The methods,
referred to as molecular mechanics, set up a simple algebraic expression for the
total energy of a compound, with no necessity to compute a wavefunction or total
electron density [2]. The energy expression consists of simple classical equations,
such as the harmonic oscillator equation in order to describe the energy associated
with bond stretching, bending, rotation, and intermolecular forces, such as van der
Waals interactions and hydrogen bonding. All of the constants in these equations
must be obtained from experimental data or an ab initio calculation.

In a molecular mechanics method, the database of compounds used to parameter-
ize the method (a set of parameters and functions is called a force field) is crucial to
its success. The molecular mechanics method may be parameterized against a spe-
cific class of molecules, such as proteins, organic molecules, organo-metallics, etc.
Such a force field would only be expected to have any relevance to describing other
proteins.

Molecular mechanics allows the modeling of very large molecules, such as pro-
teins and segments of DNA, making it the primary tool of computational bio-
chemists. The defect of this method is that there are many chemical properties that
are not even defined within the method, such as electronic excited states. In order
to work with extremely large and complicated systems, often most of the molecular
mechanics software packages will have highly powerful and easy to use graphical
interfaces.

1.5.5 Molecular Simulation

Molecular simulation is a computational experiment conducted on a molecular
model. This can be set up in different levels of accuracy. A number of simula-
tion techniques have been designed such as the Monte Carlo simulation (MC), the
Conformational Biased Monte Carlo (CBMC) simulation, the Molecular Dynamics
(MD) simulation, the Car-Parrinello Molecular Dynamics (CPMD) simulation, and
so on [3].
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1.5.6 Statistical Mechanics

Statistical mechanics is the mathematical means to extrapolate the thermodynamic
properties of bulk materials from a molecular description of the material. Statistical
mechanics computations are often tacked onto the end of ab initio calculations for
gas phase properties. For condensed phase properties, often molecular dynamics
calculations are necessary in order to do a computational experiment.

1.5.7 Thermodynamics

Thermodynamics is one of the most well-developed mathematical chemical descrip-
tions. Very often, any thermodynamic treatment is left for trivial pen and paper work,
since many aspects of chemistry are so accurately described with very simple math-
ematical expressions.

1.5.8 Structure-Property Relationships

Structure-property relationships are qualitatively or quantitatively empirically de-
fined empirical relationships between molecular structure and observed properties.
In some cases this may seem to duplicate statistical mechanical results; however,
structure-property relationships need not be based on any rigorous theoretical prin-
ciples.

The simplest case of structure-property relationships are qualitative thumb rules.
For example, an experienced polymer chemist may be able to predict whether
a polymer will be soft or brittle based on the geometry and bonding of the monomers.

When structure-property relationships are mentioned in the current literature, it
usually implies a quantitative mathematical relationship. These relationships are
most often derived by using curve fitting software to find the linear combination
of molecular properties, which best reproduces the desired property. The molec-
ular properties are usually obtained from molecular modeling computations. Other
molecular descriptors, such as molecular weight or topological descriptions, are also
used.

When the property being described is a physical property, such as the boiling
point, this is referred to as a Quantitative Structure-Property Relationship (QSPR).
When the property being described is a type of biological activity (such as a drug ac-
tivity), this is referred to as a Quantitative Structure-Activity Relationship (QSAR).
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1.5.9 Symbolic Calculations

Symbolic calculations are performed when the system is just too large for an atom-
by-atom description to be viable at any level of approximation. An example might
be the description of a membrane by describing the individual lipids as some rep-
resentative polygon with some expression for the energy of interaction. This sort of
treatment is used for computational biochemistry and even microbiology.

1.5.10 Artificial Intelligence

Techniques invented by computational scientists concerned with artificial intelli-
gence (AI) have been applied mostly to drug design in recent years. These methods
are also known as De Novo or rational drug design. The general scenario is that some
functional site will be identified, and it is desirable to come up with a structure for
a molecule that will interact (dock) with that site in order to hinder its functionality.
Rather than making trials with hundreds or thousands of possibilities, the molecular
mechanics is built into an AI program, which tries enormous numbers of “reason-
able” possibilities in an automated fashion. The number of techniques for describing
the “intelligent” part of this operation is so diverse that it is impossible to make any
generalization about how this is implemented in the program.

1.5.11 The Design of a Computational Research Program

When we are using computational chemistry to answer a chemical question, the ob-
vious requirement is to know how to use the software. Moreover, we need to assess
how good the answer is going to be. Normally, a computational chemist should pre-
liminarily answer the following questions before getting into any research activity.

1. What do we need to recognize from computations?
2. Why do we stick to computational tools?
3. What should be the permissible accuracy level?

In analytical chemistry, we do a number of identical measurements, then work
out the error from a standard deviation. With computational experiments, repeating
the same experiment should always give exactly the same result. The way that we es-
timate our error is to compare a number of similar computations to the experimental
answers. If none exist, we may have to guess which method should be reasonable,
based on its assumptions, for which we may have to study the computational results
with known systems and make a proper standardization of the technique before ap-
plying the same computational techniques to unknown systems. Regarding the level
of computation, often ab initio calculations would be the most reliable. However, it
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is time-consuming, and sometimes we would take a decade to do a single calculation
even with a high performance computing facility. If we need to scale a computation,
we need to do the simplest possible calculations, then use the scaling equation to
estimate the possible time required to complete the required computation.

1.5.12 Visualization

Data visualization is the process of displaying information in any sort of pictorial
or graphical representation. A number of computer programs are now available to
apply a colorization scheme to data or to work with three-dimensional representa-
tions [1].

1.6 Journals and Book Series Focusing
on Computational Chemistry

The following is a list of common journals and book series focusing on computa-
tional chemistry:

1. Advances in Molecular Modeling
2. Chemical Informatics Letters
3. Chemical Modelling: Applications and Theory
4. Computational and Theoretical Polymer Science
5. Computers and Chemistry
6. International Journal of Quantum Chemistry
7. Journal of Biomolecular Structure and Dynamics
8. Journal of Chemical Information and Computer Science
9. Journal of Chemometrics

10. Journal of Computational Chemistry
11. Journal of Computer-Aided Materials Design
12. Journal of Computer-Aided Molecular Design
13. Journal of Mathematical Chemistry
14. Journal of Molecular Graphics and Modelling
15. Journal of Molecular Modeling
16. Journal of Molecular Structure
17. Journal of Molecular Structure: THEOCHEM
18. Macromolecular Theory and Simulations
19. Molecular Simulation
20. Quantitative Structure-Activity Relationships
21. Reviews in Computational Chemistry
22. SAR and QSAR in Environmental Research
23. Structural Chemistry
24. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (For-

merly Theoretica Chimica Acta)
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1.7 Journals and Book Series
Often Including Computational Chemistry

1. Advances in Chemical Physics
2. Advances in Drug Research
3. Annual Review of Biochemistry
4. Annual Review of Biophysics and Bioengineering
5. Annual Review of Biophysics and Biomolecular Structure
6. Annual Review of Physical Chemistry
7. Biochemistry
8. Biophysical Journal
9. Biopolymers

10. Chemical Reviews
11. Chemometrics and Intelligent Laboratory Systems
12. Computer Applications in the Biosciences
13. Current Opinions in Biotechnology
14. Current Opinions in Structural Biology
15. Drug Design and Discovery
16. Drug Discovery Today
17. Journal of Chemical Physics
18. Journal of Mathematical Biology
19. Journal of Medicinal Chemistry
20. Journal of Molecular Biology
21. Journal of Organic Chemistry
22. Journal of Physical Chemistry
23. Journal of the American Chemical Society
24. Journal of Theoretical Biology
25. Modern Drug Discovery
26. Perspectives in Drug Discovery and Design
27. Protein Engineering
28. Protein Science
29. Proteins: Structure, Function, and Genetics
30. Reviews in Modern Physics

1.8 Common Reference Books Available
on Computational Chemistry

Since the advent of computers into the world of science and technology, scientists
have started seeking the help of computers in their computational works. Hence,
large number of books are available today in this area, starting from the very be-
ginning to the present day. Some of the relevant reference books are listed below,
arranged in chronological order.
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1. Peter Lykos and Isaiah Shavitt, Supercomputers in Chemistry, in ACS Sympo-
sium Series 173, American Chemical Society, Washington, DC, 1981.

2. E. Stuper, W. Brugger, and P. Jurs, Computer-Aided Analysis of the Relation
Between Chemical Structure and Biological Activity, Mir, Moscow, 1982.

3. Klaus Ebert and Hanns Ederer, Computers. Use in Chemistry, Mir,
Moscow, 1988.

4. S. R. Heller and R. Potenzone Jr., Computer Applications in Chemistry, Pro-
ceedings of the 6th International Conference on Computers in Chemical Re-
search and Education, in Analytical Chemistry Symposium Series, Vol. 15, El-
sevier, Amsterdam, The Netherlands, 1983.

5. V. D. Maiboroda, S. G. Maksimova, and Yu. G. Orlik, Solution of Problems in
Chemistry Using Programmable Microcalculators, Izd. Universitetskoe, Minsk,
USSR, 1988.

6. Kenneth L. Ratzlaff, Introduction to Computer-Assisted Experimentations,
Wiley-Interscience, New York, 1988.

7. K. Ebert, H. Ederer, and T. L. Isenhour, Computer Applications in Chemistry.
An Introduction for PC Users, With Two Diskettes in BASIC and PASCAL,
VCH, Weinheim, 1989.

8. Josef Brandt and Ivar K. Ugi, Computer Applications in Chemical Research and
Education, Huethig Verlag, Heidelberg, 1989.

9. G. Gauglitz, Software-Development in Chemistry 3. Proceedings of the 3rd
Workshop on Computers in Chemistry, Tuebingen, November 16–18, 1988,
Springer-Verlag, Berlin, 1989.

10. Russell F. Doolittle, Molecular Evolution: Computer Analysis of Protein and
Nucleic Acid Sequences, in Methods in Enzymology, Vol. 183, Academic Press,
San Diego, 1990.

11. Uwe Harms, Supercomputer and Chemistry 2, Debis Workshop 1990, Otto-
brunn, November 19–20, 1990, Springer, Berlin, 1991.

12. Juergen Gmehling, Computers in Chemistry, Proceedings of the 5th Workshop
in Software Development in Chemistry, Oldenburg, November 21–23, 1990,
Springer, Berlin, 1991.

13. Ludwig Brand and Michael L. Johnson, Numerical Computer Methods, in
Methods Enzymol., Vol. 210, Academic Press, San Diego, 1992.

14. Mototsugu Yoshida, Computer Aided Chemistry: Introduction to New Method
for Chemistry Research, Tokyo Kagaku Dozin, Tokyo, 1993.

15. Rogers, Computational Chemistry Using the PC, 2nd ed., VCH, Wein-
heim, 1995.

16. W. J. Hehre, Practical Strategies for Electronic Structure Calculations, Wave-
function, Inc., Irvine, CA, 1995.

17. Guy H. Grant and W. Graham Richards, Computational Chemistry, Oxford Uni-
versity Press, Oxford, UK, 1995.

18. G. W. Robinson, S. Singh, and M. W. Evans, Water in Biology, Chemistry and
Physics: Experimental Overviews and Computational Methodologies, World
Scientific, Singapore, 1996.
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19. Peter C. Jurs, Computer Software Applications in Chemistry, 2nd ed., Wiley,
New York, 1996.

20. W. J. Hehre, A. J. Shusterman, and W. W. Huang, A Laboratory Book of Com-
putational Organic Chemistry, Wavefunction, Inc., Irvine, CA, 1996.

21. Jane S. Murray and Kalidas Sen, Molecular Electrostatic Potentials: Concepts
and Applications, in Theor. Comput. Chem., Vol. 3, Elsevier, Amsterdam, The
Netherlands, 1996.

22. S. Wilson and G. H. F. Diercksen, Problem Solving in Computational Molecular
Science: Molecules in Different Environments, Proceedings of the NATO Ad-
vanced Study Institute held 12–22 August 1996, in Bad Windsheim, Germany,
in NATO ASI Ser., Ser. C, Vol. 500, Kluwer, Dordrecht, 1997.

23. Jerzy Leszczynski, Computational Chemistry: Reviews of Current Trends, Vol.
3, World Scientific, Singapore, 1999.

24. Frank Jensen, Introduction to Computational Chemistry, Wiley, Chichester, 1999.
25. K. Ohno, K. Esfarjan, and Y. Kawazoe, Computational Materials Science: From

Ab Initio to Monte Carlo Methods, Springer, Berlin, 1999.

1.9 Computational Chemistry on the Internet

A number of resources are available on the Internet for computational chemistry and
molecular modeling. Some of them are included here for your information:

1. ACCVIP Australian Computational Chemistry via the Internet Project
(http://www.chem.swin.edu.au/)

2. WWW Computational Chemistry Resources
(http://www.chem.swin.edu.au/chem_ref.html)

3. Some resources on computational chemistry
(http://www.zyvex.com/nanotech/compChemLinks.html)

4. Internet Resources for Science and Mathematics Education,
collected by Tom O’Haver
(http://www.towson.edu/csme/mctp/Technology/Chemistry.html)

5. Chemistry (and some other) Internet Resources
(http://www.technion.ac.il/technion/chemistry/links/chem_ resources.html)

6. Intute Science, Engineering and Technology
(http://www.intute.ac.uk/sciences//)

7. NIST ChemistryWebBook (http://webbook.nist.gov/chemistry/)
8. Chemcyclopedia (http://www.chemcyc.org/ME2/Default.asp)
9. Computational Chemistry List (CCL) a mailing list of computational chemists

(http://www.ccl.net/)
10. ChemFinder.com (http://chemfinder.cambridgesoft.com/)
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1.10 Some Topics of Research Interest Related
to Computational Chemistry

At present, computational chemistry has entered into all areas of research, so that an
awareness of this discipline becomes essential for all advanced research activities.
Some of the areas of research interest are given below:

1. Drug discovery and materials research imaging of a computer rendering of
molecular systems

2. Computational drug designing
3. Computational study of new chemical compounds and materials such as phar-

maceuticals, plastics, microprocessors, glass, metal, paint, aerospace, and auto-
mobiles

4. Study of free energy surfaces to guide the improvement of models for bio-
molecular simulations

5. Introduction of multi-scale methods for examining macromolecular systems
6. Modeling protein-mediated oxidation of small molecules
7. Investigating statistical scoring functions
8. Modeling of electrostatics of proteins in solvent continua
9. Free energy calculations on biomolecules such as ribosomes

10. Mesoscopic simulations of actin filaments, lipid vesicles, and nanoparticles
11. Modeling of “membrane proteins” in action
12. Multiscale modeling of photoactive liquid crystalline systems
13. Protein dynamics: from nanoseconds to microseconds and beyond
14. Photochemistry and non-adiabatic quantum dynamics: multiconfigurational

methods and effective-mode models for large systems
15. Study of hydrogen bonding pathways and hydrogen transfer in biochemical pro-

cesses
16. Modeling of bio-motors
17. Study of hydrogen bonding interactions of water on hydroxylated silica surfaces
18. Electronic structure calculations on the adsorption and reaction of molecules at

catalyst surfaces
19. High-performance computing and the design of chemical software for parallel

computers
20. Structure, bonding, and reactivity in main-group, organometallic and organic

chemistry
21. Modeling of solvation and transport properties of pharmaceutical compounds
22. Computational study of chiral surfaces used in chromatography
23. Calculation of penetrant solubilities in polymers, in particular, investigating the

effects of specific polymer-penetrant interactions, which are difficult to access
by experimental probes

24. Modeling penetrant-induced plasticization of glassy polymers
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Chapter 2
Symmetry and Point Groups

2.1 Introduction

Symmetry plays a vital role in the analysis of the structure, bonding, and spec-
troscopy of molecules. We will explore the basic symmetry elements and operations
and their use in determining the symmetry classification (point group) of different
molecules. The symmetry of objects (and molecules) may be evaluated through cer-
tain tools known as the elements of symmetry.

2.2 Symmetry Operations and Symmetry Elements

A symmetry operation is defined as an operation performed on a molecule that
leaves it apparently unchanged. For example, if a water molecule is rotated by 180◦
around a line perpendicular to the molecular plane and passing through the cen-
tral oxygen atom, the resulting structure is indistinguishable from the original one
(Fig. 2.1). A symmetry element can be defined as the point, line or plane with re-
spect to which a symmetry operation is performed. The symmetry element associ-
ated with the rotation drawn above is the line, or rotation axis, around which the
molecule was rotated. The water molecule is said to possess this symmetry element.
Table 2.1 includes the types of symmetry elements, operations and their symbols [2].

Fig. 2.1 Water molecule undergoing rotation by 180◦

K. I. Ramachandran et al., Computational Chemistry and Molecular Modeling 17
DOI: 10.1007/978-3-540-77304-7, ©Springer 2008
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Table 2.1 Types of symmetry elements, operations, and their symbols

Element Operation Symbol

Symmetry plane Reflection through the plane σ
Inversion center Inversion: Every point x,y, z translated into −x,−y,−z i
Proper axis Rotation about the axis by 360/n Cn

Improper axis 1. Rotation by 360/n degrees Sn

2. Reflection through the plane perpendicular
to the rotation axis

2.3 Symmetry Operations and Elements of Symmetry

2.3.1 The Identity Operation

Every molecule possesses at least one symmetry element, the identity. The identity
operation amounts to doing nothing to a molecule or a rotation of the molecule
by 360◦ and so leaving the molecule completely unchanged. The symbol of the
identity element is E and the corresponding operation is designated as Ê . Let us
assign the coordinates (x1,y1,z1) to any atom of the molecule. The identity operation
does not alter these coordinates. If the coordinates after the operation are designated
as(x2,y2,z2), then we get the following equations:

x2 = 1x1 + 0y1 + 0z1 (2.1)

y2 = 0x1 + 1y1 + 0z1 (2.2)

z2 = 0x1 + 0y1 + 1z1 . (2.3)

Or, the identity operation matrix can be represented as:

⎡
⎣

x2

y2

z2

⎤
⎦=

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣

x1

y1

z1

⎤
⎦ (2.4)

Or, the transformation matrix (T ) corresponding to E becomes:

T =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ (2.5)

The identity operation will get the same representation as Eq. 2.4 for a molecule
belonging to any point group. We can take internal coordinates of all the atoms (e.g.
water) of the molecule for determining the transformation matrix corresponding to
the identity operation as shown in Fig. 2.2.
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Fig. 2.2 Identity operation of three atoms of water

The transformation matrix for E will be a 9× 9 diagonal matrix as shown in
Eq. 2.6.

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.6)

2.3.2 Rotation Operations

This symmetry operation, denoted by the symbol Ĉn, corresponds to the rotation
about an axis by (360◦/n). When the molecule is rotated with respect to an axis
by 360◦, if n-times symmetrical structures are obtained, then the axis is said to be
a Cnaxis or n-fold axis. The water molecule is left unchanged by a rotation of 180◦
or twice symmetrical structures are obtained by rotation of 360◦. The operation
is said to be a two-fold or Ĉ2 rotation and the symmetry element is a C2 rotation
axis. Another example is the plane triangular BF3 molecule. It is left unchanged by
a rotation of 120◦ around an axis perpendicular to the molecular plane. Hence here,
the operation is a threefold or Ĉ3 rotation. The symmetry element is a C3 rotation
axis. Actually, two different types of rotations are possible about this axis: clockwise
and anti-clockwise rotations (Figs. 2.3 and 2.4). It can be seen that these rotations
result in different spatial arrangements.
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Fig. 2.3 Symmetry operation, rotation by 120◦ on a boron tri fluoride (BF3)-clockwise rotation

Fig. 2.4 Symmetry operation, rotation by 120◦ on a boron tri fluoride (BF3)-anticlockwise rotation

The matrix representation of Cn depends on the group. We shall consider a gen-
eral case of a rotation of a molecule through θ about the z-axis (Fig. 2.5). By insert-
ing the appropriate value of θ , the matrix representation on Cn group can be deter-
mined. Atom A has coordinates (x1,y1,z1). On rotating the atom through θ about
the z-axis, it reaches the point B(x2,y2,z2). The z coordinate remains the same, i.e.
(z2 = z1). Hence, the rotation can be considered as a 2D rotation by an angle θ . The
initial position of the vector (x1,y1) can be written in polar coordinates as follows:

(x1,y1) = (r cosφ ,r sinφ) (2.7)

(x2,y2) = [r cos (φ +θ ) ,r sin (φ +θ )]
= [(r cosφ cosθ − r sinφ sinθ ) ,(r sinφ cosθ + r cosφ sinθ )]
= [(x1 cosθ − y1 sinθ ) ,(y1 cosθ + x1 sinθ )]

(x2,y2) = [(x1 cosθ − y1 sinθ ) ,(x1 sinθ + y1 cosθ )] (2.8)
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Fig. 2.5 Cn-representation by rotation through an angle θ

Hence:

x2 = x1 cosθ − y1 sinθ + 0z1 (2.9)

y2 = x1 sinθ + y1 cosθ + 0z1 (2.10)

z2 = 0x1 + 0y1 + 1z1 (2.11)

In matrix notation, Cn can be written as:
⎡
⎣

x2

y2

z2

⎤
⎦=

⎡
⎣

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

⎤
⎦
⎡
⎣

x1

y1

z1

⎤
⎦ (2.12)

Hence, the transformation matrix for Cn will be as follows:

T =

⎡
⎣

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

⎤
⎦ (2.13)

As, for example, in the water molecule, the symmetry operation Cn is C2 as the
rotation of the molecule by 180◦ produces identical configurations. Hence, the trans-
formation matrix for the water molecule will be as follows:

T =

⎡
⎣
−1 0 0

0 −1 0
0 0 1

⎤
⎦ (2.14)

The BF3 molecule possesses three C2 axes and two C3 axes, as illustrated in
Figs. 2.3, 2.4, and 2.6. The axis with the highest value is considered as the principal
rotation axis. Hence, the three fold C3 is considered as the principal rotation axis for
BF3.
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Fig. 2.6 Three C2 axes (1, 2
and 3) forBF3

Fig. 2.7 Infinite rotation axis for carbon monoxide

In linear molecules such as CO2 and CO rotation by any angle with respect to the
molecular axis returns the molecule unchanged. Hence, such molecules possess C∞,
the infinite rotation axis. For CO, such an infinite rotation axis is shown in Fig. 2.7.

If a molecule keeps a number of axis of symmetry, then the axis providing max-
imum symmetry by the operation Ĉn or the axis with maximum value of n is known
as the principal axis.

2.3.3 Reflection Planes (or Mirror Planes)

The reflection operation, denoted by the symbol σ , corresponds to the reflection in
a mirror plane. The water molecule possesses two distinct mirror planes, labeled as
σv and σv′ , the reflection in the plane of the molecule, and the reflection in a plane
perpendicular to the molecule, as given in Figs. 2.8 and 2.9.

Fig. 2.8 Water molecule reflection in the molecular plane
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Fig. 2.9 Water molecule reflection perpendicular to the molecular axis

These mirror planes are given the subscript label “v” to indicate that they are
“vertical” mirror planes. To understand this notation, consider the C2 axis of the wa-
ter molecule. If a molecule is bisected by a plane and each atom in one half of the
bisected molecule is reflected through the plane and encounters a similar atom in the
other half, the molecule has a plane of symmetry. Both the element and the operator
are designated by sigma. Every planar molecule has at least one plane of symme-
try, the molecular plane. BF3 has, in addition, three vertical planes of symmetry,
each containing one B−F bond and bisecting the angle between the other two B−F
bonds. Reflection in a plane always results in a change of sign of the coordinates
perpendicular to this plane. Coordinates parallel to this plane are unchanged. Thus,
σxy changes (x,y,z) to (x,y,−z), σyz changes (x,y,z) into (−x,y,z), and σxz changes
(x,y,z) to(x,−y,z). If the plane is normal to the principal axis of symmetry, then the
plane of symmetry is horizontal (σh). It is σv if it contains the principal rotation axis
and is a vertical plane. It is considered as σd if is a dihedral plane (containing the
principal axis and bisecting a pair of C2 axes).

An atom A at (x1,y1,z1) on the reflection in xz plane changes to B(x2,y2,z2). The
reflection on the xz plane does not change the x and z coordinates, but changes the
sign of the y. Thus:

x2 = x1 + 0y1 + 0z1 (2.15)

y2 = 0x1 − y1 + 0z1 (2.16)

z2 = 0x1 + 0y1 + z1 (2.17)

The matrix representation for the symmetry operation is:
⎡
⎣

x2

y2

z2

⎤
⎦=

⎡
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎦
⎡
⎣

x1

y1

z1

⎤
⎦ (2.18)

The transformation matrix for the symmetry operation σxz is

⎡
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎦. Similarly,

the transformation matrix for the symmetry operation σxy is

⎡
⎣

1 0 0
0 1 0
0 0 −1

⎤
⎦ and the
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transformation matrix for the symmetry operation σyz is

⎡
⎣
−1 0 0

0 1 0
0 0 1

⎤
⎦. In BF3 both

mirror planes are coming vertically out of the plane of the paper. The molecular
plane of the BF3 molecule is a “horizontal” mirror plane, labeled as σh (Fig. 2.10).

Again, the labeling can be understood by viewing the molecule through a rotation
axis as shown in Fig. 2.11. BF3 possesses a C3 and 2 C2 axes where the C3 axis is
the principal axis. The labeling refers to the relationship between the plane and the
principal axis. The mirror plane lies horizontally, in the plane of the paper. Note
that the “v” and h labeling refers to the relationship between the planes and the
principal rotation axis, not to the plane of the molecule. The mirror plane, dihedral,
or σd planes bisect two C2 axes. The principal rotation axis of the benzene molecule
is a C6 axis running perpendicular to the molecule (Fig. 2.12). It also possesses
3 C2 axes running through opposite carbon atoms. Benzene possesses three types of
mirror plane, a plane perpendicular to the principal (C6) axis, σh plane. The other
two types of mirror planes both lie vertically with respect to the C6 axis. However,
the one on the right cuts between two C2 axes and is called a dihedral plane, σd. It
is to be noted that molecules keeping at least one mirror plane are not “chiral”.

Fig. 2.10 The horizontal mirror pane of BF3

Fig. 2.11 Illustration of σh of BF3
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Fig. 2.12 Reflection axes of the benzene molecule

2.3.4 Inversion Operation

In this operation every atom is moved in a straight line to the center of the molecule
and then moved out (extrapolated to) the same distance on the other side. If sym-
metry is observed by this operation, then the molecule is said to be keeping the
center of inversion. This symmetry operation is called inversion and is denoted by
î. The inversion operation can be considered as a two-fold rotation, followed by the
reflection in the horizontal plane. Or:

î = Ĉnσ̂h (2.19)

An octahedral molecule is unchanged by inversion through the center of the
molecule, as shown in the hypothetical molecule of the type (MF6) as illustrated
in Fig. 2.13. An example of such a molecule is sulphur hexafluoride. The center of
the molecule is called the center of inversion.

Fig. 2.13 Inversion operation on octahedral molecules
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Fig. 2.14 Center of inversion in meso-tartaric acid

The center of inversion needs not coincide with an atom as in the meso-tartaric
acid molecule (Fig. 2.14). Molecules possessing a center of inversion are not chiral.
Both of the carbon atoms in meso-tartaric acid are bonded to four different groups
(asymmetric); still, the molecule is not chiral as it is keeping a center of inversion.

2.3.5 Improper Rotations

Improper rotations consist of two separate operations, an n-fold rotation (rotation by
360◦/n) about an axis followed by reflection in a plane perpendicular to that axis.
The symbol for an improper rotation is Sn. The improper rotation operation can be
considered as:

Ŝn = Ĉnσ̂h (2.20)

Improper axes are often the most difficult symmetry elements to locatem as, for
example, methane possesses an S4 axis, though it is not keeping any C4 axis. In
methane, rotation by 90◦ followed by the reflection in a perpendicular plane restores
the structure as is shown in Fig. 2.15.

2.4 Consequences for Chirality

A chiral molecule is one which cannot be superimposed on its mirror image. A gen-
eralization for chirality can be deduced from the symmetry elements of a molecule.
A chiral molecule should not possess an Sn axis. It should also not possess any re-
flection plane. But, the reflection plane is the same as S1 improper rotation, i.e., ro-
tation by 360/1 = 360◦ followed by a reflection. Similarly, chiral molecules should
not possess a center of inversion. In fact, an inversion is the same as S2 improper
rotation.



2.5 Point Groups 27

Fig. 2.15 S4-axis in the methane molecule

2.5 Point Groups

The symmetry of a molecule can be completely specified by listing all the symmetry
elements (E , Cn, σ , i and Sn) it possesses. Every element is characterized by a set
of symmetry elements. If chemically different molecules possess precisely the same
set of symmetry elements, they are symmetrically related and must be classified
together. Thus, phenanthrene and water go together. E , C2, σxz, and σyz together
form a mathematical group. Since each of the operations leaves at least one point
(the center of mass) unchanged, they are said to constitute a symmetry point group.
All the known molecules can be classified into 32 symmetry point groups which are
given Schoenflies symbols that convey essential information about the symmetry of
the molecule. Types of point groups with their characteristics and suitable examples
are given in Tables 2.2, 2.3, and 2.4.

Table 2.2 General types of point groups

Sl. no. Point group Characteristic symmetry elements

1 Cs E and only one σ
2 Ci E and a center of inversion
3 Cn E and one Cn axis
4 Cnv E one Cn axis and n σv
5 C2h E one Cn axis and one σh plane
6 Dnh E one Cn axis, nC2 axes and nσv planes
7 Dnd E one Cn axis nC2 axes and nσv planes
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Table 2.3 Special types of point groups

Sl. no. Point group Characteristic symmetry elements

1 D∞v Linear molecules with center of inversion
2 C∞v Linear molecules without center of inversion
3 Td Tetrahedron
4 Oh Octahedron
5 Ih Icosahedron

Table 2.4 Point group examples

Point Shape Molecule
group

Oh Octahedral SF6, Co(NH3)3+
6

Td Tetrahedral CH4, Ni(CO)4
D6h Hexagonal Benzene
D4h Square planar Oh Ni(CN)2−

4 , PtCl2−4 Sp-, trans-Co(NH3)4Cl+2 −Oh
D3h Trigonal planar BF3, CO2−,

3 NO−
3

D2h Square planar Trans-Pt(NH3)2Cl2
C4v Distorted octahedral SF5Cl
C3v Pyramidal or distorted Td NH3 −py, CHCl3, POCl3-Td
C2v Oh, v-shaped, Cis-Pt(NH3)2Cl2+

2 −Oh, H2O−V−,
square planar or Td Cis-Pt(NH3)2Cl2 − sp−, Co(py)2Cl2-T d

2.6 The Procedure for Determining the Point Group of Molecules

The general procedure for finding the point group of any molecule is given as fol-
lows:

1. In the first step, identify all the symmetry elements of the molecule.
2. Look for the highest rotation axis.
3. If the axis is C∞ (the molecule is linear) look for the presence of a center of

symmetry i. If the molecule has i, then it will be definitely keeping σh and it
belongs to D∞h. If it does not have i, it belongs to C∞v.

4. If the highest axis is C3, C4, or C5, check for other axes of the same order. (a)
Six five fold axes: If it has 15 planes it belongs to Ih, otherwise to I. (b) Three
4-fold axes: If the molecule also has 9 planes, it belongs to Oh, otherwise to O.
(c) Four 3-fold axes: if the molecule has neither i, nor any planes of symmetry,
it belongs to T . Planes but no i−Td: center i, then T h.

5. If the molecule has only one Cn axis with n > 2, or if the highest axis is C2,

look for n two-fold axes perpendicular to the principal axis. If there are any,
look for planes of symmetry. (a) No plane of symmetry: Dn (b) n-vertical planes
but no horizontal plane: Dnd(c) n vertical planes and a horizontal plane: Dnh

(d) Principal axis C2 and there are two C2 axes perpendicular to it and if the
molecule has i: D2d .
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6. Has n-fold axis, Cn: look for S2n (a) S2n exists: point group is S2n (b) No S2n:
look for planes, no planes: Cn; n-vertical planes but no horizontal plane: Cnv (c)
A horizontal plane but no vertical planes: Cnh.

7. If there are no axes (other than C1), look for a plane and a center. (a) One plane:
Cs(b) Center i: Ci (c) Neither i nor planes: C1.

A flow chart for finding the point group of molecules is included in Fig. 2.16. We
shall illustrate the procedure with the help of a few examples.

1. Water (H2O)

a. It does not belong to any special group. Hence, the point group is not Oh,
Ih, and Td.

b. It is non-linear. Hence, the absence of C∞v and D∞h.
c. The principal axis is C2 and has no S4 axis. No C2 axis perpendicular to the

principal axis. Hence, D and S groups are ruled out.

Fig. 2.16 Flow chart for finding the point groups of molecules
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d. The molecule belongs to C2, C2h, or C2v.
e. There is a horizontal plane of symmetry (σh) and a vertical plane of sym-

metry (σv).
f. Hence, the point group of water is C2v.

2. Ammonia (NH3)

a. It does not belong to a special group.
b. There is a C3 axis.
c. There are no other C2 axes.
d. There is no σh plane.
e. There is a σv plane.
f. Hence, the point group is C3v.

3. Boron trifluoride (BF3)

a. It does not belong to a special group.
b. There is a C3 axis.
c. There are 3 C2 axes perpendicular to C3.
d. There is a σh plane.
e. Hence, the point group is D3h.

4. Trans-dichloro ethene (C2H2Cl2)

a. It does not belong to a special group.
b. There is a C2 axis.
c. There are no other C2 axes.
d. There is a σh plane.
e. Hence, the point group is C2h.

2.7 Typical Molecular Models

Some typical molecular geometries and their point group are depicted below.

1. Tetrahedral (T d): Methane, elemental phosphorous, and B4Cl4 are examples, as
given in Figs. 2.17 and 2.18.

Fig. 2.17 Tetrahedral (Td)
structure
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Fig. 2.18 Examples of the Td point group

Fig. 2.19 Octahedral
structure

Fig. 2.20 Examples of molecules with an octahedral structure

2. Octahedral (Oh): A diagrammatic representation of the octahedral structure is
shown in Fig. 2.19. The structures of molecules B6H6 and SF6 are included in
Fig. 2.20.

3. Icosahedron (Ih): The molecular structure is included in Fig. 2.21. [B12H12]2−
and elemental boron are examples of this point group.
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Fig. 2.21 Icosahedral
structure

2.8 Group Representation of Symmetry Operations

Group theory is the mathematical study of symmetry, as embodied in the structures
known as groups [1]. These are sets with a closed binary operation satisfying the
following three properties:

1. The operation must be associative.
2. There must be an identity element.
3. Every element must have a corresponding inverse element.

Let us consider the symmetry operation of the C2v point group. We have al-
ready seen the transformation matrices for identity, rotation, and reflection oper-
ators. These matrices obey the group multiplication table and are representations of
the group.

The water molecule, for example, possesses four elements of symmetry, E ,
C2 (z), σv (xz), and σv (yz).

It can be proven that the product of any two operations gives rise to one of the
operations in the group. This is illustrated in the multiplication table for the sym-
metry operation of water (C2vpointgroup). The matrix representation for the symmetry
operation of the C2v point group obeying the group multiplication table is called the
representation of the group (Table 2.5). For example, we have seen that σxzC2 = σyz.
Using matrices:

⎡
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎦
⎡
⎣
−1 0 0

0 −1 0
0 0 0

⎤
⎦=

⎡
⎣
−1 1 0

0 1 0
0 0 1

⎤
⎦ (2.21)

Table 2.5 Multiplication table for the symmetry operation of water

C2v E C2 (z) σv (xz) σv (yz)

E E C2 (z) σv (xz) σv (yz)
C2 (z) C2 (z) E σv (yz) σv (xz)
σv (xz) σv (xz) σv (yz) E C2 (z)
σv (yz) σv (yz) σv (xz) C2 (z) E
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2.9 Irreducible Representations

We have seen that for water in the equilibrium geometry, four symmetry operations
are possible, Ê , Ĉ2, σ̂(x,z), and σ̂(y,z). By Mulliken’s convention (the standard con-
vention), the molecular plane is assigned the (y,z) plane. As the symmetry elements
constitute a group, the corresponding operations follow commutative law.

Hence, the electronic wavefunctions can be considered as simultaneous eigen-
functions of all four symmetry operators. Since Ê is a unit operator, Êψ(electron) =
ψ(electron). For the remaining symmetry operators, Ô2 = 1 providing two eigenval-
ues, ±1. Hence, each electronic wavefunction of water is an eigenfunction of Ê
with eigenvalue +1 and an eigenfunction of the remaining three symmetry opera-
tors (Ĉ2, σ̂(x,z), σ̂(y,z)) with eigenvalues ±1. We may propose eight possible sets of
eigenvalues as given in Table 2.6.

All these eight eigenvalues are not possible for the water molecule. Symmetry
operators multiply in the same manner as symmetry operations, as is shown in Ta-
ble 2.6. From this table we can rule out some of the eigenvalues. We know that
Ĉ2 × σ̂(x,z) = σ̂(y,z). Hence, eigenvalues not satisfying this equation are not possible
for water, which limits the possible eigenvalues to be four, as given in Table 2.7.

Symmetry eigenvalues for the higher order (with positive Ĉn or Ŝn) are designated
as A and the lower one is designated as B. Each possible set of eigenvalues is called
an irreducible set or symmetry species set. The species with all the eigenvalues
positive is called the totally symmetric species (here, A1).

Table 2.6 Eigenvalues corresponding to the symmetry operations

Ê Ĉ2 σ̂(x,z) σ̂(y,z)

1 1 1 1
1 1 1 −1
1 1 −1 1
1 1 −1 −1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1

Table 2.7 Irreducible representation of C2v of water

Ê Ĉ2 σ̂(x,z) σ̂(y,z)

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1
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Table 2.8 Designation of orbitals on the basis of degeneracy

Degeneracy 1 2 3 4 5
Designation A,B E T G H

2.10 Labeling of Electronic Terms

Along with the symmetry labeling of orbitals, spin multiplicity (2S + 1) is also in-
cluded, where S is the electronic spin. For example, the electronic state of water
with one electron unpaired and with the electronic wavefunction unchanged by the
symmetry operators can be designated as 2A1. Based on the orbital degeneracy the
following labeling is shown (Table 2.8):

For molecules with a center of symmetry and having an eigenvalue of +1, then
the subscript g is added, while if the eigenvalue is −1, then the subscript u is in-
cluded. For example, the possible symmetry elements of a D6h molecule are A1g,
A2g, B1g, B2g, E1g, E2g, A1u, A2u, B1u, B2u, E1u, and E2u.

2.11 Exercises

2.11.1 Questions

1. Determine the point group for the following molecules:
NCl3, CCl4, CH2 = CH2, CF2 = CH2, SO3, PCl5, SnF4, SeF4 and PCl3.

2. Find the point groups of the following species:
SO2−

4 , SiF2−
6 , and BrF−

4 .
3. Identify the symmetry elements and find the point group of the following:

NH2Cl, CO2−
3 , SiF4, HCN, SiFClBrI, and BF−

4 .
4. Write the irreducible representation of the C3v point group.
5. Identify the point groups of molecules producing polar molecules.
6. Identify the point groups of molecules producing optically active molecules.
7. List the symmetry operations possible for a. NH3 b. HOCl c. CH2F2.
8. Find the eigenvalues of ÔC4 .
9. Find the order (number of elements of symmetry in a group) of

a. C3v b. D3h c. Cs.

2.11.2 Answers to Selected Questions

1. NCl3 −C3v, CCl4 − T d, CH2 = CH2 − D2h, CF2 = CH2 −C2v, SO3 − D3h,
PCl5 −D3h, SnF4 −Td, SeF4 −C2v and PCl3 −C3v.

2. SO2−
4 −Td, SiF2−

6 −Oh, BrF−
4 −D4h



References 35

3. NH2Cl−E,σ : Cs,
CO2−

3 −E,C3,C2,σh,σv,S3 : D3h,
SiF4 −E,C3,C2,σd ,S4 : Td,
HCN−E,C∞,C2,σv : C∞v,
SiFClBrI−E : C1

and BF−
4 −E,C3,C2,σd ,S4 : Td.
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Chapter 3
Quantum Mechanics: A Brief Introduction

I think it is safe to say that no one understands quantum
mechanics. Do not keep saying to yourself, if you can possibly
avoid it, “But how can it be like that?” because you will get
“down the drain” into a blind alley from which nobody has yet
escaped. Nobody knows how it can be like that.

– Richard Feynman (1918–1988)

3.1 Introduction

The development of quantum mechanics was initially provoked by two main ob-
servations that established the inadequacy of classical physics. They are called the
ultraviolet catastrophe and the photoelectric effect.

3.1.1 The Ultraviolet Catastrophe

A blackbody is a unique object which absorbs and emits all frequencies of electro-
magnetic radiations incident on it. Classical physics can be used to derive an equa-
tion which describes the intensity of blackbody radiation as a function of frequency
for different temperatures. This generalization is known as the Rayleigh-Jeans law.
Let us look at the spectrum in detail. When an iron block is heated, the color of the
metal is gray at a low temperature, bright red at about 1270 K and dazzling white
at 1770 K. This feature is described in Fig. 3.1. Although the Rayleigh-Jeans law
works for low frequencies, it diverges at higher ones. This divergence at higher fre-
quencies is called the ultraviolet catastrophe.

Max Planck [1] gave an explanation to the blackbody spectrum in the year 1900
by assuming that the energies of the oscillations of electrons which gave rise to the
radiation must be proportional to integral multiples of the frequencies. Using statis-
tical mechanics, Planck derived an equation similar to the Rayleigh-Jeans equation,
but with the adjustable parameter h. Planck found that for h = 6.626×10−34 Js
(Planck’s constant), the experimental data could be reproduced to its finest detail.
This famous revolutionary relation is given by Eq. 3.1.

E = nhϑ (3.1)
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Fig. 3.1 Intensity of radia-
tion of heated iron against
frequency. The values cor-
responding to the Rayleigh-
Jeans relationship are rep-
resented by a dashed curve.
It fits well to experimental
data at low frequencies, but
becomes departing at higher
frequencies

Where n is a positive integer, ϑ is the frequency of the oscillator, and E is the
energy. But Planck could not offer a good justification for his assumption of energy
quantization. Scientists did not take this energy quantization idea seriously until
Einstein invoked a similar assumption to explain the photoelectric effect.

3.1.2 The Photoelectric Effect

Heinrich Hertz in 1887 discovered that irradiation by ultraviolet light would cause
electrons to be ejected from a metal surface. According to the classical wave the-
ory of light, the intensity of the light determines the amplitude of the wave, and so
a greater intensity of light should cause the electrons on the metal to oscillate more
violently and to be ejected with a greater kinetic energy. In contrast, the experiment
showed that the kinetic energy of the ejected electrons depended only on the fre-
quency of the light. On the other hand, the intensity of light affects only the number
of ejected electrons and not their kinetic energies.

Einstein explained the problem of the photoelectric effect in 1905. Instead of
assuming that the electronic oscillators had energies given by Planck’s equation
(Eq. 3.1), Einstein assumed that the radiation itself consisted of packets of energy E ,
which are now called photons. Einstein successfully explained the photoelectric ef-
fect by using this assumption, and he calculated a value of h close to that obtained
by Planck.

Two years later, Einstein showed that, like light, atomic vibrations were also
quantized. Classical physics predicts that the molar heat capacity at a constant vol-
ume (Cv) of a crystal is 3R, where R is the molar gas constant. This works well for
high temperatures, but for low temperatures Cv actually falls to zero. Einstein was
able to explain this result by assuming that the oscillations of atoms about their equi-
librium positions are quantized according to Eq. 3.1 – Planck’s quantization condi-
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tion for electronic oscillators. This confirmed that the energy quantization concept
was important even for a system of atoms in a crystal, which could be well-modeled
by a system of masses and springs (i.e., by classical mechanics).

3.1.3 The Quantization of the Electronic Angular Momentum

Rutherford proposed a classical atomic structure in which the electrons are consid-
ered as revolving round the nucleus of atom. One problem with this model is that
orbiting electrons experience a centripetal acceleration. Such accelerating charges
should lose energy by radiation making stable electronic orbits classically forbid-
den. Bohr proposed stable electronic orbits with the electronic angular momentum
quantized as:

l = mvr = nh̄ (3.2)

where m is the mass of the electron, v its velocity, and r the radius of the orbit, h̄ =
h/2π , n = 1,2,3 . . . The quantization of angular momentum leads to discretization
of radius as well as the energy of the orbit. Bohr’s atom model could explain the
atomic spectrum of the hydrogen atom. Bohr assumed that the discrete lines seen
in the spectrum of the hydrogen atom were due to transitions of electrons from
one allowed orbit/energy level to another. He further assumed that the energy of
a transition is acquired or released in the form of a photon as proposed by Einstein,
such that:

ΔE = hϑ (3.3)

This is known as the Bohr frequency condition. This condition, along with Bohr’s
expression for the allowed energy levels, gives a good match to the observed hydro-
gen atom spectrum. However, it works only for atoms with one electron. It could
not explain the fine spectrum even for the hydrogen atom.

3.1.4 Wave-Particle Duality

Einstein had shown that the momentum of a photon is:

p =
h
λ

(3.4)

This can be easily shown as follows. Assuming E = hv for a photon and λv = c
for an electromagnetic wave, we obtain:

E =
hc
λ

(3.5)
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Now we use the result of Einstein’s special theory of relativity, E = mc2 to get:

λ =
h

mc
(3.6)

This is equivalent to Eq. 3.4. Here, m refers to the relativistic mass, not the rest
mass. Note that the rest mass of a photon is zero. Light can behave both as a wave
(it exhibits properties such as diffraction, interference, and polarization, and it has
a wavelength), and as a particle (it contains packets of energy hv). De Broglie es-
tablished a similar relationship in 1924 for material particles by proposing a dual
nature for matter, and particles as well as waves [2]. He proposed an equation for
finding the wave length (λ – the de Broglie wave length) included in Eq. 3.7, which
is similar to Eq. 3.6. Here, m is mass, and v is the velocity of the particle.

λ =
h

mv
(3.7)

In 1927, Davisson and Germer observed diffraction patterns by bombarding met-
als with electrons, confirming de Broglie’s proposition.

De Broglie’s equation offers a justification for Bohr’s assumption (Eq. 3.2). Ac-
cording to Bohr’s atom model, only those circular orbits in which the angular mo-
mentum of the electron, an integral multiple of h̄ = h

2π is permitted.

mvr = nh̄ = n
h

2π
(3.8)

According to de Broglie, the electrons have a wave character also. For the waves
to be completely in phase, the circumference of the orbit should be an integral mul-
tiple of wavelength. Therefore:

2πr = nλ (3.9)

Where, r is the radius of the orbit. Substituting λ from Eq. 3.7:

mvr = nh̄ = n
h

2π
(3.10)

This is identical with Bohr’s equation (Eq. 3.3).
Heisenberg showed that the wave-particle duality leads to the famous uncertainty

principle:

Δx×Δ p ≥ h
4π

(3.11)

where Δx is the uncertainty in position and Δ p is the uncertainty in momentum. One
result of the uncertainty principle is that if the orbital radius of an electron in an atom
r is known exactly, then the angular momentum must be uncertain. The problem
with Bohr’s model is that it specifies r exactly and it also ensures that the orbital
angular momentum must be an integral multiple of h̄ = h

2π . Thus, the stage was
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set for a new quantum theory, which was consistent with the uncertainty principle.
The first principle in quantum theory stands for Schrödinger equation. Modeling
molecules from the first principle is generally referred to as ab initio modeling [3].

3.2 The Schrödinger Equation

In 1925, Erwin Schrödinger and Werner Heisenberg independently developed the
new quantum theory. Schrödinger method involves partial differential equations,
whereas Heisenberg’s method employs matrices; however, a year later the two meth-
ods were shown to be mathematically equivalent. Schrödinger equation seems to
have a better physical interpretation via the classical wave equation. Indeed, the
Schrödinger equation can be viewed as a form of the wave equation applied to mat-
ter waves.

3.2.1 The Time-Independent Schrödinger Equation

We start with the one-dimensional classical wave equation:

∂ 2u
∂x2 =

1
v2

∂ 2u
∂ t2 (3.12)

where v is velocity.
By introducing the separation of variables:

u(x,t) = ψ(x) f (t) (3.13)

we obtain:

f (t)
d2ψ(x)

dx2 =
1
v2ψ(x)

d2 f (t)
dt2 (3.14)

If we introduce one of the standard wave equation solutions for f (t) such as eiωt

(the constant can be taken care of later in the normalization), we obtain:

d2ψ (x)
dx2 =

−ω2

v2 ψ (x) (3.15)

Now we have an ordinary differential equation describing the spatial amplitude
of the matter wave as a function of position. The energy of a particle is the sum of
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kinetic and potential parts:

E =
p2

2m
+V (x) (3.16)

which can be solved for the momentum, p, to obtain:

p = {2m [E −V (x)]}1/2 (3.17)

Now we can use the de Broglie formula (Eq. 3.4) to get an expression for the
wavelength:

λ =
h
p

=
h

{2m [E −V (x)]}1/2
(3.18)

The term ω2/ν2 in Eq. 3.15 can be rewritten in terms of λ if we recall that
ω = 2πϑ and ϑλ = v, where ω is the angular momentum, λ is the wavelength
and ϑ is the frequency:

ω2

v2 =
4π2ϑ 2

v2 =
4π2

λ 2 =
2m [E −V(x)]

h̄2 (3.19)

(where h̄ = h/2π). When this result is substituted into Eq. 3.15 we obtain the famous
time-independent Schrödinger equation [4]:

d2ψ(x)
dx2 +

2m

h̄2 [E −V (x)]ψ(x) = 0 (3.20)

which is almost always written in the form:

− h̄2

2m
d2ψ(x)

dx2 +V(x)ψ(x) = Eψ(x) (3.21)

This single-particle one-dimensional equation can easily be extended to the case
of three dimensions, where it becomes:

− h̄2

2m
∇2ψ(r)+V(r)ψ(r) = Eψ(r) (3.22)

A two-body problem can also be treated by this equation if the mass m is replaced
with a reduced mass.

It is important to point out that this analogy with the classical wave equation
only goes so far. We cannot, for instance, derive the time-dependent Schrödinger
equation in an analogous fashion (for instance, that equation involves the partial
first derivative with respect to time instead of the partial second derivative). In fact,
Schrödinger (see Fig. 3.2) presented his time-independent equation first, and then
went back and postulated the more general time-dependent equation.
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Fig. 3.2 Erwin Schrödinger
(1887–1961)

A careful analysis of the process of observation in atomic physics has shown that the sub-
atomic particles have no meaning as isolated entities, but can only be understood as inter-
connections between the preparation of an experiment and the subsequent measurement.

– Erwin Schrödinger

3.2.2 The Time-Dependent Schrödinger Equation

We are now ready to consider the time-dependent Schrödinger equation. Although
we were able to derive the single-particle time-independent Schrödinger equation
starting from the classical wave equation and the de Broglie relation, the time-
dependent Schrödinger equation cannot be derived using elementary methods and
is generally given as a postulate of quantum mechanics. The single-particle three-
dimensional time-dependent Schrödinger equation is:

ih̄
∂ψ(r,t)

∂ t
= − h̄2

2m
∇2ψ(r,t)+V(r)ψ(r, t) (3.23)

where V is assumed to be a real function and represents the potential energy of
the system. Wave mechanics is the branch of quantum mechanics with Eq. 3.23 as
its dynamical law. Note that Eq. 3.23 does not yet account for spin or relativistic
effects.

Of course the time-dependent equation can be used to derive the time-independent
equation. If we write the wavefunction as a product of spatial and temporal terms,
ψ(r, t) = ψ(r) f (t), then Eq. 3.23 becomes

ψ(r)ih̄
d f (t)

dt
= f (t)

[
− h̄2

2m
∇2 +V(r)

]
ψ(r) (3.24)

Or :
ih̄

f (t)
d f
dt

=
1

ψ(r)

[
− h̄2

2m
∇2 +V(r)

]
ψ(r) (3.25)

Since the left-hand side is a function of t only and the right hand side is a func-
tion of r only, the two sides must equal a constant. If we tentatively designate this
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constant E (since the right-hand side clearly must have the dimensions of energy),
then we extract two ordinary differential equations, namely:

1
f (t)

d f (t)
dt

= − iE
h̄

(3.26)

and
[
− h̄2

2m
∇2ψ(r)+V(r)ψ(r)

]
= Eψ(r) (3.27)

[
− h̄2

2m
∇2 +V(r)

]
ψ(r) = Eψ(r) (3.28)

where the term in square bracket on the LHS is called the Hamiltonian operator.
The latter equation is once again the time-independent Schrödinger equation. The

former equation is easily solved to yield:

f (t) = e−iEt/h̄ (3.29)

The Hamiltonian in Eq. 3.27 is a Hermitian operator, and the eigenvalues of
a Hermitian operator must be real, so E is real. This means that the solutions f (t)
are purely oscillatory, since f (t) never changes in magnitude (recall Euler’s formula
e±iθ = cosθ ± isinθ )

Thus, if:

ψ(r,t) = ψ(r)e−iEt/h̄ (3.30)

then the total wavefunctionψ(r,t) differs from ψ(r) only by a phase factor of a con-
stant magnitude. There are some interesting consequences of this. Firstly, the quan-
tity ψ(r, t)2 is time independent, as we can easily show:

∣∣ψ(r, t)2
∣∣= ψ∗(r,t)ψ(r,t) = eiEt/h̄ψ∗(r)e−iEt/h̄ψ(r) = ψ∗(r)ψ(r) (3.31)

Secondly, the expectation value for any time-independent operator is also time-
independent, if ψ(r,t) satisfies Eq. 3.30. By the same reasoning applied above,

〈A〉 =
∫
ψ∗(r,t)Âψ(r,t) =

∫
ψ∗(r)Âψ(r) (3.32)

For these reasons, wavefunctions of the type in Eq. 3.30 are called stationary
states. The state ψ(r,t) is qutstationary, but the particle it describes is not!

Of course, Eq. 3.30 represents a particular solution to Eq. 3.23. The general so-
lution to Eq. 3.23 will be a linear combination of these particular solutions, i.e.:

ψ(r,t) =∑
i

cie
−iEit/h̄ψi(r) (3.33)
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3.3 The Solution to the Schrödinger Equation

Solutions to Schrödinger equation are called wavefunctions. Out of various solu-
tions to the Schrödinger equation, those satisfying the following conditions are listed
here: [5]

1. ψ must be continuous. The wavefunction and its derivative must be continuous.
2. ψ must be finite everywhere.
3. It must approach zero at infinite distance.
4. ψ must be single-valued.

Solutions that do not satisfy these properties do not generally correspond to phys-
ically realizable circumstances. These permitted solutions to the equation are called
eigenfunctions. Each permitted solution corresponds to a definite energy state and
is known as orbital. The electron orbitals in atoms are called atomic orbitals, while
those in a molecule are called molecular orbitals.

A typical quantum mechanical problem consists of the following steps:

1. Writing the Schrödinger equation for the system under study.
2. Solving the equation and finding the eigenvalues corresponding to the equation.
3. Characterizing the system based on the solutions.

Please refer to the Appendix to learn more about operators.

3.4 Exercises

3.4.1 Question 1

What should be the range values of the work function of a metal in order to be useful
in a photo cell for detecting visible light?

3.4.2 Answer 1

A wave length (λ ) of visible light is 4000–7000 Å. Here:

h = 6.626×10−34J S

c = 3×108m s−1

and 1 Joule =
1

1.602×10−19 eV
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Energy corresponding to 4000 Å:

=
hc
λ

=
6.626×10−34×3×108

4000×10−10×1.602×10−19 = 3.102 eV

Similarly energy corresponding to 7000 Å

=
6.626×10−34×3×108

7000×10−10×1.602×10−19 = 1.77 eV

Therefore, any metal with work function between 1.77 eV and 3.10 eV are the prob-
able candidates for detecting visible light.

3.4.3 Question 2

Calculate the potential difference that must be applied to stop the fastest photo elec-
trons emitted by a surface when irradiated by an electromagnetic radiation of fre-
quency 1.5×1015 Hz. (The work function is 4 eV.)

3.4.4 Answer 2

Energy of photon = hν = (6.626×10−34)× (1.5×1015)J

=
(6.626×10−34)× (1.5×1015)

(1.602×10−19)
eV = 6.204 eV

Therefore, the energy for the fastest photo electron is 6.204−4 = 2.204 eV. Or, the
potential difference to be applied is 2.204 volts.

3.4.5 Question 3

An electron is accelerated through a potential difference of 400 V. Determine its
de Broglie wave length.

3.4.6 Answer 3

Kinetic energy gained by the electron (non-relativistic), T =
p2

2m
= 400 eV

∴P =
√

2mT

Mass of the electron = 9.11×10−31 kg

Charge of the electron = 1.602×10−19 Coulombs
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Hence, the linear momentum,

p =
[(

400×1.602×10−19 J
)× (2×9.11×10−31 kg.

)]1/2

= 10.798×10−24 kg.ms−1

de Broglie wave length λ =
h
p

=
6.626×10−34

10.798×10−24 = 0.6132×10−10 m

= 0.6132Å

3.4.7 Question 4

The energy of certain X-rays is found to be equal to that of a 1 KeV electron. Com-
pare their wave lengths.

3.4.8 Answer 4

The Kinetic energy is:

T =
p2

2m
= 1000 eV = 1.602×10−19×103 J = 1.602×10−16 J

According to de Broglie, the wave length of an electron is:

λ =
h
p

=
h√

2mT
=

6.626×10−34 J.s

[2(9.11×10−31 kg)× (1.602×10−16 J)]1/2

= 0.39×10−10 m = 0.39Å

Energy of X-rays: E = hν =
hc
λ

Or : λ =
hc
E

=
(6.626×10−34 J.s)(3×108 m.s−1)

1.602×10−16 J
= 12.408Å

Hence,
wave length of X-rays

de Broglie wave length of electron
=

12.408
0.39

= 31.85

The wave length of the X-rays is 31.85 times the de Broglie wavelength of the
electron.
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3.4.9 Question 5

The speed of an electron is found to be 1 km.s−1 within an accuracy of 0.02%.
Calculate the uncertainty in its position.

3.4.10 Answer 5

The momentum of the electron: p = mv = (9.11×10−31 kg)(1000 ms−1)

% accuracy =
ΔP×100

P
= 0.02%

ΔP =
0.02×9.11×10−31×1000

100
= 1.822×10−31 kg.ms−1

Δx ;
h

4πΔP
=

6.626×10−34 J.s
4π×1.822×10−31 kg.ms−1 = 2.894×10−4 m

3.4.11 Question 6

In a hydrogen atom, the electron in the n = 2 excited state remains there for 10−8

seconds on an average before making a transition to the ground state (n = 1). (a)
Calculate the uncertainty in energy of the excited state. (b) What is the fraction of
the transition energy? (c) Compute the width of wave length corresponding to this.

3.4.12 Answer 6

a)

ΔE ×Δ t ≥ h

ΔE ≥ h
Δ t

=
6.626×10−34 J.s

10−8 s
= 6.626×10−26 J

Or
6.626×10−26

1.602×10−19 eV = 4.14×10−7 eV

b)

Energy of n = 2 → n = 1 transition is −13.6 eV

(
1
22 − 1

12

)
= 10.2 eV

Fraction of energy =
ΔE
E

=
4.14×10−7

10.2
= 4.06×10−8
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c)

λ =
hc
E

=

(
6.626×10−34 J.s

)(
3×108 m.s−1

)
10.2×1.602×10−19 J

= 1218Å

The spectral line width of this line =
Δλ
λ

=
Δv
v

=
ΔE
E

Δλ =
ΔE ×λ

E
= 4.06×10−8×1.218×10−7 = 4.95×10−7 Å

3.4.13 Question 7

Write down the normalized wavefunction if ψ(x) = Aexp
(−kx2

)
, where k and A are

real constants over the entire domain.

3.4.14 Answer 7

ψ(x) = Aexp(−kx2)

For the normalized wavefunction:

+∞∫

−∞
(Aψ∗)(Aψ) dx = 1

A2

+∞∫

−∞
exp

(−2kx2)dx = 1

But we know that

+∞∫

−∞
exp

(−2kx2)dx =
√

π
2k

Or A =
(

2k
π

)1/4

ψ(x) =
(

2k
π

)1/4

exp(−kx2)
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3.4.15 Question 8

Given ψ(x) = Asin(kx). Find the eigenvalues of the operator Ô =
∂ 2

∂x2 . Find out

whether Ô =
∂
∂x

is an eigenoperator.

3.4.16 Answer 8

∂ψ(x)
∂x

=
∂ [Asin(kx)]

∂x
= Ak cos(kx). This is not of the form k̂ψ(x) = kψ(x)

∴ ∂
∂x

is not an eigenoperator for the function.

∂ 2ψ(x)
∂x2 =

∂ 2 [Asin(kx)]
∂x2 = −k2Asin(kx)

∴ ∂ 2

∂x2 is an eigenoperator with an eigenvalue of
(−k2

)
for the function.

3.4.17 Question 9

Find the voltage with which electrons in an electron microscope have to be acceler-
ated to get a wavelength of 1 Å.

3.4.18 Answer 9

Let V be the voltage to be applied on electrons. Then the kinetic energy gained
= eV Joules.

(
e = 1.602×10−19 Coulombs

)
. The de Broglie wavelength can be cal-

culated from the relation:

λ =
h
p

. (3.34)

Now the kinetic energy
p2

2m
= eV. Or:

p =
√

2 meV (3.35)
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From Eqs. (3.34) and (3.35), the de Broglie wavelength is:

λ =
h√

2 meV
= 1Å

Hence:

V =
h2

2meλ 2 =

(
6.626×10−34 J.s

)2

(1.602×10−19)×2× (9.11×10−31 kg.)× (1×10−10 m)2

= 150 V

3.4.19 Question 10

Calculate the minimum energy of an electron inside a hydrogen atom whose radius
is 0.53Å using the uncertainty principle.

3.4.20 Answer 10

Δx = 5.3×10−11 m

∴Δ p =
η

2Δx
≥ 9.9×10−25 kg ·ms−1

Kinetic energy of electron =
(Δ p)2

2×2πm
=

(
9.9×10−25 kg ·ms−1

)2

2×9.11×10−31 kg.

= 5.4×10−19 J

= 3.37 eV

3.5 Exercises

1. Calculate the wavelength of an electron that has been accelerated through a po-
tential of 100 million volts.

2. An electron has a speed of 500 ms−1 with an uncertainty of 0.02%. What is the
uncertainty in locating its position?

3. The ionization energy of a hydrogen atom in the ground state is 1312 kJmol−1.
Calculate the wavelength of radiation emitted when the electron in the hydrogen
atom makes a transition from principal quantum level, n = 2 to n = 1.
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4. Calculate the de Broglie wavelength for an electron traveling at 1 percent of the
speed of light.

5. Find the eigenfunctions of the momentum operator assuming that P′φ = pφ ,
where p is the momentum.

6. Assume that the Hamiltonian operator is invariant under time reversal. Prove
that the wavefunction for a spin less non-degenerate system at any given instant
of time can always be real.

7. The Hamiltonian operator for a spin 1 system is given by H =αS2
z +β

(
S2

x −S2
y

)
.

Solve this equation to find the normalized energy states and eigenvalues. Is this
Hamiltonian invariant under time reversal? How do the normalized eigenstates
transform under time reversal?

8. Using uncertainty principle show that an electron can not be confined to the
nucleus of the atom. (The typical radius of a nucleus = 10−15 m).
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Chapter 4
Hückel Molecular Orbital Theory

4.1 Introduction

Quantum mechanical computation is based on solving the Schrödinger equation,
Ĥψ = Eψ , where Ĥ is the Hamiltonian energy operator, and ψ is an amplitude
function, which is the eigenfunction with E as the eigenvalue. Perhaps the great dis-
appointment of quantum chemistry is that, while the Schrödinger equation is power-
ful enough to describe almost all properties of systems, it is too complex to solve for
all but the simplest of systems. The equation is unique for each system as the Hamil-
tonian for different systems are different. The Schrödinger equation for only a few
systems can be solved accurately like particles in a one-dimensional box, the hydro-
gen atom, and the hydrogen molecule ion. In such cases the equation of the system
is separated into different uncoupled equations involving only one space variable
(the dimension). These separated equations are solved and corresponding energies
(eigenvalues) are calculated. The total wavefunction of the system is the product of
wavefunctions of the separated ones. But in most cases, the exact equation cannot
be separated into uncoupled equations. One approach for overcoming the problem
is by introducing some approximations that permit us to separate the function into
uncoupled space variables. Three major approximations are widely used to separate
the Schrödinger equation into a set of smaller equations before carrying out Hückel
calculations [2]:

1. The Born-Oppenheimer approximation
2. The independent particle approximation
3. The π-electron separation approximation

4.2 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is an efficient approximation resulting in
energies close to the actual energy of the system. The masses of the nuclei are much

K. I. Ramachandran et al., Computational Chemistry and Molecular Modeling 53
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greater than the electrons, hence the electrons can respond almost instantaneously
to any change in the nuclear positions. Thus, to a high-quality approximation, we
can consider the electrons as moving in a field of fixed nuclei. This helps us to
separate the Schrödinger equation into two parts, one for the nuclei and the other for
electrons. Moreover, within this approximation, the nuclear kinetic energy term can
be neglected and the nuclear–nuclear repulsion term can be taken as a constant. We
retain the inter-nuclear repulsion terms, which can be calculated from the nuclear
charges and the inter-nuclear distances. In this approximation, we retain all terms
involving electrons, including the potential energy terms due to attractive forces
between the nuclei and electrons and those due to repulsive forces among electrons.

For example, the helium atom consists of a nucleus of a charge +2e surrounded
by two electrons (Fig. 4.1). Let the nucleus lie at the origin of the Cartesian coordi-
nate system, let the position vectors of the two electrons be r1 and r2, respectively,
and let the distance between the electrons be r12. Applying the Born-Oppenheimer
approximation, the Hamiltonian of the system takes the form of Eq. 4.1.

Ĥ = − h̄2

2me

(
∇2

1

)
+− h̄2

2me

(
∇2

2

)− Ze2

4πξ0

(
1
r1

)
− Ze2

4πξ0

(
1
r2

)
+

1
4πξ0

(
1

r12

)

(4.1)

Here we have neglected reduced mass effects. The terms in the above expression
represent the kinetic energy of the first electron, the kinetic energy of the second
electron, the electrostatic attraction between the nucleus and the first electron, the
electrostatic attraction between the nucleus and the second electron, and the elec-
trostatic repulsion between the two electrons, respectively. It is the final term which
results in difficulties as it requires measuring the distance between the two mov-
ing electrons, which is not possible by Heisenberg’s uncertainty principle. There is
a very convenient and simple way of writing the Hamiltonian operator for atomic
and molecular systems as given below.

The kinetic energy term:
h̄2

2me
∇2 =

1
2
∇2. From the potential energy term,

1
4πξ0

is

dropped. With these simplifications, the Hamiltonian for the helium atom (Nuclear

Fig. 4.1 Helium atom show-
ing two electrons, e1 and
e2
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charge = 2) takes the form of Eq. 4.2.

Ĥ = −1
2
∇2

1 −
1
2
∇2

2 −
2
r1

− 2
r2

+
1

r12
(4.2)

The Schrödinger equation for helium (Eq. 4.3) atom can be formulated as follows;

Ĥψ = Eψ
But,

Ĥψ =
[
−1

2
∇2

1 −
1
2
∇2

2 −
2
r1

− 2
r2

+
1

r12

]
ψ

Hence,
[
−1

2
∇2

1 −
1
2
∇2

2 −
2
r1

− 2
r2

+
1

r12

]
ψ = Eψ (4.3)

Where ∇2 is an operator given by: ∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 spaced in Cartesian axes.

The Schrödinger equation can be suited in spherical coordinates. Let r be the
distance of the radius vector making an angle θ with the reference (z) axis and φ be
the angle of the image of the vector on the xy plane with the x-axis. The relationship
between polar coordinates (r,θ ,φ) and Cartesian coordinates (x,y,z) is illustrated
as follows (Fig. 4.2).

x = r sinθ cosφ , y = r sinθ sinφ , z = r cosθ and x2 + y2 + z2 = r2 .

The solution to the Schrödinger equation based on polar coordinates takes the
form of ψ = R(r).Θ(θ ).Φ(φ) where R(r)is the radial function while Θ(θ ) and

Fig. 4.2 Polar (spherical
coordinates)
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Φ(φ) are angular functions. It may be noted that R(r) depends on the principal quan-
tum number (n) and azimuthal quantum number (l),Θ(θ ) depends on azimuthal (l)
and magnetic (ml) quantum numbers while Φ(φ) depends on magnetic quantum
number (ml).

The Hamiltonian for many-electron systems will have a kinetic energy operator

sum

(
∑−1

2
∇2

i

)
and the potential energy operator sum

(
∑Vi

)
. The kinetic energy

term is always negative as it is associated with a decrease in energy. Potential energy
can be positive (if it is due to repulsion, the electron–electron repulsion) or negative
(if it is due to attraction, the electron–nucleus repulsive). The electron–electron re-

pulsive term

(
1
2∑

1
ri j

)
is multiplied by 1

2 to avoid the double counting of terms.

Nuclear repulsive terms are avoided in the Born-Oppenheimer approximation. The

Hamiltonian of such a system takes the form of Ĥ = −∑
[

1
2
∇2

i +Vi

]
+

1
2∑

1
ri j

,

where the first sum term is attractive while the second sum term is repulsive.

4.3 Independent Particle Approximation

In predicting molecular electronic structure one of the solutions is the Linear Com-
bination of Atomic Orbitals model (LCAO). Here molecular orbital (MO) behav-
ior is approximated as the resultant of the linear combination of atomic orbitals.
If ψ is the molecular orbital function formed from atomic orbitals with func-
tions, let φ1,φ2,φ3, . . . .φn and c1,c2,c3, . . . .cn be their respective contributions, then
ψ = c1φ1 + c2φ2 + c3φ3 + . . . .+ cnφn. Or, ψ =∑

n
cnφn. In the MO treatment of H+

2 ,

two molecular orbitals are obtained by the linear combination of atomic orbitals
(1s),σ1s is the bonding molecular (lower energy and more probable) orbital and σ∗

1s
is the antibonding molecular (the higher energy and less probable) orbital. An en-
ergy level diagram of H+

2 is given in Fig. 4.3.
In the bonding molecular orbital the electron probability density is relatively high

between the nuclei and in the antibonding molecular orbital, there is a node (zero
probability plane) in density between the nuclei as illustrated in Fig. 4.4.

In the Hamiltonian of many electron systems (molecules), all the electrons have
to be considered providing an expression of the form of Eq. 4.4.

Ĥmolecule = Ĥ(1+2+3+.....+n) (4.4)

Here also the Columbic repulsive terms between electrons in the Hamiltonian make
an actual solution to the Schrödinger equation difficult. Independent particle ap-
proximation is one of the methods to overcome the above difficulty.

The principle of independent particle approximation is at the heart of many
methods such as the Hartree-Fock (HF) theory, the density functional theory and
in the Hückel MO theory, which are very popular methods to solve the electronic
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Fig. 4.3 Energy level diagram of H+
2

Fig. 4.4 Electron probability density diagram of H+
2

Schrödinger. In this approximation each particle (electron) is considered as inde-
pendent, i.e., each particle is assumed to be in a different orbital, so that we can
write the wavefunction of the system as a product of wavefunctions of constituents
(Eq. 4.5):

φ (r1,r2, . . . ..,rn) = η1 (r1) .η2 (r2) . . . ..ηn (rn) (4.5)

The system is considered as having n orbitals and n electrons, ηn (rn) is the wave-
function corresponding nth electron at a distance of (rn). The approximate form of
the wavefunction represented in Eq. 4.4 is often known as the Hartree product (see
Chap. 5). In this approximation, an average potential function (V ∗(i)) is introduced
which covers the potential due to the nucleus and all the electrons other than the
specified electron. Hence, the Hamiltonian for the ith electron can be written as:

Ĥ(i) = −1
2
∇2(i)+V ∗(i) (4.6)
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The Hamiltonian for all electrons can be similarly written. The Schrödinger equation
for each electron can be written as:

Ĥ(i)ψ(i) = E(i)ψ(i) (4.7)

4.4 π-Electron Approximation

In unsaturated molecules (molecules keeping multiple bonds between the same
atoms), the bonds are formed by two different modes of overlapping of atomic or-
bitals. The end-on or coaxial overlapping results in a sigma (σ ) bond while lat-
eral or side-wise overlapping results in a pi (π) bond. Most of the properties of
such molecules will be due to the presence of π-bond. As for example alkenes and
alkynes are characterized by organic addition reactions distinctive of the presence
of π-electrons. Hence in such molecules, sigma bond and pi-bond contributions can
be separated and the required π-bond contribution can be characterized. This type
of approximation is known as π-electron approximation.

For unsaturated systems, refinement of Hamiltonian expression can be done
through π-electron approximation. This method is unique to Hückel’s generaliza-
tion. In such cases the Hamiltonian for sigma and pi electrons of the molecule are
separated and the sigma contribution is neglected. Hamiltonian for each π-electron
is calculated and sum of these functions makes the molecular Hamiltonian as given
is Eq. 4.8.

Ĥ(π) =
n

∑
1

(
−1

2
∇2(i)+Vπ(i)

)
+

1
2∑

1
ri j

(4.8)

Here, n is the number of π-electrons of kinetic energy − 1
2∇

2(i) and the potential
energy term Vπ(i) represents the potential energy of a single pi-electron in the aver-
age field of the framework of nuclei and all electrons except electron i. In an alkenic
double bond, each carbon keeps a single π-electron while in an alkynic triple bond,
each carbon carries two π-electrons.

4.5 Hückel’s Calculation

In alkenes and alkynes the pi-electrons are present in the unhybridized p-orbitals,
which are considered as independent of the sigma framework of hybrid orbitals and
sigma electrons. Molecular orbital wavefunction ψ is given by Eq. 4.9:

ψ = a1φ1 + a2φ2 + . . . ..+ aiφi (4.9)

where ai is the contribution of the electronic wavefunction φi. As only p-electrons
are contributing to the wavefunction, the above equation can be written as in Eq. 4.10:
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ψ = a1 p1 + a2p2 + . . . ..+ aipi (4.10)

For ethene, each carbon atom keeps a p-electron. Let p1 and p2 be the two pi-
electrons present in carbon atoms 1 and 2. Let their respective contributions be
a1 and a2. For the unhybridized p-electrons, molecular orbitals are formed by the
LCAO of p1 and p2. Overlapping between atomic orbitals can be either in a sym-
metric manner or in an unsymmetrical manner, with the respective wavefunctions
ψ+ (resulting in a bonding molecular orbital) and ψ− (resulting in an antibonding
molecular orbital). Hence:

ψ+ = a1 p1 + a2 p2 (4.11)

and

ψ− = a1 p1 −a2p2 . (4.12)

As p1 and p2 are atomic orbitals and the wavefunctionψ is for molecular orbital,
the exact MO solution is not provided from the above expressions.

4.6 The Variational Method and the Expectation Value

Taking back the Schrödinger equation Ĥψ = Eψ and pre-multiplying both sides
by ψ , we get ψĤψ = ψEψ . Energy E being a scalar value, ψĤψ = ψ2E . For
many electron systems a similar expression is obtained by integrating both sides in

a volume dτ :
∫
ψĤψ dτ = E

∫
ψ2 dτ

Or, energy:

E =

∫
ψĤψ dτ
∫
ψ2 dτ

(4.13)

When the Hamiltonian involved is exact, energy calculated from Eq. 4.13 will
also be exact. In the Hamiltonian each interaction term leads into a decrease in
energy. When the entire interactions are included, the corresponding Hamiltonian
will also be exact and minimum. But in all experiments, the calculated Hamiltonian
will be higher than the actual one due to the dropping or skipping of some unim-
portant interaction terms. Once we get the approximate energy, we can repeat the
experiment by modifying the Hamiltonian. It is a fundamental postulate of quan-
tum mechanics that E in Eq. 4.12 is the expectation value of the energy and will be
higher than the actual energy. By repeating the experiment, we will be generating
a number of expectation energies, out of which higher ones must be farther from the
true value than the lower one, so they are discarded. The identification of the energy
value close to the actual one involves a minimization process of calculated energy
from a set of basis functions. This principle is called the variational method. The
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ψ-value can further be modified by taking criteria other than energy. Note that in all
these criteria the variational principle is applied.

4.7 The Expectation Energy and the Hückel MO

From the LCAO possible in ethene, the ψ-value corresponding to Eq. 4.10 produces
an expectation energy value, E , given by Eq. 4.14.

E =

∫
(a1 p1 + a2p2)Ĥ(a1 p1 + a2 p2)dτ

∫
(a1 p1 + a2p2)2 dτ

(4.14)

E =

∫ [
a2

1(p1Ĥ p1)+ a1a2(p1Ĥ p2)+ a2a1(p2Ĥ p1)+ a2
2(p2Ĥ p2)

]
dτ

∫ [
a2

1 p1 p1 + 2a1a2 p1 p2 + a2
2p2 p2

]
dτ

(4.15)

The integrals included in Eq. 4.14 can be simplified as follows:
∫ (

p1Ĥ p1
)

dτ = α , known as the Coulomb integral.
∫

(p1Ĥ p2)dτ =
∫

(p2Ĥ p1)dτ = β ,
known as the exchange integral
or resonance integral.∫

p1 p1 dτ = S11 =
∫

p2 p2 dτ = S22 and
∫

p1 p2 dτ = S12 =
∫

p2 p1 dτ = S21

known as the overlap integral. With these simplified notations, the energy expression
can be written as Eq. 4.16:

E =
a2

1α+ 2a1a2β + a2
2α

a2
1S11 + 2a1a2S12 + a2

2S22
(4.16)

By knowing α , β , and S, the energy can be calculated. Setting the minimization
criterion with respect to some minimization parameters:

∂E
∂a1

=
∂E
∂a2

= 0 (4.17)

Here, instead of varying the trial function to find the minimum value of E , we need
to vary the linear coefficients. This is a relatively straightforward case of searching
for the minimum of a function. If N is the numerator, D is the denominator in the
energy expression, N′ is the first derivative of numerator and D′ is the first derivative
of the denominator, then:

∂E
∂a1

=
N′D−ED′

D2 =
N′ −ED′

D
= 0 (4.18)
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Or,

N′ −ED′ = 0

∂E
∂a1

=
N′D−ED′

D2 =
N′ −ED′

D
= 0

N′ −ED′ = 0

N′ = ED′ (4.19)

We get Eqs. 4.20 and 4.21:

a1α+ a2β = E (a1S11 + a2S12) (4.20)

a1β + a2α = E (a1S12 + a2S22) (4.21)

From Eq. 4.20:

a1α−Ea1S11 + a2β −Ea2S12 = 0

Or:

a1 (α−ES11)+ a2 (β −ES12) = 0 (4.22)

From Eq. 4.21:

a1β −Ea1S12 + a2α−Ea2S22 = 0

Or:

a1 (β −ES12)+ a2 (α−ES22) = 0 (4.23)

Moreover, it is assumed that wavefunctions p1 and p2 retain the orthonormality
condition even in the molecular state, i.e.:∫

p1 p2 dτ =
∫

p2 p1 dτ = 0 ,

Or

S12 = S21 = 0

and: ∫
p1 p1 dτ =

∫
p2 p2 dτ = 1

or:

S11 = S22 = 1 .

Substituting these approximations in Eqs. 4.22 and 4.23, we get:

a1 (α−E)+ a2β = 0 (4.24)

a2 (α−E)+ a1β = 0 (4.25)

These orthonormal equations are called secular equations. The coefficient matrix of
these equations is represented by Eq. 4.26:

[
(α−E) β

β (α−E)

]
(4.26)
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From this matrix, the solution to E is computationally simple as it is the eigenvalue
of the secular coefficient matrix. For ethene containing two sp2-hybridized carbon
atoms and two π-electrons, a 2× 2 matrix of the form of Eq. 4.26 is obtained. In
general, for a conjugated system keeping alternate double and single bonds contain-
ing n carbon atoms, an n×n coefficient matrix is obtained. Such an equation yields
n eigenvalues corresponding to n energy levels, known as the spectrum of energy
levels.

4.8 The Overlap Integral (Sij)

The overlap integral is given by the expression, Si j =
∫

pi p j dτ . If i = j, the overlap

integral, Sii =
∫

pi pi dτ = 1 for the normalized atomic orbitals. If i 
= j, the over-

lap integral, Si j =
∫

pi p j dτ = 0 for the orthogonal atomic orbitals. It is obvious

that the value of the overlap integral varies from zero to unity and is a measure
of the non-orthogonality of the orbitals. Orthogonal p-functions are independent
functions. Since p-functions of orbitals are widely separated in space and are inde-
pendent; these functions are expected to be orthogonal. The closer the centers of the
p-functions, the larger is the overlap integral. In this sense, Si j is called the overlap
integral since it is a measure of an overlapping of the orbitals i and j. In the usual
“zeroth” approximation of the LCAO method, Si j = 0 when, i 
= j. This simplifies
the computation to a large extent. A variation of Si j of different types of carbon
atoms is shown in Fig. 4.5.

Fig. 4.5 Variation of the overlap integral with different types of c-atoms
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4.9 The Coulomb Integral (ααα)

The Coulomb integral is: α =
∫

piĤ pi dτ . To a zeroth-order approximation, α , is

the Hamiltonian for the Coulomb energy of an electron with a wavefunction pi in
the field of atom i and influenced by its nucleus and is unaffected by any other nuclei
farther away. This approximation, of course, will be most valid where the surround-
ing atoms have no net electrical charges. The Coulomb integral α is a function of
the nuclear charge and the type of orbital. As it involves attraction, it is a negative
number.

4.10 The Resonance (Exchange) Integral (βββ )

The resonance (exchange) integral is a measure of the resonance or exchange and
it amounts to the energy of an electron in the fields of atoms i and j, involving the
wavefunctions pi and p j. It is a function of the atomic number, the orbital types, and
the degree of overlap. As it is a function of the degree of overlap, it is also a function
of the internuclear distance. In the zeroth order approximation, βi j is neglected if i
and j are not in the customary bond forming distance.

4.11 The Solution to the Secular Matrix

Eq. 4.25 is the coefficient matrix for the secular equations. Dividing elements of the

matrix by β , we get

[
(α−E)/β 1

1 (α−E)/β

]
. If (α−E)/β is put as x, the matrix

takes the form of: [
x 1
1 x

]
(4.27)

The solution to the above matrix can be made by expanding the corresponding
determinant (secular determinant) or by finding the eigenvalues and eigenvectors of
the matrix (secular matrix). For the equation set to be linearly dependent, the secular
determinant must be zero. Hence: ∣∣∣∣

x 1
1 x

∣∣∣∣= 0 (4.28)

Expanding the determinant:

x2 −1 = 0

x2 = 1

x = ±1
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The eigenvalues of this matrix can be computed using any scientific environment
such as MATLAB or MATHEMATICA. Working out the problem with MATLAB
is as follows:

>> syms x;
>> eig([x 1;1 x])

ans =
x-1
x+1

We get two eigenvalues to the secular coefficient matrix of ethene, (x = +1) and
(x = −1) where x = (α−E)/β .
Taking the first eigenvalue:

α−E
β

= x = 1 (4.29)

(α−E) = β
E = (α−β) (4.30)

Similarly, from the second eigenvalue:

α−E
β

= x = −1

(α−E) = −β
E = (α +β) (4.31)

On fixing the reference point of energy as α , we get energy eigenvalues of π-
electrons of ethene as one greater than β (antibonding) and the other less than β
(bonding). The energy level diagram of the π-MO of ethene is given in Fig. 4.6.

4.12 Generalization

The method can be generalized to conjugated systems of any size. The dimension
of the matrix is the number of atoms in the π-conjugated system. Label the carbon
atoms from one end if it is an open chain compound. Otherwise, labeling can be
started from anywhere and be continued until the cycle is completed. Let us take the
three-carbon system allyl [CH2=CH−CH2−] as our next example. With labeling,

the system can be represented as

[
C
1

H2=C
2

H−C
3

H2−
]

. Here, we get a 3×3 matrix

as the secular coefficient matrix. Elements in the matrix are based on the following
rules:

1. Each period stands for the connectivity of the corresponding atom.
2. In each period the reference atom is labeled as x (i = j positions of the matrix).
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Fig. 4.6 Hückel’s MO of ethene

3. If i 
= j, and if the corresponding atom is connected to the respective reference
atom, put 1 as the element.

4. If i 
= j, and if the corresponding atom is not connected to the respective refer-
ence atom, put 0 as the element.

For the allyl system, the secular matrix will be as follows:
⎡
⎣

x 1 0
1 x 1
0 1 x

⎤
⎦ (4.32)

The determination of the eigenvalues of the matrix suggests three MOs for the allyl
system with energy values, E = α ,E = α +β

√
2 and E = α −β

√
2, in which the

lowest energy level will be occupied with two electrons obtained from unhybridized
orbitals of two carbon atoms.

Now, let us take 1,3-butadiene (CH2=CH−CH=CH2). The molecule can be la-
beled as C

1
H2 = C

2
H−C

3
H=C

4
H2. The secular coefficient matrix of the molecule is

a 4×4 matrix as given in Eq. 4.33:
⎡
⎢⎢⎣

x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

⎤
⎥⎥⎦ (4.33)

Eigenvalues of the matrix are calculated to get the spectrum of energies. Four eigen-
values are obtained for the matrix with x = (α −E)/β values −1.6180, − 0.6180,
+0.6180, +1.6180.
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4.13 The Eigenvector Calculation of the Secular Matrix

The expansion of any molecular orbital over a basis set φk, ψ = ∑
k

akφk leads to

a set of arbitrary expansion coefficients ak, which we optimize by imposing the con-

ditions of optimization,
∂E
∂a1

=
∂E
∂a2

=
∂E
∂a3

= . . . =
∂E
∂ak

= . . . =
∂E
∂an

= 0, to find the

energy minimum in an n-dimensional vector space by calculating the eigenvector.
The eigenvector calculation using MATLAB is quite simple. The entries are given
as follows:

>> A=[0 1 0;1 0 1;0 1 0];
>> [V,D] = eig(A)

V =
0.5000 -0.7071 0.5000

-0.7071 0.0000 0.7071
0.5000 0.7071 0.5000

D =
-1.4142 0 0

0 -0.0000 0
0 0 1.4142

The elements of the diagonal in the d matrix correspond to the eigenvalues. The
eigenvector of the matrix with −1.414 as the eigenvalue is:

⎡
⎣

0.5000
−0.7071
0.5000

⎤
⎦

The eigenvector of the matrix with 0 as the eigenvalue is:
⎡
⎣
−0.7071
0.0000
0.7071

⎤
⎦ .

4.14 The Chemical Applications of Hückel’s MOT

The Hückel results show some interesting features for conjugated hydrocarbons
keeping alternate double and single bonds [2, 3]:

1. The orbital energies are in pairs of equal magnitude and opposite signs. This
means that if there is an odd number of orbitals, there must be an orbital energy
of zero (a non-bonding orbital) that pairs with itself. (An example is the benzyl
radical in Table 4.1).
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Table 4.1 Benzyl radical with electrons in the molecular orbital

Number Orbital Energy Number of Electronic
electrons energy

1 MO-1 2.101 2 4.202
2 MO-2 1.258 2 2.518
3 MO-3 1.000 2 2.000
4 MO-4 0.000 1 0.000
5 MO-5 −1.000 0 0.000
6 MO-6 −1.259 0 0.000
7 MO-7 −2.101 0 0.000

Total energy 8.720

2. For the pairs of orbitals the coefficients are also paired. For a given atomic or-
bital, the coefficients in the two molecular orbitals are equal in magnitude. For
one set of atoms (“starred” or “non-starred”) the coefficients are equal; for the
other set of atoms (“non-starred” or “starred”) the coefficients are of opposite
signs.

3. The charge densities are all unity, so the Hückel theory predicts that conjugated
hydrocarbons are nonpolar.

4. The spin densities in the output refer to the density of the odd electron in the
+ve (carbocation) and −ve (carbanion) ions formed by removing or adding an
electron to the molecule. The spin densities of the +ve and −ve ions for hydro-
carbons are equal, since they are just the squares of the coefficients in the highest
occupied and lowest unoccupied molecular orbitals which are a pair of orbitals.
To a first approximation, the electron spin resonance (ESR) spectrum depends
on these spin densities, so the Hückel theory predicts that the ESR spectrum of
the +ve and −ve ions of conjugated hydrocarbons are equal. Experimentally,
they are very similar.

4.15 Charge Density

Eigenvectors can be transformed into derived quantities that give us a better, intu-
itive sense of how HMO calculations relate to the physical properties of molecules.
One of these quantities is the charge density. The magnitude of the coefficient of an
orbital ai j at a carbon atom ci gives the relative amplitude of the wavefunction at that
atom. The square of the wavefunction is a probability function; hence, the square of
the eigenvector coefficient gives a relative probability of finding the electron within
an orbital j near a carbon atom i. This is a measure of the relative charge density,
too, because a point in the molecule at which there is a high probability of finding
electrons is a point of a large negative charge density and a portion of the molecule
at which electrons are not likely to be found is positively charged, relative to the rest
of the molecule. There may be one or two electrons in an orbital (N = 1, N = 2).
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Unoccupied (virtual) orbitals make, of course, no contribution to the charge density.
To obtain the total charge density qi at atom ci we must sum over all occupied or
partially occupied orbitals and subtract the result from 1.0, the π-charge density of
the carbon atom alone:

qi =
(
1−∑Na2

i

)
(4.34)

Where∑Na2
i is the total electron density at ci. As, for example, in allyl carbocation(

CH2=CH−CH⊕
2

)
, the Hückel MOT was followed to generate the charge density.

The eigenvalues and eigenvectors of the system can be computed using MATLAB
as follows:

>> A=[0 1 0;1 0 1;0 1 0];
>> [V,D]=eig(A)

V =
0.5000 -0.7071 0.5000

-0.7071 0.0000 0.7071
0.5000 0.7071 0.5000

D =
-1.4142 0 0

0 -0.0000 0
0 0 1.4142

From the above output data, the eigenvector corresponding to the eigenvalue of

1.4142 is:

⎡
⎣

0.5000
0.7071
0.5000

⎤
⎦.

With these values, the system can be labeled as follows:
(

C
0.5000

H2 = C
0.7071

H− C
0.5000

H⊕
2

)

The charge density in each atom can be calculated based on Eq. 4.35. The prob-
abilities of the charge (due to two electrons) to be on the three carbon atoms are
calculated as follows:

q1 = 1−2(0.5)2 = 1−0.5 = 0.5 (4.35)

q2 = 1−2(0.7071)2 = 1−0.9999 = 0.0000 (4.36)

q3 = 1−2(0.5)2 = 1−0.5 = 0.5 (4.37)

The energy level spectrum of the cation is included in Fig. 4.7. Remember that β− is
a negative energy and that is why (α+1.414β) level is the lowest energy level. The
two end carbon atoms carry equal charges. This suggests that the positive charge is
delocalized between the two end carbon atoms. This sort of delocalization of charge
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Fig. 4.7 Energy level spec-
trum of allyl carbocation

is an autostabilization technique. Similarly allyl carbanion, (CH2=CH−CH−
2 ), has

4 electrons to be arranged in the same energy levels. Hence:

qi = q3 = 1−2(0.5)2−2(0.7071)2 = 1−0.5−1 = −0.5

and

q2 = 1−2(0.7071)2− (0.000)2 = 0.0000 .

4.16 The Hückel (4n + 2) Rule and Aromaticity

Recall that the interaction (overlap) of two atomic orbitals leads to a more stable
(lower E) bonding MO and a less stable (higher E) antibonding MO, compared to
the energies of original atomic orbitals [4]. The number of new molecular orbitals
is equal to the number of atomic orbitals involved (the linear combination). The
relative stability or energies of the molecular orbital in a fully conjugated, cyclic,
planar polyene can be effectively predicted with the Hückel MOT. A stable species
should have closed shell p-electron configurations, that is, no unpaired molecular
orbital. This concept can be extended to predict the stability of such a species, as,
for example, the stability of benzene can be predicted as follows. A Frost diagram
and a comparison of stability is included in Fig. 4.8. Entries in MATLAB to generate
eigenvalues and eigenvectors of benzene are given below:

>> A=[0 1 0 0 0 1;1 0 1 0 0 0;0 1 0 1 0 0;0 0 1 0 1 0;0 0 0 1 0 1;
1 0 0 0 1 0];

>> [V,D]=eig(A)

V =
0.4082 -0.2887 -0.5000 0.5000 0.2887 -0.4082
-0.4082 -0.2887 0.5000 0.5000 -0.2887 -0.4082
0.4082 0.5774 0 0 -0.5774 -0.4082
-0.4082 -0.2887 -0.5000 -0.5000 -0.2887 -0.4082
0.4082 -0.2887 0.5000 -0.5000 0.2887 -0.4082
-0.4082 0.5774 0 0 0.5774 -0.4082
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Fig. 4.8 Frost diagram and stability of benzene

D =
-2.0000 0 0 0 0 0

0 -1.0000 0 0 0 0
0 0 -1.0000 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 2.0000

We can correlate π-electron energy and stability by the following procedure:

1. If, on the ring closure, the π electron energy of an open chain polyene (alternat-
ing single and double bonds) decreases (increases in terms of β as it is negative)
the molecule is classified as aromatic: refer to Fig. 4.9 and Table 4.2. From the
table it is obvious that the ring closure of 1,3,5-hexatriene is favoured, and the
corresponding cyclic molecule (benzene) is aromatic.

2. If, on the ring closure, the π electron energy increases, (decreases in terms of β )
the molecule is classified as antiaromatic (Fig. 4.10). The computed values sug-
gest that the ring closure of 1,3-butadiene is associated with an increase in en-
ergy (Table 4.3) or the corresponding cyclic compound is nonaromatic.

Fig. 4.9 Ring closure of
1,3,5-hexatriene

Table 4.2 Comparisons of computed energies associated with ring closure of 1,3,5-hexatriene

Number Orbital Energy Number of electrons Electronic energy
Cyclic Open chain Cyclic Open chain Cyclic Open chain

1 MO-1 2.000 1.802 2 2 4.000 3.604
2 MO-2 1.000 1.247 2 2 2.000 2.494
3 MO-3 1.000 0.445 2 2 2.000 0.890
4 MO-4 −1.000 −0.445 0 0 0.000 0.000
5 MO-5 −1.000 −1.247 0 0 0.000 0.000
6 MO-6 −2.000 −1.802 0 0 0.000 0.000

Total energy in terms of beta negative energy 8.000 6.988
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Table 4.3 Comparison of computed energies associated with the ring closure of 1,3-butadiene

Number Orbital Energy Number of electrons Electronic energy
Cyclic Open chain Cyclic Open chain Cyclic Open chain

1 MO-1 2.000 1.618 2 2 4.000 3.236
2 MO-2 0.000 0.618 1 2 0.000 1.236
3 MO-3 0.000 −0.618 1 0 0.000 0.000
4 MO-4 −2.000 −1.618 0 0 0.000 0.000

Total energy in terms of beta negative energy 4.000 4.472

Fig. 4.10 Ring closure of
1,3-butadiene

3. If, on the ring closure, the π electron energy remains the same, the molecule is
classified as nonaromatic, e.g., 1,3,5,7-cyclooctatetraene (C8H8−COT).

4.17 The Delocalization Energy

We have seen that localized ethene provides a ground level energy of E = 2α+2β .
The next higher homologue propene (allyl radical) can be considered as an sp3-
hybridized carbon connected to the radical obtained from ethene. If we assume a lo-
calized double bond in propene, π-electron energy of propene will be the same as
that of ethene. With the delocalization of the double bond between three carbon
atoms, another π-electron energy is obtained. The difference in energy is the de-
localization energy. The delocalization of π-electrons stabilizes the molecule as is
evident from the energy values. The secular matrix for propene, neglecting the pos-
sibility for delocalization, will be:

[
x 1
1 x

]
(4.38)

Putting x = 0:
[

0 1
1 0

]
(4.39)

The secular matrix for propene (Table 4.5) providing the possibility for delocaliza-
tion, will be:

⎡
⎣

x 1 0
1 x 1
0 1 x

⎤
⎦ . (4.40)
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Table 4.4 Pi-electron energy calculation of propene without delocalization

Number Orbital Energy Number Electronic
of electrons energy

1 MO-1 1.000 2 2.000
2 MO-2 −1.000 0 0.000

Total energy in terms of beta negative energy 2.000

Table 4.5 Pi-electron energy calculation of propene with delocalization

Number Orbital Energy Number Electronic
of electrons energy

1 MO-1 1.414 2 2.828
2 MO-2 0.000 0 0.000
3 MO-3 −1.414 0 0.000

Total energy in β 2.828

For localized and delocalized 1,3-butadiene are given below and the corresponding
energies are tabulated in Table 4.6.

Table 4.6 Delocalization energy of 1,3-butadiene∗

Number Orbital Energy Number of electrons Electronic energy
Localized Delocalized Localized Delocalized Localized Delocalized

1 MO-1 1 1.618 2 2 2.000 3.236
2 MO-2 1 0.618 2 2 2.000 1.236
3 MO-3 −1 −0.618 0 0 0.000 0.000
4 MO-4 −1 −1.618 0 0 0.000 0.000

Total energy (in terms of β -negative energy) 4.000 4.472
∗ Obviously, the delocalization energy of 1,3-butadiene is 0.472 β .

Putting x = 0:
⎡
⎣

0 1 0
1 0 1
0 1 0

⎤
⎦ (4.41)

A summary of π-electron energy calculation is given in Table 4.4. The difference
in these two, 0.828 β , is the pi-electron delocalization energy of propene. Similarly,
we can find the delocalization energy of 1,3-butadiene.
⎡
⎢⎢⎣

x 1 0 0
1 x 0 0
0 0 x 1
0 0 1 x

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

⎤
⎥⎥⎦

Localized Delocalized
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4.18 Energy Levels and Spectrum

Hückel’s MOT is a convenient method of expressing the energy levels generated by
the p-orbitals of carbon atoms. Energies will be in units of β relative to α . The en-
ergy of α can be arbitrarily standardized as zero. From this the lowest unoccupied
molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) can be
identified. The molecular energy level with the same energy as α is known as the
nonbonding molecular orbital, the molecular energy level with a higher energy than
α is known as the antibonding molecular orbital, and the molecular energy level
with a lower energy than α is known as the bonding molecular orbital. The energy
level diagram obtained is sometimes referred to as an energy level spectrum. From
the energy level diagram, probable spectral lines caused by π → π∗ electronic tran-
sitions can be predicted. Usually it is the transition from the HOMO to LUMO, is
most often of interest. In the case of butadiene, this process is depicted in Fig. 4.11.
As can be seen, the energy difference between the HOMO and the LUMO is:

α−1.414β − (α+1.414β ) = −2.828β .

But by Planck’s equation

ΔE = hυ =
hc
λ

(4.42)

Or, wavelength:

λ =
hc
ΔE

(4.43)

Assuming the value of β− to be − 2.7 eV =
(−2.7×1.602×10−19

)
J., the wave-

length of the transition is expected to be: (β− can be taken as equal to −2.7 eV =(−2.7×1.602×10−19
)
J).:

λ =
hc
ΔE

=
6.626×10−34×3×108

−2.828β
=

6.626×10−34×3×108

−2.828× (−2.7×1.602×10−19)

= 1.6286×10−7 m = 162.8×10−9 m = 162.8 nm

Thus, the value of the lowest energy absorption allyl group is predicted to lie in the
vacuum UV [5]; a very energetic photon would be necessary to excite this electron.
Unfortunately, the correct answer is closer to 400 nm, but the fact that we can get
this close is pretty amazing. Also, it is highly dependent on the method used to
determine β .
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Fig. 4.11 π → π∗ electronic transition spectrum of 1,3-butadiene

4.19 Wave Functions

The following illustrative example clearly shows the application of Hückel’s method
to determine the wavefunction of a conjugated system. 1,3-butadiene is taken as the
example.

4.19.1 Step 1: Writing the Secular Matrix

The molecule is C
1

H2=C
2

H−C
3

H=C
4

H2. Hence, the secular matrix can be expressed

as follows: ⎡
⎢⎢⎣

x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

⎤
⎥⎥⎦ (4.44)

4.19.2 Step 2: Solving the Secular Matrix

4.19.2.1 Method 1

Find the eigenvalue expressions and solve them by putting them as zero to get the
values of x. Using MATLAB, the problem is worked out as follows:

>> syms x;
>> A= [ x 1 0 0 ;1 x 1 0;0 1 x 1; 0 0 1 x];
>> eig (A)
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ans =
-1/2*5^(1/2)+1/2+x
1/2+1/2*5^(1/2)+x
-1/2*5^(1/2)-1/2+x
-1/2+1/2*5^(1/2)+x

On solving these equations, we get x as x = ±1.61804 and x = ±0.61804. Eigen-
vectors corresponding to these eigenvalues represent the coefficients.

4.19.2.2 Method 2

This system of equations has a nontrivial solution only if its determinant is equal to
zero, which leads to the HMO determinantal equation for butadiene:

∣∣∣∣∣∣∣∣

x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

∣∣∣∣∣∣∣∣
= 0 (4.45)

⇒ x

∣∣∣∣∣∣
x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣
−
∣∣∣∣∣∣
1 1 0
0 x 1
0 1 x

∣∣∣∣∣∣
⇒ x(x3 −2x)− (x2−1)

= x4 −3x2 + 1 = 0 (4.46)

This quartic equation can be converted into a quadratic equation by putting u = x2.
Then equation becomes:

u2 −3u + 1 = 0 (4.47)

Hence:

u =
3±√

5
2

= 2.618 & 0.382 .

Or x = ±
√

3 +
√

5
2

& ±
√

3−√
5

2

x = ±0.61804 and x = ±1.61804 .

The Hückel molecular orbital energy scheme for butadiene is given in Fig. 4.12.
The delocalized wavefunctions of butadiene can be represented as follows:

ψbutadiene = c1 p1 + c2 p2 + c3 p3 + c4 p4 (4.48)

To calculate cn values we can proceed as follows. We obtain the ratios
cn

c1
by

Eqs. 4.49 and 4.50:

cn

c1
=

(cofactor)n

(cofactor)1
; n = odd . (4.49)
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Fig. 4.12 HMO energy scheme for butadiene

cn

c1
= − (cofactor)n

(cofactor)1
; n = even (4.50)

For butadiene, the cofactor ratios are determined as follows:

c1

c1
= +

∣∣∣∣∣∣
x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣∣∣∣∣∣∣
x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣

= 1 ;
c2

c1
= −

∣∣∣∣∣∣
1 1 0
0 x 1
0 1 x

∣∣∣∣∣∣∣∣∣∣∣∣
x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣

= −
(
x2 −1

)
(x3 −2x)

;

c3

c1
= +

∣∣∣∣∣∣
1 x 0
0 1 1
0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣
x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣

=
x

(x3 −2x)
=

1
(x2 −2)

;
c4

c1
= −

∣∣∣∣∣∣
1 x 1
0 1 x
0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
x 1 0
1 x 1
0 1 x

∣∣∣∣∣∣

= − 1
(x3 −2x)

.

Substituting the values of x, the cofactor ratios can be computed. The calculations
are tabulated in Table 4.7. Here, cn is obtained as the quotient of (cn/c1) divided

by
√
∑(cn/c1)

2. The denominator is 2.6900 for x = −1.61804 and 1.6625 for
x = −0.61804. Wavefunctions can be written directly from the cofactor values:

ψ1 = 0.3717p1 + 0.6015p2 + 0.6015p3 + 0.3717p4 (4.51)

ψ2 = 0.6015p1 + 0.3717p2−0.3717p3−0.6015p4 (4.52)

Similarly, from the other two values of x,s two more wavefunctions are obtained:

ψ3 = 0.6015p1−0.3717p2−0.3717p3 + 0.6015p4 (4.53)

ψ4 = 0.3717p1−0.6015p2 + 0.6015p3−0.3717p4 . (4.54)
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Table 4.7 Cofactor ratio computation

n (Cn/C1) (Cn/C1)2 Cn

x = −1.61804 x = −0.61804 x = −1.61804 x = −0.61804 x = −1.61804 x = −0.61804

1 1.0000 1.0000 1.0000 1.0000 0.3717 0.6015
2 1.6180 0.6180 2.6180 0.3819 0.6015 0.3717
3 1.6180 −0.6180 2.6180 0.3819 0.6015 −0.3717
4 1.0000 −1.0000 1.0000 1.0000 0.3715 −0.6015

Table 4.8 The coefficients of wavefunctions of butadiene

MO Atom 1 Atom 2 Atom 3 Atom 4

MO 1 0.3717 0.6015 0.6015 0.3717
MO 2 0.6015 0.3717 −0.3717 −0.6015
MO 3 0.6015 −0.3717 −0.3717 0.6015
MO 4 0.3717 −0.6015 0.6015 −0.3717

Total energy of pi-electrons:

2(α + 0.61804β)+ 2(α + 1.61804β) = (4α+ 4.47216β) . (4.55)

4.20 Bond Order

The pi-bond order is a measure of pi-electron density between carbon atoms in
a compound. It is the number (quantity) of pi-bonds established between the atoms.
If Cj and Ck are the connecting carbon atoms, N is the number of electrons in a single
orbital (1 or 2), ai jand aik are the coefficients (eigenvectors) then bond orders:

Pjk =∑Nai jaik . (4.56)

The bond order thus calculated is known as the mobile bond order or the Coulson
bond order. As an example, The coefficients of the wavefunction of butadiene are
given in Table 4.8. Only the first two molecular orbitals are occupied (with 2 elec-
trons each). Hence, the bond order in the molecule C

1
H2=C

2
H−C

3
H=C

4
H2 can be

computed as follows.
The pi-bond order between carbon atoms 1 and 2 = P12:

=(2×0.3717×0.6015)+ (2×0.6015×0.3717)
=(0.4472 + 0.4472)= 0.8944

Similarly, the pi-bond order between carbon atoms 2 and 3= P23

= (2×0.6015×0.6015)+ (2×0.3717×−0.3717)
= (0.7236−0.2763)= 0.4473
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Fig. 4.13 Bond order representation of butadiene

And the pi-bond order between carbon atoms 3 and 4 = P34

= (2×0.6015×0.3717)+ (2×−0.3717×−0.6015)
= (0.4472 + 0.4472)= 0.8944 .

If we take σ -bond order between carbon atoms to be one each, the bond order rep-
resentation of butadiene can be represented as follows (Fig. 4.13).

The Coulson pi-bond order calculation helps to make a check on the calculated
pi-bond energy. The pi-bond energy is as follows:

Eπ = 2β
(
∑Pi j

)
+ Nα . (4.57)

For 1, 3-butadiene, the pi-bond energy is:

Eπ = 2β (2×0.8944 + 0.4473)+ 4α = (4α + 4.4722β) .

This value is in close agreement with the calculated pi-bond energy in the previous
section.

4.21 The Free Valence Index

The free valence index is a measure of chemical reactivity. The measurement of
the free valence index involves the determination of the degree that the atoms in
a molecule are bonded to adjacent atoms relative to their theoretical maximum bond-
ing power. Coulson [1] defines the free valence index, Fr as follows:

Fr = (Nmax,maximum possible bonding power of ith atom )−∑Pi j . (4.58)

Where ∑Pi j is the sum of the bond orders of all bonds to the ith atom including
σ -bonds. In a trimethylene methane system (Fig. 4.14) with the central carbon sp2-
hybridized, the Coulson is calculated Nmax as the sum of the sigma bond order and
the pi-bond order and is equal to

(
3 +

√
3
)

= 4.732. For butadiene (Fig. 4.15), each
carbon atom makes use of 3 sigma bonds; the pi-bond orders for different carbon
atoms have been calculated earlier. With these values the free valence index of dif-
ferent carbon atoms can be computed. These values are tabulated in Table 4.9. From
these values we can presume that butadiene could well be more reactive to neutral
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Fig. 4.14 Trimethylene
methane

Fig. 4.15 Nature of bonding in butadiene

Table 4.9 Free valence index calculation of butadiene

Carbon sigma pi Total Fr =(
∑Pi j

) (
4.732−∑Pi j

)

1 3 0.8944 3.8944 0.8376
2 3 1.3417 4.3417 0.3903
3 3 1.3417 4.3417 0.3903
4 3 0.8944 3.8944 0.8376

nonpolar reagents, such as free radicals, at the 1 and 4 carbons, than at the 2 and
3 carbons. Neutral nonpolar reagents are specified here so as to avoid charge distri-
bution effects. The free valence index values of some free radicals and alkenes are
included in Fig. 4.16.
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Fig. 4.16 Free valence index
of alkenes and organic radi-
cals

4.22 Molecules with Nonbonding Molecular Orbitals

A conjugated system carrying an odd number of π-electron centers will be keeping
nonbonding molecular orbitals (NBMOs). The NBMO coefficients determine the
calculated distribution of the odd electron in the radical and the charges in the cation
and anion intermediates that could be developed. We shall illustrate this application
by taking a benzyl radical (Fig. 4.17). The calculated energy values for all molecular
orbitals are tabulated in Table 4.10.

The coefficients of orbitals of the NBMO (Table 4.11) clearly show that the odd
electron is delocalized. The squares of the coefficients give the electron density. If

Fig. 4.17 Benzyl radical

Table 4.10 Energy values of molecular orbitals of the benzyl radical

Orbital Electrons Energy

MO-1 2 α+2.101β
MO-2 2 α+1.259β
MO-3 2 α+β
MO-4 1 α
MO-5 0 α−β
M0-6 0 α−1.259β
M0-7 0 α−2.101β
Total 7 α+8.721β
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Table 4.11 Electron density calculation of the NBMO of the benzyl radical

Atom-1 Atom-2 Atom-3 Atom-4 Atom-5 Atom-6 Atom-7

Coefficients NBMO 0.000 0.378 0.000 −0.378 0.000 0.378 −!0.756
Square of coefficients 0.000 0.143 0.000 0.143 0.000 0.143 0.572
% electron density 0.000 14.300 0.000 14.300 0.000 14.300 57.200

an electron is added to get an anion, or an electron is removed to get the cation, the
effect remains the same as the changes take place only to the NBMO.

This can very effectively predict the directive property of the monosubstituents
like ortho-para or the metadirecting and activation or deactivation effect associated
with substitution.

4.23 The Prediction of Chemical Reactivity

The Hückel theory can be used to make predictions regarding electrophilic and nu-
cleophilic substitution reaction possibilities. An electrophile is a species in search
of electron density. The Hückel theory can tell us to identify the carbon atom in
a molecule with the most accessible electron density. The highest energy level is the
most accessible, and the corresponding electrons will be found in the HOMO. We
must remember that the electrons in an orbital are spread across all of the atoms in
the molecule in proportion to the square of the coefficients multiplying their respec-
tive atomic orbitals. Therefore, the carbon atom P orbital with the largest squared
coefficient in the HOMO will be the atom most likely to undergo electrophilic aro-
matic substitution. On the other hand, nucleophilic substitution involves the dona-
tion of electron density to the molecule by a nucleophile. The corresponding election
density will most likely to be in the empty MO of the lowest energy, the LUMO.
The carbon atom with the largest squared coefficient in the LUMO, once again, will
be the site best able to accept the donated electron density and will therefore be
the site of nucleophilic substitution. The coefficients and squares of the coefficients
of the HOMO and LUMO Hückel molecular orbitals are recorded in Table 4.12.
Hence, in this molecule (Fig. 4.18), positions 1,4,5 and 8 are more susceptible for
electrophilic substitution as well as for nucleophilic substitution.

Fig. 4.18 Naphthaleine



82 4 Hückel Molecular Orbital Theory

Table 4.12 LUMO and HOMO coefficients and electron densities of naphthaleine

Atom-1 Atom-2 Atom-3 Atom-4 Atom-5 Atom-6 Atom-7 Atom-8 Atom-9 Atom-10

Coefficients
HOMO

0.425 0.263 −0.263 −0.425 0.425 0.263 −0.263 −0.425 0.000 0.000

Coefficients
LUMO

0.425 −0.263 −0.263 0.425 −0.425 0.263 0.263 −0.425 0.000 0.000

Square of
coefficients
of HOMO

0.181 0.069 0.069 0.181 0.181 0.069 0.069 0.181 0.000 0.000

Square of
coefficients
of LUMO

0.181 0.069 0.069 0.181 0.181 0.069 0.069 0.181 0.000 0.000

4.24 The HMO and Symmetry

In symmetric molecules, the HMOs will also keep well defined symmetry proper-
ties. If two atoms, 1 and 2, are symmetrically equivalent, then the coefficients for
the 2pπ atomic orbitals on these atoms are related as:

C1 = ±C2 (4.59)

For example, trans-butadiene belongs to the C2h point group with symmetry ele-
ments: E , C2, i, σh. In the molecule (Fig. 4.15), atoms 1 and 4 are symmetrically
related. Similarly, atoms 2 and 3 are also related. When we compare their coeffi-
cients (Table 4.8), Eq. 4.59 can be visualized. Moreover, the respective bond orders
are also equal. HMO wavefunctions can be written as:

φ1 = 0.372χ1 + 0.602χ2 + 0.602χ3 + 0.372χ4 (4.60)

φ2 = 0.602χ1 + 0.372χ2−0.372χ3−0.602χ4 (4.61)

φ3 = 0.602χ1−0.372χ2−0.372χ3 + 0.602χ4 (4.62)

φ4 = 0.372χ1−0.602χ2 + 0.602χ3−0.372χ4 (4.63)

where χi is the atomic orbital wavefunction of the ith atom. By group theory, each
HMO belongs to a definite irreducible representation of the point group of the
molecule. Let us verify this on the example of trans-butadiene. Firstly, we need
to establish the results of the action of the C2h symmetry elements on all the atomic
orbitals. The effect of various symmetry operations to the 2pπ-HMO system can be
studied. Let us see the effect of identity operation on the function (Fig. 4.19).

From the figure it is clear that Êφ1 = φ1. When the molecule is subjected to Ĉ2

operation, each 2pπ-orbital is rotated by 180◦ along the C2 axis of rotation as shown
in Fig. 4.20.

Ĉ2φ1 = 0.372
(
Ĉ2χ1

)
+ 0.602

(
Ĉ2χ2

)
+ 0.602

(
Ĉ2χ3

)
+ 0.372

(
Ĉ2χ4

)
(4.64)
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Fig. 4.19 Effect of identity operation on trans-butadiene

Fig. 4.20 Effect of C2 axis of rotation on trans-butadiene

But, Ĉ2χ1 = χ4, Ĉ2χ2 = χ3, Ĉ2χ3 = χ2 and Ĉ2χ4 = χ1. The third symmetry operation
is inversion (Fig. 4.21). The operation on the HMO can be represented as:

îφ1 = 0.372
(
îχ1
)
+ 0.602

(
îχ2
)
+ 0.602

(
îχ3
)
+ 0.372

(
îχ4
)

(4.65)

But, îχ1 = −χ4, îχ2 = −χ3, îχ3 = χ2 and îχ4 = −χ1.
Now the molecule is subjected to the last element of symmetry, σh (Fig. 4.22):

σ̂hφ1 = 0.372(σ̂hχ1)+ 0.602(σ̂hχ2)+ 0.602(σ̂hχ3)+ 0.372(σ̂hχ4) (4.66)

It is clear that σ̂hχ1 =−χ1, σ̂hχ2 =−χ2, σ̂hχ3 =−χ3 and σ̂hχ4 =−χ4. Thus, as
a result of the action of the symmetry operations Ê,Ĉ2, î and σ̂h on φ1, the orbital is

Fig. 4.21 Effect of inversion operation on butadiene
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Fig. 4.22 Effect of reflection operation on butadiene

multiplied by the numbers 1, 1, −1, −1, respectively. These numbers are the charac-
ters of the irreducible representation Au of C2h. This shows that φ1 belongs to the ir-
reducible representation Au of C2h point group (Table 4.13). Similarly, we can set the
irreducible representations for φ2, φ3 and φ4 as Bg,Au, and Bg, respectively. Lower-
case symbols for the irreducible representations are often used to denote molecular
orbitals. If there is more than one orbital belonging to an irreducible representation,
the symbols are preceded by numbers, starting from the lower-energy orbitals. Thus,
the HMOs φ1, φ2, φ3 and φ4 can be designated as 1au,1bg,2au and 2bg.

The symmetries of the orbitals can be used to decide whether the electronic tran-
sitions are allowed or forbidden. If the dipole moment vector is not zero, the transi-
tion is allowed, else it is forbidden.

μx = −e
∫
φfinalxφinitial dτ (4.67)

μy = −e
∫
φfinalyφinitial dτ (4.68)

μz = −e
∫
φfinalzφinitial dτ (4.69)

In general, the integral of a product of three functions over space
∫

f1 f2 f3 dτ is

non zero, or if the product of irreducible representations of f1, f2 and f3 contains
the totally symmetric irreducible representation (with all eigenvalues equal to one),
then the corresponding transition is allowed. Thus for butadiene, allowed transi-
tions are φ2 → φ3 (1bg → 2au) and φ1 → φ4 (1au → 2bg)and the forbidden transi-
tions are φ2 → φ4 (1bg → 2bg) and φ1 → φ3 (1au → 2au). Group theory can also be
used in order to simplify the HMO secular equations for symmetric molecules. This
is achieved by employing symmetry-adapted linear combinations of AOs (SALCs)
rather than AOs when constructing HMOs. Thus, the HMO determinantal equation
is replaced by two or more equations involving smaller determinants which are eas-
ier to solve.
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Table 4.13 Character table for C2h

C2h E C2 i σh Linear functions, Quadratic
rotations functions

Ag +1 +1 +1 +1 Rz x2,y2, z2,xy
Bg +1 −1 +1 −1 Rx,Ry xz,yz
Au +1 +1 −1 −1 z
Bu +1 −1 −1 +1 x,y

4.25 Molecules Containing Heteroatoms

The HMO calculations of molecules containing heteroatoms can be done in a similar
manner. In the Hamiltonian matrix, appropriate values for α and β values have to
be put. This can be computed with the help of the equations. For a bond xy:

βxy = kxyβ (4.70)

For an atom x :

αx = α + hxβ (4.71)

kxy and hx values are available. Table 4.14 gives these values for common computa-
tions. It is to be noted that number of π-electrons in the molecule is no longer equal
to the number of atoms. The values of k now have to be input for all bonds. For
C−C bonds, k = 1. We have to substitute the values of h and k in Eq. 4.70 to get the
corresponding α and β values.

As for example, in acrolein (CH2=CH−CH=O), the determinant will be:
∣∣∣∣∣∣∣∣

α−E β 0 0
β α−E β 0
0 β α−E β

√
2

0 0 β
√

2 α + 2β −E

∣∣∣∣∣∣∣∣
= 0 (4.72)

Table 4.14 Values of h and k for common systems

Element h k

Nitrogen N 0.5 C−N 0.8
N 1.5 C−N 1.0
N 2.0 N−O 0.7

Oxygen O 1.0 C−O 0.8
O 2.0 C=O 1.0
O 2.5

Chlorine Cl 2.0 C−Cl 0.4
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Table 4.15 Coefficients of the MOs of acrolein

Atom 1 Atom 2 Atom 3 Atom 4

MO-1 0.083 0.207 0.433 0.874
MO-2 0.567 0.691 0.276 −0.354
MO-3 0.684 −0.150 −0.651 0.293
MO-4 0.452 −0.676 0.559 −0.160

Substituting appropriate values:
∣∣∣∣∣∣∣∣

0.0 1.0 0.0 0.0
1.0 0.0 1.0 0.0
0.0 1.0 0.0 1.0
0.0 0.0 1.0 2.0

∣∣∣∣∣∣∣∣
= 0 (4.73)

The coefficients of corresponding atomic orbitals can be computed, as we have
seen in hydrocarbons. For acrolein, these values are tabulated in Table 4.15.

4.26 The Extended Hückel Method

The Extended Hückel Molecular Orbital Method (EHM) [6] grew out of the need to
consider all valence electrons in a molecular orbital calculation. By considering all
valence electrons, we could compute the molecular structure, the energy barriers for
the rotation about bonds, and even determine the energies and structures of transition
states for reactions.

The electronic wavefunction is taken as the product of a valence wavefunction
and a core wavefunction and can be written as Eq. 4.74:

ψTotal = φCore +φValence (4.74)

The total valence electron wavefunction is described as a product of the one-electron
wavefunctions:

φValence = ψ1(1)ψ2(2)ψ3(3) . . .ψ j(n) (4.75)

where n is the number of electrons and j identifies the molecular orbital. Each
molecular orbital again is given as an LCAO.

ψ j =
N

∑
r=1

c jrφr (4.76)

φr are the valance atomic orbitals chosen to include the 2s, 2px, 2py, and 2pz of the
carbons and heteroatoms in the molecule and the 1s orbitals of the hydrogen atoms.
The set of orbitals defined here is called a basis set. Since this basis set contains only
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the atomic-like orbitals for the valence shell of the atoms in a molecule, it is called
a minimal basis set. We shall see more on basis sets in Chap. 5. We can deduce
a matrix equation for all the molecular orbitals as in Eq. 4.77.

HC = SCE (4.77)

where H is a square matrix containing the Hrs, the one electron energy integrals,
and C is the matrix of coefficients for the atomic orbitals. Each column in C is the
C′ that defines one molecular orbital in terms of the basis functions. In the extended
Hückel theory, the overlap is not neglected, and S is the matrix of overlap integrals.
E is the diagonal matrix of orbital energies. All of these are square matrices with
a size that equals the number of atomic orbitals used in the LCAO for the molecule
under consideration. Similar to Hückel molecular orbital theory, Eq. 4.76 stands
for an eigenvalue problem. For any extended Hückel calculation, we need to set
up these matrices and then find the eigenvalues and eigenvectors. The eigenvalues
are the orbital energies, and the eigenvectors are the atomic orbital coefficients that
define the molecular orbital in terms of the basis functions.

The elements of the H matrix are assigned using experimental data, which makes
the method a semi-empirical molecular orbital method. The off-diagonal Hamilto-
nian matrix elements are given by an approximation due to Wolfsberg and Helmholz
that relates them to the diagonal elements and the overlap matrix element:

Hi j =
1
2

K (Hii + Hj j)Si j (4.78)

The rationale for this expression is that the energy should be proportional to
the energy of the atomic orbitals, and should be greater when the overlap of the
atomic orbitals is greater. The contribution of these effects to the energy is scaled
by the parameter K. Hoffmann assigned the value of K as 1.75 after a study of
the effect of this parameter on the energies of the occupied orbitals of ethane. The
Hiiare chosen as valence state ionization potentials with a minus sign (Table 4.16)
to indicate binding.

It is common in many theoretical studies to use the extended Hückel molecular
orbitals as a preliminary step to determining the molecular orbitals by a more sophis-
ticated method, such as the CNDO/2 method and ab initio quantum chemistry meth-
ods. This leads to the determination of more accurate structures and electronic prop-
erties. A recent program for the extended Hückel method is YAeHMOP which stands
for “yet another extended Hückel molecular orbital package”. The extended Hückel
method can be used for determining the molecular orbitals, but it is not very success-
ful in determining the structural geometry of an organic molecule. It can, however,
determine the relative energy of different geometrical configurations. It involves cal-
culations of the electronic interactions in a rather simple way, where the electron-
electron repulsions are not explicitly included and the total energy is just a sum of
terms for each electron in the molecule. Hückel Molecular Orbital Calculator 2.0 is
software which is available free, and which can compute the MO energy calculation
from the following site: http://web.uccs.edu/danderso/huckel/huckel_setup.exe.
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Table 4.16 Hii values from the ionization potential∗

Bonding Ionization Hii values
site potential (eV) (eV)

H-1s 13.60 −13.60
C-2s 21.40 −21.40
C-2p 11.40 −11.40
N-2s 25.58 −25.58
N-2p 13.90 −13.90
O-2s 32.38 −32.38
O-2p 15.85 −15.85
F-2s 40.20 −40.20
F-2p 18.66 −18.66

∗(These parameters are available at http://www.op.titech.ac.jp/lab/mori/EHTB/EHTB.html)

4.27 Exercises

1. Calculate the molecular orbital energy levels (eigenvalues) and coefficients
(eigenvectors) for the following p systems, each possessing four p orbitals
(Fig. 4.23).

Fig. 4.23 Four p-orbital systems

2. Using the Hückel Carbon program:

a. Compare the total p energies and the p bond orders in 1,3,5-hexatriene and
3-methylene-1,4-pentadiene (Fig. 4.24). What can you conclude about the
effects of branching in a conjugated pi-system?

Fig. 4.24 1,3,5-hexatriene and 3-methylene-1,4-pentadiene

b. The following bicyclic compounds (Fig. 4.25) all have ten p-electrons.
i. Which of them exhibit aromatic stabilization?
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Fig. 4.25 Bicyclic compounds

ii. What unusual property of azulene is predicted by the calculations?
iii. Why is the a position in naphthalene more reactive toward electrophilic

aromatic substitution than the b position?

3. Using the Hückel Hetero program:

a. Predict the effects of electron donating and withdrawing groups on elec-
trophilic and nucleophilic reactions of the double bond, by comparing the
appropriate HOMO and LUMO energy levels and orbitals in aminoethy-
lene, ethylene, and acrolein (Fig. 4.26). Indicate which would be more re-
active toward electrophiles, and which toward nucleophiles, and explain the
regiochemistry of the reactions.

Fig. 4.26 Aminoethylene, ethylene, and acrolein

b. Draw the molecular orbitals of formaldehyde, formamide, and urea
(Fig. 4.28). Compare the delocalization energies, electron densities, and
bond orders. (There is no delocalization energy for formaldehyde; rather,
the p energy you calculate will serve as the localized energy for a pair of
electrons in a C=O bond.) On the basis of these values, discuss the VB
structures that can be written for each of these systems and show how these
results are in accord with the well-known properties of the molecules (such
as the fact that protonation occurs on O rather than N, and that there is lim-
ited rotation about the C−N bond).

Fig. 4.27 Formaldehyde, formamide, and urea

c. Borazole (Fig. 4.28) is an interesting analog of an aromatic system, and in
fact has been called “inorganic benzene”. Compare the HDE for this system
with that for benzene and comment on the possible aromatic character of
borazole.
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Fig. 4.28 Borazole

d. Compare the stabilities of furan and pyrrole with that of the cyclopentadi-
enyl anion (Fig. 4.29). Is the Hückel 4n + 2 rule valid for heterocycles?

Fig. 4.29 Furan, pyrrole, and
cyclopentadienyl anion

4. Predict the aromaticities of:

a. 16 annulene (Fig. 4.30)

Fig. 4.30 16 annulene

b. Cyclobutadiene
c. Cyclopentadienylanion

5. Which of the following reactions (Fig. 4.31) leads to a stable species?

Fig. 4.31 Identifying a stable
species

6. Why is 1,3,5,7-cyclooctatetraene(C8H8−COT) non-planar? Why is the molecule
readily reduced to the planar COT dianion (C8H−2

8 ), whereas COT has alternat-
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ing carbon-carbon bonds of about 1.35 and 1.48 Å, and the dianion has a single
distance of about 1.40 Å? Account for this.

7. Calculate the delocalization energies of carbocation, carbanion, and the free rad-
ical obtained from propene.

8. Find the delocalization energy of benzene.
9. Describe the structure and basis set, then generate the molecular orbitals and

energy level diagram for the molecular orbital of cyclo-butadiene. How do your
results vary from those of butadiene? Predict also the wavelength of its lowest
energy electronic absorption.

10. Solve the Hückel problem for benzene. This time you don’t have to generate the
molecular orbitals, just the X vector and MOs matrix. Construct the energy level
diagram for the molecular orbitals and insert electrons into your diagram.

11. Solve the Hückel problem for methylene cyclopentadiene. This time you don’t
have to generate the molecular orbitals, just the X vector and the MO matrix.
Construct the energy level diagram for the molecular orbitals and insert elec-
trons into your diagram. Predict also the wavelength of its lowest energy ab-
sorption.

12. For anthracene with the proper numbering, generate the MO matrix and the X
vector. Predict the carbon atom(s) most likely to be the site for electrophilic aro-
matic substitution. Also, predict the site(s) for nucleophilic substitution. Predict
the wavelength for the lowest energy absorption in the UV-visible region of the
electromagnetic spectrum.

13. How is the pi-electron energy of ethyne (acetylene) calculated?
14. Derive the pi-electron wavefunctions of benzene and cyclopentadienyl anion.
15. Calculate the pi-electron energy levels and the wavefunctions of bicycle butadi-

ene.
16. Calculate the mobile bond orders for bicycle butadiene.
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Chapter 5
Hartree-Fock Theory

5.1 Introduction

We have seen a quantum mechanical computation with a lower level of accuracy.
In a molecular orbital consisting of many electrons the wavefunctions become very
complex. Since the electrons in a molecule are negatively charged, they repel each
other, which clearly affects their motion. Over a period of time they may even share
the same region of space providing maximum repulsive forces. Hence, at any instant,
there is a strong tendency for the electrons to avoid each other, minimizing the re-
pulsive force and thereby stabilizing the system. As a result their motions are highly
correlated. The difficulty of finding a wavefunction for a large number of correlated
electrons is one of the fundamental challenges of modern computational chemistry.
The starting point of computation for most of the methods in quantum chemistry is
to introduce the approximation that the motion of the particles is not correlated, and
to develop a wavefunction for these independent particles. This approximation is
known as the independent particle (4.3) approximation. These particles may still in-
teract, but each particle experiences not an instantaneous interaction with the other
particles. The interaction changes as the electrons move (which will complicate its
motion). An interaction of particle resulting from a messy representation of the av-
eraged position of all other particles can be included. When this approximation is
made, the problem of finding a wavefunction for the complex systems is simplified.
It is now made up of individual wavefunctions – one for each particle. Although
we know that the independent particle approximation on which they are based is
often a serious oversimplification, in many cases these individual wavefunctions are
found to provide a great deal of insight into the chemical behavior of a molecule.

5.2 The Hartree Method

The Hartree method is a single electron approximation technique used in multi-
electron systems. The molecular Hamiltonian is split up into individual single elec-
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tron Hamiltonians. Consider a molecular system with N-electrons, each with de-
grees of freedom ri. The wavefunction (Hartree function) ψh(r1,r2, . . . ,rN) is given
by the Hartree product as shown in Eq. 5.1:

ψh(r1,r2, . . . ,rN) = φ1 (r1) .φ2 (r2) . . .φN (rN) . (5.1)

The Hamiltonian can be computed based on this concept. For the n-electron system,
the Hamiltonian is given by:

Ĥe = T̂e + V̂ne + V̂ee + V̂nn (5.2)[
Where, T̂e =

n

∑
i=1

−∇2
i

2
,V̂ne =

n

∑
i

N

∑
A

−ZA

riA
V̂ee =

n

∑
i

n

∑
j

1
ri j

= ĝi j

and V̂nn =
N

∑
A

N

∑
B>A

ZA ZB

RAB

]

Here A and B are for representing the nuclei, i and j are for representing electrons,
Z is the nuclear charge, T̂ is the kinetic energy operator, and V̂ the potential energy
operator. Or, the Hamiltonian is written as:

Ĥ =
n

∑
i=1

−∇2
i

2
+

n

∑
i

N

∑
A

−ZA

riA
+

n

∑
i

n

∑
j

1
ri j

+
N

∑
A

N

∑
B>A

ZA ZB

RAB
(5.3)

Here, V̂nn is independent of electronic coordinators. T̂e and V̂ne depend upon one-
electron coordinators.

T̂e + V̂ne =
n

∑
i=1

−∇2
i

2
+

n

∑
i

N

∑
A

−ZA

riA
=

n

∑
i=1

(
−∇2

i

2
+

N

∑
A

−ZA

riA

)
=

n

∑
i=1

ĥi (5.4)

Finally there is a term V̂ee, which is the sum of n(n−1)/2 two-electron coordinators.
Hence, the Hamiltonian becomes:

Ĥ =
N

∑
A

N

∑
B>A

ZA ZB

RAB
+

n

∑
i=1

ĥi +
n

∑
i

n

∑
j>i

1
ri j

(5.5)

Substituting this Hamiltonian expression in the energy equation:

E =
∫
ψ

[
N

∑
A

N

∑
B>A

ZAZB

RAB

]
ψ dx +

∫
ψ

[
n

∑
i=1

ĥi

]
ψ dx +

∫
ψ

[
n

∑
i

n

∑
j>i

1
rij

]
ψ dx (5.6)

The first term of the integral stands for nuclear-nuclear repulsion and is the inte-
gral over a constant (independent of coordinates). Hence:

VNN =
∫
ψ

[
N

∑
A

N

∑
B>A

ZAZB

RAB

]
ψ dx =

[
N

∑
A

N

∑
B>A

ZAZB

RAB

]
(5.7)
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The second and third terms of Eq. 5.10 include integrals of sums, which can be
written as sums of integrals. The second integral expression can be written as:

n

∑
i=1

[∫
ψ ĥiψ dx

]
=

n

∑
i=1

[∫
χiĥiχi dτ

]
=

n

∑
i=1

hii (5.8)

hii =
∫
φiĥiφi dτ =

∫
φi

[
−∇2

i

2
+

N

∑
A

−ZA

riA

]
φi dτ

=
∫
φi

[−∇2
i

2

]
φi dτ+

∫
φi

[
N

∑
A

−ZA

riA

]
φi dτ =

n

∑
i=1

hii

n

∑
i=1

hii =
n

∑
i=1

[Te,i +VNe,i] = Te +VNe (5.9)

Te is the electronic kinetic energy, and VNe is the potential energy due to nuclear-
electronic Coulombic attraction. The third integral terms, and the two-electron terms
are more complicated. In the Hartree treatment, the molecular orbital is considered
as the product of single electron orbitals. Thus:

ψ(r1,r2, . . .) = φ(r1)φ(r2) . . . . (5.10)

Each orbital is calculated for one electron moving in an average field of the nuclei
and all other electrons.

〈
Π
∣∣ĝij
∣∣Π〉=

〈
[φ1(1)φ2(2) . . .φN(N)]

∣∣ĝij
∣∣ [φ1(1)φ2(2) . . .φN(N)]

〉

=
〈
φ1(1)φ2(2)

∣∣ĝij
∣∣φ1(1)φ2(2)

〉 〈φ3(3) |φ3(3) 〉 . . .〈φN(N) |φN(N) 〉
=
〈
φ1(1)φ2(2)

∣∣ĝij
∣∣φ1(1)φ2(2)

〉
= J12 (5.11)

J12 is known as the Coulomb integral [1]. It represents the classical repulsion
between two charge distributions φ2

1 (1) and φ2
2 (2). It is to be noted that the square

of the orbital function is a measure of the electronic or charge distribution. The
Coulomb repulsion corresponding to a particular distance between the reference
electron x1 and another electron x2 is weighted by a probability that the other elec-
tron is at that point in space. The results of the application of the Coulomb integral
on a spin orbital depend only on the orbital function. Hence, the corresponding po-
tential and operator are named as “local”. Because 1/r is always positive, and φ2 is
a probability measure, this term contributes a positive energy, i.e., a destabilization.
In general, the Coulomb integral can be written as:

Jij =
〈
φi (1)φ j (2)

∣∣∣∣
1

r12

∣∣∣∣φi (1)φ j (2)
〉

(5.12)

With these generalizations, the Hamiltonian for a helium atom with one nucleus
and two electrons is given by the expression:

ĤHe =
n

∑
i=1

ĥi +
n

∑
i

n

∑
j>i

1
rij

=
n

∑
i=1

ĥi + Jij = ĥ1 + ĥ2 + J12 (5.13)

[
Here the nuclear repulsion

N

∑
A

N

∑
B>A

ZAZB

RAB
is zero.

]
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5.3 Bosons and Fermions

A quantum state of electrons can be well explained by spatial and spin coordinates.
In this procedure, orbital functions are determined through the spatial position and
the spin of electrons. Separating the spatial and spin functions, the orbital function
can be written as:

Φ(x,y,z,s) = Φ(x,y,z) ×σs (5.14)

Here Φ(x,y,x) stands for the position of electron in space and σs for the electronic
spin. Hence, electrons present in an orbital may be symmetric with the spatial and
spin functions identical or antisymmetric with the spin function alone. With this con-
dition, all particles in nature can be classified as either bosons or fermions. Bosons
are particles with integer spin. Higgs boson, pion, 1H1 and 4He2 in ground state
are examples of bosons with spin 0. 1H1 and 4He2 in first excited state, ρ-meson,
photon, W and Z bosons and gluons are examples of bosons with spin 1. Similarly,
16O8 in ground state and graviton are with spin 2.

Fermions are particles with half-integer spin. Examples: spin 1/2 →3 He2 in
ground state, proton, neutron, quark, electron, and neutrino, spin 3/2 →5 He2 in
ground state and Δ -baryons (excitations of the proton and neutron). Excitations will
change the spin only by an integer amount. The basic building blocks of atoms are
all fermions; composite particles (nuclei, atoms, molecules) made of an odd number
of protons, neutrons, and electrons are also fermions, whereas those made of an even
number are bosons. Fermions obey the Pauli’s exclusion principle. (No two fermions
will occupy the same quantum state). This is the basis of atomic structure and the
periodic table. There is no exclusion property for bosons, which are free to crowd
into the same quantum state. This explains the spectrum of black-body radiation and
the operation of lasers, the properties of liquid and superconductors.

In an orbital, electronic spin is quantized by ±1/2. The complete orbital func-
tion is generally known as spinorbital function. Pauli’s exclusion principle further
restricts electron exchange in an orbital [2]. Such an exchange should be associ-
ated with making the spin opposite without making any change in the spatial part
or the part corresponding to principal, azimuthal, and magnetic quantum levels. The
exchange is hence antisymmetric. The notation for orbitals is sometimes changed
from the spatial orbital representation, φ(r), to the spin orbital function, χ(x). The
spin orbital function is:

χ (x) = φ (r,ω) , (5.15)

where, ω is the spin function.

5.4 Spin Multiplicity

The spin multiplicity of a system is given by the equation, x = (2S + 1), where S is
the total spin of the system. A paired orbital contributes zero to the total spin as the
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+1/2 spin given by the α-electron is nullified by the −1/2 spin given by the β -
electron. Each unpaired electron contributes +1/2 to the total spin. Thus, a system
with no unpaired orbital will have a spin multiplicity of 1(singlet), a system with
one half filled orbital will have a multiplicity of two (doublet), a system with two
unpaired orbitals will have a multiplicity of three (triplet), and so on.

5.5 The Slater Determinant

For many electron systems represented by the wavefunction
∣∣∣ψ(x1,x2,...,xi,x j ,...,xN) dx1, dx2, . . . , dxi, dx j, . . . , dxN

∣∣∣ ,

the probability of finding N-electrons in a volume element

dτ = x1,x2, . . . ,xi,x j, . . . ,xN

is given by

∫
. . .

∫ ∣∣∣ψ(x1,x2,...,xi,x j ,...,xN)

∣∣∣
2

dx1, dx2, . . . , dxi, dx j, . . . , dxN

and it should be unity. This is a consequence of the normalization condition of the
avefunction. If coordinates of any two electrons are interchanged, then also the prob-
ability should remain the same. That is:

∫
. . .

∫ ∣∣∣ψ(x1,x2,...,xi,x j ,...,xN)

∣∣∣
2

dx1, dx2, . . . , dxi, dx j, . . . , dxN =
∫

. . .

∫ ∣∣∣ψ(x1,x2,...,x j ,xi,...,xN)

∣∣∣
2

dx1, dx2, . . . , dx j, dxi, . . . , dxN (5.16)

Bear in mind that here the coordinates of i and j are interchanged. Hence, the func-
tional change possible during the exchange of electrons is only a spin change. Slater
made a correlation between the spinorbital property and the determinant property by
noting the characteristic properties of determinants. A determinant vanishes if two
rows or columns are identical (the determinant is zero) and when rows or columns
are interchanged, the determinant changes its sign. Hence, if spinorbitals are arrayed
as a determinant, Pauli’s exclusion principle can be well accommodated in it. For
a two electron orbital system with electrons 1 and 2, and with spins α and β , the
spinorbital function is written as:

Φ(1,2) =
∣∣∣∣
φ(1,α) φ(2,α)
φ(1,β ) φ(2,β )

∣∣∣∣ (5.17)
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This allows only the antisymmetric combination:

Φ(1,2) =
[
φ(1,α).φ(2,β )−φ(1,β ).φ(2,α)

]
(5.18)

and not the symmetric combination:

Φ(1,2) =
[
φ(1,α).φ(2,β ) +φ(1,β ).φ(2,α)

]
(5.19)

Such a determinant providing spinorbital property is known as the Slater deter-
minant. The Hamiltonian set according to the above spinorbital function need not
be close to the actual wavefunction. However, based on the variational principle, the
process of approaching the spinorbital function to the real wavefunction will be as-
sociated with a decrease in energy. The Hamiltonian operator for the wavefunction
can be written as:

〈ŝ〉 =
∫

. . .

∫
ψ∗

trial/ŝ/ψtrial (5.20)

By Dirac bracket notation, it can be written as:

〈ŝ〉 ≡ 〈ψ∗
trial/ŝ/ψtrial〉 (5.21)

In the above Eq. 5.21, ψ∗
trial is the complex conjugate of ψtrial. Based on the

variational principle the computed energy will be an upper bound to true energy.
Hence:

〈ψtrial/ŝ/ψtrial〉 = Etrial ≥ Ereal =
〈
ψreal/Ĥ/ψreal

〉
. (5.22)

In this expression, the complex conjugate term is avoided. Similar to

Φ =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

φ1 (x1) φ2 (x1) . . . φN (x1)

φ1 (x2) φ2 (x2) . . . φN (x2)

. . . . . . . . . . . .

φ1 (xN) φ2 (xN) . . . φN (xN)

∣∣∣∣∣∣∣∣∣∣∣∣

(5.23)

ψreal, ψtrial should also be finite, continuous and single-valued. If lower accepted
energy results from n-functions, then the energy is said to be n-fold degenerate.
Keeping in mind all the above requirements of a function, the N-electron system
can be represented by the Slater determinant as given in Eq. 5.23. Here, each one-
electron function φi (xi) stands for a spinorbital, and the pre-determinant factor is the
normalization factor for the function. Generally, such a determinant can be simply
represented with only the diagonal elements as given below:

Φ = Â [φ1(1).φ2(2) . . .φN(N)] = ÂΠ , (5.24)
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where Π is the determinant diagonal product and Â is the antisymmetrizer:

Â =
1√
N!

N−1

∑
p=0

(−1)pP̂ =
1√
N!

[
1−∑

ij
P̂ij +∑

ijk

P̂ijk − . . .

]
(5.25)

P̂ is a permutation operator, P̂ij permutes two electrons, P̂ijk permutes three electrons,
and so on. It is to be noted that ψreal is not a real function, while it is the function
of another function. Such a function is named as functional. We shall see details of
functionals in density functional theory.

5.6 Properties of the Slater Determinant

General properties of the Slater determinant with the perspective of the present con-
text can be summarized as follows [3]:

1. It allows only antisymmetric electronic exchange within an orbital.
2. Two electrons present in an orbital should have opposite spin. If the spins were

identical, then the Slater determinant would be: Φ(1,2) =
∣∣∣∣
φ(1,α) φ(2,α)
φ(1,β ) φ(2,β )

∣∣∣∣, which

on simplifying, we get zero. Hence, the Slater determinant wavefunction van-
ishes if the electrons have identical spin.

3. The wavefunction set according to Pauli’s exclusion principle are said to be
antisymmetrized.

4. Molecular orbital is obtained by the linear combination of atomic orbitals
(LCAO). Hence, it is possible to have an approximation of molecular orbitals
by considering them as made out of linear combination of antisymmetrized de-
terminantal wavefunctions. Columns are one-electron wavefunctions, molecular
orbitals. Rows contain the electron coordinates.

5.7 The Hartree-Fock Equation

The Hartree-Fock (HF) method is the most common ab initio method that is im-
plemented in nearly every computational chemistry program. It is a modification
to the Hartree treatment, which we have seen earlier. Here, we describe the many-
electron wavefunction as an antisymmetrized product (the Slater determinant) of
one-electron wavefunctions. Each electron moves independently in the spin orbital
space and it experiences a Coulombic repulsion due to the average positions of elec-
trons. It experiences exchange interaction due to antisymmetrization.
We have seen earlier that a one electron spinorbital integral is:

〈
φi/ô/φ j

〉
= 〈i/ô/ j〉 =

∫
φi (x1) ôriφ j(x1)dx1 (5.26)
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Similarly, a two-electron integral can be written as:

[φiφ j/φkφl ] = [ij/kl]

=
∫ ∫

φi(x1)φ j(x1)
1

r12
φk(x2)dx1 dx2 (5.27)

Here the square bracket is normally used to indicate that it is a functional and
not a function. Whenever we want to determine the expectation value of a quantum
operator, we multiply to the left with the conjugate complex of the wavefunction
and integrate over the entire space. If the function is written as ψHF and the corre-
sponding energy as EHF, then the Schrödinger equation can be written as:

〈
ψHF/Ĥ/ψHF

〉
= 〈ψHF/EHF/ψHF〉

=
〈
ψHF/Ĥ/ψHF

〉
= EHF 〈ψHF/ψHF〉 (5.28)

Or

EHF =

〈
ψHF/Ĥ/ψHF

〉
〈ψHF/ψHF〉 (5.29)

If ψHF is known to us, EHF can be easily calculated. Now, we shall see the
method to calculate ψHF.The variational theorem tells us that the correct wavefunc-
tion among all possible Slater determinants is the one for which EHF is minimal:

Emin =
〈
ψHF/Ĥ/ψHF

〉
<
〈
ψ/Ĥelectron/ψ

〉
(5.30)

That means that in order to find the HF wavefunction, we have to minimize the
energy expression EHF with respect to changes in the one electron orbitals φ1 →
φ1 +δφ1 from which we construct the Slater determinantΦ . The set of one-electron
orbitals φi for which we obtain the lowest energy are the HF orbitals or the solutions
to the HF equations. We know that the spin functions are orthonormal. That means:

〈α/β 〉 = 〈β/α〉 = 0 (5.31)

〈α/α〉 = 〈β/β 〉 = 1 (5.32)

Equations 5.31 and 5.32 together can be simplified as follows:
〈
φi/φ j

〉
= δij (5.33)

where δij stands for the Krönecker delta which can have values 1 for i = j and 0
otherwise.

Hence, the energy expression becomes:

EHF =
〈
ψHF/Ĥ/ψHF

〉
(5.34)

The HF function is an antisymmetrized orbital function introducing the exchange
function Kij in the Hamiltonian. Kij can be computed as follows:
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〈
Π
∣∣ĝij
∣∣ P̂12Π

〉
=
〈
φ1(1)φ2(2)

∣∣ĝij
∣∣φ2(2)φ1(1)

〉〈φ3(3) |φ3(3)〉 . . . 〈φN(N) |φN(N) 〉
=
〈
φ1(1)φ2(2)

∣∣ĝij
∣∣φ2(2)φ1(1)

〉
= K12 (5.35)

Here K12 stands for the exchange integral. It does not have any classical analogue.
The name exchange integral comes from the fact that the two electrons exchange
their positions from the left to the right of the integrand. This suggests, correctly,
that it has something to do with the Pauli’s principle. It corresponds to the exchange
of electrons in two-spin orbitals. The function depends upon all points in space as
it depends upon the position of other electrons in space. Hence, the corresponding
potential and operator are said to be nonlocal. The corresponding function is respon-
sible for the formation of chemical bonds. The exchange integral (Kij) is given by
Eq. 5.21:

Kij =
〈
φi(1)φ j(2)

∣∣∣∣
1

r12

∣∣∣∣φi(2)φ j(1)
〉

(5.36)

However, in the derived expressions, the antisymmetrization effect should be
there, somewhere. In fact, the exchange integrals “correct” the Coulomb integrals
to maintain the antisymmetry of the wavefunction. We saw that the electrons (es-
pecially those of the same spin) tend to avoid each other rather more in the Slater
determinant model than in the Hartree product model, so the Coulomb integrals
should exaggerate the Coulomb repulsion of the electrons. The exchange integrals,
which are negative, compensate for this exaggeration. In the integral term, if i = j,
the expression leads to the potential due to the Coulomb interaction of an electron
with itself. Hence, even if we compute the energy of a one-electron system, the
equation gives a non-zero exchange potential. However, the HF scheme eliminates
the possibility of error caused due to this self-interaction. If i = j, the Coulomb and
exchange integrals cancel each other as they have the same value with the opposite
sign. This cancels the effect of self-interaction.

For a two-electron system like helium energy, the expression becomes:

ĤHe = ĥ1 + ĥ2 + J12 ±K12 (5.37)

The exchange of electrons may be associated with an increase or decrease in energy
and stability. Hence, the exchange function can be written as:

ψ± (r1,r2) =
1√
2

(φ∗
1 (r1)φ∗

2 (r2)±φ1 (r1)φ2 (r2)) (5.38)

The HF equation may lead in to an increase or decrease in energy from the
Hartree energy calculation. The spin correlation between electrons of the same spin
leads to an increase in energy, while the correlation between electrons of opposite
spin leads to a decrease in energy. As the decrease in energy is a stabilization con-
dition favored by nature, electronic spins of an orbital are specified as the opposite
(Pauli’s exclusion principle). With this condition, the sign of Kij becomes negative.
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The overall contribution to the total energy of the potential energy due to the
electronic–electronic Coulombic repulsion Vee is therefore given as a difference of
two terms:

Vee = Jee −Kee =
n

∑
i

n

∑
j

(Jee −Kee) (5.39)

Overall, the energy of a Slater determinant is given by adding up all the terms dis-
cussed above. For the general case with matrix elements expressed as spin orbitals,
one reaches the following expression:

E = VNN +
nelectrons

∑
i=1

hii +
nelectrons

∑
i

nelectrons

∑
j

(Jee −Kee) (5.40)

For a closed-shell system (a spin singlet where all the occupied orbitals have two
electrons in them) with n-orbitals, the energy expression can be written as:

E = VNN + 2
norbitals

∑
i=1

hii +
norbitals

∑
i

norbitals

∑
j

(2Jee −Kee) (5.41)

To apply the variational principle, the Coulomb and exchange integrals are writ-
ten as operators:

Ee =
N

∑
i=1

〈
φi
∣∣ĥi
∣∣φi
〉
+

1
2

N

∑
i

N

∑
j

(〈
φ j
∣∣Ĵi
∣∣φ j
〉− 〈φ j

∣∣K̂i
∣∣φ j
〉)

+VNN (5.42)

Where:

Ĵi
∣∣φ j(2) 〉 =

〈
φi(1) | ĝ12|φi(1)〉φ j(2)

〉
(5.43)

and:

K̂i
∣∣φ j(2)

〉
=
〈
φi(1)

∣∣ ĝ12|φ j(1)
〉
φi(2)

〉
(5.44)

The objective now is to find the best orbitals (φi, MOs) that minimize the energy
(or at least remain stationary with respect to further changes in φi) maintaining the
orthonormality of the orbitals. By the variational principle, the calculated energy
will be always higher than the actual ground state energy. Therefore, we wish to
find the set of molecular orbitals that minimizes the value of E . Since

〈
ψ/Ĥ/ψ

〉
is stationary with respect to small variations in the molecular orbitals, δφ at the
minimum, and since 〈ψ/ψ〉must remain constant with a small δφ , then “Lagrange’s
method of undetermined multipliers” may be used to derive the expression [4]. In
terms of molecular orbitals, the Lagrange function can be written as:

L = E −
N

∑
ij
λij
(〈
φi
∣∣φ j
〉− δij

)
(5.45)

δL = δE −
N

∑
ij

λij
(〈
δφi

∣∣φ j
〉
+
〈
φi
∣∣δφ j

〉)
= 0 (5.46)
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The change in L with respect to very small changes in φi should be zero. Hence,
the change in the energy with respect changes in φi becomes:

δE =
N

∑
i=1

(〈
δφi

∣∣ĥi |φi
〉
+
〈
φi
∣∣ĥi |δφi

〉)

+
N

∑
ij

(〈
δφi

∣∣Ĵ j − K̂j |φi
〉
+
〈
φi
∣∣Ĵ j − K̂j |δφi

〉)
(5.47)

Now, we introduce a new operator, F̂i, known as the Fock operator, F̂i = ĥi +
N

∑
j

(
Ĵ j − K̂j

)
. This operator is an effective one-electron operator, associated with

the variation in the energy. Changing the energy expression in terms of the Fock
operator:

δE =
N

∑
i=1

(〈
δφi

∣∣F̂i |φi
〉
+
〈
φi
∣∣F̂i |δφi

〉)
(5.48)

and:

δL =
N

∑
i=1

(〈
δφi

∣∣F̂i |φi
〉
+
〈
φi
∣∣F̂i |δφi

〉)
+

N

∑
ij
λij
(〈
δφi

∣∣φ j
〉
+
〈
φi
∣∣δφ j

〉)
= 0

(5.49)

According to the variational principle, the best orbitals, φi, will make δL = 0.
With this substitution, and on rearrangement, we get a simple expression known as
the HF equation as given below.

F̂iφi =
N

∑
ij
λijφ j (5.50)

After unitary transformations, λij → 0 and λii → εi, HF equations in terms of
canonical MOs and diagonal Lagrange multipliers can be written as:

F̂iφ ′
i = εiφ ′

i (5.51)

The HF equations cast in this way, form a set of pseudo-eigenvalue equations.
A specific Fock orbital can only be determined once all the other occupied orbitals
are known. A specific Fock orbital can only be determined if all the other occupied
orbitals are known, and iterative methods must therefore be employed for determin-
ing the orbitals. A set of orbitals that is a solution to the HF equations (Eq. 5.51) are
called self-consistent field (SCF) orbitals [5].
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5.8 The Secular Determinant

The secular determinant equation for a multielectron system can be represented as:
∣∣∣∣∣∣∣∣

(H11 −S11E) (H12 −S12E) . . . (H1n −S1nE)
(H21 −S21E) (H22 −S22E) . . . (H2n −S2nE)

. . . . . . . . . . . .
(Hn1 −Sn1E) (H22 −S22E) . . . (Hnn −SnnE)

∣∣∣∣∣∣∣∣
= 0 (5.52)

We have seen earlier that Sij = 0 if i 
= j and Sij = 1 if i = j. That is, Sij is orthonor-
mal. Substituting the values of S, the secular determinant becomes:

∣∣∣∣∣∣∣∣

(H11 −E1) (H12) . . . (H1n)
(H21) (H22 −E2) . . . (H2n)
. . . . . . . . . . . .

(Hn1) (H22) . . . (Hnn −En)

∣∣∣∣∣∣∣∣
= 0 (5.53)

For a helium atom, the secular determinant can be written as:
∣∣∣∣
(H11 −E1) H12

H21 (H22 −E2)

∣∣∣∣= 0 (5.54)

where:

H11 = H22 = ĥ1 + ĥ2 − J12 (5.55)

H12 = H21 = K12 (5.56)

5.9 Restricted and Unrestricted HF Models

In a closed system or a fully filled orbital system, each level is occupied by two
electrons with opposite spins, whereas in an open-shell system there are partially
filled levels containing only one electron. If the number of electrons present in the
system is odd, it will be always an open-shell, as, for example, in an 7N atomic
system with the electronic configuration 1s2,2s2,2p1

x,2p1
y,2p1

z , three half filled or-
bitals are present. If the number of electrons present is even, the system needs not
be always closed-shell since there may be a degenerate orbital [apart from spin-
degeneracy] each containing one electron, as, for example, 2He with electronic con-
figuration 1s2 is a closed-shell atomic system while 8O with electronic configuration
1s2,2s2,2p2

x,2p1
y ,2p1

z , is an open-shell atomic system. When an electron is added
into a closed-shell system, interaction of this electron with the electrons already
present in the system will be different. The added electron will interact with electron
of the system keeping parallel spin only. In a closed-shell system, the orbitals can be
grouped in pairs with the same orbital dependence and orbital energy but with op-



5.9 Restricted and Unrestricted HF Models 105

posite spins (spin functions α and β ). The setting up of the HF model by imposing
the double occupancy principle is called the Restricted Hartree-Fock (RHF) model.
For an open-shell system orbital, pairing does not occur in any level of computation.
There are two possibilities for extending HF calculations to open-shell systems:

1. Strictly presuming that orbital pairing does not occur in any level. Each spinor-
bital is allowed to have its own spatial part. This type of modeling is known as
Unrestricted Hartree-Fock (UHF) modeling.

2. The RHF procedure is extended to spatial orbitals other than the orbitals which
are singly occupied. Modeling of this type (Fig. 5.1) is known as restricted open-
shell Hartree-Fock modeling (ROHF).

In UHF, Vα
HF and V β

HF orbitals will have different effective potentials. UHF affords
equations which are much simpler than that of ROHF. In UHF, wavefunctions are
composed of single Slater determinants, while in ROHF, wavefunctions are com-
posed of the linear combination of a few determinants, where the expansion coeffi-
cients are decided by symmetry of the state. However, the UHF Slater determinant
is not an eigenfunction of the total spin operator Ŝ2. The expectation value of spin〈
Ŝ2
〉

may be deviated from the actual value S(S + 1), where S is the spin quantum
number corresponding to the total spin of the system. The more the deviation, the
more will be the contamination in the determinant with functions corresponding to
states of higher spin multiplicity. Hence, in computational practice, the UHF ap-
proach may not be convenient. UHF and ROHF energy calculations for a nitrogen
atom using GAUSSIAN 03 reports energy values, E(UHF) = − 53.9601515933
and E(ROHF) = − 53.95988992129 (The complete input and output details can
be seen in the URL). For RHF/ROHF, α and β spins have the same spatial part.
Here, the wavefunction is an eigenfunction of the Ŝ2 operator. For open-shell sys-
tems, the unpaired electron interacts differently with α and β spins. The optimum
spatial orbitals are different. Restricted formalism is not suitable for spin dependent
properties. For UHF, α and β spins have different spatial parts. The wavefunction
is not an eigenfunction of the Ŝ2 function, and may be contaminated with states
of higher multiplicity (2S + 1). It yields qualitatively correct spin densities. Energy

Fig. 5.1 Comparison of computed energy with different types of HF calculations
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computed by UHF-method will be less than or equal to energy computed by the
RHF or ROHF methods, i.e., EUHF ≤ ERHF/ROHF. HF methods are the starting point
for more advanced calculations that include electron correlation.

5.10 The Fock Matrix

We have seen that one-electron orbitals obey the equation F̂iφi
′=εiφi

′, where F̂i is
the Fock operator given by the expression:

F̂i =
1
2
∇2

i −
Z
ri

+∑
j

2Ĵ j − K̂j (5.57)

The term∑
j

2Ĵ j − K̂j is known as the Fock matrix. In the actual procedure of the

computation, we make an initial guess of orbitals. From these orbitals, calculate the
Fock matrix (f matrix) from which identify the new orbitals and the procedure is
repeated in an iterative manner until we arrive at self consistency. The Fock matrix,
in fact, is a two-dimensional array, representing the electronic structure of an atom
or molecule.

5.11 Roothaan-Hall Equations

Roothaan-Hall equations are obtained by extending the concepts of the variational
principle and the linear combination of atomic orbitals (LCAOs) to the HF equa-
tion, which will be obtained through certain nonorthonormal basis set functions (ei-
ther Gaussian-type or Slater-type). Roothaan-Hall equations apply to closed-shell
molecules or atoms where all molecular orbitals or atomic orbitals are doubly occu-
pied. With a suitable set of basis sets (refer to Chap. 6), the function can be repre-
sented as:

φi =∑aijχ j (5.58)

By making use of this function, the HF equation takes the form of:

Fiφi = εi∑aijχ j (5.59)

where χ j are the linear combination of the basis function. Roothaan-Hall equations
are simultaneous equations of the type:

∑ (Fij − εiSij)aij = 0 (5.60)
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and can be generated as given below:

(F11 −S11ε1)a11 +(F12 −S12ε1)a12 + . . .+(F1n −S1nε1)a1n = 0

(F21 −S21ε2)a21 +(F22 −S22ε2)a22 + . . .+(F2n −S2nε2)a2n = 0 (5.61)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Fn1 −Sn1εn)an1 +(Fn2 −Sn2εn)an2 + . . .+(Fnn −Snnεn)ann = 0

In matrix notation, this can be represented as:
⎡
⎢⎢⎣

(F11 −S11ε1) (F12 −S12ε1) . . . (F1n −S1nε1)
(F21 −S21ε2) (F22 −S22ε2) . . . (F2n −S2nε2)

. . . . . . . . . . . .
(Fn1 −Sn1εn) (F22 −S22ε2) . . . (Fnn −Snnεn)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
an1 an2 . . . ann

⎤
⎥⎥⎦= 0 (5.62)

This can be simplified as:

(F −Sε)A = 0 (5.63)

FA = SAε (5.64)

This equation is similar to those we have seen in Chap. 4, along with Hückel’s MO
formation. Here, the Fock matrix replaces the Hückel matrix.

5.12 Elements of the Fock Matrix

We have seen a Roothaan equation (Eq. 5.60) in Chap. 5. To solve the equation, we
must express the Fock matrix elements [5] Frs in terms of basis functions χ :

Frs =
〈
χr(1)

∣∣F̂(1) |χs(1)
〉

=
〈
χr(1)

∣∣Ĥ |χs(1)
〉

+
n/2

∑
j=1

[
2
〈
χr(1)| Ĵ j(1)χs(1)

〉− 〈χr(1)| K̂j(1)χs(1)
〉]

(5.65)

Where the Coulomb operator,

Ĵ j(1)χs(1) = χs(1)
∫ φ∗

j (2)φ j(2)
r12

dv2

= χs(1)∑
t
∑
u

c∗t jcuj

∫ χ∗
t (2)χu(2)

r12
dv2 (5.66)

The expansion is done by considering the Roothaan spatial orbital as a set of one-

electron basis functions χs, φ j =
b

∑
s=1

csiχs.

Multiplying by χ∗
r (1) and integrating over the coordinates of electron 1:

〈
χr(1)

∣∣Ĵ j(1)χs(1)
〉

=∑
t
∑
u

c∗t jcuj

∫ ∫ χ∗
r (2)χu(2)

r12
dv1 dv2

=
b

∑
t=1

b

∑
u=1

c∗t jcuj(rs/tu) (5.67)
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The two-electron repulsion integral (rs/tu) is defined as:

(rs/tu) =
∫ ∫ χ∗

r (1)χs(1)χ∗
t (2)χu(2)

r12
dv1 dv2 (5.68)

Similarly, the exchange operator term becomes:

〈
χr(1)

∣∣K̂j(1)χs(1)
〉

=
b

∑
t=1

b

∑
u=1

c∗t jcuj(ru/ts) . (5.69)

Substituting the integral equations in the Fock equation, we get the Frs in terms
of basis functions:

Frs = Hcore
rs +

b

∑
t=1

b

∑
u=1

n/2

∑
j=1

c∗t jcuj [2(rs/tu)− (ru/ts)] (5.70)

Frs = Hcore
rs +

b

∑
t=1

b

∑
u=1

Ptu

[
(rs/tu)− 1

2
(ru/ts)

]
(5.71)

Hcore
rs =

〈
χr(1)

∣∣ ĤCore
∣∣χs(1)

〉
(5.72)

Ptu = 2
n/2

∑
j=1

c∗t jcuj (5.73)

(Here, t and u vary from 1 to b.)
Ptu are known as density matrix elements or charge bond order matrix elements.

For a many-electron molecular orbital wavefunction, the probability density func-
tion of each MO is given by:

ρ(x,y,z) =∑
j

n j
∣∣φ j
∣∣2 (5.74)

where n j is the number of electrons in φ j.
With these generalizations, the electron probability density for closed-shell sys-

tems becomes:

ρ = 2
n/2

∑
j=1

φ∗
j φ j = 2

b

∑
r=1

b

∑
s=1

n/2

∑
j=1

c∗r jcsiχ∗
r χs

= 2
b

∑
r=1

b

∑
s=1

Prsχ∗
r χs (5.75)

To express the HF energy of integrals over basis functions χ , we know that:

n/2

∑
i=1

εi =
n/2

∑
i=1

Hcore
ii +

n/2

∑
i=1

n/2

∑
j=1

(2Jij −Kij) (5.76)

or
n/2

∑
i=1

n/2

∑
j=1

(2Jij −Kij) =
n/2

∑
i=1

εi −
n/2

∑
i=1

Hcore
ii (5.77)
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Substituting this value in the HF equation:

EHF = 2
n/2

∑
i=1

εi −
n/2

∑
i=1

n/2

∑
j=1

(2Jij −Kij)+VNN (5.78)

= 2
n/2

∑
i=1

εi −
n/2

∑
i=1

εi +
n/2

∑
i=1

Hcore
ii +VNN =

EHF =
n/2

∑
i=1

εi +
n/2

∑
i=1

Hcore
ii +VNN (5.79)

Hcore
ii =

〈
φi
∣∣ Ĥcore

∣∣φi
〉

=∑
r
∑

s
c∗rissi

〈
χr
∣∣ Ĥcore

∣∣χs
〉

=∑
r
∑

s
c∗ricsiH

core
rs (5.80)

EHF =
n/2

∑
i=1

εi +∑
r
∑

s

n/2

∑
i=1

c∗ricsiH
core
rs +VNN (5.81)

EHF =
n/2

∑
i=1

εi +
1
2

b

∑
r=1

b

∑
s=1

PrsH
core
rs +VNN (5.82)

Another important expression can be derived in the following manner.
Multiplying F̂φi = εiφi by φ∗

i and integrating:

εi =
〈
φi
∣∣F̂∣∣φi

〉

Substituting the φ from basis sets, φi =
b

∑
s=1

csiχs

εi =∑
r
∑

s
c∗ricsi

〈
χr
∣∣F̂∣∣χs

〉
=∑

r
∑

s
c∗ricsiFrs (5.83)

we can write

n/2

∑
i=1

εi =
n/2

∑
i=1
∑
r
∑

s
c∗ricsiFrs =

1
2∑r ∑s

PrsFrs (5.84)

Substituting this value in EHF equation:

EHF =
1
2

b

∑
r=1

b

∑
s=1

Prs (Frs + Hcore
rs +VNN) (5.85)
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5.13 Steps for the HF Calculation

The various steps involved in an iterative HF computation are given below.

1. Giving the input data. This includes giving atomic coordinates, atomic numbers
of atoms and hidden parameters such as basis sets.

2. The construction of single particle and overlap matrices.
3. Transforming the overlap matrix into the unit form.
4. Making an initial guess for the density matrix.
5. Calculating Coulomb and exchange contributions.
6. Constructing the Fock matrix.
7. Solving the eigenvalue problem.
8. Constructing a new density matrix.
9. Performing a suitable convergence test such as the convergence of acceleration

after mixing or damping. Hence, Pnew
pq = αPlast

pq +(1−α)Pprevious
pq subject to 0 <

α < 1
10. Getting the final output.

Construction of the Fock matrix is a crucial step in the calculation of HF energy.
For higher systems, a high performance computing facility may be required.

5.14 Koopman’s Theorem

Two major characteristics of an atom or molecule that are very important to com-
putational chemists are the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital or the virtual orbitals (LUMO). Together, they
are called the frontier orbitals. The HOMO can be found by locating the outermost
orbital containing an electron. The LUMO is the first orbital that does not contain
an electron (Fig. 5.2). Koopman’s theorem can be used for the computation of ap-
proximate ionization energy.

By this theorem, for closed-shell systems, the first ionization energy is equal to
the energy of the HOMO. That is, the energy required to form the cation from the
system provided that the ionization process is adequately represented by the removal
of an electron from an orbital without change in the wavefunctions of the other elec-
trons. Similarly, electron affinity can be found as the negative of the energy of the
lowest unoccupied, i.e., virtual, orbital (the LUMO). Electron affinities calculated
via Koopman’s theorem are usually quite poor (Fig. 5.3).

5.15 Electron Correlation

We have seen approximation solutions to the real wavefunction. Hence, based on the
variational principle, the energy computed will be higher than the ground state en-
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Fig. 5.2 Frontier orbitals
(HOMOs and LUMOs)

Fig. 5.3 X-mark representing the calculated ionization energy according to Koopman’s theorem

ergy. The difference between these two energies is known as the correlation energy.
It is so named to reflect its origin in the correlated movement of electrons seeking
to retain as far from each other as possible. Hence, the final step in improving MO
calculations is to recover some of this correlation energy. These methods can be clas-
sified as wavefunction-based methods (configuration interaction, the Möller-Plesset
perturbation theory, and coupled cluster) and electron density based methods (den-
sity functional theory). These techniques will be introduced in subsequent chapters.
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5.16 Exercises

1. Compute and compare the potential energy curves for Dihydrogen with UHF
and RHF calculations.

2. Write the general Hamiltonian for a condensed-matter system and explain the
physical meaning of every summand. What is the main idea behind the Born-
Oppenheimer approximation?

3. Consider a hydrogen atom. The Hamiltonian for a hydrogen atom (acting on the

radial part of the function φ with the s-symmetry) reads: Ĥ =−1
2

1
r2

∂
∂ r

(
r2 ∂
∂ r

)

−1
r

. Choose a trial function in the following form: φG = exp
(−β r2

)
. Calculate

the average energy, then, making use of the variational principle, calculate the
minimum energy. Compare with the exact solution.

4. Write down the total multi-electron wavefunction for two electrons in terms of
single-electron functions. Consider different spin configurations. Explain what
the terms HOMO and LUMO mean.

5. Derive Hartree equations for a helium atom (with non-zero total spin).
6. Outline the HF method. Explain what closed/open-shell systems are. What is

the difference between restricted and unrestricted HF methods?
7. How can we calculate the ionization potential within the HF theory? What does

Koopman’s theorem state?
8. Outline the Roothaan-Hall method. Which basis functions are usually used?
9. Draw the structures of H2S and H2O and minimize the energy using the HF

method and the 3-21G* basis set. Measure the bond angles and interpret the re-
sults. Plot the electron density and electrostatic potential of each species. Com-
ment on the results. Also, calculate the partial charges on the atoms and interpret
the results.

10. Draw the structure of carbon monoxide and minimize its energy with the same
basis set as above. Plot the HOMO of the species. Could CO be a ligand? If
so, which end of the molecule will establish a coordinate covalent bond with
a transition metal cation?

11. Calculate the structures of the isoelectronic species NH3 and H3O+ and display
their electron densities. Does the pattern in electron density make sense? Are
there any surprises in the structural results? You will have to use the expert mode
to draw the structure of the hydronium ion. In setting up the energy calculation,
do not forget to set the charge of the hydronium ion.

12. Ab initio HF calculations are performed on the H, He and Li and on the isoelec-
tronic He2 and LiH “molecules”, giving the electronic kinetic energies (Te), and
the potential energies between electrons and nuclei (VNe), electrons and other
electrons (Vee), and nuclei and other nuclei (VNN): (all energies are in atomic
units, 1 a.u. = 2625 kJmole−1.). Calculate and discuss the bond energy of both
molecules (Table 5.1).
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Table 5.1 Energy values

System Te VNe Vee VNN

He 2.8599 −6.7459 1.0262 0.0000
He2 6.3203 −18.3003 4.1423 2.3519
H 0.4998 −0.9996 0.0000 0.0000
Li 7.4322 −17.1461 2.2819 0.0000
LiH 7.9785 −20.4234 3.4721 0.9874
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Chapter 6
Basis Sets

6.1 Introduction

A basis set is a mathematical description of orbitals of a system, which is used
for approximate theoretical calculation or modeling. It is a set of basic functional
building blocks that can be stacked or added to have the features that we need. By
“stacking” in mathematics, we mean adding things, possibly after multiplying each
of them by its own constant:

ψ = a1φ1 + a2φ2 + . . .+ akφk (6.1)

where k is the size of the basis set, φ1,φ2, . . . ,φk are the basis functions and
a1,a2, . . . ,ak are the normalization constants. It was John C. Slater (Fig. 6.1) who
first turned to orbital computation using basis sets, known as Slater Type Orbitals
(STOs). The solution of the Schrödinger equation for the hydrogen atom and other
one-electron ions gives atomic orbitals which are a product of a radial function that
depend on the distance of the electron from the nucleus and a spherical harmonic,
as is illustrated in Table 6.1.

Fig. 6.1 John C. Slater (1900–1976). Slater is recognized for calculating algorithms which de-
scribe atomic orbitals. The algorithms became known as Slater Type Orbitals (STOs). Courtesy of
“Wikipedia – The Free Encyclopedia – http://en.wikipedia.org/wiki/John_C._Slater”

K. I. Ramachandran et al., Computational Chemistry and Molecular Modeling 115
DOI: 10.1007/978-3-540-77304-7, ©Springer 2008
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Table 6.1 Radial and angular wavefunctions of orbitals. Here, z is the effective nuclear charge for
that orbital of the atom, r is the radius in atomic units (1 Bohr radius = 52.9 p.m.), e = 2.71828 (ap-
proximately), π = 3.14159 (approximately), n = the principal quantum number, and ρ = (2Zr)/n

No. Orbital Radial wavefunction Angular wavefunction

1 1s 2× z3/2 × e−ρ/2 1× (π/4)1/2

2 2s (
√

2/2)× (2−ρ)× z3/2 × e−ρ/2 1× (π/4)1/2

3 2p (
√

6/2)×ρ× z3/2 × e−ρ/2
√

3× (x/r)× (π/4)1/2

4 3s
(√

3/9× (6−6ρ+ρ2
)× z3/2 × e−ρ/2

)
1× (π/4)1/2

5 3p (
√

6/9×ρ (4−ρ)× z3/2 × e−ρ/2)
√

3× (x/r)× (π/4)1/2

He pointed out that we could use functions that consisted only of the spherical
harmonics and the exponential term. Slater-type orbitals represent the real situation
for the electron density in the valence region and beyond, but are not so good nearer
to the nucleus. Strictly speaking, atomic orbitals (AOs) are the real solutions of the
Hartree-Fock (HF) equations for the atom, i.e., wavefunctions for a single electron
in the atom. Anything else is not really an atomic orbital function. Hence these func-
tions are named as “basis functions” or “contractions,” which are more appropriate.
Earlier, the STOs were used as basis functions due to their similarity to atomic or-
bitals of the hydrogen atom. Many calculations over the years have been carried
out with STOs, particularly for diatomic molecules. Slater fits linear least-squares
to data that could be easily calculated. The general expression for a basis function
is given in Eq. 6.2:

Basis function, BF = N × e(−αr) (6.2)

where N is the normalization constant, α is the orbital exponent and r is the radius in
angstroms. STOs are described by the function depending on spherical coordinates:

φ1 (α,n, l,m;r,θ ,φ) = Nrn−1e−αrYl,m (θ ,φ) (6.3)

The r,θ and φ are spherical coordinates, and Yl,m is the angular momentum part
(the function describing the “shape”).The n, l, and m are quantum numbers: prin-
cipal, angular momentum, and magnetic, respectively. Simplifying the equation for
hydrogen-like systems, the STO equation takes the form of:

STO =

[
α3

π

]0.5

e(−αr) (6.4)

where α is the Slater orbital exponent. STOs are approximate solutions to the eigen-
value equation, represented by Eq. 6.1.

The orbital is resembling the atomic orbital and is shown by Fig. 6.2.
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Fig. 6.2 Plot of the STO against the distance of the electron from the nucleus

6.2 The Energy Calculation from the STO Function

Thus, for hydrogen and hydrogen-like systems (containing one electron), the wave-
function can be written as:

ψ1s =

[
α3

π

]0.5

e(−αr) (6.5)

The Schrödinger equation in polar coordinate form can be written as:

− h̄2

2m
d2

dr2ψ+
l(l + 1)h̄2

2mr2 ψ− e2

4πε0r
ψ = Eψ (6.6)

For 1s orbital l = 0. Using atomic units:

− h̄2

2m
d2

dr2ψ− e2

r
ψ = Eψ (6.7)

This can be written as:

− h̄2

2m
1
r2

d
dr

r2 d
dr
ψ− e2

r
ψ = Eψ (6.8)
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Based on the variational method (see Chap. 4), the energy expression takes the
form of:

E =

∞∫

0

ψ1s/Ĥ/ψ1sdτ

∞∫

0

ψ1sψ1sdτ

(6.9)

Substituting the values of ψ1s and Ĥ in the equation:

E =

∞∫

0

ke−αr
〈
− h̄2

2m
1
r2

d
dr

r2 d
dr

− e2

r

〉
ke−αr4πr2dr

∞∫

0

(
ke−αr)2π4r2dr

(6.10)

where k =

[
α3

π

]0.5

(6.11)

4πr2dr part accounts for the radial factor of Schrödinger equation. On simplify-
ing, we get:

E =

∞∫

0

e−αr
〈
− h̄2

2m
1
r2

d
dr

r2 d
dr

− e2

r

〉
e−αrr2dr

∞∫

0

(
e−αr)2

r2dr

(6.12)

Separating the kinetic energy operator operating on e−αr:

− h̄2

2m
1
r2

d
dr

r2 d
dr

e−αr = − h̄2

2m

(
α2 − 2α

r

)
e−αr (6.13)

and applying the relation:
(
e−αr)2 = e−2αr (6.14)

we get

E =

∞∫

0

e−αr
〈
− h̄2

2m

(
α2 − 2α

r

)
e−αr − e2

r
e−αr

〉
r2dr

∞∫

0

e−2αrr2dr

(6.15)
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Simplifying the integral based on the expression:

∞∫

0

xne−αxdx =
n!

αn+1 (6.16)

we get:

E =

−h̄2α2

2m

(
1

4α3

)
+

−h̄2α
m

(
1

4α2

)
− e2

(
1

4α2

)

(
1

4α3

) = − h̄2α2

2m
+

h̄2α
m

α− e2α

E =
h̄2α2

2m
− e2α (6.17)

The Slater coefficient α can be calculated based on the minimization condition
of the energy function:

d
dx

(
h̄2α2

2m
− e2α

)
= 0 (6.18)

Or:

h̄2α
m

− e2 = 0 (6.19)

α =
me2

h̄2 (6.20)

Substituting this value of α in the equation:

E =
h̄2α2

2m
− e2α =

h̄2

2m

(
me2

h̄2

)2

− e2
(

me2

h̄2

)

=
1
2

(
me4

h̄2

)
−
(

me2

h̄2

)
=

1
2

(
me4

h̄2

)
(6.21)

For the charge separation in the vacuum:

E =
1
2

(
me4

(4πε0)
2 h̄2

)
=

(
me4

32π2ε2
0 h̄2

)
(6.22)

But h̄ = h
2π . Hence, the energy equation becomes:

E =
(

me4

8ε2
0 h2

)
(6.23)
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Substituting the following values: m – mass of electron, e – the charge of the
electron, ε0, and Planck’s constant:

E =
(

me4

8ε2
0 h2

)

=
9.109×10−31 kg× (1.602×10−19 C

)4

8(8.854×10−12 C2N−1m−2)2 (6.626×10−34 Js)2

= −2.179×10−18 J

6.3 The Energy Calculation of Multielectron Systems

Consider a two-electron system (a system consisting of two electrons.) such as the
helium atom, making the two-electron function into two separate functions, ψ =
ψ1 +ψ2.

The Hamiltonian for the electron-1:

Ĥ1 = − 1

2r2
1

d
dr1

r2
1

d
dr1

− 2
r1

+
∞∫

0

ψ2
1

r12
ψ2dτ

The integral function in the above equation stands for the repulsion between elec-
trons 1 and 2 of the atom. As we do not know the position of electron 2 due to the
functional separation, we have to integrate the potential function over all possible
locations of electron 2.

Similarly, the Hamiltonian for electron 2 is:

Ĥ2 = − 1

2r2
2

d
dr2

r2
2

d
dr2

− 2
r2

+
∞∫

0

ψ1
1

r12
ψ1dτ

Let the functions be represented by STOs:

ψ1 =

[
α2

1

π

]0.5

e(−αr1) (6.24)

ψ2 =

[
α2

2

π

]0.5

e(−αr2) (6.25)

The repulsive function

∞∫

0

ψ2
1

r12
ψ2dτ becomes:

∞∫

0

ψ2
1

r12
ψ2dτ =

1
r1

[
1− (1 +α2r1)e−2α2r1

]
(6.26)
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Similarly,

∞∫

0

ψ1
1

r12
ψ1dτ becomes:

∞∫

0

ψ1
1

r12
ψ1dτ =

1
r2

[
1− (1 +α1r2)e−2α1r2

]
(6.27)

The Hamiltonian for electrons −1 and 2 takes the forms of:

Ĥ1 = − 1

2r2
1

d
dr1

r2
1

d
dr1

− 2
r1

+
1
r1

[
1− (1 +α2r1)e−2α2r1

]
(6.28)

Ĥ2 = − 1

2r2
2

d
dr2

r2
2

d
dr2

− 2
r2

+
1
r2

[
1− (1 +α1r2)e−2α1r2

]
(6.29)

Only repulsive terms have to be added to:

E1 =
α2

1

2
−Zα1 +

α1α2
(
α2

1 + 3α1α2 +α2
2

)
(α1 +α2)3

(6.30)

E2 =
α2

2

2
−Zα2 +

α1α2
(
α2

1 + 3α1α2 +α2
2

)
(α1 +α2)3

(6.31)

It is very difficult to evaluate the necessary integrals over these STOs, especially
when the orbitals in the integral are centered on three or four different atoms. The
computation of integrals over STOs still remains as a difficult problem. Accurate
results are just about possible, but they are very time-consuming.

6.4 Gaussian Type Orbitals

In the 1950s, Frank Boys from Cambridge University in the UK suggested a modi-
fication to the wavefunction by introducing Gaussian type functions, which contain
the exponential e−β r2

, rather than the e−αr of the STOs. Such functions are very easy
to evaluate. These functions neither represent the electron density of the real situa-
tion (the square of a wavefunction is a measure of electron density) nor the STOs.
But we can overcome this difficulty to a large extent by using more Gaussian-type
orbitals (GTOs). Some early calculations used a large number of individual GTOs.
It was then suggested that the GTOs be contracted into separate functions. Each ba-
sis function in this approach consists of several GTOs combined together in a linear
manner with fixed coefficients. Thus, we might define a GTO (3G) basis function
as:

GTO(3G) = c1e−β1r2
+ c2e−β2r2

+ c3e−β3r2
(6.32)
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where the three values of c and β are fixed, and that number is included in the des-
ignation. The values of the c and β can be found in several ways. One common way
is to fit the above expression to a STO using a least squares method. Other methods
involve varying them in atomic calculations to minimize the energy. Expansions of
any number of GTOs are possible, but usually less than six are used due to computa-
tional reasons. Treating Gaussians as GTOs is probably a misnomer, since they are
not really orbitals. They are modified and simplified forms of functions. In recent
literature, they are frequently called Gaussian primitives.

A Cartesian Gaussian centered on atom a can be represented as:

Gi, j,k = Nxi
ay j

azk
ae−αr2

a (6.33)

where i, j, and k are nonnegative integers, α is a positive orbital exponent, xa ,ya,
and za are Cartesian coordinates with the origin at a, and N is the Cartesian Gaussian
normalization constant. This constant is given by the expression:

N =
(

2α
π

)3/4
[

(8α)i+ j+k i! j!k!
(2i)!(2 j)!(2k)!

]1/2

(6.34)

when i = 0, j = 0, k = 0 and i + j + k = 0, then the Gaussian type function (GTF)
is known as the s-type function; when i + j + k = 1, we have a p-type function,
when i+ j+k = 2, we have the d-type function, and so on. There are six possible d-
Gaussian functions with the factors x2

a, y2
a, z2

a, xaya, xaza and yaza. These d-functions
can be modified into five linear combinations, as xaya, xaza, yaza, x2

a−y2
a and 3z2

a−r2
a

to have the same angular behavior as the real 3d atomic orbitals. Note that the sixth
possible combination x2

a + y2
a + z2

a = r2
a resembles the s-orbital.

6.5 Differences Between STOs and GTOs

The pre-exponential factor rn−1 of the STO function is dropped in the GTO func-
tion. This restricts single Gaussian primitives (corresponding to the highest energy
level) for each principal quantum level. Thus, possible GTOs are: 1s, 2p, 3d, 4 f ,
etc. This helps in fast computation [2]. Thus: possible Gaussian functions can be
enlisted as: g(1s) = Ne−β r2

, g(2px) = Ne−β r2
x, g(2py) = Ne−β r2

y, g(2pz) = Ne−β r2
z,

g(3dxx) = Ne−β r2
x2, g(3dyy) = Ne−β r2

y2, g(3dzz) = Ne−β r2
z2, g(3dxy) = Ne−β r2

xy,

g(3dxz) = Ne−β r2
xz, g(3dyz) = Ne−β r2

yz, g(4 fxxx) = Ne−β r2
x3, g(4 fyyy) = Ne−β r2

y3,

g(4 fzzz) = Ne−β r2
z3, g(4 fxxy) = Ne−β r2

x2y etc.

The r-factor of the exponential in GTO is squared. The angular momentum factor
is made into a simple function of Cartesian coordinates (Fig. 6.3 and Fig. 6.4).



6.5 Differences Between STOs and GTOs 123

Fig. 6.3 Comparison of STO (e−αr) and GTO
(

e−αr2
)

Fig. 6.4 Comparison of GTO and STO with the atomic orbital. A = Atomic orbital function [(1−
x)× e(−abs(x))], B = GTO-function [e

(−abs(x2)
)
] and C = STO function [e(−abs(x))]
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6.6 Classification of Basis Sets

Basis set can be broadly classified into the following types.

1. Minimal basis sets: STO-3G, STO-4G, STO-6G, STO-3G* – a polarized version
of STO-3G.

2. Pople basis sets: 3-21g, 3-21g* – Polarized, 3-21+g – Diffuse, 3-21+g* – With
polarization and diffuse functions, 6-31g, 6-31g*, 6-31+g*, 6-31g (3df, 3pd),6-
311g, 6-311g*, 6-311+g*.

3. Correlation consistent basis sets: These basis sets are used for post HF cal-
culations. They include shells of polarization (correlating) functions (d, f , g,
etc.) that can yield convergence of the electronic energy to the complete basis
set limit. Examples of these are cc-pVDZ (correlation consistent valence dou-
ble zeta) cc-pVTZ (correlation consistent valence triple zeta) cc-pVQZ (correla-
tion consistent valence quadruple zeta), cc-pV5Z (correlation consistent valence
quintuple zeta), aug-cc-pVDZ (Augmented versions of cc-pVDZ), etc.

4. Other split valence basis sets: (They have generic names), such as SV(P), SVP,
DZV, TZV, TZVPP, or valence triple-zeta plus polarization, QZVPP, valence
quadruple-zeta plus polarization.

5. Double, triple, and quadruple zeta basis sets: Basis sets in which there are multi-
ple basis functions corresponding to each atomic orbital, including both valence
orbitals and inner orbitals, which are called zeta basis sets. The most common
is the D95 basis set of Dunning.

6. Plane wave basis sets: In addition to localized basis sets, plane wave basis sets
can also be used in quantum chemical simulations. Typically, a finite number of
plane wavefunctions are used, below a specific cutoff energy which is chosen
for a certain calculation. These basis sets are popular in calculations.

6.7 Minimal Basis Sets

In a minimal basis set we select one basis function for every atomic orbital that is
required to describe the free atom. We take all the orbitals required for the filling
up of electrons; this is also known as a single-zeta (single z, SZ) basis set. Thus,
for hydrogen, the minimal basis set is just one “1s” orbital. For carbon, the minimal
basis set consists of a “1s” orbital, a “2s” orbital and the full set of three “2p”
orbitals. For example, the minimal basis set for the methane molecule consists of
4 “1s” orbitals – one per hydrogen atom – and the set of “1s”, “2s”, and “2p” as
described above for carbon. The total basis set comprises nine basis functions [3].

For computing purposes, several minimal basis sets have been proposed. The
most common minimal basis sets are the STO-nG basis sets devised by John Pople
and his group. It involves a linear combination of “n” GTOs fitted to each STO.
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The individual GTOs are called primitive orbitals, while the combined functions are
called contracted functions. Thus, when a basis function contains more than one
primitive Gaussian, it can be considered as “contracted.”

The STO-3G basis set is a minimal basis set, where each basis function is a con-
traction of three primitive Gaussians. The exponents and expansion coefficients for
the primitives are obtained from a least squares fit to STOs. STO-3G basis sets are
available for the elements H-Xe. Their use for serious work is discouraged, but they
provide a rapid way of obtaining a “quick and dirty” look at a molecule. The STO-
3G basis set for methane thus consists of a total of nine contracted functions built
from 27 primitive functions.

6.8 A Comparison of Energy Calculations of the Hydrogen Atom
Based on STO-nG Basis Sets

6.8.1 STO-2G

The orbital function based on the STO-2g basis set can be written as: STO−2G =
c1e−β1r2

+ c2e−β2r2
. The constants (coefficients, exponents) c1, c2, β1 &β2 can be

computed. Here, we give the values obtained by running the program GAUSSIAN
03W, a commercial package for Gaussian and related calculations for the hydrogen
atom. The complete output is included in the book URL. Thus: c1 = 0.4301284983,
c2 = 0.6789135305,β1 = 0.1309756377 and β2 = 0.2331359749. These values can
be substituted in the STO-2G equation to study the functional difference on chang-
ing the distance of the electron from the nucleus.

6.8.2 STO-3G

The orbital function for STO-3G can be written as STO−3G = c1e−β1r2
+c2e−β2r2

+
c3e−β3r2

. Similarly to STO-2G, STO-3G can be run in GAUSSIAN to generate
the constants (Fig. 6.5). Refer to the Text URL to see the complete output files.
The constants can be computed as: c1 = 0.3425250914, c2 = 0.6239137298, c3 =

Fig. 6.5 GAUSSIAN 03 STO-2G output of the hydrogen atom
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0.1688554040, β1 = 0.1543289673, β2 = 0.5353281423 & β3 = 0.4446345422.
Similarly, the constants of higher basis sets can also be computed. For making
a graphical comparison, we find the constants with STO-6G.

6.8.3 STO-6G

Constants for STO-6G are c1 = 0.3552322122, c2 = 0.6513143725,
c3 = 0.1822142904, c4 = 0.6259552659, c5 = 0.2430767471, c6 = 0.1001124280,
β1 = 0.9163596281,β2 = 0.4936149294, β3 = 0.1685383049,β4 = 0.3705627997,
β5 = 0.4164915298 and β6 = 0.1303340841.

The computed energy of the hydrogen atom obtained by using different levels of
basis sets is included in Table 6.2.

The energy goes on decreasing along with an increase in the number of primitives
used. This leads into a slow improvement in the level of computation. It approaches
the HF limit (−0.5 Hartree). (The calculation of energy up to this level is known
as the HF calculation.) Note that the expansion of the wavefunction in terms of
basis functions leads to a limitation of the accuracy of the ab initio HF approach
only because there is a limited number of basis functions available. The greater the
number of basis functions, the better the wavefunction, and the lower the energy.
The limit of an infinite basis set is known as the HF limit. This energy is still greater
than the exact energy that follows from the Hamiltonian, because of the independent
particle approximation.

6.9 Contracted Gaussian Type Orbitals

Several GTOs can be grouped together to form contracted Gaussian functions. The
original GTOs are referred to as primitive Gaussian functions or primitives and are
centered on the same nucleus. Optimizing all the parameters with all of the primi-
tives on each run is a huge concern of computation. Hence, as an alternative, con-
tracted Gaussian type orbitals (CGTOs) must be considered. Grouping of Gaussian
functions in CGTOs saves the computational costs to a large extent, as optimization

Table 6.2 Comparison of the energy of hydrogen computed by different basis sets

No. Basis set Energy

1 STO-2G −0.454397401659
2 STO-3G −0.466581850384
3 STO-4G −0.469806464220
4 STO-5G −0.470742918263
5 STO-6G −0.471039054196
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needs to be carried out once and for all with each group. CGTO functions can be
represented as:

χ j =∑
i

c jigi (α,r) (6.35)

where gi(α,r) is the Gaussian. For a larger system, such groups are combined to-
gether to get the corresponding function:

ψi =∑
j

a jiχ j =∑
j

a ji∑
i

c jigi (α,r) (6.36)

By making use of linear combination of Gaussian, a suitable basis function of
reliable characteristics can be generated as illustrated in Fig. 6.6.

The CGTO (Table 6.3) can be written as:

1s = 0.0592393390Gs(322.037)
+ 0.3514999608Gs(48.4308)
+ 0.707657921Gs(10.4206)

Fig. 6.6 Linear combination of a number of Gaussian groups provides a better result
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Table 6.3 The 3-21G basis set for the oxygen atom generated from Gaussian 03 software

O 0

S 3 1.00
322.03700000 0.0592393390
48.430800000 0.3514999608
10.420600000 0.7076579210

SP 2 1.00
7.402940000 −0.4044535832 0.2445861070
1.576200000 1.2215617610 0.8539553735

SP 1 1.00
0.3736840000 1.000000000 1.000000000

Gs(322.037) stands for a normalized primitive s-type GTF with the orbital expo-
nent 322.037. The large value of coefficients shows that the orbital is an inner (core)
one. SP notation in the table indicate that here orbital exponents and contraction
coefficients for s-type and p-type CGTFs of the valence orbitals 2s and 2p atomic
orbitals are considered. The first column of the table shows the orbital exponent, and
the second and third columns show the contraction coefficients. Thus, the CGTF for
the valence shell becomes:

2s
′
= −0.4044535832Gs(7.40294)+ 1.221561761Gs(1.5762)

2p
′
x = 0.244586107Gpx (7.40294)+ 0.8539553735Gpx (1.5762)

2p
′
y = 0.244586107Gpy (7.40294)+ 0.8539553735Gpy (1.5762)

2p
′
z = 0.244586107Gpz (7.40294)+ 0.8539553735Gpz (1.5762)

2s
′′
= Gs(0.373684)

2p
′′
x = Gpx(0.373684)

2p
′′
y = Gpy(0.373684)

2p
′′
z = Gpz(0.373684)

Contraction coefficients becoming one in the valence shell proves that the prim-
itive Gaussians are normalized. Gaussian basis sets can also be ordered from the
internet (http://www.emsl.pnl. gov/forms/basisform.html).

6.10 Double- and Triple-Zeta Basis Sets
and the Split-Valence Basis Sets

The split-valence basis sets were introduced by John Pople and his group in the late
1970s. They are an expansion of basis sets to make the total function more accurate
and reliable. The split-valence (SV) basis set uses one function for orbitals that are
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not in the valence shell and 2 functions for those in the valence shell. The double-
zeta (DZ) basis set uses two basis functions where the minimal basis set had only
one function. In DZ, which is normally treated as the general split valence basis
sets, each atomic orbital function is split up into two basis functions, making each
basis function typically as a contraction of a small set of primitives (2–4). The D95
basis sets of Dunning and coworkers [1] are DZ-type basis sets which use 9 s-type
primitive Gaussians to describe the 1s and 2s atomic orbitals and 5 p-type primitives
for the atomic 2p orbitals. This type of basis set is available for H-Cl. The triple-zeta
(TZ) basis set uses three basis functions instead of one.

The smallest split-valence basis set is denoted 3-21G (to be read as three-two-
one G-available for H-Xe). It uses a three-primitive expansion for the 1s orbital and
then splits the valence orbitals into a two basis function, the inner function being
a contraction of two Gaussians and the outer function being just a single Gaussian –
s, for example, for the hydrogen atom, the lone valence orbital is split up in to two
Gaussian groups, φS and φS′ with φS carrying two primitives and φS′ carrying one
primitive (Fig. 6.7).

3-21G wavefunctions for hydrogen may be represented as:

φH = φS +φS′ (6.37)

φS = c1e−β1r2
+ c2e−β2r2

(6.38)

φS′ = c3e−β3r2
(6.39)

The C-atom based on the principle of a split valence basis set, can be represented
by one 1s inner orbital and 2(2s,2px,2py,2pz) = 2× 4 = 8 valence orbitals. Simi-
larly, the carbon atom output with a 6-31G basis set is given in Fig. 6.8.

The inner orbital of a carbon atom (1s) is represented by six primitives and the
four valence orbitals (2s,2px,2py,2pz) are represented by two contracted orbitals.
Each contracted orbital contains four primitives comprised of three contracted and
one uncontracted orbitals.

Each contracted orbital contains four primitives comprising of 3 contracted and
one uncontracted orbitals (Fig. 6.9). Hence, the number of primitives required to

Fig. 6.7 Output of GAUSSIAN 03 run on the hydrogen atom generating the orbital functions with
the 3-21G basis set
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Fig. 6.8 Output of GAUSSIAN 03 run on the carbon atom generating the orbital functions with
a 6-31G basis set

Fig. 6.9 Schematic represen-
tation of the 6-31G basis set
of a C-atom

represent the C-atom is 6 (inner) + 4× 4 (valence electrons) = 22 (Refer to the
GAUSSIAN output given in the URL).

The 4-31G and 6-31G basis sets (the available H-Kr) are slightly larger variations
on the same principle. The use of inner and outer basis functions for the valence
orbitals in SV- or DZ-type basis sets allows these orbitals to expand or contract in
molecular calculations, thus adjusting flexibly to the bonding requirements in the
molecule. The 6-311G basis set (H-Kr) is a triply split valence basis set; it is TZ-
quality in the valence part, but only minimal in the core. For the C-atom 6-311G,
splitting results in 13 basis functions with 26 primitive Gaussians. Split valence
basis sets allow orbitals to change size. This is the first step in providing a molecular
orbital environment. In molecular orbital formulation, even the atomic orbital shape
is changed. Hence, we require further refinement in the basis set.

6.11 Polarized Basis Sets

A set of Gaussian functions one unit higher in angular momentum than what are
present in the ground state of the atom are added as polarization functions, again
increasing the flexibility of the basis set in the valence region in the molecule. Po-
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larization functions are p- or d-type basis functions that are added to describe the
distortion of s or p orbitals, respectively. When bonds are formed in molecules, the
atomic orbitals are distorted (polarized) from their original shapes to provide opti-
mal bonding. Orbital polarization phenomenon may be well introduced by adding
“polarization functions” to the basis set. This phenomenon can be introduced for
computational purposes by adding basis functions representing an angular momen-
tum higher than what is represented by the valence orbitals of the atom. The quali-
tative importance of polarization functions is that they permit the molecular wave-
function more flexibly to distort away from spherical symmetry in the neighborhood
of each atom. The distortion of s, p, and d orbitals can be mimicked (Fig. 6.10) by
the inclusion of p, d, and f functions respectively in the basis set. This leads to
double-zeta plus polarization (DZP) or split-valence plus polarization (SVP) basis
sets. In “Pople nomenclature,” the 6-31G(d) (or 6-31G*) basis sets add a single set
of (Cartesian) d-type functions to the basis sets of all non-hydrogen atoms; the 6-
31G(d,p) (or 6-31G**) basis sets [4] add a set of p-type polarization functions on
H as well (Fig. 6.11). In general, polarization functions significantly improve the
description of molecular geometries (bond lengths and angles) as well as molecular
relative energies. It is to be noted that just by using d-functions on C, we are not
implying that d-orbitals are occupied in C or that d-orbitals provide a significant
contribution to the bonding of C. However, the presence of the d- orbital function
improves the description of the electron density around C and its bonding charac-
teristics (Fig. 6.12) (Table 6.4).

The number of basis functions and integrals involved in computation, the di-
mension of matrices, etc. increase very rapidly with the increase in the number of
functions in the basis set. For example, methane with a 6-31G basis set needs 17
basis functions and 38 primitive Gaussians, while with 6-31G(d), 27 basis functions
and 48 primitive Gaussians, and, finally, 6-31G(d, f ) requires 39 basis functions and
60 primitive Gaussians.

In practice, it has been found that good geometries can often be obtained with
even simple basis sets such as 3-21G, but relative energies of systems are better de-

Fig. 6.10 Orbital distortion
and the polarization effect

Fig. 6.11 Orbital distortion
due to the inclusion of s and p
orbitals
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scribed using more extended basis sets. Hence, geometry optimization is generally
carried out with DZ (or split-valence) plus polarization (on heavy atoms), quality
basis sets, in which case bond lengths are accurate up to ±0.015 Å, and bond angles
up to ±2◦. Calculations including explicit electron correlation treatments via con-
figuration interaction [QCISD (T), CCSD(T)] or perturbation theory (MPn) do not
require this size of function. Correlation energy methods scale very strongly with
the number of basis functions and the number of electrons. Diffuse valence func-
tions are often added to the basis set in the computation of anions and molecules
with higher bond length or in the calculations of electronically excited states. These
diffuse functions (primitives with very small exponents) are used to better describe
the long-range tails of the orbitals. They rarely influence geometries of covalently
bonded species in any significant way, but they do improve the description of en-
ergetics associated with weak interactions and secondary bonding (van der Waals
interactions, H-bonding, and electron affinities).

At the HF level of theory, most properties converge to the complete basis set
limit relatively quickly with the addition of more polarization functions. However,
at the correlated level of theory, the convergence is typically much slower, so that
many higher functions are needed in order to reach the complete basis set limit. In
particularly difficult cases, such as the computation of the dissociation energy of
the N2, the use of basis sets containing d and f polarization functions still under-
estimates the true value of dissociation energy by more than 10 kcal/mol. As the
l value increases, the number of angular nodes (places where the orbital changes
sign) also increases. The l = 4 (g) functions have 4 such nodal planes. Because of
the large number of g functions and the fact that integrals over g functions are time-
consuming to compute, relatively few polyatomic calculations are performed with
these functions.

It is customary to perform calculations with two different forms of the higher l
value Gaussians. The number of Cartesian Gaussian functions for an angular mo-
mentum quantum level l is given by:

NCGF = l(l + 1)/2 (6.40)

The number of spherical harmonic functions is given by:

NSHF = (2l + 1) (6.41)

Thus, for l greater than 1 (p functions) there are more Cartesian than spherical
components. Certain integrals and operations are easier to code and carry out with

Fig. 6.12 Orbital distortion
due to the inclusion of p and
d orbitals
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Table 6.4 Number of Cartesian and spherical Gaussians possible

No. Orbital l-value Number of Cartesian Number of spherical
Gaussian Functions harmonic functions

1 p 1 2 3
2 d 2 6 5
3 f 3 10 7
4 g 4 15 9
5 h 5 21 11

plane wave basis functions, than with their localized counterparts. In practice, plane
wave basis sets are often used in combination with core pseudopotentials, so that the
plane waves are only used to describe the valence charge density. This is because
core electrons tend to be concentrated very close to the atomic nuclei, resulting in
large wavefunction and density gradients near the nuclei which are not easily de-
scribed by a plane wave basis set unless a very high energy cutoff (and therefore
small plane wavelength), is used. This combined method of a plane wave basis set
with a core pseudopotential is often abbreviated as a PSPW calculation. Further-
more, as all functions in the basis are mutually orthogonal, plane wave basis sets
do not exhibit basis set superposition error (Sect. 6.12). However, they are less well
suited to gas-phase calculations.

6.12 Basis Set Truncation Errors

The difference between the true solution of the electronic Schrödinger equation and
the experimental value corrected for non-BO effects and possibly relativistic correc-
tions is referred to as a basis set truncation error [5]. This can further be subdivided
into the basis set error associated with the limited size of the 1-electron particle
basis and the n-electron error associated with the incompleteness of the n-electron
basis. In the limit of a complete basis set, the basis set error vanishes and only the n-
electron error remains, which is denoted by the intrinsic error of the corresponding
model. One-electron basis set truncation errors may be very large, especially if basis
sets chosen be inadequate to the given problem or the desired accuracy are chosen.
Under the assumption that non-dynamical electron correlation plays no role, good
theoretical estimates are expected.

6.13 Basis Set Superposition Error

As the atoms of interacting molecules (or of different parts of the same molecule)
or two molecules approach one another, their basis functions overlap. The basic
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Table 6.5 Interaction energy of helium with different basis sets

Method rc (pm) BF(He) number Interaction energy
of basis functions (kJ/mol)

RHF/6-31G 323.0 2 −0.0035
RHF/cc-pVDZ 321.1 5 −0.0038
RHF/cc-p VTZ 366.2 14 −0.0023
RHF/cc-p VQZ 388.7 30 −0.0011
MP2/6-31G 321.0 2 −0.0042
MP2/cc-p VDZ 309.4 5 −0.0159
MP2/cc-p VTZ 331.8 14 −0.0211
MP2/cc-p VQZ 328.8 30 −0.0271

function of each component is influenced by functions of the nearby components,
leading into an effective increase in its basis set. This improves the calculation of
derived properties such as energy. If the total energy is minimized as a function of
the system geometry, the short-range energies from the mixed basis sets must be
compared with the long-range energies from the unmixed sets. A mismatch in this
comparison leads into an error known as a basis set superposition error (BSSE). If
we use finite basis sets, calculations of interaction energies are susceptible to the
choice of basis set.

The interaction energy between two atoms or molecules A and B are typically
calculated as the energy difference between the product complex AB and its com-
ponents A and B with Eq. 6.42.

Eint = E(AB,rc)−E(A,re)−E(B,re) (6.42)

Here, rc stands for the distance between A and B in the complex AB and re

indicates the size of the separate reactants.
The calculated interaction energies are often too large and it may lead to severe

complications for systems bound through dispersion interactions or hydrogen bonds.
The helium dimer is a particularly interesting example of the former situation. For
helium atom, using a selection of different single-reference methods and basis sets
of variable size the following results (Table 6.5) are obtained.

The best theoretical estimate is −0.091 kJ/mol for rc = 297 pm. At the HF level
a weakly bound minimum can be identified at interactomic distances larger than
300 pm. It is remarkable to see how the interaction energy becomes smaller and the
He-He distance larger as the size of the basis set is increased. Dispersion interaction
is found to be decreased by using a basis set of small size. Small basis sets stabilize
the complex to a larger extent than the separate components, due to the basis set
superposition error. While using higher basis sets, the wavefunction of the monomer
is expanded in much less basis functions than the wavefunction of the complex. Each
helium atom in the complex has a larger number of basis functions available than
in the monomer, leading to a more flexible description of the wavefunction, and
ultimately to a lower energy level.
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6.14 Methods to Overcome BSSEs

There are a number of computational techniques to minimize a BSSE. Several im-
portant methods are explained below.

6.14.1 The Chemical Hamiltonian Approach

The chemical Hamiltonian approach (CHA) replaces the conventional Hamiltonian
with a new one specifically designed to prevent basis set mixing a priori [7], by
removing all the projector-containing terms which would allow basis set extension.
This eliminates the terms of the Hamiltonian-making BSSE. The BSSE-free de-
scriptions including electronic density have to be potentially determined at any level
of theory.

6.14.2 The Counterpoise Method

The counterpoise method (CP) is an approximate method for estimating the size of
the BSSE. While the description of the product complex is unchanged in the CP
method, the separate components are provided with basis sets of identical size to
those in the monomer. The CP corrected interaction energy can be computed as:

Eint(CP) = E(AB,rc)AB −E(A,re)AB −E(B,re)AB (6.43)

The superscripts AB indicate here that the complex, as well as the separate com-
ponents, are calculated in the same absolute basis. In the helium example discussed
before this implies that the energies of single helium atoms are calculated using the
basis of the dimer complex. In this method, the BSSE is estimated as the differ-
ence between monomer energies with the regular basis functions and the energies
calculated with the full set of basis functions for the whole complex. For regular
basis sets, this typically stabilizes at the basis set limiting value much earlier than
the uncorrected value. That need not be the case if diffuse functions are included
in the basis set. The effects of increasing the basis set size are somewhat different
when correlated methods are being used; it is due to the fact that the correlation
energy is usually larger in the complex compared to that of the monomers. In fact,
an incomplete recovery of the correlation energy weakens the complex. This effect
thus compensates the BSSE effect and in such cases the final outcome of increasing
the basis set size is not as obvious as in the HF level.
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6.15 The Intermolecular Interaction Energy
of Ion Water Clusters

The intermolecular interaction energy of “ion-water clusters” is important in un-
derstanding a number of biochemical properties. The major problem while com-
puting intermolecular interaction energy is the uncertainly caused by BSSEs. The
BSSE [8] correction can be estimated using the counterpoise method. In the limit of
a complete basis, the BSSE would be zero and it is expected that the counterpoise-
uncorrected intermolecular interaction energies are equal to the counterpoise-cor-
rected intermolecular interaction energies.

However, for enthalphy changes of CH3O−(H2O)n (n = 1,2) evaluated using
MP2/aug-cc-pVDZ level and CH3S−(H2O)n (n = 1,2,3) evaluated using MP2/6-
31++G(2d,2p) level, the counterpoise corrected values are worse than the uncor-
rected values. For OH−(H2O)n (n = 1,2), the counterpoise-uncorrected intermolec-
ular interaction energies evaluated using the MP2/aug-cc-pVDZ level is reliable.
Here, the counterpoise-uncorrected intermolecular interaction energies evaluated
using MP2/aug-cc-pVDZ level is close to the counterpoise-corrected intermolec-
ular interaction energies evaluated using MP2/aug-cc-pV5Z level. Major results of
the research in this field are listed below.

1. For the intermolecular interaction energies of ion water clusters (OH−)(H2O)n

(n = 1,2), F−(H2O), Cl−(H2O), H3O+(H2O)n (n = 1,2) and NH+
4 (H2O)n

(n = 1,2) calculated with the correlation consistent basis sets at MP2, MP4,
QCISD(T), and CCSD(T) levels, BSSE is nearly zero in the CBS limit. Here, the
counterpoise-uncorrected intermolecular interaction energies are nearly equal to
the counterpoise-corrected intermolecular interaction energies in the CBS limit.
When the basis set is smaller, the counterpoise-uncorrected intermolecular inter-
action energies are more reliable than the counterpoise-corrected intermolecular
interaction energies. The counterpoise uncorrected intermolecular interaction
energies evaluated using the MP2/aug-cc-pVDZ level is reliable.

2. The trend for the intermolecular interaction energies of the ion water clusters
calculated using B3LYP/aug-cc-pVxZ (x = D,T,Q,5,6) level is extremely dif-
ferent from that calculated using the aug-cc-pVxZ (x = D,T,Q,5,6) basis sets
at MP2, MP4, QCISD(T), and CCSD(T) levels. For the intermolecular interac-
tion energies of the ion water clusters, except for H3O+(H2O) calculated with
correlation consistent basis sets at the B3LYP level, the CBS limit is reliable.

3. In the 6-311++G(d,p), 6-311++G(2d,2p), 6-311++G(3d,3p), and 6-311++G
(3df,3pd) basis sets, the BSSE is significant for even the 6-311++G(3df,3pd)
basis set at MP2, MP4, QCISD(T), and CCSD(T) levels. In the B3LYP level,
BSSE is negligible for the larger basis set; for example, the 6-311++G(3df,3pd)
basis set (except for OH−(H2O)n (n = 1,2).
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Table 6.6 Common basis sets

Basis Options Atoms

STO-3G * H–Xe
3-21G * ** H–Cl
4-21G * **
4-31G * ** H–Ne
6-21G * **
6-31G + ++ * ** H–Cl
LP-31G * **
LP-41G * **
6-311G + ++ * ** H–Ar
MC-311G none H–Ar
D95 + ++ * ** H–Cl
D95V + ++ * ** H–Ne
SEC + ++ * ** H–Cl

(same as SHC)
CEP-4G + ++ * ** H–Cl
CEP-31G + ++ * ** H–Cl
CEP-121G + ++ * ** H–Cl
LANLIMB none H–Bi

(except lanthanides)
LANLIDZ none H–Bi

(except lanthanides)

6.16 A List of Commonly Available Basis Sets

Note that a basis set must accompany an ab initio keyword. The “*” and “**” indi-
cate polarization functions, i.e., 6-31G**. The “+” and “++” indicate diffuse func-
tions.

6.17 Internet Resources for Generating Basis Sets

A number of Internet sites give information about basis sets with different software.
Some of them are listed below.

1. http://www.emsl.pnl.gov/forms/basisform.htmlsss
2. http://www.molpro.net/info/molpro2006.1//molpro_basis
3. http://www.msg.ku.edu/∼msg/MGM/links/bass.html
4. http://mscf.emsl.pnl.gov/software/basis_intro.shtml
5. http://www.ipc.uni-karlsruhe.de/tch/tch1/TBL/tbl.html
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6.18 Exercises

1. Determine how many basis functions and Gaussian functions are used for a 6-
31G calculation on HCl, and then for N,N-dimethylacetamide.

2. Prepare graphs of the errors in geometry (or %error) vs. the number of basis
functions (the experimental values for H2O are: O–H = 0.9578 A.U.; H–O–H
= 104.48 deg.).

3. Compute the HF energy for the H atom converging towards the exact value,
when the basis set is increased. Perform calculations with the following basis
sets: STO-3G, 3-21G, 6-31G, 6-311G, cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-
pV5Z.

4. Perform a series of energy computations for the H2 molecule, at the experimen-
tal H–H distance of 0.7413 Å, using HF and the following basis sets: STO-
3G, cc-pVDZ, cc-pVTZ, and cc-pVQZ. Calculate how the dissociation energy
(E(H2) → 2E(H)) converges as a function of the basis set size. Compare this
with the experimental value of 109.45 kcal/mol. Why is the HF value too low?
Report the ionization potential obtained via Koopman’s theorem. Compare with
the experimental value of 0.585 (a.u.). Why is the agreement so good? Now per-
form the same calculations with the MP2 method instead of HF. For H2 CISD
is equal to a full CI, i.e., all the electron correlation is included. Perform cal-
culations analogous to those before but now using the method CISD. Calculate
again the dissociation energy with both methods and compare the result with the
experimental one. How is the rate of convergence now?

5. Compute the energy on metal-olefin complexes with the Gaussian 03W program
using the LANL2DZ and 6-31G (d) basis sets and compare the results? Use
Fe(CO)4(C2H4) complex with the route #P B3LYP/GEN 5D SCF = Tight Pop
= Full IOp(3/33 = 1).

6. What changes take place in the properties of the HHeF molecule upon its com-
plexation with N2?

7. Why are diffuse functions important to be included into basis sets for complex
calculations?
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Chapter 7
Semiempirical Methods

7.1 Introduction

Semiempirical methods modify Hartree-Fock (HF) calculations by introducing
functions with empirical parameters. These parameters are adjusted with experimen-
tal conclusions to improve the quality of computation. The real cost of computation
is due to the two-electron integrals in the Hamiltonian that has been simplified in
this method. Semiempirical methods are based on three approximation schemes.

1. The elimination of the core electrons from the calculation.
Inner electrons do not contribute towards chemical activity, which makes it pos-
sible to remove the core electron functions from the Hamiltonian calculation.
Normally, the entire core (the nucleus and core electrons) of atoms is replaced
by a parameterized function. This has the effect of drastically reducing the com-
plexity of the calculation without a major impact on the accuracy.

2. The use of the minimum number of basis sets.
In this approximation, while introducing the functions of valence electrons, only
the minimum required number of basis sets will be used. This technique also
reduces the complexity of computation to a large extent.

3. The reduction of the number of two-electron integrals.
This approximation is introduced on the basis of experimentation rather than
chemical grounds. The majority of the work in ab initio calculations is in the
evaluation of the two electron integrals (Coulomb and exchange). All modern
semiempirical methods are based on the modified neglect of differential over-
lap (MNDO) approach. In this method, parameters are assigned for different
atomic types and are fitted to reproduce properties such as heats of formation,
geometrical variables, dipole moments, and first ionization energies. The pa-
rameterization was carried out separately for classes of compounds like hydro-
carbons, CHO systems, CHN systems, and so on. The latest versions of the
MNDO method are referred to as AM1 and PM3. Another method to reduce
the two-electron integral is the zero differential overlap (ZDO) approximation,
which neglects all products of basis functions depending on the same electron
coordinates when located on different atoms.

K. I. Ramachandran et al., Computational Chemistry and Molecular Modeling 139
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It means that all the products of atomic orbital functions χuχv are set to be zero,
and the overlap integral Suv = δuv (where δuv is the Kronecker delta, i.e., δuv = 0 if
u 
= v and δuv = 1 if u = v.). At the ZDO approximation, all three- and four-centered
integrals vanish. This reduces the overlap matrix into a unit matrix. One-electron
integrals involving three centers (two from the basis functions and one from the op-
erator) are set to zero. All three- and four-center two-electron integrals, which are
by far the most numerous of the two-electron integrals, are neglected. Parameteri-
zation is done to compensate the approximations. Hence, all the remaining integrals
are replaced by proper parameters obtained by experimentation.

7.2 The Neglect of Differential Overlap Method

The neglect of differential overlap (NDO) method was first introduced by John
Pople, and it is now the basis of most successful semiempirical methods. The
method involves the modification of the HF equation, FA = SAε , by approximating
the overlap matrix S as unit matrix. This allows us to replace the HF secular equa-
tion |H −ES| = 0 with a simpler equation |H −E| = 0. We shall see some common
techniques used to make the computation possible.

7.3 The Complete Neglect of Differential Overlap Method

In the complete neglect of differential overlap (CNDO) method, all integrals involv-
ing different atomic orbitals, χu, are ignored. Thus, the overlap matrix becomes the
unit matrix, S = 1. The parameterization and implementation scheme of the CNDO
method was also proposed by Pople.

7.4 The Modified Neglect of the Diatomic Overlap Method

The modified neglect of the diatomic overlap (MNDO) method (by Michael De-
war and Walter Thiel, 1977) is the oldest NDDO-based model that parameterizes
one-center two-electron integrals based on spectroscopic data for isolated atoms,
and evaluates other two-electron integrals using the idea of multipole-multipole in-
teractions from classical electrostatics. A classical MNDO model uses only s and
p orbital basis sets, while more recent MNDO/d adds d-orbitals that are especially
important for the description of hypervalent sulphur species and transition metals.
MNDO has a number of known deficiencies, such as the inability to describe the
hydrogen bond due to a strong intermolecular repulsion. The MNDO method is
characterized by a generally poor reliability in predicting heats of formation. For
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example, highly substituted stereoisomers are predicted to be too unstable, com-
pared to linear isomers due to the overestimation of repulsion in sterically crowded
systems.

Existing semiempirical models differ by further approximations that are made
when evaluating one- and two-electron integrals and by the parameterization phi-
losophy.

While INDO added all one-center two-electron integrals to the CNDO/2 for-
malism, NDDO adds all two-center integrals for repulsion between a charge dis-
tribution on one center and a charge distribution on another center. Otherwise, the
zero-differential overlap approximation is used.

7.5 The Austin Model 1 Method

The Austin Model 1 (AM1) method, developed by M. J. S. Dewar and coworkers,
takes a similar approach to MNDO in approximating two-electron integrals, but uses
a modified expression for nuclear-nuclear core repulsion. The modified expression
results in non-physical attractive forces that mimic van der Waals interactions. The
modification also necessitated a re-parameterization of the model, which was car-
ried out with a particular emphasis on dipole moments, ionization potentials, and
geometries of molecules. While this allows for some description of the hydrogen
bond, other deficiencies, such as systematic over-estimates of basicities, remained
unsolved. Also, the lowest energy geometry for the water dimer is predicted incor-
rectly by the AM1 model. On the other hand, AM1 nicely improves some properties,
such as heats of formation, over MNDO.

7.6 The Parametric Method 3 Model

The Parametric Method 3 (PM3) model, developed by James Stewart, uses a Hamil-
tonian that is very similar to the AM1 Hamiltonian, but the parameterization strat-
egy is different. While AM1 was parameterized largely based on a small number
of atomic data, PM3 is parameterized to reproduce a large number of molecular
properties. In some sense, chemistry gave way to statistics with the PM3 model.
A different parameterization, and a slightly different treatment of nuclear repul-
sion allows PM3 to treat hydrogen bonds rather well, but it amplifies non-physical
hydrogen-hydrogen attractions in other cases. This results in serious problems while
analyzing intermolecular interactions (methane is predicted to be a strongly-bound
dimer) or conformations of flexible molecules (OH is strongly attracted to CH3 in
1-pentanol). The accuracy of thermochemical predictions with PM3 is slightly bet-
ter than that of AM1. The PM3 model has been widely used for the rapid estimation
of molecular properties and has been recently extended to include many elements,
including some transition metals.
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7.7 The Pairwize Distance Directed Gaussian Method

The pairwise distance directed Gaussian (PDDG/PM3) method, developed by
William Jorgensen and coworkers, overcomes some of the deficiencies of the earlier
NDDO-based methods by using a functional group-specific modification of the core
repulsion function. The nPDDG/PM3 modification provides a good description of
the van der Waals attraction between atoms, and the PDDG/PM3 model appears
to be suitable for calculations of intermolecular complexes. Furthermore, careful
re-parameterization has made the PDDG/PM3 model very accurate for estimation
of heats of formation. However, some limitations common to NDDO methods re-
main in the PDDG/PM3 model: the conformational energies are unreliable, most
activation barriers are significantly overestimated, and the description of radicals is
erratic. So far, only C, N, O, H, S, P, Si, and halogens have been parameterized for
PDDG/PM3 [1].

7.8 The Zero Differential Overlap Approximation Method

The zero-differential overlap (ZDO) method is an approximation that is used to sim-
plify the many electrons by ignoring two-electron repulsion integrals. If the molec-
ular orbitals φ j are expanded in terms of N basis functions, χA

s as:

φ j =
b

∑
s=1

csiχA
s (7.1)

where A is the atom the basis function is centered on, and csi are the coefficients.
The two-electron repulsion integrals are then defined as:

〈sv |λσ 〉 =
∫ ∫

χA
s (1)χB

v (1)
1

r12
χC
λ (2)χD

σ (2)dτdτ (7.2)

The zero-differential overlap approximation ignores integrals that contain the
product χA

s (1)χB
v (1) where s 
= v. This transforms the equation to:

〈sv |λσ 〉 = δsvδλσ 〈ss |λλ 〉 (7.3)

δsv is the Kronecker delta with δsv = 0 if s 
= v and δsv = 1 if s = v. The to-
tal number of such integrals is reduced to N(N + 1)/2 (approximately N2/2) from
[N(N + 1)/2][N(N + 1)/2 + 1]/2 (approximately N4/8) where N is the number of
orbitals.
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7.9 The Hamiltonian in the Semiempirical Method

The (CNDO) method and the intermediate neglect of differential overlap (INDO)
method are SCF methods solving the Roothaan equations iteratively, with approx-
imations for the integrals in the Fock matrix. Only valence electrons are mainly
considered in these methods. The Hamiltonian is:

Ĥval =
n(val)

∑
i=1

[
−1

2
∇2

i +V(i)
]

+
n(val)

∑
i=1

∑
j>1

1
ri j

(7.4)

which can be simplified as:

Ĥval =
n(val)

∑
i=1

Ĥcore
val (i)+

n(val)

∑
i=1

∑
j>1

1
ri j

(7.5)

where

Ĥcore
val (i) =

[
−1

2
∇2

i +V(i)
]

(7.6)

Here n(val) stands for the number of valence electrons in the system, V (i) is the
potential energy of valence electron i in the field of nuclei and the core electrons,
Ĥcore

val (i) is the one-electron part of Ĥval.
CNDO uses a minimal basis set of valence Slater atomic orbitals fr with orbital

exponents fixed based on the following (Slater) rules:

1. The orbital exponent ζ is given by the expression, ζ = (Z − snl)/n, where n is
the principal quantum number, Z the atomic number, and snl is the screening
constant.

2. The screening constants are determined based on the following scheme:
3. Atomic orbitals are classified into the groups (1s), (2s,2p), (3s,3p), and (3d).
4. The contribution to the screening constant is zero for electrons in groups outside

the one being considered.
5. Each electrons within the group contributes a value of 0.35 excepting the 1s

group where the value is 1.20 (in the general Slater rule scheme 1s is assigned
0.30).

6. For s or p orbital electrons, 0.85 from each electron whose quantum number n
is one less than the orbital considered and 1.00 for each electron further in.

7. For each d orbital electron inside the group, the contribution is assigned as 1.00.
8. snl is calculated as the sum of all these contributions.

The valence orbital φi is given by:

φi =
b

∑
r=1

Cri fr (7.7)



144 7 Semiempirical Methods

The molecular electronic energy is given by:

E = 2
n(val)/2

∑
i=1

Hcore
val,ii +

n(val)/2

∑
i=1

n(val)/2

∑
j=1

(2Ji j −Ki j)+Vcc (7.8)

where Vcc is the core–core repulsion term, and is given by:

Vcc =∑
α
∑
β>α

CαCβ

Rαβ
(7.9)

The core charge Cα on atom α equals the atomic number of atom α minus the
number of core electrons on α .

The Fock matrix elements are computed by the equation:

Fval,rs = Hcore
val,rs +

b

∑
t=1

b

∑
u=1

Ptu

[
(rs/tu)− 1

2
(ru/ts)

]
(7.10)

The CNDO follows ZDO approximation.
The overlap integral Srs = 〈 fr(1) | fs(1) 〉 = δrs, the Kronecker delta. By ZDO

approximation, f ∗r (1) fs(1)dv1 = 0 if r 
= s
But,

(rs/tu) =
〈

fr(1) ft (2)
∣∣∣∣

1
r12

∣∣∣∣ fs(1) fu(2)
〉

(7.11)

(rs/tu) = δrsδtu(rr/tt) = δrsδtuγrt (7.12)

where γrt = (rr/tt).
In the CNDO method, there are several basis valence AOs on each atom except-

ing the hydrogen atom. ZDO approximation neglects electron-repulsion integrals
involving different AOs centered on the same atom.

The calculated values of molecular properties do not change if the coordinate
axes are changed. Hence, the values are said to be rotationally invariant. Similarly,
the values do not change if each basis AO on a particular atom is replaced by a lin-
ear combination of the basis AOs on that atom, or the results are hybridizationally
invariant. To maintain rotational and hybridizational invariance, even after the ZDO
approximation, the CNDO method introduces the following parameterization:

1. The electron repulsion integral, γrt = (rr/tt) is considered as dependent only on
the atoms where fr and ft are centered.

2. It does not depend on the nature of orbitals.

If the valence electrons fr and ft are centered on atoms A and B,
(rArA |tBtB ) = γrAtB = γAB for all valence atomic orbitals fr on A and all valence

atomic orbitals ft on B.
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In CNDO, all one-center valence electron repulsion integrals on atom A have the
value γAA and all two-center valence electron repulsion integrals involving atoms
A and B have the value γAB. All three-center or four-center values are neglected by
ZDO. γAA and γAB are computed using valence STOs on A and B. These values
depend upon the orbital exponent, the principal quantum number of the valence
electron and the distance between atoms A and B.

7.9.1 The Computation of Hcore
rAsB

Hcore
rAsB

= β 0
ABSrAsB for r 
= s where SrAsB is evaluated exactly, unlike the Roothaan

equation. β 0
AB = 1

2

(
β 0

A +β 0
B

)
β 0

A and β 0
B are chosen to make the CNDO calculated

MOs resembling the coefficients in the minimal basis ab initio MOs. When A and
B are the same atoms, SrAsB = 0 for r 
= s by orthogonality condition of the atomic
orbitals on the same atom. Then Hcore

rAsB
= 0.

7.9.2 The Computation of Hcore
rArA

We know that Hcore(1) = − 1
2∇

2
1 +V(1), where V (1) is the potential energy of va-

lence electron 1 in the field of the core. Splitting V (1) into contributions from indi-
vidual atomic cores:

Hcore(1) = −1
2
∇2

1 +VA(1)+ ∑
B
=A

VB(1) (7.13)

then:

Hcore
rArA

=
〈

frA(1)
∣∣∣∣−

1
2
∇2

1 +VA(1)
∣∣∣∣ frA(1)

〉
+ ∑

B
=A

〈
frA(1)

∣∣ VB(1)| frA(1)
〉

(7.14)

This is simply written as:

Hcore
rArA

= Urr + ∑
B
=A

〈
frA(1)

∣∣ VB(1)| frA(1)
〉

(7.15)

There are two versions of CNDO: CNDO/1 and CNDO/2. In CNDO/1, Urr is
computed as the negative of valence-state ionization energy from the AO frA . The
integrals

〈
frA

∣∣VB(1)| frA

〉
= VB are taken as equal to maintain rotational and hy-

bridizational invariance:

VAB = −
〈

SA(1)
∣∣∣∣
CB

r1B

∣∣∣∣SA(1)
〉

(7.16)
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CB is the core charge of atom B. In CNDO/1, by using VAB, two neutral molecules
or atoms, separated substantially, may even experience attractive forces. This error
is eliminated in CNDO/2 by taking VAB as −cBγAB. With these approximations, the
Fock matrix elements are decided. Roothaan equations are solved iteratively to find
the CNDO orbitals and the orbital energies.

In the INDO method, the differential overlap between AOs on the same atom is
not neglected in one-center electron repulsion integrals, while two-center electron
integrals are neglected. With a few more integrals added, the INDO method is an
improvement to the CNDO method.

In the neglect of diatomic differential overlap (NDDO) method, the differential
overlap is neglected between atoms centered on different atoms.

Hence, f ∗r (1) fs(1)dv1 = 0 when r and s are on different atoms. It satisfies the
invariance conditions. Dewar and Thiel modified NDDO to make MNDO. In this
method, compounds containing H, Li, Be, B, C, N, O, F, Al, Si, Ge, Sn, Pb, P, S, Cl,
Br, I, Zn, and Hg have been parameterized. Valence electron Hamiltonian is given by
Eq. 7.5 and the Fock matrix is given by Eq. 7.10. The MNDO Fock matrix elements
can be determined as follows.

Core matrix elements (core resonance integral) HCore
μAνB

=
〈
μA(1)

∣∣ĤCore(1)
∣∣μA(1)

〉

with atomic orbitals centered at atoms A and B are given by:

HCore
μAνB

=
1
2

(
βμA +βνB

)
SμAνB ; A 
= B (7.17)

where β are the parameters for each orbital. for example, carbon with valence
atomic orbitals 2s and 2p, centered on the same C-atom, will have parameters βC2s

and βC2p. Core matrix elements from different atomic orbitals centered on the same
atom are given by Eq. 7.13. Hence:

HCore
μAνB

=
〈
μA

∣∣∣∣−
1
2
∇2

1 +VA

∣∣∣∣νA

〉
+ ∑

B 
=A

〈μA |VB|νA〉 (7.18)

Using group theoretical considerations
〈
μA
∣∣− 1

2∇
2
1 +VA

∣∣νA
〉

can be made as
zero. Hence:

HCore
μAνB

= ∑
B 
=A

〈μA |VB|νA〉 (7.19)

If we consider electron 1 to interact with a point core of charge CB, then:

VB =− CB

r1B
(7.20)

〈μA |VB|νA〉 =−CB

〈
μA

∣∣∣∣
1

r1B

∣∣∣∣νA

〉
(7.21)
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In MNDO, 〈μA |VB|νA〉 = −CB 〈μAνA| sBsB〉 where sB is the valence s-orbital
on atom B:

HCore
μAνB

= ∑
B 
=A

〈μA |VB|νA〉 = − ∑
B
=A

CB (μAνA| sBsB) ; μA 
= νA (7.22)

Core matrix elements HCore
μAμA

=
〈
μA(1)

∣∣ ĤCore(1)
∣∣μA(1)

〉
is computed using

Eq. 7.14 to get:

HCore
μAμA

=
〈
μA

∣∣∣∣−
1
2
∇2 +VA

∣∣∣∣νA

〉
+ ∑

B
=A

〈μA |VB|νA〉 (7.23)

UCore
μAμA

=
〈
μA
∣∣− 1

2∇
2 +VA

∣∣νA
〉

is evaluated by parameterization using atomic
spectra in MNDO (the parameters used for the C-atom Uss and Upp). Thus:

HCore
μAμA

= U−
μAμA ∑

B 
=A

CB (μAνA|sBsB) (7.24)

The evaluation of 〈μAνA| sBsB〉 is as follows:

1. All three-center and four-center integrals vanish with the ZDO method.
2. One-center electron repulsion integrals are either Coulomb integral

guv = 〈μAμA|νAνA〉 or exchange integral huv = 〈μAνA|μAνA〉. Thus, for the
C-atom, the integrals are gss, gsp, gpp, gpp′, hsp and hpp′ where p and p′ are
along different axes.

3. Two-center repulsion integrals are found from the values of the one-center inte-
gral and the internuclear distance using multipole expansion procedure (Dewar
et al., Theor. Chim. Acta, 46, 89, 1977).

4. The core–core repulsion term is given by:

Vcc = ∑
B>A

∑
A

[CACB (sAsB |sBsB )+ fAB] (7.25)

where:

fAB = f MNDO
AB =

[
CACB (sAsB |sBsB )

(
e−αARAB + e−αBRAB

)]
(7.26)

αA and αB are parameters for atoms A and B. For O–H and N–H pairs:

f MNDO
AH =

[
CACH (sAsH |sHsH )

(
(RAH/A.U.)e−αARAH + e−αHRAH

)]
αAαH (7.27)

where A is N or O.
In the MNDO method, the following parameters have to be optimized:

1. One-center one-electron integrals Uss and Upp.
2. The STO exponent ξ . For MNDO ξs = ξp.
3. βs and βp. MNDO assumes that βs = βp.
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In the Austin model 1 (AM1), ξs 
= ξp. Parameterization with compounds from
H, B, Al, C, Si, Ge, Sn, N, P, O, S, F, Cl, Br, I, Zn, and Hg have been made. Thus:

f AM1
AB = f MNDO

AB +
CACB

RAB/A.U.

[
∑
k

akA exp
[
−bkA (RAB − ckA)2

]]

+
CACB

RAB/A.U.

[
∑
k

akB exp
[
−bkB (RAB − ckB)2

]]
(7.28)

Stewart re-parameterized the values to generate the PM series. That derived from
AM1 is known as the PM3 (Parametric method 3). In the PM3, one-center electron
repulsion integrals are parameterized by optimization. The core repulsion function
takes only two Gaussian functions per atom. In PM3, compounds containing H, C,
Si, Ge, Sn, Pb, N, P, As, Sb, Bi, O, S, Se, Te, F, Cl, Br, I, Al, Ga, In, Tl, Be, Mg, Zn,
Cd, and Hg have been parameterized.

Dewar and coworkers modified AM1 to give the semi an initio model-1 (SAM-1).
The differences between AM1 and SAM-1 are listed below:

1. SAM-1 evaluates two-venter electron integrals by the equation, (μν |λσ)SAM1 =
g(RAB)(μν |λσ )STO-3G. The integral (μν |λσ )STO-3G is computed with the
STO-3G basis set. g(RAB) is a function of the internuclear distance, which re-
duces the size of repulsion integrals to allow electron correlation.

2. SAM-1 is slower than AM1, while it is faster than ab initio methods due to
NDDO approximation.

Thiel and Voityuk extended the MNDO by introducing d-orbitals: this is called
the MNDO/d method. For the elements of the first and second row of the periodic
table, d-orbitals are not included, so that MNDO and MNDO/d methods are iden-
tical for them. MNDO/d method has been parameterized for a number of transition
elements.

7.10 Comparisons of Semiempirical Methods

CNDO and INDO results are less accurate than minimal basis set ab initio meth-
ods. Hence these methods fail to compute accurate binding energy. Dewar’s ap-
proach was to treat only valence electrons. Most of the theories such as the MINDO,
MNDO, AM1, PM3, SAM1, and MINDO/d methods use a minimal basis set of
valence Slater type s and p AOs to expand valence-electron MOs. A comparison
of the heat of formation with MNDO, PM3, and AM1 methods has been made in
Table 7.1. The CNDO method is crude, fast and can do second row elements. The
INDO method is better for first row elements, while the MINDO3 and MNDO meth-
ods are more reliable. The AM1 method is better for estimating H bonds. The PM3
method, developed from AM1, includes more main-group elements. For ordinary
molecules, AM1 or PM3 are probably the best to try. Semiempirical methods are
highly useful for better geometry optimization than force fields, especially geome-
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Table 7.1 Heat of formation of some MNDO, PM3, and AM1 compounds

Compound Heat of formation
MINDO/3 MNDO AM1 PM3

CH4 −6.3 −11.9 −8.8 −13.0
LiH — +23.2 — —
BeO +38.6 +53.0
NH3 −9.1 −6.4 −7.3 −3.1
CO2 −95.7 −75.1 −79.8 −85.0
SiH +82.9 +90.2 +89.8 +94.6
H2S −2.6 +3.8 +1.2 −0.9
HCl −21.1 −15.3 −24.6 −20.5
HBr — +3.6 −10.5 +5.3
HgCl2 — −36.9 −44.8 −32.7
ICl — −6.7 −4.6 +10.8
TlCl — — — −13.4
PbF — −22.6 — −21.0

tries for molecules including atoms which are not parameterized in a force field.
It makes the qualitative prediction of IR frequencies and the total electron density
surface for graphical display. They are not really good enough for reaction ener-
gies and equilibrium constants; even quite low level ab initio methods are better for
energetics.

Semiempirical methods cannot do anything with core electrons, e.g., NMR
shielding. The ZINDO method can deal with excited states, which are more dif-
ficult to do than ground states in ab initio methods. Hence, predictions of UV/visi-
ble spectrum absorption wavelengths are possible. A comparative study of different
semiempirical methods on the basis of theory has been made in Table 7.2.

It is well known that the strength of H-bonds in charged systems is proportional
to the difference in proton affinities (PAs) of their components. The evaluation of
PAs is very important in predicting the strength of H-bonds in biomolecules such
as enzymes, on their models. Bliznyuk and Voityuk used the MNDO method to
estimate PAs of DNA base pairs and in their complexes and found that the MNDO
method was in good agreement with theory.

A highly symmetric zinc(II) complex with {[Zn(tren)]4(μ4-ClO4)}7+ struc-
ture unit (tren=tris(2-aminoethyl)amine) was characterized by single-crystal X-ray
diffraction and was compared by the calculation from the MNDO method by Fu
et al. [2].

The syn,syn configurational preference of compounds of the type R–NSN–R,
where the substituent R is SiMe3, is rationalized in terms of anti-periplanar hyper-
conjugation between the in plane nitrogen lone pairs on the NSN fragment and the
electropositive silicon-H/Me σ bonds. MNDO and ab initio calculated energies and
geometries were reported for a range of electropositive and electronegative sub-
stituents R and discussed in terms of stereoelectronic interactions by Rzepa and
Woollins [3].
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Table 7.2 A comparative study of different semiempirical methods

Acronym Full name Underlying Parameters Fitted
approximation parameters

CNDO Complete neglect of CNDO — —
differential overlap

INDO Intermediate neglect of INDO — —
differential overlap

MINDO/3 Modified intermediate neglect of INDO 10 2
differential overlap, version 3

MNDO Modified neglect of NDDO 10 5
differential overlap

AM1 Austin model 1 NDDO 13 8
PM3 Parametric model number 3 NDDO 13 13

In the search for new beta-lactam antibiotics (penicillins fall in this class of com-
pounds), it was found that sulphur-based drugs (thiamazins) displayed no activity,
while the traditional oxygen-based drugs (oxamazins) were useful. The explanation
of this surprising behavior was partially done by semiempirical calculations, which
indicated that the structure of the inactive drugs results in a poor fit with the “ac-
tive site.” Boyd et al. conducted a series of studies in this regard (Boyd, Eigenbrot,
Indelicato, Miller, Pasini, Woulfe, J. Med. Chem. 1987, 30, 528.) These calcula-
tions (which utilized the AM1, MNDO, and MINDO/3 methods) were also able
to identify several other factors (which may not be important), which lowers the
“likelihood” that potentially useful drugs will be eliminated without consideration.

Myclobutanil is a broad spectrum, agrochemical fungicide. After narrowing the
possible types of compounds that appeared useful by field testing, differences be-
tween the activity of these molecules were correlated by Boyd with a number of
molecular properties, including an analysis of molecular charges calculated using
the semiempirical MNDO method. The eventual development of myclobutanil was
credited as a direct result of this analysis.

It is estimated that over 400,000 tons of zeolites are used annually, primarily in
petroleum refining processes. Since these are solid state materials, both experimen-
tal and theoretical investigations are quite difficult. However, it has been shown that
the results of quantum mechanical calculations on isolated molecules can be suc-
cessfully applied to enhance the understanding of some of the properties of these
solid-state materials. The research conducted by Earley (C. W. Inorg. Chem. 1992,
31, 1250) concluded that AM1 calculations on molecules containing as few as two
or three silicon centers can be used to explain one of the basic structural features of
these molecules. Semiempirical calculations on larger molecules have been used to
determine the most acidic sites.

The antipsoriatic drug anthralin has been in use for over 60 years. The AM1
study conducted by Holder and Upadrashta (J. Pharm. Sci. 1992, 81, 1074) explains
some of the properties that make the drug active and suggests further directions for
research.
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Clinical trials of an aldose reductase inhibitor conducted by Kador and Sharpless
(Molec. Pharm. 1983, 24, 521) suggests that these types of compounds can prevent
certain eye problems (cataract formation and corneal re-epithelialization) in diabetic
patients. Clinical studies indicate that no “universally potent” inhibitor exists, em-
phasizing the need to find new drugs of this type. A comparison of the activities
of several of these drugs with results of quantum mechanical calculations (energies
of lowest unoccupied molecular orbitals and atomic charges) showed strong cor-
relations, which aided in the prediction of the minimal requirements for an active
drug.

GABA (gamma-aminobutyric acid) is a mediator of the central nervous system
and has been implicated as a contributor in chemically-induced depression. A theo-
retical study using the AM1 method on GABA and two derivatives of this compound
conducted by Kehl and Holder (J. Pharm. Sci. 1991, 80, 139) was able to show that
one of these derivatives is more closely related to the parent system than the second.
This result is in agreement with the actual experimental results.

The phospholiphase A2 enzyme is thought to be involved in the breakdown of
phospholipids, important components in living systems. This study was undertaken
by Ripka, Sipio, and Blaney (Lect. Heterocyc. Chem. 1987, IX, S95) to show that
theoretical methods can be successfully applied to drug design. The analysis of the
geometries of a number of proteins suggested one key structural component. Quan-
tum mechanical calculations not only supported these findings, but were also able
to offer a simple explanation for this phenomenon.

Quantum mechanical calculations on a number of simple sugars conducted by
Szarek, Smith, and Woods (J. Am. Chem. Soc. 1990, 112, 4732) provided an expla-
nation of the relative sweetness of these compounds. An analysis of the structural
features observed in the calculated geometries of these compounds suggests that
a previously neglected feature of these molecules may be important in determining
“sweetness.”

Carotenoids are light-gathering agents in the pigments of eyes. In order to un-
derstand the efficiency of these compounds in transferring light energy, a theoretical
study using the AM1 method was performed by Wasielewski, Johnson, Bradford,
and Kispert (J. Chem. Phys. 1989, 91, 6691) The explanation for the high efficiency
of this process obtained from these calculations was in agreement with the results
of experimental studies.

Applications of these MNDO type methods usually involve exploration of mul-
tidimensional potential surfaces which is greatly facilitated if the gradient of the
energy with respect to the nuclear coordinates can be evaluated efficiently. Once
a stationary point on a potential energy surface is found, the second derivatives of
the energy with respect to the nuclear coordinates provide the harmonic force con-
stants and the harmonic vibrational frequencies. They may also be used for char-
acterizing stationary points and for locating transition states on potential surfaces.
Other molecular properties such as infrared vibrational intensities, polarizabilities
magnetic susceptibilities, magnetic shielding tensors, and spin-spin coupling con-
stants at equilibrium geometries may also be of interest in a theoretical investiga-
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tion. These physical quantities can be conveniently expressed as partial derivatives
of the energy, and thus share a significant portion of the underlying mathematical
formalism.

Semiempirical calculations are much faster than their ab initio counterparts.
Their results, however, can be very wrong if the molecule being computed is not
similar enough to the molecules in the database used to parameterize the method.
Semiempirical calculations have been most successful in the description of organic
chemistry, where only a few elements are used extensively and molecules are of
moderate size.

Despite their limitations, semiempirical methods are often used in computational
chemistry because they allow the study of systems that are out of reach of more
accurate methods. For example, modern semiempirical programs allow the study of
molecules consisting of thousands of atoms while ab initio calculations that produce
similar thermochemical accuracy are feasible on molecules consisting of less than
50–70 atoms. Semiempirical calculations can be useful in many situations, such as
the following:

1. The computational modeling of structure-activity relationships to gain insight
about reactivity or property trends for a group of similar compounds.

2. The design of chemical synthesis or process scale-up, especially in industrial
settings where getting a qualitatively correct answer today is more important
than getting a highly accurate answer after some time.

3. The development and testing of new methodologies and algorithms, for ex-
ample, the development of hybrid quantum mechanics/molecular mechanics
(QM/MM) methods for the modeling of biochemical processes.

4. Checking for gross errors in experimental thermochemical (e.g., heat of forma-
tion) data.

5. The preliminary optimization of geometries of unusual molecules and transition
states that cannot be optimized with molecular mechanics methods.

6. In many applications, where qualitative insight about electronic structure and
properties is sufficient.

For large systems, either molecular mechanics or semiempirical quantum me-
chanics could be used for the optimization and calculation of conformational ener-
gies. The molecular mechanics approach is faster and in most cases it produces more
accurate conformational energies and geometries. Some molecular mechanics meth-
ods, such as MM3 and MM4, can also predict the thermochemistry of stable species
reasonably well. On the other hand, if there is no suitable force field for the system
(e.g., in case of reactive intermediates or transition states), semiempirical methods
may be the only choice. For a small system, the compromise must be made between
the semiempirical approach and the more reliable but much more time-consuming
ab initio calculations. In general, semiempirical results can be trusted only in sit-
uations when they are known to work well (e.g., systems similar to molecules in
the parameterization set). Finally, it is not correct to assume that for modeling all
larger systems, semiempirical methods can be used. No computational insight may
be better than a wrong computational insight.
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7.11 Software Used for Semiempirical Calculations

AMPAC, GAMESS, GAUSSIAN, MOLCAS, MOPAC, POS, VASP, Spartan, and
Hyperchem are some of the common types of software used for semiempirical cal-
culations. Most of the software can use all the methods mentioned in this chapter.
Some typical semiempirical computational input and output files of molecules with
different software have been included in the URL.

7.12 Exercises

1. Create acetonitrile (CH3CN) in the SPARTAN builder or Gaussian and set up an
AM1 or PM3 semiempirical calculation. Include molecular orbitals, frequen-
cies, and the Mulliken populations in the output file. Add any surfaces you
would like to look at, such as the electron density and the HOMO, and opti-
mize the structure. Examine the output file, the vibrational animations, and the
orbital pictures and answer the following questions:

a. What are the energies of the HOMO and the LUMO?
b. In which MOs are the two C–N p bonds mostly localized?
c. Which MO and which AOs appear to be the locus of the unshared pair on

nitrogen?
d. What is the calculated stretching frequency of the CN triple bond?
e. What is the calculated enthalpy of formation?

2. The semiempirical module can compute solvation energies using the SM5.4 sol-
vation model. Select a simple amino acid. Create both the neutral and the zwitter
ion. Optimize each geometry using the PM3 Hamiltonian (when you set up the
calculations, select the “E. Solvation” button).

a. Obviously, the zwitterion should have the greater solvation energy.
b. How do the HOMO and LUMO energies change from the neutral to the

zwitterion?
c. Is there any significant difference in the optimized geometry between the

two structures?

3. Model the Wittig reaction using gas-phase semiempirical AM1 calculations.
4. Calculate the geometry of NH3 (C3v symmetry) with MOPAC. Compare these

values with the experimental values rN−H = 1.012 Å and θHNH = 106.7◦.
5. Calculate the geometry and energy of planar NH3 (D3h symmetry). The dif-

ference in energy between this planar structure and pyramidal ammonia repre-
sents the barrier to the “umbrella” inversion in ammonia. Compare the computed
value with the experimental barrier of 24.3 kJ/mol.

6. In this exercise you will calculate the rearrangement barrier for the reaction:

HNC → HCN
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(Hint: First, calculate the structure and energy of HNC and HCN using MOPAC
and the PM3 parameter set. Compare your geometries with the experimental val-
ues. (For HNC, C–N = 1.169 Å and N–H = 0.994 Å; for HCN, C–N = 1.153 Å
and C–H = 1.065 Å). Repeat the calculations with the MNDO and AM1 param-
eter sets. How do the results change? Which method is found to be the best?
Justify your answer. Refer to the MOPAC manual for details.
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Chapter 8
The Ab Initio Method

8.1 Introduction

Electrons present in a system will be influenced by the remaining electrons present
in the same system. In the single electron approximation techniques, which we have
considered so far, this interaction is neglected. The interaction between electrons in
a quantum system is known as electronic correlation. Within the Hartree-Fock (HF)
limit of computation, the antisymmetric wavefunction is approximated by

a single Slater determinant, which does not include the Coulomb correlation lead-
ing to the total calculated electronic energy different from the exact solution of the
non-relativistic Schrödinger equation within the Born-Oppenheimer approximation.
The difference in energy between the HF limit and the actual (theoretical) one is
known as the correlation energy (given by Löwdin).

It is to be noted that a certain level of electron correlation is already considered
within the HF approximation, found in the electron exchange term describing the
correlation between electrons with parallel spin. The effect of the correlation can be
explained through electron density. In the immediate vicinity of an electron, there
is a reduced probability of finding another electron. For electrons of opposite spin,
this is often referred to as the Coulomb hole; the corresponding phenomenon for
electrons of the same spin is the Fermi hole. We shall discuss correlation through
electron density in the next chapter.

There is also a correlation related to the overall symmetry or total spin of the
considered system. The solution to the Schrödinger equation through a single elec-
tron Slater determinant (SD) comes in the vicinity of the HF method. An additional
approximation to the HF limits leads to semiempirical methods, while the intro-
duction of additional determinants to the computation makes the solution exact.
Electron correlation techniques will come under that category. The above concept is
schematically represented in Fig. 8.1.

sSDs, taking account of the Pauli’s exclusion principle (orbital asymmetry) are
most suitable for describing many-electron basis functions. Automatically, the first
step in correlation technique will be to set up a multi-determinant trial wave function
ψtrial, describing the total wave function in a “coordinate” system of an SD equation
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Fig. 8.1 Schematic representation giving relationships between different quantum mechanical
methods

as given in Eq. 8.1. The procedure involves an expansion of the N-electron wave
function as a linear combination of SD (in which each element is a one-electron
function of the molecular orbital):

ψtrial = a0φHF +∑
i=1

aiφi (8.1)

We have seen earlier that the basis set determines the size of the one-electron basis
and thus limits the description of the one-electron functions (the MOs). Similarly,
the number of determinants included decides the size of the many-electron basis and
the extent of electron correlation.

8.2 The Computation of the Correlation Energy

The correlation energy can be expressed as given in Eq. 8.2:

EC
HF = E0 −EHF (8.2)

Where E0 is the energy calculated by the Born-Oppenheimer approximation and
EHF is the energy computed by the HF approximation. It is a measure of the error
introduced through the HF scheme. The development of methods to determine the
correlation contributions accurately and efficiently is still a highly active research
area in conventional quantum chemistry. Electron correlation is mainly caused by
the instantaneous repulsion of the electrons, which is not covered by the effective
HF potential. Pictorially speaking, the electrons often get too close to each other
in the HF scheme, because the electrostatic interaction is treated in only an aver-
age manner. As a consequence, the electron-electron repulsion term is too large,
resulting in EHF being above E0.
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8.3 The Computation of the SD of the Excited States

The computation of the restricted Hartree-Fock (RHF) energy of a system contain-
ing N-electrons and M-basis function generates (N/2) occupied molecular orbitals
and (M−N/2) unoccupied molecular orbitals. For example, the computation of
dioxygen with a 3-21G basis set, keeping 16 electrons and 18 basis functions will
carry 8 occupied molecular orbitals and 10 virtual molecular orbitals (refer to the
book URL to see the output). An SD is determined by N/2 spatial MOs multiplied
by two spin functions (α&β ) to yield N spinorbitals. By replacing MOs which are
occupied in the HF determinant by MOs which are unoccupied, a whole series of
determinants may be generated. These orbitals can be designated on the basis of
the number of occupied HF MOs which have been replaced by unoccupied MOs,
i.e., SDs which are singly, doubly, triply, quadruply, etc. excited “relative to the HF
determinant”, may reach up to a maximum of N excited electrons. These determi-
nants are often referred to as Singles (S), Doubles (D), Triples (T), Quadruples (Q)
etc. (Fig. 8.2).

The total number of determinants that can be generated from a given basis set de-
pends on the size of the basis set. The larger the basis, the higher will be the number
of virtual MOs generated, and the higher will be the possibility of generating ex-
cited determinants. If all the possible determinants in a given basis set are included,
all the electron correlation can be recovered from the function. Automatically, the
Schrödinger equation can be fully solved if we choose a basis set of infinite size.
Methods which include electron correlation are thus two-dimensional; the larger the
one-electron expansion (basis set size) and the larger the many-electron expansion
(number of determinants), the better are the results.

Fig. 8.2 Excited states configuration. A: HF ground state, B: singly excited (Singles or S) and C:
doubly excited (Doubles or D)
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8.4 Configuration Interaction

This method is based on the variational method similar to the HF formulation. Just
as the lowest eigenvalue has been shown to be an upper bound to the exact ground-
state energy, more generally, any eigenvalue calculated will be an upper bound to
the exact excitation energy. We start with proposing a trial wavefunction, which
is written as a linear combination of determinants with the expansion coefficients
determined based on the variational principle. The wavefunction with the configu-
ration interaction (ψCI) can be written as Eq. 8.2:

ψCI = a0φSCF + ∑
Singles(S)

aSφS + ∑
Doubles(D)

aDφD + . . . = ∑
i=0

aiφi (8.3)

Based on the linear variation method, the linear expansion |ψ〉 = ∑
i

ci |Φi〉 is re-

peated by varying coefficients ci so as to minimize energy, E =
(〈ψ ∣∣Ĥ∣∣ψ〉/〈ψ |ψ 〉).

But, due to the additional normalization condition, the computation is turned into
a constraint optimization problem. In this constraint optimization problem, we ap-
ply Lagrange’s method of undetermined multipliers, and we minimize the Lagrange
functional L (Eq. 8.3), which has the same minimum energy as E when the function
is normalized:

L = 〈ψCI |H |ψCI 〉−λ [〈ψCI |ψCI 〉−1] (8.4)

where 〈ψCI |H |ψCI 〉 is the energy of the ψCI wave function, 〈ψCI |ψCI 〉 is the norm
of the wave function, and λ the Lagrange multiplier. Substituting the values of en-
ergy function and the norm in the Lagrange functional:

L =∑
i j

aia j
〈
Φi
∣∣Ĥ ∣∣Φ j

〉−λ

(
∑
i j

aia j
〈
Φi
∣∣Φ j

〉−1

)
(8.5)

∑
i j

aia j
〈
Φi
∣∣Ĥ ∣∣Φ j

〉
= ∑

i=0

a2
i Ei +∑

i=0
∑
j 
=0

aia j
〈
Φi
∣∣Ĥ ∣∣Φ j

〉

∑
i j

aia j
〈
Φi
∣∣Φ j

〉
= ∑

i=0
∑
j=0

aia j

〈
Φi
∣∣Φ j

〉
= ∑

i=0

a2
i 〈Φi |Φi 〉 = ∑

i=0

a2
i

L =

(
∑
i=0

a2
i Ei +∑

i=0
∑
j 
=0

aia j
〈
Φi
∣∣Ĥ ∣∣Φ j

〉)−λ

(
∑
i=0

a2
i −1

)
(8.6)

δL
δai

= 2∑
j

a j
〈
Φi
∣∣Ĥ ∣∣Φ j

〉−2λai = 0

= ai
(〈
Φi
∣∣Ĥ |Φi

〉−λ
)
+∑

j 
=i

a j
〈
Φi
∣∣Ĥ ∣∣Φ j

〉
= 0 (8.7)

= ai (Ei −λ )+∑
j 
=i

a j
〈
Φi
∣∣Ĥ ∣∣Φ j

〉
= 0 (8.8)
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If only a single determinant is there, then ai = 1, and CI energy is the Lagrange
multiplier (λ = E):

δL
δai

= ai (Hii −λ )+∑
j 
=i

a j Hi j = 0 (8.9)

Where Hi j =
〈
Φi
∣∣Ĥ ∣∣Φ j

〉
, Ei = Hii =

〈
Φi
∣∣Ĥ |Φi

〉
Eq. 8.9 is the variational requirement for energy minimization.

8.5 Secular Equations

The variational problem setup can be converted into a problem of solving secular
equations. Equation 8.9 can be expanded to get secular equations for each element
corresponding to each i:

a0 (H00 −E)+ a1H01 + . . .+ a jH0 j = 0

a0H10 + a1 (H11 −E)+ . . .+ a jH1 j = 0 (8.10)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a0Hj0 + a1Hj1 + . . .+ a j (Hj j −E) = 0

The matrix equation corresponding to Eq. 8.10 can be represented as Eq. 8.11:
⎡
⎢⎢⎣

(H00 −E) H01 . . . H0 j

H10 (H11 −E) . . . H1 j

. . . . . . . . . . . .
Hj0 Hj1 . . . (Hj j −E)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a0

a1

. . .
a j

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0
0
. . .
0

⎤
⎥⎥⎦ (8.11)

The matrix obtained in the above equation is known as the configuration inter-
action (CI) matrix. Solving the secular equations is equivalent to diagonalizing the
CI matrix. The configuration interaction energy is obtained as the lowest eigenvalue
of the CI matrix, and the corresponding eigenvector contains the ai coefficients.
The second lowest eigenvalue corresponds to the first excited state, the third lowest
eigenvalue corresponds to the second excited state, and so on.

8.6 Many-Body Perturbation Theory

Many-body perturbation theory (MBPT) is a method to explain electron correlation
by treating it as a perturbation to the HF wavefunction. Here, we start with a simple
system and gradually turn on an additional “perturbing” Hamiltonian, represent-
ing a weak disturbance to the system. If the disturbance is not too large, various
physical quantities associated with the perturbed system (e.g., its energy levels and
eigenstates) will be continuously generated from those of the simple system. We
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can, therefore, study the former based on our knowledge of the latter. The solution
to the present problem will be closely related to the previous one, though not iden-
tical. The starting point in our development of MBPT is the eigenvalue equation for
the exact system:

H0ψn = εnψn (8.12)

Once the solution to this problem is known, we will switch over to finding the
eigenvalues (En) and eigenfunctions (ψn) of the perturbed system:

Hψn = Enψn (8.13)

The basic idea of perturbation theory is to expand the energy and wavefunctions
of the perturbed system in powers of the small potential V :

H = H0 +λV (8.14)

where H0 is the Hamiltonian of the previous computation, which is solved exactly or
approximately, λ is a perturbation parameter, which measures the extent (power) of
perturbation made to the initial Hamiltonian, and V -is the perturbation operator. It
is assumed that the correction factor is small compared to the initial Hamiltonian so
that the perturbed wave function and energy can be expressed in the form of Taylor
expansion in powers of the perturbation parameter. Next, we write the eigenvalues
and eigenfunctions of the perturbed system as:

En = En
0 +λEn

1 +λ 2En
2 + . . . (8.15)

ψn = ψn
0 +λψn

1 +λ 2ψn
2 + . . . (8.16)

Terms with the suffix 0 stand for zero-order terms, terms with the suffix 1 stand
for first-order correction terms, terms with suffix 2 stand for second-order correc-
tion terms, and so on. In the computation procedure our aim is to use the minimum
number of terms in this expansion that are necessary to achieve satisfactory approx-
imations for En and ψn.

It is customary to consider the perturbed wavefunctions to be intermediately nor-
malized. Hence:

〈ψ |φ0 〉 = 1 . (8.17)

Substituting ψ :

〈
λ 0ψ0 +λ 1ψ1 +λ 2ψ2 + . . . |φ0

〉
= 1 . (8.18)

Rearranging:

〈ψ0 |φ0 〉+λ 〈ψ1 |φ0 〉+λ 2 〈ψ2 |φ0 〉+ . . . = 1 . (8.19)
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This confirms that:
〈
ψi
=0 |φ0

〉
= 0 (8.20)

Similarly, the total wavefunction is also treated as normalized.
The perturbed Schrödinger equation can be written as:

(H0 +λV)
(
λ 0ψ0 +λ 1ψ1 +λ 2ψ2 + . . .

)
=(

λ 0ψ0 +λ 1ψ1 +λ 2ψ2 + . . .
)(
λ 0ψ0 +λ 1ψ1 +λ 2ψ2 + . . .

)
(8.21)

If λ = 0, then Eq. 8.21 becomes:

Hψ = E0ψ0 (8.22)

It is known as the zero-order perturbation equation.
If λ = 1, the first-order perturbation equation takes the form of:

(H0ψ1 +Vψ0) = (E0ψ1 + E1ψ0) (8.23)

In general, the n-th-order perturbation equation takes the form of:

(H0ψn +Vψn−1) =
n

∑
i=0

Eiψn−1 (8.24)

The computation of the n-th-order energy correction can be calculated from
Eq. 8.23 by multiplying from the left by φ0, and integrating, and using the “turnover
rule”:

〈φ0 |H0 |ψi 〉 = 〈ψi |H0 |φ0 〉∗

〈φ0 |H0 |ψn 〉+ 〈φ0 |V |ψn−1 〉 =
n−1

∑
i=0

Ei 〈φ0|ψn−1〉+ En 〈φ0|ψ0〉 (8.25)

E0 〈φ0 |ψn 〉+ 〈φ0 |V |ψn−1 〉 = En 〈φ0|ψ0〉 (8.26)

En = 〈φ0 |V |ψn−1 〉 (8.27)

Hence, so as to find the energy of the n-th order, the wavefunction of (n−1) order
is required.

8.7 The Möller-Plesset Perturbation

The unperturbed HF function is subjected to MBPT to deliver the Möller-Plesset
perturbation theory. The MP unperturbed Hamiltonian is taken as the sum of the
one-electron Fock operator:

Ĥ0 =
n

∑
m=1

f̂ (m) (8.28)

Where f̂ (m) = −1
2
∇2

m −∑
a

Za

rma
+

n

∑
j=1

[
Ĵ j(m)− k̂ j(m)

]
(8.29)
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The ground state HF wavefunction Φ0 is the SD |u1,u2, . . . ,un| of spin orbitals,
which is an antisymmetrized product of the spin orbitals. Each term in the expansion
of Φ0 is an eigenfunction of Möller-Plesset Ĥ0. For the spin-orbital (the spin orbital
is represented by u and spatial orbital by φ ), the HF equation for electron m in an
n-electron species is given by:

f̂ (m)ui(m) = εiui(m) . (8.30)

For a four-electron system, the equation becomes:
[

f̂ (1)+ f̂ (2)+ f̂ (3)+ f̂ (4)
]

u1(3)u2(2)u3(4)u4(1) =
(ε4 + ε2 + ε1 + ε3)u1(3)u2(2)u3(4)u4(1) (8.31)

Each other term is an eigenfunction of Ĥ0 with the same eigenvalue:

Ĥ0Φ0 =

(
n

∑
m=1

εm

)
Φ0 (8.32)

Eigenfunctions of Ĥ0 are an unperturbed (zeroth order) wavefunction. Hence,
the HF ground state function Φ0 is one of the zeroth order wave functions. The
Hermitian operator f̂ (m) has a complete set of eigenfunctions (all the possible spin-
orbital functions). The molecule has n-occupied spin-orbitals and infinite virtual
spin-orbitals. The eigenfunction of Ĥ0 are all possible products of any n of the
spin orbital. We must antisymmetrize these zeroth order wavefunctions through the
SD [1].

The perturbation Ĥ ′ is the difference between the true molecular electronic
Hamiltonian and Ĥ0.

Hence, the perturbation:

Ĥ ′ =
(
Ĥ − Ĥ0)=∑

l
∑
m>l

1
rlm

−
n

∑
m=1

n

∑
j=1

[
Ĵ j(m)− k̂ j(m)

]
(8.33)

It is the difference in energy between true interelectronic repulsion and the HF
interelectronic potential. The Möller-Plesset first order correlation to the ground
state energy is:

E(1)
0 =

〈
ψ(0)

0

∣∣∣ Ĥ ′ ∣∣∣ψ(0)
0

〉
=
∫
ψ(0)∗

0 Ĥ
′
ψ(0)

0 dτ =
〈
Φ0

∣∣∣ Ĥ ′ ∣∣∣Φ0

〉
(8.34)

(The subscript 0 stands for the ground state).

E(0)
0 + E(1)

0 =
〈
ψ(0)

0

∣∣∣ Ĥ0
∣∣ψ(0)

0

〉
+
〈
Φ0

∣∣∣ Ĥ ′ ∣∣∣Φ0

〉

=
〈
Φ0

∣∣∣ Ĥ0 + Ĥ
′∣∣∣Φ0

〉
=
〈
Φ0
∣∣ Ĥ∣∣Φ0

〉
(8.35)

But,
〈
Φ0
∣∣ Ĥ∣∣Φ0

〉
is the variational HF integral, EHF.
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Hence:

E(0)
0 + E(1)

0 = EHF (8.36)

Usually, one computes corrections to the energy using second-order perturba-
tion theory, which is abbreviated MBPT(2). This is usually also called second-order
Möller-Plesset perturbation theory, or MP2. For some problems, MP2 is more re-
liable than DFT. It is virtually always an improvement on HF. From Eq. 8.35, the
zeroth order eigenfunction Φ0 of Ĥ0 has the eigenvalues

n

∑
m=1

εm

and

E(0)
0 =

n

∑
m=1

εm

Second order energy correction E(2)
n :

E(2)
0 = ∑

s 
=0

∣∣∣
〈
ψ(0)

s

∣∣∣ Ĥ ′ ∣∣∣Φ0

〉∣∣∣
E(0)

0 −E(0)
s

2

(8.37)

Let the occupied spin-orbitals be represented by i, j,k, . . . and virtual spin-orbitals
by a,b,c, . . . for the HF function Φ0. Depending upon the number of virtual spin
orbitals the unperturbed wavefunction contains, it can be classified. This number is
often known as the “excitation level.” For example, Φa

i denotes the singly excited
(excitation level = 1) determinant, which differs from Φ0 by replacing the occu-
pied orbital ui by the virtual orbital ua. Similarly, Φab

i j denotes the doubly excited
determinant, and so on.

In the matrix elements of the
〈
ψ(0)

m

∣∣∣ Ĥ ′∣∣∣Φ0

〉
of Eq. 8.36, it can be seen that for

all singly excited states, the integral disappears:
〈
ψ(0)

m

∣∣∣ Ĥ ′ ∣∣∣Φ0

〉
= 0

Similarly, if the excitation level is equal to or higher than three, then the integral
also vanishes (Condon-Slater rules). Hence, only the doubly excited states need to
be considered.

The doubly excited function Φab
i j is an eigenfunction of Ĥ0 = ∑

m
f̂ (m) with an

eigenvalue which varies from the eigenvalue of Φ0 by the following:

1. εi is replaced by εa.
2. ε j is replaced by εb.

Hence, for the doubly excited function:

E(0)
0 −E(0)

s = εi + ε j − εa − εb
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Substituting these values in the E(2)
0 equation:

E(2)
0 =

∞

∑
b=a+1

∞

∑
a=n+1

n

∑
i= j+1

n−1

∑
j=1

∣∣∣
〈

ab
∣∣∣ 1

r12

∣∣∣ i j
〉
−
〈

ab
∣∣∣ 1

r12

∣∣∣ ji
〉∣∣∣

2

(εi + ε j − εa − εb)
(8.38)

where n is the number of electrons and
〈

ab

∣∣∣∣
1

r12

∣∣∣∣ i j

〉
=
∫ ∫

u∗a(1)u∗b(2)
1

r12
ui(1)u j(2)dτ1 dτ2 (8.39)

In MP2 (MBPT(2)) the molecular energy is computed as:
E(0) −E(1) + E(2) = EHF + E(2). Similarly, with higher correction factors, higher
MPs can also be computed. An MP with a correction through E(2) is called MP2,
a correction through E(3) is called MP3, and so on.

The general procedure for MPn calculation can be listed as follows:

1. Choose a basis set.
2. Compute Φ0, EHF, and the virtual orbitals.
3. Evaluate E(n) correction evaluating integrals over the basis set.
4. Expand the basis function to use the entire basis set.
5. Perform SCF calculation to calculate the exact EHF and the entire virtual or-

bitals.

MP calculations are not variational, and the computed energy may be less than
the true energy. MP calculations with lower basis sets are of no practical use. The
normal basis set used is 6-31G*. For a DZP basis set, MP2 yields up to about 95%
basis set correction energy. Moreover, with this basis set, highly dependable equi-
librium geometries and vibrational energies are obtained.

Experiments indicate that in most electron-correlation calculations, the basis set
truncation error is larger than correlation truncation error. Hence, an increase in the
basis set from 6-31G* to TZ2P, the error in a MP2 predicted equilibrium single
bond length, are reduced by a factor of 2 or 3 while moving up from MP2/TZ2P to
MP3/TZ2P; no improvement in geometry accuracy is obtained.

There are two types of MP2 computations: direct MP2 and conventional MP2. In
direct MP2, no external storage is used, while in conventional MP2 all the integrals
are stored.

Localized MP2 (LMP2) is a modification to MP2 to speed up the computa-
tion [2]. Here, instead of using canonical SCF MOs in the HF reference Φ0, one
takes the localized MOs. Similarly, instead of taking virtual orbitals, we use orthog-
onal localized occupied MOs. It can be further modified by adding pseudospectral
data. For species involving open-shell ground states (O2, NO2, and OH) unrestricted
MPn can be computed. Mp calculations do not work well far away from equilibrium
geometries.

MP calculations are not applicable to excited states. For excited states, CI calcu-
lations are widely used. Instead of starting with an SCF wavefunction as the zeroth-
order wavefunction, we can start with MCSCF. CASSCF is the most common type
among them.
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8.8 The Coupled Cluster Method

The coupled cluster method was introduced by Coester and Kümmel in 1958. It is
a numerical technique used for describing many electron systems [3].

The wavefunction of the coupled-cluster theory is written as an exponential:

ψ = eT̂Φ0 (8.40)

where Φ0 is an SD usually constructed from HF molecular orbitals. T̂ is an excita-
tion operator which, when acting on Φ0, produces a linear combination of excited
SDs.

The cluster excitation operator is written in the form:

T̂ = T̂1 + T̂2 + T̂3 + . . .+ . . . , (8.41)

where T̂1 is the operator of all single excitations, T̂2 is the operator of all double
excitations, and so on. In the formalism of second quantization, these excitation
operators are conveniently expressed as:

T̂1Φ0 =
∞

∑
a=n+1

n

∑
i=1

ta
i Φ

a
i (8.42)

T̂2Φ0 =
∞

∑
b=a+1

∞

∑
a=n+1

n

∑
j=i+1

n−1

∑
1=1

tab
i j Φ

ab
i j (8.43)

whereΦa
i is a singly excited SD, and T̂1 converts SD |u1,u2, . . .un|=Φ0 into a linear

combination of all possible singly excited SDs. Similarly, T̂2 is the doubly excited
SD. Since for an “n-electron system”, not more than n-electrons can be excited, no
operator beyond T̂n appears in the cluster operator. By definition, when T̂n operates
on a determinant containing occupied and virtual spin orbitals, the resulting sum
contains a determinant with excitations from those spin orbitals that are occupied in
Φ0 and not from virtual spin orbitals [4].

Thus, T 2
1 Φ0 = T̂1(T̂Φ0) contains only doubly excited determinants and T̂ 2

2 Φ0

contains only quadruply excited determinants. When T1 operates on a determinant
containing only virtual orbitals, the result will be zero. The eT̂ operator converts ψ
into a linear combination with all excited states. A full CI calculation with a com-
plete basis set gives the exact ψ . In CC, we work with an individual SD. The
main computation of the CC method involves calculating the amplitude coefficients
ta
i ,tab

i j , tabc
i jk , . . . and so on. From these coefficients, ψ is determined. The following

approximations are made for the computations:

1. Instead of using a complete basis set, a finite basis set is used. This leads to
a basis set truncation error.

2. Instead of using all the operators T̂ = T̂1 + T̂2 + T̂3+ . . .+ . . . only a few operators
are used, especially T̂2.
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Thus:

ψCCD = eT̂2Φ0 (8.44)

This method is referred to as the coupled-cluster doublet (CCD) method.
But, by the Taylor expansion:

eT̂ 2
= 1 + T̂2 +

T̂ 2
2

2!
+

T̂ 3
2

3!
+ . . . (8.45)

Hence, the wavefunction contains determinants with multiple substitution. The

CCD quadruple excitations are produced from
T̂ 2

2

2!
. Hence, the coefficients of the

quadruply substituted determinant are determined as products of doubly substituted
coefficients [5].

The Hamiltonian takes the form of:

Ĥ eT̂Φ0 = E eT̂Φ0 (8.46)

Or, multiplying with Φ∗0 and integrating:
〈
Φ0

∣∣∣ Ĥ∣∣ eT̂Φ0

〉
= E

〈
Φ0

∣∣∣eT̂Φ0

〉
(8.47)

Because of the orthogonality of orbitals,
〈
Φ0

∣∣∣eT̂Φ0

〉
= 1

〈
Φ0

∣∣∣ Ĥ
∣∣ eT̂Φ0

〉
= E (8.48)

Similarly, multiplying with Φab∗
i j and integrating:

〈
Φab

i j

∣∣∣ Ĥ
∣∣ eT̂Φ0

〉
= E

〈
Φab

i j

∣∣∣eT̂Φ0

〉
(8.49)

Substituting the value of E from the above equation:
〈
Φab

i j

∣∣∣ Ĥ∣∣ eT̂Φ0

〉
=
〈
Φ0

∣∣∣ Ĥ∣∣ eT̂Φ0

〉〈
Φab

i j

∣∣∣eT̂Φ0

〉
(8.50)

Now T̂ ≈ T̂2

〈
Φab

i j

∣∣Ĥ∣∣ eT̂2Φ0

〉
=
〈
Φ0
∣∣Ĥ∣∣ eT̂2Φ0

〉〈
Φab

i j

∣∣∣eT̂2Φ0

〉

〈
Φab

i j

∣∣Ĥ∣∣ eT̂2Φ0

〉
=
〈
Φ0
∣∣Ĥ∣∣

(
1 + T̂2 +

T̂ 2
2

2!
+

T̂ 3
2

3!
+ . . .

)
Φ0

〉

〈
Φ0
∣∣Ĥ∣∣Φ0

〉
+
〈
Φ0
∣∣Ĥ∣∣ T̂2Φ0

〉
+ 0

= EHF +
〈
Φ0
∣∣Ĥ∣∣ T̂2Φ0

〉
(8.51)
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Thus, T̂2Φ0 differs from Φ0 by four spin orbitals. By the Condon-Slater rule, the
matrix elements of Ĥ between the SDs differing by four spin-orbitals are zero.

〈
Φab

i j

∣∣Ĥ∣∣ eT̂2Φ0

〉
=
〈
Φab

i j

∣∣Ĥ∣∣
(

1 + T̂2 +
T̂ 2

2

2!

)
Φ0

〉
(8.52)

With orthogonality conditions:
〈
Φab

i j

∣∣∣eT̂2Φ0

〉
=
〈
Φab

i j

∣∣∣ T̂2Φ0

〉
(8.53)

From Eqs. 8.50, 8.51, and 8.53:

〈
Φab

i j

∣∣∣∣ Ĥ
∣∣
(

1 + T̂2 +
T̂ 2

2

2!

)
Φ0

〉
=
(
EHF +

〈
Φ0
∣∣ Ĥ∣∣ T̂2Φ0

〉)〈
Φab

i j

∣∣T̂2Φ0

〉
(8.54)

Here i varies from 1 to (n− 1), j varies from (i + 1) to n, a varies from (n + 1) to
infinity, and b varies from (a + 1) to infinity.

T̂2 can be replaced by amplitude coefficients. The net result is a set of simultane-
ous nonlinear equations for the unknown amplitudes tab

i j in the form of:

m

∑
s=1

arsχs +
m

∑
t=2

t−1

∑
s=1

brstχsχt + cr = 0 (8.55)

where r varies from 1 to m, χ1,χ2, . . . ,χm are the unknown tab
i j ; ars, brst and cr are

constants involving orbital energies and repulsion integrals over the basis functions,
and m is the number of unknown amplitudes tab

i j . This set of equations is solved
iteratively [6].

Depending upon the highest number of excitations allowed in the definition of T̂ ,
CC is further classified.

1. S for single excitations (shortened to singles in coupled-cluster terminology)
2. D for double excitations (doubles)
3. T for triple excitations (triples)
4. Q for quadruple excitations (quadruples)

Thus, the CCD can be further modified by introducing T̂1 in eT̂ to give the CC
singles and doubles method (CCSD). Similarly, by introducing T̂3 in addition to
T̂2(T̂ = T̂1 + T̂2 + T̂3), CC singles, doubles and triples (CCSDTs) has been de-
signed. Several approximate forms of CCSDT are available: CCSD(T), CCSDT-1,
CCSD+T(CCSD), and so on. Pople and co-workers developed the nonvariational
quadratic configuration interaction method (QCI), which is intermediate between
CC and CI methods.

Terms in round brackets indicate that these terms are calculated based on pertur-
bation theory. For example, a CCSD(T) approach simply means:
1. A coupled-cluster method.
2. It includes singles and doubles fully.



168 8 The Ab Initio Method

3. Triples are calculated with perturbation theory. The complexity of equations and
the corresponding computer codes, as well as the cost of the computation, in-
creases sharply with the highest level of excitation. For many applications, the
sufficient accuracy may be obtained with CCSD, and the more accurate (and
more expensive) CCSD (T) is often called “the gold standard of quantum chem-
istry” for its excellent compromise between the accuracy and the cost for the
molecules near-equilibrium geometries [7]. More complicated coupled-cluster
methods such as CCSDT and CCSDTQ are used only for high-accuracy cal-
culations of small molecules. The inclusion of all n levels of excitation for the
n-electron system gives the exact solution of the Schrödinger equation within
the given basis set.

8.9 Research Topics

Major research areas in ab initio technique can be summarized as follows:

1. Basis set convergence and extrapolation to the 1-particle basis set limit.
2. Correction for higher-order correlation effects.
3. The effect of inner-shell correlation.
4. The study of scalar relativistic effects.
5. The study of rotational-vibrational anharmonicity.
6. Structural and functional studies of biologically important proteins, systems,

and problems.
7. Work on therapeutic (inhibitor) discovery and nanobiotechnology.
8. Simulations with empirical interatomic potentials, such as core-shell models, are

very important in mineralogy and will continue to be for a long time because
of the large unit cells (super lattice cells) needed both in static and molecular
dynamics simulations. Therefore, an important role of ab initio calculations is
to monitor and fine-tune these empirical potentials.

9. Ab initio calculations of the electronic excited states of molecules, the electronic
structure, and the circular dichroism of proteins, protein folding and evolution,
bioinformatics, computer-aided drug design, drug resistance and so on.

10. Ab initio polymer quantum theory: structural and vibrational properties [8].

8.10 Exercises

1. Ethanol and dimethyl ether are isomers of C2H6O. Evaluate the energy differ-
ence between the two isomers at the HF/STO-3G, HF/6-31G**, and MP2/6-
31G**//HF/6-31G** levels of theory.

2. Make a computational analysis of the nonlinear optical properties of the linear
complexes [M(I)(PH3)2]+(M=Cu, Ag, Au).
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3. Find the conformational minima for the following molecules using the MMFF
force field (Figs. 8.3 and 8.4).

Fig. 8.3 Molecule example 1

Fig. 8.4 Molecule example 2

4. Find the rotation barrier for the aryl-aryl bond in the following compound
(Fig. 8.5): Build the molecule and minimize it (MM/MMFF). In Spartan, you
can go to “Build”, then “Define Profile”. Select “Dihedral”, then select the four
atoms that define the dihedral angle. You will want to drive the dihedral from ap-
proximately +90◦ to −90◦ or from +90◦ to +270◦ (depending on the direction
of rotation). Save the molecule, then set up calculations for an Energy Profile,
using MM/MMFF as the method/force field.

Fig. 8.5 Molecule example 3

5. Make an ab initio level study of “annulation effects” on the valence isomeriza-
tion of paracyclophanes.

6. Calculate the energy of ionization for tert-butyl chloride and benzyl choride at
the AM1 level by computing the heats of formation of the reactants, the car-
bocations, and chloride ion. For each optimized species, calculate the CI stabi-
lization. In Spartan, use the default 6-level CI calculation by inserting the CI
keyword and performing a single point calculation.
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7. Using VSEPR, predict the bond angles in NO2, NO+
2 , and NO−

2 . What do you
find for the angles from AM1 and PM3 calculations? Are the bond lengths
consistent with your expectations? Explain. (Note that at least one of these
molecules has an odd number of electrons. When you choose the semiempirical
method, you must go into the options box, and be certain that the total charge is
set to the charge on the species (0, +1, or −1) and the spin multiplicity is set to
the appropriate value (remember that the spin multiplicity is always one more
than the number of unpaired electrons)).

8. Use AM1 semi-empirical calculations and 3-21G(*) and 6-31G*ab initio calcu-
lations to compare the relative stabilities and the major geometrical parameters
within the isomeric series: 1,1-dichloroethylene, cis-1,2-dichloroethylene, and
trans-1,2-dichloroethylene.

9. Perform a CASSCF calculation for CH2. The active space consists of four elec-
trons in four orbitals (CAS(4,4)). (a) How many determinants will you get for
this configuration space? (b) Which of the configuration state functions would
you expect to contribute to the energy of a CIS calculation? Identify the func-
tions to CID and MP2 calculation. Carry out geometrical optimization of an
ozone molecule with MP2, QCISD, and QCISD(T) to generate the O−O bond
length and the O−O−O bond angle. Compare the results with the experimental
values (Bond length = 1.272 A.U., Bond angle = 116.8◦).
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Chapter 9
Density Functional Theory

9.1 Introduction

Electrons are, in fact, quantum mechanical spin particles. Density functional theory
(DFT) allows us to compute all properties of systems by the electron density ρ(r)
which is a function of three variables: ρ(r) = f (x,y,z). As density is the function
of the wavefunction, it is referred to as functional. It is an elegant formulation of
N-particle quantum mechanics with conceptual simplicity and computational effi-
ciency. The major development in this field are as follows:

1. The introduction of the Thomas-Fermi model (1920)
2. Hohenberg-Kohn proving the existence of DFT (1964)
3. The introduction of the Kohn-Sham (KS) scheme (1965)
4. DFT in molecular dynamics (Car-Parrinello, 1985)
5. Becke and LYP functionals (1988)
6. Walter Kohn receives the Nobel prize for developing a complete DFT (1998)

9.2 Electron Density

The square of a wavefunction, in fact, is a direct measure of electron density. Total
electron density due to N electrons can be defined as N-times the integral of square
of wavefunctions over the spin coordinates of all electrons and over all but one of
the spatial variables:

ρ(r) = N
∫

. . .
∫

|ψ(x1,x2, . . . , . . . ,xN |2 ds1 dx2 . . . , . . . , dxN (9.1)

Here ρ(r) is the probability of finding any of the N-electrons within a volume ele-
ment d(r) with arbitrary spin. Other (N-1) electrons will be having arbitrary posi-
tions and spin as is given by the wavefunction. The probability density is known as
electronic probability density or electronic density. However, since electrons are in-
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distinguishable, the probability of finding any electron at this position is just N times
the probability for one particular electron. Unlike the wavefunction, the electron
density is observable and can be measured experimentally, e.g., by X-ray diffrac-
tion.

9.3 Pair Density

The probability of finding a pair of electrons is known as pair density. If two elec-
trons, 1 and 2, with spins σ1 and σ2 are present in two volume elements dr1 and
dr2, respectively, then the pair density is given by Eq. 9.2:

ρ2(x1,x2) = N(N −1)
∫

. . .

∫
|ψ(x1,x2, . . . , . . . ,xN |2 dx3, . . . dxN (9.2)

All other electrons (other than the electrons specified) will have arbitrary po-
sitions and spins. Pair density contains all information about electron correlation.
Electron density and pair density are nonnegative. Pair density is symmetric in the
coordinates and normalized to the total number of N(N-1) non-distinct pairs. This is
a measure of finding both the electrons simultaneously in the same volume element.

9.4 The Development of DFT

Electron density is more attractive and effective in explaining properties as it is
measurable. It depends only on the Cartesian axes, x, y, and z. For a system with N
electrons, the electron density depends on 3N variables (or 4N if you count in spin).
There are two types of electron densities for spin polarized systems, one for spin
up electrons ρ ↑ (r) and the other for spin down electrons ρ ↓ (r). The fact that the
ground state properties are functionals of the electron density ρ(r) was introduced
by Hohenberg and Kohn (1964) and it is the basic framework for modern Density
functional (DF) methods [1].

The total ground state energy of an electron system can be written as a functional
of the electronic density. This energy is at a minimum if the density corresponds
to the exact density for the ground state. The theorem of Hohenberg and Kohn is
a proof of such a functional, but there is no method for constructing it. Once this
functional is fully characterized, quantum chemistry would be able to help us in es-
tablishing the properties. Unfortunately we do not know the exact form of the energy
functional. It is necessary to use approximations regarding parts of the functional
dealing with kinetic energy and exchange and correlation energies of the system of
electrons.

The simplest approximation is the local density approximation (LDA) which
leads to a Thomas-Fermi (Fermi, 1928; Thomas, 1927) term for kinetic energy and
the Dirac (1930) term for the exchange energy. The corresponding functional is
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called the Thomas-Fermi-Dirac energy. These functionals can be further improved
but the results are not that encouraging for molecular systems. On the other hand,
improvements on the Thomas-Fermi-Dirac method lead into the true DF method,
where all components of energy are expressed through density alone rather than us-
ing many particle wavefunctions. However, for the time being, it seems that there
is no way to avoid wavefunctions in molecular calculations and for accurate cal-
culations they have to be used as a mapping step between the energy and density.
While pure DFTs are very useful in studying a solid phase (e.g., conductivity), they
fail to provide meaningful results for molecular systems. For example, the Thomas-
Fermi theory could not predict chemical bonds. The real predecessor of the modern
chemical approaches to the DFT was the Slater method formulated in 1951. It was
developed as an approximate solution to the Hartree Fock (HF) equations. In this
method, the HF exchange was approximated by:

EXa[ρ↑,ρ↓] = −9
4
α
(

3
4π

)1/3 ∫ [
ρ4/3
↑ (r)+ρ4/3

↓ (r)
]

dr (9.3)

The exchange energy EXa given here are the functional of densities for spin up (↑)
and spin down (↓) electrons and it contains an adjustable parameterα . This param-
eter was empirically optimized for each atom of the periodic table and its value was
between 0.7 – 0.8 for most atoms. For a special case of homogenous electron gas,
its value is exactly 2/3.

9.5 The Functional

The functional is a function of another function. It takes a function and provides
a number. It is usually written with the function in square brackets as F[ f ] = a. For
example, consider a function subjected to integration. It is represented as Eq. 9.4:

F [ f ] =
+∞∫

−∞
f (x)dx (9.4)

Functionals can also have derivatives, which behave similarly to traditional
derivatives for functions. The differential of the functional is defined as:

δF [ f ] = F [ f + δ f ]−F[ f ] =
∫ δF

δ f (x)
δ f (x)dx (9.5)

The functional derivatives have properties similar to traditional function derivatives,
e.g.:

δ
δ f (x)

(C1F1 +C2F2) = C1
δF1

δ f (x)
+C2

δF2

δ f (x)
(9.6)

δ
δ f (x)

(F1F2) =
δF1

δ f (x)
F2 +

δF2

δ f (x)
F1 (9.7)
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9.6 The Hohenberg and Kohn Theorem

Hohenberg and Kohn (HK) in their theorem propose the following:

1. Every observable of a stationary quantum mechanical system (including en-
ergy), can be calculated, in principle exactly, from the ground-state density
alone, i.e., every observable can be written as a functional of the ground-state
density.

2. The ground state density can be calculated, in principle exactly, using the vari-
ational method involving only density. (The original theorem refers to the time
independent-stationary-ground state, but are being extended to excited states
and time-dependent potentials) [2].

Within a Born-Oppenheimer approximation, the ground state of the system of elec-
trons is a result of the positions of the nuclei. In the Hamiltonian, the kinetic energy
of electrons and the electron-electron interaction adjust themselves to the external
(i.e., coming from the nuclei) potential V̂ext. Actually, once the external potential
starts functioning on a system, everything else, including electron density, adjusts
themselves to give the lowest possible total energy of the system. Hence, the exter-
nal potential is the only variable term required in the equation.

HK posed three interesting question in this regard. Is V̂ext uniquely determined
from the knowledge of electron density ρ(r)? Can we characterize the nucleus (find
out where and what the nuclei are), from the density ρ(r) of the system in the ground
state? Is there a precise mapping from ρ(r) to V̂ext?

Mapping from ρ(r) to V̂ext is expected to be accurate within a constant, since
Schrödinger equations with Ĥele and Ĥele + constant yield exactly the same eigen-
functions and the energies will be simply elevated by the value of this constant.
Note that all energy measurements are within some constant, which establishes the
framework of reference. If this is true, the knowledge of density may provide total
information about the system. Since ρ(r) determines number of electrons, N:

N =
∫
ρ(r)dr (9.8)

and ρ determines the V̂ext, the knowledge of the total density is as good as that
of ψ , the wavefunction describing the state of the system. They proved it through
a contradiction:

1. Consider an exact ground state density ρ(r), which is nondegenerate (i.e., there
is only one wave function ψ for this ground state, though HK theorems can be
easily extended for degenerate ground states.)

2. Assume that for the density ρ(r) there are two possible external potentials: V̂ext

and V̂
′
ext, which obviously produce two different Hamiltonians: Ĥele and Ĥ

′
ele,

respectively with two different wavefunctions for the ground state, ψ and ψ ′
.

They correspond to energies:

E0 = 〈ψ |H|ψ〉 (9.9)
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E
′
0 =

〈
ψ

′ ∣∣∣H ′ ∣∣∣ψ ′〉
(9.10)

respectively.
3. Now, let us calculate the expectation value of energy for the ψ ′

with the Hamil-
tonian Ĥ and using the variational theorem:

E0 <
〈
ψ

′ |H|ψ ′〉
=
〈
ψ

′ ∣∣H ′∣∣ψ ′〉
+
〈
ψ

′ ∣∣H −H ′∣∣ψ ′〉
(9.11)

But:

〈
ψ

′ ∣∣H ′∣∣ψ ′〉
= E

′
0 (9.12)

〈
ψ

′ ∣∣H −H ′∣∣ψ ′〉
=
∫
ρ(r)

[
V̂ext − V̂

′
ext

]
dr (9.13)

Hence:

E0 < E
′
0 +

∫
ρ(r)

[
V̂ext − V̂

′
ext

]
dr (9.14)

4. Similarly, let us calculate the expectation value of energy for the ψ with the
Hamiltonian Ĥ ′:

E
′
0 <

〈
ψ
∣∣H ′∣∣ψ〉= 〈ψ |H|ψ〉+ 〈ψ ∣∣H ′ −H

∣∣ψ〉 (9.15)

But:

〈ψ |H|ψ〉 = E0 (9.16)
〈
ψ
∣∣H ′ −H

∣∣ψ〉=
∫
ρ(r)

[
V̂ext − V̂

′
ext

]
dr (9.17)

E0 < E0 −
∫
ρ(r)

[
V̂ext − V̂

′
ext

]
dr (9.18)

5. From Eqs. 9.14 and 9.18, we obtain:

E0 + E
′
0 < E

′
0 + E0 (9.19)

and it leads to a contradiction.
Since ρ(r) determines N and V̂ext, it should also determine all properties of

the ground state, including the kinetic energy of electrons Te and the energy of
interaction among electrons Uee, i.e., the total ground state energy is a functional
of density with the following components:

E[ρ ] = Te[ρ ]+Uee[ρ ]+Vext[ρ ] (9.20)

(Vext is the energy corresponding to external potential).
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Additionally, HK grouped together all functionals which are secondary (i.e.,
which are responses) to the Vext[ρ ]:

E[ρ ] = Vext[ρ ]+ FHF[ρ ] =
∫
ρ(r)V̂ext(r)dr + FHF[ρ ] (9.21)

The FHK functional operates only on density and is universal, i.e., its form
does not depend on the particular system under consideration (note that N-
representable densities integrate to N, and the information about the number
of electrons can be easily obtained from the density itself). The second HK the-
orem provides variational extension to electron density representation ρ(r)3.

For a trial density ρ̃(r) such that ρ̃(r) ≥ 0 and for which
∫
ρ̃(r)dr = N:

E0 ≤ E [ρ̃] (9.22)

where E [ρ̃] is the energy functional. In other words, if some density represents the
correct number of electrons N, the total energy calculated from this density can-
not be lower than the true energy of the ground state. By the N-representability
(Chap. 10), the trial density ρ̃ has to sum up to N electrons by simple rescaling. It is
automatically insured if by nature ρ(r) is mapped to some wave function. Assuring
that the trial density has Vext-representability also (usually denoted in the literature
as ν-representability) is not that easy. Levy (1982) and Lieb (1983) proposed some
reasonable trial densities, which are not the ground state densities for any possi-
ble Vext potential. These densities do not map to any external potential. Such trial
densities will not correspond to any ground state. Or, optimization of the system
with this trial density will not lead to a ground state. Moreover, during energy min-
imization, we may take a wrong turn, and get stuck into some non ν-representable
density and never be able to converge to a physically relevant ground state density.
Assuming that we restrict ourselves only to trial densities which are both N and ν
representable, the variational principle for density is easily established, since each
trial density ρ̃ defines a Hamiltonian ˆ̃Hel. From the Hamiltonian we can derive the
corresponding wavefunction ψ̃ for the ground state represented by this Hamiltonian.
Furthermore, according to the traditional variational principle, this wavefunction ψ̃
will not be a ground state for the Hamiltonian of the real system Ĥel:

〈ψ̃ |H| ψ̃〉 = E [ρ̃] ≥ E [ρ0] ≡ E0 (9.23)

where ρ0(r) is the true ground state density of the real system.
The condition of minimum for the energy functional:

δE[ρ(r)] = 0 (9.24)

It needs to be constrained by the N-representability of the density which is op-
timized. The Lagrange method of undetermined multipliers is a very convenient
approach for the constrained minimization problems. In this method, we represent
constraints in such a way that their value is exactly zero to make the optimization
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easier. In our case, the N representability constraint can be represented as:

Constraint =
∫
ρ(r)dr−N = 0 (9.25)

These constraints are then multiplied by an undetermined constant and added to
a minimized function or functional to get Eq. 9.26.

E[ρ(r)]− μ
[∫

ρ(r)dr−N

]
(9.26)

where μ is yet undetermined Lagrange multiplier. Minimizing this condition by
making the first derivative zero:

δ
{

E[ρ(r)]− μ
[∫

ρ(r)dr−N

]}
= 0 (9.27)

Solving this differential equation will provide us with a prescription of finding
a minimum which satisfies the constraint. In our case it leads to:

δE[ρ(r)]− μδ
{∫

ρ(r)dr

}
= 0 (9.28)

since μ and N are constants. Using the definition of the differential of the functional:

F[ f + δ f ]−F[ f ] = δF =
∫ δF

δ f (x)
δ f (x)dx (9.29)

and the fact that differential and integral signs may be interchanged, we obtain:

∫ δE[ρ(r)]
δρ(r)

δρ(r)dr− μ
∫
δρ(r)dr = 0 (9.30)

Since integration runs over the same variable and has the same limits, we can
write both expressions under the same integral:

∫ {δE[ρ(r)]
δρ(r)

− μ
}
− δρ(r)dr = 0 (9.31)

which provides the condition for constrained minimization and defines the value
of the Lagrange multiplier at the minimum. It is expressed here through external
potential from Eq. 9.21.

μ =
δE[ρ(r)]
δρ(r)

= V̂ext(r)+
δFHKρ(r)
δρ(r)

(9.32)

DFT gives a firm definition of the chemical potential, and leads to several impor-
tant general conclusions.
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9.7 The Kohn and Sham Method

The above equations provide a method of minimizing energy by changing corre-
sponding density. Unfortunately, the expression relating kinetic energy to density is
not known with a satisfactory level of accuracy. The current expressions, which are
improved upon from the original Thomas-Fermi theory, are quite crude and unsatis-
factory for atoms and molecules in particular. On the other hand, the kinetic energy
is easily calculated from the wave function. For that reason, Kohn and Sham pro-
posed an ingenious method, the KS method, of combining wavefunctions and the
density approach. They repartitioned the total energy functional into the following
parts:

E[ρ ] = T0[ρ ]+
∫ [

V̂ext(r)+Ûel(r)
]
ρ(r)dr + Exc[ρ ] (9.33)

where T0[ρ ] is the kinetic energy of electrons in a system which has the same density
ρ as the real system, but in which there is no electron-electron interactions. This is
frequently considered as a system with noninteracting electrons. However, the term
noninteracting is not fully correct as the electrons interact with nuclei [3].

Ûel(r) =
∫ ρ(r

′
)∣∣r′ − r
∣∣ dr

′
(9.34)

is a pure Coulomb (classical) interaction between electrons. It includes electron self-
interaction explicitly, since the corresponding energy is:

Eel[ρ ] =
∫ ∫ ρ(r

′
)ρ(r)∣∣r′ − r
∣∣ dr dr

′
(9.35)

and it represents interaction of ρ with itself. V̂ext(r) is the external potential, i.e., the
potential effected from nuclei:

V̂ext =∑
a

−Za

|Ra − r| (9.36)

The last functional, Exc[ρ ], is called the exchange-correlation energy. Exc[ρ ] in-
cludes all the energy contributions which were not accounted for by the previous
terms, i.e.:

1. Electron exchange.
2. Electron correlation, since non-interacting electrons need to correlate their

movements. Please note, however, that this correlation component is not the
same as defined by Lowdin for ab initio methods.

3. A portion of the kinetic energy which is needed to correct T0[ρ ] to obtain the
true kinetic energy of a real system Te[ρ ].

4. Correction for self-interaction introduced by the classical coulomb potential.
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In fact, all the difficult things were “swept under the carpet” in this functional
to make the computation easier. However, better approximations for this functional
are being published. To conclude the derivation of KS equations, let us assume that
we know the energy functional reasonably well. In a similar fashion, as was done
for the equations defining chemical potential (Eqs. 9.31 and 9.32) we may apply the
variational principle and obtain:

μ =
δE[ρ(r)]
δρ(r)

=
δT0[ρ(r)]
δρ(r)

+ V̂ext(r)+Ûel(r)+
δExc[ρ(r)]
δρ(r)

(9.37)

This can be simply written as:

μ =
δE[ρ(r)]
δρ(r)

=
δT0[ρ(r)]
δρ(r)

+ V̂eff(r) (9.38)

Here we combined together all terms, excepting noninteracting electron kinetic
energy, into an effective potential V̂eff(r) depending upon r:

V̂eff(r) = V̂ext(r)+Ûel(r)+ V̂xc(r) (9.39)

where the exchange correlation potential is defined as a functional derivative of the
exchange correlation energy:

V̂xc(r) =
δExc[ρ(r)]
δρ(r)

(9.40)

The form of Eq. 9.40 asks for a solution to the Schrödinger equation for nonin-
teracting particles as seen in Eq. 9.41:

[
−1

2
∇2

i + V̂eff(r)
]
φKS

i (r) =∈i φi(r)KS (9.41)

Equation 9.41 is very similar to the eigenequation of the HF method and is much
simpler. The Fock operator in the above equation contains the potential which is non
local, i.e., it will be different for different electrons.

The KS operator depends only on r, and not upon the index (nature) of the elec-
tron. It is the same for all electrons. The KS orbitals, φi(r)KS, which are quite easily
derived from this equation, can be used immediately to compute the total density:

ρ(r) =
N

∑
i=1

∣∣φKS
i (r)

∣∣2 (9.42)

which can be used to calculate an improved potential V̂eff(r), leading to a new cycle
of self-consistent field. Density can also be used to calculate the total energy from
Eq. 9.33, in which the kinetic energy T0[ρ ] is calculated from the corresponding
orbitals, rather than the density itself:

T0[ρ ] =
1
2

N

∑
i=1

〈
φKS

i

∣∣∇2
i

∣∣φKS
i

〉
(9.43)
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and the rest of the total energy as:

V̂eff(r) =
∫

V̂eff(r)ρ(r)dr (9.44)

In practice, the total energy is calculated economically using orbital energies ∈i,
according to Eq. 9.45:

Eel[ρ ] =
N

∑
i=1

∈i −1
2

∫ ∫ ρ(r)ρ(r
′
)∣∣r− r′
∣∣ dr dr

′ −
∫

V̂xc(r)ρ(r)dr + Exc[ρ ] (9.45)

It is a popular misconception to look at this method as describing noninteracting
electrons moving in a potential given by nuclei. In fact, they move in an effective po-
tential V̂eff(r) which includes electron interaction, though in an artificial or indirect
manner. This appears to be philosophical rather than physical. In KS equations, the
electron-electron interaction is replaced by the interaction of electrons with some
medium which mimics the electron-electron interaction. This medium actually ex-
aggerates the interaction between electrons. The correction which needs be added to
T0 (ΔT = Te−T0 is embedded in Exc) is positive, i.e., the “noninteracting electrons”
move slower than the real, interacting ones.

It has to be stressed that KS orbitals (given by φi(r)KS) are not the real orbitals,
and they do not correspond to any real physical system. Their only role in the the-
ory and computation is to provide a proper mapping between kinetic energy and
density. The total KS wavefunction is a single determinant and is unable to model
situations where more determinants are needed such as molecules dissociating to
atoms. An interesting discussion on symmetry of this wavefunction is given by Dun-
lap (1991, 1994) [4].

9.8 Implementations of the KS Method

In the original presentation of the KS method, a non-polarized electron density was
used, and occupation numbers for Ks orbitals were assumed as one. However, ex-
tensions exist both for polarized spin densities (i.e., different orbitals for spin up and
spin down electrons), and for nonintegral occupation numbers in the range (0; 1).

KS orbitals are artifacts with no real physical significance. However, they are
quite close to the HF orbitals. The KS formalism can be extended to the fractional
occupation numbers 0 ≤ ni ≤ 1. The orbital energies ∈i can be written as:

∈i =
∂E
∂ni

(9.46)

One immediate application of the KS formalism (Eq. 9.46) is to integrate energy
from (N−1) to N electrons, and to calculate the ionization potential. The derivatives
of energy versus occupation numbers provide other response functions such as the
chemical potential, electro negativity, softness, hardness and so on.
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The first implementations of the KS method used the local approximations to the
exchange correlation energy. The appropriate functionals were taken from data on
homogenous electron gas. There were two variants of the method, spin unpolarized
local density functional/approximation (LDF/LDA) and spin polarized local spin
density (LSD) where arguments require both α and β electron densities, rather than
a total density.

The exchange correlation energy was partitioned into 2 parts: the exchange en-
ergy, and the correlation energy, as given in Eq. 9.46:

Exc[ρ ] = Ex[ρ ]+ Ec[ρ ] (9.47)

This partition is quite arbitrary, since the exchange and the correlation have slightly
different meanings than in ab initio approaches. The exchange energy in LDF/LSD
was approximated with the homogenous gas exchange result given by Eq. 9.3 with
α = 2/3. The correlation energy can be expressed as:

Ec[ρ ] =
∫
ρ(r) ∈c [ρ ↑ (r)ρ ↓ (r)] dr (9.48)

where ∈c [ρ ↑ (r)ρ ↓ (r)] is the correlation energy per one electron in a gas with
spin densities ρ ↑ (r) and ρ ↓ (r). This function is not known analytically, but is
constantly improved on the basis of quantum Monte Carlo simulations, and fitted to
analytical expansion. The local functionals derived from electron gas data worked
surprisingly well, taking into account that they substantially underestimate the ex-
change energy (by as much as 15%) and grossly overestimate the correlation energy,
sometimes by 100%. The error in exchange is, however, larger than the correlation
error in absolute values. LSD/LDF is known to overbind normal atomic bonds. On
the other hand, it produces too weak hydrogen bonds.

Early attempts to improve functionals by the gradient expansion approximation
(GEA), in which Exc[ρ ] was expanded in the Taylor series versus ρ and truncated at
a linear term, did not improve results very much. Only the generalized gradient ap-
proximation (GGA) provided notable improvements by expanding Exc[ρ ]. The ex-
pansion here is not a simple Taylor expansion, but tries to find the right asymptotic
behavior and scaling for the usually nonlinear expansion. These enhanced function-
als are frequently called nonlocal or gradient corrections, since they depend upon
the density and magnitude of the gradient of the density at a given point. Most of the
nonlocal functionals are quite complicated functions in which the value of density
and its gradient are integral parts of the formula.

9.9 Density Functionals

In the following, ρα and ρβ are the α , β spin densities; the total and spin densities
are:

ρ = ρα +ρβ (9.49)
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and:

ρ̂ = ρα −ρβ (9.50)

The gradients of the density enter through:

σ = ∇ρ .∇ρ , σ̂ = ∇ρ .∇ρ̂, ˆ̂σ = ∇ρ̂ .∇ρ̂, υ = ∇2ρ , υ̂ = ∇2ρ̂,

Additionally, the kinetic energy density for a set of (KS) orbitals generating the
density can be introduced through:

τ =

(
α

∑
i

+
β

∑
i

)
|∇φi|2 (9.51)

τ̂ =

(
α

∑
i

−
β

∑
i

)
|∇φi|2 (9.52)

All of the available functionals are of the general form:

F =
[
ρ , ρ̂,σ , σ̂ , ˆ̂σ ,τ, τ̂ ,υ , υ̂

]
(9.53)

=
∫

d3rK
(
ρ , ρ̂,σ , σ̂ , ˆ̂σ ,τ, τ̂ ,υ , υ̂

)
(9.54)

Now, let us see some common exchange energy, functional, and potential terms used
in DFT.

9.10 The Dirac-Slater Exchange Energy Functional
and the Potential

The Dirac-Slater exchange energy functional and the potential are given by the fol-
lowing equations:

ELSD
X [ρα ,ρβ ] =

∫
drρεx(ρ ,ζ )

εx(ρ ,λ ) =ε0
x (ρ)+

[
ε1

x (ρ)− ε0
x (ρ)

]
f (ζ )

ε0
x (ρ) =εx(ρ ,0) = Cxρ1/3 ;ε1

x (ρ) = εx(ρ ,1) = 21/3Cxρ1/3

Cx =
3
4

(
3
π

)1/3

; f (ζ ) =
(1 + ζ )4/3 +(1− ζ )4/3−2

2
(
21/3 −1

)

ζ =
ρα −ρβ
ρα +ρβ

;υLSD
xσ =

δELSD
x

δρσ
=
(

6
π
ρσ
)1/3

(9.55)



9.12 The Becke Exchange Energy Functional and the Potential 183

9.11 The von Barth-Hedin Exchange Energy Functional
and the Potential

The von Barth-Hedin exchange energy functional and the potential are given by the
following equations:

EVBH
X

[
ρα ,ρβ

]
=
∫

drρεVBH
x (ρ ,x)

εVBH
x = εP

x + γ−1μP
x f (x) ;εP

x (rs) = −ε0
x

rs
;μP

x =
4
3
εP

x (rs)

f (x) =
x4/3 +(1− x)4/3−α

1−α

x =
ρα
ρ

;γ =
4
3

(
a

1−a

)
;α = 2−1/3 ;ε0

x =
3

4πa0
≈ 0.45815 ;

a0 =
(

4
9π

)1/3

≈ 0.52106 ;υVBH
xα = μP

x (2x)1/3 ;υVBH
xβ = μP

x [2(1− x)]1/3 (9.56)

9.12 The Becke Exchange Energy Functional and the Potential

The Becke exchange energy functional and the potential are given by the following
equations:

EBEC
X

[
ρα ,ρβ

]
= ELSD

X

[
ρα ,ρβ

]−
α ,β

∑
σ

∫
drρσεNL

x

= ELSD
X

[
ρα ,ρβ

]−∑
σ

∫
drρ4/3

σ
bX2

σ
1 + 6bXσ sinh−1 Xσ

;

Xσ =
|∇ρσ |
ρ4/3
σ

;b = 0.0042 ;

υBEC
Xσ = υLSD

Xσ +
∂
(
εNL

X ρ
)

∂ρσ
−∑

i

∂
∂xi

∂
(
εNL

x ρ
)

∂ρσ ,xi

;

υNL
Xσ = −bFρ−4/3

σ
4
3
ρ5/3
σ X2

σ −∇2ρσ

(
1 + F

(
1− 6bX2

σ√
1 + X2

σ

))
+

6bF∇ρσ .∇Xσ
{
(1 + 2F)sinh−1 Xσ

}
+

Xσ√
1 + X2

σ

[
1

1 + X2
σ

+ 2F

[
2− 6bX2

σ√
1 + X2

σ

]]

F =
1

1 + 6bXσ sinh−1 Xσ
(9.57)
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9.13 The Perdew-Wang 91 Exchange Energy Functional
and the Potential

The Perdew-Wang 91 exchange energy functional and the potential are given by the
following equations:

EPW91
x

[
ρα ,ρβ

]
=

1
2

EPW91
x [2ρα ]+

1
2

EPW91
x

[
2ρβ

]

EPW91
x [ρ ] =

∫
drρεx (rs,0)F(s)

εx (rs,0) = −3kF

4π
;kF = (3π2ρ)1/3 =

1.91916
rs

s =
|ρ |

2kFρ
;

F(s) =
1 + 0.19645ssinh−1(7.7956s)+ (0.2743−0.1508exp(−100s2)s2)

1 + 0.19645ssinh−1(7.7956s)+ 0.004s4

υxc =
δEx

[
ρα ,ρβ

]

δρσ
=

1
2
δEx [2ρσ ]
δρσ

=
1
2
υx

(
2ρσ ,

sσ
21/3

)

υx =
1
2
υLDA

x

(
4
3

F(s)−
(
∇ρ .∇|∇ρ |
ρ2(2kF)3 − 4

3
s3
)

Fss − ∇2ρσ
ρ(2kF)2 Fs

)

Fs = P2
3 P5P6 + P3P7 ;Fss = P3

2 (P5P9 −P6P8)+ 2P3P5P6P11 + P3P10 + P7P11

P0 = (1 +(7.7956s)2)−1/2 ;P1 = sinh−1(7.7956s) ;P2 = exp(−100s2) ;

P3 =
1

1 + 0.19645sP1+ 0.004s4 ;

P4 = 1 + 0.19645sP1 = (0.2743−0.15084P2)s2 ;

P5 = 0.004s2 −0.15084P2−0.2743 ; P6 = 0.19645s(P1 + 7.7956sP0) ;

P7 = 0.5486−0.30168P2+ 2015.084s2P2 −0.016s2F(s)

P8 = 2s(0.004−15.084P2)

P9 = 0.19645P1 + 7.7956×0.19645sP0
(
3− (7.7956sP0)2)

P10 = 60.336sP2
(
2−100s2)−0.032sF

(
s0 −0.016s3F5

)

P11 = −P2
3

(
0.19645P1 + 7.7956×0.19645sP0+ 0.016s3) (9.58)



9.14 The Perdew-Zunger LSD Correlation Energy Functional and the Potential 185

9.14 The Perdew-Zunger LSD Correlation Energy Functional
and the Potential

The Perdew-Zunger LSD correlation energy functional and the potential are given
by the following equations:

ELSD
c

[
ρα ,ρβ

]
=
∫

drρεLSD
c (rs,ζ )

εLSD
c (rs,ζ ) = ε0

c +
[
ε1

c (rs)− ε0
c (rs)

]
f (ζ )

υσ
c (rs,ζ ) = υ0

c (rs)+
[
υ1

c (rs)−υ0
c (rs)

]
f (ζ )

+
[
ε1

c (rs)− ε0
c (rs)

]
(sgn(σ)− ζ )

d f
dζ

f (ζ ) =
(1 + ζ )4/3 +(1− ζ )4/3−2

2(21/3 −1)

where sgn(σ ) is 1 for σ = α and −1 for σ = β , and the low density limit rs ≥ 1:

ε i
c =

γi

1 +β i
1
√

rs +β i
2rs

υ i
c =
[

1− rs d
3drs

]
ε i

c = ε i
c

1 + 7
6β

i
1
√

rs + 4
3β

i
2rs

1 +β i
1
√

rs +β i
2rs

and the high density limit 0 ≤ rs ≤ 1:

ε i
c = Ai lnr5 + Bi +Cir5 lnr5 + Dir5

υ i
c = Ai lnr5 +

(
Bi − 1

3
Ai

)
+

2
3

Cir5 lnr5 +
1
3
(2Di −Ci)r5 (9.59)

Constants in these equations are included in Table 9.1.

Table 9.1 Constants used in the Perdew-Zunger parametrization of the Ceperley-Alder quantum
Monte-Carlo results for a homogeneous electron gas

Parameter i = 0 i = 1

γ −0.1423 −0.0843
β1 1.0529 1.3981
β2 0.3334 0.2611
A 0.0311 0.0155
B −0.0480 −0.0269
C 0.0020 0.0007
D −0.0116 −0.0048
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9.15 The Vosko-Wilk-Nusair Correlation Energy Functional

The Vosko-Wilk-Nusair correlation energy functional is given by the following
equations:

EVWN
c

[
ρα ,ρβ

]
=
∫

drρεVWN
c

(
ρα ,ρβ

)

εVWN
c

(
ρα ,ρβ

)
= εi(ρα ,ρβ )+Δεc(rs,ζ )

εi(ρα ,ρβ ) = Ai

[
ln

x2

X(x)
+

2b
Q

tan−1
(

Q
2x + b

)

− bx0

X(x0)

(
ln

(x− x0)2

X(x)
+

2(b + 2x0)
Q

tan−1
(

Q
2x + b

))]

x = r1/2
s ;Q =

(
4ci −b2

i

)1/2
;X(x) = x2 + bix + ci : (i = I, II) ;

Δεc(rs,ζ ) = εIII
(
ρα ,ρβ

)[ f (ζ )
f ′′(0)

][
1 +βi(rs)ζ 4

]

βi(rs) =

[
f
′′
(0)

εIII
(
ρα ,ρβ

)
]
Δε(rs,1)−1

Δεc(rs,1) = εI
(
ρα ,ρβ

)− εII
(
ρα ,ρβ

)
(9.60)

Constants for the Vosko-Wilk-Nusair parametrization are included in Table 9.2.

Table 9.2 Constants for the Vosko-Wilk-Nusair parametrization

Parameter I II III

Ai 0.0621841 0.0310907 −0.033774
bi 3.72744 7.06042 1.131071
ci 12.9352 18.0578 13.0045
x0i −0.10498 −0.32500 −0.0047584

9.16 The von Barth-Hedin Correlation Energy Functional
and the Potential

The von Barth-Hedin correlation energy functional and the potential are given by
the following equations:

EVBH
c

[
ρα ,ρβ

]
=
∫

drρεVBH
c (ρ ,x)

εVBH
c = εP

c + γ−1υP
c f (x) ;υc = γ

(
εF

c − εP
c

)

εP
c = −cPF

( rs

rP

)
; εF

c = −cFF
( rs

rF

)
;

F(z) =
(

1 + z3
)

ln

(
1 +

1
z

)
+

z
2
− z2 − 1

3
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CP = 0.0252 ;rP = 30 ;cF = 0.0127 ;rF = 75

υVBH
cα = υc(2x)1/3 + μP

c −υc + τc f (x) ;

υVBH
cβ = υc(2(1− x))1/3 + μP

c −υc + τc f (1− x) ;

μP
c (rs) = −cP ln

(
1 +

rP

rs

)
;μF

c (rs) = −cF ln

(
1 +

rF

rs

)

τc = μF
c − μP

c − 4
3

(
εF

c − εP
c

)
(9.61)

9.17 The Perdew 86 Correlation Energy Functional
and the Potential

The Perdew 86 correlation energy functional and the potential are given by the fol-
lowing equations:

EP86
c

[
ρα ,ρβ

]
= ELSD

c

[
ρα ,ρβ

]
+
∫

drd−1 exp(−Φ)C(ρ)
|∇ρ |2
ρ4/3

Φ = 1.745 f̃

[
C(∞)
C(ρ)

] |∇ρ |
ρ7/6

C(ρ) = 0.001667 +
0.002568 +αrs +β r2

s

1 + rs+ δ r2
s + 104β r3

s

d = 21/3

[(
1 + g

2

)5/3

+
(

1−g
2

)5/3
]1/2

α = 0.023266 ;β = 7.389×10−6 ;γ = 8.723 ;δ = 0.472 ; f̃ = 0.11

υP86
cα = υLSD

cσ −d−1 exp(−Φ)C(ρ)ρ−1/3

×
[

(2−Φ)∇2ρ
ρ

−
(

4
3
− 11Φ

3
+

7Φ2

6

) |∇ρ2|
ρ2 +

Φ(Φ −3)∇ρ .∇|∇ρ |
ρ |∇ρ |

− 5ρ1/3n2/3
−σ

6d2ρ4

[
22/3(1−Φ)ρ−σ |∇ρ |2 −22/3(2−Φ)ρ∇ρ−σ∇ρ

]]

+ d−1exp(−Φ)
|∇ρ |2
ρ4/3

(
Φ2 −Φ−1

) dC
dρ

(9.62)

9.18 The Perdew 91 Correlation Energy Functional
and the Potential

The Perdew 91 correlation energy functional and the potential are given by the fol-
lowing equations:

EP91
c

[
ρα ,ρβ

]
=
∫

drρ
[
εLSD

c (rs,ζ )+ H(t,rs,ζ )
]
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H = H0 + H1

H0 = g3 β 2

2α
ln

[
1 +

2α
β

(
t2 + At4

1 + At2 + A2t4

)]

A =
2α
β

1
exp(−2αεLDA

c (rs − ζ )/(g3β 2))−1

H1 = 15.7559(Cc(rs)−0.003521)g3t2 exp

[
−100g4

[
ks

kF

]2

t2

]

t =
|∇ρ |

2gksρ

ks =
(

4kF

π

)1/2

; kF =
(
3π2ρ

)1/3
; g =

[
(1 + ζ )2/3 +(1− ζ )2/3

]

2

α = 0.09 ; β = γCC ; Cc(0) = 0.004235 ; C = −0.001667 ; γ =
(

16
π

)(
3π2

)1/3

υσ
c = εLSD

c − rs

3
∂εLSD

c

∂ζ
− (ζ − sgn(σ))

∂εLSD
c

∂ζ
+ H − rs

3
∂H
∂ rs

− (ζ − sgn(σ))

[
∂H
∂ζ

− g
′

g
t2
(

t−1 ∂H
∂

)]

+
1
6

t2
(

t−1 ∂H
∂

)
+

7
6

t3 ∂
∂

(
t−1 ∂H

∂

)

− ∇ρ∇|∇ρ |
(2gks)

3ρ2

∂
∂

(
t−1 ∂H

∂

)
− ∇2

(2gks)
2ρ

(
t−1 ∂H

∂

)

− ∇ρ∇ζ
(2gks)2ρ

[[
t−1 ∂ 2H

∂∂ζ

]
− g

′

g

{
2

(
t−1 ∂H

∂

)
+ t

∂
∂

(
t−1 ∂H

∂

)}]
(9.63)

9.19 The Lee, Yang, and Parr Correlation Energy Functional
and the Potential

The Lee, Yang and Parr correlation energy functional and the potential are given by
the following equations:

ELYP
c

[
ρα ,ρβ

]
= −a

∫
dr

γ(r)
1 + dρ−1/3

{
ρ + 2bρ−5/3

[
22/3CFρ

8/3
β

−ptw +
1
9

(
ρata

w +ρβ tβw
)

+
1

18
(ρα∇2ρα)

]
exp

(
−cρ−1/3

)}

γ(r) = 2

(
1−

ρ2
α(r)+ρ2

β (r)

ρ2(r)

)
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tw(r) =
1
8
|∇ρ(r)|2
ρ(r)

− 1
8
∇2ρ

CF =
3

10

(
3π2)2/3

; α = 0.04918 ; b = 0.132 ; c = 0.2533 ; d = 0.349

υLYP
cσ = −a(F

′
2ρ + F2)−25/3abCF

[
G

′
2

(
ρ8/3
α +ρ8/3

β

)
+

8
3

G2ρ
8/3
β

]

− ab
4

[
ρ∇2G2 + 4∇G2∇ρ + 4G2∇2ρ + G

′
2

(
ρ∇2ρ−|∇ρ |2)

]

− ab
36

[
3ρα∇2G2 + 4∇ρα∇G2 + 4G2∇2ρα + 3G

′
2

(
ρα∇2ρα +ρβ∇2ρβ

)]

+ G
′
2

(
|∇ρα |2 +

∣∣∇ρβ
∣∣2)

F2 =
γ(r)

1 + dρ−1/3
;G2 = F2(ρ)ρ−5/3 exp(−cρ−1/3)

F
′
2 =

∂F2

∂ρσ
;G

′
2 =

∂G2

∂ρσ
(9.64)

9.20 DFT Methods

DFT would yield the exact ground state energy and electron density if the exchange-
correlation functional was known. In practice, the exact functional is unknown but
one may try some approximate form. This has led to an extensive search for func-
tionals with new variations being published on a regular basis. Because the quality
of the results depends critically on the functional, selecting a suitable form will be
a vital factor in using the module. DFT methods are broadly classified into two
methods: pure DFT and hybrid DFT. They are designated on the basis of type of
correlation energy functional, the exchange energy functional, and the potential.

The pure DFT method consists of:

1. SVWN5 (also known as LDA)
2. BLYP
3. PW91
4. HCTH-93
5. HCTH-120
6. HCTH-147
7. HCTH-402
8. Becke97GGA-1

Similarly, the hybrid DFT method consists of:

1. BH&HLYP
2. B3PW91
3. mPW1PW91
4. PBE0
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Table 9.3 Basis set dependence on SVWN

Type of bond 6-31 G(d, p) 6-311++G(d,p) Basis set free data Experiment

H−H -/0.765 -/0.765 -/0.765 -/0.741
C−C 1.513/1.105 1.510/1.101 1.508/1.100 1.526/1.088
C = C 1.330/1.098 1.325/1.094 1.323/1.093 1.339/1.085
C ≡ C 1.212/1.078 1.203/1.073 1.203/1.074 1.203/1.061

5. Becke97
6. Becke97-1
7. Becke98
8. mPW1k

For example, in SVWN5 (which is also known as LDA) keeps the Slater ex-
change with the Vosko-Wilk-Nusair expression 5 for the correlation energy.

LDA geometries depend up on the choice of basis set. SVWN-optimized bond
length for hydrocarbons are included in Table 9.3.

9.21 Applications of DFT

Applications of modern DFT calculations have been extended from small molecules
for testing the accuracy to transition metal complexes. For complex molecules, DFT
appears to be the method of choice at present. In the last few years, people have be-
gun to apply DFT methods to a variety of systems such as biomolecules, polymers,
macromolecules, and so on. Recently, researchers started examining spin densities
in bio-inorganic complexes. These are very challenging calculations. involving up to
hundreds of electrons. In about 1985, Car and Parrinello introduced a new method
whereby one can solve for the electron density for a configuration of nuclei, and
then move the nuclei based on the resulting forces, resolve the electronic structure
problem, and so on. This means one can do real-time simulations without using
any “made up” force fields. This technique has been applied to many problems in
chemistry and materials science. Examples are water and ions in water, the proton
in water, silicon surfaces, chemical reactions, etc. In the last few years, a lot of work
has been done in developing methods which scale linearly with system size (RDM
is one example, which is discussed in the next chapter).

The single geometry SCF cycle or geometry optimization involves the following
steps:

1. Start with a density (for the 1st iteration, a superposition of atomic densities is
typically used).

2. Establish a grid for the charge density and the exchange correlation potential.
3. Compute the KS matrix (equivalent to the F matrix in the HF method) elements

and overlap the integrals matrix.
4. Solve the equations for expansion coefficients to obtain the KS orbitals.
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5. Calculate a new density ρ = ∑
i=occ

|φi(r)|2.

6. If the density or energy changed substantially, go to step 1.
7. If the SCF cycle converged and geometry optimization is not requested, go to

step 10.
8. Calculate the derivatives of the energy vs. the atom coordinates, and update the

atom coordinates. This may require denser integration grids and the recomput-
ing of the Coulomb and the exchange correlation potential.

9. If the gradients are still large, or the positions of the nuclei moved appreciably,
go back to step 1.

10. Calculate the properties and print the results.

It is quite popular to limit expense of numerical integration during the SCF cycle.
This is frequently done by fitting auxiliary functions to the charge density and the
exchange correlation potential. This allows for a much faster integral evaluation.
These auxiliary fitting functions are usually uncontracted Gaussians (though quite
different from the atomic basis sets) for which the integrals required for the KS
matrix can be calculated analytically. Different auxiliary sets are used for fitting the
charge density and the exchange correlation potential.

9.22 The Performance of DFT

We have a short list of DFT applications. The G1 database of Pople and coworkers
is a remarkable proof of accuracy of the traditional ab initio methods. The database
contains 55 molecules for which experimental values of atomization energies are
within the limit of permitted error (±1 kcal/mol). With the G2 procedure, Curtiss
et al. (1991) achieved the 1.2 kcal/mol mean absolute error for these 55 atomization
energies, which is a quite involved prescription incorporating higher order correlated
methods. Becke (1992) was able to reproduce values in this database with a mean
absolute error of 3.7 kcal/mol using his NUMOL program with gradient corrected
functionals. This result was additionally improved by Becke (1993) to 2.4 kcal/mol
by calculating the exchange correlation energy with the KS orbitals While the error
in DFT is considered still too big, these results were obtained with a method which
is substantially less computationally demanding than original correlated ab initio
procedures used by Pople and coworkers. Rather than the absolute atomization en-
ergy the differences are usually computed much better with DFT methods. We will
be concerned with only the difference in energy associated with a change. Hence,
the method is highly appreciated.

Even without gradient corrections, DFT results for bond dissociation energies are
usually much better than the HF results, though they have an overbinding tendency.
The LDA results are found to be approximately of MP2 quality. The inclusion of
gradient corrections to DFT provides a better computation of bond dissociation en-
ergies with the level of MP4 and CC computations. Molecular geometries even with
LSD are much better than corresponding HF results and are of the MP2 quality.
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However, LSD fails to explain hydrogen bonding. This defect is overcome by us-
ing gradient corrections. DFT methods are supportive to molecules such as OOF,
FON, and metal organic or inorganic moieties, where traditional ab initio methods
fail to be supportive. In most cases, if ab initio methods are not working properly,
we have the possibility to at least try with DFT. In most cases, this method gives
promising results. Transition states of organic molecules are frequently not repro-
duced well with pure DFT methods. However, it seems that hybrid methods give
improved results.

Vibrational frequencies are well reproduced even by LSD, though gradient cor-
rections improve agreement with the experiment even further. Ionization potentials,
electron affinities, and proton affinities are reproduced fairly well within gradient
corrected DFT. Using DFT methods for high spin species gives promising results.

The scope of applications for DFT grows rapidly with the calculations of new
molecular properties being added to actively developed software. Recent extensions
include parameters for NMR and ESR spectroscopy, diamagnetic properties, polar-
izabilities, relativistic calculations, and others.

9.23 Advantages of DFT in Biological Chemistry

Computational demands with DFT methods are much less than with ab initio meth-
ods of similar quality. Hence, DFT methods are widely used in computing larger
molecules such as biomolecules. Metals are frequently present in active centers of
enzymes. Traditional ab initio methods have severe problems with transition metals.
In fact, the HF equation cannot be solved for the true metallic state. It is related to
the fact that there is a difficulty to converge HF when the highest occupied orbitals
are very close in energy (the situation very popular for transition metals). The DFT,
similar to ab initio methods, is nonparametric, i.e., it is applicable to any molecule.
We may think that basis sets which are used as parameters for ab initio and DFT
methods are parametric. It is not completely true, as basis sets can be easily de-
rived from atomic calculations. Moreover, basis sets were derived a long time ago
for most of the elements of the periodic table with proper experimental and theo-
retical proofs. The restriction of DFT being applicable to the ground state only is
not usually a problem, unless you study the interaction of radiation with biological
molecules (e.g., UV-induced mutations).

9.24 Exercises

1. Optimize the geometry of a water molecule using Molecular Mechanics (MM3),
two semiempirical methods (AM1 and PM3) and DFT, an ab initio method
(DFT-B88LYP). Measure the bond length and bond angle and compute the heat
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of formation. Compare the computed results with the computed experimental
values.

2. Optimize the carbon dioxide molecule by the following methods: HF, SVWN,
SVWN5, BLYP, B3LYP, and MP2. Compute zero point energy by all these
methods. Compute single point energies of carbon and oxygen using tight SCF
convergence. Calculate the total atomization energy.

3. Perform optimization for F2O2 using B3LYP/6-31+G(d) and B3LYP/6-31G(2d)
and compare the O−O, and O−F bond lengths, the bond angle and the dihedral
angle.

4. Find the spin polarization in the CH2=CH−XHn species where n is R=O,
R=Be, R=Mg, and R=S using B3LYP.

5. Compute the effect of ozone depletion by chlorine. Use B3LYP/6-31+G(d).
6. Compute the atomization energy of carbon monoxide and dinitrogen by a suit-

able DFT method.
7. Find the atomization energy of water molecule by the DFT method. Compare

the result with HF and ab initio methods.
8. Compute the proton affinity of phosphene in the G2 level (G2 key word of Gaus-

sian 03).

For answers to these questions see the URL.
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Chapter 10
Reduced Density Matrix

10.1 Introduction

The solution of an N-body Schrödinger equation through the ground state prop-
erties of a fermion system (5.4) in an applied external potential for the analysis
of a boundless variety of physical situations remains a focus of research. It was
J. E. Mayer in 1955 who first identified that for non-relativistic electrons (which
interact via pair forces alone), the system energy depends only upon the two-body
reduced density matrix (2-RDM). In fact, only two combinations are possible in
this regard; the pair density (2-RDM) and the one-body reduced density matrix
(1-RDM). The former one keeps four-particle degrees of freedom while the latter
one keeps only two particle degrees of freedom. Mayer suggested the possibility of
computing the ground state energy and density matrix information by simply carry-
ing out a Rayleigh-Ritz minimization with respect to the pair density and 1-RDM.
However, the initial computations resulted in horrible results due to the ignoring
of a number of necessary restrictions or constraints. Progress in this very promis-
ing approach could be possible, if and only if we include all the necessary restric-
tions.

10.2 Reduced Density Matrices

The N-fermion problem can be treated as a discrete orthonormal basis of single
particle wavefunctions. Let ψ be the ground state normalized wavefunction for an
N-fermion system. Hence:

〈ψ |ψ 〉 = 1 (10.1)
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1-RDM (γ) can be defined as:

γ(i, i′) =
〈
ψ
∣∣a+

i′ ai
∣∣ψ〉 (10.2)

Here, ai and a+
i′ are the annihilation and creation operators for the single particle

state i for the chosen basis set. An annihilation operator is an operator that lowers
the number of particles in a given state by one. A creation operator is an operator
that increases the number of particles in a given state by one, and it is the adjoint of
the annihilation operator. Similarly, 2-RDM (Γ ) is given by:

Γ (i, j; i′, j′) =
〈
ψ
∣∣∣a+

i′ a+
j′a jai

∣∣∣ψ
〉

(10.3)

(a j and a+
j′ are the annihilation and creation operators single particle state j for the

chosen basis set.).
Γ (i, j; i′, j′) is antisymmetric under the interchange of i and j and also under the

interchange of i′ and j′; γ and Γ are hermitian.
The Hamiltonian of the N-fermion system involving only one-body and two-

body interactions can be written as Eq. 10.4:

Ĥ =∑
i,i′

h1(i, i′)a+
i ai′ +

1
2 ∑

i, j,i′, j′
h2(i, j, i′, j′)a+

i a+
j a j′ai′ (10.4)

(h1 and h2 are single particle Hamiltonians).
The ground state energy E can be expressed exactly in terms of the 1-RDM and

2-RDM:

E = Tr(h1γ)+
1
2

Tr(h2Γ ) (10.5)

Tr stands for trace of the operator.

Tr(h1γ) =∑
i,i′

h1(i, i′)γ(i′, i) (10.6)

Tr(h2Γ ) = ∑
i, j,i′, j′

h2(i, j, i′, j′)Γ (i′, j′, i, j) (10.7)

The pair (γ,Γ ) is used as a trial function in the space of functions satisfying
the stated antisymmetry and hermiticity conditions. In the computation it seeks to
minimize the right-hand side of Eq. 10.5 (the variational principle).

For an N-fermion system from the definition of 1-RDM and 2-RDM we come
across the following conditions.

The linear equality condition:

∑
k

Γ (i,k, i′k) = (N −1)γ(i, i′) (10.8)
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and trace conditions:

∑
i

γ(i, i) = N (10.9)

∑
i, j
Γ (i, j; i, j) = N(N −1) (10.10)

Linear equality and convex inequality conditions are imposed on (γ,Γ ) that are
necessary to ensure that the trial pair lies in the convex hull of density matrices that
are actually derived from N-fermion wavefunctions. These additional conditions
were introduced by Coleman, Garrod, and Percus.

10.3 N-Representability Conditions

Besides the conditions mentioned above (Eqs. 10.9 and 10.10) convex inequality
conditions that do not explicitly involve the particle number N have to be included.
For the 1-RDM, a complete set of representability conditions was given by Coleman.
Basically, the γ matrix should be positive semidefinite. Hence, γ � 0 or (I− γ) � 0,
where I stands for the identity matrix. That is, all its eigenvalues of the matrix are
nonnegative. He also made two more conditions known as P and Q conditions.

The P condition states thatΓ � 0. Here, Γ is identified as a hermitian operator on
the space of antisymmetric two-body wavefunctions. Hence, for any antisymmetric
function g(i, j), based on this condition:

∑
i, j,i′, j′

g ∗ (i, j)Γ (i, j; i′, j′)g(i′, j′) ≥ 0 (10.11)

The Q condition follows from the positive semidefinite property of the operator
A+A where:

A =∑
i, j

g(i, j)a+
i a+

j (10.12)

Hence, 〈ψ |A+A|ψ〉 ≥ 0 Or:

∑
i, j,i′, j′

g ∗ (i, j)
〈
ψ
∣∣∣a j,ai;a+

i ,a+
j

∣∣∣ψ
〉

g(i′, j′) ≥ 0 (10.13)

The Q-condition is given by:

Q(i, j; i′, j′) =
〈
ψ
∣∣∣a j,ai;a+

i ,a+
j

∣∣∣ψ
〉

= Γ (i, j′; j, i′)− δ (i, i′)γ( j, j′)− δ ( j, j′)γ(i, i′)

+ δ (i, j′)γ( j, i′)+ δ ( j, i′)γ(i, j′)− δ (i, j′)γ( j, i′) (10.14)
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10.3.1 G-Condition (Garrod) and Percus

If the operator A = ∑
i, j

g(i, j)a+
i a j (g is any function of the two indices) due to the

positive semidefinite property of the operator A+A, 〈ψ |A+A|ψ〉 ≥ 0. Then, the G-
condition states that:

G(i, j; i′, j′) =
〈
ψ
∣∣A+A

∣∣ψ〉 (10.15)

It depends linearly on 1-RDM and 2-RDM and can be written as:

G(i, j; i′, j′) =
〈
ψ
∣∣A+A

∣∣ψ〉= Γ (i, j′; j, i′)+ δ (i, i′)γ( j′ j) (10.16)

10.3.2 T-Conditions (Erdahl)

For an arbitrary, totally antisymmetric function g(i, j,k), the operators A+A and AA+

are both positive semidefinite, where A = ∑
i, j,k

g(i, j,k)aia jak. We can express this

in terms of the RDM expressions similar to the derivations of Q or G conditions.
Separately taking 〈ψ |A+A|ψ〉 and 〈ψ |AA+|ψ〉, we can see that each term contains

3-RDM, which is defined as
〈
ψ
∣∣∣a+

i ,a+
j ,a+

k ,ak,a j,ai

∣∣∣ψ
〉

keeping the opposite sign.

Hence, in the sum of these functions, 〈ψ |A+A + AA+|ψ〉 only the 1-RDM and 2-
RDM will be present. Of course, this sum is nonnegative as well. The result is that
T 1 is a positive semidefinite matrix.

The hermitian matrix T 1 is given by Eq. 10.17:

T1(i, j,k; i′, j′,k′) =
〈
ψ
∣∣∣a+

i ,a+
j ,a+

k ,aka j,ai + ai,a j,ak,a
+
k ,a+

j ,a+
i

∣∣∣ψ
〉

(10.17)

It is related to 1-RDM and 2-RDM by the equation:

T 1(i, j,k; i′, j′,k′) = A[i, j,k |A| i′, j′,k′][
1
6
δ
(
i, i′
)
δ
(

j, j′
)
δ
(
k,k′

)− 1
2
δ
(
i, i′
)
δ
(

j, j′
)
γ
(
k,k′

)

+
1
4
δ
(
i, i′
)
Γ
(

j,k; j′k′
)]

(10.18)

10.3.3 T2 Condition

The T 2 condition follows in a similar way from the positive semidefinite property
of the operator A+A + AA+ where A = ∑

i, j,k
g(i, j,k)a+

i a jak. If g(i, j,k) is antisym-
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metric with respect to ( j,k) only the result will make T 2 into a positive semidefinite
property. The hermitian matrix T 2 is defined by:

T 2(i, j,k; i′, j′,k′) =
〈
ψ
∣∣∣a+

k ,a+
j ,ai,a

+
i a j,ak + a+

i ,a j,ak,a
+
k ,a+

j ,ai

∣∣∣ψ
〉

(10.19)

T 2(i, j,k; i′, j′,k′) = A[ j,k |A| j′,k′]
[

1
2
δ
(

j, j′
)
δ
(
k,k′

)
γ
(
i, i′
)
+

1
4
δ
(
i, i′
)
Γ
(

j′,k′; j,k
)

− δ
(

j, j′
)
Γ
(
i,k′; i′k

)]
(10.20)

10.4 Computations Using the RDM Method

Following the clear statement of the RDM approach and of the most important N-
representability conditions, the first significant computational results came in the
1970s. Kijewski applied the RDM method to doubly ionized carbon (N = 4), C++,
using a basis of 10 spin orbitals (r = 10). Garrod and his co-authors were the first
ones to actually solve the semidefinite programming, imposing the P, Q and G con-
ditions, by which they obtained very accurate results for atomic beryllium (N = 4
and r = 10).

10.5 The SDP Formulation of the RDM Method

Let C, Ap (p = 1,2, . . . ,m) be given block diagonal symmetric matrices with pre-
scribed block sizes, and c,ap ∈ Rs (p = 1,2, . . . ,m) be given s-dimensional vectors.
A diagonal matrix with elements a can be represented by Diag(a).

The objective function to be maximized is:

〈C,X〉+ 〈Diag(c),Diag(x)〉

Subject to:

〈
Ap,X

〉
+
〈
Diag(ap),Diag(x)

〉
= bp(p = 1,2.., ...,m)

X�0,x ∈ Rs (10.21)

Its dual is:
Minimize bT y
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Subject to:

S =
m

∑
p=1

Apyp −C�0

m

∑
p=1

Diag(ap)yp = Diag(c)y ∈ Rm (10.22)

where (X ;x) are the primal variables and (S;y) are the dual variables. Primal-dual
interior-point methods and their variants are the most established and efficient al-
gorithms to solve general semidefinite programming. Reduced density matrix with
(P,Q,G,T1,T2) N-representability conditions can be treated as an SDP. 1-RDM vari-
ational variable Γ1 and its corresponding Hamiltonian H1 are two index matrices;
the 2-RDM variational variable Γ2, and the corresponding Hamiltonian H2, Q and
G are four index matrices. T1 and T2 are six index matrices. Map each pair (i, j) or
triple (i, j,k) to a composite index for these matrices, resulting in symmetric ma-
trices of order r(r − 1)/2× r(r − 1)/2 for Γ2, H2 and Q, a symmetric matrix of
order r(r−1)(r−2)/6× r(r−1)(r−2)/6 for T1, and a symmetric matrix of order
r2(r−1)/2× r2(r−1)/2 for T 2. For example, the four-index element Γ2 (i, j; i′, j′)
with 1 ≤ i < j ≤ r and 1 ≤ i′ < j′ ≤ r can be associated with the two-index element
Γ2( j− i+(2r− i)(i−1)/2 j′ − i′ +(2r− i′)(i′ −1)/2). We assume, henceforth, that
all matrices have their indices mapped to two indices, and we keep the same nota-
tion for simplicity also, due to the antisymmetry property of the 2-RDM, Γ2, and of
the N-representability conditions Q, T1 and T 2, and also due to the spin symmetry.
Let us define a linear transformation svec:

Sn → Rn(n+1)/2
(10.23)

U ∈ Sn

svec(U) =
(

U11,
√

2U12,U22,
√

2U13,
√

2U23,U23, . . . ,
√

2U1n, . . .Unn

)T
(10.24)

To formulate the RDM method with (P,Q,G,T1,T2) conditions as the dual SDP,
we define:

y =
[
svec(Γ1)T ,svec(Γ2)T ]T ∈ Rm (10.25)

b =
[
svec(H1)T ,svec(H2)T ]T ∈ Rm (10.26)

Now, express the N-representability conditions through the dual slack matrix
variable S by defining it as having the following diagonal blocks:
(Γ1,(I−Γ1) ,Γ2,Q,G,T1,T2). Then, the ground state energy can be computed with
the dual linear function:

E = min︸︷︷︸
y

bty (10.27)
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10.6 Comparison of Results

Zhengji Zhao et al. computed the ground state energies of 47 molecules by the RDM
method, imposing the (P,Q), (P,Q,G), (P,Q,G,T1), (P,Q,G,T2), and (P,Q,G,T1,T2)
conditions. These results are compared with results obtained by other, more famil-
iar methods, such as singly and doubly substituted configuration interaction (SDCI),
Brueckner doubles (with triples) (BD(T)) and coupled cluster singles and doubles
with perturbational treatment of triples (CCSD(T)-CCSD(T), which is arguably the
most accurate single method available in Gaussian 98). The RDM method provides
a lower bound for the full CI result in the same model space, and it gives exact
solutions for the cases N = 2 and N = r − 2 using only the P and Q conditions.
Previous numerical results of Nakata et al. suggest that adding the G condition
to the P and Q conditions is essential to obtain a solution that is competitive at
least with the Hartree-Fock approximation. This generalization is again confirmed
by this research. In certain cases (LiH, BeH, BH+, CH−, NH, NH−, OH+, OH,
OH−, HF+, HF, SiH−, HS+) the difference between the result of the RDM method
using P, Q, and G conditions, RDM (P,Q,G) and the full CI result is around 0.1
milli Hartree (mH). In those cases, the accuracy also compares favorably with the
CCSD(T), BD(T), and SDCI approximations. The RDM (P,Q,G) errors are found
to be much more; still, it is well below the Hartree-Fock error in magnitude. The
results of the RDM method are improved by the inclusion of the T 1 condition, and
improved spectacularly by adding both the T 1 and T 2 conditions (or even T 2 alone).
They found that the RDM method with P, Q, G, T 1, and T2 conditions gives almost
the exact full CI values for the ground state energies, with an error around 0.1 mH
or less.

When the T 1 and T2 conditions are added, the dipole moment error falls to
around 0.0001 a.u. or less for most of the molecules. Once the energy is obtained
with a high accuracy, the dipole moment calculation also reaches a high accuracy.
This is another advantage of the RDM method over the other, traditional variational
methods, in which a first order error in the trial wavefunction results in a second or-
der error in the energy, so a poor trial function may produce amazingly good results
on the ground state energy, but not on the other ground state properties.

10.7 Research in RDM

Appreciating the level of accuracy that the RDM method can attain, the present
trend is to make computations using this method. A number of research papers in
this regard are available. Some of them are mentioned below.

Gidofalvi and Mazziotti used variational RDM theory to evaluate the strength of
Hamiltonian-dependent conditions. A theory for the absorption line shape of molec-
ular aggregates in condensed phase is formulated based on a reduced density-matrix
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approach by Yang and Mino. They illustrated the applicability of the present theory
by calculating the line shape of a dimer (a pair consisting of a donor and an acceptor
of an energy transfer).

Entropy maximization has proven effective in treating certain aspects of the phase
problem of X-ray diffraction. Entropy on an N-representable one-particle density
matrix is well defined by D. M. Collins.

Reduced density matrix descriptions were developed by Jacobs, Verne et al. for
linear and non-linear electromagnetic interactions of moving atomic systems, con-
sidering the applied magnetic fields. Atomic collision processes are treated as en-
vironmental interactions. Applications of interest include electro-magnetically in-
duced transparency and related pump-probe optical phenomena in atomic vapors.

10.8 Exercises

1. A harmonic oscillator is brought to thermal equilibrium at a temperature T and
then is disconnected from the reservoir and coupled to a two state system in
such a way that the two-state system is in a σ3 = +1 state if the level of the
oscillator is even, and σ3 = −1 if it is odd. Write the reduced density matrix
if one is interested only in the two-state system. Use the density operator to
compute 〈σ3〉.

2. For a 2-state system, write down the most general form of the density matrix.
(finding all the constraints on the coefficients).

3. Consider two systems: 1 and 2, each in the states: |ψ1〉 = 1√
2
(|a〉1 + |b〉1) and

|ψ2〉 = 1√
2
(|a〉2 + |b〉2). Write down the density matrix for each system. Write

down the combined state for the two systems. Find the density matrix for the
combined systems. Find the reduced density matrix for system 2.
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Chapter 11
Molecular Mechanics

11.1 Introduction

Molecular mechanics (MM) computes the structure and energy of molecules based
on nuclear motions. In this method, electrons are not considered explicitly, but rather
it is assumed that they will find their optimum distribution once the positions of the
nuclei are known. This assumption is based on the Born-Oppenheimer approxima-
tion that nuclei are much heavier than electrons and their movement is negligibly
small compared to the movement of electrons. Nuclear motions such as vibrations
and rotations can be studied separately from electrons. The electrons are supposed
to move fast enough to adjust to any movement of the nuclei. In a very general
sense, MM treats a molecule as a collection of weights connected with springs,
where the weights represent the nuclei and the springs represent the bonds. Based
on this treatment, molecular properties can be well studied. The method is based on
the following assumptions:

1. Nuclei and electrons are lumped together and treated as unified atom-like parti-
cles.

2. Atom-like particles are treated as spherical balls.
3. Bonds between particles are viewed as springs.
4. Interactions between these particles are treated using potential functions derived

from classical mechanics.
5. Individual potential functions are used to describe different types of interactions.
6. Potential energy functions rely on empirically derived parameters that describe

the interactions between sets of atoms.
7. The potential functions and the parameters used for evaluating interactions are

termed a force field.
8. The sum of interactions determines the conformation of atom-like particles.

A comparative study of the three major computational chemistry techniques can be
made as given in Table 11.1.

K. I. Ramachandran et al., Computational Chemistry and Molecular Modeling 205
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Table 11.1 Comparative study of ab initio, semiempirical and molecular mechanics techniques

Ab initio Semi-empirical Molecular mechanics

Counting all electrons Ignoring some electrons
(simplification)

Ignoring all electrons.
Only nuclei are taken into
consideration

Limited to tens of atoms and
best performance using
a supercomputer

Limited to hundreds of atoms Molecules containing
thousands of atoms

Can be applied to inorganics,
organics, organo-metallics
and molecular fragments (the
catalytic components of an
enzyme)

Can be applied to inorganics
organics, organo-metallics
and small oligomers (peptide,
nucleotide, saccharide)

Can be applied to inorganics,
organics, oligonucleotides,
peptides, saccharides,
metallo-organics and inorgan-
ics

Extended to a vacuum or
implicit solvent environment

Extended to a vacuum or
implicit solvent environment

Extended to a vacuum,
implicit, or explicit
environment

Applicable to ground, transi-
tion, and excited states

Applicable to ground, transi-
tion, and excited states

Applicable to the ground state
only. Thermodynamics and
kinetics via molecular
dynamics properties

11.2 Triad Tools

Molecular mechanics depends upon three tools-force fields, parameter sets, and
minimizing algorithms, together sometimes called triad tools (Fig. 11.1).

A force field is a set of functions and constants used to find the potential energy
of the molecule. In general, the potential energy of the system can be represented as
sum of the force field functions (Eq. 11.1):

E =∑
i j

ki jxix j +∑
i jk

ki jkxix jxk (11.1)

Here, ki j is a constant depending up on the bond length (the distance between
xi and x j) and ki jk is a constant depending upon the bond angle (the bond angle
between xi,x j and xk). However, the molecular mechanics energies will not be con-
fused with absolute quantities. The only difference in energy between two or more
conformations, states, or levels will have meaning. In most cases, in MM or its
tool, the empirical force field (EFF, or simply, force field, FF), the data determined
experimentally for small molecules can be extrapolated to larger molecules (trans-
ferable). It is aimed at quickly providing energetically favorable conformations for
large systems.

Parameters included in the parameter set define the reference points and force
constants allowing for the calculation of different levels of potential energy calcu-
lations, which are caused due to the inclusion of attractive or repulsive interactions
between atoms.
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Fig. 11.1 MM triad tools

Algorithms to calculate new geometrical positions from an initial guess to pro-
vide geometry optimization use the so-called optimizers or minimizers. Differ-
ent methods such as the steepest descent, the conjugate gradient, Powel, Newton-
Raphson, BFGS, line searches, etc. are available in this step. Different techniques
to overcome local-global minima problem are provided. Geometry optimization re-
quires the global minimum to be achieved.

The force fields generally take the form of Etotal = Er + Eθ + Eφ + Enb +
[special terms], where the total energy (Etotal) is expressed as the sum of energies
associated with bond stretching (Er), bond angle bending (Eθ ), bond torsion (Eφ ),
nonbond interactions (Enb), and specific terms such as hydrogen bonding (Ehb) in
biochemical systems. Most MM equations are similar in the types of terms they
contain. However, there are some differences in the forms of the equations that can
affect the choice of force field and parameters for the systems of interest. We need
quantum mechanics to describe bonding accurately but can approximate bonding
with simple physical models.

11.3 The Morse Potential Model

The Morse potential (Philip M. Morse), is a fitting model for the potential energy
of diatomic molecules such as dihydrogen. It is suitable for the vibrational structure
of the molecule, as it explicitly includes the effects of bond breaking, such as the
existence of unbound states. It also accounts for the anharmonicity of real bonds
and the non-zero transition probability for overtone and combination bands.

The potential is represented by the function:

V (r) = De

(
1− e−a(r−re)

)2
(11.2)

Here, is the distance between the atoms, is the equilibrium bond distance, is the
well depth (defined relative to the dissociated atoms), and a controls the “width” of
the potential. The dissociation energy of the bond can be calculated by subtracting
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the zero point energy from the depth of the well. The force constant of the bond
can be found by taking the second derivative of the potential energy function, from
which it can be shown that the parameter, a, is:

a =
√

ke/2De (11.3)

11.4 The Harmonic Oscillator Model for Molecules

The harmonic oscillator is a simple mechanical model of a moving mass fixed to
a wall with the help of a spring. A similar model can be considered for a small atom
such as hydrogen connected to a large atom or molecule. The large molecule can be
considered as stationary relative to the fast motions of the small hydrogen.

Hooke’s Law gives the relationship between the force applied to an unstretched
spring and the amount the spring is stretched when the force is applied. In physics,
Hooke’s law of elasticity is an approximation that states that the amount by which
a material body is deformed (the strain) is linearly related to the force causing the
deformation (the stress). Materials for which Hooke’s law is a useful approximation
are known as linear-elastic or “Hookean” materials. For such materials, the exten-
sion produced is directly proportional to the load:

F = −kx (11.4)

where x is the distance by which the material is elongated, F is the restoring force
exerted by the material, and k is the force constant (or spring constant). The negative
sign indicates that the force exerted by the spring is in the direction opposite to the
direction of displacement. It is called a “restoring force,” as it tends to restore the
system to equilibrium (Fig. 11.2). But by Newtonian mechanics, the force, F = ma,
where m is the mass of the body and a the acceleration. From Eq. 11.2, we can write
the expression as:

F = ma = m
d2x
dt2 = −kx. (11.5)

The force to compress a spring varies from Fext = F0 = 0 at xi = 0 to Fext = Fx = kx
(at x f = x). Since force increases linearly with x, the average force that must be
applied is:

Faverage = Fext =
1
2
(F0 + Fx) =

1
2

kx (11.6)

The work done by Fext is:

W = Fextx =
1
2

kx2 (11.7)

The potential energy stored in the compressed (or stretched) spring will be the
calculated work required to compress (or stretch) the spring. Hence, the potential
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Fig. 11.2 Harmonic oscillator
in one dimension

energy is:

Epe =
1
2

kx2 (11.8)

and is stored in the spring as potential energy.
Solving the differential equation (Eq. 11.5), we obtain:

x(t) = Acos

(√
k
m

t

)
±Bsin

(√
k
m

t

)
(11.9)

where
√

k
m = 2πν = ω , the oscillation frequency. The angular frequency in radians

is related to the frequency in cycles per second (Hertz) by Eq. 11.8:

v =
1

2π

√
k
m

(11.10)

Substituting the value of ω in Eq. 11.9, we get:

x(t) = Acos(ωt)±Bsin(ωt) (11.11)

If we assume an initial condition x(t = 0) = A and dx
dt (t = 0) = 0, then the solu-

tion is reduced to:

x(t) = Acos(ωt) (11.12)

The potential energy can be derived from this equation as shown in Eq. 11.13:

Epe = V = −
x∫

0

Fdx = −
x∫

0

(−kx)dx =
kx2

2
(11.13)

11.5 The Comparison of the Morse Potential
with the Harmonic Potential

The Morse potential is more accurate than the harmonic potential; still, it is not
widely used as it is computationally expensive. The Morse potential allows a bond
to stretch to an unrealistic length. By this model, for a structure with long bonds



210 11 Molecular Mechanics

Fig. 11.3 The Morse potential and the harmonic oscillator potential

there would be almost no force pulling the atoms together. Hence, convergence in
this method might be problematic or nonphysical results might be obtained. The
major defect of the harmonic potential is that the force is estimated as very high
even at a very high distance. This may destroy some important structural features.
A graphical comparison of these two potentials is illustrated in Fig. 11.3. Unlike
the energy levels of the harmonic oscillator potential, which are evenly spaced, the
Morse potential level spacing decreases as the energy approaches the dissociation
energy. The dissociation energy De is larger than the true energy required for disso-
ciation Do due to the zero point energy of the lowest (v = 0) vibrational level.

11.6 Two Atoms Connected by a Bond

We can transform the “two body” problem, with the masses connected to a spring
as a “single body” problem with masses of two bodies replaced by a single reduced
mass μ vibrating with respect to a stationary center of mass xc as shown in Fig. 11.4.
In diatomic covalently bonded molecules like dihydrogen a similar formulation can
be made. The reduced mass is calculated from Eq. 11.12.

μ =
m1m2

m1 + m2
(11.14)
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Fig. 11.4 Two masses con-
nected together by a spring
(bond)

The vibrating frequency v expression will become automatically:

v =
1

2π

√
k
μ

(11.15)

11.7 Polyatomic Molecules

In polyatomic molecules, each atom is kept in its position by one or more chemical
bonds. Each chemical bond may be modeled as a harmonic oscillator in a space de-
fined by its potential energy as a function of the degree of stretching or compression
of the bond along its axis (Fig. 11.5).

Fig. 11.5 Variation of potential energy with degree of stretching or compression
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11.8 Energy Due to Stretching

Bond stretching or compression from the natural bond position is associated with
an increase in potential energy. The corresponding energy change is described by
an equation similar to Hooke’s law for a spring, with a cubic term instead of square
term in the expression. This cubic term helps to keep the energy from rising too
sharply as the bond is stretched.

Vstretching = 143.88
ks

2
(l− lo)

2 (1−2(l − lo)) (11.16)

where ks is the stretching force constant in mdyn.A−1, lo is the natural bond length
in A, l is the actual bond length in A, and 143.88 is to convert the unit to kcal.mol−1.

11.9 Energy Due to Bending

The bending of bonds will also be associated with an increase in energy. The poten-
tial energy expression associated with bending is given by:

Eθ = 0.21914kθ (θ −θo)2
(

1 + 7×108(θ −θo)4
)

(11.17)

where kθ is the force constant associated with bending in mdyn.A−1rad−2, θ is the
actual bond angle in degrees, θo is the natural bond angle in degrees, and 0.21914
is the conversion factor. This potential function works very well for bends of up to
about 10 degrees. To handle special cases, such as cyclobutane, special atom types
and parameters are used in the force field.

11.10 Energy Due to Stretch-Bend Interactions

When a bond angle is dropped, the two bonds forming the angle will stretch to allevi-
ate the strain. To include such phenomena, cross term (multiple) potential functions
are introduced. Cross term potential functions take into account at least two terms
such as bond stretching and bond bending. The potential energy expression for this
change is given as:

Esθ = 2.51124ksθ (θ −θo)
[
(l− lo)a +(l − lo)b

]
(11.18)

ksθ is the corresponding force constant in mdyn.A−1rad−1, a and b represents
bonds to a common atom, and 2.51124 is the conversion factor.
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11.11 Energy Due to Torsional Strain

Intramolecular rotations (rotations about torsion or dihedral angles) require energy.
For example, the conversion of a chair conformer to a boat conformer is endother-
mic. The torsion potential is a Fourier series that accounts for all 1–4 through-bond
relationships:

Etor =
V1

2
(1 + cosω)+

V2

2
(1 + cos2ω)+

V3

2
(1 + cos3ω) (11.19)

where V1, V2 and V3 are force constants in the Fourier series in kcal.mol−1, and ω
is the torsion angle from 0◦ to 180◦.

11.12 Energy Due to van der Waals Interactions

The van der Waals radius of an atom is its effective size. As two non-bonded atoms
are brought together, the van der Waals attraction between them increases (the van
der Waals force and the corresponding energy are inversely proportional to dis-
tance). When the distance between them equals the sum of the van der Waals radii
the attraction is at a maximum. If the atoms are brought still closer together there is
a strong van der Waals repulsion (a sharp increase in energy). The energy expression
takes the form of:

EvdW = ε

[
2.90×105 exp

(
−12.50

r0

rv

)
−2.25

(
rv

r0

)6
]

(11.20)

where ε is the energy parameter, which determines the depth of the potential energy
well (for C–C it is 0.044 while for C–H it is 0.046), rv is the sum of the van der
Waals radii of the interacting atoms, and r0 is the distance between the interacting
centers.

11.13 Energy Due to Dipole-Dipole Interactions

In some force fields electrostatic interactions are accounted for by atomic point
charges. In other force fields, such as MM2 and MMX, bond dipole moments are
used to represent electrostatic contributions. One can readily see that the equa-
tion below stems from Coulomb’s law. The energy is calculated by considering
all dipole-dipole interactions in a molecule. If the molecule has a net charge, (e.g.,
NH+

4 ) charge-charge and charge-dipole calculations must also be carried out.

Edipole =
μiμ j

D(ri j)
3 (cosχ−3cosαi × cosα j) (11.21)
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D is the dielectric constant of the system, χ the angle between the dipoles, and
μi and μ j the corresponding charges, αi and α j the angles between the dipoles and
a vector connecting the dipoles. ri j is the distance between the dipoles (Fig. 11.6).

11.14 The Lennard-Jones Type Potential

Real fluids have a continuous intermolecular potential, which can be approximated
by the following equation:

V (r) = ε
[(

m
n−m

)
x−n −

(
n

n−m

)
x−m

]
(11.22)

Here, n and m are constants, x = r/rm, and rm is the separation corresponding
to the minimum energy. The most common form of the Lennard-Jones potential
(the LJ-12-6 potential) is obtained when n = 12 and m = 6. This expression clearly
supports the decay of dispersion forces.

11.15 The Truncated Lennard-Jones Potential

It is customary to model the repulsive interactions between hard spheres by a trun-
cated Lennard-Jones potential defined by:

V (r) = 4ε
[(σ

r

)12
−
(σ

r

)6
]

+ ε if r ≤ 21/6σ (11.23)

V (r) = 0 if r > 21/6σ (11.24)

The advantage of this potential is that it provides a more realistic representation
of repulsive interaction than assuming an infinitely steep potential.

Fig. 11.6 Dipole-dipole interaction
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11.16 The Kihara Potential

The Kihara spherical core potential (Maitland et al., 1981) is a slightly more com-
plicated alternative to the LJ potential. The formulation is as follows:

V (r) = ∞ if r ≤ d (11.25)

V (r) = 4ε

[(
σ −d
r−d

)12

−
(
σ −d
r−d

)6
]

if r > d (11.26)

where d is the diameter of an impenetrable hard core at which V (r) =∞. The Kihara
potential can also be applied to non-spherical molecules by using a convex core of
any shape.

11.17 The Exponential -6 Potential

The exponential decay of the intermolecular repulsion can be effectively explained
through this potential. The potential is:

V (r) = ∞ if r ≤ λ rm (11.27)

V (r) =
ε(

1− 6
α
)
{

6
α

exp

[
α
(

1− r
rm

)]
−
(rm

r

)6
}

if r > λ rm (11.28)

where α is the repulsive-wall steepness parameter, ε is the maximum energy of
attraction occurring at a separation of rm, and λ rm is the distance at which the po-
tential goes through a false maximum. The value of λ can be obtained (Hirschfelder
et al., 1954) by finding the smallest root of the following equation:

λ 7 exp [α (1−λ)]−1 = 0 (11.29)

The false maximum is an unsatisfactory feature of the exp-6 potential. At r = 0,
the exponential term has a finite value allowing the dispersion term to dominate
at very small intermolecular separation. Consequently, the potential passes through
a maximum and then tends to −∞ at r → 0. Therefore, the condition that V (r) = ∞
when r ≤ λ rm must be imposed to use the use the potential especially in a simula-
tion. Alternatively, damping functions for the dispersion term have been proposed,
which overcome this problem.
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11.18 The BFW Two-Body Potential

This is an atom-specific potential, which is applicable to a specific atom or class of
atom. For example, the Barker-Fisher-Watts potential for argon is:

V (r) = ε

[
5

∑
i=0

Ai(x−1)i exp [α(1− x)]−
2

∑
j=0

C2 j+6

δ + x2 j+6

]
(11.30)

where x = r/rm and the other parameters are obtained by fitting the potential to
experimental data for molecular beam scattering, and long range interaction coef-
ficients. The contribution from s repulsion has an exponential dependence on in-
termolecular separation and the contribution to dispersion of the C6, C8, and C10

coefficients are included.

11.19 The Ab Initio Potential

A two body potential can be obtained by fitting a carefully chosen function to data
obtained from ab initio calculations. For example, Eggenberger et al. used ab ini-
tio calculations to obtain the following potential for the interaction between neon
atoms:

V (r) = a1 exp
[
−a2 (r/a0)

2
]
+ a3 exp

[
−a4 (r/a0)

2
]
+ a5 exp

[
−a6 (r/a0)

2
]

+ a7 (r/a0)
−10 + a8 (r/a0)

−8 + a7 (r/a0)
−6 (11.31)

where a0 is the Bohr radius and the remaining parameters do not have any physical
meaning.

It is interesting to compare the functional similarity of the potential with accurate
empirical two-body potential such as the BFW potential. We can observe that all of
these potentials have an exponential term and contributions from r−6, r−8, and r−10

intermolecular separations.

11.20 The Ionic and Polar Potential

Molecules are associated with permanent multipole moments or charges which re-
sult in electrostatic interactions. The application of Coulomb’s law of electrostatic
interaction between charges q, dipole moments μ , and quadrupole moment Q be-
tween molecules a and b yields:

V (q,q)(r) =
qaqb

r
(11.32)
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V (q,μ)(r) =
qaμb cosθb

r2 (11.33)

V (q,Q)(r) =
qaQb

(
3cos2 θb −1

)
4r3 (11.34)

V (μ,μ)(r) =
μaμb (2cosθa cosθb − sinθa sinθb cos(φa −φb))

r3 (11.35)

V (μ,Q)(r) =
3μaQb

4r4

[
cosθa

(
3cos2 θb −1

)−2sinθa sinθb cosθb cos(φa −φb)
]

(11.36)

V (Q,Q)(r) =
3QaQb

16r5

[
1−5cos2 θa −5cos2 θb −15cos2 θa cos2 θb

+2[sinθa sinθb cos(φa −φb)−4cosθa cosθa]2
]

(11.37)

where θa, θb, φa, and φb define the various orientation angles between the molecules.

11.21 Commonly Available Force Fields

Some of the commonly available force fields are mentioned below.

11.21.1 MM2, MM3, and MM4

The MM family of force fields (MM2, MM3, and MM4) was introduced by Allinger
et al. [2,3]. and are widely used for the computations of small molecules. The force
field can identify sp, sp2 and sp3 hybridized carbon atoms, organic intermediates
such as free radical and carbocation, the carbonyl functional group, and cyclohy-
drocarbons such as cyclopropane and cyclopropene (Leach, 2001). The MM family
was parameterized to fit values obtained through electron diffraction, which pro-
vide mean distances between atoms averaged over vibrational motion at room tem-
perature. The bond stretching potential is represented by the classic Hooke’s law
expansion:

V(l) =
k
2

(l − l0)
2
[
1− k

′
(l − l0)− k

′′
(l − l0)− k

′′′
(l − l0)− . . .

]
(11.38)

In MM2, expansion is made up to cubic terms, which may cause the cubic func-
tion to pass through a maximum that is far from the reference value. This has lead
to disastrous expansion of bonds in some experiments. This defect is overcome in
MM3 by limiting the use of the cubic contribution only when the structure is suf-
ficiently close to its equilibrium geometry and is inside the actual potential well.
Leach includes a quartic term in MM3, which eliminates the inversion problem and
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leads to an even better description. MM2 has a similar defect with bond bending
and is corrected in MM3. Most of the force fields agree to a point-charge electro-
static model, where the point of origination of a charge is assigned to a particular
atom. Hence, the MM family assigns dipoles to the bonds in the molecule. The
electrostatic energy is then given by a sum of dipole-dipole interaction energies.
This approach can be irresistible for molecules (ions) that have a formal charge and
which require charge-charge and charge-dipole terms to be included in the energy
expression. The MM family of force fields is often regarded as the “gold standard”
as these force fields have been painstakingly derived and parameterized based on the
most comprehensive and highest quality experimental data. In MM4, computational
problems are negligibly small compared to MM2 and MM3.

11.21.2 AMBER

AMBER (Cornell et al., 1995 [5]) was originally parameterized for a limited num-
ber of organic systems and it has been widely used for proteins and nucleic acids.
Like other force fields developed for use in modeling proteins and nucleic acids, it
uses more specific atom types – specifically, according to Leach, the carbon atom at
the junction between a six-and a five-membered ring is assigned an atom type that is
different from the carbon atom in an isolated five-membered ring such as histidine,
which in turn is different from the atom type of a carbon atom in a benzene ring
(Leach, 2001). AMBER can be used for polymers and small molecules with some
additional parameters. It generally gives reasonable results for gas-phase model ge-
ometries, solvation free energies, vibrational frequencies, and conformational ener-
gies. It should be noted that AMBER employs a united atom representation – there
does exist an all atom representation of AMBER as well – which differs from an
all atom representation in that non-polar hydrogen atoms are not represented ex-
plicitly, but are coalesced into the description of the heavy atoms to which they are
bonded. This results in significant additional speed in calculations based on AM-
BER compared to other force fields. AMBER also includes a hydrogen-bond term
which augments the value of the hydrogen-bond energy derived from the dipole-
dipole interaction of the donor and acceptor groups. However, the contribution of
the hydrogen-bond term is only approximately 0.5 kcal.mol−1. It uses general tor-
sion parameters. According to Leach, the energy profile for rotation about a bond
that is described by a general torsion potential depends solely upon the atom types
of the two atoms that comprise the central bond and not upon the atom types of
the terminal atoms. AMBER takes a position midway between those force fields
that consistently use more terms for all torsions and those force fields that only use
a single term in the torsion expansion. United atom force fields such as AMBER
usually use improper torsion terms to maintain stereochemistry at chiral centers.
The MM family is an example of a force field that consistently uses more than one
term to define the torsion expansion – specifically, it uses three terms. The potential
field expression is as follows:
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(11.39)

11.21.3 CHARMM

CHARMM (Chemistry at Harvard Macromolecular Mechanics, developed by Mack-
erell and Karplus, et al., 1995) was parameterized by experimental data. It has been
used widely for simulations ranging from small molecules to solvated complexes
of large biological macromolecules. CHARMM performs well over a broad range
of calculations and simulations, including the calculation of interaction and con-
formation energies, geometries, local minima, time-dependent dynamic behavior,
and barriers to rotation, vibrational frequencies, and free energy. CHARMM uses
a flexible and comprehensive energy function:

E(pot) = Ebond + Etorsion + Eoop + Eelect. + EvdW + Econstraint + Euser (11.40)

where the out-of-plane (OOP) angle is an improper torsion. The van der Waals term
is derived from rare-gas potentials, and the electrostatic term can be scaled to mimic
solvent effects. Hydrogen-bond energy is not included as a separate term as in AM-
BER. Instead, hydrogen-bond energy is implicit in the combination of van der Waals
and electrostatic terms.

11.21.4 Merck Molecular Force Field

The Merck molecular force field (MMFF) (Halgren, 1996) is similar to MM3 but
differs in focus on its application to condensed-phase processes in molecular dynam-
ics. It achieves MM3-like accuracy for small molecules and is applicable to proteins
and other systems of biological significance. It is designed to be a transferable force
field for pharmaceutical compounds that accurately treats conformational energetics
and nonbonded interactions. This force field is adequate for both gas phase and con-
densed phase calculations. It has a large number of cross terms, which is the major
reason for its transferability. The internal bonded terms used in this force field are
bonds, angles, stretch-bend, out-of-plane bending, and dihedrals. Nonbonded terms
include van der Waals and electrostatic. Energy expressions based on these terms
are given below.
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11.21.4.1 Bond

Ebond = kbond
(
ri j − r0

i j

)2
.

(
1 + cs

(
ri j − r0

i j

)
+

7
12

cs2 (ri j − r0
i j

)2
)

(11.41)

where kbond is the force constant, ri j is the bond length between atoms i and j, and
cs is the cubic stretch constant.

11.21.4.2 Angle Bending

Eangle = kθ
(
θi jk −θ 0

i jk

)2
.
(

1 + cb
(
θi jk −θ 0

i jk

))
(11.42)

where kθ is the force constant, θi jk is the bond angle between I, j, and k, and cb is
the cubic bent constant

(−0.0070−1
)
.

11.21.4.3 The Near Linear/Linear Angle

Eangle,linear = ki jklinear
(
1 + cosθi jk

)
(11.43)

11.21.4.4 Stretch-Bend

Estretch-bending =
(

ki jk

(
ri j − r0

i j

)
+ kk ji

(
rk j − r0

k j

))(
θi jk −θ 0

i jk

)
(11.44)

Here, ki jk and kk ji are the force constants coupling the i j and k j stretches to the
i jk angle.

11.21.4.5 OOP Bending

Eoop = koop
(
χi jk;l

)2 (11.45)
(
χi jk;l

)
is known as the Wilson wag, which is the angle between the bond jl and the

plane i jk, where j is the central atom. A typical example of OOP bending is at the
tricoordinate centers (e.g., the benzene ring).

11.21.4.6 Dihedral/Torsional

Etorsion = 0.5(V1 (1 + cosφ)+V2 (1 + cos2φ)+V3 (1 + cos3φ)) (11.46)
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Here, the V terms are the force constants for the terms in the Fourier series and
φ is the dihedral angle.

11.21.4.7 van der Waals (Buffered 14-7)

EvdW = εi j

(
1.07R∗

i j

Ri j + 0.07R∗
i j

)7(
1.12R∗7

i j

R7
i j + 0.07R∗7

i j

−2

)
(11.47)

Here, Ri j is the distance between atoms i and j, R∗
i j is the minimum interaction

energy distance between the atoms (based on parameterized atomic polarizability),
εi j is the well depth between the atoms (based on the Slater-Kirkwood expression,
including the polarizability and the number of electrons).

11.21.4.8 Electrostatic

Eelectrostatic =
qiq j

D(Ri j + δ )n (11.48)

Here, D is the Dielectric constant, δ is the electrostatic buffering constant
(= 0.05), and qi and q j are the charges on atoms i and j. The charge on any atom is
given by:

qi = q0
i +∑ωki (11.49)

q0
i is the formal atomic charge (usually 0) and ωki terms are bond charge increments

summed over all the covalent bonds to the atom i.

11.21.4.9 Internal Parameters Used in MMFF

1. MP2/6-31G* optimized conformations encompassing 360 compounds and later
tested on a set of ca. 700 conformations.

2. Geometries of molecules.
3. Vibrational spectra.
4. Conformational energetics (relative energies if minima).
5. Nonbond parameters.
6. VdW terms optimized based on high level ab initio dimer calculations.
7. (MP4(SDTQ) with Sadlej’s “medium polarized” basis set (10s, 6p, 4d/5s, 4p)

contracted to (5s, 3p, 2d/3s, 2p).
8. Electrostatic terms based on 70 dimer interaction energies and geometries at the

HF/6-31G* level.
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11.21.5 The Consistent Force Field

The consistent force field (CFF) family (Maple and Hagler, 1994) was developed by
Halgren and the Biosym Consortium. These force fields have anharmonic and cross
term enhancements. Furthermore, these force fields are derived at their core from ab
initio methods rather than from purely experimental data. They were developed to
mimic peptide and protein properties. The CFF force fields use quartic polynomials
for bond stretching and angle bending. For torsions they use a three-term Fourier
expansion. The van der Waals interactions are represented by using an inverse 9th-
power term for repulsive behavior instead of the more customary 12th-power term.
Hagler, precursory to the development of the CFF force field, showed that no explicit
hydrogen bond term is required to accurately model hydrogen-bonding interactions,
as the combination of electrostatic and van der Waals calculations sufficiently cap-
tured the hydrogen-bonding contributions. This enabled significant simplification in
deriving many recently developed force fields. The development of CFF was the
first major force field developed based upon ab initio quantum mechanical calcu-
lations on small molecules, although not as broadly applied as for the more recent
MMFF94. The quantum mechanics calculations were performed on structures dis-
torted from equilibrium in addition to the expected calculations on structures at
equilibrium. This yielded a wealth of data for fitting and parameterization [1].

11.22 Some Other Useful Potential Fields

1. GROMACS – This force field is optimized in the package of the same name.
2. GROMOS – A force field that comes as part of the GROMOS (GROningen

MOlecular Simulation package), a general-purpose molecular dynamics com-
puter simulation package for the study of biomolecular systems. The GROMOS
force field (A-version) has been developed for application to aqueous or apo-
lar solutions of proteins, nucleotides, and sugars. However, a gas phase version
(B-version) for simulation of isolated molecules is also available.

3. OPLS-aa, OPLS-ua, OPLS-2001, OPLS-2005 – Members of the OPLS family
of force fields developed by William L. Jorgensen at the Yale University Depart-
ment of Chemistry.

4. ENZYMIX – A general polarizable force field for modeling chemical reac-
tions in biological molecules. This force field is implemented with the empirical
valence bond (EVB) method and is also combined with the semimacroscopic
PDLD approach in the program in the MOLARIS package.

5. ECEPP/2 – The first force field for polypeptide molecules, developed by
F. A. Momany, H. A. Scheraga and colleagues.

6. QCFF/PI – A general force field for conjugated molecules.
7. CFF/ind and ENZYMIX – The first polarizable force field which has subse-

quently been used in many applications to biological systems.
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8. PFF (Polarizable Force Field) – Developed by Richard A. Friesner and cowork-
ers.

9. DRF90 – Developed by P.Th. van Duijnen and coworkers.
10. SP-basis Chemical Potential Equalization (CPE) approach – Developed by

R. Chelli and P. Procacci.
11. CHARMM polarizable force field – Developed by B. Brooks and coworkers.
12. The SIBFA (Sum of Interactions Between Fragments Ab initio computed) force

field for small molecules and flexible proteins – Developed by Nohad Gresh
(Paris V, René Descartes University) and Jean-Philip Piquemal (Paris VI, Pierre
& Marie Curie University). SIBFA is a molecular mechanics procedure formu-
lated and calibrated on the basis of ab initio supermolecule computations.

13. AMOEBA force field – Developed by Pengyu Ren (University of Texas at
Austin) and Jay W. Ponder (Washington University).

14. ORIENT procedure – Developed by Anthony J. Stone (Cambridge University)
and coworkers.

15. Non-Empirical Molecular Orbital (NEMO) procedure – Developed by Gunnar
Karlström and coworkers at Lund University.

16. Gaussian Electrostatic Model (GEM) – A polarizable force field based on den-
sity fitting developed by Thomas A. Darden and G. Andrés Cisneros at NIEHS,
and Jean-Philip Piquemal (Paris VI University).

17. Polarizable procedure – Based on the Kim-Gordon approach developed by Jürg
Hutter and coworkers (University of Zurich)

18. ReaxFF – A reactive force field developed by William Goddard and coworkers.
It is fast, transferable, and is the computational method of choice for atomistic-
scale dynamical simulations of chemical reactions.

19. EVB (empirical valence bond) – This reactive force field, introduced by Warshel
and coworkers, is a reliable way of using force fields in modeling chemical
reactions in different environments. The EVB facilitates calculations of actual
activation free energies in condensed phases and in enzymes.

20. VALBOND – A function for angle bending that is based on the valence bond
theory and works for large angular distortions, hypervalent molecules, and tran-
sition metal complexes.

11.23 The Merits and Demerits of the Force Field Approach

The power of the force field approach can be listed as follows:

1. Force field-based simulations can handle large systems, and are several orders
of magnitude faster (and cheaper) than quantum-based calculations.

2. The analysis of the energy contributions can be done at the level of individual
or classes of interactions.

3. The modification of the energy expression can be done to bias the calculation.
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Table 11.2 Information available from computational methods

Data item Molecular Semi-empirical Ab initio
mechanics

Heat of formation YES YES YES
Entropy of formation YES YES YES
Free energy of formation YES YES YES
Heat of activation NO YES YES
Entropy of activation NO YES YES
Free energy of activation NO YES YES
Heat of reaction YES YES YES
Entropy of reaction YES YES YES
Free energy of reaction YES YES YES
Strain energy YES NO NO
Vibrational spectra NO YES YES
Dipole moment NO YES YES
Geometry optimization YES YES YES
Electronic bond order NO YES YES
Electronic distribution NO YES YES
Mulliken population analysis NO YES YES
Transition state location NO YES YES

Applications beyond the capability of classical force field methods include:

1. Electronic transitions (photon absorption).
2. Electron transport phenomena.
3. Proton transfer (acid/base reactions).

A comparison of the computing facility of MM methods with ab initio and semi-
empirical methods can be seen in Table 11.2.

11.24 Parameterization

In addition to the functional form of the potentials, a force field defines a set of
parameters for each type of atom. For example, a force field would include distinct
parameters for an oxygen atom in a carbonyl functional group and in a hydroxyl
group. The typical parameter set includes the following.

1. Atomic mass.
2. van der Waal’s radii.
3. Partial charge for individual atoms.
4. Bond length.
5. Bond angle.
6. Dihedral angles for pairs, triplets, and quadruplets of bonded atoms.
7. Effective spring constant for each force constant.
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Most current force fields use a “fixed-charge” model by which each atom is as-
signed a single value for the atomic charge that is not affected by the local elec-
trostatic environment; proposed developments in next-generation force fields in-
corporate models for polarizability, in which a particle’s charge is influenced by
electrostatic interactions with its neighbors. For example, polarizability can be ap-
proximated by the introduction of induced dipoles; it can also be represented by
Drude particles, or massless, charge-carrying virtual sites attached by a spring like
harmonic potential to each polarizable atom. The introduction of polarizability into
force fields in common use has been inhibited by the high computational expense
associated with calculating the local electrostatic field.

Parameter sets and functional forms are defined by force field developers to be
self-consistent. Because the functional forms of the potential terms vary extensively
between even closely related force fields (or successive versions of the same force
field), the parameters from one force field should never be used in conjunction with
the potential from another.

11.25 Some MM Software Packages

A number of software packages are available for MM studies; the most important
among them are listed in Table 11.3.

11.26 Exercises

1. If the O–H bond distance calculated from the MM3 parameter set for a water
molecule is 94.7 pm and the H–O–H bond has an angle of 105◦, compute the
distance between the nuclei of hydrogen atoms of water in the gas phase. Cal-
culate the moment of inertia of water molecule about the principal axis.

2. What is the MM3 standard enthalpy of formation at 298.15 K of styrene? Is the
minimum-energy structure planar, or does the ethylene group move out of the
plane of the benzene ring?

3. Cyclopentadiene (Fig. 11.7) dimerises to produce specifically the endo dimer
(2) rather than the exo dimer (1). The hydrogenation of this dimer proceeds
to give initially one of the dihydro derivatives (3) or (4). Only after prolonged
hydrogenation is the tetrahydro derivative formed. Compute the geometries and
energies of all four species (1–4). Compare their thermodynamic functions. (The
relative stabilities of the pairs of compounds 1/2 and 3/4 should indicate which
of each pair is the less strained and/or hindered in a thermodynamic sense). The
observed reactivity towards cyclodimerisation and hydrogenation can of course
be due to either thermodynamic (i.e., product stability) or kinetic (i.e., transition
state stability) factors. In pericyclic reactions in particular, stereoselectivity is
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Table 11.3 Important software for MM studies

Package name Creator

AMBER Peter Kollman, University of California, San Francisco
AMMP Rob Harrison, Thomas Jefferson University, Philadelphia
ARGOS Andy McCammon, University of California, San Diego
BOSS William Jorgensen, Yale University
BRUGEL Shoshona Wodak, Free University of Brussels
CFF Shneior Lifson, Weizmann Institute
CHARMM Martin Karplus, Harvard University
CHARMM/GEMM Bernard Brooks, National Institutes of Health, Bethesda
DELPHI Bastian van de Graaf, Delft University of Technology
DISCOVER Molecular Simulations Inc., San Diego
DL_POLY W. Smith & T. Forester, CCP5, Daresbury Laboratory
ECEPP Harold Scheraga, Cornell University
ENCAD Michael Levitt, Stanford University
FANTOM Werner Braun, University of Texas, Galveston
FEDER/2 Nobuhiro Go, Kyoto University
GROMACS Herman Berendsen, University of Groningen
GROMOS Wilfred van Gunsteren, BIOMOS and ETH, Zurich
IMPACT Ronald Levy, Rutgers University
MACROMODEL Schodinger, Inc., Jersey City, New Jersey
MM2/MM3/MM4 N. Lou Allinger, University of Georgia
MMC Cliff Dykstra, Indiana Univ. and Purdue Univ. at Indianapolis
MMFF Tom Halgren, Merck Research Laboratories, Rahway
MMTK Konrad Hinsen, Inst. of Structural Biology, Grenoble
MOIL Ron Elber, Cornell University
MOLARIS Arieh Warshal, University of Southern California
MOLDY Keith Refson, Oxford University
MOSCITO Dietmar Paschek & Alfons Geiger, University of Dortmund
NAMD Klaus Schulten, University of Illinois, Urbana
OOMPAA Andy McCammon, University of California, San Diego
ORAL Karel Zimmerman, INRA, Jouy-en-Josas, France
ORIENT Anthony Stone, Cambridge University
PCMODEL Kevin Gilbert, Serena Software, Bloomington, Indiana
PEFF Jan Dillen, University of Pretoria
Q Johan Åqvist, Uppsala University
SIBFA Nohad Gresh, INSERM, CNRS, Paris
SIGMA Jan Hermans, University of North Carolina
Tinker Jay William ponder, Washington University School of Medicine

controlled by the electronic properties of the molecules (stereoelectronic con-
trol), and hence can only be understood in terms of molecular wavefunction. On
the basis of the results obtained from the molecular mechanics technique, pre-
dict whether the cyclodimerisation of cyclopentadiene and the hydrogenation of
the dimer is kinetically or thermodynamically controlled [4].

4. The PCBs are a family of chlorinated biphenyls that are claimed to have all
sorts of evil properties, none of which have been proven for humans. Of particu-
lar interest is 2,3,4,3’,4’-pentachlorobiphenyl, which is referred to by biologists
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Fig. 11.7 Cyclopentadiene

Fig. 11.8 Copper (II) com-
plex of amino acid

as a “coplanar biphenyl”, and argued, as a consequence of its coplanarity, to
have toxicity comparable to dioxins. Is it coplanar? If not, what would be the
energetic cost of making it coplanar? What happens to the coplanarity if you
remove some of the chlorines? Follow MM modeling techniques to make the
computation.

5. Copper (II) complexes of amino acids have the general structure as shown in
Fig. 11.8. Make a computational chemistry study to predict whether the ligands
around copper are placed in a square planar or tetrahedral manner. Does this
depend upon the nature of amino acid coordinates? With two stereogenic cen-
ters, this kind of complex can exist in diastereomeric forms. Can both be formed
from a single enantiomer of the amino acid? What is the energy difference be-
tween them (this is important because such complexes are sometimes used to
resolve racemic amino acids)?
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Chapter 12
The Modeling of Molecules Through
Computational Methods

12.1 Introduction

Performing a geometry optimization is the primary step in studying a molecule us-
ing computational techniques. Geometry optimizations classically attempt to locate
a minimum on the potential energy surface in order to foretell the equilibrium struc-
tures of molecular systems. They may also be used to locate transition structures or
intermediate structures. Moreover, the geometry of a molecule determines many of
its physical and chemical properties. We know that the energy of a molecule changes
with its structure. Hence, understanding the methods of geometry optimization is the
major requirement for energy minimization. It is essential to understand the geom-
etry of a molecule before running computations.

12.2 Optimization

Optimization modeling can be carried out by identifying the objectives, the design
variables, and the constraints, and by using an algorithm to find the solution to the
problem. Optimality conditions will help us to determine whether we have indeed
reached our goal of an optimum solution.

12.2.1 Multivariable Optimization Algorithms

Optimization problems, which we come across in molecular modeling, are multi-
variable problems, where the objective functions have more than a single variable
on which the given function depends on. If we consider a “two variable problem”,
say, f (x) = x2

1 + x2
2, and say x1 = 3 and x2 = 4, then every x1 and x2 has a function

value (i.e., height). This function can be represented by a surface (Fig. 12.1). We
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Fig. 12.1 Quadratic form of a function

have to find the minimum value of the function and at what values of x1 and x2

is the minimum value attained. For example, the minimum occurs at f (x) = 0 and
occurs when x1 = x2 = 0. We can also put constraints such as x1 + x2 = 5, in which
case the solution must lie on the line of constraint. However, we will be discussing
only unconstrained problems now.

12.2.2 Level Sets, Level Curves, and Gradients

The function values under study are represented as contour maps with circles repre-
senting each function value (Fig. 12.2). Any function f (x) = C is a level set, which
is a set of points having the same height. These contours are called level sets or
level curves. At any point on the circle or curve, the function value will be the same
(Fig. 12.3). The outermost contour will have the highest function value and the inner
circles will progressively have smaller and smaller values.

At the bottommost point, the function will have zero value and is said to be the
minimum at that point. At each point on the curve, there are gradients, given by
∇ f (x), pointing to the steepest direction. The direction of steepest descent is given
by −∇ f (x), which we get by searching in the opposite direction. The contour map is
a vector field, with gradients at every point. The gradients are always tangent to the
level surface. There is a plane tangential to the point, and the gradient will always
be orthogonal to the plane. Maximum and minimum points in the contour map are
shown by Fig. 12.4.
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Fig. 12.2 Contours of the quadratic form. Each ellipsoidal curve has a constant f (x)

Fig. 12.3 Vectors are tangent to the level surface
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Fig. 12.4 Maximum and minimum points on the contour map (generated from MATLAB)

12.2.3 Optimality Criteria

The optimality criteria for multivariable functions are different, as compared to uni-
variable functions (although the definition of local, global, and inflection points still
hold). The gradient function is a vector quantity and not a scalar quantity as in uni-
variable functions. We derive the optimal criteria by using the definition of the local
optimal point and using the Taylor Series expansion of the multivariable function.

The objective function is a function on N variables, represented by x1,x2, . . . ,xn

The gradient vector at any point x is represented by ∇ f (x), which is an N-dimensio-
nal vector given as follows:

∇ f (x) = Partial derivatives of f (x) with respect to x1,x2, . . . ,xn

For a two-dimensional case, the gradient (first derivative) of f (x) = x2
1 + x2

2 will be:
⎡
⎢⎢⎢⎢⎣

∂ f
∂x1

∂ f
∂x2

⎤
⎥⎥⎥⎥⎦

=
[

2x1

2x2

]
. (12.1)

The first order partial derivatives are calculated using the central difference
method. The second order derivatives in multivariable functions form a matrix
∇ f (x), better known as the Hessian matrix. A point x∗ is a stationary point if
∇ f (x) = 0 and the point is a minimum, maximum or an inflection point if ∇2 f (x) is
positive-definite, negative-definite or otherwise.

A matrix ∇2 f (x) is defined to be positive-definite if, for any point y in the search
space, the quantity yT∇2 f (x)y > 0 (or yT Ay > 0), where A is a symmetric, positive
definite matrix. The matrix is said to be positive definite if all the eigenvalues of the
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matrix or all the principal derivatives are positive. In our case, we are interested in
the matrix A being positive definite and our principles and calculations are based on
this assumption.

A matrix ∇2 f (x) is defined to be negative definite if, for any point y in the search
space, the quantity yT∇2 f (x)y ≤ 0 (or yT Ay < 0) where A is a symmetric, positive
definite matrix. The negative definiteness can also be verified by testing the positive
definiteness of −A.

If the matrix A is positive or negative definite at only some points, but not uni-
formly across, then it is neither positive definite nor negative definite.

12.2.4 The Unidirectional Search

We use the successive unidirectional search along each component of a vector to find
the minimum along a search direction. It is a one-dimensional search, performed by
comparing the function values along a specific direction. The search is performed,
for a point xt , along a search direction st . Only points lying on a N-Dimensional
line, passing through xt and oriented along the search direction st , are considered.
The derivative of this function is called a directional derivative. Any point on this
line can be expressed as:

x(α) = xt +αSt (12.2)

α is a scalar quantity which specifies the distance of x(α) from xt , x(α) is a vector
specifying all the design variables xi(α). α can be positive or negative; when α = 0,
x(α) = xt .

12.2.5 Finding the Minimum Point Along St

To find the minimum point along st , the following steps are used.

1. Rewrite the multivariable function in terms of a single variable.
2. Substitute each xi by xi(α), as given in the above equation.
3. Use single variable search methods to find the minimum along this line. (Gen-

erally the binding phase method is used for bracketing and the golden search
method is used to find the specific minimum).

4. Once we find the optimum α*, we can find the point x(α), using Eq. 12.2.

Multivariable optimizations can be done with the help of algorithms which makes
use of two types of methods: direct search methods and the gradient-based methods.
In the optimization problems of computational chemistry, the latter is found to be
more reliable due to the following reason: direct search methods need many function
evaluations to converge to a solution. Hence, gradient based methods are faster than
direct search methods. Thus, our discussion in this regard will be limited to gradient-
based methods only.
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12.2.6 Gradient-Based Methods

These methods use the derivative values of the objective functions in the algorithms.
Many objective functions are not differentiable, so, the derivatives cannot be applied
directly. We cannot apply the algorithms to discrete or discontinuous functions. Ef-
ficient algorithms can be used if the derivative is available. The gradients can also
be calculated numerically. These concepts are very complex to be applied directly,
especially for multivariate functions, where there are many interactions between the
variables.

The algorithms require first derivative, second derivative, or sometimes both val-
ues. The derivative values are calculated at neighboring points only using the central
difference theorem.

By definition, the derivative ∇ f (x) at xt is the direction of maximum increase
(steepest ascent) of the function f (x). So, to find the minimum, we need to travel in
a direction opposite to that of the maximum descent, which is the steepest descent
direction given by −∇ f (x). The function value will decrease rapidly, as we move in
that direction.

A search direction dt , is a descent direction at a point xt , if the condition
∇2 f (xt).dt < 0 is satisfied in the vicinity of point xt . There are several ways by
which we can approach the problem, using gradient methods. Some of them are
listed below.

1. Cauchy’s steepest descent method (the algorithm).
2. Newton’s method.
3. Marquardt’s method.
4. The conjugate gradient method.
5. The steepest descent method.
6. The conjugate directions method.

Conjugate gradient methods are iterative methods used in the solution of equa-
tions of the type:

Ax = b (12.3)

where A is a known symmetric, positive definite or indefinite matrix, and b is
a known vector. The same problem can be expressed as a convex scalar quadratic
equation, of the form:

f (x) =
1
2

xT Ax−bT x + c (12.4)

12.2.6.1 Major Definitions Used in Derivations

Inner products: xT y =∑xiyi

xT y = yT x

xT y = 0 if x,y are orthogonal to each other.
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(AB)T = BT AT

(AB)−1 = B−1A−1

Expressions that reduce to a 1-by-1 matrix such as xT Ax are scalar quantities. Ma-
trix A is positive definite if, for every non zero vector x, we have:

xT Ax > 0 (12.5)

We use contours of the quadratic form. Ellipsoidal curves have a constant f (x), as
shown in Fig. 12.3.

∇ f (x) is the first derivative of the quadratic form. For every point x, the gradient
points in the direction of the steepest increase lead to an increase in f (x). Gradients
are perpendicular to contour lines. The gradient, given by the first derivative,∇ f (x),
is a vector field, where each vector points towards the direction of the steepest in-
crease of f (x). The gradient at the bottom of this field is zero. So, to minimize f (x),
set the gradient ∇ f (x) = 0. Integrating Eq. 12.3, we get ∇ f (x) (steepest increase
direction) and −∇ f (x) (steepest descent direction):

∇ f (x) =
1
2

AT x +
1
2

Ax−b = Ax−b (12.6)

(using AT = A, since A is symmetric)

So, at a minimum, set the first derivative to be zero. Hence:

∇ f (x) = Ax−b = 0 (12.7)

We need to solve the equation Ax = b. If A is a symmetric, positive definite
matrix, the solution is a minimum of f (x). Even if A is not symmetric, still we
will have 1

2

(
AT + A

)
in the formula, which makes it into a symmetric matrix. The

solution of Ax = b is a critical point of f (x). So, the minimum point of the function
is the solution to the set of problems of type Ax = b. The solution of the function
lies in the intersection point of n-hyper planes, each of dimension (n− 1). For the
two-dimensional case, the solution is the intersection of two lines. In summary, to
solve Ax = b, find an x that minimizes f (x).

12.2.7 The Method of Steepest Descent

In this method, we start at some arbitrary point x0 and proceed to move towards the
minimum point, in the direction of steepest descent, −∇ f (x). We start our trial at
x0, then slide to x, the minimum point. Take steps x1,x2, . . . ,xn until we are close
to x. Take steps in the direction of steepest descent which is −∇ f (x) = b−Ax. The
definitions used are as follows:
1. Error – It tells us how far the current point is away from the real optimum point.

It can be computed from Eq. 12.8.

ei = xi − x (12.8)
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2. Residual – It tells us how far we are from the correct value b. It is computed
from Eq. 12.9.

ri = b−Axi

= −Aei

= −∇ f (x) (12.9)

This is the direction of the steepest descent:

∇ f (x) = −ri (12.10)

The residual ri is the error transformed by A into the same space as b. In the first
trial, we make the movement from x0 to x1 where:

x1 = x0 +αr0 (12.11)

We need to find α by using the line search method and choose α to minimize
f along the line of steepest descent. The path is given by a line created by the
intersection of a plane and a paraboloid. So, α minimizes f and is computed by
finding the first derivative of f (x) and is set to zero (Fig. 12.5).

According to the chain rule the first derivative of the function with respect to α
is:

d f (x)/dα = d/dx[ f (x)T ]d/dx[ f (x1)] (12.12)

Fig. 12.5 Method of steepest descent
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In the differentiating equation (Eq. 12.11) with respect to α we get r0 for the last
term:

d f (x)/dα = f
′
(x1)Tr0 (12.13)

So, we need to choose α so that f (x)T r0 are perpendicular. Therefore, the deriva-
tive at the new point x1 is perpendicular to r0, the residual at x0. Now, we need to
find the value of α . We need to express α in terms of r0 values, since r0 is known.
We have seen that f

′
(x1)r0 = 0, ∇ f (x) = f

′
(x1)T = −ri.

But: rT
1 r0 = 0 (12.14)

(multiplying both sides by −1):

(b−Ax1)T r0 = 0 (12.15)

(Expanding ri from residual value)

[b−A(x0−αr0)]T r0 = 0 (12.16)

(Expanding xi from Eq. 12.12)[
(b−Ax0)

T r0 −α(Ar0)T r0

]
= 0 (12.17)
(
Applying the transpose rule for (AB)T ):

(b−Ax0)
T r0 = α(Ar0)T r0 (12.18)

α = rT
0 r0/rT

0 Ar0 (12.19)

So, putting it all together, the method of steepest descent method can be general-
ized as computing:

ri = b−Axi (12.20)

αi = rT
i ri/rT

i Ari and (12.21)

xi+1 = xi +αiri . (12.22)

Here, we have to calculate values of ri and αi for each xi+1. So, for each new
value of x, we need to compute ri, which has one matrix-vector multiplication (Axi)
and to compute αi, which has another matrix vector (Ar0) multiplication.

In order to reduce the number of matrix-vector multiplications, we multiply by A
and add b to Eq. 12.21. Although Eq. 12.20 still needs to compute r0, the Ari in
Eq. 12.20 and in Eq. 12.23 needs to be computed only once for each iteration.

−A(xi+1) = −Axi +αiAri (12.23)

Adding b, we have:

b−A(xi+1) = b−Axi +αiAri (12.24)

r1+1 = r1 −αiAri (12.25)
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Points to note:

1. The convergence pattern is zigzag. Each gradient is perpendicular to the previ-
ous gradient.

2. The cost of computation is two matrix vector multiplications per iteration.
3. The algorithm is dominated by matrix-vector products.
4. We can eliminate one A by pre-multiplying by −A and, adding b to both sides,

we get:

ri+1 = ri −αiAri (12.26)

Then, Ari will be calculated only once per iteration and used in Eqs. 12.21
and 12.24. However, the major disadvantages of this reduction in computation are:

1. The absence of feedback on xi.
2. The accumulation of a floating point round off error. This causes xi to converge

near x.

We can minimize these disadvantages by using Eq. 12.20 periodically to recompute
the correct residual. The steepest descent converges to the exact solution on the first
iteration either if the error term is an eigenvector or error values are all equal.

12.2.8 The Method of Conjugate Directions

The steepest descent method takes search steps in the same direction more than
once. Instead of that, if we had orthogonal search directions, then that would have
the following advantages:

1. This takes only one step per direction.
2. Proceed in that direction only, which reduces the computation time. For exam-

ple, in a two-dimensional problem, only two steps will be required.

For each step choose a point:

xi+1 = xi +αidi (12.27)

While computing αi, make sure that error ei is perpendicular to di:

So dT
i ei+1 = 0 (12.28)

dT
i (ei +αidi) = 0 (12.29)

dT
i ei + dT

i+1αidi = 0 (12.30)

αi =
−dT

i ei

dT
i di

(12.31)

This expression requires ei to be known to us. This complexity can be avoided by
choosing A-orthogonal (conjugate) directions (Fig. 12.6).
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Fig. 12.6 A-orthogonal vectors

A set of non-zero vectors (d0,d1, . . .) is said to be conjugate, with a symmetric
positive definite matrix A, if dT

i Ad j = 0 for all i 
= j. So, given x0εRn and a set of
conjugate directions d0,d1, . . ., we can generate a sequence {xi} by setting:

xi+1 = xi +αdi (12.32)

By making use of conjugacy we can minimize f (x) in n steps, by successively
minimizing it along the individual directions in the conjugate set.

If αi is a 1-D minimizer of the quadratic function f (x), along xi +αdi given by:

αi =
−dT

i ei

dT
i di

=
dT

i ri

dT
i Adi

(12.33)

the sequence {xi} generated by this algorithm converges to solution x∗ in “n” steps.
Successive minimizations along the co-ordinate directions will minimize with a di-
agonal Hessian in “n” iterations.

If A is a diagonal, the contours of the quadratic functions are aligned with
the coordinate directions. So, we can find the minimum by performing the one-
dimensional minimizations along the co-ordinate directions e1,e2, . . . ,en in n steps.
So, the new requirement is that ei+1 must be A-orthogonal to di. This is equivalent to
finding a minimum point along the search line, as we have seen in steepest descent.
So, as before, this is achieved by differentiating Eq. 12.26 with respect to α:

d f (xi+1)
dα

= f ′(xi+1)T d(xi+1)
dα

= 0 (12.34)

−rT
i+1di = 0 (12.35)

Since ri+1 = −Aei+1, the equation becomes:

dT
i Aei+1 = 0 (12.36)

With A-orthogonal vectors, we make the αi equation as:

αi =
−dT

i Aei

dT
i Adi

(12.37)
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Since Aei = −ri, the equation becomes:

αi =
−dT

i ri

dT
i Adi

(12.38)

With this expression, we can compute Eq. 12.26 without knowing the error ei. If
di = ri, (the search vector is the same as residual), then αi formula for A-orthogonal
search directions will be the same αi formula used for steepest descent. Hence, the
method of conjugate directions converges in N steps. The procedure is summarized
as follows:

1. Select some d0.
2. Choose a minimum point xi such that the corresponding ei is A-orthogonal to

d0.
3. Compute the initial error e0 as the sum of A-orthogonal components.
4. Each step of the conjugate directions eliminates one of the components.
5. Choose a minimum point xi, such that ei is A-orthogonal to d0.

12.2.9 The Gram-Schmidt Conjugation Method

We have seen that use of A-orthogonal directions {di} eliminates ei. The Gram-
Schmidt method takes n linearly independent vectors (u0,u1, . . . ,un−1) and con-
structs di from the ui (Fig. 12.7).

In order to construct the di, we take the ui and subtract out any component that
are not A-orthogonal to the previous d vectors. Set d0 = u0.

For k < i > 0, set di = ui +
i−1

∑
k=0

βikdk (12.39)

Here, i stands for values which are already known and k stands for values to be
computed. Post-multiplying by Ad j:

dT
i Adi = uT

i Adi +
i−1

∑
k=0

βikdT
k

Ad j (12.40)

Fig. 12.7 Gram-Schmidt conjugation of two vectors
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This is for the terms except when k = j (A orthogonal).
So, we have,

uT
i Ad j +βi jd

T
j Ad j = 0 for i > j (12.41)

βi j =
−uT

i Ad j

dT
j Ad j

for i > j (12.42)

All other terms for which k 
= j it becomes zero. We know that dT
i Ad j = 0 and

dT
i r j = 0 and uT

i r j = 0 when i < j (where i = previous directions and j are current
and future directions):

di =ui +
i−1

∑
k=0

βikdi (12.43)

dT
i Ae j =−uT

i Ae j +∑βikdT
k Ae j (12.44)

where the sigma terms becomes zero for j > 1:

Ae j = −r j , i.e., dT
i r j = 0 and uT

i r j = 0

For j = i:

dT
i Aei = −uT

i Aei

or:

dT
i ri = −uT

i ri (12.45)

The disadvantages are as follows:

1. Using Gram-Schmidt conjugation in conjugate directions requires that all search
vectors must be kept in memory to construct new ones.

2. n3 operations generate the full set.

One method of conjugate directions, namely the conjugate gradient method,
solves this problem for us.

12.2.10 The Conjugate Gradient Method

This is a method of “conjugate directions” where the search directions are con-
structed by conjugation of the residual, i.e., setting ui = ri, the crucial step that was
mentioned earlier (Fig. 12.8).

We have:

r j+1 = −Aei+1 = −A(e j +αid j) = r j −αiAd j (12.46)

rT
i r j+1 = rT

i r j − rT
i αiAd j (12.47)
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Fig. 12.8 Conjugate gradient method – converges in N steps

Instead of u’s we have chosen r0,r1etc . . .

rT
i ri = 0 for i 
= j (12.48)

Referring Eq. 12.42, where we have the value for βi j, and if we use ri in
Eq. 12.41, instead of ui, we get:

βi j =
−rT

i Ad j

dT
j Ad j

(12.49)

So, βi j−1 = (1/αi−1)

(
−rT

i ri

dT
i−1Adi−1

)
= 2nd term for i = j + 1 (12.50)

βi j = 0 for i > j + 1 (12.51)

So, substituting for ui and β jk, we get:

di = ri −
[

rT
i ri

αi−1dT
i−1Adi−1

]
di−1 (12.52)

Now we come to a set of A orthogonal directions di with which we can work to
reach the optimum in N steps.
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12.3 Potential Energy Surfaces

A potential energy surface is often represented by illustrations, as given in Fig. 12.9.
These surfaces specify the way in which the energy of a molecular system varies
with small changes in its structure. In this way, a potential energy surface is a math-
ematical relationship linking the molecular structure and the resultant energy.

For example, for a diatomic molecule, the potential energy surface can be rep-
resented by a two-dimensional plot with the internuclear separation on the x-axis
and the energy at that bond distance on the y-axis; in this case, the potential energy
surface is a curve. For larger systems, the surface has as many dimensions as there
are degrees of freedom within the molecule. The potential energy surface illustra-
tion considers only two of the degrees of freedom within the molecule, and plots the
energy above the plane defined by them, creating a surface. Each point represents
a particular molecular structure, with the height of the surface at that point corre-
sponding to the energy of that structure. Our illustrated example surface contains
three minima: a minimum is a point at the bottom of a valley, from which motion in
any direction leads to a higher energy. Two of them are local minima, corresponding
to the lowest point in some limited region of the potential surface, and one of them
is the global minimum, the lowest energy point anywhere on the potential surface.
Different minima correspond to different conformations or structural isomers of the
molecule under investigation. The illustration also shows two maxima and a saddle
point (the latter corresponds to a transition state structure) [7].

At both minima and saddle points, the first derivative of the energy, known as the
gradient, is zero. Since the gradient is the negative of the forces, the forces are also

Fig. 12.9 Potential energy surface
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zero at such points. A point on the potential energy surface where the forces are zero
is called a stationary point. All successful optimizations locate a stationary point,
although not always the one that was intended. Geometry optimizations usually lo-
cate the stationary point closest to the geometry from which they started. When you
perform a minimization, intending to find the minimum energy structure, there are
several possibilities as to the nature of the results: you may have found the global
minimum, you may have found a local minimum but not the global minimum, or
you may have located a saddle point.

12.3.1 Convergence Criteria

Convergence criteria set up for the potential energy surface in different software
may be slightly different. In most cases, computational cutoff values will be set
up initially for tools such as forces, root-mean-square of forces, displacement, and
root-mean-square of displacement. Values below these predefined cutoff values will
be considered as zero during computation. Major criteria for convergence can be
summarized as follows:

1. Forces must be zero.
2. The root-mean-square of the forces should be zero.
3. The computed displacement for the next step of optimization should be zero or

less than a predefined cutoff value.
4. The root-mean-square of the displacement for the next step should be zero or

less than a cutoff value.

However, for large molecules, if the forces are (1/100)th of the cutoff value, even
though other criteria are not satisfied, the molecule can be considered as having
attained geometry minimization.

The output files of the geometry optimization of ethene with GAUSSIAN 03
W and SPARTAN ’02 using the 6-31G(d) basis set are included in the URL. The
relevant values from the output are included in Table 12.1.

Table 12.1 Convergence criteria satisfied in the geometrical optimization of ethene

Item Value Threshold Converged?

Maximum force 0.000177 0.000450 YES
RMS force 0.000118 0.000300 YES
Maximum displacement 0.001119 0.001800 YES
RMS displacement 0.000602 0.001200 YES
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Table 12.2 Geometry optimization and frequency

Computational search Frequency Inference

Geometry minimization No imaginary frequency Attained geometry
minimization

Geometry minimization One or more imaginary
frequencies

The structure is
a saddle point

12.3.2 Characterizing Stationary Points

A geometry optimization alone cannot determine the nature of the stationary point
that it attains. In order to characterize a stationary point, it is necessary to perform
a frequency calculation on the optimized geometry. Electronic structure programs
such as GAUSSIAN are able to carry out such calculations (you can even perform
an optimization followed by a frequency calculation at the optimized geometry in
a single job).

In order to distinguish a local minimum from the global minimum, it is necessary
to perform a conformational search. We might begin the computation by altering the
initial geometry slightly and then performing another minimization. Note that mod-
ifying the dihedral angles is often a good place to start. There are also a variety
of conformational search tools that can help with this task. We will focus here on
distinguishing between minima and saddle points via frequency calculations. The
completed frequency calculation will include a variety of results such as frequen-
cies, intensities, the associated normal modes, the zero point energy of the structure
and various thermochemical properties. In identifying whether there are any fre-
quency values less than zero, these frequencies are known as imaginary frequencies.
The number of imaginary frequencies indicates the sort of stationary point to which
the given molecular structure corresponds (Table 12.2). By definition, a structure
which has n imaginary frequencies is an nth order saddle point. Thus, the minimum
will have zero imaginary frequencies, and an ordinary transition structure will have
one imaginary frequency since it is a first order saddle point.

12.4 The Search for Transition States

Transition states correspond to saddle points on the potential energy surface. Strictly
speaking, a transition state (Fig. 12.10) of a chemical reaction is a first order sad-
dle point. Like minima, the first order saddle points are stationary points with all
forces zero. Unlike minima, one of the second derivatives in the first order saddle is
negative. The eigenvector with the negative eigenvalue corresponds to the reaction
coordinate. A transition state search thus attempts to locate stationary points with
one negative second derivative.

The energy state of the activated complex should be located at a first-order sad-
dle point on the potential energy surface, i.e., a point which is a maximum in one
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Fig. 12.10 Transition state of a reaction

direction and a minimum in all other directions. The structure associated with the
first-order saddle point will exhibit one imaginary frequency and the normal mode
of vibration associated with this frequency should emulate the motion of the atoms
along the reaction coordinate. We will consider some typical computational prob-
lems solved with softwares like GAUSSIAN, Spartan, etc.

12.4.1 Computing the Activated Complex Formation

Let us compute the activated complex formation during hydroboration of ethylene.
The reaction is given by Fig. 12.11.

We here illustrate the computation using Spartan. For further details refer to the
Spartan manual. The build input for ethylene is shown in Fig. 12.11 and BH3 is
shown with the sp2 hybridization icon. One procedure used to build an activated
complex is the Reaction icon. This procedure utilizes the linear synchronous transit
method and is activated by clicking a button in the tool bar.

To optimize the geometry of the activated complex, click on Setup in the tool
bar and select Calculations from the pop-up menu. Pick Transition State Geometry,
Semi-Empirical, and MNDO. Check the boxes next to Frequencies and Vibration

Fig. 12.11 Computing activated complex
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Modes. Click the OK button to close the Setup Calculations window and select Sub-
mit from the Setup menu. When the Save As window appears, create the Transition
Spartan file in the folder (refer to the URL for details).

The energy state of the activated complex should be located at a first-order sad-
dle point on the potential energy surface, i.e., a point which is a maximum in one
direction and a minimum in all other directions. The structure associated with the
first-order saddle point will exhibit one imaginary frequency (here it is −225.29)
and the normal mode of vibration associated with this frequency should imitate the
motion of the atoms along the reaction coordinate.

To confirm that the energy state of our structure is located at a first-order saddle
point, click Display in the tool bar and select Vibrations from the pop-up menu.
The Vibrations List window which appears contains the frequencies of the normal
modes of vibration for the structure. The imaginary frequencies have an “i” in front
of the number and appear at the beginning of the list. To determine if the motion of
the atoms in the normal mode of vibration associated with the imaginary frequency
is consistent with the formation of products in the forward direction and reactants in
the reverse direction, click the box next to the imaginary frequency in the Vibrations
List window and observe the animation. Does the structure appear to move toward
the product in one direction and reactants in the other direction?

Now, let us predict the intermediate structure formed during the transformation of
cis-C3H5Cl to trans-C3H5Cl. Here, we use GAUSSIAN. First of all, let us assume
that the intermediate is formed by the dihedral rotation of H−C−C−H (the 2nd

and 3rd carbon atoms). To draw the structures and get the required input files for
calculation, we use Gaussview GUI. The dihedral angle is rotated by 180◦ to get the
structure of the suggested intermediate (Fig. 12.12).

All these models have been subjected to geometry optimization with the route
terms “#T RHF/6-31G(d) Opt Freq Test” (refer to the URL for details). The fre-
quency computation of the second structure produces an imaginary frequency sug-
gesting that this conformation could be an intermediate structure. However, the dif-
ference in energy between trans(0) and trans(180) conformers is only 0.000517144
Hartrees or 0.324512828735kcal/mol. This energy is much less than the energy re-
quired for the rotation of the C=C double bond. Hence, it cannot be considered as
a transition structure of cis and trans forms. Moreover, the symmetry A of the imag-

Fig. 12.12 Spartan input
diagram for identifying the
transition state
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inary frequency suggests that it is a symmetry breaking mode. This small imaginary
frequency (−220.8853) could be due to some modest geometry distortion. In the
eigenvector of the Hessian, giving the displacements for the normal mode corre-
sponding to the imaginary frequency, significant values are from D1 to D6 (Ta-
ble 12.3). On comparing these values with typical methyl rotation values (included
in the output corresponding to methyl rotation of ethane), the suggested structure
can be considered as obtained by the motion corresponds to methyl rotation.

Now, we assume the transition state to be obtained by rotating the Cl−C−C−H
dihedral angle [5]. By changing the dihedral angles, we obtain a structure with the
Z-matrix as given (Fig. 12.13 and Fig. 12.14). With this input, the model is again
subjected to geometry optimization with the same route terms (refer to the C3H3Cl
transition state file of the URL).

The results show that this transition state has got a high value of imaginary fre-
quency. In the Hessian, angles A8 and A9, the dihedral angles D6 to D10 are signif-
icantly corresponding to the transition. The energy level diagram (Fig. 12.15) reads
an energy difference of 110.5665 kcal/mol between the cis and transition forms and

Table 12.3 GAUSSIAN output eigenvector of the Hessian

Variable Displacement

D1 0.40739
D2 0.39336
D3 0.41850
D4 0.40447
D5 0.41850
D6 0.40447

Fig. 12.13 Transformation of cis-C3H5Cl to trans-C3H5Cl

Fig. 12.14 Z-matrix of C3H5Cl
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Fig. 12.15 Energy level diagram (energy in Hartrees) showing the cis (A), trans (C), and the inter-
mediate (B) for C3H3Cl

108.4774 kcal/mol between the trans and transition forms. This suggested struc-
ture can be identified as a transition state. Similarly, we can change the dihedral
angle and find other transition states. For an accurate modeling of the rotation with
respect to a double bond, higher level of theory like CASSCF is used rather than
Hartree-Fock (HF).

12.5 The Single Point Energy Calculation

The single point energy (SPE) calculation is a basic molecular modeling calculation
where the energy of the molecule at a specific molecular geometry is computed.
This type of computation helps to obtain basic information about the molecule, to
obtain a consistency check on the geometry of the molecule, to predict properties
related to the energy changes, and so on. The calculation can be set at any level of
theory as is required for the computation. We shall see some typical computations
carried out using SPE calculation.

Let us make the SPE calculation of water with different basis sets and levels of
computation, starting from a lower level to a higher level. In each higher level of
computation, the structure from the lower level is taken so that each computation
modifies the SPE to attain the theoretical one (Table 12.4).

SPEs, sometimes known simply as molecular energies, are typically in units of
Hartrees, which can be converted to more common energy terms such as
kilojoulesmol−1 (kJmol−1), kilocaloriesmol−1 (kcalmol−1), or electron volts (eV).
An HTML set up for the interconversion of energy units is included in the URL.
Any change in a molecular geometry will require that a new SPE calculation be
performed.
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Table 12.4 SPE of water

Route Sp energy (Hartree)

opt hf/6-31+g(d) −76.0171125670
hf/6-31+g(d) sp −76.0177423002
b3lyp/6-31+g(d) sp −76.4217149983

12.6 The Computation of Solvation

12.6.1 The Theory of Solvation

Solvation is associated with the interaction between solvent and solute molecules,
which will lead to changes in energy, stability, and molecular orientation (distribu-
tion). Hence, those properties, which will depend upon energy such as vibrational
frequency, spectrum, etc. will also change along with solvation. Moreover, changes
in stability may change the optimization criteria [3].

The space occupied by the solute molecules dispersing the solvent molecules is
said to be the solvent cavity. The energy required to push aside solvent molecules is
known as the cavitation energy. This is thermodynamically balanced by the solvent-
solute interaction. The interaction between the solvent and the solute is given by
Eq. 12.53:

E =
qiq j

κri j
(12.53)

where κ is the dielectric constant, and qiq j the charges separated by ri j.
The solvent molecules reorient to provide maximum interaction leading into

structural distortions. Solvent energy modeling by considering the cleavage of
solvent-solvent bonds and setting up of solvent-solute bonds is called the linear
solvent energy relationship (LSER). Solvation modeling is broadly classified into
the following types.

12.6.1.1 The Group Additivity Method

The contribution of each group or atom to solvation is set up (QSPR). Then, using
a fitting technique, the total solvation effect of the molecule is determined. This
technique is known as the group additivity method.

12.6.1.2 The Continuum Method

In this method, the solvent is considered as a continuum with a given dielectric
constant.
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12.6.2 The Solvent Accessible Surface Area

The surface area of the solvent accessible to solute molecules is known as the solvent
accessible surface area (SASA). The maximum interaction will be in the region
close to the solute molecules. The solvation free energy, ΔG0

s , is given by:

ΔG0
s =∑

i
σiAi , (12.54)

where σi is the surface tension associated with a region i and Ai the surface area.
In this equation we are not considering the difference in energy contributions by
different solvent sites.

12.6.3 The Onsager Model

In this model, the solvation system is considered as a molecule with a multipole
moment inside a spherical cavity surrounded by a continuum dielectric. This method
is helpful in predicting the solvation effect, even if the molecule is with zero dipole
moment.

12.6.4 The Poisson Equation

Electrostatic interaction between an arbitrary charge density ρ(r) and a continuum
dielectric with the dielectric permitivity ε is given by Poisson’s potential equation:

∇2φ = −4πρ(r)
ε

. (12.55)

12.6.5 The Self-Consistent Reaction Field Calculation

The self-consistent field calculation (SCRF) is an adaptation of the Poisson method
for ab initio calculations. This method models the systems in a non-aqueous medium.
Different types of calculations can be set up on the basis of the difference in the
shape of the solvent cavity and the difference in the description of the solute such
as dipole, multipole, etc. Some of these types are mentioned below.

12.6.5.1 The Onsager Model (SCRF=Dipole)

In this model, the solute is considered as occupying a fixed spherical cavity of a ra-
dius a0 within the solvent field. A dipole in the solute molecule will induce a dipole
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(induced dipole) on the medium. The solvent and the solute are stabilized by the in-
teraction between the solute dipoles and solvent induced dipoles. The systems with
a zero dipole moment will not exhibit solvation by this model.

12.6.5.2 The Tomasi Polarized Continuum Model (SCRF=PCM)

The Tomasi polarized continuum model (PCM) differs in the cavity. The cavity
is considered as a union of a series of interlocking atomic spheres. The effect of
polarization of the solvent continuum is calculated numerically by integration rather
than by approximation.

12.6.5.3 The Isodensity Surface Model (SCRF=IPCM)

In this method, the cavity is considered as an isodensity surface. It is calculated
by an iterative procedure. The isodensity surface has a very natural intuitive shape,
corresponding to the reactive shape of solute molecules to provide maximum inter-
action. It is not a predefined shape such as a sphere.

12.6.6 The Self-Consistent Isodensity
Polarized Continuum Model

In the self consistent isodensity polarized continuum model (SCI-PCM), the iso-
surface and the electron density are effectively coupled. The procedure solves for
the electron density, which minimizes the energy, including the solvation energy.
This, in turn, depends upon the cavity and electron density. This accounts for the
full coupling between the cavity and electron density.

Route words used to make SCRF calculations with GAUSSIAN are included in
Table 12.5.

Table 12.5 Running SCRF calculations using GAUSSIAN

Sl.no Model Required input

1 SCRF=Dipole a0 and ε
2 SCRF=PCM ε
3 SCRF=IPCM ε
4 SCRF=SCIPCM ε
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12.7 The Population Analysis Method

The population analysis in computational chemistry stands for estimating the partial
atomic charges or orbital electronic density from calculations carried out, particu-
larly those based on the linear combination of the atomic orbitals molecular orbital
method. The Mulliken population analysis is the most common type of this compu-
tation.

12.7.1 The Mulliken Population Analysis Method

Due to its simplicity, the Mulliken population analysis has become the most familiar
method to count electrons associated with an atom in a molecule. The total number
of electrons in a closed shell system is given by the integral over the electron density
as:

N =
∫

drρ(r) = 2
N/2

∑
1=1

∫
drψ∗

i (r)ψi(r) (12.56)

If the coefficients of the basis functions b∗μ and bv in the molecular orbital are C∗
μi

and Cνi in the ith molecular orbital:

N = 2
N/2

∑
i=1

K

∑
μ=1

K

∑
ν=1

C∗
μiCνi

∫
drb∗μ(r)bv(r)

= 2
N/2

∑
i=1

K

∑
μ=1

K

∑
ν=1

C∗
μiCνiSμv (12.57)

where Sμv is the overlap integral. Introducing the density matrix:

Pμv = 2
N/2

∑
i=1

C∗
μiCνi (12.58)

N assumes the following simplified form:

N =
K

∑
μ=1

K

∑
ν=1

PvμSμv =
K

∑
μ=1

(PS)μμ = Tr(PS) (12.59)

(PS)μμ can be interpreted as the charge to be associated with basis function bμ . The
partial trace:

ρM(A) = ∑
μ∈A

(PS)μμ (12.60)

with the sum running over all basis functions that are centered at the atom with po-
sition RA is called the Mulliken charge of that atom. It is seen here that the definition
of the Mulliken charge is only meaningful if the basis set consists of basis functions
that can be associated with an atomic site.
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The Mulliken spin density ρs is defined as the difference of the Mulliken charges
of spin-up and spin-down electrons. The sum over the Mulliken charges of all atoms
equals the total number of electrons in the system. Likewise, the sum over the Mul-
liken spin densities equals the total spin of the system. It is noted here that the
Mulliken spin density is in fact not a spin density but an integrated spin density, i.e.,
a spin. It nevertheless persists with the common notation.

Molecular orbitals and their energies can be computed with the keyword Pop =
Reg in the route section of GAUSSIAN input. The required data will be obtained
in the output. The atomic contributions for each atom in the molecule are given
for each molecular orbital numbered in order of increasing energy. It includes the
following:

1. The molecular orbital and orbital energies.
2. The symmetry of the orbitals.
3. The nature of the orbital – occupied or virtual
4. The relative magnitude of each orbital
5. The gross orbital population
6. The atomic contributions
7. The Mulliken population analysis
8. The density matrix

12.7.2 The Merz-Singh-Kollman Scheme

In the Merz-Singh-Kollman (MK) scheme, atomic charges are fitted to reproduce the
molecular electrostatic potential (MEP) at a number of points around the molecule.
At first, the MEP is calculated at a number of grid points located on several layers
around the molecule. The layers are constructed as an overlay of van der Waals
spheres around each atom. (Fig. 12.16). The points located inside the van der Waals
volume are neglected [1].

Fig. 12.16 MK scheme
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The b results are achieved by sampling points not too close to the van der Waals
surface and the van der Waals radii are therefore modified through scaling factors.
The smallest layer is obtained by scaling all radii with a factor of 1.4. The default
MK scheme then adds three more layers constructed with scaling factors of 1.6, 1.8,
and 2.0.

After computing the MEP at the valid grid points located on all four layers,
atomic charges are derived that reproduce the MEP as closely as possible. The ad-
ditional constraint in the fitting procedure is that the sum of all atomic charges is
considered as equal to that of the overall charge of the system. An input file for
calculating the MK charges for water at the Becke3LYP/6-31G(d) level of theory is:
#P Becke3LYP/6-31G(d) pop=MK scf=(direct,tight) (using Gaussian 03).

12.7.3 Charges from Electrostatic Potentials
Using a Grid-Based Method (CHELPG)

This method is similar to the MK method. In this method, atomic charges are fitted
to reproduce the MEP at a number of points around the molecule. As a first step
of the fitting procedure, the MEP is calculated at a number of grid points spaced
3.0 pm apart and distributed regularly in a cube. The dimensions of the cube are
chosen such that the molecule is located at the center of the cube, adding 28.0 pm
headspace between the molecule and the end of the box in all three dimensions. All
points falling inside the van der Waals radius of the molecule are discarded from the
fitting procedure.

After evaluating the MEP at all valid grid points, atomic charges are derived that
reproduce the MEP in the most optimum way. The additional constraint in the fitting
procedure is that the sum of all atomic charges equals that of the overall charge of
the system. Gaussian input file for calculating the CHELPG charges for water is: #P
HF/STO-3G pop=chelpg scf=(direct,tight).

12.7.4 The Natural Population Analysis Method

The analysis of the electron density distribution in a molecular system based on the
orthonormal natural atomic orbitals is known as natural population analysis (NPA).
Natural populations ni(A) are the occupancies of the natural atomic orbitals. These
rigorously satisfy the Pauli’s exclusion principle 0 < ni(A) < 2. The population of
an atom n(A) is the sum of natural populations:

n(A) =∑ni(A) (12.61)

A distinguishing feature of the NPA method is that it largely resolves the basis
set dependence problem encountered in the Mulliken population analysis method.
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12.8 Shielding

A nucleus with a resultant nuclear magnetic moment (μ) zero provides an excel-
lent search of the magnetic fields inside a sample. When it is exposed to a static
homogeneous magnetic field, the nuclear magnetic moment will process around the
direction of the magnetic field with a frequency directly proportional to the magni-
tude of the magnetic field. The frequency, and thus the magnetic field at the nuclear
site, can be detected by nuclear magnetic resonance (NMR) experiments [2].

When a static homogeneous magnetic field H is applied, the electronic system
reacts to it by producing currents. These currents in turn give rise to an additional
magnetic field ΔH at the nuclear site. The chemical shielding tensor of that nucleus
can be defined as follows:

σαβ = −ΔHα
Hβ

(12.62)

Where α ,β ∈ {x,y,z} .

The chemical shielding tensor, in fact, depends upon the chemical surrounding of
a nucleus. Hence, σαβ is unique for a chemical environment. It differs for a nucleus
in an atom being covalently or ionically bonded to its neighbors. NMR spectroscopy
has become a standard tool to characterize chemically different sites of an ion in
a molecule or in a crystal. The total magnetic field at the nucleus is the sum of the
external magnetic field and the nuclear magnetic field. This leads into an energy
splitting of:

ΔE = −μ .H total = −μ (1−σ)H (12.63)

Therefore, σ can be identified as a mixed second derivative of the ground state
energy in the presence of both a nuclear magnetic moment and an external magnetic
field with respect to these two parameters. By a Taylor expansion:

E (H,μ) = E0 + . . .+∑
i, j

Hi
∂ 2E(H,μ)
∂Hi∂μ j

μ j + . . . (12.64)

To calculate the chemical shielding the electronic Hamiltonian operator is ex-
panded to include the external magnetic field and the magnetic field of the nuclear
magnetic moments. This is done applying the minimal substitution:

p → p +(e/c)A(tot)(r) (12.65)

of the momentum operator where A(tot) = A + Anucleus is the vector potential of the
above contributions to the total magnetic field. The ground state energy is then eval-
uated using the usual Rayleigh-Schrödinger many body perturbation theory and the
above mixed derivative yields the chemical shielding tensor.

The two vector potentials (for a nucleus at R) are given by:

A(r) =
1
2

Hr (12.66)
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Anucleus(r) =
μ(r−R)
|r−R|3 (12.67)

The extended Hamiltonian operator includes the following terms:

Ĥ(H,r) = Ĥelectron +∑
a

HaĤ(1,0)
a +∑

a
μaĤ(0,1)

a +∑
aβ

HaĤ(1,1)
aβ μβ

+
1
2∑aβ

HaĤ(2,0)
aβ Hβ (12.68)

The various contributions are:

Ĥ(1,0)
α = − i

2c

N

∑
j=1

(r j ×∇ j)α (12.69)

Ĥ(0,1)
α = − i

c

N

∑
j=1

[
(r j −R)∇ j

]
α

|r−R|3 (12.70)

Ĥ(1,1)
α = − 1

2c2

N

∑
j=1

[
r j (r j −R)δαβ − r jα

(
r jβ −Rβ

)]

|r−R|3 (12.71)

Ĥ(2,0)
α = − 1

4c2

N

∑
j=1

(
r2

jδαβ − r jαr jβ
)

(12.72)

Evaluating the expression for the shielding constant using the Hellmann-Feynman
theorem, one arrives at:

σαβ = −
〈
ψ(0)

∣∣∣Ĥ(1,1)
α

∣∣∣ψ(0)
〉
−
[

∂
∂Hβ

〈
ψ(Hβ )

∣∣∣Ĥ(0,1)
α

∣∣∣ψ(Hβ )
〉]

Hβ

= 0 (12.73)

Here, ψ(0) is the unperturbed wavefunction and ψ(Hβ ) is the wavefunction in the
presence of the external magnetic field. The two terms represent the diamagnetic
and paramagnetic contribution to the shielding tensor. It should be noted that the
diamagnetic contribution depends only on the unperturbed wavefunction, whereas
the paramagnetic contribution is determined solely by the perturbed wavefunction.

To calculate the perturbed wavefunction in the presence of a magnetic field, it is

sufficient to use the Hamiltonian Ĥ ′ = Ĥ0 +∑Hα Ĥ(1,0)
α and to solve the associated

Roothaan equations, F ′C = SCε , where the one electron part of the Fock operator
receives an additional field dependent term. Note that in this case the expansion
coefficients are allowed to become complex to accommodate for the perturbation.

12.9 Electric Multipoles and Multipole Moments

Multipole moments are the coefficients of a series expansion of a potential due to
either continuous or discrete sources. A multipole moment usually involves powers
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(or inverse powers) of the distance to the origin, as well as some angular depen-
dence. In principle, a multipole [4] expansion provides an exact description of the
potential and generally converges under two conditions:
1. if the sources (e.g., charges) are localized close to the origin and the point at

which the potential is observed is far from the origin.
2. the reverse, i.e., if the sources (e.g., charges) are located far from the origin and

the potential is observed close to the origin. In the first (more common) case,
the coefficients of the series expansion are called either exterior multipole mo-
ments, or simply multipole moments, whereas in the second case they are called
interior multipole moments. The zeroth-order term in the expansion is called the
monopole moment, the first-order term is denoted as the dipole moment, and the
third, and fourth terms are denoted as quadrupole and octupole moments, etc.

12.9.1 The Quantum Mechanical Dipole Operator

Consider a set of N electric point charges Q1,Q2, . . . ,Qn at position vectors r1,
r2, . . . ,rn. For instance, this collection may be a molecule consisting of electrons
and nuclei. The physical quantity (observable) dipole has the quantum mechanical
operator:

Pe =
N

∑
i=1

Qiri (12.74)

It is a vector quantity with components along the x, y, and z axes:

(Pe)x =
N

∑
i=1

Qixi (12.75)

(Pe)y =
N

∑
i=1

Qiyi (12.76)

(Pe)z =
N

∑
i=1

Qizi (12.77)

If two equal and opposite charges, +Q and −Q are separated by d, then the
electric dipole moment has magnitude Qd and pointing towards the direction of
a vector from the negative charge to the positive charge.

Electric second moments will be given by six independent terms,

N

∑
i=1

Qixixi,
N

∑
i=1

Qixiyi,
N

∑
i=1

Qixizi,
N

∑
i=1

Qiyizi,
N

∑
i=1

Qiyiyi,
N

∑
i=1

Qizizi .
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This is normally represented by a 3×3 symmetric matrix:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

∑
i=1

Qixixi

N

∑
i=1

Qixiyi

N

∑
i=1

Qixizi

N

∑
i=1

Qiyixi

N

∑
i=1

Qiyiyi

N

∑
i=1

Qiyizi

N

∑
i=1

Qizixi

N

∑
i=1

Qiziyi

N

∑
i=1

Qizizi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.78)

The quadrupole moment of a system is defined as:

Θi j =∑q
(
3xix j − r2δ i j

)
(12.79)

The corresponding potential is:

V (R) =
1

4πε0
∑ Θi j

2R3 nin j (12.80)

where R is a vector with origin in the system of charges and n is the unit vector in
the direction of R. The matrix representation of the quadrupole moment is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

∑
i=1

Qi
(
3xixi − r2

i

)
3

N

∑
i=1

Qixiyi 3
N

∑
i=1

Qixizi

3
N

∑
i=1

Qiyixi

N

∑
i=1

Qi
(
3yiyi − r2

i

)
3

N

∑
i=1

Qiyizi

3
N

∑
i=1

Qizixi 3
N

∑
i=1

Qiziyi

N

∑
i=1

Qi
(
3zizi − r2

i

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.81)

This matrix has zero trace (the sum of the diagonal elements).
The quadrupole moment gives a measure of deviation from spherical symmetry.

The properties of the electric quadrupole matrix are normally investigated with the
matrix in its principal axis system.

12.9.2 The Dielectric Polarization

Dielectric polarization stands for the charge separation in a small unit volume dτ .
The charge separation is again equivalent to a dipole moment.

The electric dipole induced d pe is directly proportional to the volume dτ .
d pe = Pdτ , where the proportionality constant P is known as the dielectric po-

larization.
The applied field on a system induces the dipole moment on all the molecules.

The dependence of the dipole moment pe on the external electrostatic field E is
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given by the expression:

Pe(E) = Pe(E = 0)+αE + . . . (12.82)

where Pe(E = 0) is the permanent electric dipole moment, αE is the product of
dipole polarizability α and the applied field. The higher terms stand for hyperpolar-
izabilities [6].

Pe and E are vectors and α is a tensor quantity which can be represented as:

α =

⎡
⎣
αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎤
⎦ (12.83)

which by proper transformation results in a diagonal matrix of the following type:

α =

⎡
⎣
αaa 0 0
0 αbb 0
0 0 αcc

⎤
⎦ (12.84)

αaa, αbb and αcc are the principal values of polarizability. For symmetrical
molecules, the principal axes of polarizability correspond to symmetry axes. The
one-third sum of diagonal elements is known as the mean polarizability 〈α〉.

12.10 Vibrational Frequencies

For a system with a reduced mass μ and a spring constant k, the allowed vibrational
energies are given by:

εvib =
h

2π

√
k
μ

(
v +

1
2

)
(12.85)

Quantum mechanically, the normalized vibrational wavefunctions are given by:

ψv(ξ ) =

(√
β/π

2vv!

)1/2

Hv(ξ )exp(−ξ 2/2) (12.86)

where β = 2π√μk/h and ξ =
√
βx. The polynomials Hv are known as the Hermite

polynomial (given in Table 12.6).
The smallest allowed value of vibrational energy is known as the zero point en-

ergy. It is given by:

Ezpe = (h/2π)
√

k/μ
(

0 +
1
2

)
(12.87)
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Table 12.6 Hermite polynomials

v (Energy quantization number) Hv(ξ )

0 1
1 2ξ
2 4ξ 2 −2
3 8ξ 3 −12ξ
4 16ξ 4 −48ξ 2 +12
5 32ξ 5 −160ξ 3 +120ξ

It is the correction to the electronic energy of the molecule to compensate the effect
of vibration, even at zero K.

The vibration of molecules is best described by the quantum mechanical ap-
proach. But, in practice, molecules need not behave like a harmonic oscillator de-
scription, which is used in this method. Bond stretching is better described by
a Morse potential and conformational changes have a sine wave type behavior. How-
ever, the harmonic oscillator description is used as an approximate treatment for
low vibrational quantum numbers. Frequencies computed with ab initio methods
and a quantum harmonic oscillator approximation tend to be about 10%, due to the
difference between a harmonic potential and the true potential. For the very low fre-
quencies, the computed frequency may be far from the experimental values. Many
studies are done carried out using ab initio methods and multiplying the resulting
frequencies by about 0.9 to get a good estimate of the experimental results.

Vibrational frequencies from semiempirical calculations tend to be qualitative.
The density functional theory (DFT) methods give frequencies with this same level
of accuracy, but with a somewhat smaller deviation from the experimental results.
It is possible to compute vibrational frequencies using ab initio methods without
using the harmonic oscillator approximation. For a diatomic molecule, the quan-
tum harmonic oscillator energies can be obtained by knowing the second derivative
of energy with respect to the bond length at the equilibrium geometry. For a non-
harmonic oscillator energy, the entire bond dissociation curve must be computed,
which requires far more computer time. Likewise, computing anharmonic frequen-
cies for any molecule requires computing at least a sampling of all possible nuclear
motions. Due to the enormous amount of time necessary to compute all of these
energies, this sort of calculation is very seldom done.

Another method for computationally describing molecules is the molecular me-
chanics (MM) method. The forces acting on the atoms are modeled as simple alge-
braic equations such as harmonic oscillators, Morse potentials, etc. All of the con-
stants for these equations are usually obtained from experimental results. A suitable
force field can be designed to describe the geometry of the molecule only or specifi-
cally created to describe the motions of the atoms. The calculation of the vibrational
frequencies by determining the geometry using a harmonic oscillator approximation
can yield usable results, if the force field was designed to reproduce the vibrational
frequencies. MM does not perform so well if the structure is significantly different
from the compounds in the parameterization set.
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Another technique built around MM is a dynamics simulation. In a dynamics
simulation, the atoms move around for a period of time following Newton’s equa-
tions of motion. This motion is a superposition of all of the normal modes of vibra-
tion and the frequencies cannot be determined directly from this simulation. How-
ever, the spectrum can be determined by doing a Fourier transform on these motions.
The motion corresponding to a peak in this spectrum is determined by taking just
that peak and doing the inverse Fourier transform to see the motion. This technique
can be used to calculate anharmonic modes, very low frequencies, and frequencies
corresponding to conformational transitions. However, a fairly large amount of com-
puter time may be necessary to get enough data from the dynamics simulation to get
a good spectrum.

Another related issue is the computation of the intensities of the peaks in the
spectra. Peak intensities depend upon the probability that a particular wavelength
photon will be absorbed or Raman scattered. These probabilities can be computed
from the wavefunction by first computing the transition dipole moment. Some types
of transitions turn out to have a zero probability due to the molecule’s symmetry or
the spin of the electrons. This is where the spectroscopic selection rules come from.

12.11 Thermodynamic Properties

Consider an ideal gas composed of diatomic molecules AB; in the limit of abso-
lute zero temperature, all the molecules are in the ground state of electronic and
vibrational motion. The ground state dissociation energy of a molecule is the en-
ergy needed to dissociate the molecule into its ground vibrational state to atoms in
their ground states.

AB → A(g) + B(g) (12.88)

D0 = De −Ezpe (12.89)

If zero point vibrational energy is considered as the zero point energy, then:

D0 = De − 1
2

h
3N−6

∑
k=1

vk (12.90)

For the processes of the gas-phase molecule to gas phase atoms, the change in
the internal energy is given by D0NA, where NA is the Avogadro number. Hence, for
the process change in internal energy:

ΔUo
0 = D0NA . (12.91)

In the limit of absolute zero, the change in internal energy is equal to change in
enthalpy. Thus:

ΔUo
0 = ΔHo

0 = D0NA (12.92)
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Table 12.7 Computed enthalpy using CCSD(T)

Molecule Computed enthalpy Experimental enthalpy Zero point energy
(kcal/mol) (kcal/mol) (kcal/mol)

CH 141.7±0.3 141.2±4.2 4.04
CH2 92.8±0.4 92.2±1.09 10.55
CH3 35.8±0.6 35.6±0.2 18.6
CH4 −15.9±0.7 −16.0±0.1 27.71
CH2O −25.0±0.3 −25.0±0.1 16.53
HCO 9.8±0.3 10.3±1.9 7.69
CO −27.4±0.2 −27.2±0.04 3.10

We can calculate ΔHo
0 for a reaction by knowing the theoretical or computational

atomization energy of the product and the experimental atomization energy of the
reactant. ΔHo

0 =(experimental atomization energy of the reactant – Computational
atomization energy of the product).

For example, the geometry optimization of water with HF/6-31G* (UHF) com-
putes the internal energy Ue = − 76.010746Hartree. The ground state atomic en-
ergies of H and O are, respectively, −0.498233 Hartree and −74.783931 Hartree.
The predicted De for the change is:

H2O → 2H(g) + O(g) (12.93)

2(−0.498233)+ 1(−74.783931)− (−76.010746) = 0.23035 Hartree = 6.27 eV.

With HF/6-31G*, computed fundamental frequencies are 3643, 1634, and
3748 cm−1 and Ezpe = 0.56 eV and D0 = 5.71 eV. The experimental value of D0

obtained from chemical data is 9.51 eV.
The gas phase experimental atomization energy of water is 219.4 kcal/mol while

the predicted atomization energy is only 132 kcal/mol (D0NA). The inclusion of
electron correlation terms minimizes the error.

Table 12.7 clearly illustrates the efficiency of computation using correlation func-
tions (CCSD(T)).

12.12 Molecular Orbital Methods

Molecular orbital (MO) methods are trying to combine MO approximations de-
scribing the active part of the modeling system (ab initio, density functional to
semi-empirical) with either some lower level MO methods or MM describing the
inactive parts [8]. They are as follows:

1. IMOMM: (Integrated MO + MM – Maseras and Morokuma, 1995). In this
method, the active part of the system is treated by some MO methods while
the nonactive part is treated only by an MM method.
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2. IMOMO: (Integrated MO + MO – Humbel et al., 1996). In this method we
treat the active part of our system with a sophisticated MO method, whereas the
nonactive part is treated with some lower level MO method.

3. ONIOM: (Our own N-layered integratedmolecular orbital + molecular mechan-
ics – Svensson et al., 1996). The ONIOM method divides the system into n
layers like an onion. For example, the ONIOM3 method divides the system into
3 parts. With ONIOM3, we can use high level MO methods to describe the ac-
tive part, some lower level MO method to describe the semiactive part and MM
to describe the inactive part of the system. An example could be CCSD (T) on
the active part, HF or MP2 on the semiactive part and MM on the inactive part
of the system. The ONIOM facility in commercial software such as Gaussian
03, Spartan, etc. provides substantial performance gains for geometry optimiza-
tions. ONIOM calculations enable both the steric and electrostatic properties of
the entire molecule to be taken into account, when modeling the processes in the
high accuracy layer. These techniques yield molecular structures and properties
that are in very good agreement with the experiments. Refer to Gaussian and
Spartan manuals for details.

12.13 Input Formats for Computations

There are a number of input formats which are taken up by different computa-
tional chemistry environments. The Z-matrix input is the general representation of
molecules.

12.13.1 The Z-Matrix Input as the Common Standard Format

The Z-matrix format is a matrix representation of the molecule giving the entire data
required for computations and is of the following form;

[group[, ]]atom, p1,r, p2,α, p3,β ,J

or, alternatively, [group[, ]]atom, p1,x,y,z. The elements of this form are described
as follows:

group This stands for the atomic group number and is optional. It can be used if
different basis sets are used for different atoms of the same kind. The basis
set is then referred to by this group number and not by the atomic symbol.

atom This includes the chemical symbol of the new atom placed at position p0.
This may optionally be appended (without a blank) by an integer, which
can act as a sequence number, e.g., C1, H2, etc. Dummy centers with no
charge and basis functions are denoted either as Q or X, optionally ap-
pended by a number, e.g., Q1; note that the first atom in the z-matrix must
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not be called X, since this may be confused with a symmetry specification
(use Q instead).

p1 This stands for the atom to which the present atom is connected. This may
be either a number n, where n refers to the nth line of the Z-matrix, or
an alphanumeric string as specified in the atom field of a previous card,
e.g., C1, H2, etc. The latter form works only if the atoms are numbered in
a unique way.

r This is the distance of new atom from p1. This value is given in Bohr,
unless “ANG” has been specified directly before or after the symmetry
specification.

p2 A second atom needed to define the angle α(p0, p1, p2). The same rules
hold for the specification as for p1.

α Internuclear angle α(p0, p1, p2). This angle is given in degrees and must
be in the range 0 < α < 180◦.

p3 A third atom needed to define the dihedral angle β (p0, p1, p2, p3). Only
applies if J = 0 (see below).

β The dihedral angle β (p0, p1, p2, p3) in degree. This angle is defined as the
angle between the planes defined by (p0, p1, p2) and (p1, p2, p3) (−180◦ ≤
β ≤ 180◦). Only applies if J = 0 (see below).

J If this is specified and nonzero, the new position is specified by two
bond angles, rather than a bond angle and a dihedral angle. If J = ±1,
β is the angle β (p0, p1, p3). If J = 1, the triple vector product (p1 − p0).
[(p1 − p2)× (p1 − p3)] is positive, while this quantity is negative if J =−1.

x,y,z Cartesian coordinates of the new atom. This form is assumed if p1 ≤ 0; if
p1 < 0, the coordinates are frozen in geometry optimizations.

All atoms, including those related by symmetry transformations, should be spec-
ified in the Z-matrix. Note that for the first atom, no coordinates need to be given,
for the second atom only p1,r are needed, while for the third atom p3,β ,J may be
omitted.

12.13.2 Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extensions (MIME) is an Internet standard that extends
the format of e-mail to support the following:

• Text in character sets other than US-ASCII
• Non-text attachments
• Multi-part message bodies
• Header information in non-ASCII character sets

MIME is also a fundamental component of communication protocols such as
HTTP, which requires that data be transmitted in the context of email-like messages,
even though the data might not fit this context. For UNIX/LINUX there is a tar.gz
file available which registers chemical MIME types on your system. Programs can
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Table 12.8 File extensions used in computational chemistry

File extension MIME type Proper name

alc chemical/x-alchemy Alchemy format
csf chemical/x-cache-csf CAChe MolStruct CSF
cbin, cascii, ctab chemical/x-cactvs-binary CACTVS format
cdx chemical/x-cdx ChemDraw eXchange file
cer chemical/x-cerius MSI Cerius II format
c3d chemical/x-chem3d Chem3D format
chm chemical/x-chemdraw ChemDraw file
cif chemical/x-cif Crystallographic information file,

Crystallographic information framework
cmdf chemical/x-cmdf CrystalMaker data format
cml chemical/x-cml Chemical markup language
cpa chemical/x-compass Compass program of the Takahashi
bsd chemical/x-crossfire Crossfire file
csm, csml chemical/x-csml Chemical style markup language
ctx chemical/x-ctx Gasteiger group CTX file format
cxf, cef chemical/x-cxf Chemical eXchange format
emb, embl chemical/x-embl-dl-nucleotide EMBL nucleotide format
spc chemical/x-galactic-spc SPC format for spectral and

chromatographic data
inp, gam, gamin chemical/x-gamess-input GAMESS input format
fch, fchk chemical/x-gaussian-checkpoint Gaussian checkpoint format
cub chemical/x-gaussian-cube Gaussian cube (wavefunction) format
gau, gjc, gjf chemical/x-gaussian-input Gaussian input format
gcg chemical/x-gcg8-sequence Protein sequence format
gen chemical/x-genbank ToGenBank format
istr,ist chemical/x-isostar IsoStar library of intermolecular interactions
jdx, dx chemical/x-jcamp-dx JCAMP spectroscopic data exchange format
kin chemical/x-kinemage Kinetic (protein structure) images
mcm chemical/x-macmolecule MacMolecule File Format
mmd, mmod chemical/x-macromodel-input MacroModel molecular mechanics
mol chemical/x-mdl-molfile MDL molfile
smiles, smi chemical/x-daylight-smiles Simplified molecular input line

entry specification
sdf chemical/x-mdl-sdfile Structure-data file

then register as a viewer, editor, or processor for these formats, so that full support
for chemical MIME types is available. All other common input file extensions used
in computational chemistry are listed in Table 12.8.

12.13.3 Converting Between Formats

OpenBabel and JOELib are open source tools specifically designed for converting
between file formats. We have used OpenBabel here to illustrate a format conversion
among common computational environments by taking water as an example.
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12.13.3.1 GAUSSIAN Z-Matrix Format

0 1
O
H 1 B1
H 1 B2 2 A1
B1 0.96000000
B2 0.96000000
A1 109.50000006

12.13.3.2 Alchemy Format

3 ATOMS, 2 BONDS, 0 CHARGES

1 O3 0.0000 0.0000 0.1140 0.0000
2 H 0.0000 0.7808 -0.4562 0.0000
3 H 0.0000 -0.7808 -0.4562 0.0000
1 2 1 SINGLE
2 3 1 SINGLE

12.13.3.3 GAUSSIAN 03 Format

0 1
O 0.00000 0.00000 0.11404
H 0.00000 0.78084 -0.45615
H 0.00000 -0.78084 -0.45615

12.13.3.4 GAMESS Input Format (INP)

$CONTRL COORD=CART UNITS=ANGS $END
$DATA

Put symmetry info here
O 8.0 0.00000 0.00000 0.11404
H 1.0 0.00000 0.78084 -0.45615
H 1.0 0.00000 -0.78084 -0.45615
$END

12.13.3.5 MOPAC Cartesian Format (MOPCRT)

PUT KEYWORDS HERE

O 0.00000 1 0.00000 1 0.11404 1
H 0.00000 1 0.78084 1 -0.45615 1
H 0.00000 1 -0.78084 1 -0.45615 1
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12.13.3.6 SMILES FIX Format (FIX)

O
0.000 0.000 0.114

12.13.3.7 XYZ Cartesian Coordinate Format (XYZ)

3
Energy: -47430.8699204
O 0.00000 0.00000 0.11404
H 0.00000 0.78084 -0.45615
H 0.00000 -0.78084 -0.45615

12.13.3.8 Protein Data Bank Format (PDB)

COMPND UNNAMED
AUTHOR GENERATED BY OPEN BABEL 2.0.2
HETATM 1 O HOH 1 0.000 0.000 0.114 1.00 0.00 O
HETATM 2 H HOH 1 0.000 0.781 -0.456 1.00 0.00 H
HETATM 3 H HOH 1 0.000 -0.781 -0.456 1.00 0.00 H
CONECT 1 2 3
CONECT 2 1
CONECT 3 1
MASTER 0 0 0 0 0 0 0 0 3 0 3 0
END

12.14 A Comparison of Methods

We shall make a comparison of different methods to identify the most suitable
method for a required computation.

12.14.1 Molecular Geometry

Molecular geometry can be computed at any level. Ab initio HF/STO-3G calcu-
lations give acceptable predictions of bond distances and quite good predictions
of bond angles. However, there are some exceptions to this statement: an error of
0.72 A.U. in the Na2 bond length and of 0.23 .U. for NaH. HF/STO-3G bond lengths
for molecules with only first-row elements are more accurate than for second-row
molecules. An improved result can be achieved by using a bigger basis set. The
order of trials STO-3G, 3-21G, 3-21G(*), and 6-31G* normally gives improved re-
sults. The experimental results conducted by Hehre et al. showing the variation of
average absolute errors with an increase in size of basis set is included in Table 12.9.
The computation of the dihedral angle is better with ab initio HF methods.
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Table 12.9 Average absolute errors in the bond length (A.U.) and bond angle

Method AHn-length AB AB AB Angle in
single bonds multiple bonds length in hyper- HmABHn

in HmABHn in HmABHn valent species

HF/STO-3G 0.054 0.082 0.027 2.0◦
HF/3-21 G 0.016 0.067 0.017 0.125 1.7◦
HF/3-21 G* 0.017 0.040 0.018 0.015 1.8◦
HF/6-31 G* 0.014 0.030 0.023 0.014 1.5◦

The following results were reported earlier regarding computation of geometries.

1. The predicted dihedral angle for hydrogen peroxide is 180◦ against the actual
112◦ with 3-21 basis set. Computation with HF/6-31 G* improves the results.

2. Conformational angles of cyclobutane and cyclopentane are better estimated by
HF/6-31G*.

3. The average absolute errors in a sample of 73 bond lengths in HmABHw type
molecules reduced from 0.021 A with HF/6-31G* and 0.013 A with MP2/6-
31G* (Hehre et al., pp. 156-161).

4. Feller and Peterson [9] conducted a study of 184 small molecules examining
the effect of various frozen-core correlation methods using the basis sets aug-
cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVQZ. The results with aug-cc-pVTZ are
included in Table 12.10. The HF errors increased with increase in the basis set
size for these three sets. MP4 results for AB lengths were less accurate than
MP2 results.

5. The DFT method gives promising results with 6-31G* or larger basis sets. The
DFT method should not be done with basis sets smaller than 6-31G* as the
method does not include correlation. Average absolute errors in bond lengths
and bond angles for a sample of 108 molecules containing two to eight atoms
were reported by Scheiner, Baker, and Andzelm [10]. This result is included in
Table 12.11. The B3PW91 hybrid functional gave the best results of the four
functionals studied. The same team of scientists conducted DFT calculations
with five different basis sets and found that as the basis set size increased, the
errors in DFT geometries decreased significantly.

6. Dihedral angle computation provided an average absolute error [11]: of 3.8◦
with HF/6-31G*, 3.6◦ with MP2/6-31G*, and 3.4◦ with BP86 for a basis set
that is TZP on nonhydrogens and DZP on hydrogens.

Table 12.10 Comparison of results with the aug-cc-pVTZ basis set

Average error HF MP2 MP4 CCSD CCSD(T)

A-H bond length (A.U.) 0.014 0.011 0.007 0.009 0.009
A-B bond length (A.U.) 0.028 0.022 0.030 0.011 0.016
Bond angle (Degrees) 1.6 0.3 0.3 0.3 0.4
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Table 12.11 Absolute average error with DFT methods

HF/ MP2/ SVWN/ BLYP/ BPW91/ B3PW91/
6-31G** 6-31G** 6-31G** 6-31G** 6-31G** 6-31G**

0.021A.U. 0.015 A.U. 0.016 A.U. 0.021 A.U. 0.017 A.U. 0.011 A.U.
1.3◦ 1.1◦ 1.1◦ 1.2◦ 1.2◦ 1.0◦

Table 12.12 Average error semiempirical methods

Property MNDO AM1 PM3

Bond length in A.U. 0.055 0.051 0.037
Bond angle in degrees 4.3 3.8 4.3

Table 12.13 RMS error and MM methods

Property MMFF94 MM3 UFF CHARMm

Length (A.U.) 0.014 0.010 0.021 0.016
Angle (degrees) 1.2 1.2 2.5 3.1

7. Semiempirical methods usually give satisfactory bond lengths and angles. The
results will be normally less accurate than that obtained by ab initio or DFT
methods. For compounds containing H, C, N, O, F, Al, Si, P, S, Cl, Br, and I,
average absolute errors in 460 bond lengths and 196 bond angles were reported
by Stewart [12]. The result is included in Table 12.12.
MNDO, AMI, and PM3 do not include d orbitals and are not particularly accu-
rate for geometries of molecules with elements from the second and later rows.
For such molecules, MNDO/d can be effectively used.

8. The performance of semiempirical methods for dihedral angles is not satisfac-
tory.

9. MM force fields usually give good results for geometries for the kinds of
molecules for which the field has been properly parameterized. In the exper-
iment conducted by Halgren [13 ] for 30 organic compounds with MMFF94,
MM3, UFF, and CHARMm, RMS errors for bond length and bond angle are
given in Table 12.13.

12.14.2 Energy Changes

The result of experimentation conducted by Scheiner, Baker and Andzelm [10] is in-
cluded in Table 12.14. They took 108 atomization energies (atom), 66 bond dissoci-
ation energies (BD), 73 hydrogenation enthalpies (HE) and 29 combustion energies
(CE). The average absolute errors in kcal/mol were included.

For DFT, hybrid functionals are found to be very effective.
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Table 12.14 Energy computation comparison

Method Atom BD HE CE

HF/6-31G** 119.2 58.8 8.5 44.5
MP2/6-31G** 22.0 8.8 7.0 11.2
SVWN/6-31G** 52.2 22.1 11.3 21.8
BPW91/6-31G** 7.4 5.9 10.1 27.6
BPW91/TZ2P 7.3 5.5 5.5 15.9
B3PW91/6-31G** 6.8 5.6 6.8 26.2
B3PW91/TZ2P 6.5 5.1 3.9 14.4

Holder et al. [14] conducted experiments on the standard enthalpy of formation
using AM1, PM3, and SAM1 for molecules containing H, C, N, O, F, Cl, Br, and I.
Average errors were found to be respectively 6.4, 5.3 and 4.0 kcal/mol. Stewart [12]
conducted a semiempirical computation with 886 compounds of H, C, N, O, F, Al,
Si, P, S, Cl, Br, and I. The average absolute error with in MNDO, AM1 and PM3
were 23.7, 14.2 and 9.6 kcal/mol.

Thiel and Voityuk [15] conducted computations for 99 S-containing compounds
with semiempirical methods. As MNDO/d and SAM include d orbitals, these were
found to give improved results. They did the computations with MNDO, AM1,
PM3, SAM1, SAM1d, and MNDO/d. The average absolute gas phase errors in
kcal/mol is found to be, respectively, 48.4, 10.3, 7,5, 8.3, 7.9, and 5.6.

MM2 and MM3 usually give gas-phase heats of formation with 1 kcal/mol ac-
curacy for compounds similar to those used in the parameterization. For example,
the average absolute MM3 error in the standard enthalpy of formation for a sample
of 45 alcohols and ethers is 0.6 kcal/mol [16]. Many MM programs do not include
provision for calculation of heats of formation.

12.14.3 Dipole Moments

Hehre reported the following average absolute errors for a sample of 21 small
molecules HF/STO-3G–0.65D, HF/3-21G*–0.34 D and HF/6-31G*–0.30 D. The
STO-3G basis set is not very reliable here. For a sample of 108 compounds, the av-
erage absolute errors with the 6-31G** basis set were [10]: HF–0.23 D, MP2–0.20
D, SVWN–0.23 D, BLYP–0.20 D, BPW91–0.19 D, B3PW91–0.16 D. Extremely
accurate dipole moments were obtained with a gradient corrected functional and
a very large basis set (an uncontracted version of the aug-cc-pVTZ set); for BLYP,
the average absolute error was only 0.06 D. Semiempirical methods give reliable
dipole moments. For 125 compounds of H, C, N, O, F, Al, Si, P, S, CI, Br, and I,
average absolute errors are: MNDO–0.45 D, AMI–0.35 D, PM3–0.38 D [17]. For
196 compounds of C, H, N, O, F, CI, Br, and I, average absolute errors are: AMI–
0.35 D, PM3–0.40 D, SAM1–0.32 D [18].
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12.14.4 Generalizations

1. The overall reliability of the EH, CNDO, and INDO methods for calculating
molecular properties is poor.

2. The ab initio SCF MO method is usually reliable for ground-state, closed-shell
molecules, provided one uses a basis set of suitable size.

3. The STO-3G basis set is not generally reliable, and this basis set is little used
nowadays.

4. MP2 perturbation theory usually substantially improves calculated properties,
as compared with HF results.

5. DFT with gradient-corrected functionals (and especially hybrid functionals)
usually performs substantially better than the HF method.

6. The AMI and PM3 methods are significantly less reliable than HF calculations
with basis sets of suitable sizes.

7. MM is usually reliable for those kinds of molecules for which the method has
been properly parameterized, but some existing MM force fields are not very
reliable. For small and medium organic compounds, MM2, MM3, MM4, and
MMFF94 are generally reliable.

8. MMFF94, OPLS, and AMBER force fields are found to be giving reliable struc-
ture predictions.

9. MMFF94 and OPLS fields give the best energy predictions. The comparisons of
this section consider only compounds of H-Ar.

10. For compounds involving transition metals, ab initio SCF MO calculations often
do not give good results.

The density-functional method may well be useful for transition-metal compounds.

12.15 Exercises

1. Find the energy difference between the trans and gauche conformations of
dichloro ethane in the environments cyclohexane and gas phase using HF, MP2
(Onsager) and B3LYP. (#T B3LYP/6-31+G(d) SCRF(IPCM) SCF=Tight Test
6D).

2. Find the vibrational frequencies of formaldehyde in acetonitrile using the On-
sager SCRF model and the SCIPCM model.

3. Predict the energy difference between the gauche and the trans conformers of
dichloroethane in its liquid state (e = 10.1) and in acetonitrile (e = 35.9).

4. Compute the frequency associated with carbonyl stretch in a solution with ace-
tonitrile for formaldehyde, acetaldehyde acetone, acrolein, formamide, acetyl
chloride, and methyl acetate.

5. Use GaussView to draw carbon monoxide and set up an input file to perform
a HF geometry optimization and frequency calculation with the 6-31+g(d) basis
set. Use GaussView to visualize the results.
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6. Find the single point energy calculation of water with #T RHF/6-31G(d) Pop =
Full Test. At the end of this tutorial you should have the following:

a. A printout of the HOMO.
b. A printout of the LUMO.
c. A printout containing the thermo-chemistry (enthalpy, entropy, free energy,

thermal corrections, zero-point energy) and the archive.

7. Find the NMR shielding constants of methane. (The key word in the route sec-
tion will be #T RHF/6-31G(d) NMR Test).

8. Run a single point energy calculation on propene and determine the following
information from the output:

a. What is the standard orientation of the molecule? In what plane do most of
the atoms lie?

b. What is the predicted HF energy?
c. What is the magnitude and direction of the dipole moment of propene?
d. Describe the general nature of the predicted charge distribution. (The key

word is #T RHF/6-31G(d) Test).

9. Make a table of energies and dipole moments of three stereo isomers of 1,2-
dichloro-1,2-difluoro ethane. You will be required to run the HF/6-31G(d) sin-
gle point energy calculation for each. (Ref. Exer.2_02a(RR),2_02b(SS) and
2_02c(meso)).

10. Acetone and acetaldehyde are functional group isomers. Calculate the difference
in the HF energy and dipole moments of these two.

11. Ethylene and formaldehyde are iso-electronic. Compare the dipole moment of
these two. Compare the HOMO and LUMO in both.

12. Compare the NMR properties of butane, trans-2-butene and 2-butyne. (Ref.
Exer.2_05a 2_05b and 2_05c) Run with HF/6-31G(d) and B3LYP/6-31G(d)).

13. Calculate the magnetic shielding of nitrogen in pyridene and compare it to its
saturated cyclohexane analogue.

14. Fullerene compounds have received a lot of attention in recent years. Predict the
energy of C-60 and look at its HOMO predicted at the HF level with the 3-21G
basis set. Include SCF=Tight in the route section.

15. Run the geometry optimization of ethylene.(#T RHF/6-31G(d) Opt Test).
16. Find the energy difference between the trans and gauche conformations of

dichloro ethane in the environments cyclohexane and gas phase using HF, MP2
(Onsager) and B3LYP. ( #T B3LYP/6-31+G(d) SCRF(IPCM) SCF=Tight Test
6D).

17. Find the vibrational frequencies of formaldehyde in acetonitrile using the On-
sager SCRF model and the SCIPCM model.

18. Perform frequency calculations of ethylene, chloro ethylene, vinyl alcohol,
propene, and vinyl amine and study the vibrational and energy effects of these
substitution on ethylene.

19. An amino acid can be present in two forms: the unionized form, H2NCHRCO2H,
and the Zwitterion, +H3NCHRCO−

2 . You will explore the properties and the rel-
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ative stability of the two forms in the case of the simplest amino acid glycine. An
ab initio calculation with a good basis set will be used to obtain good energies.

20. Minimize the energy of the structure using MM with the Merck molecular force
field. Comment on the structure of the conformer produced by the minimization.

21. Calculations on glycine in the unionized form, H2NCH2CO2H. The unionized
species is conformationally more flexible. Perform a search of low energy con-
formers.

22. A barrier to internal rotation of the amide bond: One can argue for a consider-
able double bond character in the amide bond using either valence bond or MO
arguments. This double bond character was first noted by Pauling and makes
an important contribution to the structure of proteins. The goal of this section of
the exercise is twofold: 1) verify that the anti or s-trans conformer is more stable
than the s-cis, and 2) determine the barrier to internal rotation.
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Chapter 13
High Performance Computing

13.1 Introduction – Supercomputers vs. Clusters

Supercomputer is a term that people use to represent enormous processing capacity.
The machines of CRAY class have made people think about these in a totally dif-
ferent way – a huge computer having multiples of processors on the single board.
Traditionally, supercomputers have only been built by a selected number of vendors.
A company or organization that required the performance of such a machine had to
have a huge budget required for its supercomputer. People started thinking of some
other better alternative which they could afford. The concept of cluster computing
was introduced when people first tried to spread different jobs over more comput-
ers and then gather back the data from these systems. With the development of the
personal computing (PC) platform, the performance gap between a supercomputer
and a cluster of multiple personal computers became smaller. So, today when we
say supercomputer, it is just a term to mean a huge processing capacity and any
machine giving specific gigaflops speed may be considered to have supercomputing
facilities.

13.2 Clustering

In general, clustering refers to technologies that allow multiple computers to work
together to solve common computing problems. To anyone who has worked as a net-
work or system administrator, some of the benefits of clustering will be immediately
apparent. The increased processing speed offered by performance clusters, increased
transaction or response speed offered by load-balancing clusters, or the increased re-
liability offered by high availability clusters can be vital in a variety of applications
and environments [1].

Take, for example, the modeling of a macromolecule or a polymer or a biopoly-
mer like protein. This requires massive amounts of data and very complex calcula-
tions. By combining the power of many workstation-class or server-class machines,
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performance levels can be made to reach supercomputer levels, and that even for
a much lower price than the traditional supercomputer. Most people consider clus-
tering or server clustering as a high performance group of computers used for sci-
entific research. However, this is just one of the types of clustering available. The
basic idea behind the “performance clustering” approach is to make a large num-
ber of individual machines act like a single, very powerful machine. This type of
cluster is best applied to large and complex problems that require huge comput-
ing horsepower. Applications such as molecular dynamic simulations, the modeling
of polymers, computational drug designing, and quantum mechanical modeling are
prime areas of computational chemistry for high-performance clusters.

A second type of clustering technology allows a network of servers to share the
load of traffic from clients. By load balancing the traffic across an array of servers,
access time improves and the reliability of computation increases. Moreover, since
many servers are handling the work, the failure of one system will not cause a catas-
trophic breakdown.

Another type of clustering involves the servers to act as live backups of each
other. This is called high availability clustering (HA clustering) or redundancy clus-
tering. By constantly tracking the performance and stability of the other servers,
a high availability cluster allows for greatly improved system uptimes. This can be
crucial in high traffic simulation sites. Load balancing and high availability clusters
share many common components, and some clustering techniques make use of both
types of clustering.

13.3 How Clusters Work

At its core, clustering technology has two basic parts. The first component of clus-
tering consists of a customized operating system (such as the kernel modifications
made to Linux) with special compiler programs to take full advantage of clustering.
The second component is the hardware interconnection (interconnects) between ma-
chines (nodes) in the server cluster. These interconnects are often highly dedicated
interfaces. In some cases, the hardware will be designed specifically for the clus-
tered systems. However, in most common Linux cluster implementations, this in-
terconnect is handled by a dedicated fast Ethernet or gigabit Ethernet network. The
assignment of tasks, status updates, and program data can be shared between ma-
chines across this interface, while a separate network is used to connect the cluster
to the outside world. The same network infrastructure can often be used for both of
these functions. However, this simplification may affect the performance of com-
puting, especially when the network traffic is high [2]. By splitting the problem into
tasks that can be executed in a parallel manner, computation is carried out fast.

Performance clustering works in a similar manner to traditional symmetric mul-
tiprocessor (SMP) servers. The most widely known high-performance clustering
solution for Linux is Beowulf (Fig. 13.1). It grew out of research at NASA and can
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provide supercomputer-class processing power for the cost of run-of-the-mill PC
hardware. By connecting those PCs through a fast Ethernet network, the comput-
ing power is increased to the level of a supercomputer. Probably the best-known
type of Linux-based cluster may be a Beowulf cluster. A Beowulf cluster consists of
multiple machines connected to one another on a high speed LAN. In order to ex-
tract the computing resources of clusters, special cluster-enabled applications must
be written using clustering libraries. The most popular clustering libraries are PVM
and the message passing interface (MPI). By using the clustering libraries, pro-
grammers can design applications that can span across an entire cluster computing
resources rather than being confined to the resources of a single machine. For many
applications, PVM and MPI allow computing problems [3, 4] to be solved at a rate
that scales almost linearly relative to the number of machines in the cluster.

The servers of a high availability cluster do not normally share the processing
load, unlike performance cluster servers. Nor do they share the traffic load as load-
balancing clusters do. Instead, they keep themselves ready to take over the compu-
tational charge for a failed or defective server instantaneously. Although we will not
get the performance increased from a high availability cluster, due to their increased
flexibility and reliability, they have been made necessary in today’s information-
intensive computational environment. High availability clustering also allows easier
server maintenance. One machine from a cluster of servers can be taken out, shut
down, upgraded, reloaded after sometime, or allowed to work without collecting
information from it.

13.4 Computational Clusters

Computational/high performance Linux clusters started back in 1994 when Donald
Becker and Thomas Sterling built a cluster for NASA. This cluster was made up
of 16 DX4 processors connected by 10 Mbit Ethernet and was named Beowulf.
Since then, the Beowulf project has been joined by other software projects trying to
provide useful solutions to turning commercial off the shelf (COTS) hardware into
clusters capable of supercomputing speed [5, 6, 18].

13.5 Clustering Tools and Libraries

MPI is a library specification for message-passing, proposed as a standard by the
industry consortium of vendors, implementers, and users. It has many free and com-
mercial implementations, but because MPI is an open standard, while any person or
company can twist MPI to optimize it for his or their own use, the calling structure
and API must remain unchanged. All manufacturers of commercial supercomputers
provide a version of MPI with their systems.
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Fig. 13.1 The full Perseus Beowulf cluster

LAM/MPI is a high-quality open-source implementation of MPI, including all
of MPI-1.2 and much of MPI-2. LAM/MPI has a rich set of features for system
administrators, parallel programmers, application users, and parallel computing re-
searchers.

From its beginnings, LAM/MPI was designed to operate on heterogeneous clus-
ters. With support for Globus and Interoperable MPI, LAM/MPI can span clusters
of clusters. Several transport layers, including Myrinet, are supported by LAM/MPI.
With TCP/IP, LAM imposes virtually no communication overhead, even at gigabit
Ethernet speeds. New collective algorithms exploit hierarchical parallelism in SMP
clusters. Some of the useful MPI formulations are listed below.

LAM (local area multicomputer) is an MPI programming environment and de-
velopment system introduced at the Ohio Supercomputer Center and Notre Dame
University, now being developed and maintained by a group at Indiana University.
It is freely available for download.

MP-Lite is a lightweight message passing library designed to deliver the maxi-
mum performance to applications in a portable and user-friendly manner.

MPICH is a portable implementation of MPI, developed at Argonne National
Laboratory. It is freely available, and an extremely vanilla implementation of MPI,
which makes it easy for porting to various Unix modifications. There is also a Win-
dows NT version available.

13.6 The Cluster Architecture

It has become widely accepted that cluster setup and management is extremely te-
dious and error-prone, due to the inherent autonomy of the nodes in a cluster. Hence,
using a cluster is much more difficult than using a traditional supercomputer. These
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Fig. 13.2 For this modified cluster architecture, only the front end is made as a fully loaded
system. The cluster nodes themselves have installed only LinuxBIOS. They receive the kernel
(BProc + Linux) from the front end

Fig. 13.3 For a traditional
cluster configuration, each
node is a fully loaded inde-
pendent system

problems can be overcome by redesigning the cluster architecture from low-level
machine setup to programming support level. By modifying the key components of
the cluster and adding vital functionality, the reliability and efficiency of the cluster
can be increased with a decrease in autonomy [8, 9].

This cluster architecture design replaces legacy mechanisms for booting (Lin-
uxBIOS) and runs an operating system that provides a single system image of the
entire cluster (BProc) (Fig. 13.2). It is interesting to compare this method with the
traditional cluster architecture which is a loose coupling of many individual single
user workstations (Fig. 13.3).

13.7 Clustermatic

Clustermatic is a collection of new technologies being developed specifically for
our new cluster architecture and is expected as the complete cluster solution of the
future. Each technology can be used separately, and it does not prohibit integration
with other clustering efforts or even other types of computing environments. For
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example, BProc is being used in several production-grade clusters; LinuxBIOS is
being sold in products such as web content caching appliances, DVD players, and
fiber channel analyzers [10].

13.8 LinuxBIOS

LinxBIOS replaces the normal BIOS bootstrap mechanism with a Linux kernel that
can be booted from a cold start. Cluster nodes can now be as simple as they need
to be – perhaps as simple as a CPU and memory, without any disk, floppy, and file
system. As a consequence of this, the nodes are up and fit for running in less than
two or three seconds.

13.9 BProc

The Beowulf Distributed Process Space (BProc) provides a single system image of
the entire cluster. LinuxBIOS cluster nodes come up autonomously and contact the
“front end” node which sends them to a BProc kernel to boot and register them
as part of the cluster. Users run programs on the front end, which will be carried
to other cluster nodes. BProc itself consists of a small set of kernel modifications,
utilities, and libraries which allow a user to start processing on other machines in
a cluster (including reboot). Remote processes started with this mechanism appear
in the process table of the front end. It allows remote process management using the
normal UNIX process control facilities. Signals are transparently forwarded to re-
mote processes and exit status is received using the usual “wait” mechanisms. Clus-
ters with thousands of nodes may experience failures very frequently. Programs will
need to be much more resilient and run-through to completion despite failures [11].

13.10 Configuration

The cluster can contain any number of nodes as we wish. The decision will be based
on how much processing capacity we need. It can be a simple cluster with a server
and two nodes or a bigger one containing a server and 10 client nodes. They can
be connected using a simple switch over the UTP cabling in an Ethernet environ-
ment. The sample configuration steps given below is with one machine acting as
a server and two other machines acting as the clients for this server. To start with
this configuration is pretty good, and once you are able to configure and use this as
mentioned, you can go on adding more number of machines to get a better perfor-
mance. However, please do not think that by just adding several nodes you will get
a high performance machine. Since we are communicating over a Ethernet network,
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and the system works as a cluster of workstations exchanging the data and the results
over the network, due to the network traffic overheads sometimes the performance
of the cluster may go down also. So, we need to find a optimum number of clients
in the cluster [12].

The overall configuration outlook can be summarized as follows. ClusterNFS
software allows minimizing system administration overheads for the cluster. Most
configuration files are shared amongst the client nodes. Because of the shared root,
any package installed on the server is automatically available on clients. In the de-
signed cluster, the client nodes are not supposed to be used as an independent work-
stations. Therefore, most of the network services are switched off [13].

13.11 Setup

This document has been written after the actual installation. Therefore, some minor
but important points may be missed. Also, some of package versions used in build-
ing are no longer available. This can be upgraded from the net. There is no master
node from the MOSIX point of view. However, one node (server) plays a special
role by booting the rest of the cluster nodes, running their root directories via NFS,
connecting the cluster with the external network, and providing disk space.

13.12 The Steps to Configure a Cluster

The steps for the configuration of the cluster are given below.

1. Physically, connect the machines through a switch so that they will be able to
communicate one another once they are configured as a cluster.

2. Select the machine which is to act as the master node. In this machine, go to the
BIOS setup and configure the boot sequence to point to the CD-ROM as the first
boot device.

3. Now, identify the machines which will be acting as the clients or nodes for the
master node. Configure these machines with the CD-ROM to be the first boot
device so that we will be able to boot with the Linux boot CD-ROM. In addition,
we need to configure some hardware settings also on the clients. This is because
when the client nodes are working as a cluster, they will not be having any
monitor, keyboard or mouse connected to it and only the network card will have
a connection going out from the system box.

However, when the computer boots up, during the post routine, it usually gives an
error message and halts if the peripheral devices such as the keyboard or mouse are
not found, since they were present at the time of installation and are removed only
after the installation and prior to connecting to the switch to act as a cluster [14,15].
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So, in the BIOS, we can set up the passwords for the user and also for the system,
and this disables the peripheral device checking. In the “Advanced Options” of the
BIOS, we can set “Post mode” as Quick boot and the “Post messages” value to be set
as Disable. Under “Device Options” set Monitor Tracking as Disable and Integrated
Video as Disable. If the BIOS type is a generic one, set the “Halt On” option with
the value “No errors” so that even if the peripheral devices are not found, it will not
create an error. Once these settings are effected in the BIOS, save the settings and
come out.

Put the Linux Boot CD-ROM in the CD drive and start the machine. The boot
process starts and the machine starts reading from the drive and displays the “boot
prompt.” At this prompt, type “linux text” to denote that you want to boot from
the Linux kernel and want to opt for a text mode of installation as opposed to the
graphics mode.

Now, the installation proceeds and the cluster will be configured. We have used
RedHat Linux 9.0 in our sample setup and the hardware included the Pentium III
class of machines from Compaq; we found that even a normal assembled PC was
working fine as a cluster.

The step-by-step installation procedure involves the following:

1. Installation of the LAM.
2. Configuration of the NIS server.
3. Configuration of the NIS clients.
4. Network configuration of the server node.
5. Creation of a network file system.
6. Clustermatic installation.

Details of the installation with a suitable example have been included in the text
URL.

13.13 Clustering Through Windows

Windows mainly supports three cluster technologies to provide high availability,
reliability, and scalability [16,17]. These technologies are described in the following
sections.

13.13.1 Network Load Balancing Clusters

Network load balancing (NLB) clusters provide failover support for IP-based appli-
cations. They are ideally suited for Web-tier and front-end services. NLB clusters
can make use of multiple adapters and different broadcast methods to assist in the
load balancing of TCP, UDP, and GRE traffic requests.
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13.13.2 Server Clusters

Server clusters are suited for back-end applications and services, such as database
servers. Server clusters can use various combinations of active and passive nodes to
provide failover support for mission critical applications and services.

13.13.3 Component Load Balancing

Component load balancing (CLB) provides dynamic load balancing of middle-tier
application components that use COM+ and is ideally suited for application servers.
CLB clusters use two clusters. The routing cluster can be configured as a routing
list on the front-end web servers or as separate servers that run server cluster.

13.14 Installing the Windows Cluster

When we install the Windows 2003 Server, the Cluster Administrator is installed by
default along with installing the Windows server (e.g., the Windows 2003 server –
WS2K3). We need to launch the Cluster Administrator to start the configuration
of the cluster by going to Start-Administrative Tools-Cluster Administrator. When
installing a new cluster, we do not have to reboot the system, which is a great time
saver. The major advantages of WS2K3 server are:

1. Larger clusters: The Enterprise Edition supports up to 8-node clusters. Previous
editions only supported 2-node clusters. The Datacenter Edition supports 8-node
clusters as well. In Windows 2000, it supported only 4-node clusters.

2. 64-bit support: This feature allows clustering to take advantage of the 64-bit
version of Windows Server 2003, which is especially important to optimize the
SQL Server 2000 Enterprise Edition.

3. High availability: With this update to the clustering service, the Terminal Server
directory service can now be configured for failover.

4. Cluster Installation Wizard: A completely redesigned wizard allowing us to join
and add nodes to the cluster, and providing an additional troubleshooting facility
to view logs and details if things go wrong. It helps us to save some trips to the
Add/Remove Programs applet.

5. Microsoft Distributed Transaction Coordinator (MSDTC) configuration: We
can now configure MSDTC once and it is replicated to all nodes, which elimi-
nates the requirement to run the comclust.exe utility on each node.
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13.15 Grid Computing

Grid computing, most simply stated, is distributed computing taken to the next evo-
lutionary level. The goal is to create the illusion of a simple yet large and powerful
self-managing virtual computer out of a large collection of connected heterogeneous
systems, sharing various combinations of resources.

The standardization of communications between heterogeneous systems have
created the Internet explosion. The emerging standardization for sharing resources,
along with the availability of higher bandwidth, is the driving force behind the evo-
lutionary step in grid computing. The basic principle of grid computing are summa-
rized in the next sections.

13.15.1 Exploiting Underutilized Resources

The minimum use of grid computing is to run an existing application on a different
machine. The machine on which the application is normally run might be unusually
busy due to an unusual peak in activity. The job could be run on an idle machine
elsewhere on the grid.

There are at least two prerequisites for this scenario. The application must be
executable in a remote site without undue overhead of any system. The remote ma-
chine must be in a position to meet any special hardware, software, or resource
requirements imposed by the application.

For example, a batch job that spends a significant amount of time for processing
a set of huge input data to produce an output set is perhaps the most ideal and simple
use of a grid. If the size of the input and output are large, proper planning might be
required to efficiently use the grid. It would usually not make sense to use a word
processor remotely on a grid because there would probably be greater delays and
more potential points of failure.

In most organizations, there are large amounts of underutilized computing re-
sources. Most desktop machines are busy less than 5 percent of the time. In some
organizations, even the server machines can often be relatively idle. Grid computing
provides a framework for exploiting these underutilized resources and thus has the
possibility of substantially increasing the efficiency of resource usage.

The processing resources are not the only ones that may be underutilized. Often,
machines may have enormous unused disk drive capacity. Grid computing, more
specifically, a “data grid”, can be used to aggregate this unused storage into a much
larger virtual data store, possibly configured to achieve improved performance and
reliability over that of any single machine.
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13.15.2 Parallel CPU Capacity

The potential for massive parallel CPU capacity is one of the most attractive fea-
tures of a grid. In addition to pure scientific needs, such computing power is driving
a new evolution in industries such as the biomedical field, financial modeling, oil
exploration, motion picture animation, and many others.

The common attribute among such uses is that the applications have been written
to use algorithms that can be partitioned into independently running parts. A CPU
intensive grid application can be thought of as many smaller “subjobs,” each exe-
cuting on a different machine of the grid. If the subjobs do not need to communicate
with each other, then the application becomes more “scalable.” A perfectly scalable
application will, for example, finish 10 times faster if it uses 10 times the number of
processors.

Barriers often exist to perfect scalability. The major barrier depends on the al-
gorithms used for splitting the application among many CPUs. If the algorithm can
only be split into a limited number of independently running parts, then that itself
becomes a scalability barrier. The second barrier appears if the parts are not com-
pletely independent, which causes contention, limiting the scalability.

For example, if all the subjobs need to read and write from one common file or
database, the access limits of that file or database will become a limiting factor in the
application’s scalability. Other sources of interjob contention in a parallel grid appli-
cation include message communications latencies among the jobs, network commu-
nication capacities, synchronization protocols, input-output bandwidth to devices,
and storage devices and latencies interfering with real-time requirements.

13.16 Types of Resources Required to Create a Grid

A grid is a collection of machines referred to as nodes, resources, members, donors,
clients, hosts, engines, and so on. They all contribute any combination of resources
to the grid as a whole. Some resources may be used by all users of the grid while
others may have specific restrictions.

13.16.1 Computational Resources

The most common resource is computing cycles provided by the processors of the
machines on the grid. The processors can vary in speed, architecture, software plat-
form, and other associated factors, such as memory, storage, and connectivity. There
are three primary ways to exploit the computation resources of a grid. The first and
the most common way is to run an existing application on an available machine on
the grid rather than locally. The second is to use an application designed to split its
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work in such a way that the separate parts can execute the job in parallel on different
processors. The third way is to run an application that needs to be executed many
times, on many different machines in the grid.

Scalability is a measure of how efficiently the multiple processors on a grid are
used. If twice as many processors makes an application complete in one half of
the time, then it is said to be perfectly scalable. However, there may be limits to
scalability when applications can only be split into a limited number of separately
running parts or if those parts experience some other contention for resources of
some kind.

13.16.2 Storage Resources

The second resource used in a grid is data storage. A grid providing an integrated
view of data storage is sometimes referred to as a data grid. Each machine on the grid
usually provides some quantity of storage facility for grid use, even if it is temporary.
Storage can be memory attached to the processor, secondary storage using hard disk
drives, or other permanent storage media. Memory attached to a processor usually
has very fast access, but it is highly volatile. It would best be used to cache data or
to serve as temporary storage for running applications.

Secondary storage in a grid can be used in an effective manner to increase the ca-
pacity, the performance, the sharing, and the reliability of data. Many grid systems
use mountable “networked file systems,” such as the Andrew File System (AFS®),
the Network File System (NFS), the Distributed File System (DFS™), or the Gen-
eral Parallel File System (GPFS). These offer varying degrees of performance, se-
curity features, and reliability features.

Capacity on the grid can be increased by using the storage on multiple machines
with a unifying file system. Any individual file or database can span several storage
devices and machines, eliminating maximum size restrictions. This may often an-
chor with the operating system imposed by file systems. A unifying file system can
also provide a single uniform name space for grid storage. This makes it easier for
the users to access the reference data residing in the grid. In a similar way, special
database software can amalgamate an assortment of individual databases and file to
form a larger, more comprehensive database, which are accessible using database
query functions.

More advanced file systems on a grid can automatically duplicate sets of data, to
provide redundancy for increased reliability and increased performance. An intelli-
gent grid scheduler can help to select the appropriate storage devices to hold data,
based on usage patterns. Jobs can be assigned closer to the data, preferably on the
machines directly connected to the storage devices holding the required data.

Data striping can also be implemented by grid file systems. When there are se-
quential or predictable access patterns to data, we can create the virtual effect of
having storage devices that can transfer data at a faster rate than any individual disk
drive. This effect is very important either for multimedia data streams, or while col-
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lecting large quantities of data at extremely high rates from CAT scans, or particle
physics experiments, for example.

A grid file system can also implement journaling so that data can be recovered in
a reliable manner, even after certain kinds of unexpected failures. In addition, some
file systems implement advanced synchronization mechanisms to reduce contention
while sharing and updating the data by a number of users.

13.16.3 Communications Mechanisms

The rapid development of communication capacity among machines today makes
grid computing practical, compared to the limited bandwidth available when dis-
tributed computing was first emerged. Hence, another important resource of a grid
is data communication capacity. This includes communications within the grid and
external to the grid. Communications within the grid are required for sending jobs
and their required data to points within the grid. Some jobs require a large amount
of data to be processed and it may not always reside on the machine running the job.
The bandwidth available for such communications can often be a critical resource
that can limit the utilization of the grid.

External communication access to the Internet, for example, can be a valuable
factor while building search engines. Machines on the grid may have connections to
the external Internet besides the connectivity among the grid machines. When these
connections do not share the same communication path, then that may be added to
the total available bandwidth for accessing the Internet.

Redundant communication paths are sometimes needed to handle the potential
network failures and excessive data traffic. In some cases, higher speed networks
must be provided to meet the demands of jobs transferring larger amounts of data.
A grid management system can better show the topology of the grid and highlight
the communication bottlenecks. This information can in turn be used to plan for
hardware upgrades.

13.16.4 The Software and Licenses Required
to Create the Grid

The grid may have software installed that may be too expensive to install separately
on every grid machine. Using a grid, the jobs requiring this software can be sent
to the particular machines on which this software happens to be installed. When
the licensing fees are significant, this approach can save significant expenses for an
organization.

Some software licensing arrangements permit the software to be installed on
all of the machines of a grid but may limit the number of installations that can
be simultaneously used at any given instant. License management software keeps
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track of how many concurrent copies of the software are being used, and it prevents
the users from executing the job simultaneously. The grid job schedulers can be
configured to take software licenses into account, optionally balancing them against
other priorities or policies.

13.17 Grid Types – Intragrid to Intergrid

There have been attempts to formulate a precise definition for what a “grid” is. In
fact, the very concept of grid computing is still evolving. We will be pragmatic in
this regard. We do not claim to make any complete definition of a grid. Therefore,
the following descriptions of various kinds of “grids” must be considered in that
spirit.

Grids can be built in all sizes, ranging from just a few machines in a department
to groups of machines organized as a hierarchy spanning the world. In this section,
we will describe some examples in this range of grid system topologies.

The simplest grid consists of just a few machines, all with the same hardware
architecture and the same operating system, connected on a local network. This
kind of grid uses homogeneous systems. The machines may be in one department
of an organization, and their use as a grid may not require any special policies or
security concerns. As the machines have the same architecture and operating system,
choosing application software for the grid is usually simple. Some people would call
this a cluster implementation rather than a “grid.”

The next progression would be to include heterogeneous machines. In this con-
figuration, more types of resources are available. The grid system is likely to in-
clude some scheduling components. File sharing may still be accomplished using
networked file systems. Machines participating in the grid may include multiple
departments still within the same organization. Such a grid is referred to as an in-
tragrid.

As the grid expands to many departments, policies may be set up for the use of
the grid. For example, there may be policies for the kind of work allotted to the grid
and even the duration completion of work. There may be a set prioritization for each
department regarding the users, applications, and resources of the grid.

The security element becomes more important if more or different organizations
are involved. Sensitive data in one department may need to be protected from access
by jobs running for other departments. Dedicated grid machines may be added to
increase the quality of service for grid computing.

The grid may grow geographically in an organization that has facilities in dif-
ferent cities. Dedicated communications connections may be used among these fa-
cilities and the grid. In some cases, VPN tunneling or other technologies may be
used over the Internet to connect the different parts of the organization. The grid
may grow to be hierarchically organized to reduce the contention implied by central
control, increasing scalability.
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Over time, a grid may grow to cross organization boundaries, and may be used
to collaborate on projects of common interest. This is known as an intergrid. The
highest levels of security are usually required in this configuration to prevent pos-
sible attacks and spying. The intragrid offers the prospect for trading or brokering
resources over a much wider audience. Resources may be purchased as a utility
from trusted suppliers.

13.18 The Globus Toolkit

The Globus Toolkit (GT) is a joint initiative of the University of Southern Cali-
fornia, the Argonne National Lab, and the University of Chicago. It provides an
open-source set of services addressing fundamental grid issues, such as security, in-
formation discovery, resource management, data management, and communication.

The GT is described by its authors as being made up of three pillars of resource
management (RM), allocating resources provided by the grid to the respective con-
sumer, information services (IS), providing information about available resources
and their attributes, and data management (DM), dealing with accessing and man-
aging data in a grid (e.g., it provides a more robust and high-performance ftp, cus-
tomized to grid needs). Each pillar embeds core services given by Globus Security
Infrastructure (GSI). GSI ensures fundamental security services such as authentica-
tion, confidentiality, and integrity.

The GT supports Red Hat Linux on xSeries, AIX on pSeries and SuSE Linux
Enterprise Server 8 (SLES 8) on zSeries, containing the pre-compiled binary distri-
bution of the Globus 2.0 code for Linux on zSeries. We can find out more about the
GTPL at: http://www.globus.org/toolkit/download/license.html. For platform spe-
cific system requirements for the GT 2.2, please refer to the following Web site:
http://www.globus.org/gt2.2/platform.html.

13.19 Bundles and Grid Packaging Technology

Grid packaging technology (GPT) is a package used for installation and distribution,
which includes libraries, files, and modules to support package creation and installa-
tion. It supports the installation of GT bundles. The package contains the executable
files, script files, and configuration files. There are two types of bundles, source bun-
dles (Table 13.1) and binary bundles (Table 13.2). The binary bundles contain the
binary executable files that have been precompiled for specific platforms.

Other platform-specific binary bundles are available at the following Globus FTP
site: ftp://ftp.globus.org/pub/gt2/2.2/2.2-latest/bundles/bin/. The installation of the
grid involves the following steps:

1. Installing the GPT.
2. Installing the source and binary bundles.
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Table 13.1 Source bundle

Client bundle Server bundle SDK bundle

Resource globus- globus- globus-
management resourcemanagement- resourcemanagementserver- resourcemanagement-

client-2.2.2- 2.2.2-src_bundle.tar.gz sdk-2.2.2-
src_bundle.tar.gz src_bundle.tar.gz

Information globus- globus- globus-
services informationservices- informationservices- informationservices-

client-2.2.2- server-2.2.2- sdk-2.2.2-
src_bundle.tar.gz src_bundle.tar.gz src_bundle.tar.gz

Data globus- globus- globus-
management datamanagement- datamanagementserver- datamanagement-

client-2.2.2- 2.2.2- sdk-2.2.2-
src_bundle.tar.gz src_bundle.tar.gz src_bundle.tar.gz

Table 13.2 Binary bundles

Binary bundle Contents

globus-all-2.2.2-i686-pclinux-gnu-bin.tar.gz Client and server packages: resource manage-
ment, information services and data manage-
ment

globus-all-server-2.2.2-i686-pc-linux-gnu-
bin.tar. gz

Server packages

globus-all-client-2.2.2-i686-pc-linux-gnu-
bin.tar.gz

Client packages

globus-all-sdk-2.2.2-i686-pc-linux-gnu-
bin.tar.gz

SDK packages

globus-data-managementserver-2.2.2-i686-
pc-linuxgnu- bin.tar.gz

Server packages for the data management

globus-data-managementclient-2.2.2-i686-pc-
linuxgnu-bin.tar.gz

Client packages for the data management

globus-data-managementsdk-2.2.2-i686-pc-
linuxgnu-bin.tar.gz

SDK bundles for the data management

globus-informationservices-server-2.2.2-
i686-pc-linux-gnu-bin.tar.gz

Server packages for the information service

globus-informationservices-client-2.2.2-i686-
pc-linux-gnu-bin.tar.gz

Client packages for the information service

globus-informationservices-sdk-2.2.2-i686-
pc-linux-gnu-bin.tar.gz

SDK packages for the information service

globus-resourcemanagement-server-2.2.2-
i686-pc-linux-gnu-bin.tar.gz

Server packages for the resource management

globus-resourcemanagement-client-2.2.2-
i686-pc-linux-gnu-bin.tar.gz

Client packages for the resource management

globus-resourcemanagement-sdk-2.2.2-i686-
pc-linux-gnu-bin.tar.gz

SDK packages for the resource management

3. Installation of the grid node and the certificate authority.
4. Setting up of the grid environment.
5. Creating the certificate authority.
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6. Creating the file to be distributed.
7. Requesting and signing the gate keeper certificates for servers.
8. Requesting and signing the user certificates.
9. Setting up gate keepers.

10. Setting up the Monitory Discovery Service (MDS).
11. Setting up the Grid Information Index Service (GIIS) in the alpha machine,

which collects the data reported by the Grid Resource Information Servers
(GRIS).

12. Setting up the GRIS on beta, gamma, and delta.
13. Starting the MDS on all servers.
14. Setting up the MDS client.
15. Setting up a secure MDS.
16. Requesting and signing certificates for each server machine.
17. Checking the installation.

An illustrative example showing all these steps is included in the URL.

13.20 The HPC for Computational Chemistry

13.20.1 The Valence-Electron Approximation

In the modeling formulation of a molecule containing an n-electron, the first step is
to write the Slater determinant of orbitals which will be of the dimension n×n. If the
molecule has a very large number of electrons, the computation becomes really dif-
ficult. One of the methods to simplify the calculation is to make the valence-electron
approximation. In this approximation, core (inner) electrons are considered as point
charges coinciding with the nucleus. As for example, for the system Na2, a 22×22
determinant can be reduced to a 2×2 determinant. The Hamiltonian for the system
becomes identical with that of H2. Here, we make a constraint to avoid collapsing
of valence electrons into the inner orbital, which is supposed to be vacant in this
approximation. One way to overcome this difficulty is by making the variational
functions of the valence electrons orthogonal to the orbitals of the core electrons.

13.20.2 The Effective Core Potential

Another approach is to treat the core electrons as an imaginary sphere of dense
charge distribution providing a high repulsive potential and preventing the valence
electrons to collapse into the inner orbital. This potential is referred to as the effec-
tive core potential (ECP) or pseudopotential.

The ECP is a one-electron operator that replaces the two-electron Coulomb and
exchange operators of the HF equation in the computation of the Hamiltonian of
valence electrons. For compounds of the main-group elements, calculations with
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the ECP gives results comparable with all-electron ab initio calculations. However
for transition metals, accurate results with the ECP is harder [19].

13.20.3 The Direct SCF Method

Another suggestion in this regard is to calculate all the integrals and sore them prop-
erly so that they can be recalled in any SCF iteration. Here, the problem is the stor-
ing difficulty especially for calculations with higher basis sets. If an external disk is
storing the integrals, then the iteration may become very slow.

To avoid the use of external storage memory, Almlof developed a method known
as “the direct SCF method”. In this method, the integrals are calculated and used im-
mediately on each iteration and are never stored. This requires more CPU time, but
much less disk space. Three improvements on the direct self-consistent field method
are proposed by Marco Häser and Reinhart Ahlrichs, which together increase CPU
efficiency by about 50%: (1) the selective storage of costly integral batches, (2) the
improved integral bond for prescreening, and (3) the decomposition of the current
density matrix into a linear combination of previous density matrices – for which
the two-electron contributions to the Fock matrix are available – and a remainder
ΔD, which is minimized; the construction of the current Fock matrix only requires
processing of the small ΔD which enhances prescreening.

13.20.4 The Partially Direct SCF Method

The partially direct SCF method was developed to improve the computing efficiency
by parallelization using a PC cluster without secondary storage on each processor
(Table 13.3). Some of the electron repulsion integrals are stored in the buffer (unused
memory) with their four indices at the first SCF cycle, and they are reused at the
later SCF cycles. This simple method achieved super-linear scalability, for example,
the parallelization efficiency became ca. 1.13 in the Fock matrix generation of the
Crambin molecule (1974 basis functions), equipped by the 128 Xeon processors
(2.8 GHz) with 16 GB buffer area. This algorithm is suitable for the special purpose

Table 13.3 Efficiency of parallelization: a comparative study with direct SCF

Type of computation 2 Proc 4 Proc 8 Proc 16 Proc 32 Proc 64 Proc 128 Proc

Direct SCF 0.992 0.980 0.988 0.976 0.981 0.980 0.978
PDSCF 16 0.980 0.982 0.976 0.982 0.988 0.992 0.998
PDSCF-32 0.981 0.984 0.995 0.993 0.991 1.01 1.02
PDSCF-64 0.983 0.986 0.996 0.992 1.006 1.021 1.052
PDSCF-128 0.989 0.989 0.999 1.005 1.02 1.059 1.131
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computers for fast evaluation of the electron repulsion integrals because the recent
special purpose processor has usually no secondary storage and has a relatively large
main memory.

13.21 The Pseudopotential Method

13.21.1 The Block-Localized Wavefunction Method

The block-localized wave function (BLW) method was developed to circumvent the
delocalized nature of molecular orbitals in the HF theory to study properties of lo-
calized, or valence bond-like, electronic structures. Although the ab initio valence
bond (VB) method can be used to study the resonance effect and to define elec-
tronic localized states, its computational costs can quickly become intractable and
thus prevent applications to large molecular systems. The BLW method provides
a convenient approach to define valence bond-like resonance configurations at the
computational cost comparable to HF molecular orbital calculations.

We have seen that DFT-based methods employing non-hybrid exchange-cor-
relation functionals are more accurate than standard HF methods. They are appli-
cable to a much wider class of chemical compounds and are faster by orders of
magnitudes compared to HF implementations. This remarkable feature arises from
the separate treatment of the Coulomb and exchange contributions to the KS matrix,
which allows exploiting more efficient techniques for their evaluation. With DFT,
employing hybrid exchange-correlation functionals this advantage is lost and only
the (slower) traditional direct HF procedures are applicable. Thus, non-hybrid DFT
is the natural choice for electronic structure calculations on much-extended systems,
which are otherwise intractable by quantum mechanical methods. However, as the
exchange-correlation functional is unknown, DFT suffers from the distinct disad-
vantage that, in contrast to more traditional quantum chemistry methods, there is no
systematic way to improve and to assess the accuracy of a calculation. Fortunately,
extensive experience shows which classes of chemical compounds can be modeled
with good success.

Serial linear algebra routines have to be replaced in many cases by parallel ver-
sions, either because the size of the matrices enforces distributed data or due to the
cubic scaling with the problem size. In some cases, the replacement by alternative
algorithms is more advantageous either due to better parallel scalability or more fa-
vorable cache usage. The evaluation of a pairwise potential over a large number of
particles is a rather widespread problem in the natural sciences. One way to avoid the
quadratic scaling with the number of particles is the fast multipole method (FMM)
which treats a collection of distant charges as a single charge by expanding this col-
lection of charges in a single multipole expansion. The FMM is a scheme to group
the particles into a hierarchy of boxes and to manage the necessary manipulation of
the associated expansions such that linear scaling is achieved. An improved version
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of the FMM employing more stable recurrence relations for the Wigner rotation ma-
trices and an improved error estimate has been implemented. The implementation
is essentially parameter free: for a given requested accuracy, the FMM specific pa-
rameters are determined automatically such that the computation time is minimized.
The achieved accuracy is remarkable and competitive. In addition, the continuous
fast multipole method (CFMM), a generalization of the FMM for continuous charge
distributions, has been implemented and incorporated into the DSCF module of the
TURBOMOLE quantum chemistry package. The treatment of solute-solvent inter-
actions in quantum chemical calculations is an important field of application, since
most practical problems are dealing with liquid phase chemistry. The explicit treat-
ment of the solvent by placing a large number of solvent molecules around the so-
lute requires, apart from the electronic relaxation, also the geometric relaxation of
the complete solvent-solute system, yielding this approach rather impractical. Con-
tinuum solvation models replace the solvent by a continuum which describes the
electrostatic behavior of the solvent. The response of the solvent upon the polariza-
tion by the solute is represented by screening charges appearing on the boundary
surface between continuum and solute. They, however, cannot describe orientation
dependent interactions between solute and solvent. The particular advantage of the
conductor-like screening model (COSMO) formalism over other continuum models
are the simplified boundary conditions. Within the HPC-Chem project, COSMO has
been implemented for the HF and DFT methods (including energies, gradients, and
numerical second derivatives) as well as for the MP2 energies.

13.22 Exercises

1. Compile and run a simple MPI program.
2. Compile and run simple serial programs.

For a simple exercise on hpc, please refer to the book URL.
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Chapter 14
Research in Computational Chemistry
and Molecular Modeling

14.1 Introduction

We have seen in Sect. 1.10 some research topics connected with computational
chemistry. In this chapter we shall specifically mention some of the research
methodologies adopted in this discipline with some examples.

14.2 Molecular Interaction

Molecular interaction is a property to be exploited, which helps to quantitatively
and qualitatively compute molecular-level aspects related to the orientation, confor-
mation, and activity. The adsorption and diffusion of a carbon (C) atom on several
low-index metal surfaces can be studied based on first-principles calculations. The
method can be quantum mechanical or density-functional under plane wave for-
malism, preferably with ultra soft pseudopotentials. The adsorption energies and
diffusion barriers of a C atom on metal surfaces can be calculated. The interactions
between a pair of C atoms at different separations on these surfaces can also be
investigated.

The adsorption of atomic oxygen and carbon can be studied with plane wave den-
sity functional theory on Ni surfaces. Various adsorption sites on these surfaces can
be examined in order to identify the most favorable adsorption site for each atomic
species. The dependence of surface bonding on the adsorbate can be investigated.
Adsorption energies and structural information are obtained and can be compared
with existing experimental results. In addition, activation barriers to CO dissociation
can be determined on Ni by locating the transition states for these processes [1].

The method can be extended to biomolecules. A study of antibody-antigen in-
teractions can be undertaken. Antigen-contacting residues and combining site shape
in the antibody crystal structures are available in the Protein Data Bank. Antigen-
contacting propensities are presented for each antibody residue, allowing a new def-
inition for the complementarity determining regions to be proposed based on ob-
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served antigen contacts. An objective means of classifying protein surfaces by gross
topography can be developed and applied to the antibody combining site surfaces.

The prediction of secondary structural class and architecture from sequence com-
position analysis can also be investigated. Modifications to a well established geo-
metric prediction algorithm to improve accuracy and the estimation of reliability
may be tried. The hierarchical prediction of fold architectures may be made based
on the computational studies [2].

To complement the ab initio approach of class and architecture prediction, a novel
sequence alignment algorithm employing direct comparisons of predicted secondary
structure and sequence-derived hydrophobicity may be developed, and applied to
fold recognition.

The catalytic growth of carbon (C) nanotubes on clusters of transition metal
catalysts is of much significant current interest. The elemental energetics for the
atomistic rate processes involved in the initial stages of the growth can be made by
a computational study of the C atom on a nickel (Ni) magic cluster (Ni38), which
preserves fcc geometry. The same analysis may be carried out to “low-index ex-
tended Ni surfaces.” Related topics of interest are:
1. Parameterization of peptide-metal surface or water-metal surface interactions.
2. Molecular dynamics simulations of peptide adsorption at the interface between

water and model hydrophobic/hydrophilic surfaces.
3. Dynamics and thermodynamics of polymer/penetrant systems.
4. Solvent interaction with beta-sheeted crystalline polymers.

14.3 Shape Selective Catalysts

Molecular dynamics and a quantum chemical investigation of partially amorphous
material derived from zeolite is important for technological and industrial applica-
tions such as catalysis, ion-exchange, and ceramic chemistry. Zeolite is a shape-
selecive catalyst, which changes its catalytic activity on changing its shape. The
ZSM-5 developed from zeolite can convert methyl and ethyl alcohol into petrol.
Properties of such catalysts need proper investigation. In the computational proce-
dure [3], initially a modeling is done to predict catalytic properties. We can even
set up a mathematical model correlating molecular shape and catalytic activity. Par-
tial amorphization as is seen in zeolites can be used to tune specific properties. We
can apply molecular dynamics using classical interaction potentials and canonical
ensembling to excavate the required property.

In order to generate partially amorphous structures the silicious crystalline con-
figuration will be heated to high temperatures, equilibrated, and finally quenched
to 300 K. The expected (local) minimum configurations will be stored and then
quenched to zero temperature using a combined steepest-descent-conjugate-gradient
algorithm. The extent of amorphization can be estimated as the percentage of energy
crystallinity (PEC):

PEC =

(
Eamorphous −Econfiguration

)×100(
Eamorphous−Ecrystalline

) (14.1)
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For the detected local minima the dynamic matrices will be calculated and diagonal-
ized in order to obtain eigenvalues (squares of eigenfrequencies) and eigenvectors
(types of motion).The structural properties of the partially amorphous materials can
be analyzed by means of pair-distribution functions and bond angle distributions.
A comparison to the crystalline ZSM-5 may be made.

An important quantitative term for zeolites is the internal surface area (ISA). For
its determination the system is modeled as an ensemble of intersecting hard spheres
with radii Rcoord depending on the coordination number (CN) [4]. The ISA can be
determined using the so-called probe-atom model:

ISA =
1
M

(
N

∑
i=1

4π
[
Rcoord(i)+ rprob

]2 pi

p

)
(14.2)

Here, rprob denotes the probe-atom radius, p the total number of sample points ho-
mogenously distributed on the surfaces of the spheres, and pi the number of points
on sphere i not being inside other spheres. Computational studies of the partial
amorphization of zeolite ZSM-5 made by Atashi Basu Mukhopadhyay, Christina
Oligschleger, and Michael Dolg revealed the following results:

1. For large probe radii the ISA decreases due to the reduction of the number of
large pores, whereas for small probe radii the ISA increases due to the increase
in under-coordination and an increasing tendency to convert large rings into
smaller rings.

2. The relative contributions of the motions of structural subunits to the total vi-
brational density of states (VDOS) was analyzed by projecting the eigenvec-
tors onto the vibrational modes of the isolated structural subunits Si−O−Si and
SiO4.

3. For structures with PEC of above/below 60% the intensity of the so-called Bo-
son peak decreases/increases. The effect is associated with a decrease of the
concentration of 10-fold rings and a general lowering of symmetry by the puck-
ering of large rings. The latter behavior is related to an increasing participation
of under-coordinated centers in the relevant low-frequency motions.

4. Finally, the structure and relative stability of edge-sharing SiO4 tetrahedra vs.
the common corner-sharing SiO4 tetrahedra was investigated by quantum chem-
ical ab initio techniques for the model systems W-silica and alpha-quartz.

14.4 Optimized Basis Sets for Lanthanide and Actinide Systems

Ab initio calculations of the electronic structure of lanthanide and actinide elements
and their molecules are very demanding due to the large relativistic and electron cor-
relation effects. The ab initio energy-consistent pseudopotential approach proved to
be a reliable approximate relativistic scheme for calculations of the valence elec-
tron structure of lanthanide and actinide systems when a small core is used. Po-
larized valence basis sets of roughly quadruple-zeta quality have to be used for
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both the 4 f and 5 f series. An atomic natural orbital-based generalized contrac-
tion scheme can be applied, which allows to reduce the basis set size to triple-
or double-zeta quality by omitting the outermost contractions corresponding to the
least occupied atomic natural orbitals. The contractions coefficients need to be op-
timized for the f nd1s2 and f n+1s2 configurations simultaneously, by averaging the
corresponding density matrices. As an alternative, segmented contracted basis sets
may also be derived. Both sets can be successfully tested in atomic and molecular
calibration calculations (e.g., for some monohydrides, monoxides, and monofluo-
rides) and are available, e.g., through the Internet (URL: http://www.theochem.uni-
stuttgart.de/pseudopotentiale). As an application, the electronic structure of selected
lanthanide dimers (La2, Ce2, Eu2, Gd2, Yb2, Lu2) were investigated in large-
scale considering correlated electronic structure calculations by Xiaoyan Cao and
Michael Dolg. It was concluded that e.g., the ground state configurations of La2

and Lu2 differ (mainly) due to an increase of relativistic effects and (partially) shell
structure effects. The vibrational frequency of the La2 system is most likely affected
by the rare gas matrix much more than the one of the Lu2 system, thus explaining
remaining differences with recent experimental data. Gd2 is confirmed to have 18
unpaired electrons in the ground state, 14 of them in the two 4 f shells [5].
The higher lanthanide and actinide ionization potentials exhibit very large differ-
ential electron correlation effects, since the f occupation number of the involved
electronic states changes. In order to come to reliable estimates for the higher ion-
ization potentials, computations were performed at the CASSCF/ACPF and partially
at the CCSD(T) level (including spin-orbit correlations) basis set extrapolation stud-
ies using uncontracted valence basis sets with up to i-type functions. The results are
in good agreement with the experimentally better known values for the lanthanides
and provide (in our opinion) the best and most complete theoretical set of values for
the actinides. Similar techniques have been recently used to calculate the electron
affinity of the Ce atom. Here, we obtained excellent agreement with all-electron
ab initio calculations as well with as earlier experimental results, whereas the most
recent experiment was interpreted to lead to a substantially higher value. Finally, us-
ing large-core (4 f -in-core) pseudopotentials they selected lanthanide(III)texaphyrin
complexes, which are important for cancer theraphy.

14.5 Designing Biomolecular Motors

Molecular motors can be considered as “nanomachines” that consume energy in one
form and convert it into motion or mechanical work. In fact, they are the ultimate
nanomachines, providing maximum efficiency. There are a number of biopolymers
which can function as efficient molecular (bio) motors. For example, many protein-
based molecular motors make use of the chemical free energy (Gibbs free energy)
released by the hydrolysis of ATP (Adenosine tri phosphate, the energy currency)
in order to perform mechanical work. In terms of thermodynamic efficiency, these
types of motors will be superior to currently available man-made motors. Hence,
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designing molecular motors of this type is of much research interest. A compu-
tational analysis of biopolymers to identify this mechano-chemical property is of
much research interest. The property can be analyzed through quantum mechani-
cal and molecular mechanics computational techniques by taking biomotors such
as myosinV (actin) and kinesin (microtubule), etc. The computational technique in-
volved in designing new biomotors is comprised of the following steps.

1. Modeling the control of the patterning of motor raceways as functioning tracks
for the motion of motor proteins.

2. Studying the two of the main classes of proteins actin/myosin and micro-
tubule/kinesin to understand their relative merits towards nanotechnology ap-
plications.

3. Making suitable computational studies to model structures, molecular orbitals,
electrostatic potential, densities, vibrational frequencies, NMR shielding ten-
sors, and reaction pathways.

4. Predicting the thermodynamics of the process, through computational modeling,
which is of much importance in designing molecular motors.

5. Studying the application of single motors and collections of motor proteins.
6. Studying the coupling of nanotubes to the electrical circuit through electro/di-

electrokinesis at the nanometer scale.
7. Understanding a processing methodology for incorporating nanometer scale

e-beam lithography, nanotube placement/growth, patterned chemical function-
alization, and motor binding and motility. These capabilities and fundamental
characterizations will be applied to new force-sensing analyzing devices and
multiplexing arrays.

14.6 Protein Folding and Distributed Computing

Protein folding is the current poster child of the distributed computing world. This
is because figuring out the folding order of a protein and obtaining its final structure
is an extremely complicated molecular dynamics problem. To put it in perspective,
the individual structural units move around their bonds on a time scale in the 10
to 100 picoseconds range (10−12 s) but the protein might take anywhere from a few
microseconds to a few minutes to reach its final structure. This implies that at least
10,000 moves per structural unit are required for a small protein that obtains its
structure, while more complicated proteins are likely to involve around 600 billion
moves per structural unit [5, 6].

Speeding up the process appears to be exactly what M. Sega and P. Faccioli et. al
have done. They have found a way to quickly calculate the most probable path from
the unfolded state (or any other state) to any stable, folded state. They use a form
of the diffusion equation, which is the same equation that describes how a drop of
liquid sugar will spread out through water. Using this equation, the probability of
finding a protein in a particular state at a particular time can be calculated. It is also
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trivial to determine if that state is stable by minimizing a potential energy function.
Hence, the time and path from a denatured (e.g., unfolded) protein to the folded
state can be found by minimizing a potential energy function and performing an
integration, which supplies the path and time taken to traverse the path.

The potential energy function that is minimized is found by a combination of
more traditional molecular dynamics and experimental knowledge. For most pro-
teins, a stable structure can be determined using experimental techniques. Perform-
ing a short molecular dynamics simulation with the protein configured in its sta-
ble form determines the potential energy function for the stable form. Then similar
simulations on several unstable forms (e.g., unfolded) are used to determine a back-
ground potential for this minimized potential to sit in. According to the researchers,
these simulations are short enough that the entire calculation can be performed on
a normal desktop computer.

Using this surface, the researchers can calculate the most probable path between
any two locations on the surface. That can then be mapped to time and, through
the entropy of the protein, the structures it passes through on the way. An additional
advantage of this approach is what it tells us about the stability of the stable state and
the presence of other stable states, and how likely it is to make a transition between
states. Since structure is very important to protein function, this seems like it could
be a useful tool.

14.7 Computational Drug Designing and Biocomputing

The cellular targets (or receptors) of many drugs used for medical treatment are pro-
teins. By binding to the receptor, drugs either enhance or inhibit its activity. Basi-
cally, there are two major groups of receptor proteins: proteins that “float” around in
the cytoplasm of the cell, and proteins that are incorporated into the cell membrane.
In the latter case, a drug does not even need to enter the cell; it can bind simply to an
extracellular binding site of the protein and control intracellular reactions from the
outside. An important criterion to determine the medical value of a drug is speci-
ficity: the physiological effect of the drug should be as clearly defined as possible.
It has to specifically bind to the target protein in order to minimize undesired side
effects. Undesired side effects, however, are not always an indication for insufficient
specificity of drugs, as these effects might also result from a reaction of our body to
the desired and therefore successful regulation of the malfunctioning biochemical
process. On the molecular level specificity includes two more or less independent
mechanisms; firstly, the drug has to bind to its receptor site with a suitable affin-
ity (better binding means lower doses) and secondly, it has to either stimulate or
inhibit certain movements of the receptor protein in order to regulate its activity.
Both mechanisms are mediated by a variety of interactions between the drug and its
receptor site. Usually, tens of thousands of compounds have to be screened to find
a promising new drug and only very few of these candidates will make their way
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through the final clinical tests. Looking for help from powerful computers seems
straightforward. So, how can they help?

The input of biocomputing in drug discovery is twofold: firstly, the computer
may help to optimize the pharmacological profile of existing drugs by guiding the
synthesis of new and “better” compounds. Secondly, as more and more structural in-
formation on possible protein targets and their biochemical role in the cell becomes
available, completely new therapeutic concepts can be developed. The computer
helps in both steps: to find out about possible biological functions of a protein by
comparing its amino acid sequence to databases of proteins with known functions,
and to understand the molecular workings of a given protein structure. Understand-
ing the biological or biochemical mechanism of a disease then often suggests the
types of molecules needed for new drugs.

In all cases, the aim of using the computer for drug design is to analyze the in-
teractions between the drug and its receptor site and to “design” molecules that give
an optimal fit. The central assumption is that a good fit results from structural and
chemical complementarity to the target receptor. The techniques provided by com-
putational methods include computer graphics for visualization and the methodol-
ogy of theoretical chemistry. By means of quantum mechanics the structure of small
molecules can be predicted to experimental accuracy. Statistical mechanics permits
molecular motion and solvent effects to be incorporated.

The best possible starting point is an X-ray crystal structure of the target site. If
the molecular model of the binding site is precise enough, one can apply docking
algorithms that simulate the binding of drugs to the respective receptor site.

Even if the structure of the receptor site is unknown, the computer may help to
figure out how it might look by comparing the chemical and physical properties of
drugs that are known to act at a specific site. Moreover, if the amino acid sequence
of the receptor site is known, one can try to predict the structure of the unknown
site. This can either be done “from scratch” or by using a known structure of a re-
lated protein as template. If about 25 to 30% of the amino acid residues are identical
in two proteins, one may assume that the three-dimensional structure of these two
proteins is very similar. The technique used for this approach is called “homology
modeling.” The folding pattern of the template protein is maintained and the side
chain atoms of the template protein are replaced by the side chain atoms of the
unknown protein. Basically, the three-dimensional structure of a protein is repre-
sented by the three-dimensional organization of the backbone atoms. The side chain
atoms, which are different for all 20 amino acids, define the specific interactions
with ligands or other protein domains. Replacing the side chains while maintain-
ing the backbone therefore allows to keep the general structure of the protein and
to evaluate the specific properties of the unknown protein with respect to ligand
interactions.

A prominent example is the design of potent HIV protease inhibitors [7]. The
design was based on knowledge of the target structure.



304 14 Research in Computational Chemistry and Molecular Modeling

14.8 Artificial Photo Synthesis

In the photosynthetic reaction centers of plants, light energy is converted into chemi-
cally useful energy and oxygen is produced. This photochemical reaction is initiated
by a charge separation process in the reaction center (RC) complex. Major research
in this regard is to analyze the light-driven electron transfer (ET) and to study the
response of the protein in which the RC is embedded, stabilizing the charge sep-
aration process in photosynthesis. Several computational tools including Density
Functional Theory (DFT), Car-Parrinello molecular dynamics simulations, hybrid
QM/MM approaches, and topological analysis of the electron density based on the
“Atoms in molecule (AIM)” theory can be used for the computation. These methods
enable us to calculate the electronic structure, absorption energies, NMR chemical
shifts, and dynamical properties of the model system within the same framework.
The long-term goal is not only to complement and interpret available spectroscopic
data, but also to predict properties of artificial photosynthetic systems.

14.9 Quantum Dynamics of Enzyme Reactions

Many enzyme reactions involve proton or hydride transfer and can be expected to
proceed by quantum mechanical tunneling. Although great progress has been made
in incorporating quantum effects into gas-phase reactions, most simulations of pro-
cesses involving proteins have involved classical mechanics, and therefore they have
been unable to properly model proton and hydride transfer processes. This has been
particularly frustrating because kinetic isotope effects are very sensitive to tunnel-
ing, and kinetic isotope effects are often the best means for learning about transition
state structure. Recently simulation of the reaction rates and kinetic isotope effects
of the hydride transfer for benzyl alcoholate anion to the coenzyme NAD+, cat-
alyzed by the enzyme liver alcohol dehydrogenase has been reported.

The calculation was made possible by two advances in simulation methods. First
is the treatment of the force field, which involves a combination of semiempirical
molecular orbital theory, semiempirical valence bond terms, and molecular mechan-
ics. Second is the treatment of atomic motions, which is based on variational tran-
sition state theory with quantized vibrations and multidimensional tunneling contri-
butions along optimized tunneling paths.

The calculations agree very well with kinetic isotope effects measured by Profes-
sor Judith Klinman and coworkers at the University of California, Berkeley, and they
provide an interpretation of the highly nonclassical kinetic isotope effects that they
observed in terms of the rehybridization at the donor carbon atom. The hybridiza-
tion of this carbon atom, caught in the process of releasing the tunneling hydride
atom, is clearly intermediate between sp2 and sp3.
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14.10 Other Important Topics

1. The development of relativistic energy-consistent ab initio pseudopotentials
(known as Stuttgart-Cologne pseudopotentials), effective core-polarization po-
tentials, as well as corresponding optimized valence basis sets.

2. The development of a new multi-reference coupled cluster approach.
3. The development of a Hartree-Fock-Wigner approach for periodic systems.
4. A quantum chemical investigation of the haptotropic rearrangement of Cr(CO)3

templates on condensed polyaromatic systems.
5. A quantum chemical investigation of TiCp2-based catalysts.
6. A quantum chemical investigation of the structure and stability of various borate

containing crystalline solids.
7. A quantum chemical investigation of the structure and stability of P−N contain-

ing oligomers and polymers.
8. A quantum chemical investigation of C−S containing solids.
9. A quantum chemical investigation of polycations containing As, Sb, Bi, Se, and

Te.
10. Performance modeling of HPC applications on computational grids.
11. Quantum mechanical dynamics.

A critical focus area in computational chemistry is quantum mechanical dynam-
ics. The linear algebraic variational method for calculating converged quantum
mechanical transition probabilities for reactive collisions has been introduced.
At present, the main application area is quantum photochemistry, i.e., the uti-
lization of electronic excitation energy to promote chemical reactions.

12. Electronically adiabatic reactions.
Electronically adiabatic reactions are those that take place entirely in the ground
electronic state, i.e., thermally activated reactions on a single potential energy
surface. Variational transition-state theory with multidimensional semi-classical
tunneling contributions (VTST) can be used to study such systems. VTST in-
volves finding the free energy bottleneck for over barrier processes and the op-
timal tunneling paths for through-barier processes. This theory has been devel-
oped for reactions in the gas phase, in a liquid solution, on metallic surfaces, and
in enzyme active sites. The role of tunneling and quantum mechanical vibra-
tional energy on rate constants, kinetic isotope effects, and state-selective chem-
istry needs to be excavated. Application areas include combustion, atmospheric
chemistry, environmental chemistry, clusters (from microhydrated species to
nanoparticles), and catalysis (heterogeneous, organometallic, and biological).

13. Electronically nonadiabatic collisions.
Another research area is semi-classical trajectory methods for reactive collisions
involving coupled potential energy surfaces. Two types of semi-classical meth-
ods are under study: trajectory surface hopping (also called molecular dynam-
ics for quantum transitions) and self-consistent potential methods (also called
time-dependent self-consistent-field methods). We can even combine these two
methods to make use of the best features of both of these approaches into a sin-
gle formalism. This technique is called decay of mixing with coherent switches,
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and it is more accurate than previously available methods for the whole range
of problems encountered in photochemistry. Furthermore, it is practical to ap-
ply this method to both simple and complex photochemical reactions such as
calculations for ammonia, OH. . . HH, bromoacetyl chloride, and Na. . . HF.

14. One area of active work is the extension of molecular mechanics force fields to
be able to treat reactive systems that involve bond breaking. An approach called
multi-configuration molecular mechanics (MCMM) has been developed for this
purpose, and it is very promising.

15. Another area of special concentration is in the interface of electronic structure
theory and dynamics. We are developing a variety of single-level and dual-level
methods for direct dynamics calculations, where direct dynamics denotes the
calculation of rate constants or other dynamical quantities directly from elec-
tronic structure calculations without the intermediacy of fitting a potential en-
ergy function. In such a case the potential energy surface is implicit but is never
actually constructed.

16. A very exciting recent development is the parameterization of multi-coefficient
methods for scaling components of the correlation energy and extrapolating
electronic structure calculations to an infinite basis set. These methods allow one
to calculate accurate gas-phase heats of formation, atomization energies, and po-
tential energy surfaces for large systems at an affordable cost. These methods
have better scaling properties than pure ab initio calculations, and they often
yield more accurate results with far less computer time. We have now shown
how these methods can be improved by adding static correlation with density
function theory for even great performance-to-cost ratios.

17. The direct calculation of free energies from potential energy surfaces, without
first calculating the energy spectrum, is also of great interest, and we are devel-
oping improved Monte Carlo sampling methods for doing this by the Feynman
path integral method.

18. Solvation effects.
Solvation effects are important for several physical, chemical, and biological
properties. Energetics and dynamics in the condensed phase are to be made as
accurate as their treatment for gas-phase species and processes. The role of the
solvent in polarizing the solute is especially interesting. Solvation models for
both aqueous and organic solvents can be developed. A variety of applications
of compounds to structure and reactivity in solution are underway.

19. Biochemical applications.
Many enzymatic reactions involve proton and hydride transfer, but until re-
cently, techniques for simulating the dynamics of these processes were usually
based entirely on classical mechanics. We can incorporate quantum effects in
biological simulations. This includes tunneling, zero point effects, and the ef-
fect of quantization on thermally averaged quantities. Proton transfers catalyzed
by enolase and hydride transfer catalyzed by liver alcohol dehydrogenase are
dominated by quantum mechanical events, and these can be well modeled by
semi-classical dynamics methods.
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An important application of solvation modeling is the calculation of the par-
titioning of organic and biological molecules between aqueous and cell mem-
branes. This has an important effect on the bioavailability of drugs.

20. Nanomaterials.
Nanotechnology is the art of manipulating materials on a scale of the order of
a nanometer, to build molecular scale devices or to take advantage of the unique
chemical, physical, and material properties of nanostructured materials. The ma-
jor research in this area focuses on computational studies of nanoparticle growth
and dynamics. We are concerned with the development and implementation of
new methods for the modeling and simulation of nanoparticles and their ele-
mentary processes, including nucleation, deposition, melting, and surface reac-
tions. Nanoscale systems present a challenge to computation because they dis-
play properties that are not well modeled by methods developed for use in bulk
simulations, and because they are expensive to treat using methods developed
for molecular systems. The development of new techniques for extending the
time and length scales of simulations and their application to problems involv-
ing semiconductor nanoparticles and metal nanoparticles is of much concern. To
study the importance of quantum effects in nanoparticle reactivity, for example,
the reaction of metal particles with hydrocarbons and hydrocarbon fragments,
we can develop multilevel methods, such as QM/MM methods, that combine
quantum mechanics (QM) and molecular mechanics (MM). The efficiency of
these methods potentially allows one to perform accurate calculations for large
reactive systems over long time scales. For the simulation of systems with non-
localized active areas, it is necessary to adaptively redefine the region to be
treated by quantum mechanics. For such systems, we can develop new methods
for combining multilevel methods with modern sampling schemes, such as our
molecular dynamics code, ANT, or Monte Carlo codes.

21. Integrated tools for computational chemical dynamics.
The goal of this research is to develop more powerful simulation methods and
incorporate them into a user-friendly high-throughput integrated software suite
for chemical dynamics. Recent advances in computer power and algorithms
have made possible accurate calculations of many chemical properties for both
equilibria and kinetics. Nonetheless, applications to complex chemical systems,
such as reactive processes in the condensed phase, remain problematic due to
the lack of a seamless integration of computational methods that allow modern
quantum electronic structure calculations to be performed with state-of-the-art
methods for electronic structure, chemical thermodynamics, and reactive dy-
namics. These problems are often exacerbated by invalidated methods, non-
modular and non-portable computer codes, and inadequate documentation that
drastically limit software reliability, throughput, and ease of use. The goal of the
Integrated Tools consortium is to develop an integrated software suite that com-
bines electronic structure packages with dynamics codes and efficient sampling
algorithms for the following kinds of condensed-phase modeling problems:
1. Thermochemical kinetics and rate constants
2. Photochemistry and spectroscopy
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3. Chemical and phase equilibria
4. Computational electrochemistry
5. Heterogeneous catalysis

The photochemical creation of excited states offers a means to control chemi-
cal transformations, because different wavelengths of light can be used to create
different vibrational states, thereby directing chemical reactions along different
pathways. It is crucial to understand how energy deposited into the system is
used; this is particularly complicated in condensed phase systems where many
channels lead to dissipation of excess energy. Similar opportunities and chal-
lenges present themselves in the areas of electrochemistry and catalysis.

22. Research on theories and the application of electronic structure.
23. Molecular mechanics studies of compounds and introduction of new force

fields.
24. Research on condensed matter physics, nanobiospectroscopy and biological

molecules.
25. The computational modeling of carbohydrates, drugs, and macromolecules.
26. Applying theoretical chemistry, structure, and the reactivity of clusters and

molecules
27. The theory application, computer models, and related data about non-covalent

binding and molecular recognition
28. Research on organic quantum mechanical methods and systems.
29. Computational studies and the reactivity of biomacromolecules tested solutions.
30. Computer-assisted methods for studies on physicochemical properties, pharma-

ceutical activity, and chemical and genetic toxicity.
31. Simulating solvent properties of solutions, proteins, and membranes.
32. Investigating in areas of reaction mechanisms and molecular electronic struc-

tures.
33. Computational study of DNA repair.
34. Theoretical and computational methods for application in broad chemical inter-

ests.
35. Investigating sources in stability, structures and properties of different macro-

molecules.
36. Computational electrochemistry: the prediction of environmentally important

redox potentials.
Single-electron transfer steps are often involved as the rate-determining step in
reaction pathways that lead to the transformation of certain classes of anthro-
pogenic organic compounds in the environment. A key molecular descriptor in
modeling electron-transfer kinetics is the one-electron redox potential.

Pure computational techniques (involving ab initio or semiempirical electronic
structure theory and quantum mechanical continuum solvation models) and of cer-
tain kinds of linear free energy relationships can be used for predicting the 1-electron
oxidation potentials of substituted anilines. Mean accuracies from 20 to 90 mV
over 21 different substituted anilines were achieved with different approaches by
professors Eric Patterson, Cramer and Truhlar. Figure 14.1 illustrates the use of
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Fig. 14.1 Use of a free energy cycle to compute such an oxidation potential in an aqueous solution

a free energy cycle to compute such an oxidation potential in aqueous solution.
They have applied this same technology to characterize the reaction path by which
hexachloroethane (a common contaminant of drinking water) is transformed in the
environment to tetrachloroethylene.
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Chapter 15
Basic Mathematics for Computational
Chemistry

15.1 Introduction and Basic Definitions

A matrix (plural matrices) is a rectangular table of elements having rows and
columns. The horizontal lines of elements in a matrix are called rows and the ver-
tical lines of elements are called columns. The elements may be numbers or, more
generally, any abstract quantities that can be added and multiplied. It is customary
to enclose the elements of a matrix in parentheses, brackets, or braces. For example,
the following is a matrix:

[
6 9 3
−1 0 8

]
(15.1)

This matrix has two rows and three columns, so it is referred to as a “2 by 3” matrix.
The elements of a matrix are represented in the following way:

[
X11 X12 X13

X21 X22 X23

]
(15.2)

That is, the first subscript in a matrix refers to the row and the second subscript refers
to the column. It is important to remember this convention when matrix algebra is
performed.

A vector is a special type of matrix that has only one row (called a row vector) or
one column (called a column vector). Below, a is a column vector while b is a row
vector.

a =

⎡
⎣

8
3
4

⎤
⎦ , b =

[−3 8 5
]

(15.3)

A scalar is a matrix with only one row and one column. It is customary to denote
scalars by italicized, lower case letters (e.g., x), to denote vectors by bold, lower
case letters (e.g., x), and to denote matrices with more than one row and one column
by bold, upper case letters (e.g., X). We shall see the application of MATLAB in our
computations.
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MATLAB is software for scientific and technical computing from Mathworks
Inc., USA. The name MATLAB originated from MATrix LABoratory and matrices
are the building blocks of MATLAB. MATLAB has inbuilt functions for doing all
matrix computations. It is one of the most popular software packages for scientific
computing. In this chapter, all the matrix computations are illustrated using MAT-
LAB [1].

15.1.1 Example 1

To enter the matrix

1 2
3 4

and store it in a variable a, type

>> a = [1 2; 3 4]

To redisplay the matrix, just type its name:

>> a

A square matrix has as many rows as it has columns. Matrix A is square but matrix B
is not square:

A =
[

2 7
4 1

]
, B =

⎡
⎣

1 9
0 2
7 −3

⎤
⎦ (15.4)

A symmetric matrix is a square matrix in which xi j = x ji for all i and j. Matrix A
is symmetric; matrix B is not symmetric.

A =

⎡
⎣

9 1 5
1 6 2
5 2 7

⎤
⎦ , B =

⎡
⎣

9 1 5
2 6 2
5 1 7

⎤
⎦ (15.5)

A diagonal matrix is a symmetric matrix where all the off diagonal elements are 0.
Matrix A is diagonal.

A =

⎡
⎣

8 0 0
0 5 0
0 0 3

⎤
⎦
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15.1.2 Example 2 Using MATLAB

This example illustrates how MATLAB can be used to display the diagonal of a ma-
trix A.

A =
3 0 0
0 2 0
0 0 2

>> B = diag(A)

Answer:

B =
3
2
2

An identity matrix (also called a unit matrix) is a diagonal matrix with all its
elements on the diagonal as unity (one or 1) and zeros elsewhere. The identity matrix
is usually denoted as I. For example, a 3-by-3 identity can be written as follows:

I =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ (15.6)

15.2 Matrix Addition and Subtraction

To add two matrices, they both must have the same number of rows and columns
(i.e., they should have the same dimensions). The elements of the two matrices
are simply added together, element by element, to produce the results. That is, for
R = A+ B, then ri j = ai j + bi j for all i and j. Thus:

[
9 5 1
−4 7 6

]
=
[

1 9 −2
3 6 0

]
+
[

8 −4 3
−7 1 6

]

Matrix subtraction works in the same way, except that elements are subtracted in-
stead of added.
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15.2.1 Example 3: Matrix Addition Using MATLAB

>> A = [1 9 -2; 3 6 0]
A =

1 9 -2
3 6 0

>> B = [8 -4 3; -7 1 6]
B =

8 -4 3
-7 1 6

>> C = A + B
C =

9 5 1
-4 7 6

15.3 Matrix Multiplication

There are several rules for matrix multiplication. The first concerns the multipli-
cation between a matrix and a scalar. Here, each element in the product matrix is
simply the scalar multiplied by the element in the matrix. That is, for R = aB, then
ri j = abi j for all i and j. Thus:

8

[
2 6
3 7

]
=
[

16 48
24 56

]
(15.7)

Matrix multiplication involving a scalar is commutative. That is, aB = Ba. The
next rule involves the multiplication of a row vector by a column vector. To perform
this, the row vector must have as many columns as the column vector has rows [2,3].

For example:

[
1 7 5

]
⎡
⎣

2
4
1

⎤
⎦ is legal. However

[
1 7 5

]
⎡
⎢⎢⎣

2
4
1
7

⎤
⎥⎥⎦

is not legal because the row vector has three columns while the column vector has
four rows. The row vector multiplied by a column vector (i.e., the dot product) will
be a scalar. This scalar is simply the sum of the first element of the row vector
multiplied by the first element of the column vector, plus the second element of the
row vector multiplied by the second element of the column vector, plus the third
element of the row vector multiplied by the third element of the column vector, and
so on. In linear algebra, this can be represented as r = ab or

r =
n

∑
i=1

aibi (15.8)
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Thus:

[
2 6 3

]
⎡
⎣

8
1
4

⎤
⎦= 2 ∗ 8 + 6 ∗ 1+3∗4 = 34

All other types of matrix multiplication involve the multiplication of a row vector
and a column vector. Specifically, in the expression R = AB:

ri j = ai.b. j (15.9)

where ai. is the i-th row vector in matrix A and b. j is the j-th column vector in
matrix B. Thus, if:

A =
[

2 8 1
3 6 4

]
and B =

⎡
⎣

1 7
9 −2
6 3

⎤
⎦

r11 = a1.b.1 =
[

2 8 1
]
⎡
⎣

1
9
6

⎤
⎦= 2 ∗ 1 + 8 ∗ 9 +1∗6 = 80

r12 = a1.b.2 =
[

2 8 1
]
⎡
⎣

7
−2
3

⎤
⎦= 2 ∗ 7 + 8 ∗ (−2)+1∗3 = 1

r21 = a2.b.1 =
[

3 6 4
]
⎡
⎣

1
9
6

⎤
⎦= 3 ∗ 1 + 6 ∗ 9 +4∗6 = 81

r22 = a2.b.2 =
[

3 6 4
]
⎡
⎣

7
−2
3

⎤
⎦= 3 ∗ 7 + 6 ∗ (−2)+4∗3 = 21

Thus:

[
2 8 1
3 6 4

]⎡
⎣

1 7
9 −2
6 3

⎤
⎦=

[
80 1
81 21

]

For matrix multiplication to be legal, the first matrix must have as many columns
as the second matrix has rows. This, of course, is the requirement for multiplying
a row vector by a column vector. The resulting matrix will have as many rows as
the first matrix and as many columns as the second matrix. Because A has 2 rows
and 3 columns while B has 3 rows and 2 columns, the matrix multiplication may
legally proceed and the resulting matrix will have 2 rows and 2 columns. Because
of these requirements, matrix multiplication is usually not commutative. That is,
usually AB 
= BA. And even if AB is a legal operation, there is no guarantee that
BA will also be legal. For these reasons, the terms premultiply and postmultiply are
often encountered in matrix algebra, while they are seldom encountered in scalar
algebra.
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15.3.1 Example 4: Matrix Multiplication Using MATLAB

A = [2 8 1;3 6 4]
A =

2 8 1
3 6 4

>> B = [1 7;9 -2;6 3]
B =

1 7
9 -2
6 3

>> C = A * B
C =

80 1
81 21

Note: In MATLAB, there is another kind of multiplication involving two matrices of
the same dimensions, wherein each element of the product matrix is the product of
the corresponding elements of the matrices (i.e., element by element multiplication)
involved in multiplication. This is represented as C = A.*B. For example:

>> A = [1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

>> B = [3 5 7;2 6 8; 4 7 3]
B =

3 5 7
2 6 8
4 7 3

>> C = A.* B
C =

3 10 21
8 30 48

28 56 27

15.4 The Matrix Transpose

If A is a m-by-n matrix with elements aij, the n-by-m matrix obtained from A by
interchanging the rows and columns is called the transpose of A and is written as
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prime (A′ ) or a superscript t or T (At or AT ) Thus:

A =
[

2 7 1
8 6 4

]
and AT =

⎡
⎣

2 8
7 6
1 4

⎤
⎦ (15.10)

The transpose of a row vector will be a column vector, and the transpose of
a column vector will be a row vector. The transpose of a symmetric matrix is simply
the original matrix.

15.4.1 Example 5: The Transpose of a Matrix Using MATLAB

>> A = [2 7 1; 8 6 4]
A =

2 7 1
8 6 4

>> B = A’
B =

2 8
7 6
1 4

The properties of the transpose are as follows: The transposition operation is
reflective; i.e.,

(
AT
)T = A. The transpose of the product of two matrices is equal to

the product of their transposes in the reserve order; i.e., (AB)T = BT AT .

15.5 The Matrix Inverse

In scalar algebra, the inverse of a number is that number which, when multiplied
by the original number, gives a product of 1. Thus, the inverse of x is 1/x and is
denoted as x−1. In matrix algebra, the inverse of a matrix is that matrix which, when
multiplied by the original matrix, gives an identity matrix. The inverse of a matrix
is denoted by the superscript “−1”. Hence:

AA−1 = A−1A = I (15.11)

If A has an inverse, it is said to be invertible. If an n-by-n matrix A is invertible,
the elements of the inverse of matrix A can be computed using its determinant and
the transpose of the matrix of its cofactors. Firstly, we form the matrix composed of
the cofactors of A with the elements. The cofactor of a matrix is the signed minor
of the matrix which can be formed by the elements of the matrix that do not fall in
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the same row and column of the minor element and taking the determinant of the
resulting matrix.

B = bij = (−1)i+ j det(Mij) (15.12)

Secondly, the adjoint of A is defined as the transpose of the matrix B. Thus,
adj(A) is the matrix BT . The inverse is then:

A−1 =
1
|A|adj(A) (15.13)

The determinant of a square matrix A (denoted by |A|) is a single number asso-
ciated with every square matrix which can be calculated by using all the elements
of the matrix. The calculation of determinant of a matrix is very useful in the de-
termination of the matrix inverse and the analysis and solution of systems of linear
systems of equations. For a two-dimensional matrix, the determinant is given by:

|A| =
∣∣∣∣
a1 b1

a2 b2

∣∣∣∣= a1b2 −a2b1

For a three-dimensional matrix, the determinant is given by:

|A| =
∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
= a1

∣∣∣∣
b2 c2

b3 c3

∣∣∣∣−b1

∣∣∣∣
a2 c2

a3 c3

∣∣∣∣+ c1

∣∣∣∣
a2 b2

a3 b3

∣∣∣∣

The determinant has the following important properties, which include invariance
under elementary row and column operations: (a) Switching two rows or columns
changes the sign (b) Scalars can be factored out from rows and columns (c) Multi-
ples of rows and columns can be added together without changing the determinant’s
value (d) Scalar multiplication of a row by a constant c multiplies the determinant
by c (e) A determinant with a row or column of zeros has value 0 and (f) Any
determinant with two rows or columns equal has value 0.

15.5.1 Example 6

Let

A =

⎡
⎣

1 4 8
1 0 0
1 −3 −7

⎤
⎦

det(A) = −1

∣∣∣∣
4 8
−3 −7

∣∣∣∣= −1(−28 + 24)= 4
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B, the matrix composed of the cofactors of A is given by:

B =

⎡
⎣

0 7 −3
4 −15 7
0 8 −4

⎤
⎦

A−1 =
1
4

BT =

⎡
⎣

0 1 0
7/4 −15/4 2
−3/4 7/4 −1

⎤
⎦

15.5.2 MATLAB Implementation

>> A = [1 4 8;1 0 0 ;1 -3 -7]
A =

1 4 8
1 0 0
1 -3 -7

>> det(A)
ans =

4

>> Ainv = inv(A)
Ainv =

0 1.0000 0
1.7500 -3.7500 2.0000
-0.7500 1.7500 -1.0000

To get the matrix in rational form (in some cases, it may be approximate), one
can use the function rats in MATLAB as follows:

>> rats (Ainv)
ans =

0 1 0
7/4 -15/4 2

-3/4 7/4 -1

To check the property of inverse matrix that AA−1 = I, enter:

>> Ainv* A
ans =

1.0000 0 0
0 1.0000 0
0 -0.0000 1.0000



320 15 Basic Mathematics for Computational Chemistry

>> At = A’
At =

1 1 1
4 0 -3
8 0 -7

>> det(At)
ans =

4

For a matrix that is singular, the determinant is zero and it does not have an
inverse. The determinant of a matrix close to zero indicates that the matrix is near
singular and there may be numerical difficulties in calculating the inverse of such
matrices [4–6].

15.6 Systems of Linear Equations

A system of equations is just a list of equations in one or more unknowns (also called
variables). It turns out that many situations in life can be described by systems of
equations of various sorts.

For example, one of the primary functions of air traffic control is to make sure
that airplanes do not crash each other in the air. How do they do this? The path of
each airplane is tracked and described by an algebraic equation. Then the equations
are compared to see if there are any points at which they intersect. That is, one tries
to find a solution for the system of equations that describe the routes of a set of
airplanes – if there is one solution, then it means that the airplanes are on a collision
course. The equations that arise may be linear (if a plane is flying in a straight line)
or of other types such as quadratic (if a plane is circling the airport, for example).

This example and other situations give rise to possibly very complicated sys-
tems of equations. The reason for this name is that this type of equations describes
straight lines – in 2-space, 3-space, or higher dimensional space. A solution is a set
of numbers once substituted for the unknowns will satisfy the equations of the sys-
tem

15.6.1 Example 7

Consider the system of equations:

2x + y = 10

x− y = 5

The values x = 5,y = 0 yield a solution for the system, since 2(5)+ 0 = 10 and
5−0 = 5.
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The solution to the system is the pair of values (x,y) = (5,0).
Not every system of equations has a solution.

15.6.2 Example 8

Consider the system of equations:

2x + y = 10

2x + y = 20

Clearly, this system has no solutions, since whatever values we pick for x and
y can satisfy at most one of these equations. In a case like this, we say that the
system is inconsistent. A third possibility is that a given system has infinitely many
solutions! When will this happen? In general, if the system has more unknowns than
equations, and if there is a solution, then there will be infinitely many solutions.
Alternatively, if it can be transformed into such a system, then it also has infinitely
many solutions. We will discuss this transformation in the section on solutions of
systems of linear equations. An example of such a system is Example 9.

15.6.3 Example 9

Consider the equation: 2x− y + z = 1.
For any values one picks for y and z, there is a corresponding value for x which

satisfies this equation. Of course there are infinitely many values one could choose
for y and z, and so infinitely many solutions to the system. Because these are linear
equations, their graphs will be straight lines. This can help us visualize the situation
graphically. There are three possibilities.

15.6.3.1 Independent Equations

In this case (Fig. 15.1) the two equations describe lines that intersect at one particu-
lar point. Clearly, this point is on both lines, and therefore its coordinates (x,y) will
satisfy the equation of either line. Thus, the pair (x,y) is the one and only solution
to the system of equations.

15.6.3.2 Dependent Equations

Sometimes two equations might look different but actually describe the same line.
For example, in:

2x + 3y = 1

4x + 6y = 2
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Fig. 15.1 Independent equa-
tions

the second equation is just two times the first equation, so they are actually equiv-
alent and would both be equations of the same line. Because the two equations
describe the same line, they have all their points in common; hence, there are an in-
finite number of solutions to the system (Fig. 15.2). If you try to solve a dependent
system by algebraic methods, you will eventually run into an equation that is an
identity. An identity is an equation that is always true, independent of the value(s)
of any variable(s). For example, you might get an equation that looks like x = x, or
3 = 3. This would tell you that the system is a dependent system, and you could stop
right there because you will never find a unique solution.

Fig. 15.2 Dependent equa-
tions
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Fig. 15.3 Inconsistent equa-
tions

15.6.3.3 Inconsistent Equations

If two lines happen to have the same slope, but are not identically the same line, then
they will never intersect. There is no pair (x, y) that could satisfy both equations,
because there is no point (x, y) that is simultaneously on both lines. Thus, these
equations are said to be inconsistent, and there is no solution (Fig. 15.3). The fact
that they both have the same slope may not be obvious from the equations, because
they are not written in one of the standard forms for straight lines. The slope is not
readily evident in the form we use for writing systems of equations. (If you think
about it you will see that the slope is the negative of the coefficient of x divided by
the coefficient of y).

By attempting to solve such a system of equations algebraically, you are operat-
ing on a false assumption – namely, that a solution exists. This will eventually lead
you to a contradiction: a statement that is obviously false, regardless of the value(s)
of the variable(s). At some point in your work you would get an obviously false
equation like 3 = 4. This would tell you that the system of equations is inconsistent,
and there is no solution [7].

15.6.4 Example 10: A MATLAB Solution
of the Linear System of Equations

Consider the following cases of linear systems of equations:

1. An inconsistent system

2x− y + z = 1 ,
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x + y− z = 2 ,

3x− y + z = 0;

2. An undetermined system:

−x + y + 3z = −2

y + 2z = 4

3. A consistent system with a unique solution:

x−2y = −1 ,

2x + 3y = 7;

To solve the equations in the first case using MATLAB, enter the following com-
mands:

a = [2 -1 1;1 1 -1;3 -1 1] ;
b = [1 2 0]’ ;
x = inv(a)*b

On entering this, a message will be displayed: Warning: Matrix is close to sin-
gular or badly scaled. Results may be inaccurate. In this case, the determinant of
the matrix is zero very close to zero, and hence, there will be difficulties in numeri-
cal computations. Hence, the system is inconsistent. For the second case, obviously,
there are three variables, namely x, y, and z, but only two equations. Such a system
cannot be solved and it is a case of an undetermined system. For the third case, enter
the following commands in MATLAB:

>> a = [1 -2;2 3] ;
b = [-1 7]’ ;
x = inv(a)*b
%x = a\b

x =
1.5714
1.2857

As displayed, there exists a unique solution and it is the case of the consistent sys-
tem of equations. The consistency of the system of linear equations to have a unique
solution can be checked by using the Gauss-Jordan elimination to reduce the aug-
mented matrix into row-reduced echelon form (rref) by elementary row operations.
A matrix is in row-reduced echelon form if the following conditions are satisfied
(a) the leading entry in each row (if any) is a one, (b) there are no entries in the
column above or below any leading entry and, (c) any leading entries in a row is to
the right of a leading entry in a row above. The Gauss-Jordan elimination eliminates
the need for a back substitution of the Gauss elimination. In MATLAB, the function
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rref(A) produces the reduced row echelon form of matrix A using the Gauss Jordan
elimination. For the abovementioned problem, see the following steps.

1. The first case of an inconsistent system produces:

>> A = [2 -1 1 1;1 1 -1 2;3 -1 1 0] ;
rref(A)
ans =

1 0 0 0
0 1 -1 0
0 0 0 1

2. For the second case (an undetermined system):

>> A = [-1 1 3 -2; 0 1 2 4; 0 0 0 0] ;
rref(A)
ans =

1 0 -1 6
0 1 2 4
0 0 0 0

3. For the third case of a consistent system:

>> A = [1 -2 -1;2 3 7] ;
rref(A)
ans =

1.0000 0 1.5714
0 1.0000 1.2857

The third case has obviously a unique solution, while the first and second cases
have no solutions.

The determinant, the matrix inverse, and the solution to a system of equations
are closely related to each other and each of these can be calculated from the LU
decomposition of a matrix. After the LU decomposition, the determinant is sim-
ply the product of the diagonal elements of the LU decomposed matrix. The LU
function expresses a matrix A as the product of two essentially triangular matri-
ces, one of them a permutation of a lower triangular matrix and the other an up-
per triangular matrix. The factorization is called the LU. In MATLAB, the func-
tion [L,U,P] = LU(A) returns unit lower triangular matrix L, upper triangular ma-
trix U, and permutation matrix P so that P ∗A = L ∗U . Given a matrix equation
Ax = LUx = b, the equation has to be solved for A and b. Firstly, the equation Ly = b
is solved for y and secondly, the equation Ux = y is solved for x.
For example, consider the system of equations:

3x + 2y + z = 10

2x + y + 3z = 13

x + 3y + 2z = 13



326 15 Basic Mathematics for Computational Chemistry

To solve using LU decomposition, the following MATLAB commands can be
run in sequence:

A = [3 2 1;2 1 3;1 3 2] ;
b = [10 13 13]’ ;
[L U P] = lu(A) ;
%Ly = b using Forward substitution
y(1,1) = b(1,1) ;
y(2,1) = b(2,1) - L(2,1) * y(1,1) ;
y(3,1) = b(3,1) - L(3,1) * y(1,1) - L(3,2) * y(2,1) ;
%Ux = y using backward substitution
x(3,1) = y(3,1)/U(3,3) ;
x(2,1) = (y(2,1) - U(2,3) * x(3,1)) / U(2,2) ;
x(1,1) = (y(1,1) - U(1,2) * x(2,1) - U(1,3) * x(3,1))/U(1,1) ;

This produces the following result which are the values of x, y, and z:

x =
1.0000
2.0000
3.0000

It can be also seen that product of the diagonal elements of the LU decomposed
matrix is the same as the determinant.

15.7 The Least-Squares Method

As an example for the application of the matrix algebra in the solution of system
of simultaneous equations, we discuss here the least square method for regression.
The least square method is a statistical approach to estimate an expected value or
function with the highest probability from the observations with random errors. The
highest probability is replaced by minimizing the sum of square of residuals in the
least square method, where the residual is defined as the difference between the ob-
servation and an estimated value of a function. The least-squares line uses a straight
line:

y = a + bx (15.14)

to approximate the given set of data, (x1,y1) ,(x2,y2) , . . . (xn,yn) where n ≥ 2. The
best fitting curve f (x) has the least square error, i.e.,

∏=
n

∑
i=1

[yi − f (xi)]2 =
n

∑
i=1

[yi − (a + bxi)]2 = min . (15.15)

Please note that a and b are unknown coefficients while all xi and yi are given. To
obtain the least square error, the unknown coefficients a and b must yield zero first
derivatives.



15.7 The Least-Squares Method 327

∂ ∏
∂a

= 2
n

∑
i=1

[yi − (a + bxi)] = 0

∂ ∏
∂b

= 2
n

∑
i=1

xi [yi − (a + bxi)] = 0 (15.16)

Expanding the above equations, we have:

n

∑
i=1

yi = a
n

∑
i=1

1 + b
n

∑
i=1

xi

n

∑
i=1

xiyi = a
n

∑
i=1

xi + b
n

∑
i=1

x2
i (15.17)

The unknown coefficients a and b can therefore be obtained:

a =

(
n
∑

i=1
y

)(
n
∑

i=1
x2

)
−
(

n
∑

i=1
x

)(
n
∑

i=1
xy

)

n
n
∑

i=1
x2 −

(
n
∑

i=1
x

)2 (15.18)

b =
n

n
∑

i=1
xy−

(
n
∑

i=1
x

)(
n
∑

i=1
y

)

n
n
∑

i=1
x2 −

(
n
∑

i=1
x

)2 (15.19)

From Eq. 15.16, the matrix form becomes:

⎡
⎢⎣

N
n
∑

i=1
xi

n
∑

i=1
xi

n
∑

i=1
x2

i

⎤
⎥⎦
[

a
b

]
=

⎡
⎢⎣

n
∑

i=1
yi

n
∑

i=1
xiyi

⎤
⎥⎦ (15.20)

The left-hand side of Eq. 15.19 can be written as a product
(
AT A

)
X if the product

is defined as:

(
AT A

)
X =

[
1 1 1 . . . 1
x1 x2 x3 . . . xn

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1

1 x2

1 x3

. .

. .

. .
1 xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
a
b

]
(15.21)
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The right-hand side of Eq. 15.19 can be written as a product AT b:

AT b =
[

1 1 1 . . . 1
x1 x2 x3 . . . xn

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

.

.

.
yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.22)

Thus, the least square equations defined by Eq. 15.16 becomes:

(
AT A

)
X = AT b (15.23)

15.7.1 Example 11

Consider the following data.

Table 15.1 x-y data

x y

1 2
2 3
3 7
4 8
5 9

Data points included here can be plotted to get a ‘data point graph’ as shown in
Fig. 15.4. These data points can be used to make a ‘continuous graph’ as shown in
Fig. 15.5. Evaluated error with different values of x and y are included in Table 15.2.
If we choose the line that goes through the points when x = 1 and 2, we get the line
y = 1 + x.

Table 15.2 Error evaluation

x y predicated y error (error)2

1 2 2 0 0
2 3 3 0 0
3 7 4 3 9
4 8 5 3 9
5 9 6 3 9
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If we choose the line that goes through the points when x = 3 and 4, we get the
line y = 4+ x, for which the data points are tabulated in Table 15.3 and the graph is
plotted in Fig. 15.6.

Fig. 15.4 Graphical representation of data

Fig. 15.5 Graph fit to minimum error
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Table 15.3 Data for the line passing through 3 and 4

No y predicated y error (error)2

1 2 5 −3 9
2 3 6 −3 9
3 7 7 0 0
4 8 8 0 0
5 9 9 0 0

Fig. 15.6 Graph corresponding to Table 15.3

Let us try the line that is halfway between these two lines. The equation would
be y = 2.5 + x. Data points generated from this equation are included in Table 15.4
and the corresponding graph is as shown Fig. 15.7. Evaluated error and square of
error are tabulated in Table 15.5.

Table 15.4 Data for the line that is halfway between the graphs in Figs. 15.5 and 15.6

x y predicated y error (error)2

1 2 3.5 −1.5 2.25
2 3 4.5 −1.5 2.25
3 7 5.5 1.5 2.25
4 8 6.5 1.5 2.25
5 9 7.5 1.5 2.25
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Using matrix form of least square, we have:
(
AT A

)
X = AT b

[
1 1 1 1 1

1 2 3 4 5

]
⎡
⎢⎢⎢⎢⎢⎢⎣

1 1

1 2

1 3

1 4

1 5

⎤
⎥⎥⎥⎥⎥⎥⎦

[
a

b

]
=

[
1 1 1 1 1

1 2 3 4 5

]
⎡
⎢⎢⎢⎢⎢⎢⎣

2

3

7

8

9

⎤
⎥⎥⎥⎥⎥⎥⎦

[
5 15 29

15 55 106

]

r1÷5

⇒
[

1 3 5.8

15 55 106

]

−15∗r1+r2

⇒
[

1 3 5.8

0 10 19

]

r2÷10

⇒
[

1 3 5.8

0 1 1.9

]

−3∗r2+r1

⇒
[

1 0 0.1

0 1 1.9

]
⇒

[
a

b

]
=

[
0.1

1.9

]

For the line y = 0.1 + 1.9x

Fig. 15.7 Graph corresponding to Table 15.4
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Fig. 15.8 Graph for y = 0.1+1.9x

The MATLAB implementation of the least square curve fitting for the above
example is illustrated below by the sequence of commands.

x = [1 2 3 4 5] ;
y = [2 3 7 8 9] ;
A1= [1 1 1 1 1]’ ;
A = [A1 x’] ;
U = A’*A ;
V = A’*y’ ;
LS1 = U\V ; % solves the equation to find a and b
LS2 = polyfit(x,y,1) ; % Fit a straight line
f1 = polyval (LS2,x) ; % Evaluates the polynomial with x
error = y-f1 ; %Calculates the error
disp(’ x y f1 y-f1’) ;
disp([x’ y’ f1’ error’]) ;
plot(x,y,’o’,x,f1,’-’) %Plots the graph
axis([1 5 1 10 ]) % set the axis ranges
xlabel(’x’) % label the x-axis
ylabel(’y’) % label the y-axis
V = A’’*y’ ;
LS1 = U\V ; % solves the equation to find a and b (stored in LS1)
LS2 = polyfit(x,y,1) ; % Fit a straight line with coefficients in LS2
f1 = polyval (LS2,x) ; % Evaluates the polynomial with x
error = y-f1 ; % Calculates error
disp(’ x y f1 y-f1’) ;
disp([x’ y’ f1’ error’]) ;
plot(x,y,’o’,x,f1,’-’) % Plots the graph
axis([1 5 1 10 ]) % set the axis ranges
xlabel(’x’) % label the x-axis
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Table 15.5 Error and square of error

x y predicated y error (error)2

1 2 2.0 0 0
2 3 3.9 −0.9 0.81
3 7 5.8 1.2 1.44
4 8 7.7 0.3 0.09
5 9 9.6 −0.6 0.36

The result is the following graph:

Fig. 15.9 MATLAB graph for the function

15.8 Eigenvalues and Eigenvectors

The eigenvalue problem is a problem of considerable theoretical interest and wide-
ranging application. For example, this problem is crucial in solving systems of dif-
ferential equations, analyzing population growth models, and calculating powers of
matrices (in order to define the exponential matrix). Other areas such as physics,
sociology, biology, economics, and statistics have focused considerable attention on
“eigenvalues” and “eigenvectors” – their applications and their computations. Be-
fore we give the formal definition, let us introduce these concepts in an example.
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15.8.1 Example 12

Consider the matrix:

A =

⎡
⎣

1 2 1
6 −1 0
−1 −2 −1

⎤
⎦

Consider the three column matrices:

C1 =

⎡
⎣

1
6

−13

⎤
⎦ , C2 =

⎡
⎣
−1
2
1

⎤
⎦ , C3 =

⎡
⎣

2
3
−2

⎤
⎦

We have:

AC1 =

⎡
⎣

0
0
0

⎤
⎦ , AC2 =

⎡
⎣

4
−8
−4

⎤
⎦ , AC3 =

⎡
⎣

6
9
−6

⎤
⎦ .

In other words, we have:

AC1 = 0C1,AC2 = −4C2,AC3 = 3C3

Next consider the matrix P for which the columns are C1, C2, and C3, i.e.,

P =

⎡
⎣

1 −1 2
6 2 3

−13 1 −2

⎤
⎦

We have det(P) = 84. So, this matrix is invertible. Easy calculations give:

P−1 =
1
84

⎡
⎣

−7 0 −7
−27 24 9
32 12 8

⎤
⎦

Next, we evaluate the matrix P−1AP. We leave the details to the reader to check that
we have:

1
84

⎡
⎣

−7 0 −7
−27 24 9
32 12 8

⎤
⎦
⎡
⎣

1 2 1
6 −1 0
−1 −2 −1

⎤
⎦
⎡
⎣

1 −1 2
6 2 3

−13 1 −2

⎤
⎦=

⎡
⎣

0 0 0
0 −4 0
0 0 3

⎤
⎦

In other words, we have:

P−1AP =

⎡
⎣

0 0 0
0 −4 0
0 0 3

⎤
⎦

Using the matrix multiplication, we obtain:

A = P

⎡
⎣

0 0 0
0 −4 0
0 0 3

⎤
⎦P−1
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which implies that A is similar to a diagonal matrix. In particular, we have:

An = P

⎡
⎣

0 0 0
0 (−4)n 0
0 0 3n

⎤
⎦P−1

for n = 1,2,3, . . .. Note that it is almost impossible to find A75 directly from the
original form of A. This example is so rich with conclusions that many questions
impose themselves in a natural way. For example, given a square matrix A, how do
we find column matrices which have similar behaviors as the above ones? In other
words, how do we find these column matrices which will help find the invertible
matrix P such that P−1AP is a diagonal matrix?

From now on, we will call column matrices vectors. So, the above column ma-
trices C1, C2, and C3 are now vectors. We have the following definition:

Definition. Let A be a square matrix. A non-zero vector C is called an eigenvector
of A if and only if there exists a number (real or complex) λ such that:

AC = λC (15.24)

If such a number λ exists, it is called an eigenvalue of A. The vector C is called
an eigenvector associated to the eigenvalue λ .

15.8.2 Example 13

Consider the matrix:

A =

⎡
⎣

1 2 1
6 −1 0
−1 −2 −1

⎤
⎦

We have seen that:

AC1 = 0C1,AC2 = −4C2,AC3 = 3C3

where:

C1 =

⎡
⎣

1
6

−13

⎤
⎦ , C2 =

⎡
⎣
−1
2
1

⎤
⎦ , C3 =

⎡
⎣

2
3
−2

⎤
⎦

So, C1 is an eigenvector of A associated to the eigenvalue 0. C2 is an eigenvector
of A associated to the eigenvalue −4, while C3 is an eigenvector of A associated to
the eigenvalue 3.

15.8.3 The Computation of Eigenvalues

For a square matrix A of order n, the number λ is an eigenvalue if, and only if, there
exists a non-zero vector C such that:

AC = λC
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Using the matrix multiplication properties, we obtain:

(A−λ In)C = 0 (15.25)

This is a linear system for which the matrix coefficient is A − λ In. Since the
zero-vector is a solution and C is not the zero vector, then we must have:

det(A−λ In) = 0 (15.26)

In general, for a square matrix A of order n, the above equation will give the
eigenvalues of A. This equation is called the characteristic equation or characteristic
polynomial of A. It is a polynomial function in λ of degree n. So, we know that this
equation will not have more than n roots or solutions. Therefore, a square matrix A
of order n will not have more than n eigenvalues.

15.8.4 Example 14

Consider the matrix:

A =
[

1 −2
−2 0

]

The equation det(A−λ In) = 0 translates into:
∣∣∣∣
1−λ −2
−2 0−λ

∣∣∣∣= (1− χ)(0−λ )−4 = 0

which is equivalent to the quadratic equation:

λ 2 −λ −4 = 0

Solving this equation leads to:

λ =
1 +

√
17

2
, λ =

1−√
17

2

In other words, the matrix A has only two eigenvalues.

15.8.5 The Computation of Eigenvectors

Let A be a square matrix of order n and λ one of its eigenvalues. Let X be an
eigenvector of A associated to λ . We must have:

AX = λX or (A−λ In)X = 0 (15.27)

This is a linear system for which the matrix coefficient is A − λ In. Since the
zero-vector is a solution, the system is consistent.
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15.8.6 Example 15

Consider the matrix:

A =

⎡
⎣

1 2 1
6 −1 0
−1 −2 −1

⎤
⎦

Firstly, we look for the eigenvalues of A. These are given by the characteristic
equation det(A−λ I3) = 0, i.e.:

∣∣∣∣∣∣
1−λ 2 1

6 −1−λ 0
−1 −2 −1−λ

∣∣∣∣∣∣
= 0

If we develop this determinant using the third column, we obtain:
∣∣∣∣

6 −1−λ
−1 −2

∣∣∣∣+(−1−λ )
∣∣∣∣
1−λ 2

6 −1−λ

∣∣∣∣= 0

Using easy algebraic manipulations, we get:

−λ (λ + 4)(λ −3) = 0

which implies that the eigenvalues of A are 0, −4, and 3. Secondly, we look for the
eigenvectors.

1. Case λ = 0: The associated eigenvectors are given by the linear system AX = 0
which may be rewritten by:

x + 2y + z = 0

6x− y = 0

−x−2y− z = 0

Many ways may be used to solve this system. The third equation is identical to
the first. Since, from the second equations, we have y = 6x, the first equation
reduces to 13x + z = 0. So this system is equivalent to:

y = 6x

z = −13x

So, the unknown vector X is given by:

X =

⎛
⎝

x
y
z

⎞
⎠=

⎡
⎣

x
6x

−13x

⎤
⎦= x

⎡
⎣

1
6

−13

⎤
⎦
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Therefore, any eigenvector X of A associated to the eigenvalue 0 is given by:

X = c

⎡
⎣

1
6

−13

⎤
⎦

where c is an arbitrary number.
2. Case 2λ =−4: The associated eigenvectors are given by the linear system AX =

−4X or (A + 4I3)X = 0 which may be rewritten by:
⎧
⎪⎪⎨
⎪⎪⎩

5x + 2y + z = 0

6x + 3y = 0

−x−2y + 3z = 0

In this case, we will use elementary operations to solve it. Firstly, we consider
the augmented matrix, i.e.:

⎡
⎣

5 2 1 0
6 3 0 0
−1 −2 3 0

⎤
⎦

Secondly, we use elementary row operations to reduce it to a upper-triangular
form. We interchange the first row with the first one to get:

⎡
⎣
−1 2 3 0
5 2 1 0
6 3 0 0

⎤
⎦

Next, we use the first row to eliminate the 5 and 6 on the first column. We obtain:
⎡
⎣
−1 2 3 0
0 −8 16 0
0 −9 18 0

⎤
⎦

If we cancel the 8 and 9 from the second and third row, we obtain:
⎡
⎣
−1 2 3 0
0 −1 2 0
0 −1 2 0

⎤
⎦

Finally, we subtract the second row from the third to get:
⎡
⎣
−1 2 3 0
0 −1 2 0
0 0 0 0

⎤
⎦
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Next, we set z = c. From the second row, we get y = 2z = 2c. The first row will
imply x = −2y + 3z = −c. Hence:

X =

⎡
⎣

x
y
z

⎤
⎦=

⎡
⎣
−c
2c
c

⎤
⎦= c

⎡
⎣
−1
2
1

⎤
⎦

Therefore, any eigenvector X of A associated to the eigenvalue −4 is given by:

X = c

⎡
⎣
−1
2
1

⎤
⎦

where c is an arbitrary number.
3. Case λ = 3: The details for this case will be left to the reader. Using similar

ideas as the one described above, one may easily show that any eigenvector X
of A associated to the eigenvalue 3 is given by:

X = c

⎡
⎣

2
3
−2

⎤
⎦

where c is an arbitrary number.

MATLAB implementation of eigenvalues and eigenvectors:

>> A = [1 2 1;6 -1 0; -1 -2 -1] ;
A =

1 2 1
6 -1 0

-1 -2 -1

[V,D] = eig(A)
V =

-0.4082 0.4851 -0.0697
0.8165 0.7276 -0.4180
0.4082 -0.4851 0.9058

D =
-4.0000 0 0

0 3.0000 0
0 0 -0.0000

For the applications of eigenvalues and eigenvectors in computational chemistry,
refer to Chaps. 4, 5, and 6.
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15.9 Exercises

1. Solve the system of the equations:

x + y + x = 150

x + 2y + 3x = 150

2x + 3y + 4z = 200

2. Show that the system is consistent and undetermined:

2x1 + 4x2 + 5x3 = 47

3x1 + 10x2 + 11x3 = 104

3x1 + 2x2 + 4x3 = 37

3. Fit a straight line using the least square method. Check your answer by compar-
ing normal equations and matrix form.

X 0 1.0 2.0 3.0 5.0
Y 0 1.4 2.2 3.5 4.4

Find the eigenvalues and eigenvectors for each of the following:

A =

⎡
⎣

1 −1 0
0 1 1
0 0 −2

⎤
⎦ ; B =

⎡
⎣

2 −2 3
−2 −1 6
1 2 0

⎤
⎦ ; C =

⎡
⎣

8 0 3
2 2 1
2 0 3

⎤
⎦

15.10 Summary

Only a basic treatment of matrix computation is attempted with MATLAB examples
in this chapter. Numerical linear algebra is the heart of any computational science
and engineering subject such as computational chemistry and deals with matrix mul-
tiplications, matrix transformations, matrix factorization, singular value decomposi-
tion, solution of systems of equations, computation of eigenvalues and eigenvectors,
sparse matrices, etc. While a good working knowledge of the subject is very essen-
tial for a computational scientist, an extensive treatment of the subject is beyond
the scope of this book. For example, any physical system is generally governed
by partial differential equations and such governing partial differential equations in
general are nonlinear in themselves, or the domain of the problem where the solution
is sought after may be very complex. For such problems involving nonlinear partial
differential equations with complex boundary or initial conditions, there are no ana-
lytical solutions and one has to resort to numerical methods. The numerical solution
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of any partial differential equation finally boils down to a system of a large num-
ber of simultaneous equations, where one has to employ the computational methods
used in numerical linear algebra. For a detailed understanding of the subject, readers
can refer to the books on the subject cited in the references below.
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Appendix A
Operators

A.1 Introduction

Levine defines an operator as “a rule that transforms a given function into another
function.” The differentiation operator d/dx is an example. It transforms a differen-
tiable function f (x) into another function f ′(x). Other examples include integration,
the square root, and so forth. Numbers can also be considered as operators (they
multiply a function). McQuarrie gives an even more general definition for an opera-
tor: “An operator is a symbol that tells you to do something with whatever follows
the symbol” Perhaps this definition is more appropriate if we want to refer to the Ĉ3

operator acting on NH3, for example.

A.2 Operators and Quantum Mechanics

In quantum mechanics, physical observables (e.g., energy, momentum, position,
etc.) are represented mathematically by operators. For instance, the operator cor-
responding to energy is the Hamiltonian operator:

Ĥ = − h̄2

2 ∑i
1
mi
∇2

i +V (A.1)

where i is an index over all the particles of the system. We have already encountered
the single-particle Hamiltonian. The average value of an observable A represented
by an operator Â for a quantum molecular state ψ(r) is given by the “expectation
value” formula:

〈A〉 =
∫
ψ∗(r)Âψ(r) (A.2)
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A.3 Basic Properties of Operators

Most of the properties of operators are obvious, but they are summarized below for
completeness.

The sum and difference of two operators Â and B̂ are given by:

(Â+ B̂) f = Â f + B̂ f (A.3)

(Â− B̂) f = Â f − B̂ f (A.4)

The product of two operators is defined by

ÂB̂ f = Â
[
B̂ f
]

(A.5)

Two operators are equal if:

Â f = B̂ f (A.6)

for all functions f .
The identity operator Î does nothing (or multiplies by 1):

Î f = f (A.7)

A common mathematical trick is to write this operator as a sum over a complete
set of states (more on this later).

∑
i
|i〉〈i| f = f (A.8)

The associative law holds for operators:

Â
(

B̂Ĉ
)

=
(

ÂB̂
)

Ĉ (A.9)

The commutative law does not generally hold for operators. In general, ÂB̂ 
= B̂Â.
It is convenient to define the quantity as:

[
Â, B̂

]
≡ ÂB̂− B̂Â , (A.10)

which is called the commutator of Â and B̂. Note that the order matters, so that[
Â, B̂

]
= −

[
B̂, Â

]
. If Â, B̂ happen to commute, then

[
Â , B̂

]
= 0 . (A.11)

The n-th power of an operator Ân is defined as n successive applications of the
operator, e.g.:

Â2 f = ÂÂ f (A.12)

The exponential of an operator eÂ is defined via the power series

eÂ = 1̂+ Â+
Â2

2!
+

Â3

3!
+−−−−− (A.13)
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A.4 Linear Operators

Almost all operators encountered in quantum mechanics are linear operators. A lin-
ear operator is an operator, which satisfies the following two conditions:

Â( f + g) = Â f + Âg (A.14)

Â(c f ) = cÂ f (A.15)

where c is a constant and f and g are functions. As an example, consider the opera-
tors d/dx and ()2. We can see that d/dx is a linear operator because:

(d/dx)[ f (x)+ g(x)] = (d/dx) f (x)+ (d/dx)g(x) (A.16)

(d/dx)[c f (x)] = c
( d

dx

)
f (x) (A.17)

However, ()2 is not a linear operator because:

[ f (x)+ g(x)]2 
= [ f (x)]2 +[g(x)]2 (A.18)

The only other category of operators relevant to quantum mechanics is the set of
anti-linear operators, for which:

Â(λ f + μg) = λ ∗Â f + μ∗Âg (A.19)

Time-reversal operators are antilinear.

A.5 Eigenfunctions and Eigenvalues

An eigenfunction of an operator Â is a function f such that the application of Â on
f gives f again, times a constant:

Â f = k f (A.20)

where, k is a constant called the eigenvalue. It is easy to show that if Â is a linear
operator with an eigenfunction g, then any multiple of g is also an eigenfunction
of Â.

When a system is in an eigenstate of observable A (i.e., when the wavefunction is
an eigenfunction of the operator Â) then the expectation value of A is the eigenvalue
of the wavefunction. Thus, if:

Âψ(r) = aψ(r) (A.21)

then:

〈A〉 =
∫
ψ∗(r)Âψ(r) =

∫
ψ∗(r)aψ(r) = a

∫
ψ∗(r)ψ(r) = a (A.22)
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assuming that the wavefunction is normalized to 1, as is generally the case. In the
event that ψ(r) is not or cannot be normalized (free particle, etc.) then we may use
the formula:

〈A〉 =
∫
ψ∗(r)Âψ(r)∫
ψ∗(r)ψ(r)

(A.23)

What if the wavefunction is a combination of eigenstates? Let us assume that
we have a wavefunction which is a linear combination of two eigenstates of Â with
eigenvalues a and b:

ψ = Caψa +Cbψb (A.24)

where Âψa = aψa and Âψb = aψb. Then, what is the expectation value of A?

〈A〉 =
∫
ψ∗Âψ

=
∫

[Caψa +Caψa]∗ Â [Caψa +Caψa]

=
∫

[Caψa +Caψa]∗ [aCaψa + bCaψa]

= a |Ca|2
∫
ψ∗

aψa + bC∗
aCb

∫
ψ∗

aψb + aC∗
bCa

∫
ψ∗

bψa + b |Cb|2
∫
ψ∗

b

= a |ca|2 + b |cb|2 (A.25)

assuming that ψa and ψb are orthonormal (shortly, we will show that eigenvectors
of Hermitian operators are orthogonal). Thus, the average value of A is a weighted
average of eigenvalues, with the weights being the squares of the coefficients of the
eigenvectors in the overall wavefunction.



Appendix B
Hückel MO Heteroatom Parameters

Heteroatom parameters (h and k) for common atoms and bonds are listed below
(Table B.1).

Table B.1 Heteroatom parameters

Element Coulomb integral
parameter (hX)

Resonance integral
parameter (kC−X)

B hB = −1.0 kC−B = 0.7
kB−N = 0.8

C hC = 0.0 kC−C = 1.0
N hN· = 0.5

hN: = 1.5
hN+ = 2.0

kC−N = 0.8
kC=N = 1.0
kN−O = 0.7

O hO· = 1.0
hO: = 2.0
hO+ = 2.5

kC−O = 0.8
kC=O = 1.0

F hF = 3.0 kC−F = 0.7
Cl hCl = 2.0 kC−Cl = 0.4
Br hBr = 1.5 kC−Br = 0.3
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Appendix C
Using Microsoft Excel to Balance Chemical
Equations

C.1 Introduction

A chemical reaction can be represented by an equation, which should be in accor-
dance with the laws of conservation of mass, atoms and charge. Hence for chemical
equations, the mass of the reactants should be equal to the mass of products. (The
law of conservation of mass) The number of each atom on the reactant side should
be equal to that on the product side (the principle of atom conservation, or POAC).
The total charge of the reactants should be equal to the charge of products (the con-
servation of charge).

A number of traditional methods have been introduced for balancing chemical
equations, such as the hit and trial method (trial and error), the oxidation number
method, the partial equation method and ion-electron method. However, none of
these methods proves to be applicable for all types of reactions. To overcome this
difficulty an algebraic method was proposed. In this method, a reactant-product sys-
tem (reaction) is treated as a linear system. The mathematical equations obtained
are solved to get the chemical equation balanced. This method was not very popular
due to the difficulty in solving simultaneous equations. The development of mod-
ern scientific computing techniques helps to overcome the difficulty of solving these
equations making the algebraic method again important. The balancing of equations
by using Microsoft Excel is explained here.

C.2 The Matrix Method

C.2.1 Methodology

A reactant-product system (equation) to be balanced is treated as a matrix of the
form Ax = b where matrix A is a square matrix corresponding to the atomicities of
various atoms and “x” is a column vector corresponding to the molar coefficients of
reactants and products. The matrix equation set up is solved using Microsoft Excel.
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Fig. C.1 Microsoft Excel work sheet for Eq. C.1

C.2.2 Example 1

The combustion of hydrogen in oxygen, producing water, can be written as,

x1H2 + x2O2 → x3H2O (C.1)

We have to determine the unknown coefficients, x1,x2, and x3. In this equation
three elements are involved. Make separate equations for each element in the equa-
tion:

Hydrogen(H): 2x1 + 0x2 = 2x3

Oxygen (O): 0x1 + 2x2 = x3

These equations can been written as:

2x1 + 0x2 −2x3 = 0

x1 + 2x2 − x3 = 0

We have two equations and three unknowns. To complete the system, we define
an auxiliary equation by arbitrarily choosing a value (normally one) for one of the
coefficients. Here, let us assume x3 as one. The system can be represented in the
matrix form Ax = b, where:

A =

⎡
⎣

2 0 −2
0 2 −1
0 0 1

⎤
⎦ ; x =

⎡
⎣

x1

x2

x3

⎤
⎦ and b =

⎡
⎣

0
0
1

⎤
⎦

x = Matrix product of the inverse of A and b.

The Microsoft Excel method for solving this equation is illustrated in the excel work
sheet (Fig. C.1). If fractional values are obtained as coefficients, they can be changed
into whole numbers using Microsoft Excel.
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Thus, the balanced equation becomes:

2H2 + O2 → 2H2O (C.2)

The same method is illustrated for an ionic equation.

C.2.2.1 Example 2

Ionic equations conserve mass and charge.
Example:

x1MnO−
4 + x2Fe2+ + x3H+ → x4Mn2+ + x5Fe3+ + x6H2O (C.3)

Balancing the equation with respect to atoms:

Manganese: x1 + 0x2 + 0x3 − x4 −0x5 −0x6 = 0
Oxygen: 4x1 + 0x2 + 0x3 −0x4 −0x5−1x6 = 0
Iron: 0x1 + x2 + 0x3 −0x4 − x5 −0x6 = 0
Hydrogen: 0x1 + 0x2 + x3 −0x4 −0x5 −2x6 = 0

The charge should also be balanced giving one more equation:

−x1 + 2x2 + x3 −2x4 −3x5 −0x6 = 0

Setting an auxiliary equation by setting the value of one of the coefficients as
1(x6 = 1) and solving the matrix equation (Fig. C.2):

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0
4 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 0 0 −2
−1 0 1 −2 −3 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

and x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

Hence, the balanced equation for the reaction is:

MnO−
4 + 5Fe2+ + 8H+ → Mn2+ + 5Fe3+ + 4H2O (C.4)

C.3 Undermined Systems

A chemical system, where the number of mathematical equations that can be set
up, is less than the number variables to be determined, is said to be an undermined
system. However, such a system can be split up into partial equations. Balance the
partial equations by matrix method using Microsoft Excel and combine the partial
equations to get the parent equation balanced.
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Fig. C.2 Microsoft Excel work sheet for Example 2

C.4 Balancing as an Optimization Problem

In this method, the chemical equation is treated as a system consisting of n simul-
taneous linear algebraic equations with m unknowns (molar coefficients). If n < m,
the chemical equation becomes underdetermined.

C.4.1 Example 3

The reaction between hydrogen peroxide and acidified potassium permanganate to
get manganese ions, oxygen, and water is an example of an underdetermined ionic
equation and is given in the following equation:

x1MnO−
4 + x2H2O2 + x3H+ → x4Mn2+ + x5O2 + x6H2O (C.5)

These variables, x1,x2,x3,x4,x5 and x6 correspond to the molar coefficients of reac-
tants and products. The objective function in the linear optimization problem to be

minimized is the sum of these coefficients represented as
n

∑
i=1

xi. While formulating

the constraints, the POAC and the charge will only be considered. The constraints
are set up on the basis of the POAC with respect to each element in the reaction
system as given in Eq. C.6.

x1n1 + x2n2 + . . . = 0 (C.6)

where x1,x2, . . . are the molar coefficients of reactants and products and n1,n2, . . . are
the number of atoms of each element in various reactants and products. Obviously,
the number of such equations obtained will be equal to the number of elements in-
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volved in the reaction. While formulating the constraints for ionic equations, the
conservation of charge should also be considered. Constraints set up in the opti-
mization problem can be generalized as follows:

1. x1n1 + x2n2 + . . . = 0 – with respect to each element (the sum product).
2. ∑Cixi = 0. (where Ci is the charge of the species i and xi is the molar coefficient

of that species.)
3. Molar coefficients should be positive nonzero integers.
4. The problem can be solved using Microsoft Excel Solver.

C.4.1.1 Illustration

Here, the balancing of the underdetermined ionic equation (Eq. C.1) mentioned ear-
lier is illustrated.

In the mathematical form, the equation can be written as:

x1MnO−
4 + x2H2O2 + x3H+− x4Mn2+− x5O2 − x6H2O = 0 (C.7)

The objective function to be minimized in this optimization problem is:

6

∑
i=1

xi (C.8)

subject to the constraints:

(a) 1x1 + 0x2 + 0x3−1x4 −0x5 −0x6 = 0 (with respect to manganese (Mn).)
(b) 4x1 + 2x2 + 0x3 −1x4 −2x5 −1x6 = 0 (with respect to oxygen (O).)
(c) 0x1 + 2x2 + 1x3−0x4 −0x5 −2x6 = 0 (with respect to hydrogen (H).)
(d) −1x1 + 0x2 + 1x3 −2x4−0x5 −0x6 = 0 (with respect to the charge.)
(e) x1,x2,x3,x4,x5 and x6 should be positive nonzero integers.

This is solved using Microsoft Excel Solver in the following manner:

1. Construct a worksheet data with the molar coefficients, the elements and the
charge, as is given in Fig. C.3.

2. Find the “sum product” with respect to all elements and the charge.
3. Provide space for coefficients to be determined after optimization (row-6).
4. Find the sum of these (Objective function-D8).
5. Set the Solver option with the objective function and the constraints, as is shown

in Fig. C.4.
6. Solve the optimization problem to get the molar coefficients, as is shown in

Fig. C.5.

Hence the balanced equation is:

2MnO−
4 + H2O2 + 6H+ → 2Mn2+ + 3O2 + 4H2O (C.9)

The balancing of some more complex equations by this method is also included.
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Fig. C.3 Worksheet for the example before optimization

Fig. C.4 Worksheet with the solver parameters

Fig. C.5 Worksheet after optimization
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C.4.2 Example 4

x1Cl2 + x2NaOH → x3NaCl+ x4NaClO3 + x5H2O (C.10)

This system can be written in the form of a mathematical equation as given in
Eq. C.9:

x1Cl2 + x2NaOH− x3NaCl− x4NaClO3 − x5H2O = 0 (C.11)

In the optimization procedure, the objective function is:

5

∑
i=1

xi (C.12)

subject to the constraints:

(a) 2x1 + 0x2 −1x3−1x4 −0x5 = 0 (with respect to chlorine (Cl))
(b) 0x1 + 1x2 −1x3 −1x4 −0x5 = 0 (with respect to sodium (Na))
(c) 0x1 + 1x2 −0x3−3x4 −0x5 = 0 (with respect to oxygen (O))
(d) 0x1 + 1x2 −0x3 −0x4 −2x5 = 0 (with respect to hydrogen (H))
(e) x1,x2,x3,x4 and x5 should be positive nonzero integers.

The balanced equation for the reaction is given in Eq. C.13:

3Cl2 + 6NaOH → 5NaCl+ NaClO3 + 3H2O (C.13)

C.4.3 Example 5

x1P2I4 + x2P4 + x3H2O → x4PH4I+ x5H3PO4 (C.14)

It can be written in the mathematical form as is given below:

x1P2I4 + x2P4 + x3H2O− x4PH4I − x5H3PO4 = 0 (C.15)

The objective function for the optimization is:

5

∑
i=1

xi (C.16)

subject to the constraints.

(a) 2x1 + 4x2 + 0x3−1x4 −1x5 = 0 (with respect to phosphorus (P))
(b) 4x1 + 0x2 + 0x3 −1x4 −0x5 = 0 (with respect to iodine (I))
(c) 0x1 + 0x2 + 2x3−4x4 −3x5 = 0 (with respect to hydrogen (H))
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(d) 0x1 + 0x2 + 1x3 −0x4 −4x5 = 0 (with respect to oxygen (O))
(e) x1,x2,x3,x4 and x5 should be positive nonzero integers.

The balanced equation is:

10P2I4 + 13P4 + 128H2O → 40PH4I+ 32H3PO4 (C.17)

The balancing of all types of chemical equations can be effectively carried out
through this simple optimization approach. This computational method helps to pro-
vide a uniform technique for balancing all types of chemical equations. As Mi-
crosoft Excel is familiar to even high school students, the method can be adopted
during the introduction of stoichiometric calculations.



Appendix D
Simultaneous Spectrophotometric Analysis

D.1 Introduction

A spectrum is a consequence of interaction of matter with energy. A spectropho-
tometer is employed to measure the amount of light that a sample absorbs. The
instrument operates by passing a beam of light through a sample and measuring the
intensity of light reaching a detector.

The spectrophotometric techniques can be used to measure concentration of so-
lutes in solution. To do this, we will measure the amount of light that is absorbed
by the solutes in solution in a cuvette in the spectrophotometer. Spectrophotometry
takes advantage of the dual nature of light. Namely, light has:

1. a particle nature which gives rise to the photoelectric effect (used in the spec-
trophotometer)

2. a wave nature which gives rise to the visible spectrum of light.

A spectrophotometer measures the intensity of a light beam after it is directed
through and emerges from a solution (Fig. D.1). As an example, let’s look at how
a solution of copper sulphate (CuSO4) absorbs light.

The red part of the spectrum has been almost completely absorbed by CuSO4 and
blue light has been transmitted. Thus, CuSO4 absorbs little blue light and therefore

Fig. D.1 Principle of spectrophotometer

K. I. Ramachandran et al., Computational Chemistry and Molecular Modeling 357
DOI: 10.1007/978-3-540-77304-7, ©Springer 2008



358 D Simultaneous Spectrophotometric Analysis

appears blue. In spectrophotometry, we can gain greater sensitivity by directing red
light through the solution because CuSO4 absorbs strongest at the red end of the
visible spectrum. But, to do this, we have to isolate the red wavelengths.

The important point to note here is that, colored compounds absorb light differ-
ently depending on the λ of incident light.

D.2 The Absorption Spectrum

Different compounds having dissimilar atomic and molecular interactions have
characteristic absorption phenomena and absorption spectra, which differ. The point
(wavelength) at which any given solute exhibits the maximum absorption of light
(the peaks on the curves on the Fig. D.2) is defined as that compounds particular
λ -max.

A spectrophotometric problem in the simultaneous analysis of spectra of solu-
tions is obtained by reacting hydrogen peroxide with Mo, Ti, and V ions in the same
solution to produce compounds that absorb light strongly in overlapping peaks with
absorbances at 330, 410, and 460 nm, respectively is shown in Fig. D.3. These val-
ues are included in the matrix.

C =

⎡
⎣

0.416 0.130 0.000
0.048 0.608 0.148
0.002 0.410 0.200

⎤
⎦ (D.1)

The absorbance of light A from a dissolved complex is given by A = abc where
a is the absorptivity, a function of the wavelength, which is characteristic of the
complex, b is the length of the light path through the absorbing solution in centime-
ters, and c is the concentration of the absorbing species in grams per liter. If more
than one complex is present, the absorbance at any selected wavelength is the sum
of contributions of each constituent. Individual solutions of Mo, Ti, and V ions were
made into complexes by hydrogen peroxide, and each spectrum in the visible region

Fig. D.2 Absorption spectrum



D.2 The Absorption Spectrum 359

was taken with a 1.00-cm cell, with the results shown in Fig. D.3. The absorbance
of solutions containing a single complex was recorded at one of the wavelengths
shown. The remaining two complexes were measured at the same wavelength, yield-
ing three measurements. This was repeated with the other two complexes, each at its
selected wavelength, yielding a total of nine measurements. The concentrations of
the metal complex solutions were all the same: 40.0 mgL−1. The absorbance table at
L for each of the metal complexes constitutes a matrix with rows of absorbances, at
one wavelength, of Mo, Ti, and V complexes, in that order. Each column comprises
absorbances for one metal complex at 330, 410, and 460 nm, in that order:

C =

⎡
⎣

0.416 0.130 0.000
0.048 0.608 0.148
0.002 0.410 0.200

⎤
⎦ . (D.2)

Dividing throughout by 0.04 to convert C to Lg−1 cm−1:

C =

⎡
⎣

10.4 3.25 0.000
1.20 15.2 3.70
0.05 10.25 5.00

⎤
⎦ (D.3)

Notice that the matrix has been arranged so that it is as nearly a diagonal domi-
nant as the data permits.

Now, an unknown solution containing Mo, Ti, and V ions was treated with hy-
drogen peroxide, and its absorbance was determined with a 1.00-cm cell at the three
wavelengths, in the same order (lowest to highest), that were used to generate the
absorbance matrix for the single complexes. The absorbance of the unknown so-
lution at the three wavelengths was 0.284, 0.857, and 0.718. The ordered set of
absorbances of any mixture of the complexes constitutes a b vector, in this case:

b =

⎡
⎣

0.284
0.857
0.718

⎤
⎦ . (D.4)

Let M, T, and V be concentrations of three solutions involved; then, the concen-
tration vector (x) is given as:

x =

⎡
⎣

M
T
V

⎤
⎦

This is solved with Microsoft Excel as shown in Fig. D.4. Hence:

1. The concentration of Mo = 0.014641 Lg−1 cm−1

2. The concentration of Ti = 0.040532 Lg−1 cm−1

3. The concentration of V = 0.060363 Lg−1 cm−1
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Fig. D.3 Absorption spectrum of mixture

Fig. D.4 Microsoft Excel worksheet for finding the concentration



Appendix E
Bond Enthalpy of Hydrocarbons

The derivation of bond enthalpies from thermo-chemical data involves a system of
simultaneous equations in which the sum of unknown bond enthalpies, each mul-
tiplied by the number of times the bond appears in a given molecule, is set equal
to the enthalpy of atomization of that molecule (Atkins, 1998). Taking a number of
molecules equal to the number of bond enthalpies to be determined, one can gener-
ate an n×n set of equations in which the matrix of coefficients is populated by the
(integral) number of bonds in the molecule and the set of n atomization enthalpies
in the b vector. (Obviously, each bond must appear at least once in the set.)

Carrying out this procedure for propane and butane, CH3 − CH2 − CH3 and
CH3 −CH2 −CH2 −CH3 yield the bond matrix.

[
2 8
3 10

]
.

The bond energy data is taken from a chemical database such as the NIST
database (http://webbook.nist.gov/chemistry/).

The simultaneous equations obtained are:

2(C−C)+ 8(H−C)−propane

3(C−C)+ 10(C−H)−butane

We can substitute from the above table to get the enthalpy of atomization of
hydrocarbons. Here, the enthalpy vector is as follows:

[
3994
5166

]

From the enthalpy of atomization of constituent elements, the enthalpy of atom-
ization of the compound is computed based on the equation:

Enthalpy of atomization (bond enthalpy) of compound = Σ Enthalpy of atom-
ization of constituents − enthalpy of formation of the compound.
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Table E.1 Bond energy table

Bond Bond energy
(kjmol−1)

Bond Bond energy
(kjmol−1)

H−H 435.4 N−H 389
H−F 565 C−H 413
H−Cl 431 C−Cl 328
H−Br 364 C−O 335
H−I 297 C=O 707
F−F 155 C−N 293
Cl−Cl 242 C=N 616
Br−Br 190 C≡N 879
I−I 149 C−Br 275.6
O=O 494 O−O 138
N≡N 941 N−N 159
C=C 619 N=N 418
C≡C 812 C−C 347
O−H 463

Here, for propane, enthalpy of atomization is obtained by subtracting the en-
thalpy of formation of the alkane from the sum of atomic atomization enthalpies
(C: 716; H: 218 kJmol−1) for the molecule. For example, the molecular atomization
enthalpy of propane is:

3(716)+ 8(218)− (−104)= 3996 kJmol−1

Benson, in seeking group additivity values for different kinds of (CH)n groups
defines primary P, secondary S, tertiary T, and quaternary Q carbons and then sets
up the simultaneous equations to obtain energetic contributions for P, S, T, and Q.

Δ f H298(ethane) = −83.81 = 2P
Δ f H298(propane) = −104.7 = 2P+ S
Δ f H298(isobutane) = −134.2 = 3P+ T

Δ f H298(neopentane) = −168.1 = 4P+ Q

The b vector in this equation set has been converted from kilocalories per mole
to kilojoules per mol. Computing P, S, Q and T:

P = −41.905

S = −20.89

T = −8.485

Q = −0.48



Appendix F
Graphing Chemical Analysis Data

We can plot and analyze data using a spreadsheet. Guidelines (heuristics) for creat-
ing a good graph are reviewed.

F.1 Guidelines

1. Enter and format data in an Microsoft Excel spreadsheet in a form appropriate
for graphing.

2. Create a scatter plot from spreadsheet data.
3. Insert a linear regression line (trend line) into the scatter plot
4. Use the slope/intercept formula for the regression line to calculate an x value for

a known y value.
5. Explore curve fitting to scatter plot data:

a. Create a connected point (line) graph.
b. Place a reference line in a graph.

F.2 Example: Beer’s Law Absorption Spectra Tools

F.2.1 Basic Information

This exercise is primarily designed to give students basic skills in creating scatter
plots in Microsoft Excel, and then adding either a regression line or a fitted curve to
the data points. These techniques are very good for labs in fields such as chemistry
and physics where the data collected by the students needs to be interpreted in rela-
tion to some theoretical model. For example, does the slope of the regression line,
fitted to the collected data, match the theoretical slope calculated from the equation?
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In addition to these basic skills, some principles of good graph design are demon-
strated with the somewhat modest graph formatting options allowed in Microsoft
Excel.

F.2.2 Beer’s Law Scatter Plot and Linear Regression

F.2.2.1 Introduction

Beer’s Law states that there is a linear relationship between the concentration of
a colored compound in the solution and the light absorption of the solution. This
fact can be used to calculate the concentration of unknown solutions, given their
absorption readings. Firstly, a series of solutions of a known concentration are tested
for their absorption level. Secondly, a scatter plot is made of this empirical data and
a linear regression line is fitted to the data. This regression line can be expressed
as a formula and used to calculate the concentration of unknown solutions. Finally,
some techniques are demonstrated as to how to make the plot more readable using
the formatting options available in Microsoft Excel.

F.2.2.2 Entering and Formatting the Data in Microsoft Excel

Your data will go in the first two columns in the spreadsheet (Fig. F.1).

1. Title the spreadsheet page in cell A1.
2. Label Column A as the concentration of the known solutions in cell A3.
3. Label Column B as the absorption readings for each of the solutions in cell B3.

Begin by formatting the spreadsheet cells so the appropriate number of decimal
places is displayed (see Fig. F.1).

1. Click and drag over the range of cells that will hold the concentration data (A5
through A10 for the sample data).

2. Choose Format > Cells. . . (this is shorthand for choosing Cells. . . > from the
Format menu at the top of the Microsoft Excel window).

3. Click on the Number tab.
4. Under Category choose Number and set Decimal places to 5.
5. Click OK.
6. Repeat for the absorbance data column (B5 through B10 for the sample data),

setting the decimal places to 4.

Let us take data from Fig. F.2.

1. Enter the data below the column titles.
2. We can also place the absorption readings for the unknown solutions below the

other data.
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Fig. F.1 Beer’s law

Fig. F.2 Data for Beer’s law plot

The concentration data is probably better expressed in scientific notation.

1. Highlight the concentration data and choose Format > Cells. . .
2. Choose the Scientific Category and set the Decimal places to 2.
3. Highlight the data in both the concentration and absorbance columns (but not

the unknown data) by selecting them.
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With the data you want graphed, start the Chart Wizard.

1. Choose the Chart Wizard icon from the tool bar. If the Chart Wizard is not
visible, you can also choose Insert > Chart. . .
The first dialogue of the wizard comes up.

2. Choose XY (Scatter) and the unconnected points icon for the Chart sub-type.
3. Click Next > The Data Range box should reflect the data you highlighted in the

spreadsheet. The Series option should be set to Columns, which is how your
data is organized (Fig. F.3).

4. Click Next > The next dialogue in the wizard is where you label your chart
(Fig. F.4)

5. Enter Beer’s Law for the Chart Title.
6. Enter Concentration (M) for the Value X Axis.
7. Enter Absorbance for the Value Y Axis.
8. Click on the Legend tab.
9. Click off the Show Legend option (Fig. F.5).

10. Click Next > Keep the chart as an object in the current sheet (Fig. F.6). Note:
Your current sheet is probably named with the default name of “Sheet 1”.

11. Click Finish.

Fig. F.3 Graph plotting from data
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Fig. F.4 Chart wizard

Fig. F.5 Step 3

Fig. F.6 Step 4

The initial scatter plot is now finished and should appear on the same spreadsheet
page as your original data. Your chart should look like Fig. F.7.
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Fig. F.7 Beer’s law graph

A few items to be noted:

1. The data should look as though it falls along a linear path.
2. Horizontal reference lines were automatically placed in your chart, along with

a gray background.
3. The chart is highlighted with square handles on the corners. When your chart

is highlighted, a special chart floating palette should also appear, as is seen in
Fig. F.7. If the chart floating palette does not appear, go to Tools > Customize. . . ,
click on the Toolbars tab, and then click on the Chart checkbox. If it still doesn’t
show up as a floating palette, it may be “docked” on one of your tool bars at the
top of the Microsoft Excel window.

4. With your graph highlighted, you can click and drag the chart to wherever you
would like it located on the spreadsheet page. Grabbing one of the four corner
handles allows you to resize the graph. Note: the graph will automatically adjust
a number of chart properties as you resize the graph, including the font size of
the text in the graph. You may need to go back and alter these properties. At the
end of the first part of this tutorial, you will learn how to do this.
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F.3 Creating a Linear Regression Line (Trendline)

When the chart window is highlighted, besides having the chart floating palette ap-
pear, a chart menu also appears. From the chart menu, you can add a regression line
to the chart.

1. Choose Chart > Add trendline. . .
A dialogue box appears (Fig. F.8).

2. Select the Linear Trend/Regression type.
3. Choose the Options tab and select Display equation on chart (Fig. F.9).
4. Click OK to close the dialogue.

The chart now displays the regression line (Fig. F.10),

F.4 Using the Regression Equation to Calculate Concentrations

The linear equation shown on the chart represents the relationship between Con-
centration (x) and Absorbance (y) for the compound in the solution. The regression
line can be considered an acceptable estimation of the true relationship between
concentration and absorbance. We have been given the absorbance readings for two
solutions of unknown concentration.

Using the linear equation (labeled A in Fig. F.11), a spreadsheet cell can have
an equation associated with it to do the calculation for us. We have a value for

Fig. F.8 Adding trendlines
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Fig. F.9 Selected display equation on chart

Fig. F.10 Displaying the regression line

y (Absorbance) and need to solve for x (Concentration). Below are the algebraic
equations working out this calculation:

y = 2071.9x + 0.111

y−0.0111 = 2071.9x

(y−0.0111)/2071.9 = x

Now, we have to convert this final equation into an equation in a spreadsheet cell.
The equation associated with the spreadsheet cell will look like what is labeled C
in Fig. F.8. B12 in the equation represents y (the absorbance of the unknown). The
solution for x (Concentration) is then displayed in cell C12.
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Fig. F.11 Beer’s law graph

1. Highlight a spreadsheet cell to hold x, the result of the final equation (cell C12,
labeled B in Fig. F.11).

2. Click in the equation area (labeled C, Fig. F.11).
3. Type an equal sign and then a parentheses.
4. Click in the cell representing y in your equation (cell B12 in Fig. F.11) to put

this cell label in your equation.
5. Finish typing your equation.

Note: If your equation differs for the one in this example, use your equation
Duplicate your equation for the other unknown.

1. Highlight the original equation cell (C12 in Fig. F.11) and the cell below
it (C13).

2. Choose Edit > Fill > Down.

F.4.1 Adjusting the Chart Display

The readability and display of the scatterplot can be further enhanced by modifying
a number of the parameters and options for the chart. Many of these modifications
can be accessed through the Chart menu, the Chart floating palette, and by double-
clicking the element on the chart itself. Let’s start by creating a better contrast be-
tween the data points and regression line and the background.
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1. Double-click in the gray background area of the chart or by selecting Chart Area
in the Chart floating palette and then clicking on the Format icon (Fig. F.12).

In the Chart Area Format dialogue, set the border and background colors.

1. Choose None for a Border.
2. Choose the white square from the color palette for an Area color.
3. Click OK.

Now, delete the horizontal grid lines.

1. Click on the horizontal grid lines in the chart and press the Delete key.

Now, adjust the color and line weight of the regression line and the color of the data
points.

1. Double-click on the regression line (or choose Series 1 Trendline 1 from the
Chart floating palette and then click the Format icon).

2. Choose a thinner line for the Line Weight.
3. Click on the word Automatic next to Line Color and the color palette appears.

Choose dark blue from the color palette.
4. Click OK.
5. Double-click on one of the data points (or choose Series 1 and click the Format

icon).
6. Choose dark red from the color palette for the Marker Foreground and Back-

ground.
7. Click OK.

Finally, you can move the regression equation to a more central location on the chart

1. Click and drag the regression equation.

If necessary, resize the font size for text elements in the graph.

1. Either double click the text element or choose it from the floating palette.
2. Click on the Fonts tab.
3. Choose a different font size.

The results can be seen in Fig. F.13.

Fig. F.12 Formatting chart area
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Fig. F.13 Beer’s law graph (final)
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Titration Data Plotting

G.1 Creating a Scatter Plot of Titration Data

In this next part of the tutorial, we will work with another set of data. In this case, it
is of a strong acid-strong base titration (Table G.1). With this titration, a strong base
(NaOH) of known concentration is added to a strong acid (also of known concen-
tration, in this case). As the strong base is added to solution, its OH−ions bind with
the free H+ions of the acid. An equivalence point is reached when there are no free
OH− nor H+ions in the solution. This equivalence point can be found with a color
indicator in the solution or through a pH titration curve. This part of the tutorial will
show you how to do the latter.

In the last part of the tutorial, the axis scale is manipulated on the plot in order to
get a closer look at the most critical part of the plot: the equivalence point.

Table G.1 pH variation with acid-base neutralization

Titration of 50 mL of 0.1 MHCl
with 0.1 MNaOH.

Volume of NaOH pH
added (in mL)

0.00 1.00
10.0 1.17
25.0 1.48
45.0 2.28
49.5 3.30
49.75 3.60
50.0 7.00
50.25 10.40
55.0 11.68
60.0 11.96
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Fig. G.1 Titration graph

Note that there should be two columns of data in your spreadsheet:
Column A: mL of 0.1 M NaOH added
Column B: pH of the 0.1 M HCl/0.1M NaOH mixture

1. Using a new page in the spreadsheet, enter your titration data.

Highlight the titration data and the Column headers.

1. Click on the Chart wizard icon.
2. Choose XY (Scatter) and the scatter Chart sub-type. Continue through steps 2

through 4 of the Chart wizard.
3. The defaults for step 2 should be fine if you properly highlighted the data.
4. In step 3 enter the chart title and x and y axis labels and turn off the legend.
5. In step 4, leave as an object in the current page.
6. The resulting plot should look like Fig. G.1.

G.2 Curve Fitting to Titration Data

The next logical question that you might ask is whether a linear regression line or
a curved regression line might help us interpret the titration data. You may remember
that our goal with this plot is to calculate the equivalence point, that is, what amount
of NaOH is needed to change the pH of the mixture to 7 (neutral).

Create a linear regression line:

1. Choose Chart > Add Trendline. . .
2. Pick Linear sub-type.

Looking at the data (Fig. G.2), it is clear that the first 45 ml of NaOH do little to
alter the pH of the mixture. Then between 45 ml and 55 ml, there is a sharp rise in
pH before leveling off again. The data trend does not seem linear at all and, in fact,
a linear regression line does not fit the data well at all.
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Fig. G.2 Linear regression

The next approach might be to choose a different type of trendline (Fig. G.3):

1. Click on the linear regression line in the plot and press the delete key to delete
the line.

2. Choose Chart > Add Trendline. . .
3. Pick Polynomial subtype.
4. Set the Order of the curve to 2.

You can see that a second order polynomial curve does not capture the steep rise
of the data well. A higher order curve might be tried (Fig. G.4):

1. Double-click on the curved regression line.
2. Set the Order of the curve to 3.

Still, the third order polynomial does not capture the steep part of the curve where
it passes through a pH of 7. Even higher order curves could be created to see if they

Fig. G.3 Polynomial regression



378 G Titration Data Plotting

Fig. G.4 Higher order curve

fit the data better. Instead, a different approach will be taken for this data. Go ahead
and delete the regression curve:

1. Click on the curved regression line in the plot and press the delete key.

G.3 Changing the Scatter Plot to a Line Graph

Instead of adding a curved regression line, all of the points of the titration data are
connected with a smooth curve. With this approach, the curve is guaranteed to go
through all of the data points. This is both good and bad. This option can be used
if you have only one pH reading per amount of NaOH added. If you have multiple
pH readings for each amount added on the scatter plot, you will not end up with
a smooth curve. To change the scatter plot is a (smoothed) line graph (Fig. G.5):

1. Choose Chart > Chart Type. . .
2. Select the Scatter connected by smooth lines Chart subtype.

The result should look like Fig. G.6.
This smooth, connected curve helps locate where the steep part of the curve

passes through pH 7.

G.4 Adding a Reference Line

The chart can be enhanced by adding a reference line at pH 7. This clearly marks
the point where the curve passes through this pH.

1. A set of drawing tools should be visible at the bottom of the window. If not,
click on the Draw icon two to the right of the Chart wizard icon.
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Fig. G.5 Changing the scatter plot

Fig. G.6 Scatter plot changed

2. Make sure your chart is highlighted.
3. Choose the line tool at the bottom of the window.
4. Draw a horizontal line at pH 7 across the width of the chart by clicking and

dragging a line across the chart area.
5. With the horizontal line still highlighted, choose a 3/4 pt line thickness and

a dashed line type at the bottom of the window.
6. Remove the other horizontal grid lines.
7. Turn off the border.
8. Change the chart colors.
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Fig. G.7 Refined graph

9. Thicken the curve and shrink the data points, emphasizing the fitted curve over
the individual data points.

The result should look like Fig. G.7.

G.5 Modifying the Chart Axis Scale

The above chart gives a good overview of the entire titration. If you would like to
focus exclusively on the steep part of the curve between 45 and 55 ml of added
NaOH, a new chart can be created which limits the x axis range. Start by making
a copy of the current chart:

1. Select the current chart by clicking near its border.
2. Choose Edit > Copy.
3. Click a spreadsheet cell about 10 rows below the current chart.
4. Choose Edit > Paste.

With the new chart highlighted (Fig. G.8):

1. Choose Value (X) Axis from the Chart floating palette.
2. Click on the Format icon.
3. Set the Minimum to 45, Maximum to 55.
4. Set the Major unit to 1 and Minor unit to 0.25.
5. Click OK.

Next, both vertical and horizontal gridlines can be added to more accurately lo-
cate the equivalency point (Fig. G.9):

1. Choose Chart > Chart Options. . .
2. Click on the Gridlines tab.
3. Select X axis Major gridlines and Y axis Major gridlines.
4. Click OK.
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Fig. G.8 New chart highlighted

Fig. G.9 Locating the equivalency point

With enhancements similar to what you did to the other chart, the result will look
like Fig. G.10.

Even with this smooth curve passing through all of the data points, it is still
an estimation of what intermediate mL added/pH data points would be. A clear
inaccuracy is where the curve moves in a negative X direction between the 50 and 51
mL data points. More data points collected between 49 and 51 mL would both better
smooth the curve and give a more accurate estimation of the equivalency point.
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Fig. G.10 Modified graph

G.6 Extensions

Possible extensions include making charts and graphs of other chemical reactions
carried out in the lab. This type of graphing also lends itself to physics and technol-
ogy education labs where data is collected, graphed, and compared to some theo-
retical equation. Examples might be a lab on Ohm’s law or velocity of a toy car on
a downhill track. Make sure if experiments are carried out, that the lab and students
are properly outfitted with safety equipment.
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Curve Fitting in Chemistry

H.1 Membrane Potential

Whenever an ionic conductor separates two electrolyte solutions of different com-
position, it is possible in principle to observe all or part of that difference in compo-
sition as a difference in potential, which obeys the Nernst equation. This can be done
experimentally if one electrode is placed on each side of the ionic conductor so that
one is in each of the two different electrolyte solutions. These two electrodes usu-
ally are identical reference electrodes so that the measured cell potential difference
is only the potential difference across the ionic conductor.

If all substances could move through the ionic conductor equally well the cell
potential difference would be zero, but if only some can move through or into the
conductor (or if not all of them move equally well) then the cell potential differ-
ence will not be zero. Natural biological cell membranes act in this way, and so
do synthetic polymer membranes; these membranes are called ion-selective mem-
branes. Thin glass membranes and crystals of some slightly soluble salts can also
act as ion-selective membranes. The cell potential difference observed across an
ion-selective membrane is called a membrane potential.

Membrane potentials are responsible for the operation of the nervous systems of
living organisms. Chemists make use of them to construct chemical sensors for vari-
ous ions in aqueous solutions. These sensors routinely determine hydrogen, sodium,
potassium, and fluoride ions. We will consider here only one of them, the glass elec-
trode, which is the most common chemical sensor for the hydrogen ion. As such, it
is by far the most common method used to determine the pH of aqueous solutions.
The glass electrode cell is usually a two-electrode cell containing two silver/silver
chloride reference electrodes arranged as follows:

Ag/AgCl(s), Cl−(aq), H+(aq)/glass/test soln.//Cl−(aq), AgCl(s)/Ag

The reference electrode and electrolyte on the left are contained within the thin
glass electrode membrane. The reference electrode on the right is connected by
a salt bridge to the test solution, which contains an unknown concentration of the
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hydrogen ion. The membrane potential is the cell potential difference. A saturated
calomel reference electrode sometimes replaces the silver/silver chloride electrode
on the right.

For a glass membrane of the type used in these electrodes, only the aqueous
hydrogen ion can move into the membrane to any significant extent. The hydrogen
ions do not move through the membrane, but only into the hydrated layers on each
side of the glass where it touches the inner and test (outer) electrolyte solutions.
At 25 ◦C, the cell potential difference is the membrane potential and it follows the
Nernst equation in the form:

DE = DE ′ −0.05915 pH

In this equation DE ′ is a small constant potential difference depending on the
reference electrodes, the salt bridge, and the inner electrolyte solution; the pH is
that of the test solution.

Over the aqueous pH range 2 to 12, the membrane potential of a glass electrode
can accurately track the pH of a test solution in accordance with the Nernst equation.
At more extreme values of pH, some response to other species in solution begins to
become apparent. This can be improved somewhat by choices of different glasses,
so that glass electrodes can be used in aqueous solutions from pH 1 to pH 13. Using
still different glasses, electrodes which respond to sodium ion rather than hydrogen
ion can be fabricated.

The response of glass electrodes to differences in solution pH was first observed
in 1906. Systematic studies of glass composition led to the selection of a soft soda-
lime glass (72% SiO2, 22% Na2O, and 6% CaO) as the most suitable composition.
The glass electrode did not come into general use until about 1935, when elec-
tronic voltmeters were first used with it. The commercial pH meter developed by
Dr. Arnold O. Beckman established Beckman Instruments as a major supplier of
chemical instrumentation. A pH meter is a high-input-impedance electronic volt-
meter whose scale is calibrated in pH units (one pH unit is 59.15 mV). Buffers of
known pH are used as standards to calibrate the pH meter.

H.2 The Determination of the E0 of the Silver-Silver Chloride
Reference Cell

From the theory of the electrochemical cell, the potential in volts E of a silver-silver
chloride-hydrogen cell is related to the molarity m of HCl by the equation:

E +
2RT

F
lnm = E0 +

2.343RT
F

m
1
2 (H.1)

where R is the gas constant, F is the Faraday constant (9.648×104 coulombsmol−1),
and T is 298.15 K. The silver-silver chloride half-cell potential E0 is of critical
importance in the theory of electrochemical cells and in the measurement of pH.
We can measure E at known values of m, and it would seem that simply solv-
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ing the above equation would lead to E0. So it would, except for the influence of
non-ideality on E . Inter-ionic interference gives us an incorrect value of E0 at any
nonzero value of m. But if m is zero, there are no ions to give a voltage E . The way
out of this dilemma is to make measurements at several (non-ideal) molarities m and
extrapolate the results to a hypothetical value of E at m = 0. In so doing we have
“extrapolated out” the non-ideality because at m = 0 all solutions are ideal. Rather
than ponder the philosophical meaning of a solution in which the solute is not there,
it is better to concentrate on the error due to inter-ionic interactions, which becomes
smaller and smaller as the ions become more widely separated (Fig. H.1). At the
extrapolated value of m = 0, ions have been moved to an infinite distance where
they cannot interact. Plotting the left side of the equation as a function of m

1
2 gives

a curve with (2.342RT F) as the slope and E0 as the intercept (Fig. H.2).
From the graph equation, the value of E0 can be read as 0.2225, which is very

close to the modern value of 0.2223 V.

Fig. H.1 Electrode potential of silver-silver chloride reference electrode

Fig. H.2 Nernst law application



Appendix I
The Solvation of Potassium Fluoride

Linear extrapolation of the experimental behavior of a real gas to zero pressure or
a solute to infinite dilution is often used as a technique to “get rid” of molecular or
ionic interactions so as to study some property of the molecule or ion to which these
interferences are considered extraneous. Emsley (1971) studied the heat (enthalpy)
of solutions of potassium fluoride KF and the monosolvated species KF.HOAc in
glacial acetic acid at several concentrations. A known weight of the anhydrous salt
KF was added to a known weight of glacial acetic acid in a Dewar flask fitted with
a heating coil, a stirrer, and a sensitive thermometer. The temperature change on
each addition was recorded. The heat capacity C of the flask and its contents was
determined by supplying a known amount of electrical energy Q to the flask and
noting the temperature rise ΔT in kelvins (K) Q (joules) = CΔT . The experiment
was repeated for the solvated salt KF.HOAc, where the molecule of solvation is
acetic acid, HOAc. Some experimental results calculated are included in Table I.1
and the corresponding graphs are given in Figs. I.1 and I.2.

Table I.1 Variation of molality with temperature

KF: C = 4.168 kJK−1

Molality 0.194 0.590 0.821 1.208
Temperature change K 1.592 4.501 5.909 8.115

KF: HOAc: C = 4.203 kJK−1

Molality 0.280 0.504 0.910 1.190
Temperature change K −0.227 −0.432 −0.866 −1.189
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Fig. I.1 Molality change in temperature

Fig. I.2 Computation of enthalpy of the solution



Appendix J
Partial Molal Volume of ZnCl2

In general, the volume of a solution, say ZnCl2 in water, is dependent on the num-
ber of moles of each of the components. For a binary solution, V = f (n1,n2). The
change in volume dV on adding a small amount dn1 of water or dn2 of ZnCl2 is:

dV =
(
∂V
∂n1

)
dn1 +

(
∂V
∂n2

)
dn2 (J.1)

where we stipulate that pressure, P, and temperature, T are constant for the process
and we adopt the usual subscript convention, 1 for solvent and 2 for solute. If we
specify 1 kg as the amount of water, n2 is the molality of ZnCl2. We expect that
the volume of the solution will be greater than 1000 cm3 by the volume taken up
by the ZnCl2. It may seem reasonable to take the volume of one mole of ZnCl2 in
the solid state Vm and add it to 1000 cm3 to get the volume of a 1 molal solution.
One-half the molar volume of solute would, by this scheme, lead to the volume of
a 0.5 molar solution, and so on. This does not work. The volume of 1000 g of water
in the solution is not exactly 1000 cm3, and it is dependent of the temperature. Nor
are the volumes additives. Indeed, some solutes cause contraction of the solution to
less than 1000 cm3. Interactions at the molecular or ionic level cause an expansion
or contraction of the solution so that, in general:

V 
= 1000 +Vm (J.2)

We define a partial molar volume Vi such that V = n1V1 +n2V2 for a binary solu-
tion or, in general:

V =
N

∑
i=1

niVi (J.3)

for a solution of N components. It can be shown (Alberty, 1987) that

Vi =
(
∂V
∂ni

)

j
(J.4)

where the subscript j indicates that all components in the solution other than i are
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held constant. If the solution is a binary solution of n2 moles of solute in 1 kg of
water, V2 is the partial molal volume of component 2. A partial molal volume is
a special case of the partial molar volume for 1 kg of solvent. Refer to Fig. J.1 and
Fig. J.2.

The computed slope = 163.2217.

Fig. J.1 Partial molal volume

Fig. J.2 Graphical computation of the partial molal volume
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