
INTERPRETING INFRARED, RAMAN, AND NUCLEAR MAGNETIC RESONANCE SPECTRA

VOLUME 1

Variables in Data Interpretation of Infrared and Raman Spectra

RICHARD ALLEN NYQUIST

INTERPRETING INFRARED, RAMAN, AND NUCLEAR MAGNETIC RESONANCE SPECTRA

To order this title, and for more information, click here

Βv

Richard Nyquist, Nyquist Associates, Midland, Michigan, U.S.A.

Description

This book teaches the analyst why it is advantageous to obtain vibrational data under different physical phases. Molecular vibrations are affected by change in physical phase, and knowledge of how certain molecular vibrations are affected by change in the chemical environment improves the analyst's ability to solve complex chemical problems. This book is invaluable for students and scientists engaged in analytical and organic chemistry, since application of IR and Raman spectroscopy is essential in identifying and verifying molecular structure. This reference provides analysts with information that enables them to acquire the maximum amount of information when sampling molecular vibrations via IR and Raman spectroscopy.

Audience

Spectroscopists, analytical and organic chemists, chemical physicists, both in academia and especially industry.

Contents

Volume 1: Theory of Vibrational Spectroscopy Experimental Alkyl Carbon-Hydrogen Vibrations Alkenes and Other Compounds Containing C=C Double Bonds Alkynes and Compounds Containing C=C Groups Carboxamides, Ureas, Thioureas, Imidazolidinones, Caffeine, Isocaffeine, Uracils, Imides, Hydantoins, and s-Triazine (1H, 3H, 5H)- Triones Aldehydes Ketones Carboxylic Acid Esters Organic Carbonates, Thiol Carbonates, Chloroformates, Thiol Chloroformates, Acetyl Chloride, Benzoyl Chloride, Carbamates, and an Overview of Solute-Solvent Effects Upon Carbonyl Stretching Frequencies Volume 2: Epoxides and Ethers Nitriles, Isonitriles, and Dialkyl Cyanamides Azines, Isocyanates, Isothiocyanates, and Carbodiimides Thiols, Sulfides and Disulfides, Alkanethiols, and Alkanedithiols (S--H stretching) Sulfoxides, Sulfones, Sulfates, Monothiosulfates, Sulfonyl Halides, Sulfites, Sulfonamides, Sulfonates, and N-Sulfinyl Anilines Halogenated Hydrocarbons Nitroalkanes, Nitrobenzenes, Alkyl Nitrates, Alkyl Nitrites, and Nitrosamines Phosphorus Compounds Benzene and Its Derivatives The Nyquist Vibrational Group Frequency Rule Infrared Raman and Nuclear Magnetic Resonance (NMR) Spectra-Structure Correlations for Organic Compounds

Bibliographic & ordering Information

Hardbound, 1068 pages, publication date: APR-2001

ISBN-13: 978-0-12-523475-7 ISBN-10: 0-12-523475-9 Imprint: ACADEMIC PRESS

Price: Order form

GBP 435 USD 755 EUR 630

Books and book related electronic products are priced in US dollars (USD), euro (EUR), and Great Britain Pounds (GBP). USD prices apply to the Americas and Asia Pacific. EUR prices apply in Europe and the

ACKNOWLEDGMENTS

I thank the management of The Dow Chemical Company for providing me with a rewarding career in chemistry for over 41 years. I also thank the management of Sadtler Research Laboratories, a Division of Bio-Rad, for the opportunity to serve as an editorial consultant for several of their spectral collections of IR and Raman spectra.

I thank Marcia Blackson for typing the book manuscript. Her cooperation and editorial comments are appreciated.

NYQUIST'S BIOGRAPHY

In 1985, Richard A. Nyquist received the Williams-Wright Award from the Coblentz Society for his contributions to industrial IR spectroscopy. He was subsequently named an honorary member of the Coblentz Society for his contributions to vibrational spectroscopy, and in 1989, he was a national tour speaker for the Society of Applied Spectroscopy. The Association of Analytical Chemists honored Dr. Nyquist with the ANACHEM Award in 1993 for his contributions to analytical chemistry. He is listed in Who's Who in Science and Engineering, Who's Who in America, and Who's Who in the World. The Dow Chemical Company, from which Dr. Nyquist retired in 1994, honored him with the V.A. Stenger Award in 1981, and the Walter Graf European Award in 1994 for excellence in analytical chemistry. He has also been a member of ASTM, and received the ASTM Award of Appreciation for his contributions to the Practice of Qualitative Infrared Analysis. In 2000, Dr. Nyquist was awarded honorary membership to the Society of Applied Spectroscopy for his exceptional contributions to spectroscopy and to the Society. Dr. Nyquist received his B.A. in chemistry from Augustana College, Rock Island, Illinois, his M.S. from Oklahoma State University, and his Ph.D. from Utrecht University, The Netherlands. He joined The Dow Chemical Company in 1953. He is currently president of Nyquist Associates, and is the author or coauthor of more than 160 scientific articles including books, book chapters, and patents. Nyquist has served as a consultant for Sadtler Research Laboratories for over 15 years. In 1997 Michigan Molecular Institute, Midland, Michigan selected him as their consultant in vibrational spectroscopy.

PREFACE

My intention in compiling this book is to integrate IR, Raman, and NMR data in order to aid analysts in the interpretation of spectral data into chemical information useful in the solution of problems arising in the real world.

There is an enormous amount of IR and Raman data available in the literature, but in my opinion there has not been enough emphasis on the effects of the physical environment of chemicals upon their molecular vibrations. Manipulation of the physical phase of chemicals by various experiments aids in the interpretation of molecular structure. Physical phase comprises solid, liquid, vapor, and solution phases.

In the solid crystalline phase, observed molecular vibrations of chemicals are affected by the number of molecules in the unit cell, and the space group of the unit cell. In the liquid phase, molecular vibrations of chemicals are affected by temperature, the presence of rotational conformers, and physical interaction between molecules such as hydrogen bonding and/or dipolar interaction. In the vapor phase, especially at elevated temperature, molecules are usually not intermolecularly hydrogen bonded and are free from dipolar interaction between like molecules. However, the rotational levels of the molecules are affected by both temperature and pressure. Induced high pressure (using an inert gas such as nitrogen or argon) will hinder the molecular rotation of molecules in the vapor phase. Thus, the rotational-vibrational band collapses into a band comparable to that observed in a condensed phase. Higher temperature will cause higher rotational levels to be observed in the vibrational-rotational bands observed in the vapor phase.

In solution, the frequencies of molecular vibrations of a chemical are affected by dipolar interaction and/or hydrogen bonding between solute and solvent. In addition, solute-solvent interaction also affects the concentration of rotational conformers of a solute in a solvent.

The number of intermolecular hydrogen-bonded molecules existing in a chain in solution depends upon the solute concentration. In addition, the number of molecules of a solute in solution existing in a cluster in the absence of intermolecular hydrogen bonding also depends upon solute concentration.

xiv Preface

INTRODUCTION

Infrared (IR) and Raman (R) spectroscopy are essential tools for the study and elucidation of the molecular structures of organic and inorganic materials. There are many useful books covering both IR and R spectroscopy (1–14). However, none of these books emphasize the significance of changes in the molecular vibrations caused by changes in the physical state or environment of the chemical substance. One goal of this book is to show how changes in the physical environment of a compound aid in both the elucidation of molecular structure and in the identification of unknown chemical compositions. Studies of a variety of chemicals in various physical states have led to the development of the Nyquist Rule. The Nyquist Rule denotes how the in-phase- and out-of-phase- or symmetric and antisymmetric molecular vibrations (often called characteristic group frequencies) differ with changes to their physical environment. These group frequency shift differences aid the analyst in interpreting the data into useful chemical information. Another goal of this book is to gather information on the nature of solute-solvent interaction, solute concentration, and the effect of temperature. This knowledge also aids the analyst in interpretation of the vibrational data. Another goal of this work was to compile many of the authors' and coauthors' vibrational studies into one compendium.

xiv Preface

INTRODUCTION

Infrared (IR), Raman (R), and Nuclear Magnetic Resonance (NMR) spectroscopy are essential tools for the study and elucidation of the molecular structures of organic and inorganic materials. There are many useful books covering both IR and R spectroscopy (1–14). However, none of these books emphasize the significance of changes in the molecular vibrations caused by changes in the physical state or environment of the chemical substance. One goal of this book is to show how changes in the physical environment of a compound aid in both the elucidation of molecular structure and in the identification of unknown chemical compositions. Studies of a variety of chemicals in various physical states have led to the development of the Nyquist Rule. The Nyquist Rule denotes how the in-phase- and out-of-phase- or symmetric and antisymmetric molecular vibrations (often called characteristic group frequencies) differ with changes to their physical environment. These group frequency shift differences aid the analyst in interpreting the data into useful chemical information. Another goal of this book is to gather information on the nature of solute-solvent interaction, solute concentration, and the effect of temperature. This knowledge also aids the analyst in interpretation of the vibrational data. Another goal of this work was to compile many of the authors' and coauthors' vibrational studies into one compendium.

REFERENCES

- 1. Herzberg, G. (1945). Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, New Jersey: D. Van Nostrand Company, Inc.
- 2. Wilson, E.B. Jr., Decius, J.C., and Cross, P.C. (1955). Molecular Vibrations, New York: McGraw-Hill Book Company, Inc.
- 3. Colthup, N.B., Daly, L.H., and Wiberley, S.E. (1990). *Introduction to Infrared and Raman Spectroscopy*, 3rd ed., New York: Academic Press.
- 4. Potts, W.J., Jr. (1963). Chemical Infrared Spectroscopy, New York: John Wiley & Sons, Inc.
- 5. Nyquist, R.A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, Phildelphia: Sadtler Research Laboratories, A Division of Bio-Rad.
- Nyquist, R.A. (1989). The Infrared Spectra Building Blocks of Polymers, Philadelphia: Sadtler Research Laboratories, A Division of Bio-Rad.
- 7. Nyquist, R.A. (1986). *IR and NMR Spectral Data-Structure Correlations for the Carbonyl Group*, Philadelphia: Sadtler Research Laboratories, A Division of Bio-Rad.
- 8. Griffiths, P.R. and de Haseth, J.A. (1986). Fourier Transform Infrared Spectrometry, *Chemical Analysis*, vol. 83, New York: John Wiley & Sons.
- 9. Socrates, G. (1994). Infrared Characteristic Group Frequencies Tables and Charts, 2nd ed., New York: John Wiley & Sons.
- 10. Lin-Vien, D., Colthup, N.B., Fateley, W.G., and Grasselli, J.G. (1991). The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, San Diego, CA: Academic Press.
- 11. Nyquist, R.A., Putzig, C.L. and Leugers, M.A. (1997). *Infrared and Raman Spectral Atlas of Inorganic and Organic Salts*, vols. 1–3, San Diego, CA: Academic Press.
- 12. Nyquist, R.A., and Kagel, R.O. (1997). Infrared Spectra of Inorganic Compounds, vol. 4, San Diego, CA: Academic Press.
- 13. Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry, New York: John Wiley & Sons.
- 14. Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, New York: John Wiley & Sons.

Theory of Vibrational Spectroscopy

I.	Theory	1
П.	Examples of Molecular Structure	2
	A. Linear molecules: $I_A = O$, $I_B = I_C$	2
	B. Spherical Top Molecules: $I_A = I_B = I_C$	4
	C. Symmetric Top Molecules	4
	1. Prolate: $I_A < I_B = I_C$	4
	2. Oblate Top: $I_A = I_B < I_C$	5
	D . Asymmetric Top Molecules: $I_A \neq I_B \neq I_C$ (where $I_A < I_B < I_C$,	
	and the rotational constants are ordered $A > B > C$)	6
III.	Pressure Effect	6
IV.	Temperature Effect	6
V.	Vapor-Phase vs Condensed IR Spectra	7
VI.	Fermi Resonance (F.R.) and Other Factors	7
Ref	ferences	8

Figures

Figure 1-1	9 (3)	Figure 1-9	17 (4)
Figure 1-2	10 (3)	Figure 1-10	18 (4)
Figure 1-3	11 (3)	Figure 1-11	19 (4)
Figure 1-4	12 (3)	Figure 1-12	20 (4)
Figure 1-5	13 (3)	Figure 1-13	21 (5)
Figure 1-6	14 (3)	Figure 1-14	22 (5)
Figure 1-7	15 (3)	Figure 1-15	23 (5)
Figure 1-8	16 (4)	Figure 1-16	24 (6)

^{*}Numbers in parentheses indicate in-text page reference.

I. THEORY

For detailed discussion on the theoretical treatment of vibrational data (IR and Raman) the reader is referred to the following References (1-4). Extensive interpretation of IR vapor-phase

spectra have been presented in Reference (5). The infrared and Raman methods are based on the fact that within any molecule the atoms vibrate within a few definite, sharply defined frequencies characteristic of the molecule. These vibrational frequencies occur in the region of the electromagnetic spectrum 13333 cm⁻¹ to 50 cm⁻¹ and beyond. Only those molecular vibrations producing a dipole-moment change are IR active, allowed in the IR, and only those molecular vibrations producing polarization of the electron cloud are Raman active, allowed in the Raman. In the vapor-phase, molecules are free to rotate in three-dimensional (3D) space. The molecular rotational moments of inertia are governed by molecular geometry, and the atomic mass of each atom in the molecule together with their relative spatial positions within the molecule. Therefore, in the vapor-phase, molecules undergo transitions between quantized rotation states as well as quantized vibrational transitions. The result is that a transition between the ground state and the first excited state of a normal mode is accompanied by a manifold of rotational transitions. This leads to a complex rotation-vibration band for every IR active molecular vibration. Overtones are also IR active for molecules without a center of symmetry, and they result from transitions between the ground state and the second excited state of a normal vibration. Combination tones result from simultaneous transitions from the ground state to the first excited state of two or more normal vibrations. Both combination tones and overtones are also accompanied by manifold rotational transitions. In the liquid or solution phase, rotation of the molecule in space is restricted. Therefore, the rotation-vibration bands are "pressure broadened," and do not exhibit the sharp manifold rotational translational lines.

The number of molecular vibrations allowed in the IR or R for a given molecule is governed by the number of atoms in the molecule together with its molecular geometry. For nonlinear molecules, the total number of normal vibrations is determined by the equation 3N-6, where N is the number of atoms in the molecule. Because the molecules are free to vibrate, rotate, and translate in 3D space, N is multiplied by 3. The number 6 is subtracted because the number of possible molecular vibrations is not determined by rotation and translation of the molecule. For linear molecules, the total number of normal vibrations is determined by equation 3N-5.

In order to determine the active IR and Raman normal vibrations for any molecule, one has to apply a method known as Group Theory (1-4). Application of Group Theory also allows the determination of which overtones and combination tones are active in either the IR or Raman.

Pure molecular rotation transitions are also IR active, and they occur in the IR spectrum in the region below $600\,\mathrm{cm}^{-1}$ for small molecules having a permanent dipole, such as H_2O , NH_3 , PH_3 , etc.

In the vapor-phase, interpretation of the rotation-vibration bond contour is helpful in the elucidation of molecular structure. Band contours result from a combination of molecular symmetry and the moments of inertia I_A , I_B , and I_C about three mutually perpendicular axes.

II. EXAMPLES OF MOLECULAR STRUCTURE

A. Linear Molecules: $I_A = O$, $I_B = I_C$

Examples of these are:

Hydrogen halides, HX; Carbon monoxide, CO; Nitrogen oxide, NO; Carbon dioxide, O=C=O; Carbon disulfide, S=C=S; and Acetylene, H−C≡C−H.

In the case of linear molecules, I_A is the moment of inertia along the molecular axis, and I_B and I_C are mutually perpendicular axes. The infrared active stretching vibrations produce a dipole-moment change along the molecular symmetry axis, and the resulting rotation-vibration band contour is called a parallel band. In this case, the P and R branches are predominate with no center Q branch.

Figure 1.1 shows the IR vapor-phase spectrum of hydrogen bromide. The P branch of HBr occurs in the region $2300-2550\,\mathrm{cm^{-1}}$ and the R branch occurs in the region $2500-2725\,\mathrm{cm^{-1}}$. Figure 1.2 shows the IR vapor-phase spectrum of hydrogen chloride. The P branch of HCl occurs in the region $2600-2880\,\mathrm{cm^{-1}}$ and the R branch occurs in the region $2900-3080\,\mathrm{cm^{-1}}$. The rotational subband spacings are closer together for HBr than those for HCl, and this is because the individual rotation subbands in the P and R branches are dependent upon the moments of inertia, and become more closely spaced as I_B and I_C become larger. Neither HBr nor HCl exhibits a central Q branch for the hydrogen-halogen stretching vibration.

Figure 1.3 shows an IR vapor-phase spectrum for carbon monoxide in the region 1950–2300 cm⁻¹. In this case the P branch occurs in the region 2000–2150 cm⁻¹, and the R branch occurs in the region 2150–2250 cm⁻¹. Both the P and R branches exhibit closely spaced rotation subbands of the CO stretching vibration, producing essentially a solid continuum of absorption lines.

Figure 1.4 shows an IR vapor-phase spectrum of nitrogen oxide. The NO stretching vibration is assigned to the parallel band occurring in the region $1760-1970\,\mathrm{cm^{-1}}$. However, it should be noted that this is an exceptional case for linear molecules, because a central Q branch is observed near $1872\,\mathrm{cm^{-1}}$. This exception results from the presence of an unpaired electron in nitrogen oxide causing a resultant electronic angular momentum about the molecular axis, which gives rise to a Q branch in the parallel band (1). The P branch subbands occur below $1872\,\mathrm{cm^{-1}}$, and the R branch subbands occur above $1872\,\mathrm{cm^{-1}}$. Otherwise, a band with this contour for linear molecules would be called a perpendicular band.

Figure 1.5 is a vapor-phase IR spectrum of carbon dioxide. The perpendicular band for CO_2 exhibits its Q branch near $670\,\mathrm{cm^{-1}}$ with a P branch near $656\,\mathrm{cm^{-1}}$ and an R branch near $680\,\mathrm{cm^{-1}}$. This CO_2 bending vibration is doubly degenerate. The parallel band for the antisymmetric CO_2 stretching vibration occurs in the region $2300-2400\,\mathrm{cm^{-1}}$. The P branch occurs near $2350\,\mathrm{cm^{-1}}$ and the R branch occurs near $2360\,\mathrm{cm^{-1}}$.

Figure 1.6 is an IR vapor-phase spectrum of carbon disulfide. The P branch of the parallel band occurs near $1560\,\mathrm{cm^{-1}}$ and the R branch of the parallel band occurs near $1540\,\mathrm{cm^{-1}}$ for this antisymmetric CS_2 stretching vibration.

Figure 1.7 is an IR vapor-phase spectrum for acetylene. The perpendicular band occurring in the region $650-820\,\mathrm{cm^{-1}}$ is assigned to the in-phase (\equiv C-H)₂ bending vibration, which is doubly degenerate. The Q branch occurs near $730\,\mathrm{cm^{-1}}$, the P branch in the region $650-720\,\mathrm{cm^{-1}}$, and the R branch in the region $735-820\,\mathrm{cm^{-1}}$. Rotational subbands are noted in both the P and R branches of this linear molecule.

Acetylene, carbon dioxide, and carbon disulfide have a center of symmetry; therefore, some vibrations are only IR active and some vibrations are only Raman active. Raman active vibrations

for acetylene are the in-phase (\equiv C-H)₂ stretching vibration, the C \equiv C stretching vibration, and the out-of-phase (\equiv C-H)₂ bending vibration. A Raman active fundamental for CO₂ and CS₂ is the symmetric CO₂ and CS₂ stretching vibration. Comparison of the frequency separation between the subbands of the P and R branches shows that it is less for CS₂ than for CO₂, and this is a result of a larger I_B = I_C for CS₂ compared to CO₂.

B. Spherical Top Molecules: $I_A = I_B = I_C$

Molecules in this class have Td symmetry, and examples are methane and symmetrically substituted carbon tetrahalides. In this case IR active fundamentals exhibit P, Q and R branches in the vapor-phase comparable to that exhibited by perpendicular vibrations in linear molecules.

Figure 1.8 is an IR vapor-phase spectrum for methane. The antisymmetric CH_4 stretching vibration is triply degenerate, the perpendicular band exhibits the Q branch near $3020\,\mathrm{cm}^{-1}$, the P branch in the region $2850-3000\,\mathrm{cm}^{-1}$, and the R branch in the region $3040-3180\,\mathrm{cm}^{-1}$. The triply degenerate antisymmetric CH_4 bending vibration also appears as a perpendicular band. The Q branch occurs near $1303\,\mathrm{cm}^{-1}$, the P branch in the region $1200-1290\,\mathrm{cm}^{-1}$, and the R branch in the region $1310-1380\,\mathrm{cm}^{-1}$. Numerous subbands are noted in the P and R branches of both vibrations. The symmetric CH_4 stretching vibration is only active in the Raman ($2914\,\mathrm{cm}^{-1}$), and the symmetric CH_4 bending vibration, triply degenerate, is only Raman active ($1306\,\mathrm{cm}^{-1}$). The antisymmetric CH_4 stretching vibration, triply degenerate, and the symmetric CH_4 bending vibration, doubly degenerate, are both IR and Raman active.

Figure 1.9 shows an IR vapor-phase spectrum of carbon tetrafluoride. The antisymmetric CF_4 stretching vibration is triply degenerate, and its Q branch is noted near $1269\,\mathrm{cm}^{-1}$. The antisymmetric CF_4 bending vibration is triply degenerate. Its Q branch is noted near $630\,\mathrm{cm}^{-1}$, and the P and R branches are noted near $619\,\mathrm{cm}^{-1}$ and $650\,\mathrm{cm}^{-1}$, respectively. Because the moments of inertia are large, the subbands of the P and R branches are so narrowly spaced that the P and R branches appear as a continuum.

C. Symmetric Top Molecules

1. Prolate: $I_A < I_B = I_C$ (essentially rod shaped)

Molecules in this class have C_{3V} symmetry. Examples include the methyl halides, propyne, and 1-halopropynes.

Prolate symmetric top molecules exhibit both parallel and perpendicular bands in the vapor phase. Molecular vibrations mutually perpendicular to the highest symmetry axis exhibit perpendicular bands and molecular vibrations symmetric with respect to the highest symmetry axis exhibit parallel bands.

Figures 1.10, 1.11, and 1.12 are IR vapor-phase spectra of methyl chloride, methyl bromide, and methyl iodide, respectively.

T1 D	1 r	. 1 1			11 1	T T.	ſ	41	1 1	1 1 1 1 .		•	1
ine P	ana r	t branches	Of It	ie nara	Het	pands	tor	rnese	mernvi	naudes	are	given	nere:

Branch	CH ₃ Cl cm ⁻¹	CH ₃ Br cm ⁻¹	CH ₃ I cm ⁻¹	Assignment
P	2952	2980	2980	symmetric CH ₃
R	2981	2985	2958	stretching
P	1346	1293	1261	symmetric CH ₃
R	1366	1319	1235	bending
P	713	598	518	C-X stretching
R	748	622	540	3

The parallel bands are nondegenerate.

The P, Q, and R branches of the perpendicular bands for these methyl halides are given here:

Branch	CH ₃ Cl cm ⁻¹	CH ₃ Br cm ⁻¹	CH₃I cm ⁻¹	Assignment
P	~3000–3150	~3020-3140	~3020–3140	antisymmetric CH ₃ stretching
Q	\sim 1325–1600	~1300-1600	\sim 1300–1600	antisymmetric CH ₃ bending
R	~940–1120	\sim 850–1050	~770–1000	CH ₃ rocking

The perpendicular modes are doubly degenerate.

Figures 1.13 and 1.14 are IR vapor-phase spectra of 1-bromopropyne and 1- iodopropyne, respectively. Detailed assignments for these two compounds are given in Reference (6).

2. Oblate Top: $I_A = I_B < I_C$ (essentially disc shaped)

Molecules in this class have D_{6h} symmetry, and molecules with this symmetry include benzene, benzene- d_6 , and the hexahalobenzenes, which contain only F_6 , Cl_6 , Br_6 , or I_6 . Oblate symmetric top molecules exhibit both parallel and perpendicular bands. Planar molecular vibrations exhibit parallel bands, and out-of-plane vibrations exhibit perpendicular bands. These complex molecules exhibit relatively simple IR vapor-phase IR spectra, because these molecules have a center of symmetry, and only a few normal modes are IR active.

Figure 1.15 is an IR vapor-phase spectrum of benzene. The type C perpendicular band with a Q branch at $\sim\!670\,\mathrm{cm^{-1}}$, with P and R branches near $\sim\!651$ and $\sim\!686\,\mathrm{cm^{-1}}$, respectively, is assigned to the in-phase-out-of plane 6 hydrogen deformation. Benzene exhibits a type A band with P, Q, and R branches near 1019, 1039, and 1051 cm⁻¹, respectively. Both the type A and type C bands show P, Q, and R branches, but the spacings between P and R branches for type A bands for benzene are less than the spacings between the P and R branches of type C bands.

D. Asymmetric Top Molecules: $I_A \neq I_B \neq I_C$ (where $I_A < I_B < I_C$, and the Rotational Constants are Ordered A > B > C)

Molecules in this class will exhibit type A, B, and C bands providing the dipole moment change during the normal vibration is parallel to the a, b, or c axis, respectively. Mixed band contours described as type AB are exhibited by molecules where the dipole moment change during the normal vibration is not exactly parallel to the a or b symmetry axis.

Figure 1.16 is a vapor-phase IR spectrum of ethylene oxide. Type B bands exhibit no central peak, and classic type B bands are noted near 1269 and 875 cm $^{-1}$. For the 1269 cm $^{-1}$ band the P and R branches are assigned near 1247 and 1292 cm $^{-1}$, respectively, and the Q^I and Q^{II} branches are assigned near 1263 and 1274 cm $^{-1}$, respectively. For the 875 cm $^{-1}$ band, the P and R branches are assigned near 848 and 894 cm $^{-1}$, respectively, and the Q^I and Q^{II} branches are assigned near 869 and 881 cm $^{-1}$, respectively. The 1269 cm $^{-1}$ band is assigned to ring breathing, the 875 cm $^{-1}$ band to a ring deformation. The weak type C band with a Q branch near 820 cm $^{-1}$ is assigned to CH $_2$ rocking (7).

III. PRESSURE EFFECT

With increasing pressure there are more frequent collisions of like molecules, or between a molecule and a diluent gas such as nitrogen or helium, and this has the effect of broadening the vapor-phase IR band contours resulting from molecular rotation-vibration. This effect is termed pressure broadening. The individual subbands (or lines) become increasingly broad due to restricted rotation in the vapor phase due to frequent molecular collisions. Under high pressure, the subbands are completely broadened so that the molecular vibrations with highly restricted molecular rotation produce IR band shapes with no apparent subbands. Thus, these pressure broadened vapor-phase IR bands for various molecular structures have shapes comparable to their IR band shapes observed in their neat liquid or solution phases. This is so because, in the neat liquid or solution phases, there are frequent collisions between like molecules or molecular collisions between solute molecules and between solute and solvent molecules for molecules in solution, which restrict molecular rotation of these molecules.

In order to measure the intensities of the IR vibrational bands for ethane and ethane- d_6 in the vapor-phase, the samples were pressurized up to 50 atm to broaden the bands (8).

IV. TEMPERATURE EFFECT

In the vapor-phase temperature can cause change in the band contours. The individual lines or subbands in the P and R branches are due to the relative population of the rotational states. An increase in temperature will change the population of rotation states, hence the change in IR band contour. Secondly, increased temperature in a closed volume cell increases the pressure, which induces the pressure broadening effect.

Hot bands are also temperature dependent, and change in temperature causes change in IR band intensity (3).

When molecules exist as rotational conformers (rotamers), they are also affected by changes in temperature, because the concentration of the different rotamers is dependent upon temperature. Therefore, it is essential to record IR spectra at different temperatures in cases where molecules exist as rotamers in order to determine which bands result from the same rotamer.

V. VAPOR-PHASE VS CONDENSED IR SPECTRA

The IR group frequencies of molecules are dependent upon physical phase. These frequency differences result from solute-solvent interaction via dipolar interaction or from weak intermolecular hydrogen bonding. Large frequency differences, as large as 400 cm⁻¹, result from strong intermolecular hydrogen bonding between molecules or between solute and solvent. These effects are absent in the vapor phase, especially at temperatures above 180 °C at ordinary pressure. The vibrational frequency changes will be extensively discussed in later chapters.

VI. FERMI RESONANCE (F.R.) AND OTHER FACTORS

Some molecules exhibit two or more bands in a region where only one fundamental vibration is expected, excluding the presence of rotational conformers. In this case Fermi resonance between a fundamental and an overtone or combination tone of the same symmetry species interacts. The combination or overtone gains intensity at the expense of the intensity of the fundamental. The result is that one band occurs at a higher frequency and one band occurs at a lower frequency than expected due to this resonance interaction between the two modes. Langseth and Lord (9) have developed a method to correct for FR. (10). This equation is presented here:

$$W_o = \frac{W_a + W_b}{2} \pm \frac{W_a - W_b}{2} \cdot \frac{I_a - I_b}{I_a + I_b}$$

where, W_a and W_b are the observed vibrational frequencies, I_a and I_b their band intensities, and the two values of W_o calculated by the equation will be approximately the unperturbed frequencies. The amount of ER. is dependent upon the unperturbed frequencies of the fundamental and the combination or overtone. If two bands of equal intensity are observed, each band results from an equal contribution from the fundamental vibration and an equal contribution from the combination tone or overtone. The combination or overtone may occur above or below the fundamental frequency. In the case in which the bands are of unequal intensity, both bands are still a mixture of both vibrations but the stronger band has more contribution from the fundamental than the weaker band. Correction for ER. is necessary in

¹ Reference (10) also includes the same equation developed for the correction of two bands in Fermi resonance (8). In addition, the newer reference shows the development for the correction of Fermi resonance for cases where three vibrations are in Fermi resonance.

cases where one needs to perform a normal coordinate analysis, or when comparing IR data of certain classes of compounds where not all of the compounds show evidence for F.R.

Parameters such as bond force constants, bond lengths, bond angles, field effects, inductive effects, and resonance effects are independent of physical phase and these parameters are useful in the elucidation of molecular structure via IR spectra-structure interpretation.

REFERENCES

- 1. Herzberg, G. (1945). Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, New Jersey: D. Van Nostrand Company, Inc.
- 2. Wilson, E. B. Jr., Decius, J. C., and Cross, P. C. (1955). Molecular Vibrations, New York: McGraw-Hill Book Company, Inc.
- 3. Potts, W. J. Jr. (1963). Chemical Infrared Spectroscopy, New York: John Wiley & Sons, Inc.
- 4. Colthup, N. B., Daly, L. H., and Wiberley, S. E. (1990). Introduction to Infrared and Raman Spectroscopy, 3rd ed., Boston: Academic Press.
- 5. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, vol. 1, Philadelphia: Sadlter Research Laboratories, Division of Bio-Rad Laboratories.
- 6. Nyquist, R. A. (1965). Spectrochim Acta, 21, 1245.
- 7. Lord, R. C. and Nolin, B. (1956). J. Chem. Phys., 24, 656.
- 8. Nyquist, I. M., Mills, I. M., Person, W. B., and Crawford, B. Jr. (1957). J. Chem. Phys., 26, 552.
- 9. Langseth, A. and Lord, R. C. (1948). Kgl. Danske Videnskab Selskab Mat-fys. Medd, 16, 6.
- 10. Nyquist, R. A., Fouchea, H. A., Hoffman, G. A., and Hasha, D. L. (1991). Appl. Spectrosc., 45, 860.

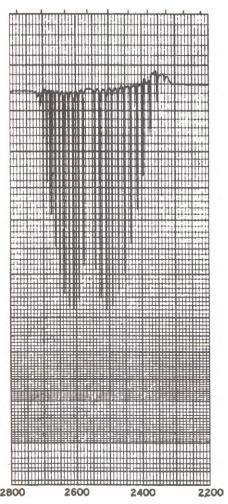


FIGURE 1.1 Infrared vapor-phase spectrum for hydrogen bromide (5-cm glass cell with KBr windows: 600 mm Hg HBr).

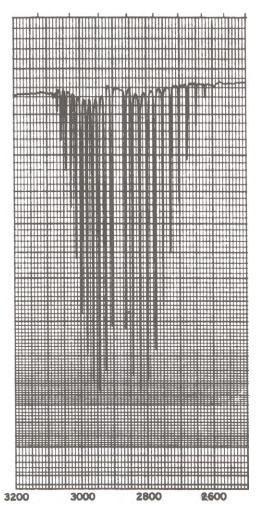


FIGURE 1.2 Infrared vapor-phase spectrum for hydrogen chloride (5-cm glass cell with KBr windows: 200 mm Hg HCl, total pressure $600 \text{ mm Hg with N}_2$).

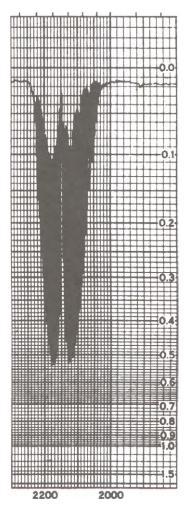


FIGURE 1.3 Infrared vapor-phase spectrum for carbon monoxide (5-cm glass cell with KBr windows: 400 mm Hg CO, total pressure $600 \text{ mm} \text{ Hg with N}_2$).

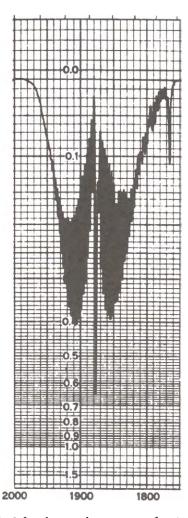


FIGURE 1.4 Infrared vapor-phase spectrum for nitrogen oxide, NO.

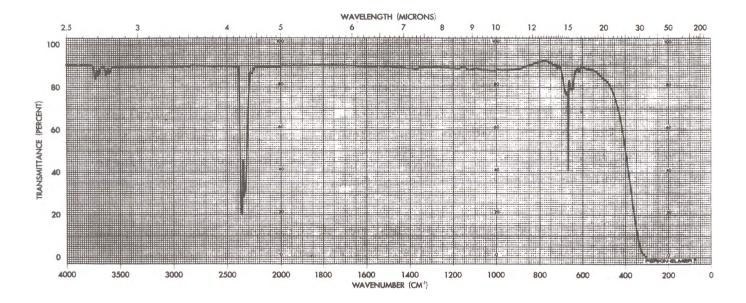


FIGURE 1.5 Infrared vapor-phase spectrum for carbon dioxide (5-cm glass cell with KBr windows: 50 and 200 mm Hg CO₂, total pressure 600 mm with N₂).

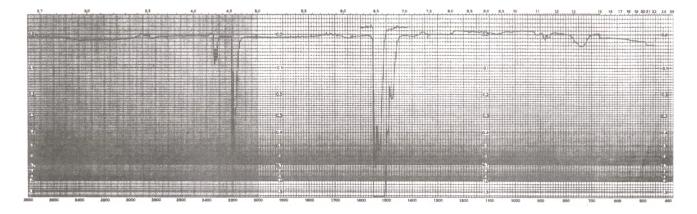


FIGURE 1.6 Infrared vapor-phase spectrum for carbon disulfide (5-cm glass cell with KBr windows: 2 and 100 mm Hg CS₂, total pressure 600 mm Hg with N₂).

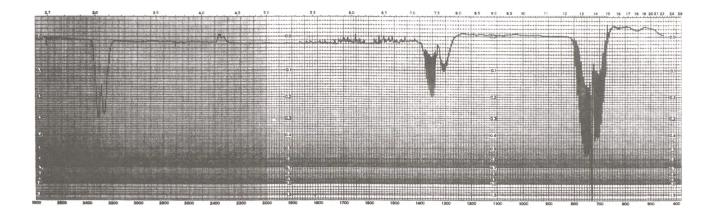


FIGURE 1.7 Infrared vapor-phase spectrum for acetylene (5-cm glass cell with KBr windows: $50 \text{ mm Hg } C_2H_2$, total pressure $600 \text{ mm Hg with } N_2$).

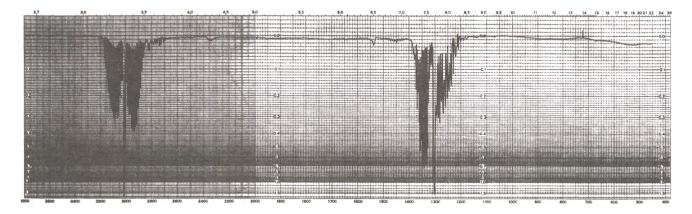


FIGURE 1.8 Infrared vapor-phase spectrum for methane (5-cm glass cell with KBr windows: $150 \, mm \, Hg \, CH_4$, total pressure $600 \, mm \, Hg \, with \, N_2$).

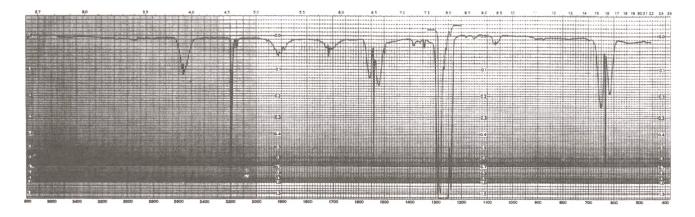


FIGURE 1.9 Infrared vapor-phase spectrum for carbon tetrafluoride (5-cm glass cell with KBr windows: 100 mm Hg CF₄, total pressure 600 mm Hg with N₂).

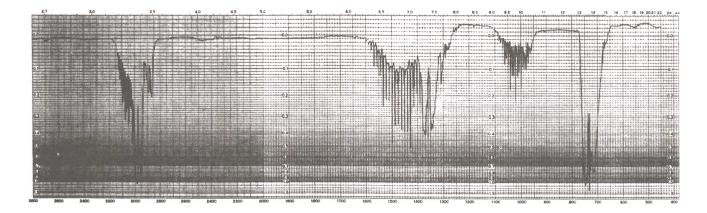
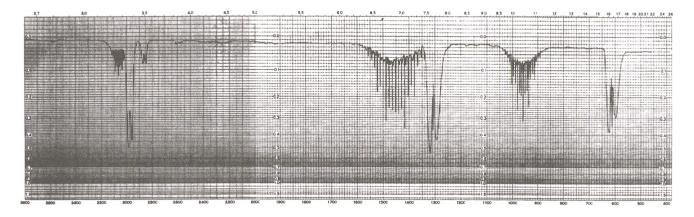



FIGURE 1.10 Infrared vapor-phase spectrum for methyl chloride (5-cm glass cell with windows: 200 mm Hg CH₃, Cl, total pressure 600 mm Hg with N₂).

 $FIGURE~1.11~~Infrared~vapor-phase~spectrum~for~methyl~bromide~(5-cm~glass~cell~with~KBr~windows:~100~mm~Hg~CH_3Br,~total~pressure~600~mm~Hg~with~N_2).$

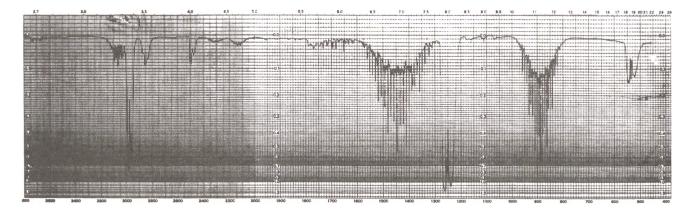


FIGURE 1.12 Infrared vapor-phase spectrum for methyl iodide (5-cm glass cell with KBr windows: 200 mm Hg CH₃I, total pressure 600 mm Hg with N₂).

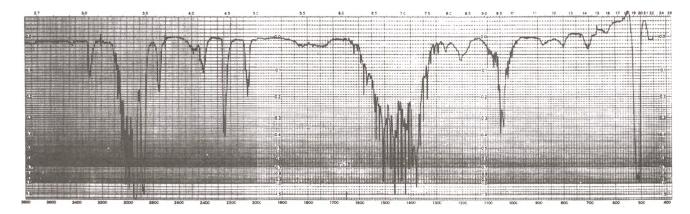


FIGURE 1.13 Infrared vapor-phase spectrum for 1-bromopropyne, C₃H₃Br.

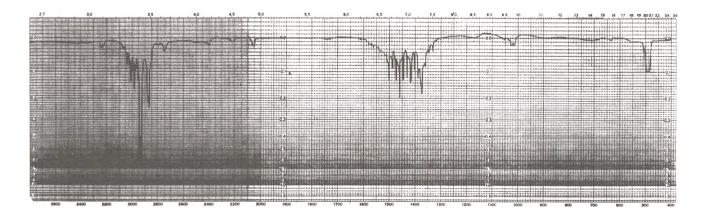


FIGURE 1.14 Infrared vapor-phase spectrum for 1-iodopropyne, C₃H₃I.

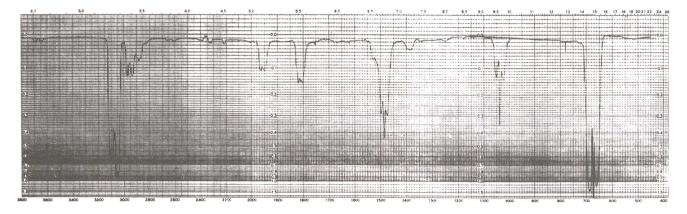


FIGURE 1.15 Infrared vapor-phase spectrum for benzene (5-cm glass cell with KBr windows: 40 mm Hg with C_6H_6 , total pressure 600 mm Hg with N_2).

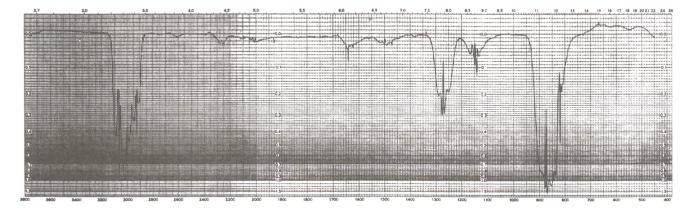


FIGURE 1.16 Infrared vapor-phase spectrum for ethylene oxide (5-cm glass cell with KBr windows: $50 \text{ mm Hg } C_2H_2O$, total pressure $600 \text{ mm Hg with } N_2$).

Experimental

I.	Solids (Excluding Single Crystals)	25
	A. Mull Technique	26
	B. Potassium Bromide (KBr) Disk Techniques	26
	C. Solutions (Solids, Liquids, and Gases)	27
II.	Liquid Films (See the Forementioned I—C for Liquids in Solution)	
	and Cast Polymer Films	27
III.	Vapors and Gases	28
Ref	erences	30

Sample preparation is a very important part of the IR technique. Because chemicals can exist in the solid, liquid, vapor, or solution phases, different methods of preparation are required in order to be able to record their IR spectra. This chapter is not intended to include all methods of obtaining IR spectra. It includes only the methods used to acquire the data included in this book.

I. SOLIDS (EXCLUDING SINGLE CRYSTALS)

Solid samples are usually prepared as mulls or as KBr pellets. Both techniques require that the particle size be smaller than $2.5\,\mu$. Larger particles scatter IR radiation via Rayleigh scattering in the IR region of interest. For example, if particles are present in decreasing concentration from 2.5 through $25\,\mu$, the baseline of the spectrum will slope upward in the region 2.5 to $25\,\mu$ (4000–400 cm⁻¹, the region most commonly examined by chemists).

Thus, solid samples must be ground using a mortar and pestle (or a wiggle bug) to meet the preceding requirements. The closer one gets to a virtual horizontal baseline, the better the quality of the IR spectrum. The bands of the chemical solid start absorbing IR radiation at the point of the baseline where their vibrational frequencies occur in this region of the spectrum.

There is another factor that causes distortion of IR absorption bands. If the refractive index of solid particles and the surrounding medium differ appreciably, the Christiansen effect is encountered (1). The Christiansen effect develops because the refractive index of a chemical is a function of frequency that has a discontinuity in each frequency region of a strong absorption band. The refractive index falls rapidly on the high frequency side of the absorption

26 Experimental

maximum and on the low frequency side the refractive index falls rapidly from a high value to its value of no absorption. This effect causes peculiar absorption band distortion when there are many large particles present due to inadequate sample preparation. The Christiansen effect is minimized by a reduction of as many particles as possible smaller than 2μ in size. However, the effect is never completely eliminated when recording spectra of powdered crystalline materials.

A. MULL TECHNIQUE

After the sample has been properly ground, Nujol oil or Fluorolube is added and mixed in order to suspend the particles in the mulling agent. However, it is preferable to grind the solid in the presence of the mulling agent to help in the grinding process. The mulling agents suspend the solid particles, which helps to produce a closer match of the refractive index between these particles and the surrounding medium. Nujol is useful for recording IR spectra in the region 1333–400 cm⁻¹, and Fluorolube is useful for recording IR spectra in the region 4000–1333 cm⁻¹. In order to place these mulled suspensions in the IR sample compartment, sodium chloride and/or potassium bromide plates are required. A Fluorolube mull paste is then placed between two sodium chloride plates or two potassium bromide plates using pressure to obtain the proper thickness of this paste in order to obtain a quality IR spectrum in the region 4000–1333 cm⁻¹ that is essentially void of significant Fluorolube absorption bands. In the region 1333–400 cm⁻¹ the process is repeated using the Nujol mull suspension between potassium bromide plates, which minimizes absorption from Nujol oil.

B. POTASSIUM BROMIDE (KBr) DISK TECHNIQUE

After grinding the solid to proper particle size, KBr is mixed with the solid particles. A ratio somewhere between 50 to 100 KBr:1 of solid sample usually produces a quality IR spectrum. The KBr and ground particles are then thoroughly mixed to produce a uniform mixture. Further grinding of the mixture should be avoided because this additional grinding will usually induce water into the mixture. The proper amount of this KBr preparation is placed in a special die, and a disk is pressed using approximately 9600 Kg pressure. The disk is placed in a holder and placed then in the sample compartment of the IR spectrometer.

Both the mull and KBr pressed disk technique can cause changes to the sample. Grinding or increased pressure upon the sample can cause changes in crystalline form of the sample. In addition, the pressed KBr disk can cause chemical reactions to occur between KBr and the sample (e.g., $R-NH_3^+Cl^- + KBr \rightarrow R-NH_3^+Br^- + KCl$). In the mull technique ion exchange can also occur between the window and the suspended sample (e.g., $R-NH_3^+F^- + KBr \rightarrow R-NH_3^+Br^-$). This latter reaction occurs when pressure between the plates together with plate rotation causes solid state interaction between the plates and the sample. Thus, one should be aware that the chemist can inadvertently alter the original sample during preparation, thereby causing problems in the solution of the chemical problem at hand.

The IR spectra of solids obtained after evaporating water solutions to dryness can also be recorded using the mull or KBr disk technique.

C. SOLUTIONS (SOLIDS, LIQUIDS, AND GASES)

Solids, liquids, and gases are often soluble in solvents such as carbon tetrachloride and carbon disulfide. Other solvents such as chloroform, methylene chloride, or dimethyl sulfoxide (DMSO) can also be used depending upon the particular problem. Since like dissolves like, the more polar solvents are used to dissolve the more polar compounds. Carbon tetrachloride and carbon disulfide are used to dissolve the less polar compounds.

Carbon tetrachloride is a useful solvent in the region $4000-1333\,\mathrm{cm^{-1}}$ and carbon disulfide is a useful solvent in the region $1333-400\,\mathrm{cm^{-1}}$. This is because these solvents have the least absorption in these regions. Quality IR spectra can be recorded using samples prepared at 10% by weight in each of these solvents, and placing the solutions in 0.1-mm sodium chloride cell $(4000-1333\,\mathrm{cm^{-1}}$ for CCl₄ solutions) and 0.1-mm potassium bromide cell $(1333-400\,\mathrm{cm^{-1}}$ for CS₂ solutions). Comparable IR spectra will be recorded using 1% by weight using 1.0-mm cells; however, absorption from the solvent will be increased by a factor of 10. Variation of concentration and cell path length can be used to record the spectrum most useful in obtaining useful chemical information. For example, changing the concentration of a chemical, in say CCl₄, can help to distinguish between inter- and intramolecular hydrogen bonding. The OH or NH stretching frequencies remain essentially unchanged upon dilution, in the case of intramolecular hydrogen bonding, but increase markedly in frequency upon dilution in the case of intermolecular hydrogen bonding.

Solution spectra are very useful in performing quantitative analysis when both the sample concentration and cell path length are known, providing the absorbance of a band due to the presence of the critical analyte can be directly measured. In the worst case, interference from the presence of another analyte may have to be subtracted before the analysis can be performed on the critical analyte in question.

A solvent such as CS_2 is also useful for extracting some chemicals from water. After thorough shaking with water, the sample can be concentrated by partial solvent evaporation in a well-ventilated hood containing no source of ignition. The sample is then salted using dry NaCl powder in order to remove water. The CS_2 is then placed in a suitable KBr cell before the solution spectrum is recorded. This same solvent can be used to extract certain additives from polymer compositions.

II. LIQUID FILMS (SEE THE FOREMENTIONED I—C FOR LIQUIDS IN SOLUTION) AND CAST POLYMER FILMS

a. Liquid films between KBr plates are easily prepared by placing a drop or more on one plate and then placing the second plate on top with enough pressure to form the desired film thickness. Very volatile liquids are better prepared as solutions.

b. IR spectra of polymers are often recorded of freestanding film or of films cast on a suitable IR plate. Freestanding films are prepared by heating polymeric material above its melting point between heated plates in a suitable press. The film is allowed to cool to ambient temperature before removing it from the metal plates. The freestanding film is then placed in the IR spectrometer.

28 Experimental

c. IR spectra are often recorded of polymeric substances cast from boiling solution onto a preheated KBr plate, often under a nitrogen atmosphere in order to avoid oxidation of the polymer. After the solvent has evaporated, the plate and film are allowed to cool to ambient temperature before placing in the IR sample compartment. Failure to preheat the KBr plate will cause it to shatter when first in contact with the hot solution. Moreover, removal of the heated cast film after solvent evaporation to a ambient environment without prior cooling will also cause the KBr plate to shatter. Organic solvents such as 1,2-dichlorobenzene, toluene, and dimethyl formamide are often used to cast polymer films. The solvent used is dependent upon the particular polymer or copolymer, and its solubility in that solvent.

Silver chloride plates are often used as the substrate for casting films of water-soluble polymers. The water is removed by heat after first placing the water solution onto the AgCl plate placed under an IR heat lamp. It is essential that AgCl plates be stored in the dark to prevent darkening of the plates due to the formation of silver oxide upon exposure to light.

It is essential that all plates be cleaned after being used in these experiments. The polymer film can be removed from the plates using the same solvents used to cast the films. It is again necessary to avoid sudden temperature change to the plates during the cleaning operation in order to avoid plate shattering in cases such as KBr, NaCl, CaF₂, etc.

III. VAPORS AND GASES

Quality IR spectra can be recorded using partial pressures and appropriate cell lengths equipped, say, with potassium bromide windows. It should be noted that certain inorganic compounds react with KBr and form other inorganic salts on the surface of the KBr plate. Their reactions are readily detected because their reaction products can not be removed when the sample is evacuated under vacuum from the cell.

The IR spectra of chemicals with low vapor pressure can be recorded using a variable long path length vapor cell either at ambient temperature or at elevated temperature. It is best if these variable path length cell walls are coated with a substance such as poly (tetrafluorothylene) to help prevent adsorption of the chemical on the surface of the metallic cell body. It is sometimes necessary to heat the cell body under vacuum to remove adsorbed chemical molecules. Another method to clean out adsorbed molecules present in the cell is to flush the cell with nitrogen or dry air.

It is also possible to perform quantitative analysis of compounds whose IR spectra have been recorded in the vapor phase. An often-used method is to record the partial pressure of the chemical in the vapor, and then bring the total pressure up to 600-mm Hg using dry nitrogen. The constant total pressure of 600-mm Hg helps eliminate the effects of pressure broadening on the absorption bands. This requires of course that the appropriate vacuum line and dry nitrogen be available to the chemist. A longer path length setting is required as vapor pressure of a chemical falls. Of course, some chemicals react with the mirrors, and this will limit this application for these particular compounds.

It is possible to detect low parts per million of chemicals in air using the variable long path cells. The interpretable regions of the IR spectrum are significantly improved by spectral

¹ The windows (KBr, NaCl, etc) of most glass-bodied cells are adhered to the glass body by a material such as paraffin wax. Pressures higher than 760-mm Hg will blow the windows from the glass body. Thus, 600-mm Hg sample pressure is a reasonable total pressure to safely achieve in these laboratory experiments.

subtraction of absorption due to the presence of H_2O and CO_2 . This can be done electronically or by dual cells placed in separate beams of a double beam spectrometer. In the case of FT-IR spectrometers, it is an easy task to remove these absorption bands due to the presence of air. In a case where there is no IR radiation being transmitted in a particular region of the IR spectrum, detection of a compound present in air (or in any phase) is not possible in these spectral regions, because the spectrometer is "dead" in these regions. Spectral subtraction will not change the "dead" regions of the spectrum.

A simple method of obtaining IR vapor spectra of chemicals with high vapor pressure is to connect the sample container using a rubber stoppered hose to a 0.1-mm (or 0.2-mm, etc.) liquid cell. The stopper is opened and the chemical vapor is allowed to flush out the 0.1-mm cell. The exit port of the cell is then stoppered, the sample connection is closed and removed, and the entrance part of the cell is also stoppered. The cell is now filled with the sample in the vapor phase at ambient temperature and pressure. Of course, this operation should be performed in a well-ventilated hood.

Gas chromatography has been coupled to infrared spectroscopy (GC/FT-IR) to form a powerful analytical technique capable of solving many real world problems. This technique requires that the chromatographed vapors pass sequentially through a gold-coated light pipe heated to a temperature of over 200 °C. The light pipe path-length must be short enough so that only one chromatographed component is in the light pipe at one time. This technique has a major pitfall in that not all chemical compounds are stable at the high temperatures encountered utilizing this technique. For example, phthalic acid present as one component in a mixture would not be detected as one of the chromatographed fractions. This is because at these elevated temperatures, water splits out of phthalic acid to form phthalic anhydride, which is the compound detected using this technique. Other types of chemical reactions can occur if the chemicals contact hot metal surfaces (excluding gold) during their path through the GC/FT-IR system.

In order to identify unequivocally a vapor-phase IR spectrum of a chemical, an IR vapor-phase standard spectrum of this compound recorded under comparable conditions must be available for comparison. The reasons for this are presented here. A compound such as acetic acid exists as a hydrogen-bonded cyclic dimer in the condensed phase and in the vapor-phase at temperatures 150 °C and below. At elevated temperature, acetic acid exists as isolated CH₃CO₂H molecules. In this monomeric state, the OH stretching frequency exhibits a weak-medium sharp band near 3580 cm⁻¹ in the vapor phase, and the C=O stretching frequency exhibits a strong bond near 1791 cm⁻¹. These features are uniquely different from the condensed phase IR spectra of acetic acid. This monomeric situation is even more complicated in situations where intramolecular hydrogen bonding can occur between the proton of the carboxylic acid group and a basic site in the molecule. For example, pyruvic acid (2-oxo-propionic acid) exhibits two bands in the vapor phase at 95 °C (2). A weak band near 3580 cm⁻¹ is assigned to an unassociated OH group of CO₂H. The weak-medium bond near 3465 cm⁻¹ results from the intramolecular hydrogen bond OH group to the free pair of electrons on the ketone carbonyl group to form a 5-membered cyclic ring as illustrated here:

30 Experimental

Other situations occur where molecules that are intermolecularly hydrogen bonded in the condensed phase form intramolecular hydrogen bonds in the vapor phase. In addition, the regions for group frequencies in the condensed or solution phases have shifted from those in the vapor phase. Therefore, one must have at hand a collection of vapor-phase group frequency data, available to enable one to interpret these GC/FT-IR spectra by spectra-structure correlations (3). A compilation of the vapor-phase group frequency data has been developed from editorial work performed by Nyquist on the 10,000 vapor-phase spectra published by Sadtler Research Laboratories, G. Division of Bio-Rad Laboratories, Inc. The collection of these Sadtler spectra are a valuable asset for those employing the GC/FT-IR technique to solve real world problems.

Raman spectra of solids and liquids are routinely recorded utilizing dispersive or Fourier transform systems.

For example, Raman spectra of liquid ethynyl benzene and ethynyl benzene-d were recorded utilizing a Hylger spectrometer and 4358 Å radiation (7 Å/mm) filtered through rhodamine/nitrite filters. Depolarization measurements were made (4). These depolarization measurements aid in distinguishing between in-plane vibrational modes and out-of-plane vibrational modes in the case of ethynyl benzene. The in-plane modes are polarized and the out-of-plane modes are depolarized.

More recently, Raman spectra of inorganics in water solution have been recorded utilizing the Dilor XY Raman triple spectrograph operating in the double subtractive mode and fitted with 1200 g/mm gratings. The detector is a 3-stage Peltier-cooled EG&G silicon CCD model 15305 equipped with a Thomson 1024×256 chip, operated at -60 °C (5).

Sample fluorescence limits the application of the Raman technique because fluorescence is a first-order phenomenon, and the Raman effect is a second-order phenomenon. This fluorescence problem has been overcome recently by the development of FT/Raman. In this case, near-IR is used as the source of excitation of the molecules. Coleyshaw *et al.* reported on the quality of FT-Raman spectra as related to the color of the minerals. They report that white-, gray-, yellow-, pink-, orange-, and red-colored minerals yield good FT-Raman spectra, but they had little success with blue-, green-, or dark-colored minerals (6). This is because these colors absorb red light.

A Nicolet model 800 FT-IR spectrometer/Nicolet FT-Raman accessory equipped with a CaF₂ beamsplitter, Ge detector, and a CVI model C-95 Nd/YAG laser can be used successfully in recording the Raman spectra of many organic and inorganic compounds. The beauty of this combination device is that it can be used to record either IR or Raman spectra. Other manufacturers also produce FT-Raman systems.

REFERENCES

- 1. Potts, W. J. Jr. (1963). Chemical Infrared Spectroscopy, New York: John Wiley & Sons, Inc.
- 2. Welti, D. (1970). Infrared Vapor Spectra, New York: Hyden & Son Ltd.
- 3. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, vols. 1 and 2, Philadelphia: Sadlter Research Laboratories, Division of Bio-Rad Laboratories.
- 4. Evans, J. C. and Nyquist, R. A. (1960). Spectrochim. Acta, 16, 918.
- 5. Nyquist, R. A., Putzig, C. L., and Leugers, M. A. (1997). Infrared and Raman Spectral Atlas of Inorganic Compounds and Organic Salts, vol. 1, Boston: Academic Press.
- 6. Coleyshaw, E. E., Griffith, W. P., and Bowell, R. J. (1994). Spectrochim. Acta, 50A, 1909.

Alkyl Carbon-Hydrogen Vibrations

		·····	
Summary			32
Other n-Alkan			34
1,2-Epoxyalka			34
	thylphosphonate (CH ₃) ₂ P(O) ₂ Na		34
•	thyl Mercury, Dimethylmercury (4),		
•	thiochloroformate (5)		35
Cycloalkanes			35
References			35
Figures		Tables	
Figure 3-1	36 (31)	Table 3-1	41 (31)
Figure 3-2	37 (31)	Table 3-2	42 (32)
Figure 3-3	38 (32)	Table 3-2a	43 (32)
Figure 3-4	39 (32)	Table 3-3	44 (32)
Figure 3-5	39 (32)	Table 3-4	45 (32)
Figure 3-6	40 (32)	Table 3-5	45 (34)
Figure 3-7	40 (32)	Table 3-6	46 (34)
_		Table 3-7	47 (34)
		Table 3-8	47 (35)
		Table 3-9	48 (35)
		Table 3-10	49 (35)
		Table 3-11	50 (35)
		Table 3-12	52 (35)

^{*}Numbers in parentheses indicate in-text page reference.

This chapter discusses alkyl carbon—hydrogen molecular vibrations and, in some cases, looks at how these molecular vibrations are affected by their surrounding chemical environment. However, in some cases the alkyl carbon—hydrogen vibrations will be included in the section that discusses their most distinguishing molecular vibrations.

Table 3-13

53 (35)

The series of n-alkanes, $C_n H_{2n+2}$ were prepared as 0.5 wt. % solutions in CCl_4 , $CDCl_3$, and 54.6 mol % $CHCl_3/CCl_4$. Table 3.1 lists the IR frequency data for the vasym. CH_3 and vsym. CH_3 stretching frequencies for C_5H_{12} to $C_{18}H_{38}$ (1). Figure 3.1 shows plots of vasym. CH_3 vs the molecular weight (M.W.) of each n-alkane and Fig. 3.2 shows plots of vsym. CH_3 vs M.W. of each n-alkane. A study of the IR data and figures show that vasym. CH_3 generally decreases as the number of carbon atoms increases in the order C_5H_{12} to $C_{18}H_{38}$ by 0.11 to 0.22 cm $^{-1}$ in going from solution in CCl_4 to solution in $CDCl_3$.

The vsym. CH₃ mode for this series of *n*-alkanes shows that it generally decreases by approximately $0.8\,\mathrm{cm^{-1}}$ in CCl₄ solution and approximately $1.2\,\mathrm{cm^{-1}}$ in CDCl₃ solution progressing in the series C_5H_{12} to $C_{18}H_{38}$ in going from solution in CCl₄ to solution in CDCl₃.

Table 3.2 lists the IR absorbance data for C_5H_{12} to $C_{18}H_{38}$ for the vasym. CH_3 and vsym. CH_3 modes, Fig. 3.3 shows a plot of (vasym. CH_3)/(vasym. CH_2) vs $A(vsym. CH_3)/A(vsym. CH_2)$ in CCl_4 solution for C_5H_{12} to $C_{18}H_{38}$, and Fig. 3.4 shows a plot of (vsym. CH_3)/(vsym. CH_2) vs $A(vasym. CH_3)/A(vasym. CH_2)$ in CCl_4 solution for C_5H_{12} to $C_{18}H_{38}$. Both plots show an essentially linear relationship. The slight deviation from linearity is most likely due to overlapping interferences in the measurement of these peak height absorbances.

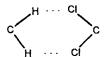
Table 3.2a lists absorbance ratios; all of these absorbance ratios for the vCH_3 and vCH_2 modes generally decrease progressing in the series C_5H_{12} to $C_{18}H_{38}$.

Table 3.3 lists IR data for vasym. CH_2 and vsym. CH_2 for the n-alkane at 0.5 wt. % in CCl_4 , $CDCl_3$, and 54.6 mol % $CDCl_3/CCl_4$ solutions. Figure 3.5 shows plots of vasym. CH_2 vs vsym. CH_2 in each of the solvent systems, and Fig. 3.6 shows plots of vasym. CH_3 vs vsym. CH_3 in all three solvent systems. These plots show that these relationships are not linear over the entire n-alkane series. The plots do point out in general that as vasym. CH_2 decreases in frequency, vsym. CH_2 also decreases in frequency progressing in the series C_5H_{12} to $C_{18}H_{38}$, and that the vasym. CH_3 and vsym. CH_3 frequencies show the same trend.

A study of Tables 3.1 and 3.3 show some interesting trends in CCl_4 . $CDCl_3$, or 54.6 mol % solutions progressing in the series C_5H_{12} to $C_{18}H_{38}$. The vasym. CH_3 frequency decrease in going from solution in CCl_4 to solution in $CDCl_3$ is small ($\sim 0.1 \, \mathrm{cm}^{-1}$) while for vsym. CH_3 the frequency decrease is more in $CDCl_3$ solution (1.2 cm⁻¹) than in CCl_4 solution (0.7 cm⁻¹). In addition, the frequency difference for vasym. CH_3 in CCl_4 and in $CDCl_3$ increases from 0.11 to 0.22 cm⁻¹ and for vsym. CH_2 in CCl_4 and in $CDCl_3$ decreases from 0.45 to 0.85 progressing in the series C_5H_{12} to $C_{18}H_{38}$. The vasym. CH_2 frequency decrease in going from solution in CCl_4 to solution is small (0.1 cm⁻¹) while for vsym. CH_2 the frequency decrease is larger in going from solution in CCl_4 to a solution in $CDCl_3$ (0.6 cm⁻¹) progressing in the series C_5H_{12} to $C_{18}H_{38}$. Moreover, these data show that the vsym. CH_2 mode changes in frequency by a factor of approximately 5 times more than vasym. CH_2 , vasym. CH_3 , and vsym. CH_3 . In addition, the vasym. CH_2 frequency increases in frequency while the vsym. CH_2 frequency decreases in frequency in going from solution in CCl_4 to $CDCl_3$. In general these last two trends generally decrease progressing in the series C_5H_{12} to $C_{18}H_{38}$.

Table 3.4 lists the frequency difference between vasym. CH_3 and vsym. CH_3 and between vasym. CH_2 and vsym. CH_2 in the three solvent systems. These data show that the frequency separation is much larger for the two νCH_3 vibrations ($\sim 85^{-1}$) than for the two νCH_2 vibrations ($\sim 69~\text{cm}^{-1}$). Figure 3.7 shows plots of vasym. $CH_3 - \nu \text{sym}$. CH_3 vs vasym. $CH_2 - \nu \text{sym}$. CH_2 , which clearly shows the behavior of the frequency separation of the νCH_3 and νCH_2 vibrations in the three solvent systems.

SUMMARY


For *n*-alkanes, $C_{5-18}H_{12-38}$, the vasym. CH_3 occurs in the region 2957.26–2959.55 cm⁻¹ in CCl_4 and in the region 2957.48–2959.66 cm⁻¹ in $CDCl_3$, and vsym. CH_3 occurs in the region 2872.35–2873.12 cm⁻¹ in CCl_4 and in the region 2871.50–2872.67 cm⁻¹ in $CDCl_3$. Moreover,

vasym. CH_2 occurs in the region 2926.61–2927.73 cm $^{-1}$ in CCl_4 and in the region 2926.92–2928.14 cm $^{-1}$ in $CDCl_3$, and vsym. CH_2 occurs in the region 2854.59–2861.82 cm $^{-1}$ in CCl_4 and in the region 2854.55–2861.21 cm $^{-1}$ in $CDCl_3$. In addition, these four vibrations decrease in frequency progressing in the series C_5H_{12} through $C_{18}H_{38}$.

The n-alkanes are nonpolar molecules, and one would expect that there would be minimal solute-solvent interaction between n-alkane molecules and solvent molecules such as CCl_4 and $CDCl_3$. The n-alkanes in going from solution CCl_4 to solution in $CDCl_3$ solution show a frequency increase of 0.11 to 0.22 cm⁻¹ for vasym. CH_3 and for vsym. CH_3 it decreases by -0.45 to -0.85 cm⁻¹, with decreases for vsym. CH_3 progressing in the order C_5H_{12} to $C_{18}H_{38}$. In addition, the vasym. CH_2 frequency difference is 0.41 to 0.23 cm⁻¹ and for vsym. CH_2 is -0.61 to -0.04 cm⁻¹. Again the vasym. CH_2 mode increases in frequency and the vsym. CH_2 mode decreases in frequency in going from solution in CCl_4 to solution in $CDCl_3$. Thus, both vasym. CH_3 and vsym. CH_2 increase in frequency and both vsym. CH_3 and vsym. CH_2 decrease in frequency in going from solution in CCl_4 to solution in $CDCl_3$ at 0.5 wt. % solutions. These data confirm that the effects of these solvents are minor in these four molecular stretching vibrations. It is noteworthy that the vsym. CH_2 vibration shifts progressively to lower frequency in the order C_5H_{12} to $C_{18}H_{38}$, and that it decreases in frequency by a factor of at least 7 times more than the vsym. CH_3 vibration.

Apparently, the *n*-alkane protons form weak intermolecular hydrogen bonds with the free pair of electrons on the Cl atoms of the CCl₄ and/or CDCl₃ solvent system, and an explanation is needed to determine the frequency behavior of these four molecular vibrations in going from solution in CCl_4 to solution in $CDCl_3$. As these vasym. CH_3 , vasym. CH_2 , vsym. CH_3 , and vsym. CH₂ modes vibrate, the protons obtain a weak positive charge and the carbon atom obtains a weak negative charge. This is the so-called dipole moment change during these molecular vibrations. Therefore, the n-alkane protons would form weak intermolecular hydrogen bonds with the free pair of electrons on the Cl atoms of the CCl₄ and/or CDCl₃ solvent system. The Cl atoms of CCl₄ would be expected to be more basic than those for CDCl₃ due to the fact that the D atom attracts electrons from the Cl atoms. In addition, there is intermolecular bonding between D and Cl such as CCl₃D: ClCCl₂D: ClCCl₃. Therefore, one would expect a stronger C–H: Cl bond to be formed between the protons in n-alkanes and the Cl atoms in CCl4 than for Cl atoms in CDCl3. Hydrogen bonding also weakens the O-H or C-H bond, and the vibration vOH: X or vC-H: X is expected to decrease in frequency—this is what we noted in the vsym. CH₃ and vsym. CH₂ modes. However, the opposite was observed for vasym. CH₃ and vasym. CH₂, where both modes increased in frequency in going from solution in CCl₄ to solution in CDCl₃. This frequency increase for the vasym. modes needs an explanation. Because the vasym. CH₃ and vasym. CH₂ modes increase in frequency, it requires more energy for these two modes to vibrate in going from solution in CCl₄ to solution in CDCl₃. The two CH₃ groups are isolated by $(CH_2)_n$ groups, and as the Cl atoms in $CDCl_3$ are weaker bases than the Cl atoms in CCl_4 a weaker C-H...ClCDCl₂ bond is expected. Consequently, the vasym. CH₃ and vasym. CH₂ increases in frequency when CCl₄ is replaced by CDCl₃.

On the other hand there are $(CH_2)_n$ units present in the *n*-alkane series which are capable of forming *n* units of

in either CCl_4 or $CDCl_3$ solution. It is noted that vsym. CH_3 increasingly decreases in frequency progressing in the series C_5H_{12} to $C_{18}H_{38}$ in going from solution in CCl_4 to solution in $CDCl_3$. This indicates that the C-H: $CICDCl_3$ bond strength is increased as n is increased for $CH_3(CH_2)_nCH_3$. The inductive effect of additional CH_2 groups apparently weakens the CH_3 bonds, causing vsym. CH_2 to decrease in frequency as the number of CH_2 groups are increased in the n-alkane. As the number of CH_2 groups are increased, the decrease in vsym. CH_2 for n-alkanes decreases progressing in the series C_5H_{12} to $C_{10}H_{22}$ and is relatively constant from C_9H_{20} to $C_{18}H_{38}$. This suggests that the effect of the number of CH_2 groups forming intermolecule hydrogen bonds with a $CDCl_3$ chain is minimized after eight CH_2 groups are present in that the effect of the number of CH_2 $CICDCl_3$ intermolecular hydrogen bonds formed between the n-alkane and $CDCl_3$ is minimized in the series $C_{11}H_{24}$ to $C_{18}H_{38}$. It is also possible that the CI atoms in $CDCl_3$ are closer in space to the C-I bonds compared to that for CCl_4 , and this fact would also contribute to lower vsym. CH_2 frequencies.

In the series C_5H_{12} to $C_{18}H_{38}$ there is a comparatively large change in the vsym. $(CH_2)_n$ mode. There is a decrease of $7.23 \, \text{cm}^{-1}$ CCl_4 and $6.66 \, \text{cm}^{-1}$ in $CDCl_3$. This is attributed to the increasing number of CH_2 groups stretching in-phase progressing in the *n*-alkane series.

The smooth correlation of the absorbance values of the CH₂ and CH₃ groups as the ratio of the CH₃ groups to CH₂ groups decreases is just what is predicted. There is apparently no significant difference in the dipole moments of either CH₂ or CH₃ stretches progressing in the *n*-alkane series.

OTHER *n*-ALKANE VIBRATIONS

The CH_2 bend asym. CH_3 bend, and the sym. CH_3 bend occurs near 1467, 1458, and 1378.5 cm⁻¹ in CCl_4 solution (Table 3.5).

1,2-EPOXYALKANES

Table 3.6 lists IR vapor-phase data for the alkyl (R) vibrations of 1,2-epoxyalkanes (2). The vasym. CH_3 mode occurs in the region 2953–2972 cm⁻¹, the vasym. CH_2 mode in the region 2920–2935 cm⁻¹, the vsym. CH_2 mode in the region 2870–2932 cm⁻¹, and the vsym. CH_3 bending mode in the region 1363–1388 cm⁻¹.

SODIUM DIMETHYLPHOSPHONATE (CH₃)₂P(O)₂Na

The IR and Raman dating for sodium dimethylphosphonate are listed in Table 3.7 (3). The vasym. CH_3 and vsym. CH_3 modes are assigned at 2985 and 2919 cm⁻¹, respectively. The asym.

 $(CH_3)_2$ bending modes are assigned at 1428 and 1413 cm⁻¹ and the sym. $(CH_3)_2$ bending modes are assigned at 1293 and 1284 cm⁻¹.

METHYLTHIOMETHYL MERCURY, DIMETHYLMERCURY (4), AND METHYLTHIOCHLOROFORMATE (5)

Table 3.8 lists assignments for the CH₃-Hg and CH₃-S groups for the preceding 3 compounds. These assignments should aid the reader in assigning vibrations for these CH₃ groups in other compounds.

CYCLOALKANES

Table 3.9 lists IR vapor-phase data for cycloalkanes (6). Raman data for the ring breathing and ring deformation modes are also presented for cyclobutane and cyclopentane. The vasym. CH_2 mode occurs in the region 2930–3100 cm $^{-1}$. The vsym. CH_2 mode occurs in the region 2880–3020 cm $^{-1}$. Both vCH_2 vibrations decrease in frequency as the ring becomes larger. This is the result of lesser ring strain with increasing ring size. The CH_2 bend, CH_2 wag, CH_2 twist, CH_2 rock, ring breathing, and ring deformation vibration assignment are also presented.

MISCELLANEOUS ALKYL AND CYCLOALKYL COMPOUND

Vibrational assignments for cycloalkyl groups are presented in Table 3.10, for alkyl groups of monomers and polymers in Table 3.11, for cyclopropane derivatives in Table 3.12, and for octadecane, octadecane- D_{38} , tetracosane, and tetracosane- D_{50} in Table 3.13.

REFERENCES

- 1. Nyquist, R. A. and Fiedler, S. L. (1993). Appl. Spectrosc., 47, 1670.
- 2. Nyquist, R. A. (1986). Appl. Spectrosc., 40, 275.
- 3. Nyquist, R. A. (1968). J. Mol. Struct., 2, 111.
- 4. Nyquist, R. A. and Mann, J. R. (1972). Spectrochim. Acta, 28A, 511.
- 5. Nyquist, R. A. (1967-68). J. Mol. Struct., 1, 1.
- Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, Philadelphia: Sadtler Research Laboratories, A Division of Bio-Rad.

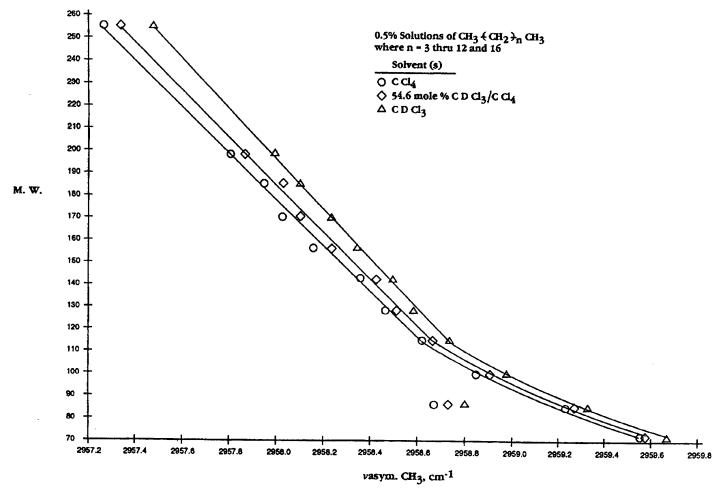


FIGURE 3.1 Plots of vasym. CH₃ vs the molecular weight of each n-alkane.

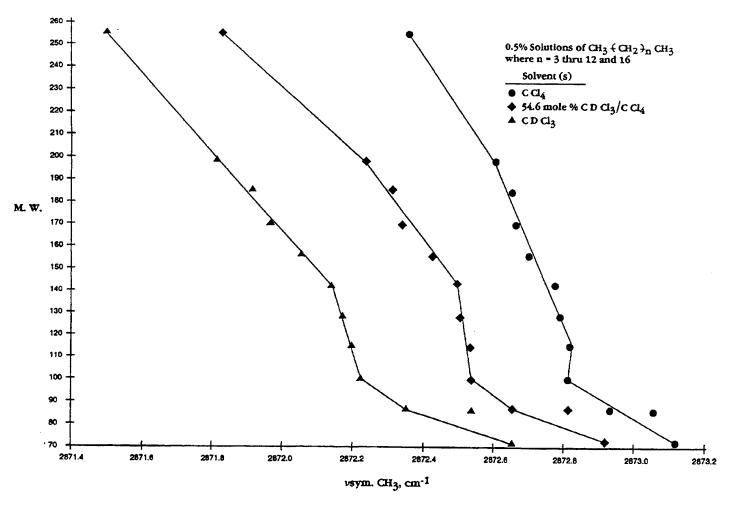


FIGURE 3.2 Plots of vsym. CH₃ vs the molecular weight of each n-alkane.

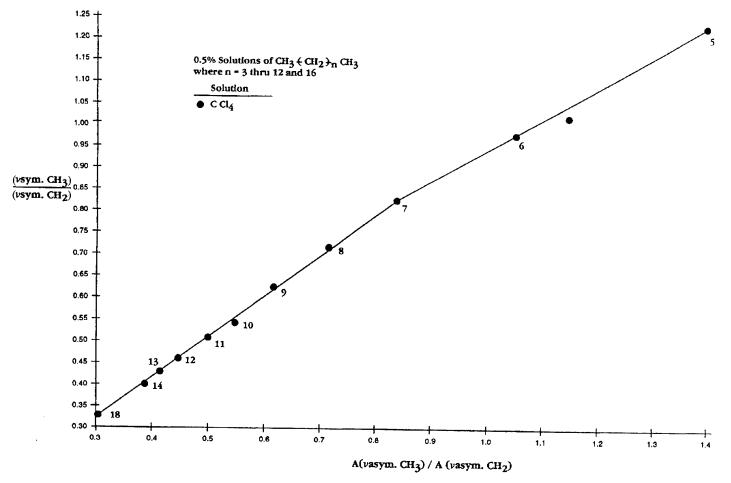


FIGURE 3.3 A plot of the absorbance ratio A(vasym. CH₃)/A(vasym. CH₂) vs the absorbance ratio A(vsym. CH₃)/A(vsym. CH₂) in CCl₄ solution for C₅H₁₂ to C₁₈H₃₈.

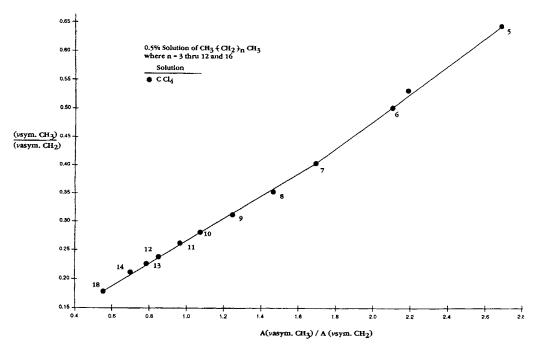


FIGURE 3.4 A plot of the absorbance ratio A(vsym. CH_3)/A(vsym. CH_2) vs the absorbance ratio A(vasym. CH_3)/A(vasym. CH_2) in CCl_4 solution for C_5H_{12} to $C_{18}H_{38}$.

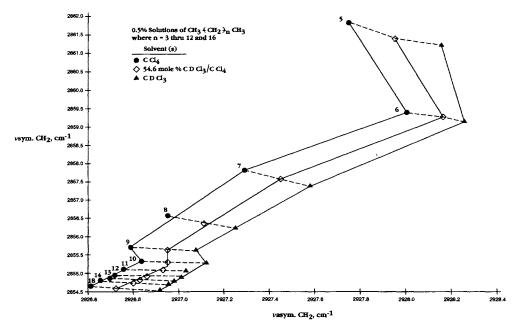


FIGURE 3.5 Plots of vasym. CH₂ vs vsym. CH₂ in CCl₄, 54.6 mol % CDCl₃/CCl₄, and CDCl₃ solutions.

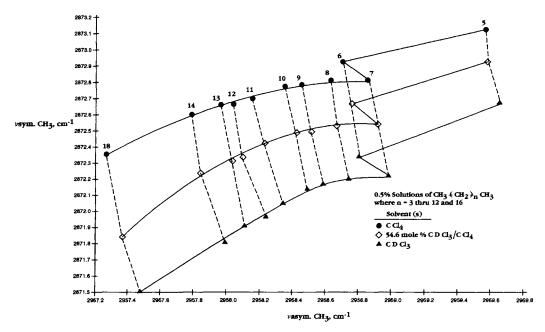


FIGURE 3.6 Plots of vasym. CH₃ vs vsym. CH₃ in CCl₄, 54.6 mol % CDCl₃/CCl₄, and CDCl₃ solutions.

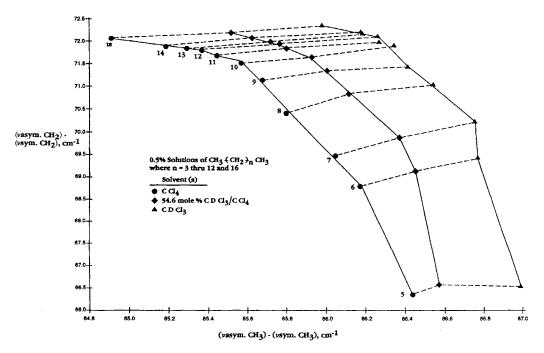


FIGURE 3.7 Plots of the frequency separation (vasym. CH_3 -vsym. CH_3) vs the frequency separation (vasym. CH_2 -vsym. CH_2) for each n-alkane in CCl_4 , 54.6 mol % $CDCl_3/CCl_4$, and $CDCl_3$ solutions.

TABLE 3.1 IR data for a. and s.CH₃ stretching for n-alkanes in 0.5 mol % solutions in CCl₄, 54.6 mol % CHCl₃/CCl₄

	a.CH ₃ str. CCl ₄	a.CH ₃ str. 54.6 mol % CDCl ₃ /CCl ₄ cm ⁻¹	a.CH ₃ str. CDCl ₃	s.CH ₃ str. CCl ₄	s.CH ₃ str. 54.6 mol % CDCl ₃ /CCl ₄	s.CH ₃ str. CDCl ₃
Compound	cm ⁻¹	cm -	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹
Pentane	2959.6	2959.6	2959.7	2873.1	2872.9	2872.7
Hexane	2958.7	2958.7	2958.8	2872.9	2872.7	2872.3
Hexane	2959.2	2959.3	2959.3	2873.1	2872.8	2872.5
Heptane	2958.9	2958.9	2959	2872.8	2872.5	2872.2
Octane	2958.6	2958.7	2958.7	2872.8	2872.5	2872.2
Nonane	2958.5	2958.5	2958.6	2872.8	2872.5	2872.2
Decane	2958.4	2958.4	2958.5	2872.8	2872.5	2872.1
Undecane	2958.1	2958.2	2958.3	2872.7	2872.4	2872.1
Dodecane	2958	2958.1	2958.2	2872.7	2872.3	2872
Tridecane	2957.9	2958	2958.1	2872.7	2872.3	2871.9
Tetradecane	2957.8	2957.9	2858	2872.6	2872.2	2871.8
Octadecane	2957.3	2957.3	2957.5	2872.4	2871.8	2871.5
$delta cm^{-1}$	-2.3	-2.3	-2.2	-0.7	-1.1	-1.2
	a.CH ₃ str.		s.CH ₃ str.			
	[CCl ₄]-	a.CH ₃ str.	[CCl ₄]-	s.CH ₃ str.		
	[54.6 mol %	[CCL _{1]} _	[54.6 mol %	[CCl ₄]-		
	CDCl ₃ /CCl ₄]	[CDCl ₃]	CDCl ₃ /CCl ₄]	[CDCl ₃]		
	cm ^{−1}	cm ⁻¹	cm ⁻¹	cm ⁻¹		
Pentane	0.02	0.11	-0.2	-0.45		
Hexane	0.03	0.08	-0.24	-0.51		
Heptane	0.05	0.12	-0.27	-0.58		
Octane	0.04	0.11	-0.29	-0.62		
Nonane	0.04	0.12	-0.29	-0.62		
Decane	0.06	0.14	-0.29	-0.64		
Undecane	0.08	0.19	-0.28	-0.65		
Dodecane	0.16	0.2	-0.33	-0.7		
Tridecane	0.08	0.16	-0.34	-0.74		
Tetradecane	0.06	0.2	-0.36	-0.79		
Octane	0.08	0.22	-0.52	-0.85		

TABLE 3.2 $\,$ IR absorbance data for n-alkanes: a. and s.CH $_2$ and CH $_3$ stretching and CH $_2$ bending

Compound	A[a.CH ₃ str.]	A[a.CH ₂ str.]	A[s.CH ₃ str.]	A[s.CH ₂ str.]
Pentane	1.09	0.78	0.502	0.407
Hexane	0.879	0.759	0.408	0.402
Hexane	0.903	0.86	0.419	0.43
Heptane	0.769	0.925	0.372	0.45
Octane	0.67	0.938	0.329	0.458
Nonane	0.637	1.027	0.319	0.512
Decane	0.563	1.028	0.287	0.527
Undecane	0.538	1.083	0.283	0.558
Dodecane	0.478	1.073	0.256	0.56
Tridecane	0.496	1.197	0.271	0.632
Tetradecane	0.473	1.23	0.263	0.66
Octadecane	0.374	1.234	0.221	0.672
		A[CH ₂ bend]		
	A[CH ₂ bend] CCl ₄	54.6 mol % CDCl ₃ /CCl ₄	A[CH ₂ bend] CDCl ₃	
Pentane	0.137	0.141	0.105	
Hexane	0.127	0.115	0.082	
Hexane	0.152	0.123	0.09	
Heptane	0.147	0.111	0.084	
Octane	0.128	0.096	0.073	
Nonane	0.143	0.103	0.063	
Decane	0.136	0.092	0.06	
Undecane	0.134	0.093	0.057	
Dodecane	0.132	0.084	0.05	
m . 1	0.141	0.081	0.051	
Tridecane	0.111	0.001		
Tetradecane	0.141	0.081	0.047	

TABLE 3.2A Absorbance ratios for CH₃ and CH₂ groups for n-alkanes

Compound	A[a.CH ₃ str.] /A[s.CH ₃ str.]	A[a.CH ₂ str.] /A[s.CH ₂ str.]	A[a.CH ₃ str.] /A[a.CH ₂ str.]	A[s.CH ₃ str.] /A[s.CH ₂ str.]
Pentane	2.171	1.916	1.397	1.233
Hexane	2.154	1.912	1.143	1.015
Hexane	2.155	2	1.05	0.974
Heptane	2.067	2.064	0.831	0.827
Octane	2.036	2.048	0.714	0.718
Nonane	1.997	2.006	0.62	0.623
Decane	1.962	1.951	0.548	0.545
Undecane	1.901	1.941	0.497	0.507
Dodecane	1.867	1.916	0.445	0.457
Tridecane	1.83	1.894	0.414	0.428
Tetradecane	1.798	1.864	0.385	0.398
Octadecane	1.692	1.836	0.303	0.329
	A[a.CH ₃ str.]	A[s.CH ₃ str.]	A[s.CH ₃ str.]	
	/A[s.CH ₂ str.]	/A[a.CH ₂ str.]	/A[CH ₂ bend]	
Pentane	2.678	0.644	4.781	
Hexane	2.187	0.531	4.976	
Hexane	2.1	0.5	4.656	
Heptane	1.689	0.402	4.429	
Octane	1.463	0.351	4.507	
Nonane	1.244	0.311	5.063	
Decane	1.068	0.279	4.783	
Undecane	0.964	0.261	4.965	
Dodecane	0.854	0.238	5.12	
Tridecane	0.785	0.226	5.313	
Tetradecane	0.717	0.214	5.596	
Octadecane	0.557	0.179	5.972	

TABLE 3.3 IR data for a. and s.CH₂ stretching for *n*-alkanes in 0.5% solutions in Cl₄, 54.6 mol % CDCl₃/CCl₄, and CDCl₃

Compound	a.CH ₂ str. CCL_4 cm^{-1}	a.CH ₂ str. 54.6 mol % CDCl ₃ /CCl ₄ cm ⁻¹	a.CH ₂ str. $CDCl_3$ cm^{-1}	s.CH ₂ str. CCl ₄ cm ⁻¹	s.CH ₂ str. 54.6 mol % CDCl ₃ /CCl ₄ cm ⁻¹	s.CH ₂ str CDCl ₃ cm ⁻¹
Compound						CIII
Pentane	2927.7	2928	2928.1	2861.8	2861.4	2861.2
Hexane	2928	2928.2	2928.3	2959.4	2859.3	2859.1
Hexane	2927.9	2928	2928.1	2859.1	2859	2858.7
Heptane	2927.3	2927.5	2927.6	2857.8	2857.6	2857.4
Octane	2927	2927.1	2927.3	2856.6	2856.3	2856.2
Nonane	2926.8	2927	2927.1	2855.7	2855.6	2855.6
Decane	2926.8	2927	2927.1	2855.3	2855.3	2855.3
Undecane	2926.8	2926.9	2927	2855.1	2855.1	2855.1
Dodecane	2926.7	2926.9	2927	2854.9	2854.9	2854.9
Tridecane	2926.7	2926.8	2927	2854.8	2854.8	2854.8
Tetradecane	2926.7	2926.8	2927	2854.8	2854.7	2854.7
Octadecane	2926.6	2926.7	2926.9	2854.6	2854.6	2854.6
delta cm ⁻¹	-1.1	-1.3	-1.2	-7.2	-6.8	-6.6
**	a.CH ₂ str.		s.CH ₂ str.			
	[CCl4]-	a.CH2 str.	[CCl ₄]-	s.CH ₂ str.		
		_		_		
		[CCl ₄]-	lmol %	ICCl-l-		
	[mol %	[CCl₄]- [CDCl₃]	[mol % CDCb/CCld]	[CCl ₄]-		
		[CCl ₄]- [CDCl ₃] cm ⁻¹	[mol % CDCl ₃ /CCl ₄] cm ⁻¹	[CCl ₄]- [CDCl ₃] cm ⁻¹		
Pentane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹	[CDCl ₃] cm ⁻¹	CDCl ₃ /CCl ₄] cm ⁻¹	[CDCl ₃] cm ⁻¹		
	[mol % CDCl ₃ /CCl ₄] cm ⁻¹ 0.22	[CDCl ₃]	CDCl ₃ /CCl ₄] cm ⁻¹ -0.41	[CDCl ₃] cm ⁻¹ -0.61		-
Hexane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹	[CDCl ₃] cm ⁻¹	CDCl ₃ /CCl ₄] cm ⁻¹	[CDCl ₃] cm ⁻¹		
Hexane Hexane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹ 0.22 0.16 0.15	[CDCl ₃] cm ⁻¹ 0.41 0.25	CDCl ₃ /CCl ₄] cm ⁻¹ -0.41 -0.08	[CDCl ₃] cm ⁻¹ -0.61 -0.26		
Hexane Hexane Heptane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹ 0.22 0.16	[CDCl ₃] cm ⁻¹ 0.41 0.25 0.23	CDCl ₃ /CCl ₄] cm ⁻¹ -0.41 -0.08 -0.17	CDCl ₃] cm ⁻¹ -0.61 -0.26 -0.38		
Hexane Hexane Heptane Octane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹ 0.22 0.16 0.15 0.16	[CDCl ₃] cm ⁻¹ 0.41 0.25 0.23 0.29	CDCl ₃ /CCl ₄] cm ⁻¹ -0.41 -0.08 -0.17 -0.25 -0.21	-0.61 -0.26 -0.38 -0.44		-
Hexane Hexane Heptane Octane Nonane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹ 0.22 0.16 0.15 0.16 0.16	[CDCl ₃] cm ⁻¹ 0.41 0.25 0.23 0.29 0.31	CDCl ₃ /CCl ₄] cm ⁻¹ -0.41 -0.08 -0.17 -0.25	-0.61 -0.26 -0.38 -0.44 -0.33		-
Hexane Hexane Heptane Octane Nonane Decane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹ 0.22 0.16 0.15 0.16 0.16 0.16	[CDCl ₃] cm ⁻¹ 0.41 0.25 0.23 0.29 0.31 0.28	CDCl ₃ /CCl ₄] cm ⁻¹ -0.41 -0.08 -0.17 -0.25 -0.21 -0.09	-0.61 -0.26 -0.38 -0.44 -0.33 -0.1		
Hexane Hexane Heptane Octane Nonane Decane Undecane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹ 0.22 0.16 0.15 0.16 0.16 0.16 0.12	0.41 0.25 0.23 0.29 0.31 0.28	-0.41 -0.08 -0.17 -0.25 -0.21 -0.09	-0.61 -0.26 -0.38 -0.44 -0.33 -0.1		-
Pentane Hexane Heptane Octane Nonane Decane Undecane Dodecane Tridecane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹ 0.22 0.16 0.15 0.16 0.16 0.16 0.12	0.41 0.25 0.23 0.29 0.31 0.28 0.3 0.27	-0.41 -0.08 -0.17 -0.25 -0.21 -0.09 -0.04 -0.02	-0.61 -0.26 -0.38 -0.44 -0.33 -0.1 -0.06 -0.04	<u> </u>	-
Hexane Hexane Heptane Octane Nonane Decane Undecane Dodecane	[mol % CDCl ₃ /CCl ₄] cm ⁻¹ 0.22 0.16 0.15 0.16 0.16 0.16 0.12 0.17	0.41 0.25 0.23 0.29 0.31 0.28 0.3 0.27 0.29	-0.41 -0.08 -0.17 -0.25 -0.21 -0.09 -0.04 -0.02 -0.02	-0.61 -0.26 -0.38 -0.44 -0.33 -0.1 -0.06 -0.04 -0.04	<u> </u>	-

TABLE 3.4 The frequency separation between the a. and s.CH₃ and the a. and s.CH₂ stretching vibrations for n-alkanes in CCl₄, CDCl₃/CCl₄, and CDCl₃ solutions

Compound	[a.CH ₃ str.]- [s.CH ₃ str.] CCl ₄ cm ⁻¹	[a.CH ₃ str.]- [s.CH ₃ str.] 54.6 mol % CDCl ₃ /CCl ₄ cm ⁻¹	[a.CH ₃ str.]- [s.CH ₃ str.] CDCl ₃ cm ⁻¹	[a.CH ₂ str.]- [s.CH ₂ str.] CCl ₄ cm ⁻¹	[a.CH ₂ str.]- [s.CH ₂ str.] mol % CDCl ₃ /CCl ₄ cm ⁻¹	[a.CH ₂ str.]- [s.CH ₂ str.] CDCl ₃ cm ⁻¹
Pentane	86.43	86.55	86.99	66.32	66.54	66.52
Hexane	86.18	86.45	86.77	66.6	68.84	69.11
Heptane	86.05	86.37	86.75	69.48	69.89	70.21
Octane	85.8	86.13	86.53	70.4	70.77	71.04
Nonane	85.67	86	86.41	71.11	71.36	71.42
Decane	85.57	85.92	86.35	71.52	71.68	71.88
Undecane	85.44	85.8	86.28	71.67	71.86	71.98
Dodecane	85.37	85.76	86.27	71.8	71.96	72.13
Tridecane	85.29	85.71	86.19	71.87	72.01	72.19
Tetradecane	85.19	85.61	86.18	71.89	72.06	72.25
Octadecane	84.91	85.51	85.98	72.02	72.15	72.34
$ m delta~cm^{-1}$	-1.52	-1.04	-1.01	5.7	5.61	5.82

TABLE 3.5 The CH₃ and CH₂ bending frequencies and frequency separations for n-alkanes

Compound	CH ₂ bend cm ⁻¹	a.CH ₃ bend cm ⁻¹	s.CH ₃ bend cm ⁻¹	[CH ₂ bend]- [s.CH ₃ bend] cm ⁻¹	[a.CH ₃ bend]- [s.CH ₃ bend] cm ⁻¹
Petane	1467.55	1458	1379.23	88.32	78.77
Hexane	1467.22	1458.37	1378.48	88.74	79.89
Hexane	1467.35	1458.29	1378.59	88.76	79.7
Heptane	1467.39	1458.08	1378.66	88.73	79.42
Octane	1467.36	1458.85	1378.62	88.74	80.23
Nonane	1467.33	1458.27	1378.57	88.76	79.7
Decane	1467.39	1458.56	1378.39	89	80.17
Undecane	1467.63	1458.27	1378.6	88.76	79.67
Dodecane	1467.39	1458.27	1378.62	88.77	79.65
Tridecane	1467.36	1458.27	1378.64	88.72	79.63
Tetradecane	1467.35	1458.56	1378.61	88.74	79.95
Octadecane	1467.33	1457.97	1378.64	88.69	79.33

TABLE 3.6 IR vapor-phase data for the alkyl group of 1,2-epoxyalkanes

1,2-epoxyalkane R	a.CH ₃ str. cm ⁻¹	A	s.CH ₂ str. cm ⁻¹	A	a.CH ₂ str. cm ⁻¹	A	a.CH ₃ bending cm ⁻¹	A	s.CH ₃ bending cm ⁻¹	A
CH ₃	2969	0.835	2930	0.594			1457	0.368	1370	0.25
							1445	0.353	1570	0.23
C_2H_5	2972	1.568	2932	0.804	2920	0.769	1465	0.595	1379	0.158
C_3H_7	2965	~ 1.8	2920	0.6	2934	1.37	1467	0.473	1381	0.226
iso-C ₄ H ₉	2970	~ 1.8	2920	0.729	2935	1.158	1469	0.672	1388*1	0.428
									1371*2	0.415
iso-C ₃ H ₇	2970	~ 1.7	2881	0.533			1470	0.574	1382*1	0.205
									1366*2	0.32
t-C ₄ H ₉	2965	~ 1.8	2870	0.561			1467	0.435	1381*1	0.168
6 **									1366*2	0.783
C ₈ H ₁₇	2960	0.649	2870	0.49	2930	0.88	1467	0.28	1378	0.087
C_9H_{19}	2959	0.52	2870	0.37	2929	0.87	1465	0.238	1378	0.07
$C_{12}H_{25}$	2958	0.546	2878	0.435	2930	0.847	1468	0.302	1377	0.07
$C_{14}H_{29}$	2958	0.482	2870	0.386	2920	0.842	1465	0.295	1374	0.07
$C_{16}H_{33}$	2953	0.47			2920	0.82	1462	0.27	1372	
Danas	2052 2072		2072 2000			0.02	1102	0.27	15/2	0.052
Range	2953–2972		2870–2932		2920–2935		1445–1470		1363-1388	

^{*1 [}in-phase].
*2 [out-of-phase].

TABLE 3.7 IR and Raman data for (CH₃)₂PO₂Na in water and in the solid phase

(CH ₃) ₂ P(O) ₂ Na Assignments	IR solid phase cm ⁻¹	IR H ₂ O soln. cm ⁻¹	Raman H ₂ O soln. cm ⁻¹	5 al	4 a2	4 bl	5 b2
a.[(CH ₃) ₂ str.]	2985		2988	1	1	1	1
s.[(CH ₃) ₂ str.]	2919		2921	1			1
$a.[(CH_3)_2 \text{ bend}]$	1428	1429	1422	1	1	1	1
	1413	\sim 1412	1413				
$s.[(CH_3)_2 bend]$	1293	1309		1			1
	1284	1301					
	912		915	1			
	860sh						
(CH ₃) ₂ rock	851	878			1	1	1
	839sh						
(CH ₃) ₂ torsion	?	?			1	1	

TABLE 3.8 IR data and assignments for CH₃HgSCH₃, CH₃SC(C=O)Cl, and (CH₃)₂Hg

CH ₃ -Hg-S-CH ₃ cm ⁻¹	CH ₃ -S-C(=O)Cl cm ⁻¹	$CH_3-S-P(=O)Cl_2$ cm^{-1}	(CH ₃) ₂ Hg cm ⁻¹	Assignment
[CH ₃ -Hg group]			[CH ₃ -Hg group]	
2984			2970	a.CH ₃ str.
2919			2910	a.CH ₃ str.
1408			1397 or	a.CH3 bend
			1443	
1177			1182	s.CH ₃ bend
763			700, 788	CH ₃ rock
?			?	CH ₃ torsion
[CH ₃ -S group]	[CH ₃ -S group]	[CH ₃ -S group]		
2984	3025	3011		a.CH ₃ str.
2919	2940	2938		s.CH ₃ str.
1432	1430	1431		a.CH ₃ bend
1309	1320	1321		s.CH ₃ bend
956	976	972		CH ₃ rock
?	?	?		CH ₃ torsion
533				Hg-C str.
333				Hg-S str.
190				Hg-S-C bend
120				Hg-S-CH ₃ torsion?

[?] not observed.

TABLE 3.9 IR vapor-phase data for cycloalkanes

Compound	a.CH ₂ str.	s.CH ₂ str.	CH ₂ bend	CH ₂ wag	CH ₂ twist	CH ₂ rock	Ring breathing	Ring def.	(A)s.CH ₂ str. /(A)a.CH ₂ str.
	3130 (0.200)	3035 (0.480)	1439 (0.022)	1050 (0.175)				899 (0.206)	
Cyclopropane	3100 (1.250)	3020 (0.570)	1430 (0.018)	1024 (0.325)			[1188]	862 (0.512)	0.46
		2998 (0.325)	1414 (0.020)	1000 (0.160)				832 (0.162)	
Cyclobutane	[2974, vs]	[2945, s]	[1443, m]	[1260, s]	[1224, m]		[1005, vs, R]	[926, s, R]	
	[2965, vs]							[901, w, R]	
	2988 (0.850)		1479 (0.050)					914 (0.020)	
Cyclopentane	2960 (1.250)	2885 (0.400)	1460 (0.061)				[889, stg, R]	895 (0.040)	0.32
	2945 (0.500)		1445 (0.050)					870 (0.020)	
	2945 (0.950)	2875 (0.352)	1475 (0.074)	1271 (0.015)			879 (0.010)	910 (0.020)	
Cyclohexane	2935 (1.250)	2860 (0.619)	1459 (0.180)	1261 (0.019)	1041 (0.020)		861 (0.020)	900 (0.020)	0.49
		2850 (0.340)	1444 (0.076)	1245 (0.012)			842 (0.012)		
Cycloheptane	2935 (1.250)	2860 (0.230)	1464 (0.060)	1354 (0.005)	950 (0.005)	730 (0.001)	812 (0.011)		0.18
Cyclooctane	2930 (1.250)	2862 (0.619)	1460 (0.143)	1355 (0.044)	1042 (0.020)	767 (0.020)	852 (0.020)	952 (0.010)	0.49
Cyclodecane	2930 (1.250)	2880 (0.370)	1486 (0.110)	1354 (0.040)	1286 (0.040)	720 (0.040)		, ,	0.29
		2865 (0.340)	1454 (0.120)						0.29
Cyclododecane	2940 (1.250)	2870 (0.520)	1471 (0.120)	1350 (0.041)	1310 (0.020)	718 (0.060)	1030 (0.020)	1080 (0.011)	0.42
			1453 (0.115)					, ,	
									(A)s.CD ₂ str.
	a.CD2 str.	s.CD ₂ str.	CD ₂ bend	CD ₂ wag	CD ₂ twist	CD ₂ rock			/(A)a.CD ₂ str.
Cyclododecane-D ₂₄	2202 (1.250)	2102 (0.610)	1160 (0.040)	1160 (0.040)	1118 (0.050)	550 (0.042)	983 (0.085)	1095 (0.180)	0.49
Cyclododecane	1.335	1.365	1.268	1.164	1.172	1.305	1.048	0.986	
/cyclododecane-D ₂₄			1.253						

TABLE 3.10 Raman and IR data for compounds containing cycloalkyl groups

Compound	Raman neat a.CH ₂ str.	Raman neat s.CH ₂ str.	Raman neat s.CH ₂ str. in F.R.	Raman neat CH ₂ bend	IR v.p. a.CH ₂ str.	IR v.p. s.CH ₂ str.
		2020 (02)	2020 (27)	1452 (3)	2100	2020
Cyclopropane (vap.)		3039 (83, p)	3020 (37, p)	1452 (2, p)	3100	3020
Cyclopropane carboxylic acid		3020 (37, p)		1458 (5, p)	3102	3032
Chlorocyclobutane	2985 (26, p)	2955 (44, p)		1433 (4, p)		
Cyclobutane carboxylic acid					2995	2890
Cyclopentane	2943 (43, p)	2868 (45, p)		1446 (6, p)	2960	2880
Chlorocyclopentane	2971 (46, p)	2919 (33, p)	2876 (21, p)	1446 (6, p)	2980	2890
Bromocyclopentane	2967 (43, p)	2915 (29, p)		1448 (5, p)	2970	2890
Cyclopentanecarbonitrile ¹	2970 (40, p)	2875 (29, p)		1446 (6, p)		
Cyclopentane carboxylic acid	2967 (41, p)	2875 (29, p)		1449 (8, p)	2970	2890
Cyclopentyl alcohol	2962 (84, p)	2875 (45, p)		1448 (9, p)		
Cyclohexane	2924 (40)	2852 (52)		1446 (10)	2935	2860
Chlorocyclohexane					2948	2870
Bromocyclohexane					2942	2865
Cyclohexyl alcohol	2940 (42, p)	2855 (45, p)		1440 (7, p)	2940	2864
Cyclohexyl amine	2937 (71, p)	2855 (76, p)		1440 (10, p)	2938	2862
	2920 (59, p)	, ,,,,		, , ,		
1,2,4-Trivinylcyclohexane	2932 (4)	2852 (4)		1443 (1)		
Cycloheptane	2927 (42, p)	2853 (37, p)		1441 (8, p)		
Cyclodecane	2914 (84, p)			1442 (10, p)	2930	2880

¹ [CN str., 2234 (40, p)].

Compound	a.CH ₃ O str.	a.CH ₃ str.	s.CH ₃ str.	a.CH ₂ str.	s.CH ₂ str.	s.CH ₃ str.	CH ₂ bend	a.CH ₃ bend	s.CH ₃ bend	CC=O bend
Methyl acrylate			2957 (4)	2924 (2)		2858 (4)	1443 (1)			
Poly(methyl methacrylate)	3001 (4)		2952 (9)			2844 (1)		1451 (1)	1391 (0)	601 (4)
Ethyl methacrylate								1455 (6)	1392 (0)	602 (4)
Propyl acrylate			2941 (7)		2882 (5)			1453 (3)		
Propyl methacrytate		2963 (4)	2931 (9)		2882 (5)			1452 (5)		604 (4)
Poly(propyl acrylate)			2938 (9)		2881 (5)			1453 (4)		
Poly(propyl methacrylate)			2938 (9)		2881 (5)			1452 (5)		602 (3)
Dibutyl phosphonate		2965 (5)	2938 (8)	2913 (9)	2876 (9)			1452 (3)		[2434 (1) P-H str.]
Dibutyl fumarate		2964 (5)	2939 (7)	2914 (8)	2877 (7)			1451 (3)		
Dibutyl phthalate			2938 (7)	2914 (7)	2876 (6)			1450 (3)		
Poly(butyl acrylate)			2937 (9)	2919 (9)	2875 (7)			1451 (4)		
Poly(butyl methacrylate)		2963 (9)		2915 (8)	2876 (6)					603 (3)
Hexyl methacrylate		2961 (4)	2930 (9)	2901 (7)	2876 (6)			1441 (3)		604 (2)
Bis(isoctyl) fumarate		2963 (8)		2909 (8)	2878 (9)			1450 (4)		
Vinyl(isooctyl ether)			2933 (7)	2913 (7)	2874 (9)			1450 (3)		
Poly(isodecyl methacrylate)		2959 (7)	2932 (9)		2875 (9)					605 (1)
Undecyl acrylate				2900 (8)	2854 (8)			1439 (4)		
Undecyl methacrylate			2928 (9)		2854 (8)			1439 (5)		604 (2)
Vinyl undecyl ether				2900 (8)	2854 (8)			1439 (4)		
Dodecyl acrylate				2897 (8)	2853 (9)			1440 (4)		
Dodecyl methacrylate			2929 (9)	2896 (9)	2853 (9)			1439 (4)		605 (1)
Poly(dodecyl methacrylate)			2929 (8)	2804 (9)	2853 (9)			1440 (4)		
Vinyl dodecyl ether				2895 (8)	2853 (9)			1439 (3)		
					2874 (8)					
Strontium stearate			2923 (3)	2884 (9)	2852 (5)			1447 (4)		
Zinc stearate				2882 (9)	2849 (5)			1440 (3)		
Poly(vinyl stearate)				2882 (9)	2848 (8)			1438 (3)		
Vinyl octadecyl ether				2890 (7)	2852 (9)			1439 (3)		
Poly(octadecyl acrylate)				2862 (9)	2847 (7)			1438 (3)		
Octadecyl methacrylate			2928 (7)	2894 (8)	2852 (9)			1439 (4)		605 (1)
Poly(octadecyl methacrytate)			2928 (7)	2892 (8)	2852 (9)			1440 (4)		605 (0)
		2964 (8)	2939 (9)	2922 (8)	2875 (9)			1453 (4)		
Isobutyl methacrylate		2965 (7)	2931 (9)	2901 (7)	2877 (9)			1453 (4)		603 (3)
Poly(isobutyl methacrylate)		2964 (9)	2937 (9)		2875 (9)			1452 (6)		602 (3)
Vinyl isobutyl ether		2962 (5)	2943 (4)	2911 (6)	2876 (9)			1464 (2)		
B 1 () 1 (1 (1 (1 ())		2057 (6)		2012 (0)	2072 (0)			1462 (2)		

2913 (8) 2872 (9)

1462 (3)

2957 (6)

Poly(vinyl isobutyl ether)

2-Ethylhexyl acrylate 296 (5) 293 (9) 2877 (9) 1450 (4)						1451 (3)	
2-Ethylkexyl methacrylate 2983 (s) 2910 (r) 2970 (r) 297	2-Ethylhexyl acrylate	2963 (5)	2939 (9)		2877 (9)		
3.3.5 trimethylbexyl methacrylate	2-Ethylhexyl methacrylate	2983 (5)	2931 (9)	2900 (7)	2877 (7)		
Ethylene dimethacrylate		2960 (7)	2930 (9)				
Cyclohexyl acrylate 2954 (9) 2861 (8) 1447 (4) [801 (9) ring breathing) 3,5,5-Trimethylcyclohexyl acrylate 2956 (9) 2931 (9) 2970 (9) 1463 (4) 467 (4) 467 (1)	methacrylate						
3,5,5-Trimethylcyclohexyl acrylate 2956 (9) 2931 (9) 2904 (9) 2873 (9) 1463 (4) 1450 (4) 1,1,1-Trinethylolethane 2966 (2) 2902 (1) 1466 (1) 1466 (1) 1,1,1-Trinethylolethane 2966 (2) 2902 (1) 1466 (1) 1466 (1) 1,1,1-Trinethylolpropane 2914 (2) 2885 (3) 1455 (9) 604 (9) 1,1,1-Trinethylolpropane 2914 (2) 2885 (2) 1455 (9) 604 (9) 1,1,1-Trinethylolpropane 2944 (2) 2885 (2) 1458 (2) 604 (9) 2,1-Hydroxypropyl acrylate 2939 (2) 293 (2) 1455 (8) 604 (5) 2,1-Hydroxypropyl acrylate 2939 (2) 293 (2) 1439 (1) [2132 (9) CC str.] 1,1-Hydroxypropyl acrylate 293 (2) 2937 (7) 293 (2) 1439 (1) [2132 (9) CC str.] 1,1-Hydroxypropyl acrylate 291 (2) 2937 (7) 293 (2) 1439 (1) [2132 (9) CC str.] 1,1-Hydroxypropyl acrylate 297 (2) 2937 (7) 293 (2) 1453 (2) 603 (3) 1,1-Hydroxypropyl acrylate 298 (2) 293 (2) 293 (2) 293 (2) 1455 (2) <	Ethylene dimethacrylate	2962 (5)	2931 (8)			1380 (2)	603 (3)
Acrylate	Cyclohexyl acrylate			2954 (9)	2861 (8)	1447 (4)	[801 (9) ring breathing]
1,1,1 Trimethylolethane tri-tarcylate tri-tarcylate	3,5,5-Trimethylcyclohexyl	2956 (9)	2931 (9)	2904 (9)	2873 (9)	1463 (4)	0
tri-acrylate' 2885 (4) Trimethylolpropane 2951 (4) 2885 (4) triethoxycrylate 2944 (9) 2948 (9) 604 (9) Poly(2-Hydroxyethyl) 2949 (9) 2885 (2) 1455 (9) 604 (9) 2-Hydroxypropyl acrylate 2940 (4) 2885 (2) 1458 (8) 604 (5) Poly(2-Hydroxypropyl) 2939 (9) 2953 (1) 1455 (8) 604 (5) rethacrylate 2933 (1) 1439 (1) [2132 (9) CC str.] Propargyl archlacrylate 2933 (1) 1439 (1) [2132 (9) CC str.] 1,H,H,3H-terafluoro- 2971 (5) 2937 (7) 293 (1) 1439 (1) [2132 (9) CC str.] 1,H,1H,3H-terafluoro- 2971 (5) 2937 (7) 293 (1) 1453 (2) 603 (3) 2,2,2-Trifichorenthyl 298 (5) 2937 (7) 293 (2) 1455 (2) 603 (3) 3,2-Trifichorenthyl 298 (5) 292 (2) 2883 (1) 1455 (2) 2885 (2) 603 (3) 17bromoneopentyl acrylate 298 (5) 292 (2) 2883 (1) 1455 (2) 2885 (2)	acrylate					1450 (4)	
Trimethylolpropane trichoxyacrylate	1,1,1-Trimethylolethane	2966 (2)		2902 (1)		1464 (1)	
triethoxyacrylate Poly C2Hydroxyethyl 994 (9) 604 (9) Poly C2Hydroxypthyl 2940 (4) 2885 (2) 1458 (2) Poly C2Hydroxypropyl acrylate 2939 (9) 1455 (8) 604 (5) Propargyl acrylate 2939 (9) 2953 (1) 1439 (1) [2132 (9) CC str.] Propargyl acrylate 2933 (1) 2933 (1) 1439 (1) [2132 (9) CC str.] Propargyl methacrylate 2931 (2) 2937 (7)	tri-acrylate						
Poly(2-Hydroxyethyl methacrylate)	Trimethylolpropane	2951 (4)			2885 (4)		
methacrylate) 2940 (4) 2885 (2) 1458 (2) Poly(2-Hydroxypropyl acrylate 2939 (9) 2885 (2) 1458 (8) 604 (5) Poly(2-Hydroxypropyl acrylate) 5 2933 (1) 5 1439 (1) 2132 (9) CC str.] Propargyl acrylate 2933 (1) 2933 (1) 1439 (1) 2132 (9) CC str.] Propargyl methacrylate 297 (5) 2937 (7) 5 1439 (1) 2132 (9) CC str.] 1,H,H,3H-terafluoro- propyl methacrylate 297 (5) 2937 (7) 5 293 (2) 663 (3) methacrylate 297 (8) 2937 (7) 5 1453 (2) 603 (3) methacrylate 298 (2) 293 (2) 1455 (0) 5 603 (3) acrylate 299 (8) 298 (2) <td>triethoxyacrylate</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	triethoxyacrylate						
2-Hydroxypropyl acrylate	Poly(2-Hydroxyethyl	2944 (9)				1455 (9)	604 (9)
Poly(2-Hydroxypropyl methacrylate)	methacrylate)						
nethacrylate) 2953 (1) 1439 (1) [2132 (9) CC str.] Propargyl acrylate 2933 (1) 1439 (1) [2132 (9) CC str.] Propargyl methacrylate 2971 (5) 2937 (7) 1439 (1) [2132 (9) CC str.] 1,H.J.H.3H-terafluoro- propyl methacrylate 2978 (5) 2937 (7) 1453 (2) 603 (3) 2,2,2-Trifuloromethyl methacrylate 2980 (2) 2987 (7) 1455 (0) 260 (3) 2,2,2-Trichloroethyl acrylate 2980 (2) </td <td>2-Hydroxypropyl acrylate</td> <td>2940 (4)</td> <td></td> <td></td> <td>2885 (2)</td> <td>1458 (2)</td> <td></td>	2-Hydroxypropyl acrylate	2940 (4)			2885 (2)	1458 (2)	
Propargyl acrylate 2933 (1)	Poly(2-Hydroxypropyl	2939 (9)				1455 (8)	604 (5)
Propagy methacrylate 2933 (1) 2937 (7) 2937 (methacrylate)						
1,H,1H,3H-terafluoro- propyl methacrylate 2971 (5) 2937 (7) 483 (2) 603 (3) 2,2,2-Trifluoromethyl methacrylate 2980 (2) 455 (0) 603 (3) 2,2,2-Trichloroethyl acrylate 2980 (2) 455 (0) 455 (0) 3 acrylate 455 (0) 455 (0) 455 (0) 3 ribromoneopentyl acrylate 2929 (0) 465 (2) 465 (2) 4 ribromoneopentyl acrylate 2969 (5) 2928 (2) 465 (2) 465 (2) 8 ribromoneopentyl methacrylate 2969 (5) 2928 (2) 467 (4) 467 (4) 9 ribromoneopentyl acrylate 2954 (9) 2931 (9) 467 (4) 466 (3) 8 ribromoneopentyl methacrylate 466 (3) 466 (3) 612 (1) 9 methacrylate 466 (3) 612 (1) 606 (3) 1 methylammonium 2963 (2) 466 (3) 612 (1) 9 sulfopropyl potassium 2983 (3) 2933 (5) 446 (1) 601 (1) 8 sulfopropyl potassium 2983 (3) 2933 (5) 446 (1) 601 (1) 9 sulfopropyl potassium 400 (1) 601 (1) 601 (1) 1 sulfopropyl potassium 400 (1) <td>Propargyl acrylate</td> <td></td> <td></td> <td>2953 (1)</td> <td></td> <td>1439 (1)</td> <td>[2132 (9) CC str.]</td>	Propargyl acrylate			2953 (1)		1439 (1)	[2132 (9) CC str.]
propyl methacrylate 2,2,2-Trifluoromethyl 2978 (5) 2937 (7) 1453 (2) 603 (3) methacrylate 2,2,2-Trichloroethyl 2980 (2) 1455 (0) 1455 (0) acrylate 2929 (0) Trichloromthyl methacrylate 2929 (0) 1465 (2) 1434 (2) Tribromoneopentyl acrylate 2929 (2) 2883 (1) 1465 (2) 1434 (2) Tribromoneopentyl methacrylate 2928 (2) 2928 (2) 1467 (4) 606 (3) N,N-dimethylaminoethyl methacrylate 2954 (9) 2931 (9) 1467 (4) 606 (3) Trimethylammonium 2954 (2) 2931 (2) 1447 (4) 606 (3) Trimethylammonium 2963 (2) 1460 (3) 612 (1) methosulfate methacrylate [1063 (9) s.S03 str.] 1446 (1) 601 (1) 3-Sulfopropyl potassium 2983 (3) 2933 (5) 1446 (1) 601 (1) salt methacrylate 1446 (1) 619 (1) 619 (1)	Propargyl methacrylate		2933 (1)			1439 (1)	[2132 (9) CC str.]
2,2,2-Trifluoromethyl 298 (5) 2937 (7) 1453 (2) 603 (3) methacrylate 2,2,2-Trichloroethyl 2980 (2) 2980 (2) 1455 (0) 1455 (0) 2920 (2) 2921 (2) 2883 (1) 1465 (2) 1434 (2) 2920 (2) 1434 (2) 2921 (2) 2883 (1) 1465 (2) 1434 (2) 2920 (2) 1434 (2) 2920 (2) 2921 (2) 2820 (2) 28	1,H,1H,3H-terafluoro-	2971 (5)	2937 (7)				
methacrylate 2,2,2-Trichloroethyl 2980 (2) 1455 (0) acrylate 2929 (0) 1455 (0) Trichloromthyl methacrylate 2929 (0) 2921 (2) 2883 (1) 1465 (2) 1434 (2) Tribromoneopentyl acrylate 2969 (5) 2928 (2) 1434 (2) 1467 (4) 1467 (4) 1467 (4) 1467 (4) 1467 (4) 606 (3) 1467 (4) 606 (3) 612 (1) 606 (3) 612 (1) 606 (3) 612 (1) 601 (1)	propyl methacrylate						
2,2,2-Trichloroethyl acrylate Trichloromthyl methacrylate Tribromoneopentyl acrylate Tribromoneopentyl acrylate 2929 (0) Tribromoneopentyl acrylate 2969 (5) 2928 (2) 2883 (1) 1465 (2) 1434 (2) Tribromoneopentyl methacrylate N,N-dimethylaminoethyl 2954 (9) 2931 (9) 2931 (9) 1467 (4) 606 (3) Trimethylammonium 2963 (2) 2963 (2) 1447 (4) 606 (3) 612 (1) 610 (1) 601 (1) 601 (1) 601 (1) 601 (1) 611 (2,2,2-Trifluoromethyl	2978 (5)	2937 (7)			1453 (2)	603 (3)
acrylate 2929 (0) Trichloromthyl methacrylate 2929 (0) Tribromoneopentyl acrylate 2921 (2) 2883 (1) 1465 (2) 1434 (2) 1434 (2) Tribromoneopentyl methacrylate 2969 (5) 2928 (2) N,N-dimethylaminoethyl methacrylate 2954 (9) 2931 (9) Trimethylammonium methacrylate 1467 (4) 606 (3) Trimethylammonium methacrylate 1460 (3) 612 (1) 3-Sulfopropyl potassium salt methacrylate 2983 (3) 2933 (5) 1446 (1) 601 (1) salt methacrylate 619 (1)	methacrylate						
Trichloromthyl methacrylate 2929 (0) Tribromoneopentyl acrylate 2921 (2) 2883 (1) 1465 (2) 1434 (2) 1434 (2) Tribromoneopentyl methacrylate 2969 (5) 2928 (2) N,N-dimethylaminoethyl methacrylate 2954 (9) 2931 (9) Trimethylammonium methacrylate 1467 (4) 606 (3) Trimethylammonium methacrylate 1460 (3) 612 (1) 3-Sulfopropyl potassium salt methacrylate 2983 (3) 2933 (5) 1446 (1) 601 (1) salt methacrylate 619 (1)	2,2,2-Trichloroethyl	2980 (2)				1455 (0)	
Tribromoneopentyl acrylate 2921 (2) 2883 (1) 1465 (2) 1434 (2) Tribromoneopentyl methactylate 2969 (5) 2928 (2) 2928 (2) N,N-dimethylaminoethyl methacrylate 2954 (9) 2931 (9) 1467 (4) Trimethylammonium 2963 (2) 1447 (4) 606 (3) Trimethylammonium methosulfate methacrylate 1460 (3) 612 (1) 3-Sulfopropyl potassium salt methacrylate 1446 (1) 601 (1) 3-Sulfopropyl potassium salt methacrylate 1446 (1) 601 (1)	acrylate						
Tribromoneopentyl 2969 (5) 2928 (2)	Trichloromthyl methacrylate		2929 (0)				
Tribromoneopentyl methactylate 2969 (5) 2928 (2) N,N-dimethylaminoethyl methacrylate 2954 (9) 2931 (9) 1467 (4) Trimethylammonium 2963 (2) 1447 (4) 606 (3) Trimethylammonium methosulfate methacrylate 1460 (3) 612 (1) 3-Sulfopropyl potassium salt methacrylate 2983 (3) 2933 (5) 1446 (1) 601 (1) salt methacrylate 619 (1)	Tribromoneopentyl acrylate			2921 (2)	2883 (1)	1465 (2)	
methactylate 1467 (4) N,N-dimethylaminoethyl 2954 (9) 2931 (9) 1467 (4) 606 (3) methacrylate 1447 (4) 606 (3) 612 (1) rimethylammonium 2963 (2) 1460 (3) 612 (1) methosulfate methacrylate [1063 (9) s.S03 str.] 3-Sulfopropyl potassium 2983 (3) 2933 (5) 1446 (1) 601 (1) salt methacrylate 619 (1)						1434 (2)	
N,N-dimethylaminoethyl methacrylate 2954 (9) 2931 (9) 1467 (4) 606 (3) Trimethylammonium 2963 (2) 1460 (3) 612 (1) methosulfate methacrylate [1063 (9) s.S03 str.] 3-Sulfopropyl potassium salt methacrylate 2983 (3) 2933 (5) 1446 (1) 601 (1) salt methacrylate 619 (1)	Tribromoneopentyl	2969 (5)	2928 (2)				
methacrylate 1447 (4) 606 (3) Trimethylammonium 2963 (2) 1460 (3) 612 (1) methosulfate methacrylate [1063 (9) s.S03 str.] 3-Sulfopropyl potassium 2983 (3) 2933 (5) 1446 (1) 601 (1) salt methacrylate 619 (1)	,						
Trimethylammonium 2963 (2) 1460 (3) 612 (1) methosulfate methacrylate [1063 (9) s.S03 str.] 3-Sulfopropyl potassium 2983 (3) 2933 (5) 1446 (1) 601 (1) salt methacrylate 619 (1)	N,N-dimethylaminoethyl	2954 (9)	2931 (9)			1467 (4)	
methosulfate methacrylate [1063 (9) s.S03 str.] 3-Sulfopropyl potassium salt methacrylate 2983 (3) 2933 (5) 1446 (1) 601 (1) 619 (1) 619 (1)	•					1447 (4)	606 (3)
3-Sulfopropyl potassium 2983 (3) 2933 (5) 1446 (1) 601 (1) salt methacrylate 619 (1)	Trimethylammonium	2963 (2)				1460 (3)	612 (1)
salt methacrylate 619 (1)	methosulfate methacrylate						[1063 (9) s.S03 str.]
	, .	2983 (3)	2933 (5)			1446 (1)	
Poly(phenyl methacrylate) 1448 (3) 615 (2) i.p. ring							
	Poly(phenyl methacrylate)					1448 (3)	615 (2) i.p. ring

Alkyl Carbon-Hydrogen Vibrations

TABLE 3.12 IR vapor-phase data for cyclopropane derivatives

Compound	a.CH ₂ str.	s.CH ₂ str.	CH ₂ bend	CH ₂ wag	Ring Breathing	CH₂ twist	CH₂ rock	Ring Deformation			<u>-</u>	
	3130 (0.200)3035 (0.480)	1439 (0.022)	1050 (0.175)				899 (0.206)					
Cyclopropane	3100 (1.250)	3020 (0.570)	1430 (0.018)	1024 (0.325)	[1188]			862 (0.512)				
,		2998 (0.325)	1414 (0.020)	1000 (0.160)				832 (0.162)				
									C-Br str.			
	3110 (0.170)	3030 (0.280)		1045 (0.329)	1279 (1.240)			811 (0.160)	560 (0.280)			
Bromocyclopropane	3101 (0.210)	3020 (0.300)	1446 (0.172)	1035 (0.430)	1271 (1.040)	1191 (0.035)	868 (0.100)	800 (0.180)	550 (0.240)			
	3090 (0.220)	3010 (0.250)		1025 (0.240)	1260 (1.140)				544 (0.220) CN. str.			
	3125 (0.210)	3050 (0.355)	1445 (0.210)	1074 (0.490)	950 (1.103)	1205 (0.080)	735 (0.255)	824 (0.375)	2260 (0.540)			
Cyclopropane-	3118 (0.279)	3040 (0.430)			940 (1.115)				2255 (0.625)			
carbonitrile	3105 (0.210)	3030 (0.410)			930 (1.215)				2245 (0.530)			
caroomane	3103 (0.210)	3030 (0.110)	1131 (0.171)	1030 (0.020)	750 (1.217)	1100 (0.00)	711 (0.100)	005 (0.115)	2215 (0.550)	Phenyl o.p. ip. H5 def.	o.p. Phenyl def.	
1-Phenylcyclopropane- carbonitrile	3100 (0.250)	3038 (0.400)	1447 (0.220)	1030 (0.282)	942 (0.310)	1191 (0.010)	masked	860 (0.068)	2235 (0.250)	751 (0.940)	694 (1.250)	
												γ
									O-H str.	C=O str.	C-O str.	C=O
			,	1060 (0.080)					3590 (0.291)	1779 (0.950)	1135 (1.150)	
Cyclopropane-	3108 (0.040)	3035 (0.090)			929 (0.150)	1181 (0.160)	755 (0.100)	825 (0.165)	3580 (0.340)	1772 (1.250)	1130 (1.250)	
carboxylic acid			1405 (0.320)	1018 (0.100)	919 (0.140)				3575 (0.260)	1768 (1.050)	1125 (1.125)	562 (0.290) 2(C=O)
Methyl cyclopropane-	3102 (0.052)	3024 (0.169)		1035 (0.100)	905 (0.172)			827 (0.100)		1751 (0.945)	1179 (1.240)	3490 (0.015)
carboxylate	[a.CH ₃ str.]	[s.CH ₃ str.]									1091 (0.295)	
•	[2960 (0.200)]	[2910 (0.050)]										
									Phenyl	o.p. Phenyl		
									o.p. ip. H5 def.	def.		
Cyclopropylbenzene	masked	3035 (1.250)	1465 (0.130)	1028 (0.340)	898 (0.270)	1178 (0.015)	masked	812 (0.130)	750 (0.730)	695 (1.030)		
	Phenyl CH str. 3084 (1.050)	& Phenyl CH str.										

TABLE 3.13 IR data for octadecane, octadecane-D₃₈, tetracosane, and tetracosane-D₅₀

Compound	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	a.CH ₃ bend	CH₂ bend	s.CH ₃ bend	CH ₂ wag	CH ₂ twist	CH ₃ rock?	CH ₂ rock
Octadecane	2970 (0.471)	2930 (1.250)		2863 (0.621)	1465 (0.120)		1385 (0.030)	1354 (0.042)	1310 (0.1030)	1105 (0.010)	720 (0.021)
	a.CD3 str.	a.CD ₂ str.	s.CD3 str.	s.CD ₂ str.	a.CD ₃ bend	CD ₂ bend	s.CD ₃ bend	CD ₂ wag	CD ₂ twist	CD ₃ rock?	CD ₂ rock
Octadecane-D ₃₈	2215 (0.650)	2199 (1.250)		2100 (0.590)	1085 (0.111)		1060 (0.050)	975 (0.020)	960 (0.020)	865 (0.015)	530 (0.020)
Octadecane	1.341	1.332		1.363	1.349		1.316	1.389	1.365	1.277	1.358
/octadecane-D ₃₈											
	a.CH3 str.	a.CH2 str.	s.CH3 str.	s.CH ₂ str.	a.CH ₃ bend	CH ₂ bend	s.CH3 bend	CH ₂ wag	CH ₂ twist	CH3 rock?	CH ₂ rock
Tetracosane	2970 (0.241)	2930 (1.250)		2860 (0.435)	1460 (0.077)		1385 (0.015)	1351 (0.020)	1300 (0.015)		715 (0.012)
	a.CD3 str.	a.CD2 str.	s.CD3 str.	s.CD ₂ str.	a.CD3 bend	CD ₂ bend	s.CD ₃ bend	CD ₂ wag	CD ₂ twist	CD ₃ rock?	CD ₂ rock
Tetracosane-D ₅₀		2200 (1.250)		2100 (0.470)	1085 (0.101)		1053 (0.040)	985 (0.020)	960 (0.020)	875 (0.010)	530 (0.020)
Tetracosane		1.332		1.362	1.346		1.315	1.371	1.354		1.349
/Tetracosane-D50											

Alkenes and Other Compounds Containing C=C Double Bonds

In-Plane Vibra	itions		56																	
Out-of-Plane V	Vibrations		56																	
Band Absorbance Ratios and Frequency Separations for Vinyl Twist, Vinyl C=CH ₂ , and Vinyl CH=CH ₂ Wag																				
											Raman Data for X-CH=CH ₂ Compounds									
	Conjugated Vinyl Groups																			
Rotational Conformers or Fermi Resonance (F.R.) 1-Alkene (CH=CH ₂) CH and CH ₂ Stretching Vibrations C=CH ₂ Wag Frequencies vs (sigma σ-sigma') CH=CH ₂ Twist Frequencies vs σ ¹ and pK _a of G for G-CH ₂ CO ₂ H																				
										Allyl Halides Cycloalkenes and Cycloalkadienes										
										Cinnamyl Esters 1,1-Disubstituted Ethylenes										
Styrenes and	x-Methyl Styrenes		65																	
Butadienes, Pr	opadienes, Conjugated Cy	clic Dienes	66																	
Alkyl Groups	of 1-Alkenes and Vinyl All	yl Ethers	67																	
References			67																	
Figures																				
Figure 4-1	68 (61)	Figure 4-4	70 (65)																	
Figure 4-2	69 (64)	Figure 4-5	71 (65)																	
Figure 4-3	70 (65)	8	(2)																	
Tables																				
Table 4-1	72 (56, 57)	Table 4-5	78 (61)																	
Table 4-2	73 (56)	Table 4-5a	78 (62)																	
Table 4-2a	74 (57)	Table 4-6	79 (62)																	
Table 4-2b	75 (57, 58, 60)	Table 4-6a	80 (62)																	
Table 4-2c	76 (59)	Table 4-7	81 (63, 64)																	
Table 4-3	77 (60)	Table 4-8	82 (64)																	
Table 4-3a	77 (60)	Table 4-9	82 (64)																	
Table 4-4	78 (60)	Table 4-10	83 (64)																	

Ta	bl	es

Table 4-11	84 (64)	Table 4-15	88 (65)	
Table 4-11a	85 (64)	Table 4-16	89	
Table 4-12	85 (65)	Table 4-17	90	
Table 4-13	86 (65)	Table 4-18	91	
Table 4-14	87 (65)			

^{*}Numbers in parentheses indicate in-text page reference.

The IR spectra of a variety of chemicals containing carbon-carbon double bonds (*C*=*C*) together with spectra-structure correlations are readily available in book form to aid chemists in the identification of these important polymer building blocks (1). Chapter 4 contains IR and Raman data for these compounds in different environments. Discussions of both chemical and physical effects upon group frequencies associated with carbon-carbon double bonds are included.

Table 4.1 lists vibrational assignments for C=C stretching (ν C=C), vinyl twist, vinyl CH₂ wag, vinyl CH=CH₂ wag, and the first overtone of vinyl CH₂ wag in the vapor-phase (2). The ν C=C mode for 1-alkenes (R-CH=CH₂) occur in the region 1641–1650 cm⁻¹. The vinyl twist mode occurs in the region 991–1008 cm⁻¹. Branching in the 3-carbon atom increases the vinyl twist frequency. The vinyl C=CH₂ wag occurs in the region 910–918 cm⁻¹ and its first overtone occurs in the region 1829–1835 cm⁻¹. The vinyl wag vibration occurs in the region 572–685 cm⁻¹. This vibration increases in frequency with increased substitution on the 3-carbon atom (e.g., R-CH₂-CH=CH₂, 572–627 cm⁻¹; R₂CH-CH=CH₂, 653–678 cm⁻¹, and R₃C-CH=CH₂, 681–685 cm⁻¹).

Absorbance ratios and frequency separations are also presented for some vibrational bands.

IN-PLANE VIBRATIONS

Table 4.2 lists IR vapor-phase frequencies and assignments for a variety of compounds containing C=C double bonds. Acrylonitrile and divinylsulfone exhibit vC=C at 1613 and 1620 cm⁻¹, respectively. The allyl derivatives exhibit vC=C in the region 1641–1653 cm⁻¹. It is apparent that CN and SO₂ groups joined to the vinyl group have the effect of lowering the C=C stretching frequency (3).

The vasym. $CH_2=$, vsym. $CH_2=$, and $CH_2=$ bending modes occur in the regions 3082–3122, 2995–3045, and 1389–1430 cm⁻¹, respectively. The CN and SO_2 groups raise the vasym. $CH_2=$ frequencies. Compare acrylonitrile (3122 cm⁻¹) and divinylsulfone (3110 cm⁻¹) vs those for 3-butenoic acid and the allyl derivatives (3082–3100 cm⁻¹).

OUT-OF-PLANE VIBRATIONS

The CH=CH₂ twist frequencies for these compounds are assigned in the region $962-997 \,\mathrm{cm}^{-1}$. The lowest frequency, $962 \,\mathrm{cm}^{-1}$, is exhibited by divinylsulfone, and the two vinyl groups are

joined to the sulfur atom of the SO_2 group. All of the other compounds exhibit $CH=CH_2$ twist in the region 970-997 cm⁻¹, and in these cases the vinyl group is joined to a carbon atom.

The $C=CH_2$ wag vibration and its first overtone occur in the regions $911-971 \, \mathrm{cm}^{-1}$ and $1835-1942 \, \mathrm{cm}^{-1}$, respectively. The CN and SO_2 groups cause the $C=CH_2$ wag mode to occur at higher frequency than the other vinyl compounds, which exhibit this molecular vibration in the region $911-934 \, \mathrm{cm}^{-1}$.

As noted here, the CH=CH₂ wag mode for vinyl groups joined to R-CH₂, (R-)₂CH, and $R_{-3}C$ groups for 1-alkenes occur in the regions 572-627, 653-678, and 681-685 cm⁻¹, respectively. With the exceptions of allyl formate (638 cm⁻¹), allyl benzene (648 cm⁻¹) and allyl naphthalene (655 cm⁻¹), CH=CH₂ wag occurs in the region 551-558 cm⁻¹. Acrylonitrile and divinylsulfone exhibit CH=CH₂ wag at 680 and 715 cm⁻¹, respectively, and occur at higher frequency than for compounds of form (R-)3CCH=CH2. On the other hand, allylbenzene and allylnaphthalene exhibit CH=CH₂ wag at 648 and 655 cm⁻¹, respectively, and occur at higher frequency than for 1-alkenes of form R-CH₂-CH=CH₂ (572-627 cm⁻¹). The reason for the CH=CH2 wag frequency behavior with chemical structure is as follows: The CH=CH2 wag includes bending of the C-C=C bonds, and as the $C(-)_2$ becomes increasingly branched it becomes more difficult for the C-C=C group to bend out-of-plane together with the three hydrogen atoms joined to vinyl group bending out-of-plane in the same direction as the 3-carbon atom. Therefore, CH=CH2 wag increases in frequency as the 3-carbon atom is increasingly branched. Apparently, in the case of acrylonitrile and divinylsulfone, it is more difficult for the C=C-CN and C=C-S bonds to bend than for $(R-)_3C-C=C$ bond bending in the complex $CH=CH_2$ wag vibration.

BAND ABSORBANCE RATIOS AND FREQUENCY SEPARATIONS FOR VINYL TWIST, VINYL C=CH₂, AND VINYL CH=CH₂ WAG

Table 4.2a and Table 4.1 list the numbers and frequencies for the normal vibrations listed in this section (3). For 1-alkenes the ratio of the absorbances (A) for (A) $CH=CH_2$ twist/(A)C= CH_2 wag is in the range 0.341–0.617. This shows that the $C=CH_2$ wag mode has more intensity than the $CH=CH_2$ twist mode. Table 4.2a shows the same trend except for acrylonitrile and allyl alcohol where these two modes have essentially identical intensity.

In Table 4.1 it is noted that the frequency separation between CH=CH₂ twist and C=CH₂ wag varies between 80 and 94 cm⁻¹, and in Table 4.2a it varies between 41 and 80 cm⁻¹ with the exception of 19 and 9 cm⁻¹ for acetonitrile and divinylsulfone, respectively.

The frequency separation between CH=CH₂ twist and CH=CH₂ wag varies between 319 and 419 cm⁻¹ and with most compounds it varies between 319 and 344 cm⁻¹. These latter 1-alkenes are substituted in the 3-position with a methyl group (see Table 4.1). For the 1-alkenes not substituted in the 3-position, this frequency separation, varies between 370 and 419 cm⁻¹. In contrast, the frequency separation between CH=CH₂ twist and CH=CH₂ wag is 290 and 247 cm⁻¹ for acrylonitrile and divinylsulfone, respectively. Other compounds studied extend this frequency separation to include 339 to 437 cm⁻¹ for allyl naphthalene and allyl carbamate, respectively.

In the case of the frequency separation between $C=CH_2$ wag and $CH=CH_2$ wag it varies between 226 and 339 cm⁻¹ for 1-alkenes (see Table 4.1). The frequency separation for the 1-alkenes not substituted in the 3-position varies between 286 and 239 cm⁻¹, while for those substituted in the 3-position it varies between 226 and 257 cm⁻¹ (see Table 4.2a).

RAMAN DATA FOR X-CH=CH₂ COMPOUNDS

Table 4.2b contains Raman data and assignments for $X-CH=CH_2$ compounds and for cis- and trans-crotononitrile. The numbers in parentheses are for the relative Raman band intensities. They vary between 0 and 9, nine being the most intense band in the spectrum, and 0 being the least intense band in the spectrum. As these are whole numbers, it does not differentiate between the variances in intensity for bands whose intensities lie between any of the whole numbers (4).

In the case of cis- and trans-crotononitrile the ν C=C modes occur at 1639 and 1629 cm⁻¹, respectively, and the Raman band is stronger in the case of the trans isomer than for the cis isomer (the trans to cis ratio is 5:4). Thus, the polarization of the electron cloud during the ν C=C vibration is larger for the trans isomer than it is for the cis isomer.

Comparison of the Raman data for 1-octene and 1-decene shows that $\nu C = C$ occurs at $1642 \, \text{cm}^{-1}$; however, it is noted that the band intensity is 8 for 1-octene and 5 for 1-decene. The empirical structure for 1-octene is $CH_3 - (CH_2)_5 - CH = CH_2$ and for 1-decene is $CH_3 - (CH_2)_7 - CH = CH_2$. The CH_2 groups are in a 5:7 in this case while the band intensity is in an 8:5 for $\nu C = C$. This is what is expected, because the more CH_2 groups present in 1-alkenes the stronger the relative intensity for $\nu C = C$. Perhaps the ratios would be exactly 5:7 and 7:5 if the exact band intensities were measured.

CONJUGATED VINYL GROUPS

Vinyl-containing compound where the vinyl group is joined directly to a carbon atom of an aromatic ring exhibits vC=C in the region $1629-1633^{-1}$ (Table 4.2b) while 1-alkenes exhibit vC=C at higher frequency ($1641-1653 \, \mathrm{cm}^{-1}$). This decrease in frequency is attributed to resonance of the C=C group with the aromatic ring. Resonance weakens the strength of the C=C bond, which causes vC=C to vibrate at lower frequency.

Table 4.2b show that the lowest vC=C frequencies are for those compounds containing the Si-CH=CH₂ group (vC=C, 1590–1603 cm⁻¹). The Raman band intensities for vC=C are relatively in the weak-medium class. The vC=C frequency for vinyl phenyl sulfone is also low (1607 cm⁻¹) where the vinyl group is joined to sulfur (3).

ROTATIONAL CONFORMERS OR FERMI RESONANCE (F.R.)

Table 4.2b shows that the vinyl ethers of form $R-O-CH=CH_2$ exhibit a Raman band in the region $1626-1639\,\mathrm{cm}^{-1}$ and a Raman band in the region $1610-1620\,\mathrm{cm}^{-1}$. In the case of vinyl phenyl ether, Raman bands are observed at 1644 and $1593\,\mathrm{cm}^{-1}$. The $1593\,\mathrm{cm}^{-1}$ most likely results from an in-plane bend stretching mode of the phenyl group. In all cases of $R-O-CH=CH_2$, the Raman band in the region $1610-1620\,\mathrm{cm}^{-1}$ has more intensity than the

Raman band in the region $1626-1639\,\mathrm{cm}^{-1}$. In the IR, two (or sometimes three) bands are observed in the vC=C stretching region of the spectrum (5). An explanation is required to explain the existence of two bands in this region when only one $O-CH=CH_2$ group is present in these molecules. There are two possibilities for this observation (presuming the spectra represent pure materials), and these are for the presence of rotational conformers or from band splitting due to Fermi resonance (F.R.) of vC=C with the first overtone of a lower lying fundamental of the $CH=CH_2$ group. Criteria for F.R. to occur between a fundamental and a combination or overtone of a lower lying fundamental or two lower lying fundamentals are presented in what follows (4).

The combination or overtone must be of the same symmetry species as the vC=C vibration and the combination or overtone must involve molecular motion within the CH=CH₂ group. In addition, vC=C and the combination or overtone must occur at similar frequencies in order for a significant amount of FR. to occur between vC=C and its combination or overtone. It does not matter if the combination or overtone occurs above or below the unperturbed vC=C vibration. If the combination or overtone is identical in frequency to the unperturbed $\nu C = C$ frequency, both Raman or IR bands will have equal intensity. In other words, in this case both bands result from an equal contribution of vC=C and an equal amount of the combination or overtone. Because combination or overtones usually have intensities at least an order of magnitude less than most fundamental vibrations, an explanation is required for the often two strong bands or a strong and medium band in the event of F.R. This occurs because the fundamental contributes intensity to the combination or overtone, which causes the perturbed fundamental to be weaker than its unperturbed intensity and the perturbed combination or perturbed overtone to be more intense than its unperturbed intensity. It is usual practice to assign the most intense band of the Fermi doublet and the weaker band to the combination or overtone. However, the truth of the matter is that both bands are in FR., and both modes contribute to both the band frequencies and the intensities. The stronger of the bands has more contribution from the unperturbed fundamental and the weaker of the bands has the least contribution from the fundamental and the most contribution from the unperturbed combination or overtone.

It so happens that $C=CH_2$ wag for vinyl phenyl ether is assigned at $850 \, \mathrm{cm}^{-1}$, and its first overtone would be expected to occur above $1700 \, \mathrm{cm}^{-1}$. This is due to the fact that $C=CH_2$ wag exhibits negative anharmonicity (occurs at higher frequency than twice the fundamental frequency) (5). A very weak band is noted at $1710 \, \mathrm{cm}^{-1}$ in the case of vinyl phenyl ether, and it is reasonably assigned as $2(C=CH_2 \, \mathrm{wag})$. The Raman band at $1644 \, \mathrm{cm}^{-1}$ and the strong 1643 IR band are assigned to a $\nu C=C$ mode. A weak-medium IR band is noted at $1615 \, \mathrm{cm}^{-1}$. Obviously, from both the intensities and frequencies of these two IR bands neither fits the criteria for FR. On this basis we assign the $1643 \, \mathrm{cm}^{-1}$ band to $\nu C=C$ for the gauche conformer and the $1615 \, \mathrm{cm}^{-1}$ bond to the cis conformer for vinyl phenyl ether (5,6). Therefore, the vinyl alkyl ethers exhibit gauche $\nu C=C$ in the region $1636-1639 \, \mathrm{cm}^{-1}$ and cis $\nu C=C$ in the region $1610-1620 \, \mathrm{cm}^{-1}$.

Table 4.2c lists IR vapor-phase data for vinyl alkyl ether (3). The gauche vC=C conformer is assigned in the region 1630–1648 cm⁻¹ and the cis vC=C conformer in the region 1611–1628 cm⁻¹. Comparison of the vapor-phase IR data vs the Raman liquid phase data for vinyl isobutyl ether [gauche vC=C, vP(1645) vs liquid (1638 cm⁻¹) and cis vC=C, vP(1618 cm⁻¹ vs liquid (1612 cm⁻¹)], and for vinyl octadecyl ether [gauche vC=C, vP(1641 cm⁻¹)] cis vC=C, vP(1613 cm⁻¹) vs liquid (1610 cm⁻¹] indicates that both gauche vC=C and cis vC=C occur at higher frequency in the vapor-phase (3).

In the vapor-phase, vasym. $CH_2=$ for vinyl alkyl ethers occur in the region (3122–3135 cm⁻¹), vCH= occurs in the region (3060–3070 cm⁻¹), vsym. $CH_2=$ in the region (2984–3015 cm⁻¹), $CH_2=$ bend in the region (1400–1418 cm⁻¹), CH= rock in the region (1311–1321 cm⁻¹), $CH=CH_2$ twist in the region (961–965 cm⁻¹), $C=CH_2$ wag in the region (812–825 cm⁻¹), cis– $CH=CH_2$ wag in the region (687–701 cm⁻¹), vasym. C=C-O-C in the region (1203–1220 cm⁻¹), and vsym. C=C-O-C in the region (837–888 cm⁻¹).

1-ALKENE (CH=CH₂) CH AND CH₂ STRETCHING VIBRATIONS

The carbon hydrogen stretching frequencies for 1-alkenes all take place within the plane of the C=C group (Table 4.2b).

The Raman band in the region $3120-3122\,\mathrm{cm}^{-1}$ with the relative intensity between 0 and 2 is assigned to vasym. $CH_2=$, the Raman band in the region $3043-3046\,\mathrm{cm}^{-1}$ with the relative bond intensity between 1 and 4 is assigned to vCH=, the Raman band in the region $3022-3023\,\mathrm{cm}^{-1}$ with a relative intensity between 1 and 2 is assigned to vsym. $CH_2=$, and the Raman band in the region $1320-1329\,\mathrm{cm}^{-1}$ with a relative intensity between 2 and 9 is assigned CH= in-plane rocking. The CH= in-plane rocking mode for vinyl phenyl ether is assigned at $1311\,\mathrm{cm}^{-1}$.

C=CH₂ WAG FREQUENCIES VS (SIGMA ρ-SIGMA')

The term (sigma ρ -sigma') defines the inductive effect of G for G-CH=CH₂. Table 4.3 lists the C=CH₂ wag frequencies and the inductive value of group G. The positive values withdraw sigma electrons from the vinyl group, the negative values contribute sigma electrons to the vinyl group. A plot of the C=CH₂ wag frequencies vs $\sigma\rho$ - σ' shows a smooth relationship (5).

CH=CH₂ TWIST FREQUENCIES VS σ' AND pK_a OF G FOR G-CH₂CO₂H

Table 4.3a lists IR CS₂ solution and IR vapor-phase data for CH=CH₂ twist frequencies, pK_a of G-CH₂-CO₂H and σ' of G. Table 4.3b shows that in general the CH=CH₂ twist mode decreases in frequency as the pK_a value of G-CH₂CO₂H decreases in value. The σ' values of G do not correlate as well with CH=CH₂ twist as do the pK_a values. These parameters are useful in assigning CH=CH₂ twist vibrations in unknown materials containing this group (5). It should be noted than the vapor-phase CH=CH₂ twist frequencies occur at higher frequency than they do in CS₂ solution.

ALLYL HALIDES

Table 4.4 lists the IR data and assignments for the cis and gauche conformers of the allyl halides. In all cases, cis vC=C (1645–1652 cm⁻¹) occurs at higher frequency than gauche vC=C (1630–1643 cm⁻¹) (7). However, the frequency separation for gauche CH=CH₂ twist and gauche C=CH₂ wag is nearly constant (48.2–48.9 cm⁻¹). An interesting correlation exists for the frequency separation between gauche CH=CH₂ twist and gauche CH=CH₂ wag in that it increases in the order F(347 cm⁻¹), Cl(395.2 cm⁻¹), Br(446.2 cm⁻¹), and I(489.7 cm⁻¹). The frequency separation between gauche C=CH₂ wag and gauche CH=CH₂ wag increases in the same order: F(292.7 cm⁻¹), Cl(347 cm⁻¹), Br(397.3 cm⁻¹), and I(440.8 cm⁻¹). The gauche CH=CH₂ wag frequency is the most affected progressing in the order F through I for these allyl halides, because the frequency separation between F and Cl is 52.3 cm⁻¹, Cl and Br is 52.3 cm⁻¹, and Br and I is 46.5 cm⁻¹. In this case the inductive effect of the halogen atoms decreases in the order F to I while the mass increases in the same order. The C-C= bond strength decreases in the order F to I due to the decreasing inductive effect of the halogen atoms, which causes CH=CH₂ wag to occur at a lower frequency because the C-C= bond is more easily bent during this complex CH=CH₂ wag fundamental.

CYCLOALKENES AND CYCLOALKADIENES

Table 4.5 lists IR data and C=C or $(C=C)_2$ stretching assignments for cyclopentene, cyclohexene, 1,4-cyclohexadiene, and 1,3-cyclohexadiene in mole % $CHCl_3/CCl_4$ solutions (8). Only three data points are listed in the table, but 20 data points were taken in the original experiment. Figure 4.1 shows the plot of the $\nu C=C$ or $\nu (C=C)_2$ modes vs mole % $CDCl_3/or$ $CHCl_3/solvent$ system.

The ν C=C mode for cyclopentene (1613.9 to 1611.2 cm⁻¹) and cyclohexene (1652.8 to 1650.9) decreases in frequency as the mole % CHCl₃ increases. These data suggest that the strength of the intermolecular proton bond formed between the C=C π system and the H or D atom of CHCl₃ or CDCl₃ increases as the mole % CHCl₃ or CDCl₃ increases. In addition the slopes of the plots for cyclopentene and cyclohexene are essentially identical. The relatively large frequency difference between that for cyclopentene and cyclohexene does not represent the basicity of the C=C bond. The major factor in determining the ν C=C frequency is the bond angles of the carbon atoms joined to cis C=C (9). The ν C=C frequency changes randomly in the order cyclopropene (1656 cm⁻¹), cyclobutene (1566 cm⁻¹), cyclopentene (1613.9 cm⁻¹), and cyclohexene (1652.8 cm⁻¹) (9,10).

Both 1,4- and 1,3-cyclohexadienes contain two C=C double bonds, and in each case the C=C bonds couple and split into out-of-phase $(C=C)_2$ stretching and in-phase stretching (8).

In the case of 1,3-cyclohexadiene $v_{i\rho}(C=C)_2$ occurs at 1577.9 cm⁻¹ and $v_{o\rho}(C=O)_2$ at 1603.3 cm⁻¹ in the neat phase, while in solution with CDCl₃ $v_{i\rho}(C=C)_2$ occurs at 1577.1 cm⁻¹ and $v_{o\rho}(C=C)_2$ occurs at 1608 cm⁻¹. In this case, $v_{i\rho}(C=C)_2$ decreases in frequency by 0.8 cm⁻¹ while $v_{o\rho}(C=C)_2$ increases in frequency by 4.7 cm⁻¹ in going from the neat phase to solution in CDCl₃. In the case of 1,4-cyclohexadiene, the $v_{i\rho}(C=C)_2$ frequency occurs at 1672.3 cm⁻¹ and $v_{o\rho}(C=C)_2$ occurs at 1676.8 cm⁻¹ in the neat phase, while in CHCl₃ solution

 $v_{i\rho}$ occurs at $1676.8\,\mathrm{cm^{-1}}$ and $v_{o\rho}(C=C)_2$ occurs at $1637.9\,\mathrm{cm^{-1}}$. In this case, it is the $v_{i\rho}(C=C)_2$ frequency that increases $4.5\,\mathrm{cm^{-1}}$ while the $v_{o\rho}(C=C)$ frequency decreases $1.3\,\mathrm{cm^{-1}}$. However, Figure 4.1 shows that the higher frequency band in each set increases in frequency while the lower frequency band in each set decreases in frequency going from the neat phase to decreasing concentration in CHCl₃ or CDCl₃ solutions (8).

In the case of 1,3-cyclohexadiene, the two C=C groups are conjugated CH=CH-CH=CH₂ while in the case of 1,4-cyclohexadiene the two C=C groups are not conjugated. For the sake of comparison, the $v_{i\rho}(C=C)_2$ and $v_{o\rho}(C=C)_2$ modes for s-trans-butadiene in the liquid phase occur at 1638 and 1592 cm⁻¹, respectively (10). The compound, cis 2-tert-butylbutadiene, exhibits $v_{i\rho}(C=C)_2$ and $v_{o\rho}(C=C)_2$ at 1610 and 1645 cm⁻¹, respectively. Therefore, the $v_{i\rho}(C=C)_2$ and $v_{o\rho}(C=C)_2$ frequency order is the same for 1,3-cyclohexadiene and cis tert-butylbutadiene. In this case, the two C=C groups have to be in a cis-cis configuration due to ring restraint, and this is in good agreement with the cis configuration assignment for cis-tert-butylbutadiene.

Table 4.5a lists IR vapor-phase data for cis-cycloalkene derivatives. Cyclopentene exhibits $\nu C = C$ at $1621 \, \mathrm{cm}^{-1}$ in the vapor phase and $1614 \, \mathrm{cm}^{-1}$ in CCl₄ solution, and cyclohexene exhibits $\nu C = C$ at $1651 \, \mathrm{cm}^{-1}$ in the vapor phase and $1653 \, \mathrm{cm}^{-1}$ in CCl₄ solution. In this case the $\nu C = C$ mode for the solution-phase data read directly from the computer are considered more accurate than the manually read vapor-phase data. If these data are valid, the correlation of $\nu C = C$ occurring at higher frequency in the vapor than in solution is an exception in the case of cyclohexene.

A study of Table 4.5a shows that vC=C for the 5-membered rings occur at the lower frequency than those for the 6-membered rings as already discussed here. Comparison of the vC=C vibrations for 2-cyclopentene-1-one and 2-cyclohexene-1-one ($1600\,\mathrm{cm^{-1}}$ vs $1624\,\mathrm{cm^{-1}}$) shows that vC=C for the 5-membered ring still occurs at lower frequency than it does for the 6-membered ring. However, both vC=C modes are lower in frequency than for cyclopentene (lower by $21\,\mathrm{cm^{-1}}$) and for cyclohexene (lower by $27\,\mathrm{cm^{-1}}$). The reason for this is that the C=C and C=O bonds are conjugated, which causes both bonds to become weaker and the connecting C-C bond to become stronger. Therefore, vC=O also occurs at lower frequency in the case of 2-cyclopentene-1-one ($1745\,\mathrm{cm^{-1}}$) vs ($1765\,\mathrm{cm^{-1}}$) for cyclopentanone in the vapor phase and 2-cyclohexene-1-one ($1710\,\mathrm{cm^{-1}}$) vs ($1732\,\mathrm{cm^{-1}}$) for cyclohexanone in the vapor phase. In the vC=O cases, they are lower by 20 and 22 cm⁻¹ for the 5- and 6-membered rings, respectively. Therefore, conjugation of C=C with C=O decreases both modes in the same order of magnitude.

An IR band in the region 699–750 cm⁻¹ is assigned to cis CH=CH wag in the six cis compounds studied. Another band is noted in the region 635–658 cm⁻¹. It is not certain whether these bands result from a different vibrational mode or from cis CH=CH wag of another conformer.

ALKYL ACRYLATES AND ALKYL METHACRYLATES

It is relatively easy to distinguish between alkyl acrylates and alkyl methacrylates by studying the ν C=C and ν C=O frequencies. The acrylates exhibit two bands in the ν C=C region of the spectrum, and it has been suggested that they result from cis and trans conformers (10,11). Table 4.6 lists IR data and assignments for alkyl acrylates in CHCl₃ and CCl₄ solutions (11). In CCl₄

solution, cis vC=C is assigned in the region 1619.2-1620.4 cm⁻¹, and in CHCl₃ solution, in the region 1618.5-1619.9 cm⁻¹. In CCl₄ solution, trans vC=C occurs in the region 1635.3-1637.2 cm⁻¹, and in CHCl₃ solution in the region 1635.1-1636.6 cm⁻¹. In all cases cis vC=C occurs at lower frequency than trans vC=C, and both cis and trans vC=C occur at lower frequency in CHCl₃ than in CCl₄ solution.

Table 4.6a lists IR data and assignments for alkyl methacrylates in CCl₄ and CHCl₃ solution (11). In CCl₄ solution vC=C for the alkyl methacrylates occurs in the region 1635.7–1637.3 cm⁻¹, in CHCl₃ solution, vC=C occurs in the region 1635.7–1637.3 cm⁻¹, and in CHCl₃ solution, vC=C occurs in the region 1635.8–1637.3 cm⁻¹. In all cases vC=C occurs at lower frequency in CHCl₃ than in CCl₄ solution by 0.8 to 2.3 cm⁻¹.

The vC=O frequencies for the alkyl methacrylates occur in the region 1719.5–1726 cm⁻¹ (in CCl₄) and 1709.5–1718 cm⁻¹ (in CHCl₃). Thus, vC=O occurs at lower frequency by 8 to 10.6 cm⁻¹ in going from CCl₄ to CHCl₃ solution. The vC=O frequencies for alkyl acrylates occur in the region 1722.9–1734.1 cm⁻¹ (in CCl₄) and in the region 1713.8–1724.5 cm⁻¹ (in CHCl₃). Thus, the vC=O occurs at lower frequency by 3.4–10.8 cm⁻¹ in going from CCl₄ to CHCl₃ solution (11). In the vapor phase vC=O for methyl methacrylate and methyl acrylate occur at 1741 and 1751 cm⁻¹, respectively (2). These data show that the vC=O frequencies occur at higher frequency in the vapor phase than in solution.

It should be noted from the preceding vC=O for the methacrylates occur at lower frequency than for the acrylates. This shift to lower frequency is attributed to the inductive contribution of the CH₃ group to the carbonyl group, which weakens the C=O bond.

It should be also noted that the alkyl group also causes a shift in the ν C=O frequency. For example, in the case of alkyl acrylates in CCl₄ solution, ν C=O occurs at 1734.1, 1727.3, 1727.1, and 1722.9 cm⁻¹ for the methyl, butyl, 2-ethylhexyl, and tert-butyl analogs, respectively. In the case of the same series of alkyl methacrylates in CCl₄ solution, ν C=O occurs at 1718, 1710.5, and 1709.5, respectively. These ν C=O frequency decreases also are attributed to the increased inductive contribution of the alkyl group progressing in the series methyl to tert-butyl.

In the case of alkyl acrylates, the CH_2 = bend occurs in the region 1401.6–1407.2 cm⁻¹ (in CCl_4) and in the region 1404–1410.3 cm⁻¹ (in $CHCl_3$). Thus CH_2 = bend increases in frequency by 2.4 to 3.4 cm⁻¹ on going from CCl_4 to $CHCl_3$ solution.

Alkyl acrylates exhibit CH_2 =CH twist in the region 982.6–984.9 cm⁻¹ (in CCl_4) and 983.4–985 cm⁻¹ (in $CHCl_3$). The C= CH_2 wag frequencies occur in the region 966.3–968.4 cm⁻¹ (in CCl_4) and 966.5–970.3 cm⁻¹ (in $CHCl_3$).

TRANS-ALKENES

Table 4.7 lists IR vapor-phase frequency data for trans-alkenes and compounds containing a trans carbon-carbon double bond (3). Compounds containing a trans carbon-carbon double bond have the following configuration:

When the R groups or X groups are identical the vC=C is not allowed in the IR, because these compounds have a center of symmetry. Therefore, there is no dipole moment change during a cycle of vC=C. However, in this case the vC=C mode is Raman active. However, even in the case where the trans-alkenes do not have a center of symmetry, the dipole moment change during a cycle of trans vC=C is small, and the IR band is very weak. Raman spectroscopy is required to readily detect the C=C in trans-alkenes.

Alkyl crotonates exist in a trans configuration, and in the vapor phase trans vC=C occurs near $1664 \,\mathrm{cm}^{-1}$. A weak band at $1649 \,\mathrm{cm}^{-1}$ and a weak-medium band is noted at $1621 \,\mathrm{cm}^{-1}$ in the vapor-phase spectrum of cinnamonitrile, suggesting that both the cis and trans isomers are present.

The trans CH=CH twist is assigned in the region $961-972\,\mathrm{cm^{-1}}$ for most of these compounds included in Table 4.7. Halogen atoms joined to C=C lowers the trans CH=CH twist mode. For example, it occurs at $897\,\mathrm{cm^{-1}}$ for trans-1,2-dichloroethylene and at $930\,\mathrm{cm^{-1}}$ for 1,3-dichloropropene; Table 4.8 lists data for a variety of trans disubstituted ethylenes in CS₂ solution in most cases (5). The trans CH=CH twist mode occurs in the region $896-975\,\mathrm{cm^{-1}}$.

ALKYLCINNAMATES

Table 4.9 lists IR vapor-phase data for alkyl cinnamates (3). The vC=C vibration occurs in the region $1640-1642\,\mathrm{cm}^{-1}$ in the vapor-phase, and it has medium band intensity. The CH=CH twist occurs in the region $972-982\,\mathrm{cm}^{-1}$, and its intensity is always less than that exhibited by vC=C as demonstrated by the absorbance ratio [(A)HC-CH twist]/[(A)vC=C] in the range 0.42-0.67. The vC=O mode for these alkyl cinnamates will be discussed in Chapter 15.

CINNAMYL ESTERS

Table 4.10 lists IR vapor-phase data for cinnamyl esters (3). In this case, vC=C occurs in the region $1652-1660\,\mathrm{cm^{-1}}$, and it occurs at higher frequency than in the case of alkyl cinnamates (compare with data in Table 4.10). In the case of alkyl cinnamate, $\phi-CH=CH-C(=O)-O-R$, the C=O and C=C groups are conjugated causing both vC=C and vC=O to occur at lower frequency than those for cinnamyl esters, $\phi-CH=CH-CH_2-O-(=O)-R$. In the case of the cinnamyl esters the absorbance ratio [(A)CH=CH/(A)vC=C] is in the range 6.9–20.5, and this is the reverse of that exhibited by the alkyl cinnamates. Chapter 15 discusses vC=O for these cinnamyl esters.

Table 4.10 also lists vibrational data and assignment for the R-C=O-O- portion of these esters.

1,1-DISUBSTITUTED ETHYLENES

Table 4.11 lists IR data for $C=CH_2$ wag and its first overtone for 1,1-disubstituted ethylenes (5). The fundamental is recorded in CS_2 solution and its overtone in CCl_4 solution. The $C=CH_2$ wag mode occurs in the region 711-1004 cm⁻¹, and its first overtone occurs in the region 1400-2020 cm⁻¹. The $C=CH_2$ wag frequency exhibits negative anharmonicity because the first overtone occurs at more than twice the $C=CH_2$ wag frequency.

Infrared and Raman spectra for 1-bromo-1-chloroethylene are shown in Figure 4.2, and these data were used to assign its 12 fundamental vibrations (13). Comparison of these data with those for 1,1-dichloroethylene (14,15) and 1,1-dibromoethylene (16) show that 9 fundamentals decrease in the order Cl_2 , ClBr, and Br_2 , and this trend is often observed in other halogenated analogs (see Table 4.11a).

Table 4.12 lists Raman data and assignments for the vinyl esters of carboxylic acids in the neat phase (4). With the exception of vinyl cinnamate (ν C=C at $1636\,\mathrm{cm}^{-1}$) all of the other vinyl esters exhibit ν C=C in the region 1644– $1648\,\mathrm{cm}^{-1}$. In all cases where the aliphatic group of the ester is saturated the ν C=C mode has much higher relative intensity (RI) than the (RI) for ν C=C. The ratio [(RI) ν C=C] is in the range 0.11–0.29. In cases where the carboxylate portion of the ester is conjugated with the C=C group this RI ratio varies from 0.22 to 2.

The frequency separation between vC=C and vC=O varies between 98 and $110 \, \text{cm}^{-1}$ for compounds of form $R-C(=O)-O-CH=CH_2$, and between 84 and $92 \, \text{cm}^{-1}$ in cases where the C=O is conjugated with C=C or an unsaturated ring. This difference in the lower frequency separation is attributed to resonance between the C=C and C=O groups (C=C-C=O).

STYRENES AND α-METHYL STYRENES

Table 4.13 lists Raman data and assignments for styrene, α -methyl styrene monomers in the condemned phase (4). The ν C=C vibration occurs in the region $1624-1635\,\mathrm{cm}^{-1}$. The α -methylstyrene (ν C=C, $1631\,\mathrm{cm}^{-1}$) and 1,3-di(α -methyl) styrene ($1631\,\mathrm{cm}^{-1}$) exhibit ν C=C frequencies comparable to styrene. However, ν C=C of these compounds occur lower in frequency than for 1-octene ($1642\,\mathrm{cm}^{-1}$), and this is the result of conjugation between ν C=C and the phenyl group. Other Raman bands listed in this table are assigned to in-plane phenyl ring vibrations.

Table 4.14 lists IR group frequency data and assignments for styrene and ring-substituted styrenes (12). Only data for styrenes that had corresponding ring-substituted phenols whose pK_a values were included were taken from Reference 12. Figure 4.3 gives the $C=CH_2$ wag frequencies plotted against the pK_a value of the corresponding ring-substituted phenol. Examination of Fig. 4.3 shows that styrenes substituted with atoms or groups in at least the 2,6-positions correlate in a manner different from styrenes not substituted in the 2,6-positions. The pK_a values are affected by contributions from both inductive and resonance effects of substituent atoms or groups joined to the phenyl ring. In the case of 2,6-disubstituted styrenes, the vinyl and 2,6-disubstituted phenyl group are not coplanar; therefore it is not possible for the resonance effects of the 2,6-atoms or groups to affect the $C=CH_2$ wag frequencies. Thus, it is the

inductive effects of the atoms or groups substituted in the 2,6-positions that are affecting the $C=CH_2$ wag frequencies (assuming that the effects of intramolecular forces between atoms or groups in the 2,6-positions and the vinyl group are negligible). The $C=CH_2$ wag frequencies are affected by both inductive and resonance effects in cases where styrenes are not substituted in the 2,6-positions.

Figure 4.4 is a plot of the frequency separation between CH=CH₂ twist and C=CH₂ wag for styrene and ring-substituted styrenes vs the same pK_a values. Again, separate correlations exist for the planar and nonplanar styrenes with the exception of 2,4,6-trimethyl styrene, where the frequency separation between CH=CH₂ twist and C=CH₂ wag is less than for the corresponding 2,6-disubstituted phenols whose pK_a values are lower than \sim 7.2.

Table 4.15 lists IR data for α -halostyrenes, α -alkylstyrenes, and related compounds (12). Figure 4.5 shows a plot of the CH₂ wag frequencies for styrene and ring-substituted styrenes vs the C=CH₂ wag frequency for α -methylstyrene and correspondingly ring-substituted α -methylstyrenes. This plot suggests that the factors affecting C=CH₂ wag for both styrenes and α -methylstyrenes are comparable. However, the CH₂ wag frequencies for α -methyl styrene occur at lower frequency than the correspondingly substituted styrenes by 10–18 cm⁻¹. The α -methylstyrenes are not planar for those substituted with Cl or CH₃ in the 2-position, while for styrenes it takes substitution in the 2,6-positions in order to sterically prevent the vinyl and phenyl groups from being coplanar.

BUTADIENES, PROPADIENES, CONJUGATED CYCLIC DIENES

Table 4.16 lists IR vapor-phase data and assignments for butadienes and propadienes (3,17). Compounds containing the 1,3-butadiene structure are of form C=C-C=C, and the two C=C bonds couple during their $v(C=C)_2$ vibrations into in-phase $v(C=C)_2$ and out-of-phase $v(C=C)_2$. In the cases of 1,3-butadiene and 2-methyl-1,3-butadiene ip $v(C=C)_2$ occur at 1684 and 1649 cm⁻¹, respectively, while op $v(C=C)_2$ occur at 1594 and 1602 cm⁻¹, respectively. Other vibrational assignments are presented for these two molecules.

Propadienes have the basic skeletal structure C=C=C, and exhibit ip $(C=C)_2$ and op $\nu(C=C)_2$ vibrational mode. In the case of propadiene, the ip $\nu(C=C)_2$ is not IR active due to its molecular symmetry. With substitution of an atom or group in the 1-position of propadiene, these molecules have only a plane of symmetry, and ip $\nu(C=C)$ occurs in their region 1072–1101 cm⁻¹ progressing in frequency in the order CH₃, I, Br, and Cl. The op $\nu(C=C)$ mode is allowed in IR for propadiene, and its monosubstituted derivatives, and it occurs in the region 1953–1663 cm⁻¹ (18).

The compound 2,5-norbornadiene has the following basic structure:

In this case, the C=C bonds are each in a fused 5-membered ring and they are conjugated. Therefore, 2,5-norbornadiene and related compounds exhibit ip and op $v(C=C)_2$ modes. The compounds 2,5- norbornadiene and 2,5-norbornadiene-yl acetate exhibit ip $v(C=C)_2$ at 1639 and 1651 cm⁻¹, respectively, and op v(C=C) at 1546 and 1543 cm⁻¹, respectively. In the case of

1,3-cyclohexadiene the ring is larger than in the case of the 2,5-norbornadienes. The 6-membered ring is not fused in this case, but the two C=C groups are conjugated. The ip $v(C=C)_2$ and op modes are assigned at 1600 and 1701 cm⁻¹, respectively. The order of ip and op $v(C=C)_2$ is reversed when comparing it to those for the 2,5-norbornadienes.

The ip and op cis (CH=CH)₂ wag occur at 748 and 658 cm⁻¹ for 1,3-cyclohexadiene, respectively. In the case of the 1,5-norbornadienes ip and op cis (CH=CH) wag occur at 654 and 728–735 cm⁻¹, respectively. Again the ip and op cis (CH=CH wag) mode assignments are in the reverse order for these two sets of compounds.

ALKYL GROUPS OF 1-ALKENES AND VINYL ALKYL ETHERS

Table 4.17 contains the IR vapor-phase data and assignments for the carbon hydrogen vibrations for the 1-alkenes (also see Table 4.1). These assignments are given here rather than in Chapter 3 for the convenience of those interested in the vibrational spectra of 1-alkenes.

Table 4.18 contains the IR vapor-phase data and assignments for the alkyl group of vinyl alkyl ethers (also see Table 4.2b). The assignments are placed here rather than in Chapter 3 for the convenience of those interested in the vibrational spectra of vinyl alkyl ethers.

REFERENCES

- 1. Nyquist, R. A. (1989). The Infrared Spectra, Building Blocks of Polymers, Philadelphia: Sadtler Research Laboratories. A Division of Bio-Rad.
- 2. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, Philadelphia: Sadlter Research Laboratories, A Division of Bio-Rad.
- 3. Nyquist, R. A. (ed.) (1984). A Collection of 9200 Spectra, Philadelphia: Sadtler Standard Infrared Vapor Phase Spectra, Sadtler Research Laboratories, A Division of Bio-Rad.
- 4. (1987). Sadlter Standard Raman Spectra, Philadelphia: Sadtler Research Laboratories, A Division of Bio-Rad.
- 5. Potts, W. J. and Nyquist, R. A. (1959). Spectrochim. Acta, 15, 679.
- 6. Owen, N. L. and Sheppard, N. (1964). Trans, Faraday Soc., 60, 634.
- 7. McLachlan, R. D. and Nyquist, R. A. (1968). Spectrochim. Acta, 24A, 103.
- 8. Nyquist, R. A. (1992). Appl. Spectrosc., 47, 560.
- 9. Colthup, N. B., Daly, L. H., and Wiberley, S. E. (1990). Introduction to Infrared and Raman Spectroscopy, 3rd ed., New York: Academic Press.
- 10. Lin-Vien, D., Colthup, N. B., Fateley, W. G., and Grasselli, J. G. (1991). The Handbook of Infrared and Raman Frequencies of Organic Molecules, Boston: Academic Press, Inc.
- 11. Nyquist, R. A. and Streck, R. (1994). Vib. Spectrosc., 8, 71.
- 12. Nyquist, R. A. (1986). Appl. Spectrosc., 40, 196.
- 13. Nyquist, R. A. and Thompson, J. W. (1977). Spectrochim. Acta, 33A, 63.
- 14. Winter, R. (1970). Z. Naturforsch., 25A, 1912.
- 15. Joyner, P. and Slockler, G. (1952). J. Chem. Phys., 20, 302.
- 16. Scherer, J. R. and Overend, J. (1960). J. Chem. Phys., 32, 1720.
- 17. Nyquist, R. A., Lo, Y.-S., and Evans, J. C. (1964). Spectrochim. Acta, 20, 619.
- 18. Nyquist, R. A., Lo, Y.-S., and Evans, J. C. (1964). Spectrochim. Acta, 20, 619.

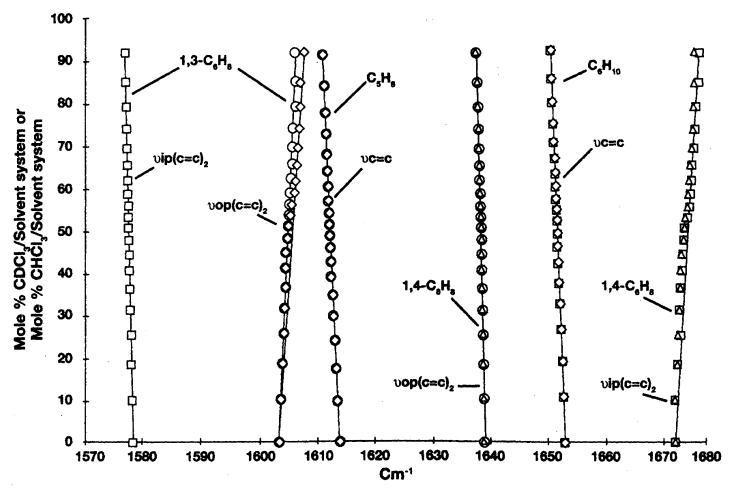
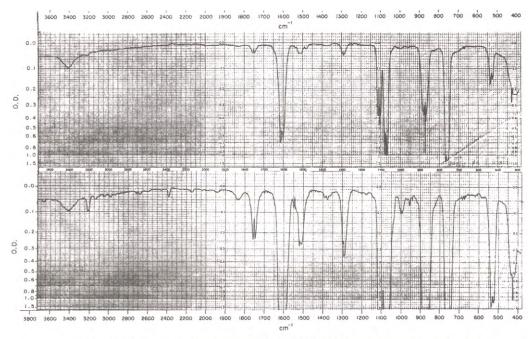
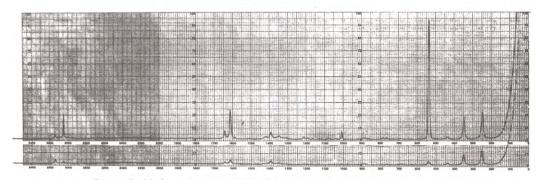




FIGURE 4.1 Shows plots of the vC=C or $v(C=C)_2$ modes for 1,3-cyclohexadienes, 1,4-cyclohexadienes, cyclopentene, and cyclohexene vs mole % CDCl₃/or CHCl₃/solvent system.

. Upper: Infrared vapor-phase spectrum of CH_2 =CBrCl in the region 3800–400 cm $^{-1}$ using a 10-cm KBr cell. The vapor pressure is 10 mm Hg. Lower: Same as upper spectrum except the vapor pressure is 100 mm Hg.

Raman liquid-phase spectrum of CH $_2$ CBrCl. Upper: Parallel polarization. Lower: Perpendicular polarization.

FIGURE 4.2 Infrared and Raman spectra for 1-bromo-1-chloroethylene.

Vinyl CH₂ Wag 940 Styrene Substituted With Atoms Or Groups In At Least The 2,6-Positions. 935 Styrene Substituted With Atoms Or Groups In At Least The 2-Position, But Not In The 6-Position. 930 Styrene Or Substituted Styrene Not Substituted In the 2—and 6—Positions. Vinyl Group 925 Non-Coplanar With Phenyl Group cm⁻¹ 920 915 910 Vinyl Group 906 Coplanar With henyl Group 900 10

Vinyl CH₂ Wag Frequencies For Styrene And Substituted Styrenes Vs. pK_a Values For Phenol And Corresponding Substituted Phenols.

FIGURE 4.3 Plots of the $C=CH_2$ wag frequencies for styrenes and ring substituted styrenes vs the pK_a values for correspondingly substituted phenols.

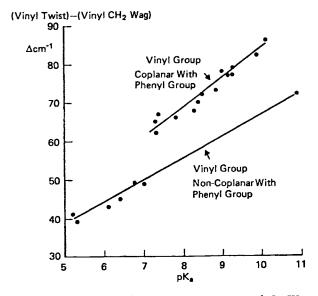


FIGURE 4.4 A plot of the frequency separation between $CH=CH_2$ twist and $C=CH_2$ wag for styrene and ring-substituted styrenes.

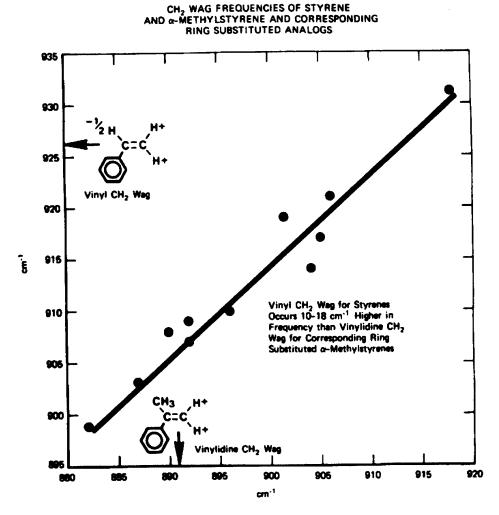


FIGURE 4.5 A plot of the $C=CH_2$ wag frequencies for styrene and ring-substituted styrenes vs the $C=CH_2$ wag frequency for α -methyl- α -methylstyrenes.

TABLE 4.1 IR vapor-phase data and assignments for 1-alkenes

Compound	Empirical structure	2(CH ₂ wag)	C=C str.	CH=CH ₂ twist	C=CH ₂ wag	CH=CH ₂ wag	[(A)CH=CH ₂ twist] /[(A)C=CH ₂ wag]	[CH=CH ₂ twist]- [C=CH ₂ wag]	[CH=CH ₂ twist]- [CH=CH ₂ wag]
Propene	CH ₃ CH=CH ₂	1830 (0.122)	1650 (0.123)	991 (0.245)	911 (1.250)	572 (0.100)		80	
1-Butene	CH ₃ CH ₂ CH=CH ₂	1834 (0.029)	1648 (0.118)	995 (0.150)	911 (0.440)	625 (0.058)	0.341		419
4-Methyl-1-pentene	(CH ₃) ₂ CHCH ₂ CH=CH ₃	1835 (0.040)	1645 (0.130)	998 (0.161)	918 (0.350)	627 (0.050)	0.341	8 4 80	370
3-Methyl-1-butene	(CH ₃) ₂ CHCH=CH ₂	1830 (0.028)	1643 (0.070)	997 (0.140)	910 (0.350)	660 (0.059)	0.491*	87*	371
3-Methyl-1-pentene	CH ₃ CH ₂ (CH ₃)CHCH=CH ₂ *	1829 (0.040)	1641 (0.140)	1000 (0.230)	914 (0.389)	671 (0.071)	0.591*		337*
3,4-Dimethyl-1-pentene	(CH ₃) ₂ CH(CH ₃)CHCH=CH ₂ *	1831 (0.021)	1643 (0.068)	1000 (0.110)	916 (0.245)	671 (0.071)	0.391** 0.4 4 9*	86*	329*
3,7-Dimethyl-1-octene	(CH ₃) ₂ CH(CH ₂) ₃	1830 (0.020)	1643 (0.080)	998 (0.095)	914 (0.225)	678 (0.040)	0.422	84*	329*
-,	(CH ₃)CHCH=CH ₂	1030 (0.020)	1013 (0.000)	730 (0.033)	917 (0.223)	076 (0.040)	0.422	84	320
3,3-Dimethyl-1-butene	(CH ₃) ₃ CH=CH ₂	1833 (0.020)	1648 (0.091)	1001 (0.096)	915 (0.150)	682 (0.061)	0.641	06	210
3,3-Dimethyl-1-pentene	CH ₃ CH ₂ (CH ₃) ₂ CCH=CH ₂	1831 (0.020)	1648 (0.080)	1008 (0.117)	915 (0.130)	681 (0.050)	0.433	86	319
3,3-Dimethyl-1-hexene	CH ₃ (CH ₂) ₂ (CH ₃) ₂ CH=CH ₂	1830 (0.022)	1643 (0.061)	1005 (0.090)	911 (0.200)	685 (0.050)	0.451	93	327
Vinylcyclohexane	C ₅ H ₁₀ CHCH=CH ₂ *	1830 (0.020)	1641 (0.071)	997 (0.087)	911 (0.200)	653 (0.025)	0.431	94 86*	320
	-5		10/1 (0.0/1)	771 (0.001)	311 (U.111)	033 (0.023)	0.017	86*	344*
							[(A)CH=CH ₂ twist]	[(A)C=CH ₂ wag]	[C=CH2 wag]-
							/[(A)CH=CH ₂ wag]	/[(A)CH=CH ₂ wag]	[CH=CH ₂ wag]
Propene	CH ₃ C=CH ₂						2.45	12.5	339
l-Butene	CH ₃ CH ₂ CH=CH ₂						2.59	7.59	286
4-Methyl-1-pentene	(CH ₃) ₃ CHCH ₂ CH=CH ₂						3.22	7.01	291
3-Methyl-1-butane	(CH3)2CHC=CH2*						2.37*	4.83*	250*
3-Methyl-1-pentene	$CH_3CH_2(CH_3)CHC=CH_2*$						3.24*	548*	243*
3,4-Dimethyl-1-pentene	(CH3)2(CH3)CHCH=CH2*						3.14*	4.83*	245*
3,7-Dimethyl-1-octene	(CH3)2CH(CH2)3(CH3)CHCH=CH2						2.38	5.63	236
3,3-Dimethyl-1-butene	(CH ₃) ₃ CCH=CH ₂						1.57	7.01	234
3,3-Dimethyl-1-pentene	CH ₃ CH ₂ (CH ₃) ₂ CH=CH ₂						2.34	5.41	234
2.2.20	CH ₃ (CH ₂) ₂ (CH ₃) ₂ CH=CH ₂						1.8	4.01	
3,3-Dimethyl-1-hexene	CH3(CH2)2(CH3)2CH=CH2								226

^{*} New data assigned from Sadtler Collection of IR Vapor Phase Spectra.

TABLE 4.2 The IR vapor-phase frequencies and assignments for the X-CH=CH₂ group

Compounds	$a.CH_2 = str.$	$s.CH_2 = str.$	CH ₂ = bend	2(C=CH ₂ wag)	C=C str.	CH=CH ₂ twist	C=CH ₂ wag	CH=CH ₂ wag
	3135 (0.060)	3055 (0.060)	1425 (0.131)	1918 (0.112)	1626 (0.101)			700 (0.119)
Acrylonitrile	3122 (0.040)	3045 (0.038)	1411 (0.090)	1911 (0.089)	1613 (0.070)	970 (1.250)	951 (1.250)	680 (0.320)
	3015 (0.059)	3035 (0.040)	1401 (0.124)	1898 (0.101)	1601 (0.078)			659 (0.148)
Divinylsulfone	3110 (0.040)	3035 (0.060)	1389 (0.250)	1942 (0.032)	1620 (0.020)	962 (0.420)	971 (0.565)	715 (0.270)
					1660 (0.062)			
Allyl alcohol	3082 (0.265)	3002 (0.300)	1415 (0.340)	1855 (0.059)	1652 (0.070)	985 (0.850)	918 (0.875)	552 (0.095)
					1645 (0.077)	[C-O str.]		
Allyl amine	3082 (0.211)	3002 (0.221)	1414 (0.135)	1841 (0.045)	masked	997 (0.270)	919 (0.620)	551 (0.085)
Allyl cyanide	3099 (0.210)	3040 (0.130)	1421 (0.375)	1870 (0.051)	1650 (0.210)	989 (0.582)	931 (1.250)	558 (0.250)
3-Butenoic acid	3094 (0.064)	2995 (0.154)	1420 (0.080)		1653 (0.106)	970 (0.110)	929 (0.150)	555 (0.201)
Allyl carbamate		3030 (0.030)			1650 (0.052)	992 (0.100)	928 (0.151)	555 (0.079)
Allyl formate	3100 (0.071)		1430 (0.080)	1865 (0.028)	1643 (0.045)	990 (0.151)	934 (0.268)	638 (0.081)
Allyl benzene				1835 (0.061)	1641 (0.239)	991 (0.290)	911 (0.835)	648 (0.211)
Allyl naphthalene				1835 (0.035)	1641 (0.110)	994 (0.100)	915 (0.225)	655 (0.050)
	[CN str.]	[a.CH ₂ str.]						
Acrylonitrile	2240 (0.018)	2942 (0.039)						
	[a.SO ₂ str.]	[s.SO ₂ str.]	[a.CSC str.]	[s.CSC str.]	[SO ₂ bend]	[SO ₂ wag]		
Divinylsulfone	1354 (1.250)	1149 (0.970)	770 (1.040)	715 (0.270)	589 (0.145)	485 (0.185)		
	H- O str.	C-O str.						
Allyl alcohol	3662 (0.285)	1021 (1.250)						
	[a.NH ₂ str.]	[s.NH ₂ str.]	[NH ₂ bend]	[NH ₂ wag]	[a.CH ₂ str.]	$[s.CH_2 str.]$	[CH ₂ bend]	
Allyl amine	3420 (0.005)	3355 (0.011)	1635 (0.230)	780 (1.220)	2920 (0.340)	2862 (0.300)	1438 (0.122)	
	[CN str.]	[a.CH ₂ str.]	[s.CH ₂ str.]	[CH ₂ bend]	[CH= rock]			
Allyl cyanide	2262 (0.021)	2941 (0.133)	2840 (0.020)	1439 (0.285)	1290 (0.069)			
	[H-O str.]	[C=O str.]	[COH bend]	[gamma C=O]	$[a.CH_2 str.]$			
3-Butenoic acid		1785 (1.040)		640 (0.270)	2940 (0.044)			
	[a.NH ₂ str.]	$[s.NH_2 str.]$	[C=O str.]	[NH ₂ bend]	[a.NCO str.]	[s.NCO str.]	[C-O str.]	
Allyl carbamate		3462 (0.119)		1589 (0.410)	1322 (1.245)	1108 (0.300)	1058 (0.481)	
	[C-O str.]	[C-O str.]	[a.CH ₂ str.]					
Allyl formate		1168 (1.250)						
	[a.CH ₂ str.]	[s.CH ₂ str.]	[CH ₂ bend]	(i.p. o.p. 5H	[o.p. Ring			
				Ring def.]	def.]			
Allyl benzene	2920 (0.320)	2858 (0.090)	1449 (0.097)	739 (0.770)	698 (1.240)			
				[i.p. o.p. 3H	[i.p. o.p.4H			
				Ring def.]	Ring def.]			
1-Allyl naphthalene	2925 (0.110)	2862 (0.040)	1447 (0.060)	785 (0.590)	775 (1.245)			

TABLE 4.2A IR absorbance ratio and assignments for X-CH=CH₂ compounds

Compound	[(A)HC=CH twist] /[(A)C=CH ₂ wag]	[(A)HC=CH twist] /[(A)CH=CH ₂ wag]	$[(A)C=CH_2 wag]$ / $[(A)CH=CH_2 wag]$	[HC=CH twist]- [C=CH ₂ wag]	[HC=CH twist]- [CH=CH ₂ wag]	[C=CH ₂ wag] [CH=CH ₂ wag]
Acrylonitrile	1	3.91	3.91	19	290	271
Divinylsulfone	0.74	1.56	2.09	9	247	256
AllyI alcohol	0.97	8.94*	9.21*	67	433	366
AllyI cyanide	0.47	2.33	5.01	58	431	373
3-Butenoic acid	0.73	0.55	0.75	41	415	374
Allyl carbamate	0.66	1.27	1.91	64	437	373
Allyl formate	0.56	1.86	3.31	56	352	296
Allyl benzene	0.35	1.37	3.96	80	343	263
Allyl naphthalene	0.44	2	4.51	79	339	260

^{*}exceptionally high value.

TABLE 4.2B Raman data and assignments for X-CH=CH₂ compounds

	U	_	•					
Compound	C=C str. cm ⁻¹ (A)	a.CH ₂ = str. cm ⁻¹ (A)						
1- Octene	1642 (8)	3081 (1)						
1-Decene	1642 (5)	3081 (1)						
1,2,4-Trivinyl cyclohexane	1641 (9)	3081 (2)						
cis-Crotononitrile	1639 (4)							
trans-Crotononitrile	1629 (5)							
4-Vinyl benzoic acid	1629 (9)							
4-Vinyl benzene sulfonic acid, Na salt	1631 (9)							
2-Vinyl naphthalene	1632 (6)							
4-(Vinyl) phenylacetonitrile	1633 (9)							
2-Vinyl-4,6-diamino-S-triazine	1640 (9)							
Vinyl trimethoxysilane	1603 (3)							
Vinyl tris(betamethoxy ethoxy) silane	1600 (4)							
Divinyl diphenyl silane	1590 (2)							
	C=C str.	C=C str. cis	a.CH ₂ = str.	CH= str.	$s.CH_2 = str.$	CH= rock	delta C=C str.	(A)C=C str. /(A)C=C str. cis
		cm ⁻¹ (A)	cm ⁻¹ (A)	cm ⁻¹ (A)	cm ⁻¹ (A)	cm ⁻¹ (A)	cm ⁻¹	/(H)C=C 3H. CE
Vinyl isobutyl ether	1638 (2)	1612 (3)	3122 (1)	3046 (3)	3023 (2)	1322 (7)	26	0.67
Vinyl isooctyl ether	1638 (1)	1611 (2)	3121 (0)	3046 (2)	3022 (1)	1320 (4)	27	0.5
Vinyl decyl ether	1637 (1)	1611 (2)	3121 (0)	3046 (2)	3022 (1)	1321 (5)	26	0.5
Vinyl dodecyl ether	1638 (0)	1610 (1)	3121 (0)	3046 (2)	3022 (1)	1320 (4)	28	0.5
Vinyl octadecyl ether	wk	1610 (0)		3046 (1)		1321 (2)		
Diethyleneglycol divinyl ether	1639 (3)	1620 (4)	3120 (2)	3045 (4)		1323 (9)	19	0.75
1,4-butandiol divinyl ether	1639 (3)	1616 (4)	3120 (1)	3044 (4)	3022 (2)	1322 (9)	23	0.75
Triethylene glycol divinyl ether	1636 (3)	1620 (4)	3120 (2)	3044 (4)		1329 (9)	19	0.75
Vinyl 2-(2-ethoxyethyl) ether	1639 (1)	1620 (2)	3120 (1)	3045 (2)		1323 (4)	19	0.5
Vinyl 4-hydroxybutyl ether	1639 (3)	1617 (4)	3120 (0)	3043 (2)		1322 (9)	22	0.75
Vinyl phenyl ether	1644 (3)	1593 (2)				1311 (2)	51	1.5
Vinyl phenyl sulfone	1607 (2)							
1,3-Diisopropenyl benzene	1631 (8)							

TABLE 4.2C IR vapor-phase data for vinyl alkyl ethers

Vinyl ether	a.CH ₂ str.	CH= str.	s.CH ₂ = str.	C=C str. gauche	C=C str.	CH ₂ = bend	CH= rock	CH=CH ₂ twist	C=CH ₂ wag	CH=CH ₂ wag	CH=CH ₂ wag cis	a.C=C-O-C str.	s.C=C-O-C str.	C-O-C bend
	3139		3023	1655			1335		836			1231	900	600
	(0.075)		(0.140)	(0.490)			(0.180)		(0.210)			(1.090)	(0.180)	(0.020)
Methyl	3129	3070	3015	1630	1614	1400	1321	962	811	728	701	1220	888	585
	(0.080)	(0.055)	(0.171)	(0.890)	(0.640)	(0.040)	(0.240)	(0.191)	(0.350)	(0.035)	(0.025)	(1.245)	(0.170)	(0.015)
	3119		2998		1602		1310	940	,,	(=====)	(0.023)	1205	874	575
	(0.080)		(0.190)		(0.510)		(0.190)	(0.115)				(0.944)	(0.190)	(0.018)
	3139		2997				1330	976	830		700	(0.511)	(0.190)	(0.010)
	(0.075)		(0.434)				(0.309)	(0.193)	(0.279)		(0.031)			
Ethyl	3135	3070	2984	1648	1625		1321	963	812		695	1204		
	(0.070)	(0.060)	(0.370)	(0.632)	(0.746)		(0.329)	(0.245)	(0.353)		(0.028)	(1.240)		
	3129				01611		1311	955			685	(1,210)		
	(0.081)				(0.580)		(0.359)	(0.225)			(0.031)			
Butyl	3125	3060		1640	1620		1321	965	818		(,			
	(0.070)	(0.059)		(0.580)	(0.612)		(0.294)	(0.179)	(0.229)					
Octadecyl	3124			1641	1613		1323	962	812			1209		
	(0.015)			(0.080)	(0.090)		(0.051)	(0.021)	(0.038)			(0.140)		
Isobutyl	3125	3061		1645	1618		1320	964	814		700	1209		
	(0.092)	(0.050)		(0.570)	(0.650)		(0.270)	(0.175)	(0.245)		(0.020)	(1.245)		
2-Ethylhexyl	3130	3060	3015	1640	1612	1417	1321	965	815		700	1204	837	
	(0.090)	(0.070)	(0.070)	(0.572)	(0.743)	(0.060)	(0.310)	(0.160)	(0.250)		(0.020)	(1.250)	(0.250)	
2-Methoxyethyl	3122	3060		1637	1621		1319	962	824		695	1203	(0.25)	
	(0.084)	(0.062)		(0.683)	(0.699)		(0.410)	(0.280)	(0.270)		(0.020)	(1.250)		
2-Chloroethyl	3130	3070		1642	1628		1319	961	825		687	1204		
	(0.041)	(0.021)		(0.520)	(0.629)		(0.231)	(0.165)	(0.186)		(0.082)	(1.230)		
Bis[2-(vinyloxy)	3130	3060		1640	1618	1418	1320	965	820		698	1205		
	(0.062)	(0.030)		(0.590)	(0.605)	(0.060)	(0.320)	(0.180)	(0.210)		(0.020)	(1.240)		
ethyl]eth e r											•			

TABLE 4.3 CH₂= wag frequencies vs (sigma ρ -sigma') for group G

Group G	C=CH ₂ wag CS ₂ soln.	(sigma ρ-sigma')
CO ₂ H	970	
CF ₃	965	0.14
(C=O)OCH ₃	964	
(C=O)NH ₂	964	
$(C=O)OC_2H_5$	961	0.2
CN	960	0.07
$(C=O)CH_3$	960	0.25
Si(CH ₃) ₃	949	0.11
CHCl ₂	937	
CH ₂ Cl	929	0.01
R	908	-0.13
I	905	-0.1
Br	898	-0.22
Cl	894	-0.24
$CH_3(C=O)O$	873	
F	863	-0.44
C ₆ H ₅ O	851	-0.41
CH ₃ O	813	-0.5

TABLE 4.3A IR carbon disulfide solution data for the CH=CH twist frequency for compounds of form $G-CH_2CO_3H$ vs σ' of G and pK_a of $G-CH_2CO_2H$

		HC=CH ₂		
	twist	twist		
	CS_2 soln.	vapor phase	pK_a of	
Group G	cm ⁻¹	cm ⁻¹	G−CH ₂ CO ₂ H	σ' of G
(CH ₃) ₃	1009			-0.12
(CH ₃) ₃ C	999			-0.07
(CH ₃) ₂ CH	996		4.78	-0.056
(CH ₃)CH ₂	990		4.82	-0.052
CH ₃	986		4.88	-0.045
C_6H_5	989		4.26	0.101
4-Cl-C ₆ H ₄	983		4.19	
ClCH ₂ [gauche conformer]	983	[995.5; 987.7]	4.08	0.17
ClCH ₂ [cis conformer]		982.6		
ICH ₂ [gauche conformer]	982	[990.6; 980.6]	4.06	
BrCH ₂ [gauche conformer]	981	987.5	4.01	
R(C=O)NH	972		3.65	
CH₃O	963		3.53	0.23
CN	960	970	2.44	0.58
C ₆ H ₅ O	944		3.13	0.38
I	943		3.15	0.38
Br	936	941	2.87	0.45
Cl	938	941	2.86	0.47
F	~925	929	2.68	0.5

TABLE 4.4 IR data and assignments for the cis and gauche conformers of allyl hali	TABLE 4.4	signments for the cis and gauche conformers	of allyl halides
---	-----------	---	------------------

Allyl fluoride	AllyI chloride	Allyl bromide	Allyl iodide	Assignment	
1630	1642.7	1638.4	1631.8	gauche C=C str.	
1651.7	1649	1647	1645	cis C=C str.	
989.3	985.2	983.9	980.9	gauche CH=CH2 twist	
935	937	935	932	gauche C=CH ₂ wag	
925				cis C=CH ₂ wag	
642.3	590	537.7	491.2	gauche CH=CH2 wag	
552.1	549.4		540	cis CH=CH2 wag	
48.3	48.2	48.9	48.9	- 0	[gauche CH=CH ₂ twist]- [gauche C=CH ₂ wag]
347	395.2	446.2	489.7		[gauche CH=CH ₂ twist]-
292.7	347	397.3	440.8		[gauche CH=CH ₂ wag] [gauche C=CH ₂ wag]- [gauche CH=CH ₂ wag]

TABLE 4.5 IR data and assignments for cyclopentene, cyclohexene, 1,4-cyclohexadiene, and 1,3-cyclohexadiene $[C=C \text{ and } (C=C)_2 \text{ stretching}]$

Mole % CHCl ₃ /C ₅ H ₈	C=C str.	Mole % CHCl ₃ /C ₆ H ₁₀	C=C str.	Mole % CHCl ₃ /1,4-C ₆ H ₈	i.p. C=C str.	o.p. C=C str.	Mole % CDCl ₃ /1,3-C ₆ H ₈	o.p. C=C str.	i.p. C=C str.
0	1613.9	0	1652.8	0	1672.3	1639.2	0	1603.3	1577.9
51.6	1612.2	52.5	1651.9	50.8	1674.3	1638.6	50.7	1605.4	1577.5
91.4 [delta cm ⁻¹]	1611.2 [-2.7]	92.5	1650.9 [-1.9]	91.9	1676.8 [4.5]	1637.9 [-1.3]	92	1608 [4.7]	1577.1 [-0.8]

TABLE 4.5A IR vapor-phase data and assignments for cis-cycloalkene derivatives

Compound	a.CH ₂ = str.	a.CH ₂ str.	a.CH ₂ str.	s.CH ₂ str.	C=C str.	CH ₂ bend	cis HC=CH wag	cis HC=CH wag
							720 (0.179)	
Cyclopentene	3070 (0.320)	2964 (0.950)	2920 (0.800)	2864 (0.620)	1621 (0.048)	1449 (0.050)	699 (0.595)	649 (0.095)
							678 (0.199)	
			[CN str.]					
5-Norbornene-2- carbonitrile	3042 (0.110)		2245 (0.050)		1635 (0.020)	1454 (0.050)	721 (0.445)	
							732 (0.065)	657 (0.160)
Cyclohexene	3032 (0.410)	2935 (1.250)		2865 (0.550)	1651 (0.050)	1463 (0.191)	719 (0.200)	635 (0.244)
							701 (0.060)	615 (0.095)
4-Methylcyclo-	3035 (0.400)				1651 (0.045)		728 (0.050)	658 (0.240)
hexene								[C=O str.]
2-Cyclopentene- 1-one	3075 (0.041)	2980 (0.060)	2940 (0.120)	2875 (0.030)	1600 (0.030)	1440 (0.041)	750 (0.230)	1745 (1.230)
2-Cyclohexene- 1-one	3042 (0.110)	2942 (0.439)		2890 (0.150)	1624 (0.030)	1430 (0.100)	730 (0.160)	1710 (1.230)

TABLE 4.6 IR C=O stretching frequency data for alkyl acrylates [CHCl₃ and CCl₄ solutions]

Mole % CHCl ₃ /CCl ₄	Methyl acrylate	2-Hydroxy- butyl acrylate	Allyl acrylate	2- Hydroxy- propyl acrylate	Butyl acrylate	2-Ethyl- hexyl acrylate	tert-Butyl acrylate
	C=O str.	C=O str.	C=O str.	C=O str.	C=O str.	C=O str.	C=O str.
[vapor]	1751				1741		
0	1734.1	1730.6	1730.5	1729.4	1727.3	1727.1	1722.9
100	1724.5	1721.6	1727.1	1721.3	1716.7	1716.3	1713.8
$[delta cm^{-1}]$	16.9; 26.5; 9.6	9	3.4	8.1	13.8; 24.3; 10.6	10.8	9.1
	s-trans	s-trans	s-trans	s-trans	s-trans	s-trans	s-trans
	C=C str.	C=C str.	C=C str.	C=C str.	C=C str.	C=C str.	C=C str.
0	1635.3	1636.5	1635.4	1637	1637.2	1635.7	1635.6
100	1635.1	1636.1	1635.4	1636.6	1635.8	1636.3	1635.8
[delta cm ⁻¹]	-0.2	-0.4	0	-0.4	-1.4	0.6	0.2
	s-cis	s-cis	s-cis	s-cis	s-cis	s-cis	s-cis
0	1620.4	1619.3			1619.7		1619.2
100	1619.9				1619.2		1618.5
[delta cm ⁻¹]	-0.5				-0.5		-0.7
	CH ₂ = bend	$CH_2 = bend$	$CH_2 = bend$	$CH_2 = bend$	$CH_2 = bend$	$CH_2 = bend$	_
0		1406.4	1404.6	1406.6	1407.2	1406.5	1401.6
100		1409.4	1407	1409.5	1410.3	1409.9	1404
[delta cm ⁻¹]		3	2.4	2.9	3.1	3.4	2.4
	нс=сн	CH=CH	CH=CH	CH=CH	CH=CH	CH=CH	CH=CH
	twist	twist	twist	twist	twist	twist	twist
0	984.9	982.6	984.7	983.3	983.5	983.6	984.5
100	985	983.4	984.4	983.9	984.3	984.5	985.6
[delta cm ⁻¹]	0.1	0.8	-0.3	0.6	0.8	0.9	1.1
	C=CH ₂ wag	C=CH ₂ wag	C=CH ₂ wag	C=CH ₂ wag		C=CH ₂ wag	C=CH ₂ wag
0	968.1	982.6			968.4		966.3
100	970.3	983.4			969		966.5
[delta cm ⁻¹]	2.2	0.8			0.6		0.2

TABLE 4.6A IR data and assignments for alkyl methacrylates in CHCl₃ and CCl₄ solutions [C=O and C=C stretching]

Mole % CHCl ₃ /CCl ₄	2-Ethylhexyl C=O str. cm ⁻¹	Ethyl C=O str. cm ⁻¹	Butyl C=O str. cm ⁻¹	Hexyl C=O str. cm ⁻¹	Isobutyl C=O str. cm ⁻¹	Allyl C=O str. cm ⁻¹	2-Hydroxyethyl C=O. str. cm ⁻¹	Glycidyl C=O str. cm ⁻¹	Methyl C=O str. cm ⁻¹
									1741
[vapor]	1719.5	1719.6	1720	1720.1	1720.6	1723.3	1723.9	1724.8	1726
0	1709.5	1710.5	1710.5	1710.4	1710	1714.7	1715	1717.1	1718
100	-10	-9.1	-9.5	-9.7	-10.6	-8.6	-8.9	-7.7	[-15;
[delta cm ⁻¹]									-23; -8
	C=C str.	C=C str.	C=C str.	C=C str.	C=C str.	C=C str.	C=C str.	C=C str.	C=C str.
[vapor]	1638.7	1637.4	1637.3	1638	1638.8	1638.7	1637.9	1638.7	1638.5
0	1636.8	1636	1635.8	1635.7	1637	1637.2	1637.1	1637.3	1636.6
$[\mathrm{delta}\ \mathrm{cm}^{-1}]$	-1.9	-1.4	-1.5	-2.3	-1.8	-1.6	-0.8	-1.4	-1.9

TABLE 4.7 IR vapor-phase data for trans-alkenes

trans Alkenes	CH=CH str.	a.CH ₂ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	C=C str.	a.CH₃ def.	s.CH ₃ def.	HC=CH twist	(A)[a.CH ₃ def.] /(A)[HC=CH twist]	(A)[C=C str.] /(A)[CH=CH twist]
2-Butane	3035 (0.310)	2981 (0.600)	2942 (1.250)	2982 (0.325)	2982 (0.325)	inactive	1447 (0.150)	1392 (0.080)	961 (0.455)	0.33	0
2-Pentene	3030 (0283)	2997 (1.235)	2942 (0.440)	2980 (0.568)		?	1460 (0.210)	1390 (0.070)	961 (0.375)	0.56	0
2-Hexene	3021 (0.179)	2965 (1.240)	2940 (1.040)	2890 (0.440)	2880 (0.540)	?	1460 (0.169)	1390 (0.330)	965 (0.330)	0.51	0
3-Hexene	3035 (0.095)	2970 (1.240)	2950 (0.530)	2910 (0.332)	2890 (0.362)	inactive	1461 (0.080)	1385 (0.031)	969 (0.220)	0.36	0
4-Octene	3020 (0.160)	2965 (1.250)	2935 (1.150)	2880 (0.600)	2880 (0.600)	inactive	1460 (0.150)	1385 (0.080)	964 (0.250)	0.61	0
5-Decene	3020 (0.120)	2968 (1.115)	2940 (1.245)	2880 (0.512)	2865 (0.512)	1635 (0.025)?	1466 (0.151)	1385 (0.070)	969 (0.211)	0.72	0.12?
2,2-Dimethyl- 3- hexene	3030 (0.090)	2975 (1.245)	2920 (0.315)	2888 (0.275)	2888 (0.275)		1478 (0.120)	1370 (0.100)	971 (0.110)	0.93	0
2,2-Dimethyl- 3-heptene	3030 (0.093)	2970 (1.240)	2940 (0.566)	2880 (0.365)	2880 (0.365)		1476 (0.130)	1390 (0.046) 1370 (0.134)	972 (0.158)	0.82	0
2-Butene-1-ol	3030 (0.275) [H-O str.]	2982 (0.630) [C-O str.]	2940 (0.850)	2982 (0.630)	2982 (0.630)	1675 (0.085)	1476 (0.270)	1385 (0.750)	970 (0.975)	2.08	0.09
[Crotonate]	3670 (0.130)	1004 (1.240)			[C=O str.]						
					1754 (1.229)						
methyl					1750 (1.219) 1741 (1.229) 1745 (1.050)	1663 (0.299)			970 (0.210)		1.42
ethyl					1745 (0.950) 1740 (1.050)	1665 (0.271)			971 (0.244)		1.1
					[C.T.]		[o.p. C-Cl str.]				
1,2-Dichloro-	3080 (0.210)				1661 (0.092)				910 (0.255)		0
ethylene					1654 (0.081)	inactive	815 (1.250)		897 (0.450)		
					1641 (0.110)				880 (0.290)		
							[=C-Cl str.]	[C-Cl str.]			
1,3-Dichloro- propene						1631 (0.510)	775 (1.245)	691 (0.570)	930 (0.356)		1.43
							[=C-Br str.]				
beta-Bromo- styrene						1668 (0.060)	740 (1.245)		938 (0.442)		0.14
			i.p. o.p. 5H Ring def.	[o.p. Ring def.]	[CN str.]						
Cinnamonitrile	1265 (0.071)	1201 (0.092)	741 (1.240)	689 (0.640)	2224 (0.335)	1621 (0.379) 1649 (0.050)			960 (0.862)		0. 44 0.06
beta-Bromo- styrene		1220 (0.271)	732 (0.910)	690 (0.452)							

[?] not observed.

TABLE 4.8 IR data for the CH=CH twist frequency for trans disubstituted ethylenes

trans disubstituted	
ethylene	CH=CH
XCH=CY	twist
X, Y	cm^{-1}
R,R'	962-966
O, CH ₃	959
C_6H_5 , C_6H_5	958
CH ₃ , (CH ₃)CH-O-	964–967
CH_2X' , CH_2X'	960-965
C_6H_5 , CH_2 -O-	964-966
C_6H_5 , CN	964–967
CH ₃ , CN	953
C_6H_5 , CN	962
Cl, CH ₃	926
Cl, CH ₂ Cl	931
Br, CH ₂ Br	935
Cl, CH ₂ -O-	925–932
Cl, C_6H_5	930-942
Cl, CN	920
Cl, B(OH) ₂	960
CH_3O , $CH(OCH_3)_2$	929
Cl, Cl	892
Br, Br	896
CH_3 , $(C=O)H$	964
CH ₃ , (C=O)CCH	967
CH ₃ , CO ₂ H	966
CH_3 , $(C=O)OC_2H_5$	968
CH_3 , $(C=O)N(CH_3)_2$	966
C_6H_5 , (C=O)CH ₃	972
C_6H_5 , (C=O) C_6H_5	975
C_6H_5 , (C=O)H	972
C ₆ H ₅ , CO ₂ H	976
C_6H_5 , (C=O)OR	976
RO(C=O), $(C=O)OR$	976
4-ClC ₆ H ₄ , CO ₂ H	975

TABLE 4.9 IR data for the =CH₂ wag and its overtone for 1,1-disubstituted ethylenes

Cinnamate	C=O str.	C=C str.	[(A)C=C] /[(A)C=O]	HC=CH twist	[(A)HC=CH twist] $/[(A)C=C str.]$	[(A)C=CH twist] /[(A)C=O str.]
Methyl	1740 (1.141)	1640 (0.431)	0.38	975 (0.181)	0.42	0.16
Ethyl	1735 (1.050)	1640 (0.370)	0.35	975 (0.169)	0.46	0.16
Butyl	1731 (1.141)	1641 (0.379)	0.33	978 (0.205)	0.54	0.18
Isobutyl	1735 (0.806)	1641 (0.310)	0.38	975 (0.130)	0.42	0.16
Isopentyl	1737 (0.830)	1642 (0.282)	0.34	980 (0.171)	0.61	0.21
lsopropyl	1731 (1.250)	1641 (0.500)	0.41	982 (0.310)	0.62	0.25
Tert-butyl	1727 (1.030)	1640 (0.370)	0.36	972 (0.247)	0.67	0.24
Cyclohexyl	1731 (0.654)	1642 (0.214)	0.33	980 (0.129)	0.6	0.2
Benzyl	1739 (0.959)	1640 (0.371)	0.39	980 (0.246)	0.66	0.26

TABLE 4.10 A comparison of the fundamentals for 1,1-dihaloethylenes

Cinnamyl	C=0 str.	C=C str.	CCO str.	COC str.	HC=CH			
					twist			
Acetate	1763 (0.740)	1652 (0.035)	1229 (1.240)	1026 (0.295)	962 (0.240)			
Butyrate	1754 (0.950)	1660 (0.011)	1170 (1.240)		968 (0.225)			
Isobutyrate	1753 (1.042)	1655 (0.020)	1155 (1.230)		968 (0.292)			
	[a.CH ₃ str.]	[s.CH ₃ str.]	[a.CH ₃ def.]	[s.CH ₃ def.]	[i.p. o.p. 5H def.]	[op. Ring def.]	[a.CH ₂ str.]	[s. CH ₂ str.]
Acetate	2955 (0.080)	2895 (0.025)	1451 (0.082)	1366 (0.235)	740 (0.140)	689 (0.130)		
Butyrate	2975 (0.210)	2885 (0.085)	1451 (0.080)	1380 (0.075)	740 (0.100)	690 (0.095)	2945 (0.195)	2885 (0.085)
Isobutyrate	2982 (0.330)	2890 (0.080)	1475 (0.130)	1391 (0.100)	742 (0.130)	691 (0.120)	2958 (0.159)	2890 (0.080)
							[CH ₂ bend]	
							1453 (0.092)	
	[(A)C=C str.]	[(A)HC=CH twist]	[(A)HC=CH twist]	[C=O str.]-	[(A)C=O str.]	[C=C str.]-		
	/[(A)C=O str.]	/[(A)C=C str.]	/[(A)C=O str.]	[CCO str.]	/[(A)CCO str.]	[HC=CH twist]		
Acetate	0.05	6.9	0.32	534	0.59	690		
Butyrate	0.01	20.5	0.24	584	0.77	692		
Isobutyrate	0.02	14.6	0.28	598	0.85	687		

TABLE 4.11 IR vapor-phase data and assignments for alkyl cinnamates [C=C stretching, CH=CH twisting, and C=O stretching]

1,1-Substituted		
ethylene	C=CH ₂ wag	2(C=CH ₂ wag)
XYC=CH ₂	CS_2 soln.	CCl4 soln.
X, Y	cm ⁻¹	cm ⁻¹
R,R'	885–890	1785–1795
CH_3 , C_6H_5	885-890	1785-1805
CH ₃ , 2,3-Cl ₂ -C ₆ H ₃	905	1820
CH ₃ , CH ₂ Cl	902	1820
C ₆ H ₅ , CH ₂ Cl	907	1820
CH ₃ , CH ₂ OH	893	1792
CH ₃ , CH(OH)CN	914	1840
CH ₃ , Cl	875	1765
C ₆ H ₅ , Cl	877	1768
Cl, Cl	867	1744
Br, Br	877	1765
F, F	804 v.p.	1613 v.p.
Cl, CH ₂ Cl	891	1788
Br, CH ₂ Br	896	1802
Cl, CH ₂ OC ₆ H ₅	887	
CI, N=C=N	897	1811
Br, CF ₃	929	
CH_3 , $O(C=O)CH_3$	869	
CH ₃ , OCH ₃	795	1600
C ₂ H ₅ O, OC ₂ H ₅	711	
CH_3 , $(C=O)OR$	939	1882
C_5H_{11} , (C=O)OCH ₃	939	1888
CH_3 , $(C=O)OH$	947	1905
C_5H_{11} , (C=O)OH	947	1898
CH_3 , $(C=O)R$	930	1865
C_2H_5 , (C=O)CH ₃	931	1870
Cl, CO ₂ H	933	1878
Cl, (C=O)OR	925	1860
CH ₃ , CN	930	1878
Cl, CN	916	1843
CN, CN	985	1970
C ₂ H ₅ SO ₂ , C ₂ H ₅ SO ₂	1004	2020

TABLE 4.11A IR vapor-phase data and assignments for cinnamyl esters

CH ₂ =CCl ₂ cm ⁻¹	CH ₂ =CBrCl cm ⁻¹	CH_2 = CBr_2 cm^{-1}	Assignment cm ⁻¹
3130	3140	3112	asym. CH ₂ = str.
3035	3046	3027	sym. $CH_2 = str.$
1616	1609	1601	C=C str.
1391	1383	1364	$CH_2 = bend$
1088	1074	1070	$CH_2 = rock$
788	765	698	asym. $CX_2 = str.$
601	531	474	sym. $CX_2 = str.$
375	336	324	$CX_2 = rock$
299	240	182	$CX_2 = bend$
874	872	[881] (*1)	$CH_2 = wag$
686	684	[675] (*2)	$CH_2 = twist$
458	427	[404] (*2)	$CX_2 = wag$

^{*&}lt;sup>1</sup>Unpublished Dow Chemical Company data. *² Reference 5.

TABLE 4.12 Raman data and assignments for vinyl esters of carboxylic acids

Vinyl	C=O str.	RI	C=C str.	RI	C=O str C=C str.	RI C=O str. /RI C=C str.
Propionate	1756	1	1648	9	108	0.11
Butyrate	1758	1	1648	4	110	0.25
Deconate	1759	1	1648	6	111	0.17
2-Ethylhexanoate	1753	2	1647	9	108	0.22
Neodecanoate	1748	2	1647	8	101	0.13
tert-Nonanoate	1744	2	1646	9	98	0.22
Pivalate	17 4 9	2	1647	7	102	0.29
Adipate, di	1752	2	1648	9	104	0.22
Sebacate, di	1755	2	1648	9	107	0.22
Acrylate	1740	4	1648	5	92	0.81
2-Butenoate	1734	2	1644	9	90	0.22
2-Furoate	1734	2	1648	1	86	2
Cinnamate	1720	0.5	1636	9	84	0.06
Benzoate	1732	3	1647	2	85	1.5

TABLE 4.13 Raman data and assignments for styrene monomers

Compound										
Styrene	C=C str.	Ring 2	Ring 18		Ring 19	Ring 3		Ring 5	$s.C(C)_3$ str.	<u>-</u>
4-Amino	1624 (9)	1610 (8)	1415 (5)		1209 (4)	1179 (6)		843 (4)		
4-Ethyl	1631 (9)	1612 (5)	1425 (1)		1205 (2)	1181 (3)				
4-tert-Butyl	1631 (9)	1612 (5)							789 (4)	
4- Fluoro	1635 (9)	1603 (4)	1404 (2)		1203 (5)			842 (4)		
4-Chloro	1632 (9)	1596 (3)	1423 (1)		1204 (4)	1178 (2)		790 (3)		
4-Cyano	1632 (5)	1608 (9)	1427 (0)		1208 (1)	1178 (6)			415 (1)	
4-Nitro	1631 (4)									
		Ring 4	Ring 5	Ring 15	Ring 16		Ring 8		Ring 10	Ring 21
3-Bromo	1629 (4)			1305 (1)	1200 (3)		997 (9)			309 (4)
3-Chloro	1633 (8)			1307 (3)	1203 (3)		999 (9)		405 (2)	308 (1)
3-Fluoro	1632 (4)	1613 (4)	1415 (1)				1002 (9)		724 (3)	
3-Nitro	1634 (5)	1618 (1)	1410 (1)		1208 (3)					
		Ring 3	Ring 4		Ring 17?	Ring 7	Ring 18?			Ring 21
2-Fluoro	1633 (9)	1612 (3)	1416 (1)		1230 (3)	1153 (1)				
2-Bromo	1628 (9)						1020 (4)			325 (5)
		Ring 4	Ring 6		Ring 9				Ring 17	
2,4-Dimethyl	1628 (9)	1611 (8)	1420 (3)		1239 (7)				459 (5)	
2,5-Dimethyl	1627 (9)	1612 (9)	1417 (2)		1239 (5)					
alpha-Methyl	1631 (5)									
1,3-Di(alpha-methyl)	1631 (8)									
1-Octene	1642 (8)									

TABLE 4.14 IR group frequency data for styrene and substituted styrenes

Compound	$2(C=CH_2 \text{ wag})$ cm^{-1}	C=C str. cm ⁻¹	CH=CH twist CS ₂ soln. cm ⁻¹	$C=CH_2$ wag CS_2 soln. cm^{-1}	CH=CH twist minus C=CH ₂ cm ⁻¹	pK _a of corresponding sub. phenol
Styrene	1821	1632	989	907	82	9.9
Styrene sub.	1021	1032	, , ,			
4-Methyl	1812	1631	987	903	84	10.35
4-Bromo	1826	1631	986	909	77	9.34
4-Chloro	1815	1628	982	904	78	9.2
4-fluoro	1825 [vp]	1638 [vp]	990 [vp]	911 [vp]	79	9.95
4-Cyano	1833 [CS ₂]	1627 [CS ₂]	982	917	65	
3-Chloro	1831	1631	986	913	73	8.93
3-Hydroxy	1815	1629	984	905	79	9.33
3-Chloromethyl	1832	1637	987	909	78	
3-Acetyl	1828	1637	987	910	77	9.18
3,4-Dichloro	1824	1626	980	910	70	8.4
3,4-Dimethyl	1817	1628	989	903	86	10.17
3,5-Dimethyl	1808	1626	984	903	81	10.1
2,4-Dimethyl	1821	1626	987	907	80	10.49
2-Chloro	1833	1629	986	914	72	8.5
2-Bromo	1835	1629	984	916	68	8.43
2-Methyl	1832 [vp]	1630 [vp]	989 [vp]	914 [vp]	75	10.28
2,3-Dichloro	1842	1626	986	919	67	7. 4
2,4-Dichloro	1832	1623	983	917	66	7.8
2,5-Dichloro	1842	1624	986	921	65	7.3
2,6-Dichloro	1872	1637	981	932	49	6.8
2,3,6-Trichloro	1876	1631	978	935	43	6.1
2,4,5-Trichloro	1876	1631	978	933	45	6.4
2,3,4,5-Tetrachloro	1858	1627	974	925	49	7
2,3,4,6-Tetrachloro	1883	1633	978	937	41	5.22
2,3,4,5,6-Pentachloro	1883	1631	975	936	39	4.77
2,4,6-Trimethyl	1843	1632	991	919	72	10.83

TABLE 4.15 IR group frequency data for α -halostyrenes, α -methylstyrenes, and related compounds

Compound	2(CH ₂ wag) CCl ₄ soln. cm ⁻¹	C=C str. CCl ₄ soln. cm ⁻¹	$CH_2 = wag$ $CS_2 soln.$ cm^{-1}
Styrene			
alpha-(X)			
X			
Chloro	1760	1626	877
Bromo	1775	1617	882
Propyl	1801	1629	897
Phenyl	1809	1616	896
2-Hydroxyethyl	1799	1627	897
α-Methylstyrene	1797	1629	892
Sub.			
4-Chloro	1790	1627	890
4-Bromo	1789	1623	892
4-Hydroxy	1772	1630	882
4-Acetyl	1795	1626	897
4-Methyl	1783	1629	887
3,4-Dichloro	1802	1634	896
3,5-Dichloro	1810	1629	899
4-Chloro, 3-methyl	1790	1631	892
2-Hydroxy	1822	1632	911
2-Chloro	1810	1642	904
2,3-Dichloro	1805	1640	902
2,4-Dichloro	1819	1642	905
2-Chloro, 5-methyl	1814	1642	902
2-Nitro	1822	1643	902
2,4,5-Trimethyl	1803	1642	899
2,3,4,5,6-Pentafluoro	1830	1645	918
1-Isopropenylnaphthalene	1815	1634	904
1-Isopropenylpyridine	1815	1634	904

TABLE 4.16 IR vapor-phase data for butadienes and propadienes

Compound	a.CH ₂ str.	CH= str.	a.CH ₂ = str.	2(CH ₂ wag)	i.p. (C=C) ₂ str.	o.p. (C=C) ₂ str.	CH ₂ = bend	Compound	CH=CH ₂ twist	C=CH ₂ wag	RC=CH ₂ wag	CH=CH ₂ wag	RC=CH ₂ wag
				1830 (0.110)		1604 (0.190)	1390 (0.032)						
1,3- Butadiene	3102 (0.130)	3030 (0.100)	3000 (0.120)	1822 (0.060)	1648 (0.010)	1594 (0.130)	1379 (0.028)	1,3-Butadiene	1011 (0.240)	908 (1.250)		518 (0.060)	
1,5- Butautette	3102 (0.130)	3030 (0.100)	3000 (0.120)	1810 (0.090)	2010 (01111)	1585 (0.165)	1369 (0.035)	.,.	995 (0.200)				
2-Methyl-	3099 (0.380)	3030 (0.185)	2990 (0.430)	1802 (0.120)	1649 (0.060)	1602 (0.420)	1375 (0.100)	2- Methyl-	990 (0.371)	907 (1.130)	895 (1.240)		758 (0.020
1,3-butadiene	3077 (0.3007	3030 (0.101)		(,				1,3- butadiene					
or Isoprene									[CH ₂ rock]				
or isoprene			3020 (0.090)	1700 (0.098)		1972 (1.250)	1409 (0.080)	Propadiene					
Propadiene	3100 (0.030)		3010 (0.060)	1690 (0.087)	IR inactive	1953 (0.590)	1397 (0.060)	-	1040 (0.060)	845 (0.690)			
or Allene	perpendicular		2995 (0.070)	1681 (0.097)	al	1942 (0.860)	1378 (0.100)		perpen-	perpen-			
	r .								dicular	dicular			
	v8 (e)		parallel,	parallel		parallel,	parallel,		v9 (e)	v10 (e)			
			vb (b2)	_		v6 (b2)	v7 (b2)						
											[CH= bend]	[CH ₃ C=C	
												bend]?	
					1081 (0.091)	1970 (0.590)				859 (1.240)		560 (0.182)	
1,2-Butadiene	3080 (0.231)	3010 (0.690)		1802 (0.120)	1072 (0.082)	1962 (0.540)		1,2-Butadiene	910 (0.256)	849 (0.935)	-1175 (0.020)	552 (0.160)	
or 1-Methy-					1063 (0.100)	1959 (0.550)				839 (0.949)		544 (0.200)	
propadiene												C=C=C	C=C=C
												bend (a')	bend (a)
1-Chloro-propadiene*	3079	3079?	3009		1101	1963	1435	1-Chloro- propadiene	999	875	822	767	548
1-Bromo-propadiene*	3080	3008?	3005		1078	1961	1432	1-Bromo- propadiene	1000	862	813	681	519
1-Iodo-propadiene*	3070	3070?	3004		1076	1953	1425	1-lodo- propadiene	995	854	807	609	4 85
	C=C-X str.	C=C=C	C=C=C	C=C-X	C=C-X								
		bend (a')	bend (a)	bend (a')	(a)								
				bend									
1-Chloro-propadiene	767	592	548	494	184*1								
1-Bromo-propadiene	681	603	519	423*2	169*1								
1-Iodo-propadiene	609	625	485	387*1	154*1								
	o.p. cis	i.p. cis	i.p.	o.p.	cis	cis	C=0						
	$(HC=CH)_2$	$(HC=CH)_2$	$(C=C)_2$	$(C=C)_2$	(HC=CH) ₂	$(CH=CH)_2$	str.						
	str.	str.	str.	str.	i.p. wag	o.p. wag							
		(1641 (0.020)	1559 (0.100)	666 (0.225)	740 (0.370)							
2,5-Norbornadiene	3130 (0.115)	3080 (0.285)	1639 (0.010)	1546 (0.160)	654 (0.570)	728 (1.110)							
			1630 (0.010)	1535 (0.090)	643 (0.285)	711 (0.330)	1750 (0.750)						
2,5- Norbor- nadiene-7-yl	3080 (0.111)		1651 (0.040)	1543 (0.154)	654 (0.090)	735 (0.265)	1759 (0.750)						
acetate 1,3-Cyclohexadiene	3080 (0.790)		1600 (0.030)	1701 (0.040)	748 (0.190)	658 (1.240)							

^{*} Reference 18.

TABLE 4.17 IR vapor-phase data for carbon hydrogen stretching vibrations and other vibrations for 1-alkenes

Compound	2(C=CH ₂ wag) + s.CH ₃ bend	a.CH ₂ = str.	s.CH ₂ = str.	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	a.CH ₃ bend (A)	Compound	a.CH ₃ bend (A')	CH ₂ bend	CH₂≃ bend	s.CH ₃ bend	s.CH ₃ bend	C-C str.?	CH ₂ wag	CH₂ rock
Propene		3080	3000	2960		2920		1475	Propene	1443			1399				
		(0.170)	(0.320)	(0.580)		(0.300)		(0.110)		(0.220)			(0.079)				
1-Butene	3182	3085		2975		2900	2880	1462	1-Butene	1432			1380			1307	800
	(0.005)	(0.211)		(1.245)		(0.420)	(0.300)	(0.129)		(0.129)			(0.090)			(0.109)	(0.020
3-Methyl-1-butene	3190	3084		2964	2930		2890	14865	3-Methyl-1-butene				1380			1305	
	(0.010)	(0.180)		(1.245)	(0.300)		(0.300)	(0.111)					(0.096)			(0.050)	
3-Methyl-1-pentene	3180	3084		2970	2930		2885	1461	3- Methyl-1-pentene			1421	1387			1290	782
	(0.020)	(0.275)		(1.240)	(0.871)		(0.585)	(0.200)				(0.090)	(0.140)			(0.050)	(0.020)
3,4-Dimethyl-1-pentene	3190	3082		2965	2940		2882	1463	3,4-Dimethyl-1-pentene			1422	1380				
	(0.010)	(0.150)		(1.245)	(0.370)		(0.464)	(0.140)				(0.040)	(0.131)				
3,7-Dimethyl-1-octene	3199	3090		2970	2940		2882	1469	3,7-Dimethyl-1-octene			1423	1385		1170		734
	(0.010)	(0.131)		(1.235)	(0.835)		(0.452)	(0.240)				(0.040)	(0.110)		(0.020)		(0.011)
3,3-Dimethyl-1-butene		3100		2970			2890	1472	3,3-Dimethyl-1-butene			1421	1380	1370	1214		
		(0.142)		(1.250)			(0.250)	(0.110)				(0.070)	(0.119)	(0.173)	(0.080)		
3,3-Dimethyl-1-pentene	3200	3095	3009	2980			2892	1470	3,3-Dimethyl-1-pentene			1420	1381	1369	1185		
	(0.005)	(0.149)	(0.061)	(1.245)			(0.200)	(0.115)	• •			(0.068)	(0.103)	(0.098)	(0.032)		
3,3-Dimethyl-I-hexene	3205	3095(0.110)	3008	2970	2940	2905	2885	1470	3,3-Dimethyl-1-hexene			1420	1380	1370	1200		
	(0.005)		(0.080)	(1.245)	(0.440)	(0.290)	(0.340)	(0.110)				(0.050)	(0.071)	(0.080)	(0.030)		
Vinylcyclohexane*1		3082	3000		2935		2862				1454	1415					
		(0.091)	(0.080)		(1.250)		(0.460)				(0.121)	(0.030)					

^{*1 [}Ring breathing, 840 (0.012)].

TABLE 4.18 IR data and assignments for the alkyl group of vinyl alkyl ethers

Vinyl alkyl ether	a.CH ₃ str.	s.CH ₃ str.	a.CH ₃ bend		CH ₃ rock	CH ₃ rock						
		2870			1145	1024						
		(0.100)			(0.260)	(0.186)						
Methyl	2958	2860	1460		1136	1011						
•	(0.310)	(0.095)	(0.152)		(0.190)	(0.175)						
	2930	2850			1127	997						
	(0.240)	(0.110)			(0.210)	(0.171)						
	a.CH ₃	a.CH ₂	s.CH ₃	s.CH ₂	a.CH ₃	$s.CH_3$	CH ₂	CH_2	CH_3	CH_2	C-Cl	C-Cl
	str.	str.	str.	str.	bend	bend	wag and	twist	rock and	rock	str.	str.
						1319	or C-C str.		or C-C str.			
						(0.225)						
Ethyl	2997	2940	2900		1476	1388	1128	1079	1059			
•	(0.434)	(0.270)	(0.260)		(0.087)	(0.200)	(0.481)	(0.226)	(0.271)			
	2984					1377						
	(0.370)					(0.210)						
Butyl	2971	2950	2894		1476	1379	1135	1083	1030			
•	(0.790)	(0.690)	(0.410)		(0.135)	(0.190)	(0.249)	(0.270)	(0.177)			
Isobutyl	2965	2925	2897		1475	1388	1145	1080	1019			
	(0.840)	(0.392)	(0.376)		(0.200)	(0.195)	(0.232)	(0.280)	(0.310)			
2-Ethylhexyl	2970	2938	2882		1470	1380		1079	1015	735		
	(1.245)	(1.245)	(0.640)		(0.250)	(0.180)		(0.266)	(0.164)	(0.035)		
							aC-O-C str.					
2-Methoxyethyl	2995	2930	2890	2830	1462	1360	1135	1095	1039			
	(0.322)	(0.902)	(0.555)	(0.327)	(0.185)	(0.185)	(1.150)	(0.560)	(0.250)			
									1013			
									(0.145)			
2-Chloroethyl		2980		2895	1466	1377		1086	1010		764	687
		(0.105)		(0.065)	(0.060)	(0.100)		(0.240)	(0.138)		(0.170)	(0.082)?
									1001			and CH=CH2 wag?
									(0.142)			•
Bis[2-(vinyloxy)		2938		2880	1460	1359	1140	1092	1010			
ethyl]ether		(0.291)		(0.256)	(0.090)	(0.140)	(0.970)	(0.350)	(0.165)			
									980			
									(0.200)			

Alkynes and Compounds Containing C≡C Groups

Terminal C≡	93		
1-Halopropyi	95		
Phenylacetyle	96		
1,4-Diphenyl	97 98		
Propargyl Ale			
1,3-Dihalopro	98		
Phenylacetyle	99		
References			99
Figures		Tables	
Figure 5-1	100 (95)	Table 8-1	106 (93)
Figure 5-2	101 (96)	Table 5-2	107 (94)
Figure 5-3	101 (97)	Table 5-3	108 (94)
Figure 5-4	102 (97)	Table 5-4	109 (95)
Figure 5-5	102 (97)	Table 5-4a	109 (95)
Figure 5-6	103 (98)	Table 5-5	109 (97)
Figure 5-7	104 (98)	Table 5-6	110 (97, 98)
Figure 5-8	105 (99)	Table 5-7	111 (98)
_		Table 5-8	112 (98)
		Table 5-9	113 (99)

^{*}Numbers in parentheses indicate in-text page reference.

TERMINAL C≡CH

Table 5.1 lists IR data and assignments for compounds containing the terminal acetylenic group (1). The v = C - H mode occurs near 3300 cm⁻¹ with a weak shoulder on the low frequency side of the strong IR band. This weak shoulder has been attributed to a Fermi resonance interaction with v = C - H and the combination tone vC = C + 2[C = C - H] bending (1).

All of these compounds exhibit $vC \equiv C$ in the region 2100–2148 cm⁻¹, and this band is weak in most cases. Compounds where the halogen atom or a carbonyl group is joined to the terminal acetylenic group exhibit strong IR $vc \equiv c$ absorption bands.

A weak IR band in the region 897–961 cm⁻¹ is assigned to vC-C. The $\equiv C-H$ bending mode is not split in the case of 1-alkynes, and occurs in the region 628–633 cm⁻¹. Substitution of a

halogen atom on the 3-carbon atom splits the degeneracy and both in-plane and out-of-plane \equiv C-H bending modes are observed in the IR. With the exception of 3-iodopropyne the in-plane bending mode occurs at a higher frequency than the out-of-plane bending modes. For example, 3-iodopropyne exhibits the C-H bending modes at 637 cm⁻¹, while the Cl, Br, and F analogs exhibit the in-plane bending mode at 652, 649, and 674 cm⁻¹, respectively, and the out-of-plane bending mode occurs at 637, 639, and 636 cm⁻¹, respectively (2).

Substitution of deuterium for hydrogen $\equiv C-H$ to $\equiv C-D$ helps in establishing the fundamental vibrations that result from this portion of the molecule. In the case of 3-chloropropyne-1-d

and 3-bromopropyne-1-d the $v \equiv C - D$ modes occur at 2618 and 2607 cm⁻¹, respectively (see Table 5.2). In the case of $\equiv C - D$ bending, the Cl and Br analogs exhibit the in-plane mode at 516 and 512 cm⁻¹, respectively, while the out-of-plane mode occurs at 502 and 503 cm⁻¹, respectively.

The 3-chloropropyne-1-d, 3-bromopropyne-1-d, and phenylacetylene-1-d are interesting because their $v \equiv C - D$ and $v C \equiv C$ modes couple. The $v C \equiv C$ mode shifts from 2147 to 2000, 2138 to 2006, and 2119 to 1989 cm⁻¹ for 3-Cl, Br, and 2-phenyl $C \equiv C - H$ and D analogs, respectively. On the other hand, the $v \equiv C - H$ mode and $v \equiv C - D$ modes are (3325 and 2618), (3315 and 2607), and (3315 and 2596 cm⁻¹) for the 3-Cl, 3-Br and 2-phenyl $C \equiv C - H$ and D analogs, respectively. The ratio of $v \equiv C - H/v \equiv C - D$ is 1.27, 1.28, and 1.28, respectively, and, if $v \equiv C - D$ were a pure vibration it would be expected to occur at 2340 cm⁻¹. Because $v C \equiv C$ shifts to lower frequency upon D substitution together with the behavior of v C - D, their frequency behavior is expected when the two modes are coupled. As $v C \equiv C$ and $v \equiv C - H$ occur approximately 1170 cm⁻¹ apart, the amount of coupling between these two modes is most likely negligible (3–5).

Terminal acetylenic compounds often exhibit the first overtone of $\equiv C-H$ bending in the region 1219–1265 cm⁻¹, and for the D analogs near 1000–1043 cm⁻¹. In addition, the $C-C\equiv C$ bending mode is observed in the region 300–353 cm⁻¹ (1).

Table 5.2 lists the 15 vibrational assignments for 3-halopropynes using both IR and Raman data (2,4,5). The ν C-H and ν C-D and ν C=C modes have been previously discussed. The vibrations most affected by change in the halogen atom for the CH₂X group are ν C-X skeletal bending, CH₂ wagging, CH₂ twisting, and CH₂ rocking. In most cases these fundamentals decrease in frequency progressing in the series F to I. These molecules have a plane of symmetry, and the 10 vibrations that occur within the plane are designated as a' fundamentals and the 5 vibrations that occur out-of-the plane are designated as a' fundamentals. These molecules have C_s symmetry.

Table 5.3 lists IR vapor phase data and assignments for 1-alkynes (3). Most of these assignments are for the alkyl group of these 1-alkynes. The numbers in parenthesis are the measured absorbances, and study of these numbers shows the intensities relative to one another in each spectrum. It is of interest to note that the ratio $[(A)CCH \text{ bend}/(A)vasym. CH_2]$ decreases as the number of $(CH_2)_n$ increases from 2 to 10. This indicates that the intensity for CCH bending is essentially constant and the intensity for vasym. $(CH_2)_n$ becomes more intense as n becomes larger. It should be noted that vasym. $(CH_2)_n$ shifts to lower frequency by 17 cm⁻¹ as n is increased from 2 to 10. Most likely the dipole moment change during vasym. CH_2 changes slightly with this small shift in its frequency.

Figure 5.1 shows a plot of absorbance ratios for the 1-alkynes vs the number of carbon atoms in the 1-alkynes (3). Correlations such as these help in spectra-structure identification of unknown samples.

1-HALOPROPYNES

1-Halopropynes have C_{3v} symmetry, and the 15 fundamentals are distributed: $5a_1$, and 5e (The e fundamentals are doubly degenerate). The a_1 modes should yield parallel IR vapor bands and polarized Raman bands while the e modes should yield perpendicular IR vapor bands and depolarized Raman bands. Vibrational assignments in Table 5.4 were made using these criteria (7).

It has already been noted that $v \equiv C - D$ and $vC \equiv C$ coupled considerably in the case of the 1-halopropynes. During a cycle of $vC \equiv C$, both the C - C and C - X bonds must expand and contract.

$$H_3C \leftarrow C \equiv C \rightarrow X \leftrightarrow H_3C \rightarrow C \equiv C \leftarrow X$$

Therefore, this complex $vC \equiv C$ mode must include contribution from both vC - C and vC - X. A comparison of these modes vs those for propyne are presented here:

1-halopropyne	vC≡C cm ⁻¹	vC-C cm ⁻¹	vC-X or vC-H cm ⁻¹
Br	2239	1037	465
I	2210	1013	403
propyne	2130	930	3320

It is noted that $vC \equiv C$ for 1-halopropynes occurs approximately 95 cm⁻¹ higher in frequency than it occurs for propyne. In addition, vC - C for 1-halopropynes occurs approximately 90 cm⁻¹ higher in frequency than it occurs for propyne. The vC - X mode occurs at lower frequency than the other two vibrations while vC - H occurs at higher frequency. Moreover, the force constant for Br is higher than it is for I. All of these facts suggest that the $vC \equiv C$ mode for 1-halopropyne is complex and involves a stretching motion of the two adjacent groups.

Table 5.4a lists the Coriolis coupling constants for 1-halopropyne (7,8), propyne (9) and propyne-1-d (10). These Coriolis constant coupling coefficients are included so that the reader has better knowledge about interpreting spectral data. Lord and Merrifield (11) have stated that the physical meaning of the minus sign to the Coriolis constant is that the angular momentum of vibration, which is so related to that of the rotation, produces an increase angular velocity of rotation of the vibrating molecular dipole moment about the molecular axis. The plus sign means that the velocity of rotation of the vibrating dipole moment is less than it would be if no angular momentum of vibration were present. In terms of normal vibrations, this means that

there is only a slight decrease in the velocity of rotation during the asym. CH₃ stretching vibration (v_6) in these molecules relative to what the velocity would be for the nonvibrating molecule. A significant increase is noted in the velocity of rotation during the asymmetric CH₃ deformation (v_7) , because all Coriolis coupling constants are negative (between -0.33 and -0.39). These results are what is expected if the CH₃ group were considered to be a symmetrical 3-armed flywheel rotating about a fixed axis. The velocity of rotation would be increased if one or more of the arms were bent toward the fixed axis; in the case of v_7 there is an alternating bending of two hydrogen atoms with one hydrogen atom toward and away from the molecular axis. Perhaps this can be more clearly demonstrated in $v_{10}(e)$, which is essentially C-X bend in the case of 1-halopropyne; a shift of such a heavy atom off of the molecular axis would most certainly slow down the velocity of the molecular rotation relative to that of the fixed rigid rotating molecule. The order of magnitude of the Coriolis coupling coefficients has significance in the interpretation of the IR spectra of these compounds. The larger the value the closer the Q peaks are spaced in the subband. Consequently, a value of approximately one might appear to be nearly one broad absorption band with little or no fine structure due to unresolved closely spaced Q peaks in the subband. It is significant to note that the perpendicular (e) modes in solution or in the liquid phases appear to be as broad as they are in the vapor phase. They differ only in that the fine structure (Q peaks) are not observed. This suggests that in the condensed phases the molecules are still rotating, but not as freely as in the vapor phase (7).

PHENYLACETYLENE IN VARIOUS SOLUTIONS

Phenylacetylene in 0 to 100 mol % CHCl₃/CCl₄ solutions has been studied utilizing FT–IR spectroscopy (14) (see Table 5.5). Figure 5.2 shows a plot of $v\equiv C-H$ for phenylacetylene vs mole % CHCl₃/CCl₄. Figure 5.2 shows that the $v\equiv C-H$ decreases in frequency as the mole % CHCl₃/CCl₄ increases. Breaks in the plot near 10 and 45–55 mol % CHCl₃/CCl₄ suggest that different complexes are being formed as the mole % CHCl₃/CCl₄ changes.

In the case of phenylacetylene in solution, a complex such as ϕ -C \equiv C-H···ClCCl₃ is suggested, in intermediate solutions of CHCl₃/CCl₄ a complex such as

$$\phi$$
−C≡C-H · · · ClCCl₃
:
Cl₃CH

and in CHCl₃ a complex such as

are suggested to explain the changes in both the $v \equiv C-H$ and $vC \equiv C$ frequency changes with change in the solvent system. Bulk dielectric effects of the solvents also contribute to the group frequency shifts as the mole % change from 0–100.

Figure 5.3 shows a plot of $vC\equiv C$ vs mole % CHCl₃/CCl₄. This plot shows that $vC\equiv C$ decreases in frequency as the mole % CHCl₃/CCl₄ is increased. Figure 5.4 shows a plot of the inplane $\equiv C$ —H bending mode $\delta_{ip}\equiv C$ —H vs mole % CHCl₃/CCl₄. The plot stops near 60 mol % CHCl₃/CCl₄. The plot stops near 60 mol % CH₃/CCl₄, because absorbance from CHCl₃ masks the absorbance of $\delta_{ip}\equiv C$ —H. This plot shows that $\delta_{ip}\equiv C$ —H increases in frequency as the mole % CHCl₃/CCl₄ is increased. Figure 5.5 shows a plot of the out-of-plane $\equiv C$ —H mode, $\gamma_{op}\equiv C$ —H vs mole % CHCl₃/CCl₄ for phenylacetylene, and it shows that it increases in frequency as the mole % CHCl₃/CCl₄ is increased. The breaks in Figs. 5.2 and 5.5 indicate that different complexes are forming in these mole % CHCl₃/CCl₄ segments of the plots.

Table 5.5 lists IR data for phenylacetylene in 2% wt/vol solutions in mole % CHCl₃/CCl₄ solutions (14). Two IR bands are noted near 3300 cm⁻¹ in the neat phase and in solution in various solvents. For example, in hexane solution, the strongest band in this set occurs at 3322.91 cm⁻¹ and the shoulder occurs at 3311.27 cm⁻¹ while in the neat liquid the strongest band in this set occurs at 3291.17 cm⁻¹ and the shoulder occurs at 3305.08 cm⁻¹. The changes in both frequency and the intensity ratio of this band set is proof that these two bands are in Fermi resonance (FR.), and these two bands have been corrected for FR. The corrected frequencies vary between 3297.2 and 3318.1 cm⁻¹ for $v \equiv C - H$ and between 3299.2 and 3316.1 cm⁻¹ for the combination tone. The highest $v \equiv C - H$ frequency exhibited by phenylacetylene is when it is in solution with hexane and the lowest when in the neat liquid phase.

A plot of $\gamma_{op} \equiv C - H \, cm^{-1}$ vs $\delta_{ip} \equiv C - H \, cm^{-1}$ for phenylacetylene (recorded in solvents that were not masked by the solvents used in this study and that for the neat liquid phase show a linear relationship). This indicates that both modes are affected equally in a particular solvent, but differently in each solvent in the neat liquid phase (14). These data do not correlate well with the solvent acceptor number (AN), and this may be due to the fact that the AN values do not reflect the intermolecular hydrogen bonding capabilities of solvents such as CH_2Cl_2 and $CHClCl_3$.

1,4-DIPHENYLBUTADIYNE

In the solid state 1,4-diphenylbutadiyne has a monoclinic crystal structure with two molecules in the unit cell. The two molecules in the unit cell have a center of symmetry (12). The space group for 1,4-diphenylbutadiene is $P2_1/C$, which is isomorphous with the C_{2h} point group. Thus, the $v_{ip}(C\equiv C)_2$, Ag mode should be only Raman active and the $v_{op}(C\equiv C)_2$, Bu mode should be only IR active.

Table 5.6 lists IR data and assignments for 1,4-diphenylbutadiyne in $\sim 10\%$ wt/vol CHCl₃/CCl₄ solutions (13). Raman data for this compound in the solid state and in CHCl₃ and CCl₄ solutions are also included. A Raman band at 2218.9 (in CCl₄), at 2217.8 (in CHCl₃), and at 2214.4 cm⁻¹ in the solid phase is assigned to $v_{\rm ip}(C\equiv C)_2$. The IR band at 2150 cm⁻¹ in the solid state is assigned to $v_{\rm op}(C\equiv C)_2$. The $v_{\rm ip}(\equiv C)_2$ mode in the solid state occurs 64.4 cm⁻¹ higher in frequency than the $v_{\rm op}(C\equiv C)_2$ mode in the solid state. There is no evidence for $v_{\rm op}(C\equiv C)_2$ in the Raman spectrum in either of the solution or solid phases. The solid phase data and assignments for 1,4-diphenylbutadiyne support the x-ray data (12).

In CCl₄ solution $v_{ip}(C\equiv C)_2$ is assigned at 2250.51 cm⁻¹ and in CHCl₃ solution at 2219.45 cm⁻¹, a decrease in frequency of 1.06 cm⁻¹. In CCl₄ solution $v_{op}(C\equiv C)_2$ is assigned

at 2152.23 cm⁻¹ and in CHCl₃ solution at 2150.22 cm⁻¹, a decrease in frequency of 2.01 cm⁻¹ (see Table 5.6). In the IR, the absorbance ratio $[(A)v_{ip}(C\equiv C)_2]/[(A)v_{op}(C\equiv C)_2]$ generally increases as the mole % CHCl₃/CCl₄ increases. As $v_{ip}(C\equiv C)_2$ is observed in the IR when 1,4-butadiyne is in solution, this indicates that in solution the two phenyl groups are not coplanar as they are in the solid phase (13).

PROPARGYL ALCOHOL VS PROPARGYL FLUORIDE

Table 5.7 list vibrational data and assignments for propargyl alcohol, its $-\mathrm{OD}$ and 1-d and $\mathrm{O-D}$ analogs and propargyl fluoride (3-fluoropropyne). It is helpful to compare the frequency assignments of a fluoro analog to the corresponding OH analog, because the C-F and C-O modes occur at similar frequency, and the F analog contains 3 less fundamental vibrations. The OH analog has an additional 3 fundamental vibrations. They are ν OH, δ OH, and τ OH (or OH torsion in the vapor phase). The assignments for the propargyl alcohol and its deuterium analogs are included to show the reader the value of using the vibrational assignment for corresponding R-F vs R-OH or R-O analogs. The same will be shown to be of value in the vibrational assignments for Aryl analogs and phosphorus analogs.

The interesting feature in the study of propargyl alcohol is that in the liquid phase it does not have a plane of symmetry because CH_2 twist couples with OH bending and CH_2 wag, indicating that these fundamentals all belong to the same species. With C_s symmetry, CH_2 twisting belongs to the a"" symmetry species, and δOH and CH_2 wag belong to the a' species (15).

1,3-DIHALOPROPYNES

Vapor- and solution-phase infrared spectra of 1,3-dichloropropyne are presented in Figures 5.6 and 5.7, respectively. Complete vibrational assignments have been made for both 1,3-dichloropropyne and its 1,3-Br₂ analog (16). Vibrational assignments based on both IR and Raman data for the 15 fundamentals of each analog are presented in Table 5.8. The a' and a" fundamentals are due to in-plane and out-of-plane vibrations, respectively. The a' modes should yield type A/B IR vapor bands and polarized Raman bands while a" modes should yield type C IR vapor bands and depolarized Raman bands.

The band at 2261 cm⁻¹ is assigned to primarily $\nu C \equiv C$ in the case of 1,3-dichloropropyne. The band at 2224 cm⁻¹ is assigned to a combination tone $(\nu_5 + \nu_{10})$. The two bands are in Fermi resonance (F.R.) and these two frequencies have not been corrected for F.R. The F.R. correction would lower the unperturbed $\nu C \equiv C$ frequency and raise the combination tone frequency.

Assignments in Table 5.8 are simplified because the $X-C-C\equiv C-X$ stretching modes are expected to be complex as discussed for the 1-halopropynes.

In the case of the 1,3-dihalopropynes it appears as though the $vC \equiv C$ mode is even more complex than it is in the case of 1-haloalkyne. The $C-C \equiv C-X$ atoms are all on the molecular axis, and the other X atom is in the plane of molecular symmetry. Therefore, when the $C \equiv C$ group expands and contracts during a cycle of $vC \equiv C$, the C-C of the group, $C-C \equiv$, and the $\equiv C-X$ groups must compress and expand. In addition the $X-C-C \equiv$ bond angle most likely decreases to a small degree in the case of 3-bromopropyne. Comparison of these vibrations for 1,3-dibromopropyne and 1-bromopropyne show that these modes occur at similar frequencies.

Compound	vC≡C cm ⁻¹	$vC-C \equiv cm^{-1}$	ν≡C−X cm ⁻¹
1,3-dibromopropyne	2226	1064	512
1-bromopropyne	2239	1037	464
3-bromopropyne	2138	961	3335

The $vC-C\equiv$ and $v\equiv C-X$ modes for 1,3-dibromopropyne occur at higher frequency than the corresponding modes for 1-bromopropyne. Moreover, the $vC\equiv C$ and $vC-C\equiv$ modes are higher than those exhibited by the 3-halopropynes. These data indicate that $vC\equiv C$ is a more complex mode than just stretching of the $C\equiv C$ bond. Nevertheless, $vC\equiv C$ is considered to be a good group frequency in identifying this group in unknown samples.

Figure 5.8 shows the expected normal vibrations of 1-halopropynes, 3-halopropynes, and 1,3-dihalopropynes (16) and their frequency assignments. These normal modes are most likely oversimplified.

PHENYLACETYLENE AND PHENYLACETYLENE-1D

Table 5.9 lists vibrational data for phenylacetylene and phenylacetylene-1d. The in-plane CC-H and CC-D bending frequencies are assigned at 648 and 482 cm⁻¹, respectively. The out-of-plane CC-H and CC-D bending frequencies are assigned at 612 and 482 cm⁻¹, respectively. Again, the $vC\equiv C$ mode for the H and D analogs occur at 2119 and 1989 cm⁻¹, respectively, and this is attributed to coupling between $vC\equiv C$ and vC-D (17).

Assignment of the ring modes will be discussed later.

REFERENCES

- 1. Nyquist, R. A. and Potts, W. J. (1960). Spectrochim. Acta, 16, 419.
- 2. Evans, J. C. and Nyquist, R. A. (1963). Spectrochim. Acta, 19, 1153.
- 3. Nyquist, R. A. (1985). Appl. Spectrosc., 39, 1088.
- 4. Nyquist, R. A., Reder, T. L., Ward, G. R., and Kallos, G. J. (1971). Spectrochim. Acta, 27A, 541.
- 5. Nyquist, R. A., Reder, T. L., Stec, F. F., and Kallos, G. J. (1971). Spectrochim. Acta, 27A, 897.
- 6. Evans, J. C. and Nyquist, R. A. (1960). Spectrochim. Acta, 16, 918.
- 7. Nyquist, R. A. (1965). Spectrochim. Acta, 7, 1245.
- 8. Davidson, D. W., Sundaram, S., and Cleveland, F. F. (1962). J. Chem. Phys., 37, 1087.
- 9. Boyd, D. R. J. and Thompson, H. W. (1952). Trans. Faraday Soc., 48, 493.
- 10. Grisenthwaite, H. A. J. and Thompson, H. W. (1954). Trans. Faraday Soc., 50, 212.
- 11. Lord, R. C. and Merrifield, R. E. (1952). J. Chem. Phys., 20, 1348.
- 12. Wiebenga, E. H. (1940). Z. Kristallogr., 102, 93.
- 13. Nyquist, R. A. and Putzig, C. L. (1992). Vib. Spectrosc., 4, 35.
- 14. Nyquist, R. A. and Fiedler, S. (1994). Vib. Spectrosc., 7, 149.
- 15. Nyquist, R. A. (1971). Spectrochim. Acta, 27A, 2513.
- 16. Nyquist, R. A., Johnson, A. L., and Lo, Y.-S. (1965). Spectrochim. Acta, 21, 77.
- 17. Evans, J. C. and Nyquist, R. A. (1960). Spectrochim. Acta, 16, 918.

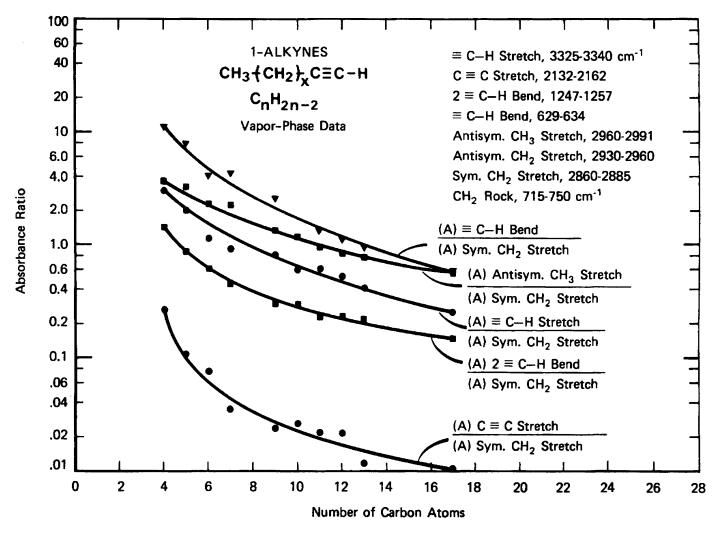


FIGURE 5.1 A plot of absorbance ratios for the 1-alkynes vs the number of carbon atoms in the 1-alkynes.

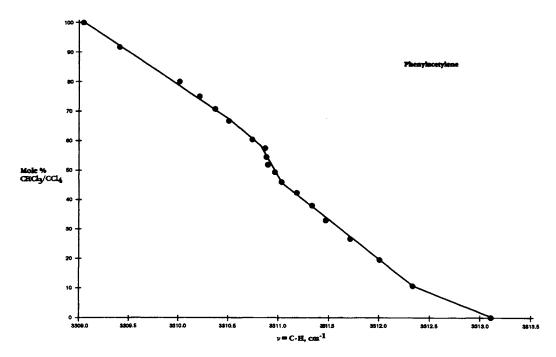


FIGURE 5.2 A plot of ν =C-H for phenylacetylene vs mole % CHCl₃/CCl₄.

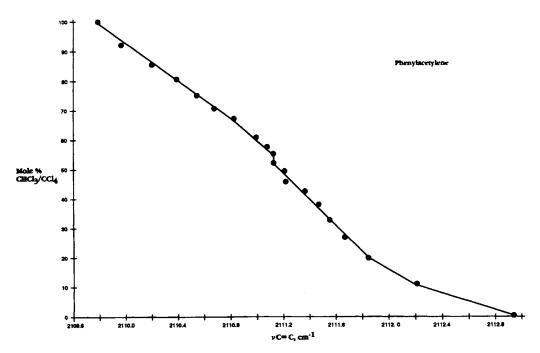


FIGURE 5.3 A plot of $\nu C \equiv C$ for phenyl acetylene vs mole % CHCl₃/CCl₄.

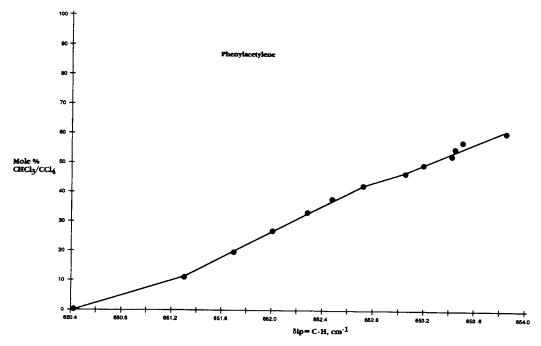


FIGURE 5.4 A plot of the in-plane \equiv C-H mode vs mole % CHCl₃/CCl₄.

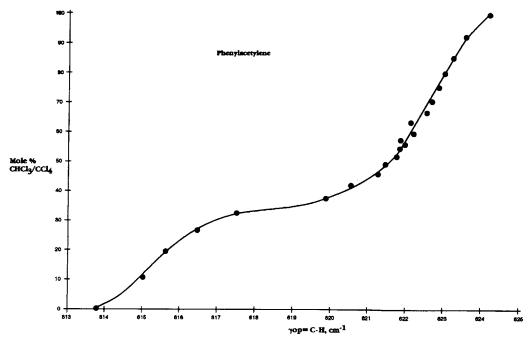


FIGURE 5.5 A plot of out-of-plane $\equiv C-H$ mode vs the in-plane $\equiv C-H$ bending mode.

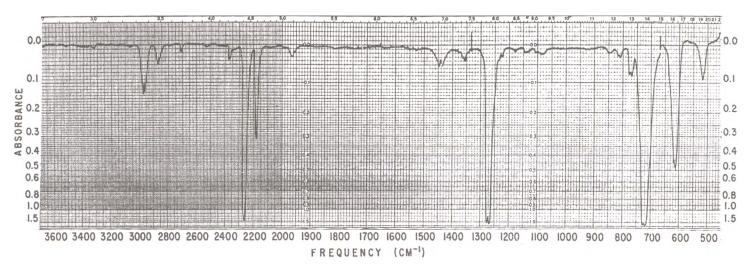


FIGURE 5.6 Vapor- and solution-phase infrared spectra of 1,3-dichloro-propyne.

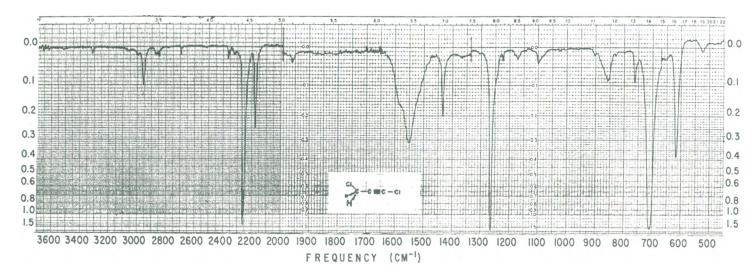


FIGURE 5.7 Vapor- and solution-phase infrared spectra of 1,3-dichloro-propyne.

APPROXIMATE NORMAL MODES PROPYNE AND 1-HALOPROPYNES

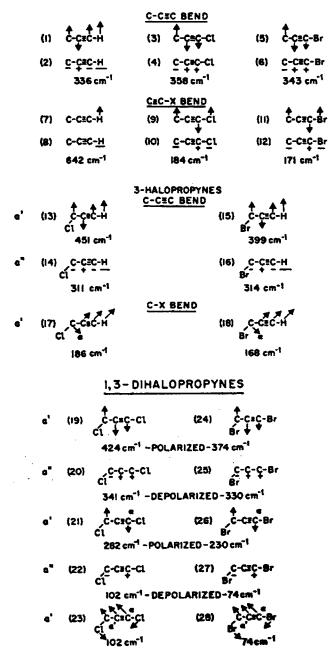


FIGURE 5.8 The expected normal modes of 1-halopropynes, 3-halopropynes, and 1,3-dihalopropynes.

TABLE 5.1 IR data and assignments for terminal acetylenic compounds

Compound type	C-H str.	CC str.	C-C str.	C-H bend	2(C-H bend)	C-CC bend
СН3-СС-Н	3320	2130	930	630	1249	
R-CH ₂ -CC-H	3300sh 3320 3299sh	2121	924–959	628–633	1242–1249	335
C ₆ H ₅ CC-H [vapor]	3340 3320sh	2120		642 and 613	1219	
C_6H_5 -CC-H [soln]	3316 3305sh	2115		648 and 611	1219	353?
ICH ₂ -CC-H	3315 3298sh	2109sh 2148sh	961	637	1263	
BrCH ₂ -CC-H	3315 3300sh	2126 2121sh	959	649 and 639	1265	313?
BrCH ₂ -CC-D	2599, CD str. 2582sh	1994	943	512 and 503	1000	301
CICH ₂ -CC-H	3315 3299sh	2131 2126sh	959	652 and 637		310?
ClCH ₂ -CC-D	2618, CD str. 2589sh	2000	943	516 and 502	1043	300
FCH ₂ -CC-H	3322 3310sh	2148		674 and 636		
HOCH₂−CC−H	3316 3296sh	2120	902	650 and 629	1268?	
$HOCH_2C(-R)_2-CC-H$	3314–3316 3294–3300sh	2102–2115		649–655 620–630		
CH ₃ O-CC-H	3317 3296sh	2119 2104sh	932	663 and 625		
$ROC(-R)_2-CC-H$	3312-3314 3292-3296sh	2103-2111	908–938	651–660 627–630		
C ₆ H ₅ OCH ₂ -CC-H	3312-3320 3292-3301sh	2121–2131 2139sh		665–671 628–663		
C ₆ H ₅ CH ₂ SCH ₂ -CC-H	3317 3299sh	2120 2100sh	949	634	1248?	325?
C ₆ H ₅ SCH ₂ -CC-H	3318 3300sh	2122 2100sh	950	635		320?
$(R)_2NCH_2-CC-H$	3311-3316 3295-3300sh	~ 2100	897–925	647–653 622–624		~330?

?tentative assignment.

TABLE 5.2 IR and Raman data and assignments for 3-halopropynes

Species	3-fluoro- propyne	3-chloro- propyne	3-chloro- propyne-1-d	3-bromo- propyne	3-broma- propyne-1-d	3-iodo- propyne	Assignment
a'	3328	3335	2618	3335	2607	3335	CH or CD str.
	2955	2968	2969	2976	2978	2958	s. CH ₂ str.
	2150	2147	2000	2138	2006	2130	CC str.
	1465	1441	1442	1431	1436	1423	CH ₂ bend
	1381	1271	1265	1218	1215	1160	CH ₂ wag
	940	960	943	961	945	959	C-C str.
	1039	725	723	621	634	570	C-X str.
	675	650	516	652	512	640	C-H or C-D bend
	539	451	438	399	386	364	skeletal bend
	211	186	165	168	163	157	skeletal bend
a"	2972	3002	2992	3006	3008	3008	a.CH ₂ str.
	1242	1179	1176	1152	1151	1116	CH ₂ twist
	1018	908	908	866	866	810	CH ₂ rock
	635	637	502	637	501	640	CH or CD bend
	310	311	294	314	296	314	skeletal bend

TABLE 5.3 IR vapor-phase data and assignments for 1-alkynes

Compound	CC-H str.	C.T.	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	CC str.	CH ₂ bend	s.CH ₃ bend	2(CCH bend)	CH ₂ rock	CCH bend	RI(A) CCH bend/RI(A) a.CH ₂ str.
1-Pentyne	3330		2978	2952		2890	2135	1460	1390	1250		630	4.28
	(0.310)		(0.390)	(0.290)		(0.110)	(0.020)	(0.059)	(0.020)	(0.125)		(1.240)	
1-Hexyne	3330		2970	2948	2900	2880	2120	1455	1385	1249	740	630	1.67
	(0.388)		(0.877)	(0.750)	(0.318)	(0.323)	(0.056)	(0.101)	(0.048)	(0.199)	(0.020)	(1.250)	
1-Heptyne	3330		2970	2945		2980	2125	1460	1380	1250	740	631	1.24
	(0.273)		(0.661)	(0.990)		(0.296)	(0.034)	(0.090)	(0.035)	(0.131)	(0.020)	(1.230)	
1-Nonyne	3338		2970	2940		2870	2130	1467	1386	1249	725	630	0.77
	(0.305)		(0.491)	(1.240)		(0.385)	(0.030)	(0.084)	(0.025)	(0.120)	(0.010)	(0.950)	
1-Decyne	3338	3320	2970	2940		2875	2124	1465	1385	1250	724	632	0.61
	(0.259)	(0.106)	(0.540)	(1.143)		(0.490)	(0.024)	(0.100)	(0.049)	(0.139)	(0.010)	(0.700)	
1-Undecyne	3338	3318	2970	2940		2868	2124	1466	1385	1250	722	630	0.48
	(0.250)	(0.060)	(0.420)	(1.250)		(0.440)	(0.034)	(0.090)	(0.030)	(0.100)	(0.030)	(0.604)	
1-Dodecyne	3328	3320	2970	2935		2864	2122	1465	1380	1248	719	630	0.47
	(0.270)	(0.070)	(0.440)	(1.240)		(0.420)	(0.025)	(0.100)	(0.022)	(0.119)	(0.011)	(0.590)	
1-Tridecyne	3330	3310	2970	2935		2860	2121	1465	1385	1246	720	631	0.32
	(0.169)	(0.056)	(0.319)	(1.250)		(0.430)	(0.015)	(0.048)	(0.030)	(0.089)	(0.020)	(0.409)	

TABLE 5.4	IR data and assignments fo	r 1-chloropropyne and	1-bromopropyne

Species	1-Bromopropyne	1-Iodopropyne	Assignment
a_1	2922	2922	s.CH ₃ str.
	2239	2210	CC str.
	1368	1364	s.CH ₃ bend
	1037	1013	C-C str.
	465	403*1	C-X str.
e	2965	2965	a.CH ₃ str.
	1442	1439	a.CH ₃ bend
	1027	1021	CH ₃ rock
	343*1	3 4 3	skeletal bend
	171*1	163*1	G-X bend

^{*1 [}liquid].

TABLE 5.4A Coriolis coupling constants for 1-chloropropyne and 1-bromopropyne

Assignment	1-Chloropropyne	1-Bromopropyne	1-Iodopropyne	Propyne	Propyne-1-d
a.CH ₃ , e [stretch]	0.042	0.051	0.072	0.074	0.071
a.CH ₃ , e [bend]	0.357	-0.347	-0.336	-0.39	-0.37
a.CH3, e [rock]	0.4	0.393	0.383	0.387	0.4
skeletal bend, e	0.90 less than 1	0.95 less than 1	0.94 less than 1	0.96 less than 1	0.92 less than 1
C-X bend, e	0.90 less than 1	0.95 less than 1	0.94 less than 1	0.96 less than 1	0.92 less than 1

TABLE 5.5 IR data for phenylacetylene in CHCl₃/CCl₄ solutions

Phenyl- acetylene Mole % CHCl ₃ /CCl ₄	C-H str. cm ⁻¹	CC str.	i.p. CC-H bend cm ⁻¹	o.p. CC—H bend cm ⁻¹	v32 (b2) ring def. cm ⁻¹	v34 (b2) sk. def. cm ⁻¹	v24 (b1) sk. def. cm ⁻¹
0	3313.1	2113	650.4	613.8	690.4	530	513.6
26.53	3311.7	2111.7	652	616.5	690.6	530.2	513.5
52	3310.9	2111.1	653.4	621.7	690.9	530.3	513.4
75.06	3310.2	2110.5		622.9	691.2	530.4	513.4
100	3309.1	2109.8		624.2	691.8	530.5	513.4
delta cm ⁻¹	-4	-3.2	3	10.4	1.4	0.5	-0.2

TABLE 5.6 IR data and assignments for 1,4-diphenylbutadiyne in CHCl₃/CCl₄ solutions

1,4-Diphenyl- butadiyne IR Mole % CHCl ₃ /CCl ₄		o.p. (CC) ₂ str cm ⁻¹	[i.p. (CC) ₂ str]- [o.p. (CC) ₂ str.]	A[i.p. (CC) ₂ str.}	A[o p. (CC) ₂ str.]	A[i.p. (CC) ₂ str.] /A[o.p. (CC) ₂ str.] cm ⁻¹	IR solid	Raman i.p. $(CC)_2$ str. cm^{-1} $[CCl_4]$	Raman i.p. (CC) ₂ str cm ⁻¹ [solid]	[i.p. (CC) ₂ str.]- [o.p. (CC) ₂ str.]
0	2220.51	2152.23	68.28	0.215	0.32	0.67	2150	2218.9	2214.4	64.4
10.8	2220.34	2151.93	68.41				2130	2210.9	2217.7	04.4
10.8	2220.2	2152.15	68.05	0.26	0.36	0.55				
26.7	2220.11	2151.57	68.54							
26.7	2220.13	2151.61	68.52	0.293	0.369	0.79				
37.7	2219.99	2151.29	68.7	0.365	0.422	0.86				
45.9	2119.89	2151.12	68.6	0.414	0.464	0.89				
52.2	2219.83	2150.99	68.84	0.432	0.481	0.9				
63.4	2219.72	2150.79	68.9	0.476	0.518	0.92				
70.8	2219.65	2150.63	69.02	0.516	0.561	0.92				
80.2	2219.55	2150.45	69.1	0.575	0.617	0.93				
92.4	2219.41	2150.25	69.16	0.618	0.65	0.95	[CHCl ₃]			
100	2219.45	2150.22	69.23	0.649	0.697	0.93	2217.8			67.50
delta cm ⁻¹	1.06	2.01	0.95			2.73	2217.0	1.1		67.58

TABLE 5.7 Vibrational assignments for propargyl alcohol, propargyl alcohol-od, propargyl alcohol-1d, od, and propargyl fluoride

H-CC-CH ₂ -OH cm ⁻¹	$H-CC-CH_2-OD$ cm^{-1}	D-CC-CH ₂ -OD cm ⁻¹	H-CC-CH ₂ -F cm ⁻¹	Assignments and approximate descriptions [OH or OD analogs are all assigned to the a species
3319	3319	2597	3320	C-H str., a' or C-D str. coupled with CC str.
2950	2950	2960	2980	a.CH ₂ str., a"
2925	2930	2937	2957	s.CH ₂ str. a'
2138	2133	1987	2146	CC str. or CC str. coupled with C-D str.
1452	1456	1457	1457	CH_2 bend, a''
1382	1362	1366	1375	CH ₂ wag, a'
1227 [H-bonded]	1220	1165	1240	CH ₂ twist, a"
1197 [unassociated]				
1032	1030	1035	1020	C-F str., a' or C-O str.
972	971	981	1018	CH ₂ rock, a"
907	907	938	943	C-C str., a'
955	656	519 or 493	675	C-H bend, a' or C-D bend
629	629	493 or 519	637	C-H bend, a'' or $C-D$ bend
551	553	562	544	C-C-F bend, a' or $C-C-O$ bend
312	313	304	310	C- CC bend, a''
235	~ 230	211	211	C–CC bend, a'
3663 [vapor] and 3625 [soln.]		2706 [vapor]		O-H or O-D str. [unassociated]
~3500bd [soln.]	2678 [soln.]	2640 [liquid]		O-H or O-D str. [bonded]
1298 [vapor]	20,0 (50,00)			C-O-H or C-O-D bend [unassociated]
1420 [liquid]				C-O-H or C-O-D bend [bonded]
192 [soln.]		~150 [soln.]		C-O-H or C-O-D torsion

1,3-Dichloropropyne cm ⁻¹	1,3-Dibromopropyne cm^{-1}	Assignment
cm	CIII	Assignment
		a' species
2957	2959	CH ₂ str.
2261	2226	CC str.
1433	1423	CH ₂ bend
1264	1205	CH ₂ wag
1098	1064	C-C str.
709	613	C-X str.
617	512	CC-X str.
424	374	C-CC bend
282	230	skeletal bend
102	74	CC-X bend
		a" species
2994	3004	CH ₂ str.
1172	1140	CH ₂ twist
904	857	CH ₂ rock
341	330	C-CC bend
102	74	CC-X bend

TABLE 5.9 Vibrational data and assignments for phenylacetylene and phenylacetylene-1d

Phenylacetylene	Phenylacetylene-d1		
cm ⁻¹	cm ⁻¹	Assignment	Description
		al	
3315		vl	CC-H str.
3313	2596	vl	CC-D str.
3065	3068	v2	
3058	3059	v3	
3035	3037	v4	
2119		v5	CC str.
	1989	v5	CC str.
1597	1596	v6	
1490	1489	v 7	
1192	1189	v8	
1178	1174	v9	
1028	1023	v10	
1000	998	v11	
763	759	v12	
467	462	v13	
		bl	
3101	3101	v14	
3083	3085	v15	
1573	1572	v16	
1446	1443	v17	
1332	1328	v18	
1285	1279	v19	
1158	1157	v20	
1071	1069	v21	
648		v22	CC-H bend
	482	v22	CC-D bend
610	623	v23	
515	529	v24	
351	344	v25	
		a2	
967	968	v26	
842	840	v27	
418	418	v28	
		b2	
983	982	v29	
917	914	v30	
754	754	v31	
688	688	v32	
612		v33	o.p. CC-H bend
-	482	v33	op. CC-D bend
529	529	v34	•
351	344	v35	
165	152	v36	

1-Halopropadienes and 1-Bromopropadiene-1d

References			116
Figures		Table	
Figure 6-1	118 (115)	Table 6-1	123 (115)
Figure 6-2	118 (115)		
Figure 6-3	119 (115)		
Figure 6-3a	119		
Figure 6-4	120 (115, 116)		
Figure 6-5	121 (116)		
Figure 6-6	122 (116)		

^{*}Numbers in parentheses indicate in-text page reference.

Propadienes were discussed in Chapter 4, and assignments were presented in Table 4.16. Chapter 6 is presented separately from previous discussion of propadienes because these compounds are formed from the rearrangement of 3-halopropynes. By study of the rearrangement of 3-bromopropyne-1d, it was possible to determine the rearrangement mechanism.

Assignments of these propadienes were based upon both IR and Raman data. Table 6.1 lists the frequencies and assignments for these 1-halopropadienes and 1-bromopropadiene-1d (1,2). Infrared solution and vapor-phase spectra of 3-bromopropyne-1d impure with 3-bromopropyne are shown in Fig. 6.1 and the Raman spectra are shown in Fig. 6.2. Figure 6.3 shows IR solution and vapor-phase spectra and Fig. 6.3a shows the Raman spectrum of 1-bromopropadiene-1d impure with 1-bromopropadiene (2).

The exchange between $C \equiv C - H$ and O - D to form $C \equiv C - D$ is known to occur under basic conditions, and it was used to prepare phenylacetylene-1d (3). The method for deuterium change utilizes a basic column packing. The sample of 3-bromopropyne-1d was passed through a preparative gas-liquid chromatography column packed with chromosorb w(30-60 mesh) coated with 15% E20M and 10% KOH that had been pretreated with D_2O (4). The sample of 1-bromopropadiene-1d was prepared using a method developed at The Dow Chemical Company (5). Using 2 ml of the \sim 90% sample of 3-bromopropyne-1d as starting material, in solution in 20 ml of dimethylformamide in the presence of 50 mg of NaBr under atmospheric pressure and 100 °C for 5 h, the sample of 1-bromopropadiene-1d was synthesized. The solution was then passed through a preparative liquid-gas chromatographic column, and the sample collected in a

trap. The sample of 1-bromopropadiene-1d contained about 10% 1-bromopropadiene as an impurity.

The halopropadienes have C_s symmetry, and the 15 normal modes are distributed as: 10a' and 5a''. The a' modes are symmetrical and the a'' modes antisymmetrical with respect to the plane of symmetry. The a' modes should yield type A/B IR vapor bands and polarized Raman bands, while a'' modes should yield type C IR vapor bands and depolarized Raman bands. The question to be answered is whether the product formed is HDC=C=CHBr or CH₂=C=CDBr. In other words, did the deuterium atom or the bromine atom move in the chemical rearrangement?

IR vapor-phase spectra for 1-chloro-, 1-bromo-, and 1-iodopropropadiene are shown in Figs. 6.4, 6.5, and 6.6, respectively. IR vapor-phase type A/B bands are noted at (888/868 cm⁻¹), (873/852 cm⁻¹), and (860/848 cm⁻¹) for the Cl, Br, and I analogs, respectively. In addition, a type A/B band is noted at (872/865 cm⁻¹) in the case of the deuterated propadiene analog. Each of these compounds exhibits a type A/B band at (1758/1745 cm⁻¹), (1743/1732 cm⁻¹), (1717/1707 cm⁻¹), and (1735/1725 cm⁻¹) for the Cl, Br, I, and BrD analogs, respectively. The calculated first overtone of the type A/B bands reported here are: (1776/1736 cm⁻¹), (1746, 1704 cm⁻¹), (1720/1696 cm⁻¹), and 1744/1730 cm⁻¹ for the Cl, Br, I, and BrD analogs, respectively. Assignment of the type A/B bands in the region 848–888 cm⁻¹ to CH₂ = wag, and the type A/B bands in the region 1725–1758 cm⁻¹ as 2(CH₂ = wag) is correct, because the CH₂ = wag mode always exhibits negative anharmonicity (occurs at higher frequency than the calculated 2(CH₂ = wag) (6).

A vapor-phase type C band is observed at 822, 812, and 807 cm⁻¹ in the IR spectra of 1-chloro-, 1-bromo-, and 1-iodopropadiene, and a type C band is observed at 681 cm⁻¹ in the case of the BrD analog. The ratio 812 cm⁻¹/681 cm⁻¹ is equal to 1.19. The bands in the region 807–882 cm⁻¹ are assigned to the out-of-plane =C-H bending vibration for the Cl, Br, and I propadiene analogs, respectively. In the case of the BrD analog the out-of-plane C-D bending mode is assigned at 681 cm⁻¹. The out-of-plane C=C=C bending mode for 1-bromopropadiene is assigned at 519 cm⁻¹ and for the BrD analog it is assigned at 501 cm⁻¹. It is most likely that the out-of-plane bending mode and the out-of-plane C-D bending modes are coupled, as the out-of-plane mode occurs at higher frequency than predicted (~574 cm⁻¹) and the out-of-plane C=C=C bending mode occurs 18 cm⁻¹ lower than it does for 1-bromopropadiene. Thus, this rearrangement involves migration of the halogen atom rather than the proton or deuteron atoms in a bimolecular reaction (2).

Plots of the fundamental vibrations and some combination and overtones for the 1-halopropadienes vs Pauling electronegativity values have been published (7). The dashed portion of these plots is where these vibrations would be predicted in the case of 1-fluoropropadiene. In our studies of 1-halopropynes, no evidence was observed for the presence of 1-fluoropropadiene. This may not seem surprising, as the strength of the C—X bond decreases in the order F to I. As already noted, it is the halogen atom that is involved in the bi-molecular rearrangement, and the activation energy required to break the C—F bond in this rearrangement is apparently larger than it is for the Cl, Br, and I analogs.

REFERENCES

- 1. Nyquist, R. A., Lo, Y-S, and Evans, J. C. (1964). Spectrochim. Acta, 20, 619.
- 2. Nyquist, R. A., Reder, T. L., Stec, F. F., and Kallos, G. J. (1991). Spectrochim. Acta, 27A, 897.

- 3. Evans, J. C. and Nyquist, R. A. (1960). Spectrochim. Acta, 16.
- 4. Kallos, G. J. and Westover, L. B. (1967). Tetrahedron Lett., 1223.
- 5. Pawloski, C. E. and Stewart, R. L. (1960). Method for the synthesis of 1-bromopropadiene. The Dow Chemical Company, Midland, MI.
- 6. Potts, W. J. and Nyquist, R. A. (1959). Spectrochim. Acta, 15, 679.
- 7. Pauling, L. (1948). The Nature of the Chemical Bond, Ithaca, New York: Cornell University Press.

FIGURE 6.1 Infrared solution and vapor-phase spectra of 3-bromopropyne-1d impure with 3-bromopropyne.

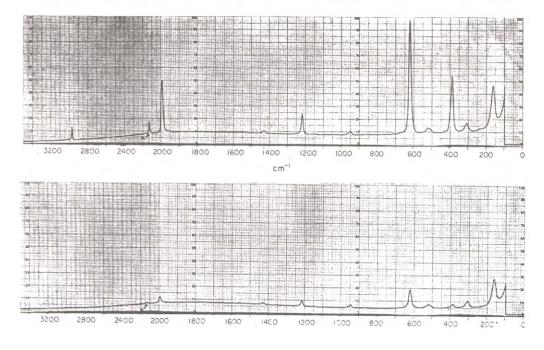


FIGURE 6.2 Raman spectra of 3-bromopropyne-1d impure with 3-bromopropyne.

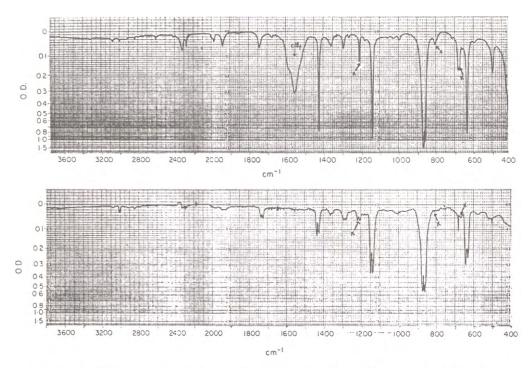


FIGURE 6.3 IR solution and vapor-phase spectra of 1-bromopropadiene-1d impure with 1-bromopropadiene.

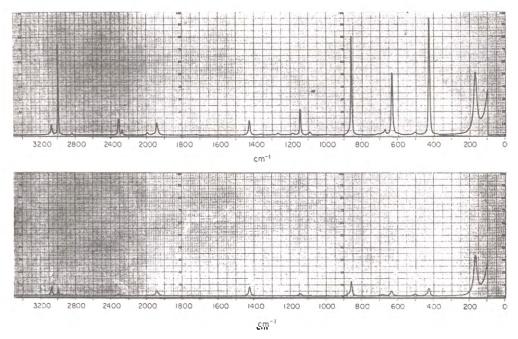


FIGURE 6.3A Raman spectrum of 1-bromopropadiene-1d impure with 1-bromopropadiene.

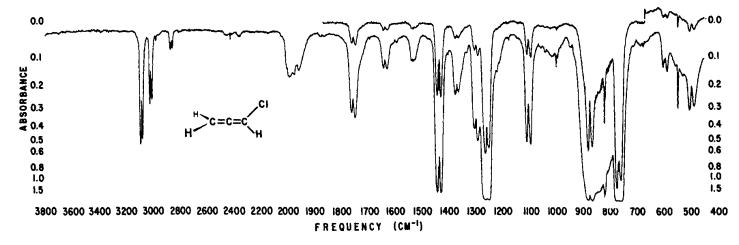


FIGURE 6.4 IR vapor-phase spectra of 1-chloropropadiene.

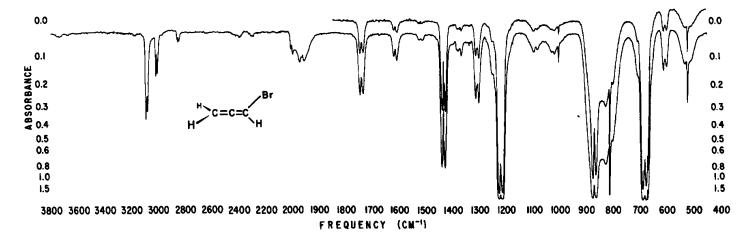


FIGURE 6.5 IR vapor-phase spectra of 1-bromopropadiene.

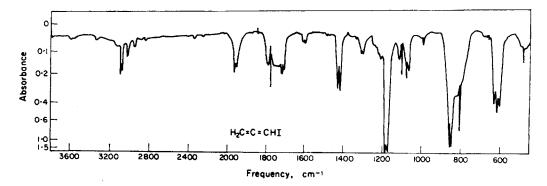


FIGURE 6.6 IR vapor-phase spectra of 1-iodopropadiene.

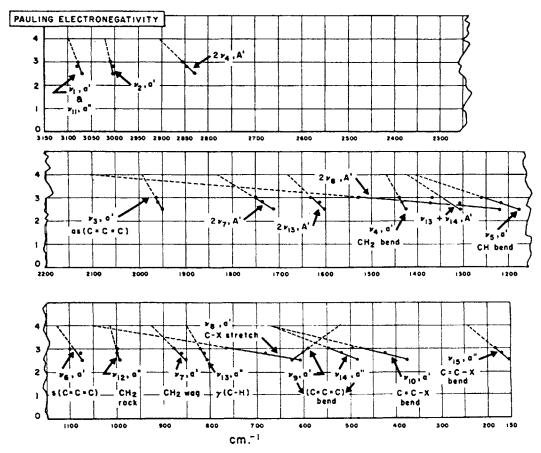


FIGURE 6.7 Plots of the fifteen fundamentals, certain first overtones, and one combination band vs. Pauling electronegativity. The solid lines represent observed data, and the dashed extension is the extrapolation used to predict the partial spectrum of fluoropropadiene (see text).

TABLE 6.1 IR and Raman data and assignments for 1-halopropadienes and 1-bromopropadiene-1d

Species	Chloro- propadiene	Bromo- propadiene	1-Bromo- propadiene-1d	Iodo- propadiene	Assignment
a'	3079	3080	2316	3070	CH str. or CD str.
	3009	3005	3005	3004	CH ₂ str.
	1963	1961	1936	1953	a.C=C=C str.
	1435	1432	1426	1425	CH ₂ bend
	1256	1217	858	1178	CH bend or CD bend
	1101	1078	1141	1076	s.C=C=C str.
	875	862	867	854	CH ₂ wag
	767	681	636	609	C–X str.
	592	603	576	625	C=C=C bend
	494	423*1	426	387* ²	C=C-X
a"	3079	2080	3075	3070	CH ₂ str.
	999	1000	994	995	CH ₂ rock
	822	812	681	807	CH bend or CD bend
	548	519	501	48 5	C=C=C bend
	184*2	169* ²	170	154* ²	C=C-X bend

^{*1 [}liquid] *2 [CS2 soln.]

OH Stretching for Alcohols	125
Alcohol C-O Stretching	127
Primary Alcohols and Cycloalkanols (carbon-hydrogen vibrations)	127
Phenols	127
OH Stretching	127
Phenyl-oxygen Stretching and OH Bending	128
Intramolecular vOH···X Frequencies in the Vapor and CCl ₄	
Solution Phases	130
Weak Intramolecularly Hydrogen-Bonded Phenols	131
Temperature Effects	131
References	131

Figures		Tables		
Figure 7-1	132 (128)	Table 7-1	133 (125)	
Figure 7-2	133 (129)	Table 7-2	135	
Figure 7-3	132 (130)	Table 7-3	136 (128)	
Figure 7-4	132 (131)	Table 7-4	137 (128)	
		Table 7-5	138 (128, 129)	

^{*}Numbers in parentheses indicate in-text page reference.

Both alcohols and phenols are widely used for their unique properties, or as intermediates in the manufacture of other chemicals.

OH STRETCHING FOR ALCOHOLS

Table 7.1 lists IR vapor-phase data for alcohols (1). Primary alcohols, $R-CH_2$ -OH, exhibit the OH stretching frequency in the region 3670–3680 cm⁻¹, secondary alcohols, $(R-)_2$ CH-OH, 3650–3660 cm⁻¹, and tertiary alcohols, $(R-)_3$ C-OH, 3640–3648 cm⁻¹. This decrease in vOH frequency progressing in the series primary, secondary, tertiary alcohols is attributed to the increasing inductive effect of the alkyl groups, which weaken the OH bond (1). In dilute CCl₄ solution, the primary, secondary, and tertiary alcohols occur in the regions 3630–3634, 3620–3635, and 3600–3620 cm⁻¹, respectively (2). The vOH frequencies occur at lower frequency in CCl₄ solution as a result of intermolecular hydrogen bonding between the OH proton and the Cl atom of CCl₄ (e.g., O-H···Cl-C Cl₃)(3). In the vapor phase and in dilute solution the vOH band is sharp, and has relatively weak intensity. This is in contrast to intermolecular hydrogen-bonded OH: OH frequencies, which occur at lower frequency, 3200–3400 cm⁻¹, and have very strong broad band intensities.

Cycloalkanols are also secondary alcohols and their vOH frequencies in dilute CCl_4 solution occur in the region 3621.4–3627.7 cm⁻¹. These vOH frequencies decrease progressively in the order C_4 through C_8 (3). It is interesting to compare the vOH frequencies in the vapor and in dilute CCl_4 solution.

	Vapor cm ⁻¹ (1)	CCl_4 solution $cm^{-1}(3)$	Vapor-CCl₄ cm ^{−1}
cyclopentanol	3660	3625.5	34.5
cyclohexanol	3659	3623.9	35.1
cycloheptanol	3655	3621.7	34.3
cyclooctanol	3650	3621.4	28.6
Δ cm ⁻¹	10	4.1	5.9

In the vapor phase and in CCl_4 solution vOH decreases 10 and 4.1 cm⁻¹ progressing in the series C_5 to C_8 for these cyclic secondary alcohols. In CCl_4 solution the OH is intermolecularly bonded to a Cl atom such as $OH \cdots ClCCl_3$. This intermolecular hydrogen bond weakens the OH bond; consequently, vOH occurs at lower frequency in CCl_4 solution than it occurs in the vapor phase. In addition, the increasing inductive contribution of $(CH_2)_3$ to $(CH_2)_7$ to CHOH is the reason the vOH frequency shifts to lower frequency as the series progresses from C_5 to C_8 . Perhaps the reason that vOH does not shift as much to lower frequency in CCl_4 solution as it does in the vapor phase is that the α -bond

angle increases as n increases from 2 to 5. With the increasing α -bond angle, the α -carbon atoms prevent the OH and CCl₄ Cl atoms from coming as close in space to form the OH···Cl bond. In other words the intermolecular OH···Cl bond distance increases as $(CH_2)_n$ increases due to the increase in the α -bond angle, which increases the steric factor of the two adjacent CH₂ groups.

All alcohols form intermolecular hydrogen bonds in the condensed phase, if steric factors are not present. These intermolecular hydrogen bonds are formed between $(OH:OH)_n$ groups. In the case of the alcohols, the OH group is the most basic site as indicated. In the vapor phase, OH group for ordinary alcohols do not form intermolecular hydrogen bonds at elevated temperature. However, in the vapor phase at elevated temperature alcohols do form intramolecular hydrogen bonds with other available basic sites within the molecule to form 5-, 6-, 7-, or 8-membered intramolecular $OH \cdots X$ bonds. Examples are presented in what follows (1).

The compound 2-methoxyethanol in the vapor phase exhibits a weak shoulder at $3680 \,\mathrm{cm^{-1}}$ assigned as $v\mathrm{OH}$, and the $3640 \,\mathrm{cm^{-1}}$ band is assigned to the intramolecular hydrogen bonded $\mathrm{OH\cdots O}$ group forming a 5-membered group (1). In the case of 2-(2-methoxyethoxy) ethanol, the unassociated $v\mathrm{OH}$ is assigned at $3678 \,\mathrm{cm^{-1}}$, and the IR bands at 3639 and $3540 \,\mathrm{cm^{-1}}$ are assigned to intramolecular hydrogen bond $\mathrm{OH:O}$ groups forming 5- and 8-membered rings, respectively. In both the 5- and 8-membered rings the OH group is bonded to an ether oxygen atom and both have comparable basicity. The 8-membered $v\mathrm{OH\cdots O}$ groups are closer in space and frequency than that for the 5-membered ring, because the $\mathrm{OH\cdots O}$ groups are closer in space and

form a stronger intramolecular hydrogen bond. Numerous examples of intramolecular hydrogen bonds for primary, secondary, and tertiary alcohols with OH, R-O-R, S, halogen, C=C, phenyl, and C=O groups are presented in Reference (1). Those engaged in GC/FT-IR experiments would benefit from information available in this text.

ALCOHOL C-O STRETCHING

The C–O stretching frequency, vC–O, in the vapor phase occurs in the region 1031–1060 cm⁻¹, 1135–1147 cm⁻¹, and 1141–1180 cm⁻¹ for the primary, secondary, and tertiary alcohols, respectively (1). The absorbance (A) for vC–O for the primary alcohols generally decreases in intensity progressing in the series ethanol through 1-decanol, and it is attributed to an increase in the number of (CH₂) groups. The vC–O frequency increase progressing in the series primary, secondary, tertiary alcohol is attributed to increased branching on the C–O–H carbon atom, and vC–O in these cases includes some stretching of the C–C bonds.

PRIMARY ALCOHOLS AND CYCLOALKANOLS (CARBON-HYDROGEN VIBRATIONS)

The vasym. CH_3 and vsym. CH_3 modes occur in the region $2950-2980\,\mathrm{cm}^{-1}$ and $2899-2920\,\mathrm{cm}^{-1}$, respectively. The vasym. CH_2 and vsym. CH_2 modes occur in the region $2930-2940\,\mathrm{cm}^{-1}$ and $2865-2910\,\mathrm{cm}^{-1}$, respectively. The CH_2 bending and sym. CH_3 bending modes occur in the region $1452-1469\,\mathrm{cm}^{-1}$ and $1384-1392\,\mathrm{cm}^{-1}$, respectively. The CH_2 rocking mode occurs in the region $720-778\,\mathrm{cm}^{-1}$.

PHENOLS

In the solid phase (Nujol mull) phenols, which are not intramolecular, exhibit intermolecular hydrogen-bonded hydroxyl groups, $v(OH\cdots OH)_n$ in the range $3180-3400\,\mathrm{cm}^{-1}$. The 2-alkylphenols exhibit $v(OH\cdots OH)_n$ in the range $3438-3535\,\mathrm{cm}^{-1}$, and the frequency increases with the increasing steric factor of the alkyl group $[CH_3$ to $C(CH_3)_3]$ (12). The increasing steric factor increases the bond distance between $(OH\cdots OH)_n$ group. Table 7.2 lists IR vapor-phase data for vOH, $vOH\cdots X$, in-plane OH bending, and phenyl oxygen stretching.

OH STRETCHING

Unassociated vOH for these phenols is assigned in the region 3642–3660 cm⁻¹. In cases where the OH group is in the cis spatial configuration to a tert.-butyl group, the vOH frequency occurs at higher frequency in the region 3670–3680 cm⁻¹. The higher frequency is attributed to repulsion between the OH proton and the protons on the tert.-butyl group. In cases where only one 2-tert.-butyl group is present, a vOH band will occur in each of these regions of the spectrum, and when 2,6-di-tert.-butyl groups are present only one band will occur in the lower region. The phenol vOH:X frequencies occur in the region 3278–3630 cm⁻¹ depending upon which atom or groups are in the 2- or 6-positions. The frequency is dependent upon both the basicity of the X group, the acidity of the OH proton, and the spatial distance between OH and X in the cyclic intramolecular hydrogen bond.

PHENYL-OXYGEN STRETCHING AND OH BENDING

Phenols show a strong band in the region 1209–1295 cm⁻¹ assigned to a complex in-plane ring mode, which includes stretching of the phenyl-O bond, $v\phi$ –O (1). A band in the region 1152–1224 cm⁻¹ is attributed to in-plane OH bending.

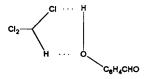

INTRAMOLECULAR $vOH\cdots X$ FREQUENCIES IN THE VAPOR AND CCL_4 SOLUTION PHASES

Table 7.3 compares the vOH, trans vOH, and vOH···X frequencies in the vapor and CCl₄ solution phases.

In the case of phenol, vOH (3650 cm⁻¹) in the vapor decreases $40 \, \mathrm{cm^{-1}}$ in CCl_4 solution (3610 cm⁻¹). The decrease in the vOH frequency is attributed to the formation of an intermolecular hydrogen bond of form $OH \cdots Cl$ with CCl_4 molecules when phenol is in dilute solution in CCl_4 . The vOH: X frequencies listed occur in region (3202–3595 cm⁻¹) in the vapor and occur at lower frequency by 17–35 cm⁻¹ in CCl_4 solution (3185–3560 cm⁻¹). This decrease in frequency we attribute to the formation of $X \cdots H-O$ which further weakens the $CICCl_5$

Table 7.4 lists the vOH frequencies for 1% wt./vol. 4-hydroxybenzaldehyde in 0–100 mol % $CHCl_3/CCl_4$ (4). In this case vOH for 4-hydroxybenzaldehyde decreases $12.4\,\mathrm{cm}^{-1}$ in going from solution in CCl_4 to solution in $CHCl_3$. Moreover, vOH decreases continually as the mole % $CHCl_3/CCl_4$ is increased (see Fig. 7.1). This decrease in frequency results from an increase in the Solvent Field effect as the mole % $CHCl_3/CCl_4$ is increased.

One would expect that the Cl atoms of CCl_4 would be more basic than the Cl atoms of $CHCl_3$ and that the ν OH: Cl in the case of CCl_4 would occur at a lower frequency than in $CHCl_3$, and the opposite is observed in the case of 4-hydroxybenzaldehyde. Apparently, the situation is much more complex in the case of $CHCl_3/Cl_4$ solutions. There is, of course, intermolecular bonding such as $(Cl_3CH\cdots ClCCl_3)_\eta$ in the mixed solvent system. The Cl_3CH proton would also bond intermolecularly with the C=O group $(C=O\cdots HCCl_3)$, both sides of the π system of the phenyl group, and to the OH group such as

All of these intermolecular hydrogen bonding sites filled with $CHCl_3$ would weaken the OH bond because it would be more acidic. Consequently, the $\nu OH: X$ mode would occur at lower frequency than that exhibited by the much simpler case of CCl_4 solution. Apparently, the hydrogen bonding equilibrium shifts as the mole % $CHCl_3/CCl_4$ changes.

Table 7.5 lists IR data for phenol and intramolecular hydrogen-bonded phenols 10% wt./vol. in CCl_4 solution in the region 3800–1333 cm⁻¹ and in CS_2 solution in the region 1333–

 $400\,\mathrm{cm^{-1}}$ using 0.1-mn cells and 10 and 2% wt./vol. in 2,2,4-trimethylpentane in the region $450-280\,\mathrm{cm^{-1}}$ using a 0.4-mn cell unless otherwise indicated (5).

In the case of phenol, vOH occurs at $3610 \, \mathrm{cm}^{-1}$ and OH torsion occurs at $300 \, \mathrm{cm}^{-1}$ (6). In this case the OH group turns about the phenyl-O bond in a circle in and out of the plane of the phenyl group. However, in the case of the intramolecular hydrogen-bonded phenols the OH proton is in the plane of the phenyl ring and the 2-X group. Thus, its out-of-plane OH deformation is best described as γOH or as $\gamma OH \cdots X$. The maximum peak of absorption for $vOH \cdots X$ occurs in the region $3598-3180 \, \mathrm{cm}^{-1}$ for most of the compounds listed in Table 7.5. However, compounds considered to exist in resonance forms such as

exhibit very broad vOH bands (2500 to 3500 cm⁻¹ with a maximum near 3050 cm⁻¹ in the case of the 2-hydroxyacetophenones), for 2,4-dibenzoyl resorcinol (very broad in this region 2200–3600 cm⁻¹ with the maximum near 3000 cm⁻¹), and for 2-hydroxybenzophenone (very broad in the region 2200–3600 cm⁻¹ with the maximum near 3100 cm⁻¹). The γ OH or γ OH···X frequencies occur in the region 366–858 cm⁻¹. The γ OH···X frequencies increase in frequency as the ν OH···X frequencies decrease in frequency as demonstrated in Fig. 7.2. It is usually easy to detect γ OH···X due to the following: (a) its absorption band is always uniquely broad, and it is easily distinguished from other fundamental absorption bands occurring in this region of the spectrum; (b) the -OD analogs exhibit ν OD···X lower in frequency than γ OH···X by a factor of \sim 1.35, and this indicates that γ OH···X is essentially motion of the proton (or deuteron) alone; and (c) as the ν OH···X bond becomes stronger its frequency decreases, and with a stronger hydrogen bond it becomes more difficult to twist the OH proton out of the plane causing γ OH···X to shift to higher frequency.

One can perform a simple experiment utilizing IR to determine whether a phenol is inter- or intra-molecularly hydrogen bonded.

When IR spectra of phenolic compounds are recorded in the solid, condensed, or say, 10% wt./vol. in CCl_4 and CS_2 , the OH group forms polymeric $(OH\cdots OH)_n$ bonds which appear as broad bands centered near $3200-3400\,\mathrm{cm}^{-1}$. This happens even in cases when the OH is intramolecularly hydrogen bonded if the OH oxygen atom is more basic than the atom or group substituted in the 2-position. Examination of the sample in dilute CCl_4 or CS_2 solution using 01.0-mm cell in all cases shows only an unassociated phenolic vOH band or an intramolecular $vOH\cdots X$ band for compounds containing only 2-x groups (which is not very basic). When the 2-x group is very basic or in the case of compounds such as 2-hydroxybenzophenone, the intramolecular hydrogen bond does not shift significantly or change in intensity. In all classes of OH containing compounds, the inter- or intra-molecularly hydrogen-bonded OH group has much more intensity than the same OH group existing in an unassociated state, or say, intermolecularly hydrogen bonded to CCl_4 or CS_2 .

WEAK INTRAMOLECULARLY HYDROGEN-BONDED PHENOLS

The weak intramolecularly hydrogen-bonded phenols exhibit $\gamma OH \cdots X$ frequencies in the range 366–400 cm⁻¹ and $\nu OH \cdots X$ frequencies above 3500 cm⁻¹. The $\gamma OH \cdots X$ frequencies for 2-F, 2-I, 2-Br, and 2-Cl phenol occur at 366, 379, 394, and 359 cm⁻¹, respectively, and their pK_a values (7) are 9.37, 9.04, 9.01, and 8.99, respectively. The halogen atoms increase in size in the order F, Cl, Br, and I, and the data show that the size of the halogen atom does not correlate with $\gamma OH \cdots X$, but it does correlate with the pK_a values.

Compounds such as 2-(methylthio) phenol and 2-(methoxy) phenol exhibit their $vOH\cdots X$ and $\gamma OH\cdots X$ frequencies at (3415 and 537 cm⁻¹) and (3560 and 428 cm⁻¹), respectively. In this case, the sulfur atom is larger than the oxygen atom. Consequently, the S···HO spatial distance of the intramolecular hydrogen bond is shorter than the O···HO spatial distance of the intramolecular hydrogen bond. Thus, a stronger intramolecular hydrogen bond is formed in the case of 2-(methylthio) phenol than in the case of 2-(methoxy) phenol.

In the case of 2-phenylphenol the two rings are not coplanar, and the OH group intramolecularly hydrogen bonds to the π electron system of the 2-phenyl group (8). In this case, $vOH \cdots \pi \phi$ and $\gamma OH \cdots \pi \phi$ occur at 3570 and 386 cm⁻¹, respectively.

The 2-hydroxy acetophenones form very strong intramolecular hydrogen bonds, and as already noted here, produce a very broad multipeaked absorption band extending over the range 2500-3500 cm⁻¹ with a maximum near 3050 cm⁻¹. This is caused by the resonance forms I and II shown on page 127 and this affects both the vOH···O=C and γ OH···O=C frequencies as discussed here. Enhancement of structure I would elongate the OH bond, thus making the proton more acidic. Enhancement of structure II would tend to increase the carbonyl group. Both of these effects would lower vOH \cdots O=C, and raise γ OH \cdots O=C frequencies, because the intramolecular hydrogen bond would be stronger. In addition, these resonance effects would induce more double bond character into the C-O bond, which would also contribute to an increase in the $\gamma OH \cdots O=C$ frequency, as the $\nu OH \cdots O=C$ bond would be stronger. In addition, these resonance effects would induce more double bond character into the C-O bond, which would also contribute to an increase in $\gamma OH \cdots O=C$. Because the $\nu OH \cdots O=C$ band is so broad, it is difficult to correlate vOH···O=C with Tafts $(\sigma_{\rho} - \sigma') + (\sigma_{m} - \sigma')$ values. Tafts $(\sigma_{\rho} - \sigma')$ and $\sigma_m - \sigma'$ are measures of the resonance effects of the 5-substituent upon the OH and COCH₃ groups (9,10). Figure 7.3 shows a plot of $(\sigma_{\rho} - \sigma') + (\sigma_m - \sigma')$ vs the $\gamma OH \cdot \cdot \cdot O = C$ frequencies. The sum of the Taft values is expected to yield a parameter with which to compare the γ OH···O=C frequencies for 2-hydroxy-5-X- acetophenones. Similar curves are obtained by plotting $\gamma OH \cdots O=C$ vs $(\sigma_{\rho} - \sigma')$ or $(\sigma_m - \sigma')$ alone. In Fig. 7.3, the plot is continued with the dashed line representation through the two solid points that one would predict from the $(\sigma_{o} - \sigma')$ and $(\sigma_{m} - \sigma')$ values for acetyl and nitro, respectively. The x points are values previously obtained for phenols (10), and the agreement is quite good. A similar plot of γ OH···O=C vs $(\sigma_{\rho} - \sigma')$ for these compounds when extropolated as a straight line to higher values allows one to predict $(\sigma_{\rho} - \sigma')$ values for the acetyl group (+0.48) and the nitro group (+0.62), and the values obtained are +0.60 and +0.64 for acetyl and nitro, respectively (10). In the case of 2-methylsulfonylphenol, $vOH \cdot \cdot \cdot O_2S$ occurs at 3330 and $vOD \cdot \cdot \cdot O_2S$ at 2475 cm⁻¹. The vOH/vOD ratio is ~1.35, and the $\gamma OH \cdot \cdot \cdot O_2S/\gamma OD \cdot \cdot \cdot O_2S$ frequency ratio $645\,\mathrm{cm^{-1}}/529\,\mathrm{cm^{-1}}$ is equal to ~ 1.22 . The $529\,\mathrm{cm^{-1}}$ band is the only broad band in this region of the spectrum. An SO_2 deformation has been assigned in this region of the spectrum (11), and it is suggested that the reason $\gamma OH \cdots O_2 S$ occurs at higher frequency is because it is coupled with an SO_2 deformation.

TEMPERATURE EFFECTS

Figure 7.4 shows plots of the intramolecular hydrogen-bonded OH: Cl stretching frequencies for 2-chlorophenol, 2,4,5-trichlorophenol and 2,6-dichlorophenol in CS_2 solution vs temperature in $^{\circ}$ C. These plots show that the ν OH: Cl frequencies decrease in frequency in a linear manner as temperature is decreased (13). As the temperature is decreased the CS_2 volume contracts, and the Field effect of CS_2 increases. This then causes the ν OH: Cl frequencies to decrease as the temperature is lowered.

REFERENCES

- Nyquist, R. A. (1984). The Interpretation of Vapor-phase Infrared Spectra: Group Frequency Data, Philadelphia: Sadtler Research Laboratories, Div. of Bio-Rad.
- Bellamy, L. J. (1975). The Infrared Spectra of Complex Molecules, vol. I, 3rd ed., London: Chapman and Hall; New York: John Wiley & Sons, Inc. p. 108.
- 3. van der Maas, J. H. and Lutz, E. T. G. (1974). Spectrochim. Acta, 30A, 2005.
- 4. Nyquist, R. A., Settineri, S. E., and Luoma, D. A. (1992). Appl. Spectrosc., 46, 293.
- 5. Nyquist, R. A. (1963). Spectrochim. Acta, 19, 1655.
- 6. Evans, J. C. (1960). Spectrochim. Acta, 16, 1382.
- 7. Bennett, G. M., Brooks, G. L., and Glasstone, S. (1935). J. Chem. Soc., 1821.
- 8. Baker, A. W. and Shulgin, A. T. (1958). J. Am. Chem. Soc., 80, 5358.
- 9. Taft, R. W. Jr. (1956). Steric Effects in Organic Chemistry, Chap. 13, New York: J. Wiley.
- 10. Taft, R. W. Jr., Deno, N. C., and Skell, P. S. (1958). Ann. Rev. Phys. Chem., 9, 287.
- 11. Simon, A., Kriegsman, H., and Dutz, H. (1956). Chem. Ber., 89, 2378.
- 12. Lin-Vien, D., Colthup, N. B., Fateley, W. G., and Grasselli, J. G. (1991). The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecule, San Diego: Academic Press.
- 13. Nyquist, R. A. (1986). Appl. Spectrosc., 40, 79.

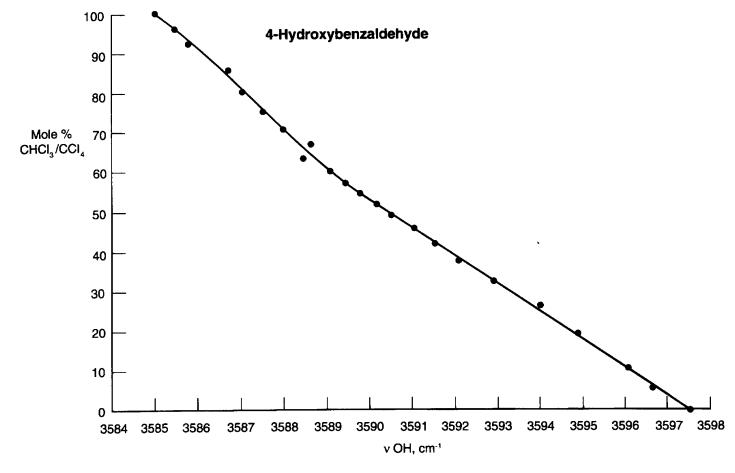


FIGURE 7.1 A plot of vOH for 4-hydroxybenzaldehyde vs mole % CHCl₃/CCl₄.

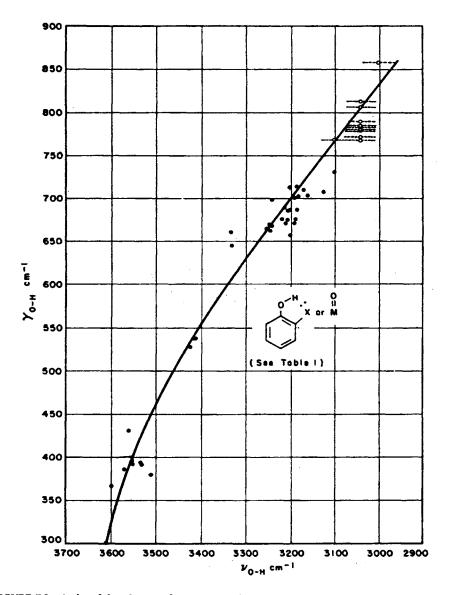


FIGURE 7.2 A plot of the $\gamma OH \cdots X$ frequencies vs the $\nu OH \cdots X$ frequencies for 2-X-substituted phenols.

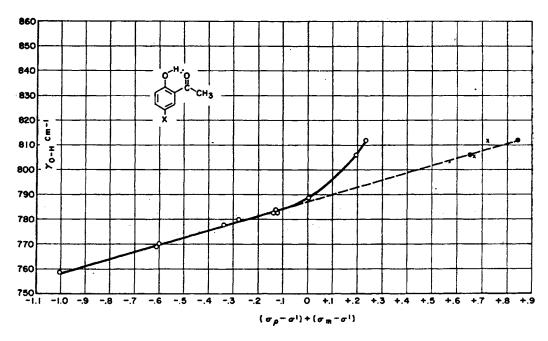


FIGURE 7.3 A plot of Tafts $(\sigma_{\rho} - \sigma') + (\sigma_{m} - \sigma')$ vs $\gamma OH \cdots OC$ frequencies.

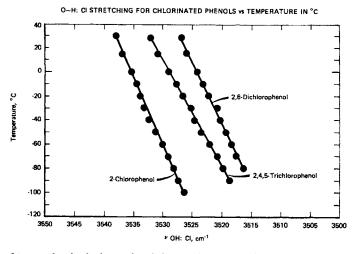


FIGURE 7.4 Plots of intramolecular hydrogen-bonded OH: CI stretching frequencies for chlorinated phenols in CS_2 solution vs temperature in $^{\circ}C$.

TABLE 7.1 IR vapor-phase data and assignments for alcohols

						2 (a.CH ₃ bend)					
Compound	OH str.	C-O str.	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	in F.R. s.CH ₃ str.	s.CH ₂ str.	a.CH ₃ bend	CH ₂ bend	s.CH ₃ bend	CH ₂ rock
Methanol	3680	1031	2980		2920	2820		1458			
	(0.150)	(1.150)	(0.620)		(0.600)	(0.370)		(0.129)			
Ethanol	3679	1060	2975				2910		1452	1392	800
	(0.240)	(1.230)	(1.150)				(1.150)		(0.150)	(0.460)	(0.030)
Propanol	3675	1065	2965	2940	2900		2890		1461	1390	740
•	(0.160)	(0.840)	(1.230)	(1.150)	(0.700)		(0.495)		(0.140)	(0.190)	(0.020)
1-Butanol	3670	1041	2950				2890		1466	1389	749
	(0.161)	(0.572)	(1.230)				(0.820)		(0.151)	(0.1510)	(0.035)
1-Hexanol	3675	1053	2970	2940	2899		2880		1467	1389	728
	(0.111)	(0.400)	(0.850)	(1.230)	(0.590)		(0.600)		(0.133)	(0.130)	(0.020)
1-Heptanol	3670	1050	2970	2935			2878		1464	1389	722
•	(0.111)	(0.341)	(0.750)	(1.250)			(0.651)		(0.130)	(0.130)	(0.022)
1-Octanol	3675	1050	2970	2935			2870		1464	1388	723
	(0.081)	(0.320)	(0.700)	(1.250)			(0.680)		(0.141)	(0.122)	(0.020)
1-Nonanol	3670	1052	2970	2935			2865		1464	1388	720
	(0.070)	(0.251)	(0.640)	(1.250)			(0.475)		(0.130)	(0.130)	(0.005)
1-Decanol	3679	1052	2970	2935			2865		1464	1385	
	(0.055)	(0.188)	(0.500)	(1250)			(0.551)		(0102)	(0.079)	
1-Dodecanol	3670	1050	2970	2935			2865		1460	1384	725
	(0.060)	(0.211)	(0.555)	(1.252)			(0.770)		(0.150)	(0.090)	(0.022)
Cyclopentanol	3660	1004		2970			2900		1452		
, .	(0.160)	(0.380)		(1.250)			(0.540)		(0.100)		
Cyclohexanol	3659	1070		2940			2864		1458		
,	(0.050)	(0.250)		(1.250)			(0.330)		(0.100)		
Cycloheptanol	3655	1034		2940			2870		1461		
, 1	(0.053)	(0.245)		(1.230)			(0.330)		(0.110)		
Cyclooctanol	3650	1054		2930			2864		1456		
,	(0.040)	(0.135)		(1.230)			(0.290)		(0.109)		

Alcohols and Phenols

TABLE 7.1 (continued)

						2 (a.CH ₃ bend)					
Compound	OH str.	C-O str.	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	in F.R. s.CH ₃ str.	s.CH ₂ str.	a.CH ₃ bend	CH ₂ bend	s.CH ₃ bend	CH ₂ rock
2-Propanol	3660	1147									
2-Butanol	3360	1135									
2-Pentanol	3659	1140									
2-Hexanol	3360	1135									
2-Heptanol	3660	1140									
2-Octanol	3660	1135									
2-Decanol	3658	1135									
2,2-Dimethylethanol	3644	1141									
2,3-Dimethyl-2-butanol	3645	1180									
3-Methyl-3-pentanol	3642	1169									
3-Ethyl-3-pentanol	3645	1162									
2-Methyl-2-hexanol	3644	1170									
3-Methyl-3-hexanol	3642	1165									
2-Methyl-2-octanol	3642	1160									
2-Methyl-2-nonanol	3642	1159									

TABLE 7.2 IR vapor-phase data for substituted phenols

X-Phenol	OH str.	Phenyl-O str.	delta OH	OH str. cis[t C_4H_9]	OH:X str. cm ⁻¹
4-X	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm -
Н	3650	1260	1182		
CH ₃	3655	1255	1171		
isoC ₃ H ₇	3655	1257	1172		
tertC ₄ H ₉	3658	1260	1172		
F	3660	1230	1178		
Cl	3658	1255	1172		
Br	3655	1256	1171		
ОН	3658	1243	1170		
CH ₃ O	3655	1239	1174		
C ₆ H ₅ O	3655	1255	1171		
NO ₂	3645	1270	1190		
CN	33645	1270	1178		
3-X					
CH ₃	3650	1278	1158		
tertC ₄ H ₉	3655	1285	1160		
Cl	3658	1289	1180		
Br	3655	1291	1181		
I	3642	1288	1179		
CH ₃ O	3659	1295	1150		
CN	3650	1285	1152		
2,4-X ₂					
CH ₃ ,CH ₃	3658	1262	1191		
2-t-C ₄ H ₉ ,4-CH ₃	3642	1241	1177	3670	
2,4-Di-tC₄H₀	3646	1248	1178	3678	
2-NO ₂ ,4-CH ₃		1250	1185		3278
2,4-Di-Cl ₂	3660	1275	1192		3580
2,4-Di-Br ₂	3655	1278	1188		3562
2-Br,4-tC ₄ H ₉	3655	1281	1183		3560
2,5-X ₂	3033	1201			
2,5-Di-tC ₄ H ₉	3645	1200	1149	3678	
2-Br,5-OH	3655	12114	1149		3559
2,6-Di-X ₂					
2,6-Di-CH ₃	3655	1269	1192		
2-CH ₃ ,6-t.C ₄ H ₉	3644	1270	1200	3670	
2,6-Di-isoC ₃ H ₇	3650	1263	1201		
2-tC ₄ H ₉ ,6-isoC ₃ H ₇	3645	1263	1201	3670	
2,6-Di-CH ₂ CH=CH ₂	3650	1258	1200		3585
2,6-Di-CH ₃ O		1285	1220		3580
2-CH ₃ ,6-NO ₂		1250	1159		3222
2,6-Di-NO ₂		1271	1170		3230
2,6-Di-Cl ₂		1240	1175		3570
2,6-Di-Br ₂		1231	1172		3545
2,4,6-Tri-X ₃					
2,4,6-Tri-CH ₃	3658	1233	1198		
2,4-Di-CH ₃ ,6-tC ₄ H ₉	3650	1224	1178	3680	
4-CH ₃ ,2,6-Di-tC ₄ H ₉	2030	1230	1161	3675	
2,4-Di-Cl,6-NO ₂		12 4 5	1152		3560[Cl
2, 1 21 01,0 1102					3240[NO ₂

(continued)

TABLE 7.2 (continued)

X-Phenol	OH str.	Phenyl-O str.	delta OH	OH str. $cis[tC_4H_9]$	OH: X str.	
4-X	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	
2,4-Di-Br,6-NO ₂		1248	1160		3545[Br]	
-					3230[NO ₂]	
2,4,6-Tri-Cl		1221	1166		3578	
2,4,6-Tri-Br		1228	1160		3544	
2,3,6-Tri-Cl		1298	1167		3562	
2,3,4,6-Tetra-Cl		1285	1200		3564	
2,3,5,6-Tetra-Cl		1290	1218		3558	
2,3,4,5,6-Penta-F		1209	1224		3630	

TABLE 7.3 A comparison of OH:X stretching frequencies in the vapor and CCl₄ solution phases

2-X-phenol X	OH:X str. vapor cm ⁻¹	OH:X str. CCl ₄ soln. cm ⁻¹	[vapor]-CCl ₄ soln.] cm ⁻¹	OH str, or trans vapor cm ⁻¹	OH str. CCl ₄ soln. cm ⁻¹
Н				3650	3610
Cl	3580	3553	27	3650	
Br,4-Br	3562	3534	28	3655	
CH ₃ O	3595	3560	35	3655	
CH ₃ S	3 44 5	3415	30	3650	
NO ₂	3270	3245	25	3520	
CH(=O)	3202	3185	17		
$NO_2,4-NO_2$	3238	3215	23		
Cl,4-Cl,6-NO ₂	3560(Cl)				
-	3240(NO ₂)	3209	31		

TABLE 7.4 The OH stretching frequency for 4-hydroxybenzaldehyde in 0 to 100 mol % $CHCl_3/CCl_4$ solutions

4-Hydroxy-	
benzaldehyde	
1%(wt./vol.)	
Mole %	
CHCl3/CCl4	O-H str.
0	3597.5
5.68	3596.7
10.74	3596.1
19.4	3594.9
26.53	3594.1
32.5	3592.9
37.57	3592.1
41.93	3591.5
45.73	3591.1
49.06	3590.5
52	3590.2
54.62	3589.8
57.22	3589. 4
60.07	3589.1
63.28	3588.5
66.74	3588.6
70.65	3587.9
75.06	3587.5
80.05	3587.1
85.75	3586.7
92.33	3585.8
96.01	3585.4
100	3585.1
delta O-H str.	[-12.4]

TABLE 7.5 The OH stretching frequencies for phenol and intramolecular hydrogen-bonded phenols and the OH torsion frequency for phenol and the out-of-plane OH: X deformation frequencies for intramolecular hydrogen-bonded phenols

Compound Phenol*1		O-H torsion 300			
Phenol	O-H str. 3610	gamma O-H	O-D str.	gamma O-D	see text
2-phenyl	3570	386* ²			
2-fluoro	3598* ¹	366* ¹			
	3587				
2-iodo	3511* ¹	379* ¹			
	3507				
2-bromo	3534* ¹	394* ¹			
2,4-dibromo	3533* ¹	392* ¹			
	3534				
2-chloro	3553* ¹	395* ¹	2622* ²	298* ²	
	3553	400* ²			
2,4,5-trichloro	3553* ¹	395* ¹			
	3535				
2-methoxy	3560	433*2			
_ · · · · · · · · · · · · · · · · · · ·		428* ³			
2-methylthio	3415	537	2540	not recorded	0
2-ethylthio	3413	537	-5.0		·
4-methyl-2-methylthio	3422	528			-0.3
2-methylsulfonyl	3330	645	2475	529	0.5
4-chloro-isopropyl-6-nitro	3200	687	2.175	32)	-0.24
4-chloro-2-sbutyl-6-nitro	3205	686			-0.24
2-t-butyl-4,6-dinitro	~3100	731			0.15
2,4-di-t-butyl-6-nitro	~3125	698			-0.13
4,6-dinitro-2methyl	3170	710			0.15
4-chloro-6-nitro-2-methyl	3212	679			-0.24
2-bromo-4,6-dinitro	3159	700 or 706			0.15
2-bromo-3,4-dichloro-6-nitro	3185	786			-0.34
2-chloro-4,6-dinitro	3159	708			0.15
2-chloro-4-cyclohexyl-6-nitro	3219	676			-0.13
2-chloro-4-bromo-6-nitro	3205	675			-0.13
2,4-dichloro-6-nitro	3209	671			-0.22
4-t-butyl-2,6-dinitro	3186	678			-0.24 -0.13
4-chloro-2,6-dinitro	3190	672			-0.13 -0.24
4-fluoro-2,6-dinitro	3200	657			-0.24
2,4-dinitro	3215	680			0.15
2-nitro	3215 3245	669			0.15
5-bromo-2-nitro	3220	668			-0.06
4-chloro-2-nitro	3252	664			
4.5-dichloro-2-nitro	3232 3245				-0.24
,	3243	662			-0.34
Salicylate	2100	703			
p-chlorophenylthio	3190	701 713			
methyl	3200	713			
phenyl	3240	698			
chloride	3331	660			
Aldehyde	210*	710	2262:4	530±4	•
salicyl	3185	713	2360*4	520* ⁴	0

(continued)

TABLE 7.5 (continued)

Compound Phenol*1		O-H torsion 300			
Phenol	O-H str. 3610	gamma O-H	O-D str.	gamma O-D	see text
5-chlorosalicyl	3180	700			-0.34
2-Hydroxyacetophenone	* 5	789	2361sh		0
, , .			2294		
			2138sh		
5-nitro		812			0.23
5-acetyl		806			0.19
4-phenyl		784			-0.13
5-iodo		783			-0.13
5-methyl		783			-0.14
5-bromo		780			-0.28
5-chloro		778			-0.34
5-fluoro		770			-0.6
5-methoxy		769			-0.61
5-amino		758			-1.01
2,4-dibenzoyl resorcinol			~2255	635	
-			broad		
2-hydroxybenzophenone		~768			

^{*1 [2,2,4-}trimethyl-pentane soln.] *2 [CCl₄ soln.] *3 & *4 [CS₂ soln.]

Aliphatic Amines

NH ₂ Stretching Frequencies for Aliphatic Amines	143
NH ₂ Wag Frequencies for Aliphatic Amines	144
NH ₂ Bending for Alkylamines	145
Raman Data for Primary Amines	145
Chemical Reactions of Alkylamines Containing NH2 or NH Groups	145
Secondary Aliphatic Amines	146
References	146
Tables	

Table 8-1 147 (144) Table 8-2 148 (145)

In the discussion of aliphatic amines it is necessary to coin symbols for each type of amine, and this was established in Reference (1).

The symbols P, S, and T are used <u>first</u> to denote primary, secondary, and tertiary amines (NH₂, NH, and N), respectively. The symbols P', S', and T' are used <u>second</u> to denote the structure of the alkyl portion of the amine $[RCH_{2-}, (R)_2CH, and (R)_3C]$ for the primary, secondary, and tertiary, respectively. For example, dimethylamine would be denoted as SP'P', disopropylamine as SS'S', methylamine as PP', and tert-butylamine as PT'.

NH₂ STRETCHING FREQUENCIES FOR ALIPHATIC AMINES

In the vapor phase, vasym. NH2 and vsym. NH2 have weak IR band intensity, and often the vasym. NH_2 mode is not observed. The vasym. NH_2 mode is assigned in the region 3404– $3422\,\mathrm{cm^{-1}}$ and vsym. $\mathrm{NH_2}$ in the region $3340\text{--}3361\,\mathrm{cm^{-1}}$. In most cases, vsym. $\mathrm{NH_2}$ has more intensity than vasym. NH_2 (1).

However, the situation is reversed in the 2-alkoxyethylamine series, but is normal in the 3alkoxypropylamine series. Thus, this intensity reversal results from weak intramolecular hydrogen bonding between an N-H proton and the free pair of electrons on the 2-alkoxy oxygen atom.

^{*}Numbers in parentheses indicate in-text page reference.

144 Aliphatic Amines

Primary aliphatic amines with PS' structure exhibit vsym. NH_2 in the region \sim 3330–3340 cm⁻¹, and this IR band is weak. When observed, vasym. NH_2 is assigned in the region \sim 3400–3422 cm⁻¹.

Primary aliphatic amines with PT' structure exhibit vsym. NH_2 in the region 3322–3335 cm⁻¹, and vasym. NH_2 when observed in the region 3395–3400 cm⁻¹. Both IR bands are weak. In summary, the vNH_2 frequency progressing in the order PP', PS', and PT' is shown here (1):

Structure	vasym. NH ₂ cm ⁻¹	vsym. NH ₂ cm ⁻¹	Туре
$R-CH_2-NH_2$	3404–3422	3340–3361	PP'
$(R-)CH-NH_2$	~3400–3422	3330-3340	PS'
$(R-)C(-NH_2)$	3395-3400	3322-3335	PT'
$HO-CH_2-CH_2-NH_2$	3465	3342	PP'
HO-CH ₂ -CHCH ₃ -NH ₂	3414	3348	PS'
$HO-CH_2-C(CH_3)_2-NH_2$	3400	3335	PT'

NH₂ WAG FREQUENCIES FOR ALIPHATIC AMINES

Table 8.1 lists IR vapor-phase data and assignments for primary alkylamines. The compounds with PP' structure exhibit a strong relatively broad band in the region $764-780\,\mathrm{cm}^{-1}$. The absorbance (A) ratios: (A) [NH₂ wag]/(A) [vsym. CH₂] and (A) [NH₂ wag]/(A)[CH₂ bend] show that the values decrease progressing in the order C_2 to C_{19} . This presumably indicates that (A) for NH₂ wag is relatively constant, and that (A) for vsym. CH₂ and (A) for CH₂ bend increase as the number of $(CH_2)_n$ increases. Correlations such as these are valuable in spectra-structure identification of unknown aliphatic amines.

The cycloalkyamines with the structure PS' exhibit NH_2 wag in the region 755–785 cm⁻¹, and with the exception of cyclohexylamine increase in frequency as the cycloalkyl ring increases in size from C_3 to C_8 . The absorbance (A) ratios for NH_2 wag/vsym. CH_2 and NH_2 wag/ CH_2 bend also decrease in value as the number of CH_2 groups increase from 3 to 8.

The NH₂ wag for alkylamines is also affected by the structure of the alkyl group. For example, PP', PS', and PT' exhibit NH₂ wag in the regions 760-780 cm⁻¹, 779-799 cm⁻¹, and 800-813 cm $^{-1}$, respectively. In addition, a weak band assigned to vC-N is also affected by the nature of the alkyl group. For example, vC-N for PP', PS', and PT' occur in the regions 1043-1085 cm⁻¹, 1111-1170 cm⁻¹, and 1185-1265 cm⁻¹, respectively. Both NH₂ wag and vC-N increase in frequency with increased branching on the α -carbon atom of the alkyl group. As already noted here, vsym. NH $_2$ decreased in frequency with increased branching on the alkyl lphacarbon atom. The apparent reason for the decrease in frequency of vsym. NH2 is that with increased branching on the α-carbon atom more electrons are released to the C-N group (inductive affect). This causes the N atom to become more basic; consequently, the NH2 bonds are weakened causing the vNH₂ modes to vibrate at lower frequencies. Also, the inductive effect increases in the order P', S', and T', and this causes the C-N bond strength to increase in the same order. Consequently, vC-N increases in frequency as the strength of the hydrogen bond increases. In addition, the NH2 wag increases in frequency in the order P', S', and T'. This is because it takes more energy for the two relatively charged NH₂ protons to wag about the relatively negative free pair of electrons in the C-N plane as the protons and the nitrogen atom have increasingly relative opposite electrical charges. A similar explanation was presented for the vOH, vC-O, OH torsion for alkanols (see Chapter 6).

NH₂ BENDING FOR ALKYLAMINES

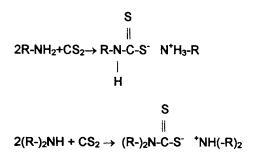
The NH₂ bending mode for the alkylamines with PP' structure occurs in the region 1599–1629 cm⁻¹, with PS' in the region 1612–1621 cm⁻¹, and with PT' in the region 1610–1616 cm⁻¹, and has weak to weak-medium IR band intensity in the vapor phase. Therefore, the NH₂ bending mode frequencies are not useful for distinguishing between alkylamines with PP', PS', and PT' structures. In the liquid it is assigned in the region 1590–1627 cm⁻¹ with medium intensity (3). In contrast, NH₂ bend for arylamines (anilines) occurs at higher frequency with strong IR band intensity (3). (See the next chapter.)

RAMAN DATA FOR PRIMARY AMINES

Table 8.2 lists Raman data and assignments for the neat phase for primary amines.

In the neat phase, vasym. NH_2 and vsym. NH_2 occur in the region 3367-3379 cm⁻¹ and 3307-3322 cm⁻¹, respectively. In all cases, the vsym. NH_2 mode has more relative band intensity than the vasym. NH_2 modes as indicated by the number in parenthesis (2).

It is interesting to compare the vasym. NH_2 and vsym. NH_2 frequencies obtained for butylamine (1-aminobutane) in the vapor and liquid phases: vasym. NH_2 (3411 cm $^{-1}$, vap. and 3376 cm $^{-1}$, liq.) and vsym. NH_2 (3345 cm $^{-1}$, vap. and 3322 cm $^{-1}$, liquid). This comparison shows that vasym. NH_2 and vsym. NH_2 occur at lower frequency in the liquid phase by 35 and 23 cm $^{-1}$, respectively.


Two of the examples given in Table 8.2 contain a 4-aminocyclohexyl group, and both exhibit a very strong Raman band at 784 cm⁻¹, which is assigned to the cyclohexyl breathing mode.

CHEMICAL REACTIONS OF ALKYLAMINES CONTAINING NH₂ OR NH GROUPS

This section is brought to the reader's attention for matters of safety and because it can cause confusion when interpreting spectral data.

From experience it has been noted that heat generated from the chemical reaction of aliphatic primary or secondary amines with CS_2 can cause the entire content of the volumetric flask to blow out of its mouth. This can cause an injury, or possibly a fire, because CS_2 has a low flashpoint.

These chemical reactions occur as follows:

146 Aliphatic Amines

As well, if exposed to air for a period of time these same alkylamines can undergo comparable reactions with CO_2 (replace CS_2 with CO_2). In addition, alkylamines can react slowly with solvents such as CCl_4 , $CHCl_3$, and CH_2Cl_2 , and this can cause problems in specifically identifying the original sample.

SECONDARY ALIPHATIC AMINES

The N–H stretching band for compounds of form $(R-)_2NH$ is weak, and is not readily detected in compounds whose IR spectra have been recorded in the vapor phase (1). However, N–H wag has strong IR band intensity with half bandwidths varying between 50 and $100 \, \mathrm{cm}^{-1}$ and occurs in the region $686-750 \, \mathrm{cm}^{-1}$ in the vapor phase. Thus, it occurs at lower frequency than NH_2 wag. In the liquid, the weak IR band occurs in the region $3320-3280 \, \mathrm{cm}^{-1}$ and in dilute solution in the region $3310-3360 \, \mathrm{cm}^{-1}$ (3).

Dialkylamines with SP'P' structure exhibit NH wag in the region $699-715\,\mathrm{cm}^{-1}$, with SP'S' structure near $\sim 686\,\mathrm{cm}^{-1}$. These data suggest that NH wag decreases in frequency in the order SS'S', SP'S', and SP'P', which is the opposite order for the primary alkylamines (see the preceding materials here).

In the dialkyl amine series with SP'P' structure a band assigned as $vN(-C)_2$ occurs in the region 1132–1151 cm⁻¹ (1).

REFERENCES

- 1. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Laboratories, Inc.
- 2. Raman Data from the Sadtler Research Laboratories, Philadelphia: Division of Bio-Rad Laboratories, Inc.
- 3. Lin-Vien, D., Colthup, N. B., Fateley, W. G., and Grasselli, J. G. (1991). The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, San Diego: Academic Press.

TABLE 8.1 IR vapor-phase data and assignments for primary amines

Amine	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	CH ₂ bend	s.CH ₃ bend	NH ₂ wag	(A)[NH ₂ wag] (A)[s.CH ₂ str.]	(A)[NH ₂ wag] (A)[CH ₂ bend]
Methyl	2960 (0.640)		2898 (0.600)				778 (0.784)		
Ethyl	(0.040)	2965 (1.240)	2922 (0.940)	2870 (0.640)	1456 (0.164)	1398 (0.280)	772 (1.087)	1.69	6.63
Propyl		2978 (1.230)	(0.940)	2880 (0.679)	1465 (0.135)	1387 (0.129)	764 (0.630)	0.93	4.67
Butyl		2940 (1.250)		2880 (0.621)	1465 (0.120)	1387 (0.111)	779 (0.664)	1.07	5.53
Heptyl	2970 (0.700)	2940 (1.250)		2868 (0.510)	1468 (0.130)	1377 (0.080)	770 (0.248)	0.49	1.9
Octyl	2970 (0.462)	2930 (1.250)		2964 (0.510)	1465 (0.091)	1385 (0.050)	771 (0.190)	0.37	2.09
Nonyl	2970 (0.460)	2930 (1.250)		2864 (0.530)	1466 (0.100)	1388 (0.066)	775 (0.189)	0.36	1.89
Decyl	2970 (0.290)	2935 (1.250)		2864 (0.380)	1466 (0.080)	1385 (0.035)	780 (0.120)	0.32	1.51
Undecyl	2970 (0.410)	2935 (1.210)		2864 (0.570)	1465	1385 (0.050)	775 (0.131)	0.23	1.11
Tridecyl	(0.710)	2935 (1.250)		2864 (0.310)	1460 (0.050)	1389	775 (0.050)	0.16	1.01
Tetradecyl		2938 (1.250)		2864 (0.310)	1460 (0.058)	1385	770 (0.060)	0.19	1.11
Pentadecyl		2930 (1.250)		2860 (0.310)	1460 (0.059)	1385	770 (0.040)	0.13	0.68
Octadecyl	2970 (0.040)	2935 (1.250)		2962 (0.310)	1465 (0.045)	1385 (0.005)	775 (0.035)	0.11	0.77
Nonadecyl		2930 (1.250)		2860 (0.400)	1460 (0.089)	1385 (0.005)	775 (0.044)	0.11	0.49
Cyclopropyl		3100 (0.220)		3010 (0.250)	1455 (0.140)		755 (1.230)	4.03	8.79
Cyclopentyl		2968 (1.250)		2884 (0.420)	1459 (0.061)		779 (0.223)	0.53	3.66
		2935 (1.250)		2864 (0.420)	1458 (0.130)		770 (0.170)	0.41	1.42
Cycloheptyl		2930 (1.250)		2860 (0.320)	1460 (0.100)		784 (0.151)	0.47	1.51
Cyclooctyl		2932 (1.150)		2868 (0.199)	1459 (0.069)		785 (0.060)	0.31	0.87

148 Aliphatic Amines

TABLE 8.2 Raman data and assignments for primary amines

l-Amino- butane	bis-(4-Amino- cyclohexyl) methane	Ethoxyethyl amine	Hexa- methylene diamine	2-Aminoethyl methyl ether	3-Methoxy- propyl amine	4,4'-bis(p- Amino-cyclo- hexyl) methane	Assignment
3376(1)		3379(1)	3367(1)	3379(1)	3377(2)	3367(0)	a.NH ₂
3322(3)	3311(1)	3322(3)	3307(3)	3322(3)	3319(5)	3312(1)	s.NH ₂
2963(5)		2977(5)		2985(5)			a.CH ₃ str.
2938(7)		2934(9)		2950(6)	2929(7)	2931(2)	a.CH ₂ str.
			2899(1)				a.CH ₂ str.
2875(4)		2870(5)			2868(4)		s.CH ₂ str.
			2853(2)	2823(4)	2826(6)	2846(3)	s.CH ₂ str.
					2811(5)		C.T.
		2797(2)		2723(2)	2755(3)		C.T.
			1640(1)	1597(1)			NH ₂ bend
1444(7)	1441(5) 784(9)	1459(6)	1440(9)	1453(9)	1450(9)	1441(5) 784(9)	CH ₂ bend Ring breathing

Arylamines (Anilines), Azines, and Oximes

NH ₂ Stretchin Azines Oximes References	g Frequencies vs Tempera	ture	150 151 152 153
Figures		Tables	
Figure 9-1	155 (149)	Table 9-1	158 (149)
Figure 9-2	155 (149, 150)	Table 9-2	159 (149)
Figure 9-3	156 (149)	Table 9-3	160 (149, 150)
Figure 9-4	156 (150)	Table 9-3a	161 (150)
Figure 9-5	157 (150)	Table 9-4	162 (150)
_		Table 9-5	163 (151)
		Table 9-6	162 (152)

^{*}Numbers in parentheses indicate in-text page reference.

Table 9.1 lists IR data for the vasym. NH_2 and vsym. NH_2 frequencies for 3-X and 4-X-anilines in the vapor phase, and in (0.5% wt./vol. or less) n-hexane, CCl_4 , and $CHCl_3$ solutions (1). The IR vapor-phase data for arylamines are also given in Reference (2).

Califano and Moccia (3) have shown that the vasym. NH_2 and vsym. NH_2 frequencies and intensities recorded in CCl_4 solution correlate with Hammett σ values. The ranges for vasym. NH_2 and vsym. NH_2 in each of the solvents are given in Table 9.1. In general, the vasym. NH_2 and vsym. NH_2 IR vapor-phase frequencies correlate with Hammet σ values as shown previously (3) (see Fig. 9.1 and 9.2 for plots of the CCl_4 solution data). In all cases these modes occur at the highest frequency in the vapor phase.

Figure 9.3 shows a plot of vasym. NH₂ vs vsym. NH₂ frequencies for 3-X and 4-X anilines in each solvent. Three of the plots are essentially linear, and the plot of the lower frequency bands observed in the case of the CHCl₃ solutions is nonlinear. In each case where the vasym. NH₂ and vsym. NH₂ frequencies have been recorded in both hexane and CCl₄ solutions, the vasym. NH₂ mode occurs from 0.36 to 7.51 cm⁻¹ lower in frequency in CCl₄ than in hexane, while the vsym. NH₂ mode occurs at higher frequency by 2.05 cm⁻¹ to 3.45 cm⁻¹ in CCl₄ than in hexane (1).

The vasym. NH_2 mode for 4-X and 3-X anilines occurs from 1.04 to $9.19\,\mathrm{cm}^{-1}$ higher in frequency in $CHCl_3$ solution than in CCl_4 , while vsym. NH_2 occurs from 0.33 to $7.34\,\mathrm{cm}^{-1}$ higher in frequency in $CHCl_3$ than in CCl_4 .

The vasym. NH₂ and vsym. NH₂ frequency decreases in going from solution in hexane to solution in CCl₄ because the NH₂ protons intermolecularly bond to the Cl electron pairs of CCl₄

(1). The same explanation can be used to support the analogous behavior of one plot in CHCl₃ solution. The second plot in the case of CHCl₃ solution most likely is the result of:

Interaction of the CCl₃H proton with the N atom would cause the NH₂ modes to weaken further, and both vasym. NH₂ and vsym. NH₂ would shift to even lower frequency as observed. Of course, the CHCl₃ proton also intermolecularly bonds with other basic sites such as the phenyl ring, C=C, and C=O groups (see the chapters that follow).

Linnett (4) has developed equations to calculate the NH₂ bond angles of 3-X and 4-X anilines, and there are:

$$4\pi^2 v$$
asym. $NH_2 = k[1/^m H + (1 + \cos^{\theta})/^m N]$
 $4\pi^2 v$ sym. $NH_2 = k[1/^m H + (1 + \cos^{\theta})/^m N]$

In these equations mH is the mass of hydrogen, and mN is the mass of nitrogen used to determine the bond angles of the NH₂ group. The vasym. NH₂ and vsym. NH₂ frequencies recorded in each of the solvents were utilized in the calculations. Figure 9.4 shows a plot of σ_m and σ_p vs the calculated NH₂ bond angles (Table 9.2). This plot shows that the NH₂ bond angles for these anilines increase as the Hammett σ values increase, and this result is in agreement with Krueger's conclusion (5). However, this does not exclude some change in the NH₂ bond lengths with change in the inductive effect as discussed for alkylamines in Chapter 8. Both of these factors would lower the ν NH₂ frequencies.

The frequency separation between vasym. NH_2 and vsym. NH_2 changes in each solvent system (see Table 9.3 and 9.3a). In solution, these separations are larger in the cases of CCl_4 and $CHCl_3$ solution than in hexane solution, and it is less in the other complex existing in $CHCl_3$ solution. In addition, these separations generally appear to increase in CCl_4 and $CHCl_3$ solutions as the σ values increase.

NH2 STRETCHING FREQUENCIES VS TEMPERATURE

Table 9.4 lists vasym. NH_2 and vsym. NH_2 frequencies recorded in CS_2 solution over the range +27 to -60 °C for both aniline and 4-chloroaniline. In both compounds the vasym. NH_2 and vsym. NH_2 decrease in frequency with a decrease in temperature. In addition, because the vsym. NH_2 mode decreases more in frequency than the vasym. NH_2 mode, there is a small increase in the frequency separation as the temperature decreases. Figure 9.5 shows plots of both vNH_2 modes for aniline and 4-chloroaniline vs °C, and within experimental error the plots are linear. These data are included to demonstrate to the reader that vibrational modes are also temperature dependent. These vNH_2 modes most likely decrease in solution with a decrease in temperature, because the CS_2 volume contracts with a decrease in temperature forcing the NH_2 bonds closer

to CS_2 molecules. Thus, the weak hydrogen bonds formed between S=C=S bonds are somewhat stronger, causing the ν NH₂ modes to decrease in frequency (6).

AZINES

Table 9.5 lists infrared and Raman data and assignments for azines. Azines are formed by the reaction of hydrazine with either an aldehyde or a ketone. These compounds have the following empirical structures:

A.
$$(H_2C=N-)_2$$

B. $(RCH=N-)$
C. $\phi CH=N-)_2$
D. $[(R)_2C=N-]_2$
E. $[(\phi)_2C=N-]_2$

These compounds are reported to exist in either s-trans, s-cis, and/or gauche isomers depending upon their physical state. In the solid state, formaldazine, empirical structure A, is reported to exist in the s-trans configuration, and in the liquid phase, a small amount of the gauche isomer is also present. In the s-trans configuration vasym. $(C=N-)_2$ is IR active and only vsym. $(C=N-)_2$ is Raman active because these molecules have a center of symmetry located between the N-N bond. Thus, for formaldazine the medium IR band at $1637 \, \text{cm}^{-1}$ and the strong Raman band at $1612 \, \text{cm}^{-1}$ are assigned to the vasym. $(C=N-)_2$ and vsym. $(C=N-)_2$ modes, respectively (8).

In studies of aldazines and ketazines, vasym. $(C=N-)_2$ was assigned to a strong IR band in the region $1636-1663\,\mathrm{cm}^{-1}$ and vsym. $(C=N-)_2$ was assigned to a strong Raman band in the region $1608-1625\,\mathrm{cm}^{-1}$ (9–12). King *et al.* (13) have assigned vasym. $(C=N-)_2$ to the strong IR band at $1747\,\mathrm{cm}^{-1}$ and the strong Raman band at $1758\,\mathrm{cm}^{-1}$ to vsym. $(C=N-)_2$, for $(CF_2=N-)_2$. In this latter case, the $(C=N-)_2$ modes are reversed when compared to those already reported here.

The arylaldehyde azines reported in Table 9.5 were assigned on the same basis as reported in the foregoing. These compounds were all recorded in the solid phase. In making these assignments both their IR and Raman spectra were recorded, and the IR data were also compared to the IR data for the correspondingly substituted benzaldehydes. The vasym. $(C=N-)_2$ mode was assigned to the IR band in the region $1606-1632\,\mathrm{cm}^{-1}$ and vsym. $(C=N-)_2$ was assigned to the Raman band in the region $1539-1563\,\mathrm{cm}^{-1}$.

In all the aldehyde azines studied, vsym. $(C=N-)_2$ was assigned to the most intense Raman band in the region 1539–1587 cm⁻¹. In the case of nitrobenzenes, the vsym. NO₂ mode has very strong intensity. The argument for assigning vsym. $(C=N-)_2$ to the region 1539–1587 cm⁻¹ is that they exhibit the most intense bands in the Raman spectra, and that the 1560 cm⁻¹ Raman band for 2-nitrobenzaldehyde azine is twice as strong as the 1348 cm⁻¹ Raman band assigned as vsym. NO₂ (7). In the case of the 2,6-dichloro isomer, it is not possible for the phenyl group and the C=N groups to be coplanar. As vsym. $(C=N-)_2$ for the 2,6-dichlorophenyl isomer occurs 24–48 cm⁻¹ higher in frequency than the other benzaldede azines, this indicates that there is no conjugation between the phenyl and C=N groups $(\phi - C=N-)$ groups. In the case of the 2,6-

dichlorophenyl isomer the reason why vsym. $(C=N-)_2$ occur at lower frequency for other benzaldehyde azines is that the phenyl and C=N groups are conjugated. Further support for this conclusion is that vsym. $(C=N-)_2$ occurs at $1587 \, \mathrm{cm}^{-1}$ for the 2,6-Cl $_2$ analog, which is intermediate between those assigned to the other benzaldehyde azines ($1539-1563 \, \mathrm{cm}^{-1}$) and those for the alkylaldehyde azines ($1608-1625 \, \mathrm{cm}^{-1}$) (7). In conclusion, the benzaldehyde azines exist in an s-trans configuration in the solid state (7).

OXIMES

In the vapor phase aliphatic aldehyde and ketone oximes exhibit ν C=N in the range 1650–1665 cm⁻¹, and in the liquid and solid phase in the range 1649–1670 cm⁻¹ (2, 18). In the vapor phase ν OH occurs in the range 3642–3654 (2), and in CCl_4 solution in the range 3580–3600 cm⁻¹ (18). In CCl_4 solution, the decrease in frequency in going from the vapor to CCl_4 solution is attributed to intermolecular hydrogen bonding of form $(OH \cdots ClCCl_3)$. In dilute CCl_4 solution, the ν OH frequencies form a linear plot when plotted vs Hammett σ values (19). In the neat or solid phase ν (OH···HO)_n occurs in the range 3100–3330 cm⁻¹, and is comparable to that which is exhibited by alcohols and phenols. In the vapor phase ν N–O for both aliphatic and aromatic oximes are reported to occur in the range 910–980 cm⁻¹ (2), and in the liquid or solid phase for a larger number of oximes in the range 870–1030 cm⁻¹ (19).

Table 9.6 lists IR and Raman data for glyoximes in the solid state. Glyoximes have the following empirical structure: HO-N=CX-CY=N-OH. These compounds contain two C=N groups and two hydroxyl groups, and it would be expected that the hydroxyl groups would be hydrogen bonded either inter- or intramolecularly. An intramolecular hydrogen bond between the OH group and $CI (OH\cdots CI)_2$ is possible in the case of the dichloro analog, and as shown here:

this structure has a center of symmetry at the midpoint of the C-C bond.

With a center of symmetry, a mode such as vsym. $(N=C-)_2$ would be only Raman active and vasym. $(N=C-H)_2$ would be only IR active. Dichloroglyoxime is reported to have a very strong Raman band at $1588 \, \mathrm{cm}^{-1}$, and a very weak IR band at $\sim 1620 \, \mathrm{cm}^{-1}$. Moreover, the $\sim 1620 \, \mathrm{cm}^{-1}$ IR band is not observed in the Raman spectrum, nor is the $1588 \, \mathrm{cm}^{-1}$ band observed in the IR spectrum. These data support that dichloroglyoxime has a center of symmetry. In the case of the CN, CN analog, there is also the possibility that intramolecular hydrogen bonding can take place between OH and CN. If so, the two $v(N=C-)_2$ modes are reversed from those exhibited by the Cl, Cl analog because the very strong Raman band $(1593 \, \mathrm{cm}^{-1})$ occurs at a higher frequency than the weak IR band $(1582 \, \mathrm{cm}^{-1})$. Thus, $v \, \mathrm{sym}$. $(N=C-)_2$ would be assigned at $1593 \, \mathrm{cm}^{-1}$ and $v \, \mathrm{sym}$. $(N=C-)_2$ at $1582 \, \mathrm{cm}^{-1}$.

In the case of glyoxime the intramolecular molecular hydrogen-bonded structure would not exist. However, vsym. $(N=C-)_2$ is observed as a strong band in the Raman at $1636 \, \mathrm{cm}^{-1}$ and vasym. $(N=C-)_2$ is observed as a weak band in the IR at $1610 \, \mathrm{cm}^{-1}$. Thus, glyoxime apparently also has a center of symmetry.

The glyoxime analogs, such as (H and CH₃) and (H and NO₂), do not have a center of symmetry. Therefore, both vasym. (N=C-)₂ and vsym. (N=C-)₂ are allowed in both the IR and Raman spectra. They are also allowed in cis and gauche structures. In the Raman, the symmetric modes usually have stronger intensity than the antisymmetric modes, and vice versa in the IR. In the case of the (H and CH₃) analog, strong Raman bands are reported at 1630 and 1516 cm⁻¹, and in the case of the (H and NO₂) analog, strong Raman bands are noted at 1650 and 1608 cm⁻¹. A medium IR band is observed at 1650 and 1608 cm⁻¹ for the (H and NO₂) analog. Based on intensity arguments, the medium IR band at 1650 cm⁻¹ and the weak IR band at 1608 cm⁻¹ would be assigned as vasym. (N=C-)₂ and vsym. (N=C-)₂, respectively. On the other hand, the assignments would be reversed in the case of the (CH₃ and CH₃) analog: vsym. (N=C-H)₂ at 1650 cm⁻¹ and vasym. (N=C)₂ at ~1512 cm⁻¹, because the 1650 cm⁻¹ Raman band is stronger than the ~1512 Raman band. However, the vasym. (N=C-)₂ mode is forbidden in the case of the (CH₃ and CH₃) analog with a center of symmetry. Therefore, the (CH₃ and CH₃) analog does not have a plane of symmetry.

In Table 9.6 the higher $v(N=C-)_2$ frequencies are listed in the third (IR) and fourth (Raman) columns, and the fifth (IR) and sixth (Raman) columns list the lower frequencies. It has been suggested that the frequencies in columns 3 and 4 are in all cases attributed to vsym. $(N=C-)_2$, and the frequencies in columns 5 and 6 are assigned to vasym. $(N=C-)_2$ (18), but the foregoing discussion does not support all of these assignments. Raman bands in the regions $1627-1650 \, \mathrm{cm}^{-1}$ and $\sim 1495-1608 \, \mathrm{cm}^{-1}$ do appear to be characteristic for these glyoximes. Comparison of CH₃, CH₃ glyoxime $v(CN=C-)_2$ frequencies (Raman: 1650, $\sim 1512 \, \mathrm{cm}^{-1}$) vs C_6H_5 , C_6H_5 glyoxime (Raman: 1627, $1495 \, \mathrm{cm}^{-1}$) suggests that conjugation plays a role in decreasing $v(N=C-)_2$ frequencies just as in the case of azines.

REFERENCES

- 1. Nyquist, R. A., Luoma, D. A., and Puehl, C. W. (1992). Appl. Spectrosc., 46, 1273.
- 2. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Laboratories.
- 3. Califano, S. and Moccia, R. (1956). Gazz. Chem., 86, 1014.
- 4. Linnett, I. W. (1945). Trans. Farad. Soc., 41, 223.
- 5. Krueger, P. J. (1962). Nature, 194, 1077.
- 6. Nyquist, R. A. (1986). Appl. Spectrosc., 40, 79.
- 7. Nyquist, R. A., Peters, T. L., and Budde, P. B. (1978). Spectrochim. Acta, 34A, 503.
- 8. Bondybey, V. E. and Nibbler, J. W. (1973). Spectrochim. Acta, 29A, 645.
- 9. Kirrman, A. (1943). Compt. Rend., 217, 148.
- 10. West, W. and Killingsworth, R. B. (1938). J. Chem. Phys., 6, 1.
- 11. Kitaev, Yu. P., Nivorozhkin, L. E., Plegontov, S. A., Raevskii, O. A., and Titova, S. Z. (1968). Dokl. Acad. Sci. USSR, 178, 1328.
- 12. Ogilvie, J. F. and Cole, K. C. (1971). Spectrochim. Acta, 27A, 877.
- 13. King, S. T., Overend, J., Mitsch, R. A., and Ogden, P. H. (1970). Spectrochim. Acta, 26A, 2253.
- 14. Bardet, L. and Alain, M. (1970). C. R. Acad. Sc., Paris, 217A, 710.
- 15. Cherskaya, N. O., Raktin, O. A., and Shlyapochnikov, V. A. (1987). Acad. Sci., USSR, Div. Chem. Sci., 53, 2150.

- 16. (1976). Sadtler Standard Raman Spectra, Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Laboratories.
- 17. Kahovec, L. and Kohlrausch, K. W. (1952). Monatsch. Chem., 83, 614.
- 18. Lin-Vien, D., Colthup, N. B., Fateley, W. G., and Grasselli, J. G. (1991). The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, San Diego: Academic Press, Inc.
- 19. Bellamy, L. J. (1968). Advances in Infrared Group Frequencies, Bungay, Suffolk, England: Chaucer Press.

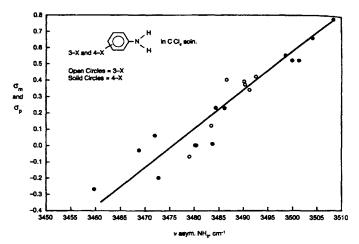


FIGURE 9.1 A plot of vasym. NH₂ for 3-X and 4-X anilines in CCl₄ solutions vs Hammett σ_m and σ_p values for the 3-X and 4-X atoms or groups. The open circles are for 3-X anilines and the closed circles are for 4-X anilines.

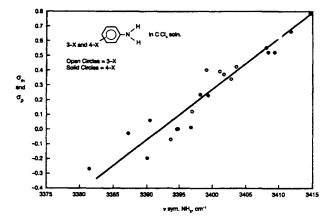


FIGURE 9.2 A plot of vsym. NH₂ for 3-X and 4-X anilines in CCl₄ solutions vs Hammett σ_m and σ_p values for the 3-X and 4-X atoms or groups. The open circles are for 3-X anilines and the closed circles are for 4-X anilines.

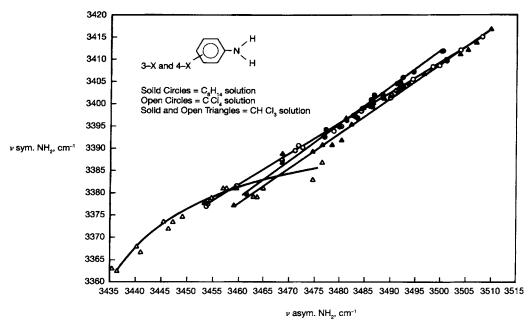


FIGURE 9.3 A plot of vasym. NH_2 vs vsym. NH_2 for 3-X and 4-X anilines in solution with C_6H_{14} , CCl_4 , and $CHCl_3$.

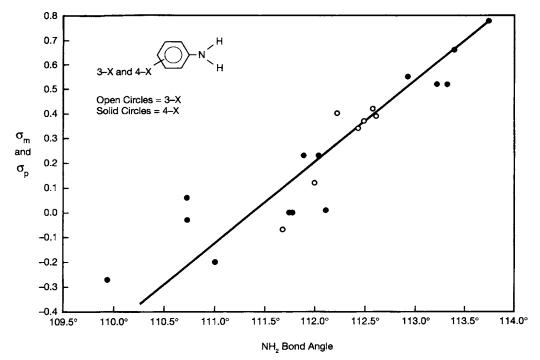


FIGURE 9.4 A plot of σ_m and σ_p vs the calculated NH₂ bond angles for the m- and p-substituted anilines.

NH2 STRETCH

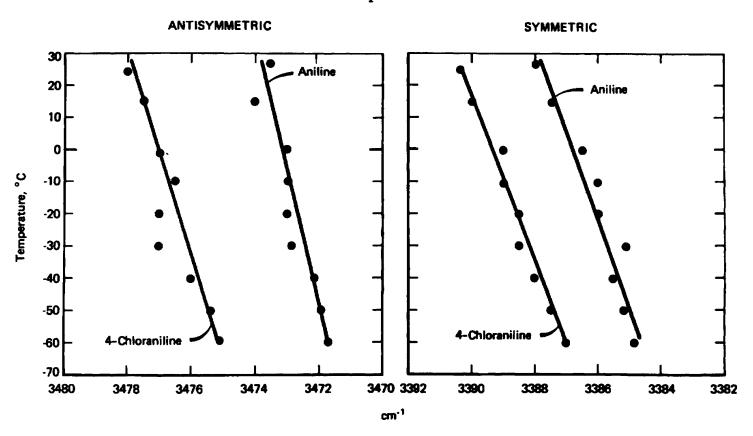


FIGURE 9.5 A plot of both vNH₂ frequencies for aniline and 4-chloroaniline in CS₂ solution vs °C.

Arylamines (Anilines), Azines, and Oximes

4-X-aniline X	vapor phase a.NH2 str. cm ⁻¹	Hexane a.NH ₂ str. cm ⁻¹	CCl ₄ a.NH ₂ str. cm ⁻¹	CHCl ₃ a.NH ₂ str. cm ⁻¹	CHCl ₃ a.NH ₂ : HCCl ₃ str. cm ⁻¹	vapor phase s.NH ₂ str. cm ⁻¹	Hexane s.NH ₂ str. cm ⁻¹	CCl ₄ s.NH ₂ str. cm ⁻¹	CHCl ₃ s.NH2 str.	CHCl ₃ s.NH ₂ : HCCl ₃	σр
ОН	3481			3468.9	3440.31	3402			3386.8	3367.89	-0.36
OCH ₃	3480		3459.71	3468.9	3441.09	3400		3381.41	3388.75	3366.62	-0.27
N(CH ₃) ₂		3461.63	3454.12	3459.13	3435.4			3377.35	3377.02	3362.96	0.21
NH ₂	3480	3453.81			3436.41	3400	3379.54	3376.79	3388.75	3362.43	
OC ₆ H ₅			3468.78	3474.77	3 44 5.62			3387.3	3389.28	3373.49	0.03
F	3498	3477.02	3472.02	3476.72	3449.2	3415	3394.23	3390.56	3390.71	3374.57	0.06
Cl	3500	3486.41	3484.52	3486.89	3457.74	3418	3400.84	3398.35	3400.11	3380.93	0.00
Br	3502	3488.72	3486.23	3488.96	3459.32	3422	3402.06	3399.48	3401.15	3380.93	0.23
Н	3500	3482.98	3480.29	3481.75	3453.95	3400	3397.36	3394.77	3396.43	3378.03	0.23
Н	3500	3482.99	3480.53	3481.57	3453.78	3400	3397.35	3394.88	3396.75	3377.76	0
C_2H_5		3477.22	3471.32	3478.68	3446.47		3392.48	3389.44	3390.77	3371.91	U
$C(CH_3C)_3$	3500	3477.18	3472.72	3480.63	3447.29	3418	3392.52	3390.13	3391.79	3373.36	0.3
C ₆ H ₅	3500	3484.73	3483.8	3486.75	3454.79	3417	3398.89	3396.84	3399.33	3378.79	-0.2
$C(=O)OC_2H_5$		3500.82	3500.08	3504.25	3478.68		3411.85	3408.59	3411.06	2316.19	0.01
CN	3510		3504.31	3507.43		3422	3414.42	3412.05	3413.73		0.52
CF ₃	3510	3500.65	3498.73	3501.31	3476.7	3420	3411.8	3408.35	3409.82	2206.0	0.66
$C(=O)CH_3$	3502		3501.51	3505.77		3421	3111.0	3409.6	3412.09	3386.8	0.55
NO ₂	3518		3508.61	3510.27		3430		3414.96	3416.69		0.52 0.78
3-X-aniline X											
OCH ₃	3500	3485.02	3483.54	3485.08	3457.05	3420	3399.2	3397.02	3399.07	3380.93	0.12
F	3501	3492.7	3491.35	3492.65	3464.99	3420	3405.86	3402.99	3404.1	3380.93	0.12
Cl	3502	3492.17	3490.49	3492.02	3464.99	3420	3404.82	3401.94	3403.23	3380.93	0.37
Br	3500	3491.55	3490.31	3491.94	3463.79	3420	3404.5	3401.31	3403.05	3378.98	0.37
CH ₃	3500	3481.7	3479.05	3482.59	3453.48	3420	3396.27	3393.8	3395.42	3377.62	-0.07
$C(=O)OC_2H_5$	3491	3487.08	3486.72	3488.89	3459.56	3410	3401.9	3399.26	3401.39	3380.93	0.4
CN			3494.7	3496.96	3474.77			3405.49	3406.75	3382.89	0.4
CF ₃	3510	3494.9	3492.74	3493.9	3463.04	3424	3407.14	3403.81	3404.53	3378.98	0.42
Range	3480-	3461.63-	3453.81-	3459.13-	3435.40-		3379.54-	3376.79-	3377.02-	3362.43–	
	3518	3500.82	3508.61	3510.27	3478.72		3414.42	3414.96	3416.69	3386.8	

TABLE 9.1 IR data for the a, and s. NH₂ stretching frequencies of 3-X and 4-X-anilines in the vapor ph

TABLE 9.2 The calculated $\rm NH_2$ bond angles for 3-X and 4-X anilines in $\it n$ -C $_6\rm H_{14}$, CHCl $_3$, and CCl $_4$ solutions

4-X-aniline	degree NH ₂	degree NH ₂	degree NH ₂	degree NH ₂
4-X	C ₆ H ₁₄	CCl₄	CHCl ₃	NH ₂ : HCCl ₃
ОН			110.9	108.48
OCH ₃		109.94	110.36	109.02
$N(CH_3)_2$	110.94	109.56	110.97	108.51
NH ₂		109.63		108.91
OC_6H_5		110.73	111.78	108.37
F	111.15	110.73	111.91	109.01
Cl	111.72	111.9	112.05	109.55
Br	111	112.04	112.31	109.96
H	111.76	111.75	111.69	109.33
H	111.76	111.78	111.56	109.36
C_2H_5	111.56	110.83	112.41	109.01
$C(CH_3)_3$	111.54	111.01	112.65	108.84
C_6H_5	111.81	112.12	113.86	109.35
$C(=O)OC_2H_5$	112.54	113.23	113.67	
CN		113.41	113.78	
CF ₃	112.51	112.94	113.23	112.97
$C(=O)CH_3$		113.34	113.79	
NO ₂		113.76	113.73	
3-X-aniline				
3-X				
OCH ₃	111.8	112	111.85	109.37
F	112.02	112.44	112.49	111.46
Cl	112.17	112.5	112.56	111.46
Br	112.09	112.63	112.58	111.67
CH ₃	111.72	111.69	112.18	109.32
$C(=O)OC_2H_5$	111.61	112.23	112.23	110.03
CN		112.65	112.91	113.52
CF ₃	112.26	112.59	112.7	111.47

TABLE 9.3 IR data for the frequency separation between a.NH $_2$ and s.NH $_2$ stretching in the vapor, and in n-C $_6$ H $_1$ 4, Cl and CHCl $_3$ solutions for 3-X and 4-X-anilines

4-X-aniline X	[a.NH ₂ str.]- [s.NH ₂ str.] Vapor phase delta cm ⁻¹	[a.NH ₂ str.]- [s.NH ₂ str.] Hexane delta cm ⁻¹	[a.NH ₂ str.]- [s.NH ₂ str.] CCl ₄ delta cm ⁻¹	[a.NH ₂ str.]- [s.NH ₂ str.] CHCl ₃ delta cm ⁻¹	[a.NH ₂ :HCCl ₃ str.]- [s.NH ₂ :HCCl ₃ str.] CHCl ₃ delta cm ⁻¹
ОН	79			82.11	72.42
OCH ₃	80		78.3	80.15	74.47
$N(CH_3)_2$		82.09	76.77	82.08	72.44
NH ₂	80		77.02		73.98
OC_6H_5			81.48	85.49	72.13
F	83	83.23	81.31	86.01	
Cl	82	85.57	86.17	86.78	76.81
Br	80	86.68	86.75	87.81	78.39
H	100	85.62	85.52	85.32	75.92
H	100	85.64	85.65	84.82	76.02
C_2H_5		84.74	81.88	80.55	7 4 .56
$C(CH_3)_3$	82	84.96	82.59	88.84	73.93
C_6H_5	83	85.84	86.96	87.42	76
$C(=O)OC_2H_5$		88.97	91.49	93.19	
CN	88		92.26	93.7	
CF ₃	90	88.85	90.38	92.11	89.92
$C(=O)CH_3$	81		91.91	93.68	
NO ₂	88		93.65	93.58	
3-X-aniline					
X OCH ₃	80	85.82	86.52	86.01	76.12
F	81	86.84	88.36	88.55	84.06
Cl	82	87.35	88.55	88.79	84.06
Br	80	87.05	89	88.89	84.81
CH ₃	80	85.43	85.25	87.17	75.86
$C(=O)OC_2H_5$	81	85.18	87.46	87.17 87.5	78.63
CN	01	05.10	89.21	90.21	91.88
CF ₃	86	87.76	88.93	89.37	84.06
Range		82.08-88.85	76.77–93.65	80.15–93.70	72.42–91.88

TABLE 9.3A. IR data for the frequency separation between a. and s.NH2 bending for 3-X and 4R-X-anilines in the vapor-phase and in solutions with $n-C_6H_{14}$, CCl_4 , and $CHCl_3$

4-X-aniline 4-X	[Vapor]- [Hexane] delta a.NH ₂ str. cm ⁻¹	[Vapor]- [Hexane] delta s.NH ₂ str. cm ⁻¹	[Hexane]- [CCl ₄] delta a.NH ₂ str. cm ⁻¹	[Hexane]- [CCl ₄] delta s.NH ₂ str. cm ⁻¹	[CHCl ₃]- [CCl ₄] delta a.NH ₂ str. cm ⁻¹	[CHCl $_3$]- [CCl $_4$] delta s.NH $_2$ str. cm $^{-1}$
ОН						
OCH ₃					9.19	7.34
$N(CH_3)_2$			7.51	2.19	5.01	[-0.33]
NH ₂	26.14	20.46				
OC_6H_5					5.99	1.98
F	20.98	20.77	5	3.67	4.7	0.15
CI	13.59	17.16	1.89	2.49*	2.37	1.76
Br	13.28	19.94	2.49	2.58*	2.73	1.67
Н	17.02	2.64	2.69	2.59	1.46	1.66*
Н	17.01		2.46	2.47*	1.104	1.87*
C_2H_5			5.9	3.04	7.63	1.33
$C(CH_3)_3$	22.82	25.48	4.46	2.39	7.91	1.66
C ₆ H ₅	15.27	18.11	0.93	2.05*	2.95	2.49
$C(=O)OC_2H_5$			0.74	3.26*	4.17	2.47
CN				2.37	3.12	1.68
CF ₃	9.35	8.2	1.92	3.45*	2.58	1.47
$C(=O)CH_3$					4.26	2.49
NO ₂					1.66	1.73*
3-X						
OCH ₃	14.98	20.8	1.48	2.18*	1.54	2.05*
F	8.3	15.14	1.35	2.87*	1.3	1.11
Cl	9.83	15.18	1.68	2.88*	1.53	1.29
Br	8.45	15.5	1.24	3.19*	1.64	1.73*
CH ₃	18.3	23.73	2.65	2.47	3.54	1.62
$C(=O)OC_2H_5$	3.92	8.1	0.36	2.64*	2.17	2.13
CN					2.26	1.26
CF ₃	15.1	16.86	2.16	3.33*	1.16	0.72

^{*}delta s.NH $_2$ str is larger than delta a.NH $_2$ str.

TABLE 9.4 IR data for the NH_2 stretching frequencies of aniline and 4-chloroaniline in CS_2 solution in the temperature between 27 and $60^{\circ}C$

°C	Aniline	Aniline	[a.NH ₂ str.]-	°C	4-Chloroaniline	4-Chloroaniline	[a.NH ₂ str.]-
C	a.NH ₂ str.	s.NH ₂ str.	s.NH ₂ str.]	C	a.NH ₂ str.	s.NH ₂ str.	[s.NH ₂ str.
	[CS ₂]	[CS ₂]	3.1.112 311.1		[CCS ₂]	[CS ₂]	(out ving out)
	cm ⁻¹	cm ⁻¹	cm ⁻¹		cm ⁻¹	cm ⁻¹	cm ⁻¹
27	3473.5	3388	85.5	25	3478	3390.8	87.2
15	3474	3387.5	86.5	15	3477.5	3390	87.5
0	3473	3386.5	86.5	0	3477	3389	88
-10	3473	3386	87	-10	3476.5	3389	87.5
-20	3473	3386	87	-20	3477	3388.5	88.5
-30	3472.8	3385.1	87.7	-30	3477	3388.5	88.5
-40	3472.1	3385.5	86.6	-40	3476	3388	88
-50	3471.9	3385.2	86.7	-50	3475.8	3387.5	88.3
-60	3471.7	3384.8	86.9	-60	3475.3	3387	88.3
delta C	delta a.NH2 str.	delta s.NH2 str.	$ m delta~cm^{-1}$	delta C	delta a.NH2 str.	delta s.NH ₂ str.	delta cm ⁻¹
[-87]	[-1.8]	[-3.2]	[1.4]	[-85]	[-2.7]	[-3.8]	[1.1]

TABLE 9.5 IR and Raman data and assignments for azines

	IR	Raman	IR		
	$a.(C=N)_2$	$s.(C=N-)_2$	$a.(C=N-)_2$		
Compound	str.	str.	str.	IR	IR
Benzaldehyde	solid	solid	vapor	vapor	vapor
Azine	cm ⁻¹	cm ⁻¹	cm ⁻¹ (A)	cm ⁻¹ (A)	cm ⁻¹ (A)
4-dimethylamino	1608	1539			
4-methoxy	1606	1553			
4-methyl	1623	1553			
4-hydrogen	1628	1556	1630(1.240)		
4-fluoro	1633	1561			
4-chloro	1627	1547			
4-acetoxy	1631	1562			
4-trifluoromethyl	1631	1561			
4-cyano	1624	1541			
3-nitro	1629	1551			
2-methoxy	1619	1552			
2-chloro	1618	*1			
2-hydroxy	1630	1555			
2-nitro	1627	1560			
2,4-dihydroxy	1632	1563			
2,4-dimethoxy	1617	1546			
3,4-dimethoxy	1626	1557			
2-hydroxy-4-methoxy	1630	1554			
3-methoxy-4-hydroxy	1629	1558			
2,6-dichloro	1629	1587* ²		o.p.Ring	
Range	1606–1632	1539–1563 1587* ²		1 0	
2-furaldehyde		1507	1630(0.940)	745(1.221)	
Azine					_
				o.p.Ring	o.p.Ring
Acetophenone			1630(1.240)	756(0.730)	690(1.130)
azine					
Azine				a.CH2 str.	s.CH2 str.
Cyclooctanone			1627(0.120)	2935(1.200)	2864(0.210)
Azine					
$(CF2=N-)_2^{*3}$	17 4 7	1758			
$(RCH=N-)_2$					
and					
$(RR'C=N-)_2$					
Range	1636-1663	1608-1625			

 $^{^{*1}}$ not recorded. *2 reference 7, (C=N-)₂ not planar of 2,6-Cl₂C₆H₃ rings. *3 reference 13.

TABLE 9.6 IR and Raman data for glyoximes in the solid state $[(NC-)_2$ stretching vibrations]

Atom or Group X	Atom or Group X	$(N=C-)_2$ str. IR cm^{-1}	Raman cm ⁻¹	$(N=C-)_2$ str. IR cm^{-1}	Raman cm ⁻¹	References
Н	Н	[]	1636 stg.	1610 vwk	[]	14,15
CH ₃	CH ₃	[]	1650 stg.	[]	\sim 1512 m	15-17
C_6H_5	C_6H_5	[]	1627 stg.	1495 m?	1495 m?	15,16
ci	Cl	~1620 vw	[]	[]	1588 vstg	
CN	CN	[]	1593 vstg	1582 vw	[]	15
Н	CH_3	[]	1630 stg.	[]	1516 stg	17
Н	NO_2	1650 m	1650 stg.	1608 w	1608 stg	15

?tentative assignment.

	-			
4-X-Benzoic Ac Half Salts of Ca References	ids arboxylic Acids	170 172 173		
Figures		Tables		
Figure 10-1	175 (166)	Table 10-1	194	
Figure 10-2	176 (166)	Table 10-2	195 (167)	
Figure 10-3	177 (166)	Table 10-3	196 (167)	
Figure 10-4	178 (167)	Table 10-4	197 (170)	
Figure 10-5	179 (168, 169)	Table 10-4a	198 (170)	
Figure 10-6	180 (168, 169)	Table 10-5	199 (171)	
Figure 10-7	181 (168, 169)	Table 10-6	200 (172)	
Figure 10-8	182 (168, 169)	Table 10-7	201 (172)	
Figure 10-9	183 (168, 169)	Table 10-8	202 (172)	
Figure 10-10	184 (169)	Table 10-9	203 (172)	
Figure 10-11	185 (169)			
Figure 10-12	186 (169)			
Figure 10-13	187 (169)			
Figure 10-14	188 (169)			
Figure 10-15	189 (170)			
Figure 10-16	190 (170)			
Figure 10-17	191 (170)			
Figure 10-18	192 (170, 171)			
Figure 10-19	193			

^{*}Numbers in parentheses indicate in-text page reference.

In the condensed phase or in concentrated solution carboxylic acids exist as a double hydrogen bonded dimer as illustrated here:

165

Thus, these dimers have a center of symmetry, and only the out-of-phase $(C=O)_2$ stretching mode is IR active, and only the in-phase (C=O)₂ stretching mode is Raman active. However, in the vapor phase at elevated temperatures carboxylic acids exist in the monomeric form $(R-CO_2H \text{ or } \phi-CO_2H).$

The vasym. $(OH \cdot \cdot \cdot O = C)_2$ mode for structure A is very broad over the range 2500–3000 with subsidiary maxima, which are due to combination and overtones in Fermi resonance with vasym. $(OH \cdot \cdot \cdot O = C)_2$. The $v_{ip}(C = O)_2$ occurs in the region 1625–1687 cm⁻¹ in the Raman, inplane $(C-OH)_2$ bend in the region 1395–1445 cm⁻¹, and $\gamma(OH)_2$ in the range 875–960 cm⁻¹.

Table 10.1 lists IR vapor-phase data, and CCl₄ and CHCl₃ solution-phase data for aliphatic carboxylic acids (1,2). The monomeric vOH frequency for the aliphatic carboxylic acid occurs near 3580, 3534, and 3519 cm⁻¹ in the vapor, CCl₄, and CHCl₃ phases, respectively. In CCl₄ solution the decrease in the vOH frequency is due to intermolecular hydrogen bonding between the acid proton and the Cl atom of CCl_4 ($CO_2H\cdots ClCCl_3$). The Cl atoms are less basic in CHCl₃ than they are in CCl₄; however, the vOH still occurs at lower frequency in CHCl₃ than in CCl₄ solution. This is attributed to the following doubly hydrogen-bonded complex in CHCl₃, which causes vOH to shift to a lower frequency than in CCl₄ solution (2).

The ν C=O frequencies for these aliphatic carboxylic acids decrease in frequency in the order for vapor $(1789-1769 \text{ cm}^{-1})$, CCl_4 $(1767.3-1750.3 \text{ cm}^{-1})$, and $CHCl_3$ $(1756.3-1769 \text{ cm}^{-1})$, and

in the order of increased branching on the α -carbon atom [CH₃ to C(CH₃)₃] within each

Figure 10.1 shows plots of vC=O for aliphatic carboxylic acids in CCl₄ solution and in CHCl₃ solution vs the number of protons on the acid α -carbon atom (2). The numbers 1–5 on each curve in Figs. 1-4 are for acetic acid, propionic acid, butyric acid, isobutyric acid, and trimethylacetic acid, respectively. Similar curves were obtained plotting vC=0 vs σ^* and ν C=O vs E₅. The σ^* values are a measure of the inductive contribution of the alkyl group and E_s is a measure of the steric factor of the alkyl group (3). Thus, it appears that both inductive and steric factors affect vC=O frequencies as well as the intermolecular hydrogen-bonded complex formed, as discussed previously.

The out-of-phase $(C=O)_2$ stretching, $v_{op}(C=O)_2$, modes occur in the range 1702.2–1714.6 cm⁻¹ and 1699.6–1712.5 cm⁻¹ in CCl_4 and $CHCl_3$ solutions, respectively, and within each solvent the frequencies decrease as σ^* and E_s increase. In the case of v_{in} (C=O)₂, it is not IR

Figures 10.2 and 10.3 show, respectively, plots of ν C=O vs mole % CHCl₃/CCl₄ and ν _{op} $(C=O)_2$ vs mole % $CHCl_3/CCl_4$ for aliphatic carboxylic acids. In CCl_4 solution $\nu C=O$ occur at the highest frequency, and then decrease in frequency as the mole % CHCl₃/CCl₄ is increased from \sim 10 to 100. On the other hand, $v_{op}(C=O)_2$ decreases linearly as the mole % CHCl₃/CCl₄ is increased from 0 to 100. The essentially linear decrease in both vC=0 and v_{op} (C=O)₂ after the initial intermolecular hydrogen bond formation in the case of vC=O is attributed to the reaction field of the solvent system. The reaction field is defined as follows: $[R]=(\in -1)/(2\in +n^2)$ where \in is the dielectric constant and n is the refracture index of the solvent system (4). It has been shown that there is a linear relationship between the mole % $CHCl_3/CCl_4$ and the reaction field (3). The reaction field increases as the mole % $CHCl_3/CCl_4$ increases and this is a result of an increasing dielectric contribution of the solvent system accompanied by a decrease in the refractive index of the solvent system. The decrease in the $v_{op}(C=O)_2$ frequency in going from solution in CCl_4 to solution in $CHCl_3$ is attributed to the following intermolecularly hydrogen-bonded structure (2):

Structure C

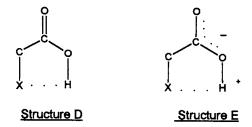
The gradual decrease in frequency is attributed to the increase in the reaction field as the mole % $CHCl_3/CCl_4$ is increased.

Figure 10.4 show plots of $A(\nu C=O)/A[\nu_{op}~(C=O)_2~vs~mole~\%~CHCl_3/CCl_4$. These plots indicate that as this ratio increases, as the mole $\%~CHCl_3/CCl_4$ increases, the concentration of molecules existing as Structure B increases while compounds existing as Structure A decrease with a subsequent increase in Structure C.

IR vapor-phase bands in the range $1105-1178\,\mathrm{cm}^{-1}$ are assigned to $\nu\mathrm{C-C-O}$ and IR vapor-phase bands in the range $571-580\,\mathrm{cm}^{-1}$ are assigned to $\gamma\mathrm{C=O}$ (1). The frequency separation between these two modes in the vapor phase varies between 520 and $598\,\mathrm{cm}^{-1}$.

Table 10.2 lists Raman data and assignments for $v(C=O)_2$ and vC=C for carboxylic acids (6). Four of the acids listed in Table 10.2 exhibit a Raman band, which can be assigned as $v_{\rm op}(C=O)_2$ in the range 1712–1730 cm⁻¹. Apparently these four hydrogen-bonded carboxylic acids do not have a center of symmetry in the neat phase. The $v_{\rm ip}(C=O)_2$ has weak to strong relative Raman band intensity and occurs in the range 1630–1694 cm⁻¹. The lowest frequency is exhibited by 3-(4-hydroxy-3-methoxyphenyl)-2-propionic acid, and the highest frequency is exhibited by polymethacrylic acid.

The vC=C mode occurs as low as 1557 cm⁻¹ in the case of trichloroacrylic acid to as high as 1690 cm^{-1} in the case of itaconic acid (6).


Table 10.3 lists IR group frequency data for acetic acid and its derivatives in the vapor and solution phases (1,7). The $vOH \cdots ClCCl_3$ frequency occurs in the region 3534.3–3500.5 cm⁻¹ in CCl_4 solution, and for $vOH \cdots HClCCl_2$ in the range 3521.0–3479.6 cm⁻¹. The lower frequencies in $CHCl_3$ solution are attributed to the double hydrogen bond complexed as previously discussed here. The lowest vOH frequency is exhibited by trifluoroacetic acid and the highest vOH frequency is exhibited by trimethylacetic acid. The lowest Taft σ^* value is for trimethylacetic acid [-0.300] and the highest Taft σ^* value is for trifluoroacetic acid [2.778] (3). Moreover, the highest pK_a value is for trimethylacetic acid [5.03] and the lowest pK_a value is for

trifluoroacetic acid [0.05] (8). These data show that as the OH proton becomes more acidic the vOH mode decreases in frequency in both CCl₄ and CHCl₃ solutions. Moreover, in general the frequency separation between CCl₄ and CHCl₃ solution becomes larger as the OH proton becomes more acidic due to the formation of stronger OH···Cl bonds.

Figure 10.5 is a schematic of the number of possible rotational conformers for the tri-, di-, and haloacetic acid monomers (14). X is one halogen atom, 2X is two halogen atoms, 3X is three halogen atoms. The following symbols are used: E(X) indicates that the carbonyl group is eclipsed by X; E(H) indicates that the carbonyl group is eclipsed by H; A(X) indicates that X is anti to the carbonyl group; and A(H) indicates that H is anti to the carbonyl group.

Taft σ values have been correlated with the ν C=O and absorbance values for acetic acid and its derivatives (9). There does not appear to be a linear relationship between ν C=O and Taft σ^* values. For example, Cl acetic (ν C=O, 1791 vs 1.05), Cl₂ acetic (ν C=O, 1784 vs 1.94), and Cl₃ acetic (ν C=O, 1789 vs 2.65) in CCl₄ solution. On the other hand the ν_{op} (C=O)₂ frequencies for the mono-, di-, and trichloroacetic acids increase in frequency as the Taft σ^* constants increase in value (Cl acetic acid, 1737 cm⁻¹ vs 1.05; Cl₂ acetic acid, 1744 vs 1.94; and Cl₃ acetic acid, 1752 cm⁻¹ vs 2.65). Therefore, factors other than Taft's inductive effect must affect ν C=O and ν_{op} (C=O)₂. Intermolecular hydrogen bonding between C=O and (C=O)₂, as discussed previously, is one factor that affects these stretching modes. The other factor has been reported to be the existence of rotational conformers (7).

The α -halogenated acetic acids existing in rotational forms 1X-A(X), 2X-A(X), and 3X-A(X)X can form intramolecular hydrogen bonds with the α -halo atom as depicted in Structure D. The intramolecular hydrogen bond would be expected to lower the $\nu C=0$ frequency, because the C=O bond would be weakened due to the induced contribution for Structure E.

Therefore, the polar A(X) forms would be expected to exhibit the lowest ν C=O frequencies within each halo series. Compounds such as 2-methoxyacetic acid and pyruvic acid in the vapor phase also exist in structures such as (D) and (E). In these cases the acid proton is intramolecularly bonding to the oxygen atom of the CH₃O or CH₃C=O group, respectively (1,13).

Figures 10.6–10.9 show that in either CCl_4 or $CHCl_3$ solution, the $\nu C=O$ mode decreases in frequency within each series (X_3CO_2H , X_2CHCOO_2H , XCH_2CO_2H , and RCO_2H) as the pK_a increases or as the acid becomes less acidic (e.g., see F, Cl, Br, and I). Figures 10.10–10.13 (14) show that in either CCl_4 or $CHCl_3$ solution the $\nu C=O$ or ν_{op} ($C=O)_2$ mode increases in frequency within each of the four series as σ^* values increase (e.g., see Br₂, Cl_2 , and Cl_2). Thus, as more sigma (σ) electrons are donated to the acid carbonyl group, the $\nu C=O$ or $\nu_{op}(C=O)$ mode

decreases in frequency due to σ electrons being donated to the carbonyl group, and as more σ electrons are withdrawn from the acid C=O or (C=O)₂ groups, the ν C=O or ν_{op} (C=O)₂ increase in frequency. This agrees with what was discussed previously here. However, the opposite or an erratic behavior is noted in Fig. 10.6, Br₃ to Br, Cl₃ to Cl, F₃ to F; Fig. 10.7, Br₃ to Br, Cl₃ to Cl; Fig. 10.8, Br to Br₃, Cl to Cl₃, F to F₃; Figs. 10.9 and 10.10, Br to Br₃, Cl to Cl₃, F to F₃; Fig. 10.11, Br to Br₃, Cl to Cl₃; and Fig. 10.12, Br to Br₃. In these cases the ν C=O or ν_{op} (C=O)₂ mode decreases in frequency as the pK_a value is increased or that the ν C=O or ν_{op} (C=O)₂ does not increase in frequency as the Taft σ^* value increases. This erratic behavior is attributed to the existence of rotational conformers, the result of rotation of the XCH₂, X₂CH, and CX₃ groups about the C-C=O bond as depicted in Fig. 10.5.

Figure 10.13 shows plots of vC=O for the haloacetic acids vs mole % $CHCl_3/CCl_4$ solutions. In Fig. 10.13, two plots are noted for iodoacetic acid (14). The IR band near 1769 cm⁻¹ is assigned to the rotational conformer II-E(I) and the IR band near 1736 cm⁻¹ is assigned to rotational conformer II-E(H). In the case of chloroacetic acid, two rotational conformers are noted at high mole % $CHCl_3/CCl_4$. The lower frequency vC=O band is assigned to the rotational conformer ICI-E(H) and the higher frequency IR band to rotational conformer ICI-E(CI). In the case of fluoroacetic acid at low mole % $CHCl_3/CCl_4$ solutions, the low frequency IR band is assigned to rotational conformer IF-E(H), the higher frequency IR band is assigned to rotational conformer IF-E(F). The other 1-haloacetic acids exist in the form of rotational conformer IX-E(X). The dihalogenated acid vC=O frequencies are assigned to the IF-E(F) rotational conformers. Dibromoacetic acid exhibits a band in the region IF-E(F) rotational conformer IF-E(F). The trihaloacetic acid IF-E(F) band frequencies (14) are assigned to rotational conformer IF-E(F). The trihaloacetic acid IF-E(F) band frequencies (14) are assigned to rotational conformer IF-E(F).

Figure 10.14 shows plots of $v_{\rm op}(C=O)_2$ vs mole % CHCl₃/CCl₄ solutions. In Fig. 10.14, the plot for trifluoroacetic acid shows that $v_{\rm op}(C=O)_2$ increases in frequency as the mole % CHCl₃/CCl₄ increases (14). This noted exception in this series of plots is attributed to the following—the two CF₃ groups in the intermolecularly hydrogen-bonded dimer are rotating to the more polar form as the mole % CHCl₃/CCl₄ is increased. The most polar form is where the CF₃ groups are in rotational conformer 3F–E(F). The field effect of the eclipsed F atom apparently overrides the field effect of the solvent system, and the intermolecular hydrogen bonding between CHCl₃ protons and the carbonyl groups, because $v_{\rm op}(C=O)_2$ increases rather than decreases in frequency as the mole % CHCl₃/CCl₄ is increased. The 3F–E(F) rotational conformer for $v_{\rm op}(C=O)_2$ is reasonable, because the OH protons in this case are intramolecularly hydrogen-bonded with the two C=O groups, whereas in the case of the monomer, the 3X–A rotational conformer is stabilized by intramolecular hydrogen bonding via (X···HO).

In conclusion, these halogenated acetic acids exist as rotational isomers. Within a series the highest vC=O frequency results from the conformer where the halogen atom eclipses the carbonyl oxygen atom denoted as E(X). The lowest vC=O frequency is where the halogen atom is anti with the carbonyl oxygen atom denoted as A(X). In the anti configuration the acid proton bonds intramolecularly with the anti halogen atom, causing a weakening of the C=O bond. The inductive effect of the halogen atom(s) is (are) independent of molecular geometry, but the field effect is dependent upon molecular geometry. Thus, the field effect upon the C=O group is responsible for the relatively high vC=O frequency with rotational conformers with E(X) structure, but not with A(X) structure (14).

It has been found that the type of carboxylic acid of form RCO₂H had to be identified before its approximate pK_a value could be calculated from vC=O and $v_{op}(C$ =O)₂ frequencies recorded in CCl₄ solution (10). The vC=O and $v_{op}(C$ =O)₂ frequencies recorded in CCl₄ solution have been reported to correlate in a linear manner with pK_a values (11). It has been reported that $v_{op}(C$ =O)₂ band intensities for aromatic carboxylic acids are higher than those for aliphatic carboxylic acids (12). In the vapor-phase at temperatures above 150 °C, carboxylic acids exist only in the monomeric state. At lower temperature both the monomer and dimer carboxylic acid can exist in equilibrium. With increase in temperature the equilibrium shifts toward the monomeric species (1,13).

4-X-BENZOIC ACIDS

Table 10.4 lists IR data and assignments for 4-X-benzoic acids in the vapor, CCl₄ and/or CHCl₃ solution phases. The OH, C=O, and (C=O) frequency ranges and assignments are compared here:

	vapor, cm^{-1} (1)	CCl_4 , cm ⁻¹ (14)	$CHCl_3, cm^{-1}$ (14)
range	νΟΗ	vOH···ClCCl₃	vOH···ClHCCl₂
	3582–3595	3529–3544	3519–3528
range	νC=O	vC=O	νC=O···HCCl ₃
	1758–1768	1735–1751	1719–1744
range	$v_{\rm op}(C=O)_2$	$v_{\rm op}(C=O)_2$ 1689–1707	$v_{op}(C=O)_2 \cdots (HCCl_3)_2$ 1687–1707

This comparison shows that the vOH, vC=O, and vasym. $(C=O)_2$ decrease in frequency progressing in the order vapor, CCl_4 , and $CHCl_3$ solutions. In the case of v_{op} $(C=O)_2$, the frequency change in going from CCl_4 and $CHCl_3$ is small due to the fact that in the dimer form each O-H group is already hydrogen bonded to each of the C=O groups, and the O-H oxygen atom is much less basic; therefore, the $CHCCl_3$ proton will not form a strong intermolecular hydrogen bond as in the case of $vC=O\cdots HCCl_3$. See Table 10.4a for the factors that affect the CO_2H and $(CO_2)_2$ groups for 4X-benzoic acids in $CHCl_3$ and CCl_4 solutions.

Figure 10.15 shows plots of vOH for 4-X-benzoic acids vs Hammett's σ_p values. These plots show a relationship with the Hammett σ_p values, but many of the points fall off the linear line.

Figure 10.16 shows plots of vC=O for 4-X-benzoic acids vs Hammetts σ_p values. Linear relationships are apparent except for the 4-tert-butyl and 4-methoxy analogs for CHCl₃ solution (14).

Figure 10.17 shows plots of $v_{op}(C=O)_2$ for 4-X-benzoic acids vs Hammetts σ_p values. The plots for both CCl_4 and $CHCl_3$ solutions are linear in three different segments (14).

Figure 10.18 shows plots of v_{op} (C=O)₂ for 4-X-benzoic acids vs mole % CHCl₃/CCl₄. The Cl, Br, H, CH₃, tert-butyl, and methoxy analogs all decrease essentially linearly in going from CCl₄ to CHCl₃ solutions. In addition, the frequency separation between these linear plots decreases as Hammetts σ_p values increase in value. However, in the case of the 4-nitro and 4-cyano analogs the v_{op} (C=O)₂ frequencies actually increase in going from CCl₄ to CHCl₃ solution.

In CCl_4 solution, the 4-nitro analog would have the most acidic OH proton and the most basic C-O oxygen atoms. Therefore, a complex such as (F) would cause the C=O bond to be

strengthened. Therefore, the $v_{op}(C=O)_2$ mode would vibrate at a higher frequency than in a case such as Complex G. In addition, the NO₂ group of aryl NO₂ has been shown to form intermolecular hydrogen bonds with CHCl₃ (15), and between Cl₃CH···NC for benzonitrile (16). Intermolecular hydrogen bonding of the CHCl₃ proton with the 4-NO₂ or 4-cyano group would also cause an increase of $v_{op}(C=O)_2$ in these (Cl₃C-HClCCl₃)_n complex solutions. Moreover, intermolecular hydrogen complexes involving the CH₃Cl₃ proton with the π system on one or both sides of the planar phenyl group would also cause vC=O to increase in frequency. These $v_{op}(C=O)_2$ shifts are 0.27 and 0.65 cm⁻¹ for the NO₂ and CH₃O analogs, respectively. For the Cl, Br, H, CH₃, (CH₃)C, and CH₃O these shifts are -1.01, -1.10, -1.33, -2.34, -2.27, and -2.52, respectively.

Figure 10.18 shows plots of vC=0 for 4-X-benzoic acids vs mole % CHCl₃/CCl₄. In CCl₄ solution, the Br analog occurs at a higher frequency than the Cl analog, and in CHCl₃ solution the CN analog occurs at a higher frequency than the NO₂ analog. These cases are exceptions to the correlation of vC=0 vs Hammett σ_p values.

The 4-tert.-butylbenzoic exhibits two ν C=O bands. The lower frequency band frequencies listed by the computer are in the range 1721.55–1718.0 cm⁻¹. The ν C=O for the 1721.55–1718.0 cm⁻¹ IR band is in good agreement with the ν C=O vs Hammett σ_p values. The higher ν C=O frequency band for 4-tert-butylbenzoic increases in frequency as the mole % CHCl₃/CCl₄ is increased while none of the other 4-X-benzoic acids show this opposite trend. A possible explanation for this ν C=O frequency behavior is that the tert-butyl group is hyperconjugated, and that the Cl₃C-H proton is hydrogen bonded to the phenyl π system while the positively charged tertiary carbon atom is associated with the Cl₃CH chlorine atom. Such an interaction would cause the ν C=O mode to increase in frequency as observed. Because 4-tert.-butylbenzoic acid exhibits two ν C=O frequencies it is apparent that it exists as clusters in CHCl₃ solutions. All of the 4-X-benzoic acids show breaks in the plots in the range 10–30 mol % CHCl₃/CCl₄ solution, which indicates that other CHCl₃/CCl₄ complexes of (Cl₃C-H····ClCCl₃)_n with the 4-X-benzoic are also present.

Table 10.5 lists IR vapor-phase data and assignments for anthranilic acids. These acids have the following basic structure:

The vO-H stretching frequencies occur in the range 3484-3494 cm⁻¹. The vasym. NH_2 mode occurs in the range 3518-3525 cm⁻¹ and vsym. NH_2 in the range 3382-3395 cm⁻¹. The frequency separation of 123-141 cm⁻¹ indicates that the N-H proton is intramolecularly hydrogen bonded to the C=O group as was illustrated here. A weak band in the region 3430-3436 cm⁻¹ is assigned to $vOH\cdots N$. The vC=O mode is in the range 1724-1732 cm⁻¹. The NH_2 bending mode is exhibited in the range 1613-1625 cm⁻¹. A medium-strong band in the range 1155-1180 cm⁻¹ is attributed to O-C= stretch.

N-methyl anthranilic acid and N-phenyl anthranilic acid exhibit ν N-H···O=C at 3392 and 3348 cm⁻¹, respectively. The N-H···O=C intramolecular hydrogen bond is stronger in the case of the N-phenyl analog due to the inductive effect of the phenyl group compared to that for the N-methyl group.

The $vC=O\cdots H-N$ frequencies occur near 1719 cm⁻¹ for N-methyl and N-phenyl anthranilic acid compared to 1724–1732 cm⁻¹ for the other anthranilic acids studied.

Table 10.6 lists infrared data for acrylic acid and methacrylic acid in 0 to 100 mol % $\rm CHCl_3/CCl_4$ solutions. The sym. $\rm CH_3$ bending mode for methacrylic acid increases steadily from 1375.5 to 1377.8 cm⁻¹ as the mole % $\rm CHCl_3/CCl_4$ is increased from 0 to 100, while the CH2= wag mode for methacrylic acid increases wag only 0.5 cm⁻¹, from 948.7 to 949.2 cm⁻¹. In the case of acrylic acid, the $\rm CH_2$ = bending mode decreases steadily from 1433.1 to 1429.9 cm⁻¹ as the mole % $\rm CHCl_3/CCl_4$ increases from 0 to 100, while the vinyl twist mode varies from 983.9 to 983.6 to 984 cm⁻¹.

Table 10.7 lists Raman data for carboxylic acid salts (6). In some cases vasym. CO_2 is observed in the Raman, and its intensity is always less than the Raman intensity for vsym. CO_2 . The Raman bands in the region $1383-1468\,\mathrm{cm}^{-1}$ are assigned to vsym. CO_2 .

Frequency assignments for vasym. CO_2 and vsym. CO_2 are summarized in Table 10.8. Study of this table suggests that the inductive effect causes vasym. CO_2 for the dichloroacetate ion to occur at higher frequency than the other carboxylate ions.

Table 10.9 lists IR data for carboxylic acid salts. This table demonstrates as well that the inductive effect also increases the vasym. CO_2 frequency as it increases from $1585\,\mathrm{cm}^{-1}$ for sodium acetate to $1640\,\mathrm{cm}^{-1}$ for sodium difluoroacetate. It appears that a divalent cation such as calcium (Ca) lowers the vasym. CO_2 frequency compared to a monovalent cation such as lithium (Li) or sodium (Na). Compare lithium and calcium formate ($1604\,\mathrm{vs}\,1596\,\mathrm{cm}^{-1}$) and sodium and calcium 2-ethylhexanoate ($1555\,\mathrm{vs}\,1545\,\mathrm{cm}^{-1}$) while the opposite effect is noted for vsym. CO_2 ($1382\,\mathrm{vs}\,1400\,\mathrm{cm}^{-1}$) and ($1415\,\mathrm{and}\,1424\,\mathrm{cm}^{-1}$) for the formate and 2-ethylhexanoates, respectively.

HALF SALTS OF CARBOXYLIC ACIDS

Sodium hydrogen diacetate is an example of a transmission anomaly observed within broad absorption bands of solids. This anomally indicates that there are perturbations between overlapping energy levels in the solid state.

Sodium hydrogen diacetate is classified as a type A acid salt with a centrosymmetric anion: Sodium hydrogen diacetate has 24 molecules per unit cell in its crystal structure (18). The broad intense absorption is determined by coupling between two or more vibrating $(-O \cdots H \cdots O)_n$ groups (19).

There are two C-C stretch modes in the centrosymmetric anion, a vsym. $(C-C)_2$ and vasym., $(C-C)_2$. The vasym. $(C-C)_2$ mode yields a strong Raman band at 920 cm⁻¹, and it is this mode that interacts, causing the transmission window in the broadband at 920 cm⁻¹ (see Fig. 10.19a). Figure 10.19b is that for the $(CD_3)_2$ analog, and in this case the vasym. C-C mode has shifted to 874 cm⁻¹ exhibiting the transmission anomaly at this frequency. Another anomaly near 840 cm⁻¹ results from the CD_3 rocking mode at this frequency (20).

Application of the perturbation theory redistributes both energy levels and absorption intensity. Near E $_1^{\circ}$ the interaction is greatest and the resulting shift of the levels leads to a fall in energy-level density. The loss in absorption intensity in this region appears as a gain in the other regions and the perturbation involves all the E $_1^{\circ}$ and E $_2^{\circ}$ levels. The intensity may be redistributed over a relatively large frequency range. This yields within the broadband a narrow region of increased transmission, with some regions of increased absorption nearby; the latter might not be easily noted in the spectrum (20).

Because Evans was the first to explain these peculiar effects that appear sometimes in the solid state IR spectra, it is now referred to as the "Evans Transmission Hole" or "Evans Hole."

REFERENCES

- 1. Nyquist, R. A. (1984). The Interpretation of Vapor-phase Infrared Spectra: Group Frequency Data. Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad.
- 2. Nyquist, R. A., Clark, T. D., and Streck, R. (1994). Vib. Spectrosc., 7, 275.
- 3. Taft, R. W. Jr. (1956). In Steric Effects in Organic Chemistry, M. S. Newman (ed.), Chap. 3, New York: Wiley.
- 4. Buckingham, A. D. (1960). Can. J. Chem., 308, 300.
- 5. Nyquist, R. A., Putzig, C. L., and Hasha, D. L. (1989). Appl. Spectrosc., 1049.
- (1984). Sadtler Standard Raman Spectra, Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Laboratories.
- 7. Nyquist, R. A. and Clark, T. D. (1996). Vib. Spectrosc., 10, 203.
- 8. Christensen, J. J., Hansen, L. D., and Isatt, R. M. (1976). Handbook of Proton Ionization and Related-Thermodynamic Quantities, New York: Wiley Interscience.
- 9. Bellanato, J. and Baraceló, J. R. (1960). Spectrochim. Acta, 16, 1333.
- 10. Golden, J. D. S. (1954). Spectrochim. Acta, 6, 129.
- 11. St. Fleet, M. (1962). Spectrochim. Acta, 18, 1537.
- 12. Brooks, C. J. W., Eglinton, G., and Moran, J. F. (1961). J. Chem. Soc., 106.
- 13. Welti, D. (1970). *Infrared Vapour Spectra*, London: Heyden, in cooperation with Sadtler Research Laboratories, Philadelphia, PA.
- 14. Nyquist, R. A. and Clark, T. D. (1995). Vib. Spectrosc., 8, 387.
- 15. Nyquist, R. A. and Settineri, S. E. (1990). Appl. Spectrosc., 44, 1552.
- 16. Nyquist, R. A. (1990). Appl. Spectrosc., 44, 1405.

17. Nyquist, R. A., Putzig, C. L., and Leugers, M. Anne (1997). Infrared and Raman Spectral Atlas of Inorganic Compounds and Organic Salts, vol. 1, p. 72. Academic Press, Boston.

- 18. Splakman, J. C. and Mills, H. H. (1961). J. Chem. Soc., 1164.
- 19. Albert, N. and Badger, R. M. (1958). J. Chem. Phys., 29, 1193.
- 20. Evans, J. C. (1962). Spectrochim. Acta, 18, 507.

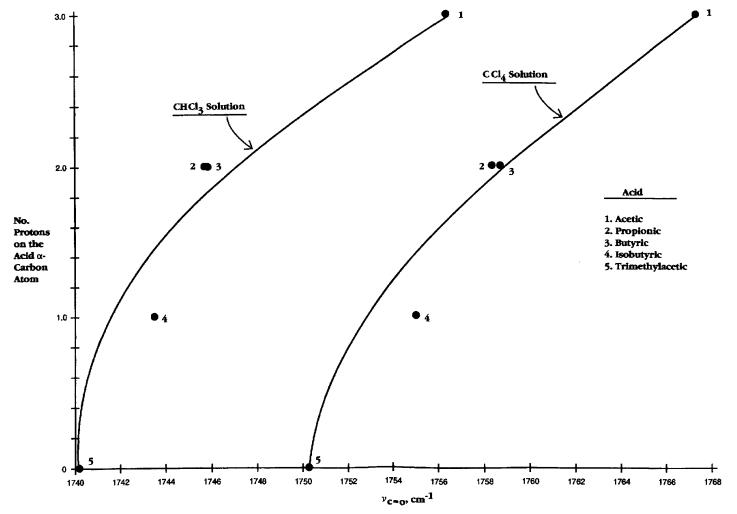


FIGURE 10.1 Plots of the number of protons on the acid α -carbon atom of the carboxylic acid vs ν C=O for alkyl carboxylic acids in 2% wt./vol. in CCl₄ and in 2% wt./vol. CHCl₃ solutions.

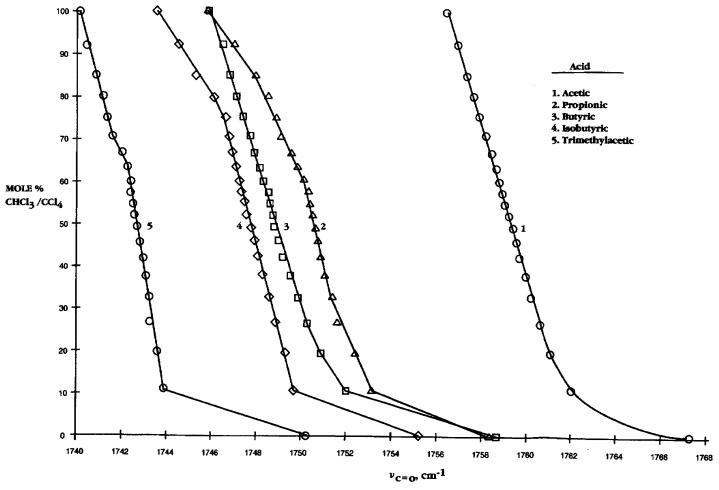
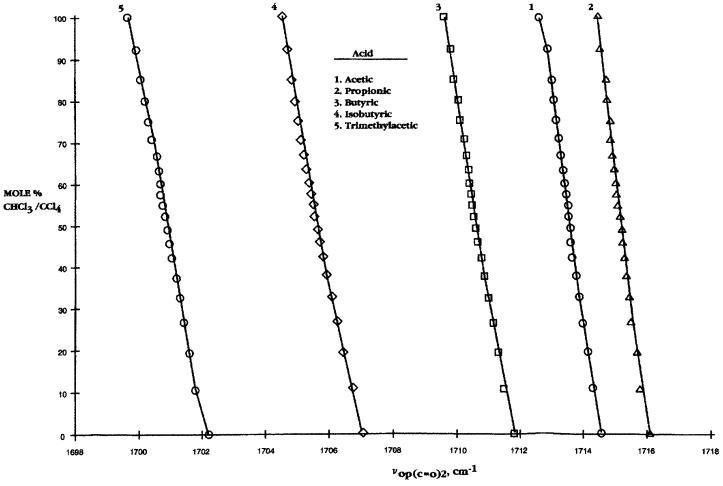



FIGURE 10.2 Plots of the mol % CHCl₃/CCl₄ vs vC=O for alkyl carboxylic acids in 2% wt./vol. CHCl₃ and/or CCl₄ solutions.

 $FIGURE~10.3~~Plots~of~the~mole~\%~CHCl_3/CCl_4~vs~\nu_{op}(C=O)_2~for~alkyl~carboxylic~acids~in~2\%~wt./vol.~CHCl_3~and/or~CCl_4~solutions.$

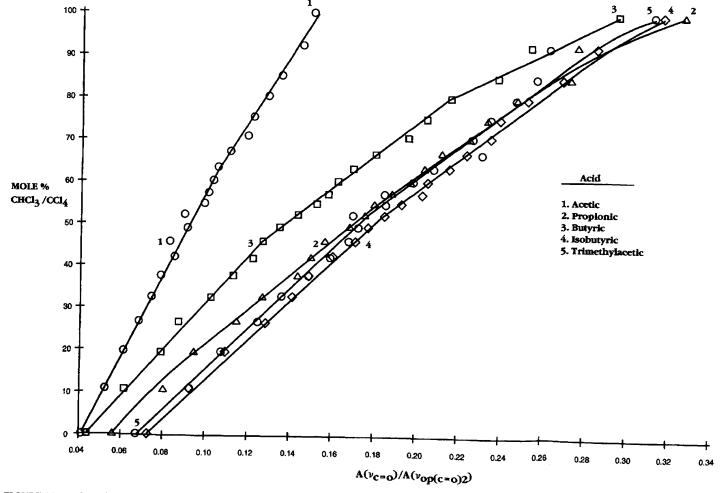


FIGURE 10.4 Plots of the mole % CHCl₃/CCl₄ vs absorbance [ν (C=O)]/absorbance [ν _{op}(C=O)₂] for the alkyl carboxylic acids in 2% wt./vol. CHCl₃ and/or CCl₄ solutions.

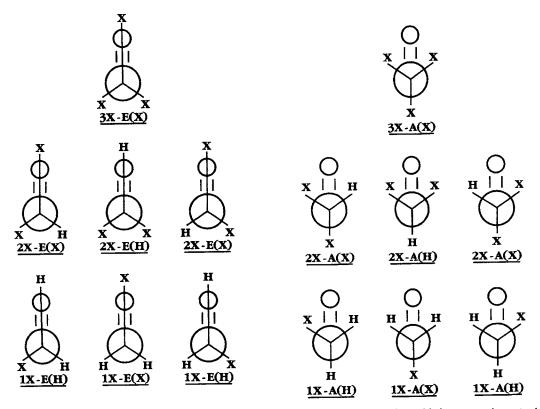


FIGURE 10.5 A schematic of the number of possible rotational isomers for the tri-, di-, and haloacetic acids not in the form of intermolecular hydrogen-bonded dimers. X is a halogen atom, 2X is two halogen atoms, 3X is three halogen atoms.

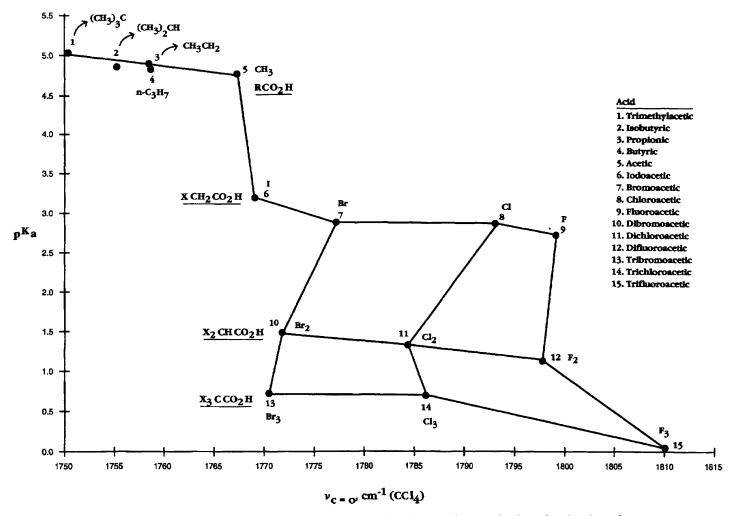


FIGURE 10.6 Plots of ν C=O for each carboxylic acid in CCl₄ solution vs the pK_a value for each carboxylic acid.

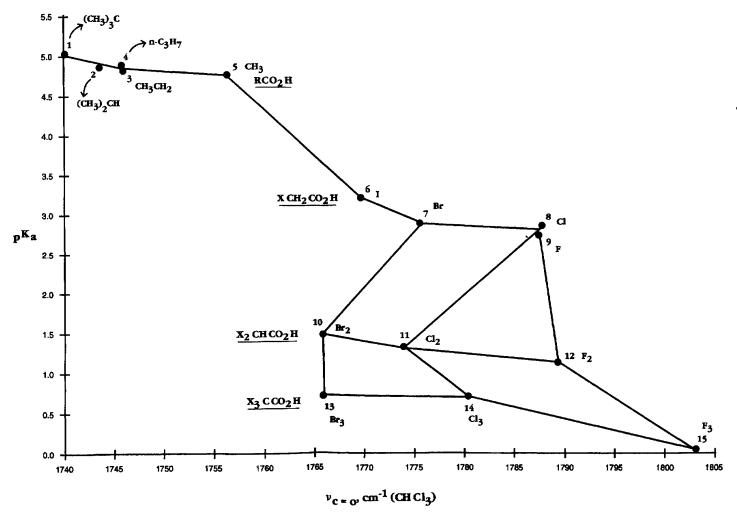


FIGURE 10.7 Plots of vC=0 for each carboxylic acid in CHCl₃ solution vs the pK_a value for each carboxylic acid.

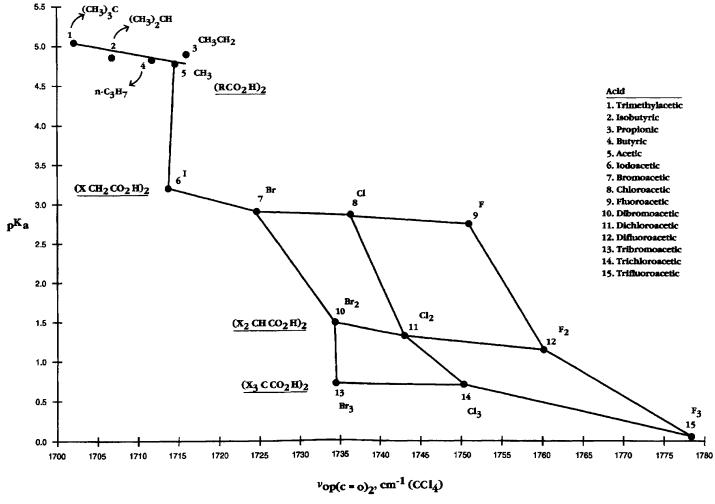


FIGURE 10.8 Plots of $\nu_{op}(C=O)_2$ for each carboxylic acid in CCl₄ solution vs the pK_a value for each carboxylic acid.

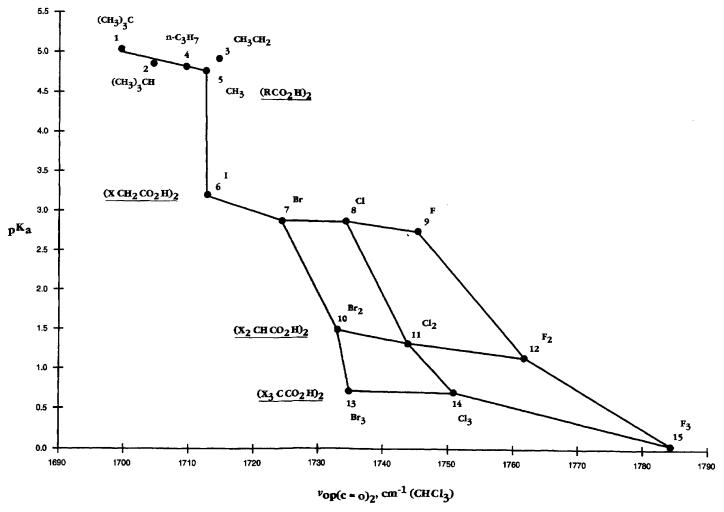


FIGURE 10.9 Plots of $v_{op}(C=O)_2$ for each carboxylic acid in CHCl₃ solution vs the pK_a value for each carboxylic acid.

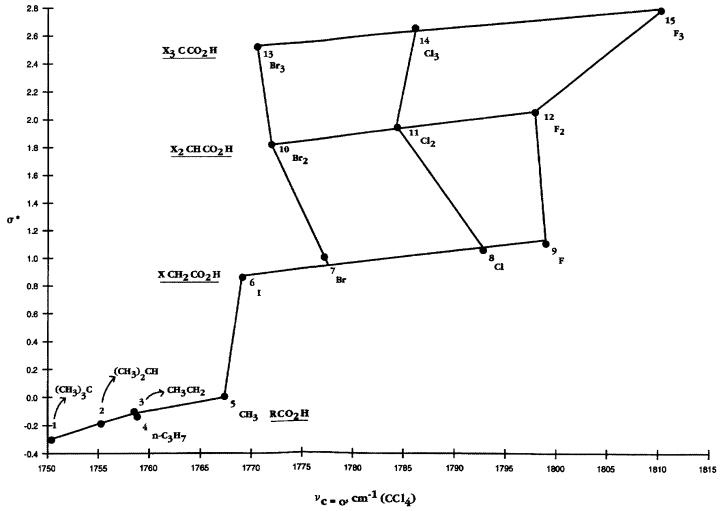


FIGURE 10.10 Plots of vC=0 for each carboxylic acid in CCl₄ solution vs the σ^* value for each carboxylic acid.

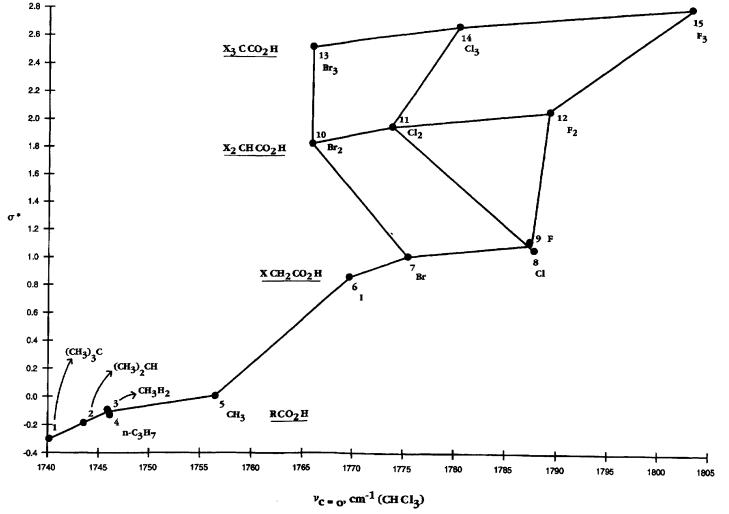


FIGURE 10.11 Plots of ν (C=O) for each carboxylic acid in CHCl₃ solution vs the σ^* value for each carboxylic acid.

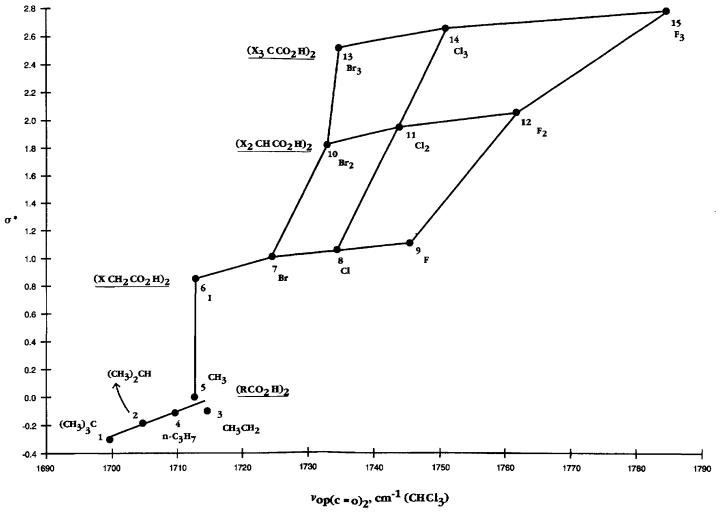


FIGURE 10.12 Plots of $v_{op}(C=O)_2$ for each carboxylic acid in CHCl3 solutions vs the σ^* value for each carboxylic acid.

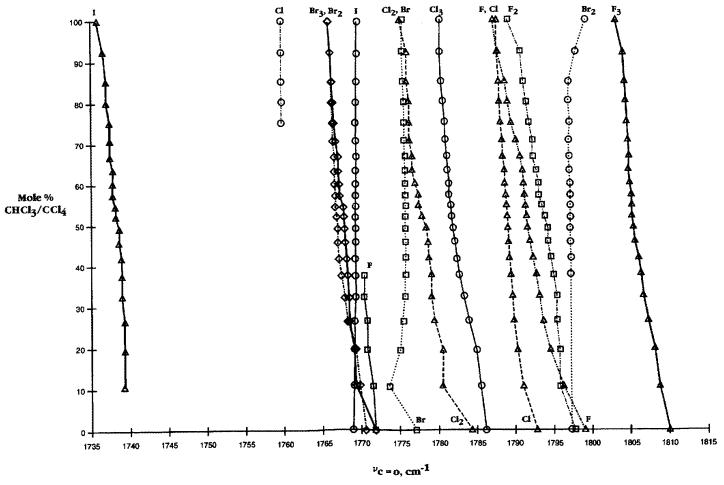


FIGURE 10.13 Plots of v(C=O)₂ for trihalo, dihalo, and haloacetic acids vs mole % CHCl₃/CCl₄.

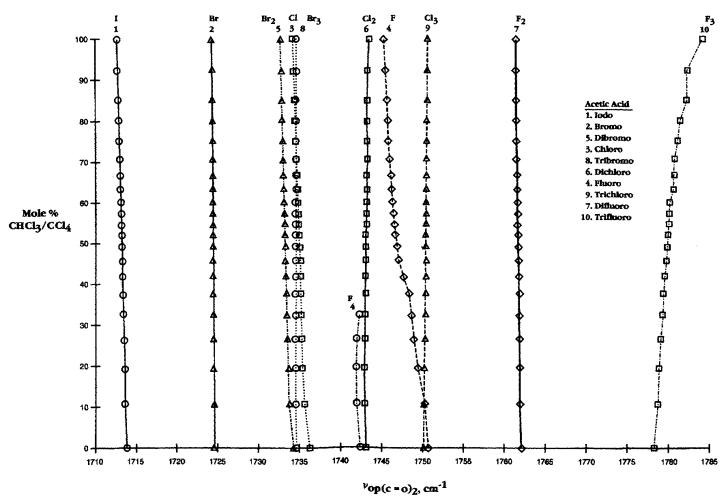


FIGURE 10.14 Plots of $v_{op}(C=O)_2$ for trihalo, dihalo, and haloacetic acids vs mole % CHCl₃/CCl₄.

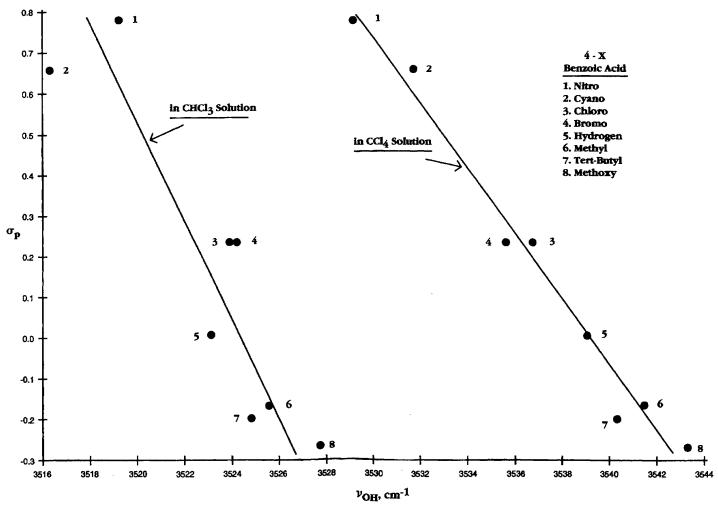


FIGURE 10.15 Plots of vOH mode for 4-X-benzoic acids in CCl₄ solution and in CHCl₃ solution vs σ_p values for the 4-X atom or group.

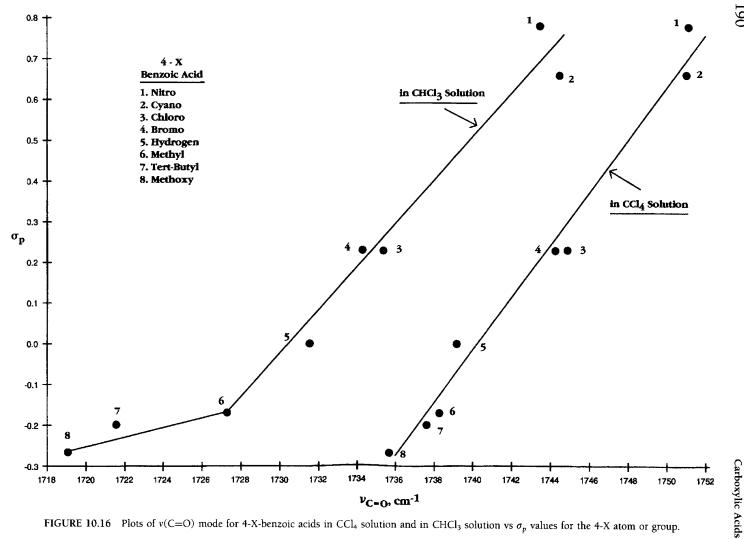


FIGURE 10.16 Plots of v(C=O) mode for 4-X-benzoic acids in CCl₄ solution and in CHCl₃ solution vs σ_p values for the 4-X atom or group.

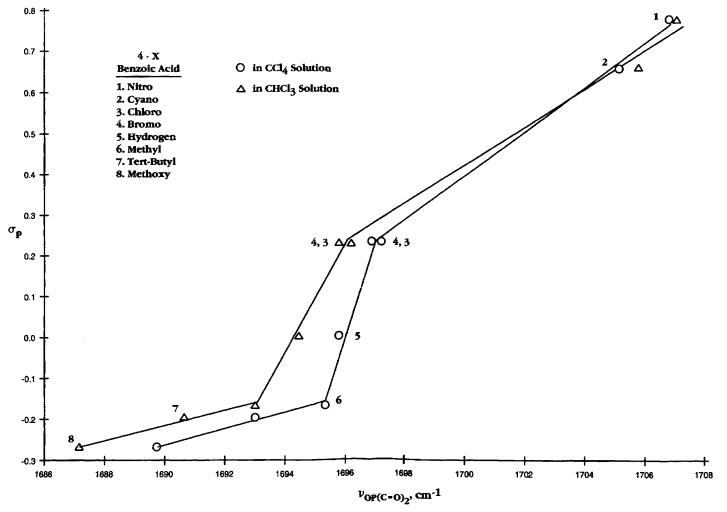


FIGURE 10.17 Plots of $v_{op}(C=O)_2$ frequencies for 4-X-benzoic acids in CCl₄ solution and CHCl₃ solution vs σ_p values for the 4-X atom or group.

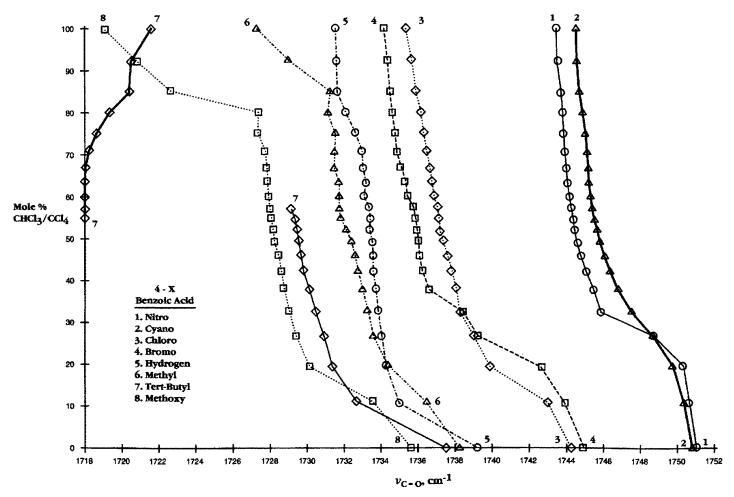


FIGURE 10.18 Plots of v_c =0 frequencies for 4-X-benzoic acids vs mole % CHCl₃/CCl₄.

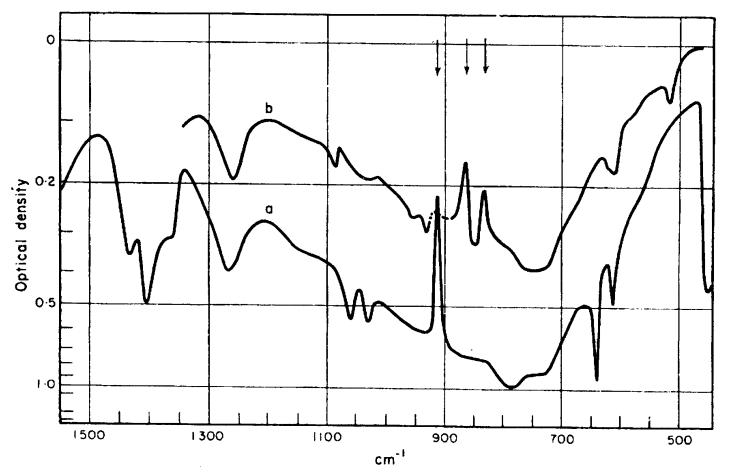


FIGURE 10.19 (a) Parts of the infrared spectrum of mulls containing sodium hydrogen diacetate; above $1330\,\mathrm{cm}^{-1}$ Fluorolube was used and below $1330\,\mathrm{cm}^{-1}$, Nujol. (b) A Nujol mull spectrum of NaH(CD₄COO)₂.

194 Carboxylic Acids

TABLE 10.1 IR vapor-phase data, CCl₄ and CHCl₃ solution-phase data, and assignments for aliphatic carboxylic acids

ucius						
Acid	O–H str. vapor	O−H str. CCl₄ soln.	O–H str. CHCl ₃ soln.	[vapor]- [CCl ₄ soln.]	[vapor]- [CHCl ₃ soln.]	[CCl ₄ soln.]- [CHCl ₃ soln.]
	· · · · · · · · · · · · · · · · · · ·	- · · · · · · · · · · · · · · · · · · ·		· · · · ·		
Acetic	3580(0.310)	3335.0(0.007)	3518.4(0.016)	45	61.6	16.6
Propionic	3579(0.460)	3535.7(0.015)	3520.7(0.032)	43.3	58.3	15
Butyric	3579(0.291)	3533.9(0.015)	3518.9(0.024)	45.1	60.1	10
Isobutyric	3579(0.411)	3534.1(0.012)	3518.6(0.026)	44.9	60.4	15.5
Trimethyl-acetic	3579(0.291)	3534.3(0.011)	3521.0(0.028)	44.7	58	13.3
	C=O str.	C=O str.	C=O str.	-		
	vapor	Cl ₄ soln.	CHCl ₃ soln.			
Acetic	1789(1.230)	1767.3(0.056)	1756.3(0.110)	21.7	32.7	11
Propionic	1780(1.150)	1758.4(0.052)	1745.8(0.180)	21.6	34.2	12.6
Butyric	1780(1.250)	1758.7(0.037)	1745.9(0.116)	21.3	34.1	12.8
Isobutyric	1778(1.242)	1755.2(0.043)	1743.6(0.153)	22.8	34.4	11.6
Trimethyl-acetic	1769(1.142)	1750.3(0.047)	1740.1(0.174)	18.7	28.9	10.2
	$o.p.(C=O)_2$ str.	o.p.(C=O) ₂ str.	o.p.(C=O) ₂ str.			
	vapor	CCl ₄ soln.	CHCl ₃ soln.			
Acetic		1714.6(1.343)	1712.5(0.735)			2.1
Propionic		1716.1(0.927)	1714.4(0.552)			1.7
Butyric		1711.8(0.839)	1709.5(0.393)			2.3
Isobutyric		1707.0(0.598)	1704.5(0.484)			2.5
Trimethyl-acetic		1702.2(0.696)	1699.6(0.556)			2.6
	C-C-O str.	gamma C=O				
	vapor	vapor		[vp-vp]		
Acetic	1178)9.744)	580(0.268)		598		
Propionic	1145(0.858)	588(0.250)		557		
Butyric	1150(0.667)	590(0.189)		560		
Isobutyric	1105(0.755)	585(0.353)		520		
Trimethyl-acetic	1115(1.245)	571(0.311)		544		
						

TABLE 10.2 Raman data and assignments for out-of-phase and in-phase $(C=O)_2$ stretching modes and C=C stretching modes for carboxylic acids

ACID	o.p.(C=O) ₂ str.	i.p.(C=O) ₂ str.	C=C str.	Acid	o.p.(C=O) ₂ str.	i.p.(C=O) ₂ str.
Acrylic	1727(2)	1661(2)	1638(9)	Acetic*	1718(sh)	1668(7)
•				Dichloroacetic*		1680(9)
Methacrylic		1660(3)	1640(4)	Iodoacetic*		1664(6)
2-Chloroacrylic		1656(2)	1614(1)	4-Methoxy		1688(m)
Trichloroacrylic		1650(1)	1557(9)	Benzoic*		
Itaconic	1712(1)	1655(7)	1690(9)			
cis-Aconititic	1730(2)	1671(8)				
trans-Aconititic		1668(9)				
Tiglic		1653(9)	1625(1)			
2,6-Naphthalene-dicarboxylic		1639(5)				
Benzoic		1635(1)				
Terephthalic		1632(4)				
Isophthalic		1638(3)				
1,3,5-Tricarboxy benzene		1654(4)				
Succinic		1657(2)				
Thioglycolic		1687(20				
Thiopropionic		1646(2)				
3-(4-Hydroxy-3-methoxyphenyl)		1630(5)				
2-Propionic						
Polyacrylic		1678(3)				
Polymethacrylic		1694(1)				

^{*} Reference 6.

TABLE 10.3 IR group frequency data for acetic acid and its derivatives in the vapor and solution phases

Acetic acid	sigma*	pK _a 25°C	C=O str. vapor	C=O str. CCl ₄ soln.	C=O str. CHCl ₃ soln.		C=O str. CCL ₄ soln. (9)	o.p. $(C= number of O)_2 str.$ $CCl_4 soln.$	o.p.(C=O) ₂ str. CHCl ₃ soln.			[vapor]- [CHCl ₃ soln]	[CCl ₄ soln.]- [CHCl ₃ soln.]
Trimethyl	[-0.300]	[5.03]	1769(1.142)	1750.30(0.047)	1740.1(0.174)			1702.2(0.696)	1699.6(0.556)		18.7	28.9	10.2
Dimethyl	[-0.190]	[4.85]	1788(1.242)	1755.2(0.043)	1743.6(0.153)			1707.0(0.595)	1704.5(0.484)		22.8	34.4	11.6
Methyl	[-0.100]	[4.88]	1780(1.150)	1758.4(0.053)	1745.8(0.180)			1716.1(0.927)	1714.4(0.552)		21.6	34.2	12.6
Hydrogen	[0.00]	[4.76]	1789(1.230)	1767.3(0.056)	1756.3(0.110)		1771			1714	21.7	32.7	11
Iodo	[0.85]	[3.19]	1781(1.240)	1769.1(0.020)	1769.6(0.045)	1739.2(0.029)*2	1772	1713.8(0.491)	1712.7(0.377)	1713	11.9	11.4	
Bromo	[1.00]	[2.87]		1777.1(0.020)	1775.5(0.061)		1772	1724.5(0.457)	1724.3(0.419)	1726	1.6		
Chloro	[1.05]	[2.85]	1815(0.585)	1792.8(0.030)	1787.7(0.071)	1759.7(0.100)*3	1791	1736.3(0.629)	1734.2(0.576)	1737	22.2	27.3	5.1
Chloro			1797(1.240)								4.2	9.3	
Fluoro	[1.10]	[2.72]		1798.9(0.034)	1787.3(0.488)	1771.8(0.023)*4	1797	1750.8(0.123)	1745.3(1.168)	1743			11.6
Dibromo	[1.82]	[1.48]	1804(0.540)										
Dibromo			1784(1.240)										
Dichloro	[1.94]	[1.30]		1784.3(0.027)	1775.1(0.098)		1784	1743.1(0.482)	1743.7(0.408)	1744			9.2
Difluoro	[2.05]	[1.13]		1797.7(0.073)	1789.2(0.197)		1794	1762.0(0.524)	1761.6(0.670)	1764			8.5
Tribromo	[2.52]	[0.72]		1770.5(0.039)	1765.9(0.094)		1772	1734.5(0.309)	1734.6(0.174)	1735			4.6
Trichloro	[2.65]	[0.70]		1786.1(0.066)	1780.3(0.149)		1789	1750.2(0.537)	1750.7(0.354)	1752			5.8
Trifluoro	[2.78]	[0.05]		1810.1(0.116)	1803.1(0.168)		1813	1778.3(0.462)	1784.3(0.288)	1780			7
				O-H str.	O-H str.	[CCl4 soln.]-	CCO str.	gamma C=O					[CCl4 soln.]-
				CCl₄ soln.	CHCl ₃ soln.	[CHCl ₃ soln.]	vapor	vapor					[CHCl ₂ soln.]
Trimethyl				3534.3(0.011)	3521.0(0.028)	13.3	1115(1.245)	571(0.311)					. , .
Dimethyl				3534.1(0.012)	3518.6(0.026)	15.5	1105(0.755)	585(0.353)					
Methyl				3535.5(0.015)	3520.7(0.032)	14.8	1145(0.858)	588(0.250)					
Hydrogen				3535.0(0.007)	3518.4(0.016)	17	1178(0.744)	580(0.268)					
Iodo				3527.0(0.006)	3507.9(0.014)	19.1	1189(0.487)	598(0.598)					
Bromo				3524.4(0.008)	3504.2(0.017)	20.2							
Chloro				3524.7(0.008)	3503.7(0.022)	21	1120(0.810)	616(0.290)					
Fluoro				3529.1(0.014)	3510.6(0.086)	18.5							
Dibromo				3517.1(0.007)	3497.7(0.0150	19.4	1155(0.580)	599(0.415)					
Dichloro				3508.0(0.019)	3492.4(0.023)	15.6							
Difluoro				3508.6(0.032)	3485.8(0.045)	22.8							
Tribromo				3506.1(0.008)	3481.4(0.020)	24.7							
Trichloro				3505.0(0.013)	3484.8(0.025)	20.2							
Trifluoro				3500.5(0.023)	3479.6(0.023)	20.9							

 ^{*2} is for 19.4 mole % CHCl₃/CCl₄ and is assigned to the 1I-A(I) · HCCl₃ rotational conformer.
 *3 is for 75.6 mole % CHCl₃/CCl₄ and is assigned to the 1Cl-A(Cl) · HCCl₃ rotational conformer.
 *4 is also for CCl₄ solution and is assigned to the IF-A(F) rotational conformer.

TABLE 10.4 IR data and assignments for 4-X-benzoic acids in the vapor and solution phases

4-X-Benzoic Acid	O-H str. vapor	O-H str. CCl ₄ soln.	O-H str. CHCl ₃ soln.	[vapor]- [CCl ₄ soln.]	[vapor]-[CHCl ₃ soln.]	[CCl ₄ soln.]-[CHCl ₃ soln.]	sigma p
Nitro	3582	3529.2(0006)	3519.2(0.048)	52.8	62.8	10	0.78
Cyano	3584(0.4950)	3531.7(0.006)	3516.3(0.081)	52.3	67.7	15.4	0.66
Chloro	3585(0.290)	3536.7(0.016)	3523.9(0.044)	48.3	61.1	12.8	0.23
Bromo		3535.6(0.011)	3524.2(0.033)			11.4	0.23
Hydrogen	3585(0.350)	3539.1(0.014)	3523.1(0.035)	45.9	61.9	16	0
Methyl	3590(0.450)	3541.5(0.007)	3525.6(0.018)	48.5	64.4	15.9	-0.17
tert-Butyl	3582(0.300)	3540.3(0.012)	3524.8(0.027)	57.2	57.2	15.5	-0.2
Methoxy	3595(0.292)	3543.3(0.002)	3527.7(0.021)	51.7	67.3	15.6	-0.27
	C=O str. vapor	C=O str. CCl ₄ soln.	C=O str. CHCl ₃ soln.				
Nitro	1768	1751.0(0.029)	1743.4(0.406)	17	24.6	7.6	
Cyano	1768(1.230)	1750.9(0.026)	1744.4(0.485)	17.1	23.6	6.5	
Chloro	1762(1.243)	1744.1(0.074)	1735.3(0.333)	17.9	26.7	8.8	
Bromo		1744.8(0.056)	1734.2(0.250)			10.6	
Hydrogen	1762(1.250)	1739.2(0.073)	1731.5(0.188)	22.8	30.5	8	
Methyl	1760(1.231)	1738.2(0.020)	1727.3(0.092)	21.8	32.7	10.9	
tert-Butyl	1758(1.250)	1737.6(0.050)	1729.1(0.117)* ¹	20.4	28.9	8.5	
			1718.0(0.120)*		40		
			1721.6(0.157)		36.4		
Methoxy	1760(1.243)	1735.6(0.023)	1719.1(0.120)	24.4	40.9	16.5	
[57.2 mol % CHC ₃ /CCl ₄]*1	[60.1 mol % CHCl ₃ /CCl ₄]* ²						
	o.p.(C=O)2 str. vapor	o.p.(C=O)2 str. CCl4 soln.	o.p.(C=O) str. CHCl ₃ soln.				
Nitro		1706.7(0.015)	1707.0(0.355)			-0.3	
Cyano		1705.0(0.040)	1705.7(1.832)			-0.3	
Chloro		1697.2(0.429)	1696.2(0.768)			1	
Bromo		1696.9(0.204)	1695.8(0.366)			1.1	
Hydrogen		1695.8(1.536)	1694.5(1.206)			1.3	
Methyl		1695.3(0.705)	1693.0(0.462)			2.3	
tert-Butyl		1693.0(1.442)	1690.7(0.901)			-0.7	
Methoxy		1689.7(0.260)	1687.2(0.559)			2.5	
	Ring-C=O str. vapor	gamma C=O vapor					
Nitro	1180	565					
Cyano	1172(0.530)	532(0.230)					
Chloro	1177(0.355)	570(0.060)					
Hydrogen	1180(0.590)	571(0.060)					
Methyl	1170(0.680)	582(0.239)					
tert-Butyl	1178(0.450)	568(0.115)					
Methoxy	1166(0.742)	593(0.187)					

^{*1} Two bands are present at 572 mol % CHCl₃/CCl₄ (14).

198 Carboxylic Acids

TABLE 10.4A Factors affecting the CO₂H and (CO₂)₂ groups for 4-X-benzoic acids in CHCl₃ and/or CCl₄ solutions

Factor Hammett σ p	O–H str. cm ⁻¹	C=O str. cm ⁻¹	op(C=O) str. cm ⁻¹
NO ₂ (0.78) to CH ₃ O (-0.27)	increase	decrease	decrease
CCl ₄ solution	3529.2-3543.3	1751.0-1735.6	1706.7-1689.7
CHCl ₃ solution	3519.2-3527.7	1743.4-1719.1	1707.0-1687.2
CH_3O (-0.27) to NO_2 (0.78)	decrease	increase	increase
CCl ₄ solution	3543.3-3529.3	1735.6-1751.0	1689.7-1706.7
CHCl ₃ solution	3527.7-3519.2	1719.1-1735.6	1687.2-1707.0
pKa values			
NO ₂ (3.42) to CH ₃ O (4.47)	increase	decrease	decrease
CCl ₄ solution			
CHCl ₃ solution			
CH ₃ O (4.47) to NO ₂ (3.42)	decrease	increase	increase
intermolecular hydrogen bond to 4-X group			
NO ₂ , CN, CH ₃ O	increase	increase	increase
OH: π system of phenyl group			
CH ₃ is 0	increase	increase	increase
$(CH_3)3C$ is -1.54	decrease	decrease	decrease

TABLE 10.5 IR vapor-phase data and assignments for anthranilic acids

Compound	O-H str.	a.NH ₂ str.	s.NH ₂ str.	OH:N str.	C=O str.	NH ₂ bending	O-C= str.	A[a.NH ₂ str.]/ A[s.NH ₂ str.]	a.NH ₂ strs.NH ₂ str.	gamma C=O
Anthranilic acid	3584(0.256)	3520(0.082)	3395(0.141)	3436(0.020)	1729(1.237)	1613(0.580)	1180(0.380)	0.58	125	561(0.152)
3-Methyl	3584(0.465)	3520(0.165)	3382(0.240)	3430(0.031)	1724(1.230)	1620(0.570)	1168(0.560)	0.69	138	564(0.260)
3-Ethyl	3584(0.505)	3521(0.180)	3382(0.260)	3435(0.030)	1725(1.230)	1620(0.620)	1155(0.560)	0.69	139	548(0.200)
5-Methyl	3584(0.320)	3519(0.098)	3395(0.170)	3435(0.020)	1726(1.240)	1625(0.290)	1162(0.922)	0.58	124	570(0.210)
5-Methoxy	3584(0.250)	3518(0.070)	3395(0.120)	3435(0.020)	1730(1.230)	1604(0.341)	1165(0.720)	0.58	123	580(0.120)
3,4-Dimethyl	3594(0.330)	3525(0.080)	3384(0.155)		1724(1.230)	1613(0.750)	1177(0.335)	0.52	141	570(0.150)
5-Chloro-3-methyl	3584(0.340)	3520(0.100)	3385(0.169)	3430(0.030)	1725(1.220)	1621(0.343)	1161(0.631)	0.59	135	571(0.170)
3,5-Dichloro	3584(0.360)	3515(0.160)	3395(0.200)	3430(0.050)	1732(1.230)	1618(0.380)	1178(1.110)	0.79	120	574(0.130)
,		N-H str.		OH: N str.		NH bending				
N-Methyl	3584(0.357)	3392(0.212)		3480(0.0200	1718(1.240)	1520(0.470)	1162(0.730)			559(0.210)
N-Phenyl	3584(0.235)	3348(0.150)		3445(0.030)	1720(1.209)	1518(0.650)	1162(0.641)			568(0.122)

200 Carboxylic Acids

TABLE 10.6 Infrared data for methacrylic acid and acrylic acid in CHCl₃ and/or CCl₄ solutions

Mole % CHCl ₃ /CCl ₄	Methacrylic acid s. CH_3 bending ${ m cm}^{-1}$	Methacrylic acid CH ₂ = wag cm ⁻¹	Acrylic acid CH ₂ = bending cm ⁻¹	Acrylic acid vinyl twist cm ⁻¹
0	1375.5	948.7	1433.1	983.9
10.74	1375.6	948.8	1433	983.8
19.4	1375.7	948.9	1432.8	983.8
26.53	1375.8	949	1432.6	983.7
32.5	1375.9	949	1432.4	983.65
37.57	1376.1	949	1432.3	983.6
41.93	1376.2	949.1	1432.15	983.6
45.73	1376.3	949.1	1432	983.6
49.06	1376.4	949.2	1431.9	983.6
52	1376.5	949.2	1431.8	983.6
54.62	1376.6	949.2	1431.7	983.7
57.22	1376.7	949.2	1431.6	983.7
60.07	1376.8	949.2	1431.5	983.7
63.28	1376.9	949.2	1431.4	983.7
66.73	1377	949.2	1431.2	983.7
70.65	1377.1	949.2	1431	983.7
75.06	1377.2	949.2	1430.9	983.8
80.06	1377.3	949.2	1430.8	983.8
85.05	1377.4	949.2	1430.6	983.9
92.33	1377.8	949.2	1430.3	983.9
100		949.2	1429.9	984
$delta cm^{-1}$	2.3	0.5	-3.2	0.1

TABLE 10.7 Raman data and assignments for carboxylic acid salts

Compound	a.CO ₂ str.	s.CO ₂ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	CH ₂ bend	i.p.CH ₂ twist	cis CH s. rock	C-C str.		
Strontium stearate		1468(3)	2923(3)	2884(9)	2852(5)	1447(4)	1296(3)		1062(1)		
Zinc stearate		1460(2)	2)23(3)	2882(9)	2849(5)	1440(3)	1296(3)		1064(2)		
Stannous oleate		1435(5)		2897(9)	2853(9)	1110(3)	1302(3)	1267(2)	1001(2)		
K dichloroacetate*	1646(7)	1383(14)		•	, ,		(- ,				
			a. $CH_2 = str.$	CH= str.	CH= str.	$s.CH_2 = str.$	C=C str.		$CH_2 = bend$	CH= bend	s.C-CO ₂ str.
Lithium acrylate							1649(6)		-	1280(9)	904(3)
Sodium acrylate	1565(1)	1459(7)								. ,	` '
Zinc diacrylate	1603(1)?	1445(5)	3107(1)	3056(2)	3029(3)	2997(1)	1640(9)		138(1)	1280(5)	915(3)
Lead acrylate		1445(4)					1639(9)			1278(8)	920(2)
•			s.C-CO ₂ str.	CCO, bend							, ,
Barium methacrylate		1423(9)	853(6)	606(3)			1648(6)				
Lead methacrylate		1426(7)	866(9)	604(0)							
Zirconium methacrylate		1422(4)	857(4)	58610			1645(9)				
Zinc dimethacrylate	1600(0)?	1445(5)					1640(9)				

^{*} Unpublished data from the Dow chemical company.

TABLE 10.8 The asymmetric and symmetric CO_2 stretching frequencies for carboxylic acid salts

Carboxylate ion	asym.CO ₂ str. cm ⁻¹	sym.CO ₂ str. cm ⁻¹
Formate	1538–1604	1342-1400
Acetate	1543-1585	1404-1457
Dichloroacetate	1646	1383
Propionate	1550	1415
Butyrate	1563-1578	1420-1430
Valerate	1561–1565	near 1437
Stearate	1539-1558	1438-1468
Cyanoacetate	1605	near 1390
Malonate	1570	1420
Succinate	1569	1437
Tartrate	1571-1600	1386-1455
Citrate	1575–1620	1390-1430
Acrylate	1565-1603	1445-1459
Methacrylate	1603	1422-1445
Benzoate	1515–1559	1392-1431
Salicylate	1540-1598	1365-1409
Phthalate	1565	1384
Cinnamate	1549	1424

TABLE 10.9 IR data for carboxylic acid salts

Compound Formate	asym. CO_2 str. cm^{-1}	sym.CO ₂ str. cm ⁻¹	as. delta cm ⁻¹
lithium	1604	1382	222
calcium	1596	1400	196
Acetate			
sodium	1585	1445	140
sodium iodo-	1586	1398	190
sodium fluoro-	1616	1449	167
sodium difluoro-	1640	1449	191
sodium mercapto-	1585	1400	185
sodium N,N-diethylamino-	1590	1400	190
Propionate			
cadmium	1550	1415	135
sodium 2-hydroxy	1590	1410	180
sodium 2,3-dichloro-2methyl-	1609	1395	214
Hexanoate			
sodium 2-ethyl	1555	1415	140
calcium 2-ethyl	1545	1424	121
Laurate			
sodium	1555	1421	134
Benzoate			
sodium	1545	1410	135
sodium 3-amino-	1559	1410	149
sodium 4-amino-	1545	1405	140
sodium 2-hydroxy	1582	1378	204
sodium 4-hydroxy-	1544	1415	129

Phthalic Anhydride Maleic Anhydride References Figure			206 207 208
		Tables	
Figure 11-1	209 (206)	Table 11-1	210 (205)
· ·		Table 11-2	210 (206)
		Table 11-3	211 (207)
		Table 11-4	212 (207)

^{*}Numbers in parentheses indicate in-text page reference.

Carboxylic acid anhydrides exhibit symmetrical and asymmetric (C=O)₂ stretching vibration [v_{ip} (C=O)₂ and v_{op} (C=O)₂], respectively. Open chain saturated aliphatic anhydrides exhibit v_{ip} (C=O)₂ in the range 1815–1825 cm⁻¹ and v_{op} (C=O)₂ in the range 1745–1755 cm⁻¹. The v_{ip} (C=O)₂ mode has stronger IR band intensity than v_{op} (C=O)₂. Conjugation lowers both modes. The strong band in the range 1770–1780 cm⁻¹ is assigned to v_{ip} (C=O)₂, and the weaker IR band in the region 1715–1725 cm⁻¹ is assigned to v_{op} (C=O)₂. In the case of unconjugated 5-membered ring anhydrides the IR bands occurring in the range 1845–1870 cm⁻¹ have relatively weak intensity and the IR bands in the range 1775–1800 cm⁻¹ have strong intensity. These bands are assigned as v_{ip} (C=O)₂ and v_{op} (C=O)₂, respectively. Conjugated 5-membered anhydrides exhibit the weak IR band in the range 1850–1860 cm⁻¹ and the strong IR band in the region 1760–1780 cm⁻¹, which are assigned to v_{ip} (C=O)₂ and v_{op} (C=O)₂, respectively (1,2).

It was found helpful in the discussions of the $v(C=O)_2$ modes of anhydrides to give letters and numbers to classify each type. For example, an open chain anhydride such as acetic is labeled (OC), succinic anhydride whose cyclic structure includes a 5-membered saturated ring (5SR), glutaric anhydride whose cyclic structure include a 6-membered saturated ring (6SR), maleic and phthalic anhydrides whose cyclic structures include a 5-membered unsaturated ring (5UR), naphthalic anhydride whose cyclic structure includes a 6-membered unsaturated ring (6UR), and 2,2-biphenyldicarboxylic anhydride whose cyclic structure includes a 7-membered unsaturated ring (7UR), (3).

Table 11.1 lists IR vapor phase and Raman data in the neat phase for anhydrides.

Ring strain and conjugation play a role in the $v(C=O)_2$ modes for anhydrides. The frequency separation between v_{ip} ($C=O)_2$ and v_{op} ($C=O)_2$ together with their band intensity ratio also can be used to classify anhydrides.

The inductive effect also affects the $v(C=O)_2$ modes for OC anhydrides. For example, $v_{\rm ip}$ (C=O)₂ decreases in the order 1830, 1825, 1824, and 1822 cm⁻¹ and $v_{\rm op}$ (C=O)₂ decrease in the order 1775, 1769, 1761, and 1759 cm⁻¹ for acetic, propionic, isobutyric and 2-ethylbutyric anhydrides, respectively. Moreover, when the inductive effect causes electrons to be withdrawn from the (C=O)₂ bonds such as in the case of trifluoroacetic anhydride, $v_{\rm ip}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ occur at the relatively high frequencies of 1881 and 1817, respectively (3).

Table 11.2 lists Raman data and assignments for carboxylic acid anhydrides. In the Raman, the $v_{\rm ip}$ (C=O)₂ mode is always more intense than $v_{\rm op}$ (C=O)₂. The OCU compounds exhibit $v_{\rm ip}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ in the range 1771–1788 cm⁻¹ and 1715–1725 cm⁻¹, respectively, and occur at lower frequency than the OC anhydrides due to the effects of conjugation of the C=O and C=C groups.

PHTHALIC ANHYDRIDE

Figure 11.1 shows the IR spectra of phthalic anhydride in the region 2000-1600 cm⁻¹. The spectrum on the left is that for a saturated solution of phthalic anhydride in CCl₄ solution, the center spectrum is that for a saturated solution of phthalic anhydride in a 23.1% vol. CHCl₃/CCl₄ solution, and the spectrum on the right is that for a saturated solution of phthalic anhydride in CHCl $_3$ solution. All spectra were recorded using 0.2-mm KBr cells. The spectrum is more intense in going from left to right due to the increased solubility in CHCl3. What is important in this case is to note that the $1789 \, \mathrm{cm}^{-1}$ band is more intense than the $1776 \, \mathrm{cm}^{-1}$ band in CCl₄ solution, in 23.1% vol. in CHCl₃/CCl₄ solution the two bands have equal intensity, and in CHCl $_3$ solution the 1775 cm $^{-1}$ band has more intensity than the 1788 cm $^{-1}$ band. Whereas phthalic anhydride is a planar molecule with C_{2v} symmetry, changes in the band intensity ratio can not be attributed to the presence of rotational conformers because solvent techniques are also used to determine which bands in each set of band results from which rotational conformer. In the case of phthalic anhydride, the doublet near $1789\,\mathrm{cm}^{-1}$ and $1776 \,\mathrm{cm}^{-1}$ is the result of v_{op} (C=O)₂ in Fermi resonance with a combination tone. It is common practice (but not correct) to assign as the fundamental the band in the doublet with the most intensity; in this case it is v_{op} (C=O)₂. The dilemma in this situation is apparent in the middle spectrum where both bands have equal intensity and only one v_{op} (C=O)₂ mode. The answer is that both bands are in Fermi resonance, and each band is a mixture of v_{op} (C=O)₂ and the combination tone. After correction for Fermi resonance, v_{op} (C=O)₂ shows a steady decrease in frequency in CCl₄ solution (1784.6 cm⁻¹) to (1779.4 cm⁻¹) in CHCl₃ solution. This is a decrease of $5.2 \,\mathrm{cm^{-1}}$ for v_{op} (C=O)₂ going from CCl₄ to CHCl₃ solution, and this is reasonable from study of the other carbonyl-containing compounds included in this book. It is important to note that v_{ip} (C=O)₂ decreased only 3 cm⁻¹ in going from CCl₄ solution (1856 cm⁻¹) to (1853 cm⁻¹) in CHCl₃ solution. The behavior of $v_{\rm op}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ in solvents such as CCl₄ and CHCl₃ will be discussed in Volume 2 of the book. The general decrease in frequency of $v_{\rm op}$ (C=O)₂ and $v_{\rm ip}$ C=O₂ is attributed to the field effect of the solvent. Hydrogen bonding between the Cl_3CH protons and the two carbonyl groups plays a role in lowering both $\nu(C=O)_2$ frequencies compared to where they occur in CCl_4 solution.

The lowest $v_{\rm ip}$ (C=O)₂, $v_{\rm op}$ (C=O)₂ and CT frequencies for phthalic anhydride are observed for solutions in dimethyl sulfoxide. These are $1850\,{\rm cm^{-1}}$, $1788\,{\rm cm^{-1}}$, and $1772\,{\rm cm^{-1}}$, respectively. After correction for F.R. the unperturbed $v_{\rm op}$ (C=O)₂ is determined to be 1780.5 and CT at $1788.9\,{\rm cm^{-1}}$ (4).

MALEIC ANHYDRIDE

Vibrational assignments have been made for maleic anhydride (5). The combination tone $(560\,\mathrm{cm^{-1}},\,\mathrm{B},\,+1235\,\mathrm{cm^{-1}},\,\mathrm{A},\,=1795\,\mathrm{cm^{-1}},\,\mathrm{B})$ was ruled out as the possibility of being in Fermi resonance with v_{op} (C=O)₂, because it was noted that there is a strong dependence of the band intensity ratio on the nature of the solvent while the frequencies remain practically constant (6). Phthalic anhydride reported on in the preceding showed the same phenomena, but v_{op} (C=O)₂ was shown to be in Fermi resonance.

Table 11.3 lists IR data for maleic anhydride in n- $C_6H_{14}/CHCl_3$, $CHCl_3/CCl_4$, and n- C_6H_{14}/CCl_4 mole % solutions. Maleic anhydride is of the type 5UR (3). The $v(C=O)_2$ frequencies for the 5% UR structure might be expected to be lower than those for 5SR structure due to conjugation of the C=C group with the two C=O groups. However, the ring strain is more in the case of maleic anhydrate than in the case of succinic anhydride, as the C=C bond distance is less than the C-C bond distance. Therefore, the two opposing effects essentially cancel each other in the case of maleic anhydride.

Maleic anhydride is a planar structure with C_{2v} symmetry. The v_{ip} (C=O)₂ mode belongs to the A_1 symmetry species while v_{op} (C=O)₂ belongs to the B_1 symmetry species. Therefore, v_{op} (C=O)₂ can only be in Fermi resonance with a combination tone belonging to the B_1 symmetry species. It can not be in Fermi resonance with an overtone because any overtone is assigned to the A_1 symmetry species. A study of Table 11.3 shows that two bands occur in the range 1770 and 1793 cm⁻¹ in each of the solvent systems, and in all cases the higher frequency band has more intensity than the lower frequency band. As in the case of phthalic anhydride, the v_{op} (C=O)₂ mode is in Fermi resonance with the B_1 combination tone. The experimental data has been corrected for Fermi resonance, and unperturbed v_{op} (C=O) is determined to be between 1789.8 and 1790 cm⁻¹ in n- C_6H_{14} solution, 1787.1–1787.5 cm⁻¹ in CCl₄ solution, 1785–1785.4 cm⁻¹ in CHCl₃ solution, and 1778.9 cm⁻¹ in 60.19 mol % (CH₃)₂SO/CCl₄. These v_{op} (C=O)₂ frequencies decrease in the order of increasing polarity of the solvent, and also decrease in frequency as the reaction field of the solvent is increased.

Table 11.4 lists the in-phase and out-of-phase $(C=O)_2$ stretching vibrations for hexahydrophthalic, tetrachlorophthalic, tetrabromophthalic, dichloromaleic (7), phthalic (4), and maleic anhydrides in different physical phases (6). In all cases the v_{op} ($C=O)_2$ modes have been corrected for Fermi resonance. These data show that both v_{ip} ($C=O)_2$ and v_{op} ($C=O)_2$ decrease progressively in the order: vapor, and C_6H_{14} , CCl_4 , $CHCl_3$ and $(CH_3)_2SO$ solution phases. In all cases the v_{op} ($C=O)_2$ mode decreases more in frequency in each solvent pair than does the v_{ip} ($C=O)_2$ mode.

In the case of styrene-maleic anhydride copolymer, the anhydride has a 5SR structure, and in CH_2Cl_2 solution v_{ip} (C=O) and v_{op} (C=O) occur at 1856.6 and 1779.7 cm⁻¹, respectively, and

in CHCl₃ solution at 1856.5 and 1778 cm⁻¹, respectively. In this case, $v_{\rm ip}(C=O)_2$ decreases 0.1 cm⁻¹, and $v_{\rm op}$ (C=O) decreases 1 cm⁻¹, a factor of 10 (7); this type of frequency difference was noted in the study of the other anhydride in different solvent systems.

REFERENCES

- 1. Dauben, W. S. and Epstein, W. W. (1959). J. Org. Chem., 24, 1595.
- 2. Bellamy, L. J., Connelly, B. J., Phillpots, A. R., and Williams, A. L. (1960). Z. Elecktrochem., 64, 563.
- 3. Nyquist, R. A. (1984). The Interpretation of Vapor-phase Infrared Spectra: Group Frequency Data, Vol. 1, Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad.
- 4. Nyquist, R. A. (1989). Appl. Spectrosc., 43, 1374.
- 5. Mirone, P. and Chiorboli, P. (1962). Spectrochim. Acta, 18, 1425.
- 6. Nyquist, R. A. (1990). Appl. Spectrosc., 44, 438.
- 7. Nyquist, R. A. (1990). Appl. Spectrosc., 44, 783.
- 8. Schrader, B. (1989). Raman/Infrared Atlas of Organic Compounds, 2nd edition, Germany, VCH.

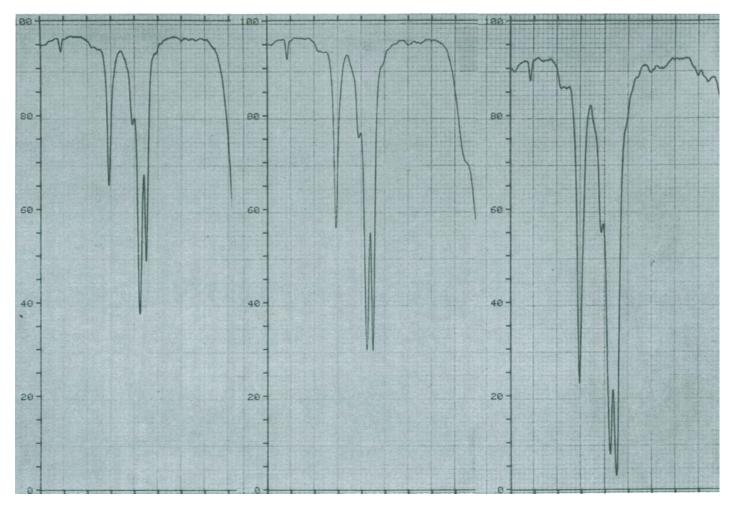


FIGURE 11.1 IR spectra of phthalic anhydride in the region $2000-1600\,\mathrm{cm}^{-1}$. The spectrum on the left is for a saturated solution CCl_4 , the center spectrum is for a saturated solution for in a 23.1% vol. $CHCl_3/CCl_4$, and the spectrum on the right is for a saturated solution in $CHCl_3$.

TABLE 11.1 IR vapor-phase data and Raman data in the neat phase for anhydrides

Anhydride type	$sym.(C=O)_2 str.$ cm^{-1}	asym. $(C=O)_2$ str. cm ⁻¹	(A) sym. $(C=O)_2$ str. (A) asym. $(C=O)_2$ str.	Frequency separation cm ⁻¹
ОС	1822–1830	1759–1775	0.96–1.31	55–63
OCU	[1771–1788]	[1715–1725]		[39–58]
5SR	1861-1880	1802-1812	0.11-0.23	59-72
6SR	1820-1830	1782-1790	0.35-0.51	36-40
5UR	1855-1880	1785-1813	0.07-0.35	51–85
6UR	1802	1768	0.72	34
7UR	1800	1772	0.66	28

[Raman data]

TABLE 11.2 Raman data and assignments for carboxylic anhydrides

Anhydride	$ip(C=O)_2$ cm^{-1}	$ op(C=O)_2 $ $ cm^{-1}$	Туре	Frequency separation cm ⁻¹	$C=C \text{ str.}$ cm^{-1}	Ring breathing cm ⁻¹
Allylsuccinic	1853(3)	1782(0)	5SR	71	1644(8)	
Acrylic	1788(3)	1730(2)	OCU	58	1630(9)	
Methacrylic	1782(3)	1725(2)	OCU	57	1639(9)	
Crotonic*	1771(27,p)	1732(vwk)	OCU	39	1648(80,p)	
Benzoic*	1771(32)	1715(13)	OCU	56		
Citraconic	1841(6)	1770(1)	5UR	71	1652(3)	
Propionic*	1812(7,p)	1743(3,p)	OC	69		
Butyric*	1813(7,p)	1751(3,p)	OC	62		
Trifluoroacetic*	1877(28,p)	1810(9,p)	OC	67		
4-Cyclohexene-	1834(2)	1729(1)	5SR	105	1629(3)	
1,2-dicarboxylic*						
Glutaric*	1780(18)	1755(vwk)	6SR	25		
Phthalic	1840(45)	1760(37)	5UR	80		1005(44)

^{*} Reference 8.

TABLE 11.3 IR data for maleic anhydride in n-C₆H₁₄/CHCl₃, CHCl₃/CCl₄, and n-C₆H₁₄/CCl₄ solutions

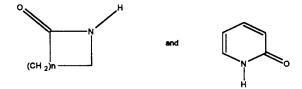
Maleic anhydride mole % n-C ₆ H ₁₄ /CHCl ₃	o.p(C=O) ₂ str. in FR cm ⁻¹	B1 comb. tone in FR cm ⁻¹	a[o.p.(C=O) ₂ str. in FR]	A[B1 comb. tone in FR]	o.p.(C=O) ₂ str. corrected for FR cm ⁻¹	B1 comb. tone corrected for FR cm ⁻¹	i.p.(C=O) ₂ str. cm ⁻¹	A[i.p.(C=O) ₂ str.]
0	1781. 4	1792.5	0.603	0.286	1785	1788.9	1851.7	0.069
23.57	1782.5	1793.2	0.493	0.324	1786.7	1789	1852.6	0.054
50.68	1782.7	1793.5	0.413	0.353	1787.7	1788.5	1853.3	0.044
75.51	1782.6	1783.8	0.381	0.332	1788.4	1787.9	1852.7	0.038
100	1793.7	1781.2	0.411	0.168	1789.8	1785.1	1852.6	0.025
delta cm ⁻¹	12.3	-11.3			4.8	-3.8	0.9	
mole % CHCl3/CCl4								
0	1792.5	1781.4	0.521	0.489	1787.1	1786.8	1851.7	0.079
26.7	1781.7	1792.8	0.539	0.41	1786.5	1788	1852	0.08
52.2	1781.8	1792.9	0.553	0.354	1786.2	1788.6	1851.9	0.077
75.2	1781.9	1792.6	0.564	0.325	1785.8	1788.7	1851.9	0.079
100	1781.9	1792.6	0.573	0.274	1785.4	1789.1	1851.7	0.077
delta cm ⁻¹	-10.6	11.2			-1.7	2.3	0	
Mole % $n-C_6H_{14}/CCl_4$								
0	1792.6	1781.8	0.546	0.497	1787.5	1787	1851.6	0.081
26.99	1793.1	1781.5	0.505	0.363	1788.3	1786.4	1852.4	0.055
51.37	1793.4	1781.5	0.479	0.302	1788.8	1786.1	1852.7	0.042
71.14	1793.7	1781.5	0.462	0.266	1789.2	1785.9	1852.9	0.037
100	1794	1781.2	0.3394	0.176	1790	1785.1	1852.6	0.027
delta cm ⁻¹	1.4	-0.6			2.5	-1.9	1	
Mole % (CH ₃)2SO/CCl ₄								
0	1792.5	1781. 4	0.569	0.52	1787.2	1786.7	1851.7	0.084
28.99	1778.3	~1791.4	0.568	0.15	1781.1	1788.7	1847	0.099
48.78	1777.3	~1791.4	0.571	0.11	1779.6	1785.2	1847.6	0.102
60.19	1776.7	~1791.4	0.588	0.105	1778.9	1789.2	1847.3	0.105
100	1772.3		0.587		1772.3* ¹		1845.8	0.093
delta cm ⁻¹	-20.2	10			$[-14.9^{*1}]$		-5.9	
Mole % (CH ₃)2SO/CHCl ₃								
0	17811.4	1792.5	0.603	0.286	1785	1788.9	1851.6	0.07
25.4	1780.5	~1791.4	0.545	0.183	1783.3	1788.7	1849.9	0.085
50.53	1779.1	~1791.4	0.5	0.121	1782.2	1789.2	1848.3	0.088
73.94	1776.6	~1791.4	0.466	0.07	1778.2	1789.5	1847.5	0.079
100	1772.3		0.449		1772.3* ¹		1845.8	0.076
delta cm ⁻¹	-9.1	-1.1			$[-12.7^{*1}]$		-5.8	

^{*1} not corrected for Fermi resonance.

TABLE 11.4 The in-phase and out-of-phase (C=O)₂ stretching vibrations for carboxylic anhydrides in the vapor phase and in various solution phases

Anhydride	i.p.(C=O) ₂ str. [vapor]	i.p. $(C=O)_2$ str. $[n-C_6H_{14}]$	i.p. $(C=O)_2$ str. $[CCl_4]$	i.p. $(C=O)_2$ str. $[CHCl_3]$	i.p. $(C=O)_2$ str. $[(CH_3)_2SO]$	
Hexahydrophthalic		1864.5	1861.4	1859.1	1852.3	
Phthalic	1865	1858	1856	1853	1850	
Tetrachlorophthalic	1859		1845.9*	1845.5*		
Tetrabromophthalic			1867.2*	1863.4*		
Maleic		1852.6	1851.74	1851.68	1845.8	
Dichloromaleic		1877.9*	1876.7*	1876.2*		
	$o.p(C=O)_2$ str.	$o.p.(C=O)_2$ str.	$o.p.(C=O)_2$ str.	$o.p.(C=O)_2$ str.	$o.p.(C=O)_2$ str.	
	[vapor]	$[n-C_6H_{14}]$	[CCl₄]	[CHCl ₃]	[(CH ₃) ₂ SO]	
Hexahydrophthalic		1798.9	1792.7	1787.5	1781.4	
Phthalic	1802	1789.7*	1784.6*	1779.4*	1771.1*	
Tetrachlorophthalic	1809		1790.7*	1786.8*		
Tetrabromophthalic			1795.6*	1790.3*		
Maleic		1790.0*	1787.1*	1785.4*	1772.3	
Dichloromaleic		1801.7*	1799.0*	1796.4*		
	i.p. $(C=O)_2$ str.	$o.p.(C=O)_2$ str.	$i.p.(C=O)_2$ str.	$o.p.(C=O)_2$ str.	i.p. $(C=O)_2$ str.	$o.p.(C=)_2$ str.
	$[CCl_4]-[CHCl_3]$	$[CCl_4]-[CHCl_3]$	$[C_6H_{14}]-[CCl_4]$	$[C_6H_{14}]-[CCl_4]$	$[CCl_4]-[(CH_3)_2SO]$	$[CCl_4]$ - $[(CH_3)2SO]$
Hexahydrophthalic	2.3	5.2	3.1	6.2	9.2	11.3
Phthalic	3	5.2	2	5.1	6	13.5
Tetrachlorophthalic	0.4	3.9				
Tetrabromophthalic	3.8	5.3				
Maleic	0.1	1.7	0.9	2.9	5.9	14.8
Dichloromaleic	0.5	2.6	1.2	2.7		

^{*} corrected for Fermi resonance


Carboxamides, Ureas, Thioureas, Imidazolidinones, Caffeine, Isocaffeine, Uracils, Imides, Hydantoins, and s-Triazine(1H,3H,5H)-Triones

Dilution Studie	es of N-alkylacetamide and	İ		
N-alkylachle	216			
Trans and/or C	217			
N-H Intensity	219			
Acetanilides	222			
N-alkyl Benzan	223			
N-alkyl Methyl	223			
N,N'-Dialkyl O	223 223 224 225			
Dimethylacetar				
1,1,3,3-Tetrame				
Caffeine, Isoca				
1,3-dimethy	226			
Imides	227			
4-Bromobutylp	229			
Hydantoins	229			
Triallyl-1,3,5-tr	229			
References			230	
Figures				
Figure 12-1	232 (216)	Figure 12-7	238 (226)	
Figure 12-2	233 (217)	Figure 12-8	239 (230)	
Figure 12-3	•			
Figure 12-4				
Figure 12-5	240 (228)			
Figure 12-6				
Tables				
Table 12-1	241 (215, 217)	Table 12-1c	243 (217)	
Table 12-1a	242 (216)	Table 12-2	244 (217, 219)	
Table 12-1b	246 (219)			

Table 12-	3 248 (220)	Table 12-11	257 (225)
Table 12-	4 249 (220)	Table 12-12	258 (225)
Table 12-	ła 249 (220)	Table 12-13	259 (226)
Table 12-	5 250 (221)	Table 12-14	260 (226)
Table 12-	5a 251 (221)	Table 12-15	261 (227)
Table 12-0	5 252 (221)	Table 12-16	262 (227)
Table 12-	7 253 (222)	Table 12-17	264 (229)
Table 12-8	3 254 (223)	Table 12-18	265 (229)
Table 12-9	255 (223)	Table 12-19	266 (229)
Table 12-	10 256 (224)	Table 12-20	266 (230)

^{*}Numbers in parentheses indicate in-text page reference.

There are several forms of carboxamides, and they are separated into three classes: primary, secondary, and tertiary. Primary carboxamides also exist in three forms: $H(C=O)NH_2$, $R(C=O)H_2$, and $\phi(C=O)NH_2$. Secondary carboxamides exist in the following forms: H(C=O)NHR, R(C=O)NHR', R(C=O)NHR'

Tertiary carboxamides can have the basic structures as denoted for the secondary carboxamides with the replacement of the NH proton with R or ϕ . Each of these forms yields its own characteristic group frequencies, and each will be discussed in what follows.

Table 12.1 shows a comparison of primary, secondary, and tertiary amides in various physical phases.

In the case of the primary amides the vasym. NH₂, vsym. NH₂, and vC=O modes occur at higher frequency in the vapor phase than in the neat phase. It is noteworthy that vC=O for $\phi(C=O)NH_2$ (1719–1731 cm⁻¹) occurs at lower frequency than vC=O for R(C=O)NH₂ (1732–1780 cm⁻¹) due to conjugation of the carbonyl group with the π system of the phenyl group (1). In the case of R(C=O)NH₂, the high frequency vC=O mode at 1780 cm⁻¹ is the result of the inductive effect of the CF₃ group for CF₃(C=O)NH₂, and the low frequency is the result of the inductive effect of the alkyl group (C₁₃H₂₆) for R(C=O)NH₂ (1). Evidence is also presented that in the vapor phase the α -X analogs are in an intramolecularly hydrogen-bonded trans configuration (1).

For example, in the vapor phase vC=0 occurs at 1740, 1749, and 1780 cm⁻¹ for acetamide, fluoroacetamide, and trifluoroacetamide, respectively, while vasym. NH₂ occurs at 3565, 3552, and 3560 cm⁻¹, and vsym. NH₂ occurs at 3442, 3444, and 3439 cm⁻¹, respectively (1). Substitution of the first F atom on the α -carbon atom raises vC=0 by 9 cm⁻¹ while substitution of three F atoms raises vC=0 by 40 cm⁻¹. Therefore, vC=0 is raised 31 cm⁻¹ for the substitution of the second and third F atoms, or 15.5 cm⁻¹ per F atom. These data indicate that the addition of the first α -fluorine atom on the α -carbon atom of acetamide forms an intramolecular hydrogen atom as depicted here, and lowers vC=0 by \sim 6.5 cm⁻¹. This intramolecular N-H···F bond is present in the F, F₂ and F₃ analogs, or otherwise each vC=0 mode would be \sim 6.5 cm⁻¹ higher in frequency (1).

Compounds such as 2-aminobenzamide and 2-methoxybenzamide in the vapor phase exhibit ν C=O at 1698 and 1709 cm⁻¹, respectively, while benzamide and 3-X and 4-X benzamides exhibit ν C=O in the range 1719–1731 cm⁻¹. In the case of 2-aminobenzamide and 2-methyoxybenzamide, the amide NH₂ proton is intramolecularly hydrogen bonded to the oxygen atom of the CH₃O group or the nitrogen atom of the amino NH₂ group.

In the case of the 2-amino analog, the vasym. NH_2 and vsym. NH_2 for the amino NH_2 group occur at 3511 and v 3370 cm $^{-1}$, respectively. The frequency separation of 141 cm $^{-1}$ is evidence that an aniline type NH_2 group is intramolecularly hydrogen bonded (1). In the case of the 2-methoxy analog, vasym. NH_2 and vsym. NH_2 for the amide group are assigned at 3540 and 3420 cm $^{-1}$, which is lower than other members in the other benzamides studied in the vapor phase.

The 2-hydroxybenzamide in the vapor phase is a special case in that the OH proton is intramolecularly hydrogen bonded to the carbonyl group.

In this case $vC=0\cdots HO$ occurs at 1679 cm^{-1} , and $vOH\cdots N$ at 3270 cm^{-1} (1).

In the vapor phase, another unique case is 2,6-dichlorobenzamide, because ν C=O occurs at 1735 cm⁻¹. The high ν C=O frequency (1731 cm⁻¹) listed in Table 12.1 is for 3,5-dinitrobenzamide. In the case of the 2,6-Cl₂ analog, the phenyl and (C=O)NH₂ groups are not coplanar, and the reason that ν C=O occurs at such a relatively high frequency is that these two groups are no longer in resonance. The two groups are coplanar in the case of 3,5-dinitrobenzamide, but the high Hammett σ_m value for the two NO₂ groups contributes to the relatively high ν C=O frequency.

Methylmethacrylamide (ν C=O, 1721 cm⁻¹, vapor) exhibits ν C=O at lower frequency than acrylamide (ν C=O, 1731 cm⁻¹, vapor) due to the inductive electron donation of the methyl group to the C=O group (1).

DILUTION STUDIES OF N-ALKYLACETAMIDE AND N-ALKYLCHLOROACETAMIDE

Table 12.1a lists the N–H stretching frequencies for N-methyl acetamide in mol/l concentrations ranging from 1.37×10^{-3} to 1.37. The ν NH mode decreases from 3476 to 3471 cm⁻¹, and the absorbance increases from 0.2 to 8.9. At 1.37×10^{-3} mol/l no intermolecular association is noted between C=O···HN. However, the % ν N–H···C=O increases steadily to ~95% at 1.37 mol/l. In the case of N-methyl chloroacetamide in mole/liter concentrations ranging from 9.21×10^{-3} to 9.21, the ν N–H frequency range of from 3450–3448 cm⁻¹ in a decreasing order with increasing concentration while absorbance increases from 0.2 to 5. In this case, the intermolecular hydrogen bonding between N–H···O=C varies from 1–64% (5). It has been shown that the N-alkyl chloroacetamide and α -halo-p-x-acetanilides in dilute solution exist in an intramolecular hydrogen bonded-form (6,7).

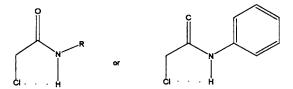


Figure 12.1 shows plots of the concentration vs the absorption maxima at each of the $vN-H\cdots O=C$ frequencies shown in Table 12.1a. At low concentrations (below 0.01 M for N-methyl acetamide and below 0.2 M for N-methyl chloroacetamide) the frequency of absorption maximum of the intermolecular $vN-H\cdots O=C$ band is independent of concentration, indicating that in addition to a monomer only one $N-H\cdots O=C$ intermolecular species is present, presumably a dimer (5). At higher concentrations the frequency of absorption decreases rapidly with increasing concentration. In the case of N-methyl acetamide at concentration above ~ 0.3 M the $vN-H\cdots O=C$ frequency is independent of concentration and the average size of the intermolecular $(N-H\cdots O=C)_n$ complex is about seven or more. The N-methyl chloroacetamide is different, because in saturated CCl_4 solution only one-third of the molecules exist in an intermolecular hydrogen-bonded form $(N-H\cdots O=C)_n$. At concentrations of less than 0.2 M, N-methyl chloroacetamide molecules exist in the intramolecular hydrogen-bonded form $(NH\cdots CI)$ (5).

Table 12.1b lists amide I, II, and III frequencies for N-methyl acetamide in various mole/liter in Br₃CH solution. Bromoform was used in this case instead of chloroform in order to measure the amide II frequencies. The data show that as the concentration increases ν N-H increases from 3456 to 3457 cm⁻¹ while amide II (or N-H bending) increases from 1531 to 1537 cm⁻¹ in 0.685 mol/l. At 0.685 mol/l concentration ν N-H···O=C bonding is observed at 3325 cm⁻¹ and amide II is noted at 1560 cm⁻¹. With increasing concentration (2.74 mol/l) amide II is observed at 1563 cm⁻¹, ν N-H(O=C at 3305 cm⁻¹. With increasing concentration (2.74 mol/l) ν N-H is observed at 1563 cm⁻¹ and ν N-H···O=C at 3305 cm⁻¹. As the ν C=O and ν C=O···HN

frequencies decrease from $1668-1649\,\mathrm{cm^{-1}}$ the amide II (or N-H bending) frequencies increase from $1531-1563\,\mathrm{cm^{-1}}$ with increasing concentration. The amide III mode is apparently independent of concentration, as it occurs near $1278-1279\,\mathrm{cm^{-1}}$.

Table 12.1c lists IR data for the first overtone of amide II for N-methyl acetamide and N-methyl chloroacetamide in varying mole/liter concentrations in CCl₄ solution. These data show that the band intensity of the first overtone of amide II (or N-H bending) increases as the mole/liter concentration is increased (0.6 to 28×10^8 for N-methyl acetamide and 1.7 to 15×10^8 for N-methyl chloroacetamide). As the $vN-H\cdots O=C$ frequencies decrease the amide II frequency increases with an increase in concentration. Thus, the first overtone of amide II should increase in frequency with an increase in the mole/liter concentration, and the $vN-H\cdots O=C$ frequency shows decreases in frequency. Thus, the amount of Fermi resonance interaction between these two modes shows decrease, because the two modes are moving in opposite directions. As a consequence of this behavior, this absorption has no significant intensity in those amides, which are only slightly associated. Of the compounds studied, only Cl, Br, and CF₃ N-alkyl acetamide exhibited significant absorption in this region of the spectrum (5).

TRANS AND/OR CIS SECONDARY AMIDES

In the case of 4-, 5-, 6-, and 7-membered lactams the N-H group is cis to the carbonyl group. Table 12.1 shows that vN-H for the 5-, 6-, 7-membered lactams occurs at 3478, 3438, and 3442 cm⁻¹, respectively. It has been reported that a compound such as N-methyl acetamide exists 95% in the trans form and 5% in the cis form.

Moreover, N-tert-butyl phenylacetamide was reported to exist as 30% in the trans form and 70% in the cis form. The possibility of Fermi resonance between vN-H and the first overtone of vC=O was excluded on the grounds that the anharmonicity factor would be much too negative (8.9).

Figure 12.2 shows IR spectra of N-methyl acetamide, N-ethyl acetamide, N-isopropyl acetamide, N-tert-butyl acetamide, and acetanilide in CCl_4 solution in the region 3800–3300 cm⁻¹. In these cases, the ν N-H stretch mode decreases in frequency in the order 3479, 3462, 3451, 3453, and 3449 cm⁻¹, respectively, and the ν C=O frequency increases in the order: 1686, 1686, 1687, 1686, and 1708 cm⁻¹, respectively. The weak bands in the range 3350–3400 cm⁻¹ are readily assigned as $2(\nu$ C=O) (6). The difference between the N-methyl acetamide ν N-H frequency and those for the N-ethyl, N-isopropyl, N-tert-butyl, and N-phenyl analogs is 17, 28, 26, and 30 cm⁻¹, respectively. In addition, there is no other band present to indicate the presence of another rotational conformer, and the ν N-H frequency decrease follows closely the inductive contribution of the N-alkyl group to the carbonyl group. Therefore, it was concluded that the N-alkyl acetamides exist in the trans configuration in dilute CCl_4 solution. There is no positive evidence for the existence of the cis conformer (6).

Table 12.2 lists IR data and assignments for N-alkyl acetamides and N-alkyl- α -substituted acetamides.

The data on the N-alkyl acetamides showed that ν -H is sensitive to the nature of the N-alkyl group. Thus, when comparing data for N-alkyl α -haloacetamides vs those for N-alkyl acetamides it is necessary to compare data for the same N-alkyl analogs.

Comparison of the ν N–H frequencies for N-butyl acetamide (3460 cm⁻¹) vs N-butyl α -chloroacetamide (3433 cm⁻¹), N-isopropyl acetamide (3451 cm⁻¹) vs N-isopropyl α -chloroacetamide (3429 cm⁻¹), and N-tert-butyl acetamide (3453 cm⁻¹) vs N-tert-butyl α -chloroacetamide (3421 cm⁻¹) shows that ν N–H occurs at lower frequency by 22–32 cm⁻¹ in the case of the α -chloro analog. Comparison of the ν C=O frequencies for N-butyl acetamide (1688 cm⁻¹) vs N-butyl α -chloroacetamide (1684 cm⁻¹), N-isopropyl acetamide (1687 cm⁻¹) vs N-isopropyl α -chloroacetamide (1682 cm⁻¹), and N-tert-butyl acetamide (1688 cm⁻¹) vs N-tert-butyl α -chloroacetamide (1684 cm⁻¹) shows that ν C=O decreases in frequency by 4 to 5 cm⁻¹.

Comparison of the $\nu N-H$ frequencies for N-butyl α -chloroacetamide (3433 cm $^{-1}$) vs N-butyl α ,-dichloroacetamide (3439 cm $^{-1}$), isopropyl α -chloroacetamide (3430 cm $^{-1}$) vs isopropyl α - α -dichloroacetamide (3439 cm $^{-1}$), and tert-butyl α -chloroacetamide (3421 cm $^{-1}$) vs N-tert-butyl α , α -dichloroacetamide (3435 cm $^{-1}$) shows that $\nu N-H$ increases in frequency by 6 to 14 cm $^{-1}$ with the addition of the second α -chloro atom.

Comparison of the ν C=O frequencies for N-butyl chloroacetamide (1684 cm⁻¹) vs N-butyl α, α -dichloroacetamide (1705 cm⁻¹), N-isopropyl α -chloroacetamide (1682 cm⁻¹) vs N-isopropyl α, α -dichloroacetamide (1703 cm⁻¹), and N-tert-butyl α -chloroacetamide (1684 cm⁻¹) vs N-tert-butyl α, α -dichloroacetamide (1702 cm⁻¹) shows that ν C=O increases in frequency by 18–22 cm⁻¹ with the addition of the second chlorine atom.

Comparison of the ν N-H frequencies for N-butyl α,α -dichloroacetamide (3439 cm $^{-1}$) vs N-butyl α,α,α -trichloroacetamide (3445 cm $^{-1}$), N-isopropyl α,α -dichloroacetamide (3430 cm $^{-1}$) vs N-isopropyl α,α -trichloroacetamide (3439 cm $^{-1}$), and N-tert-butyl α,α -dichloroacetamide (3427 cm $^{-1}$) vs N-tert-butyl α,α,α -trichloroacetamide (3435 cm $^{-1}$) shows that ν N-H increases in frequency by another 6 to 9 cm $^{-1}$ with the addition of the third chlorine atom.

Comparison of the ν C=O frequencies for N-butyl α,α -dichloroacetamide (1705 cm⁻¹) vs N-butyl α,α,α -trichloroacetamide (1726 cm⁻¹), N-isopropyl α,α ,-dichloroacetamide (1703 cm⁻¹) vs N-isopropyl α,α,α -dichloroacetamide (1725 cm⁻¹), and N-tert-butyl α,α -dichloroacetamide (1702 cm⁻¹) vs N-tert-butyl α,α,α -trichloroacetamide (1725 cm⁻¹) shows that ν C=O increases in frequency by another 21 to 23 cm⁻¹ with the addition of the third chlorine atom.

These comparisons show that with the addition of the first α -chlorine atom on N-alkyl acetamide the ν N-H frequencies decrease by 22–32 cm⁻¹ and the ν C=O frequencies increase by 4 to 5 cm⁻¹. With the addition of the second α -chlorine atom the ν N-H frequencies increase by 6 to 14 cm⁻¹ and the ν C=O frequencies increase by 18–22 cm⁻¹. With the addition of the third α -chlorine atom ν N-H increase by another 6–9 cm⁻¹ and ν C=O increase by another 21–23 cm⁻¹.

There is only one explanation for the behavior of the ν N-H and ν C=O data for the N-alkyl chloroacetamide analogs. Upon addition of the first α -chlorine atom an intramolecular hydrogen bond is formed between the N-H proton and the α -chloroatom as depicted here:

The formation of the Cl···HN bond causes vN-H to decrease in frequency while the vC=O mode is only increased by 4 to 5 cm⁻¹. With the addition of the second and third chlorine atoms the vN-H frequencies increase progressively by 6 to $14\,\mathrm{cm}^{-1}$ and 6 to $9\,\mathrm{cm}^{-1}$ while the vC=O frequencies increase progressively by 18 to $22\,\mathrm{cm}^{-1}$ and 21 to $23\,\mathrm{cm}^{-1}$. The vN-H frequency increases with the addition of the second and third α -chlorine atoms and is the result of the inductive effect. In the case of the vC=O frequencies substitution of the second and third chlorine atoms is a combination of the inductive effect and the field effect between the carbonyl oxygen atom and the two gauche chlorine atoms (6).

Comparison of the vapor and CCl_4 solution data for N-isopropyl acetamide (3460 vs 3451 cm⁻¹ and 1714 vs 1687 cm⁻¹) and N-tert-butyl α,α,α -trichloroacetamide (3444 vs 3435 cm⁻¹ and 1743 vs 1725 cm⁻¹) shows that both ν N—H and ν C=O occur at higher frequency in the vapor. This most likely reflects the effect of N—H···ClCCl₃ interaction in the solution phase.

The vN-H vibration occurs at the lowest frequency for the N-phenyl analogs of the forementioned four series of acetamides. The N-phenyl analogs of these series exhibit vN-H at the lowest frequency in the order: CH_3 (3449 cm⁻¹), $ClCH_2$ (3409 cm⁻¹), Cl_2CH (3419 cm⁻¹), and Cl_3C (3425 cm⁻¹), and exhibit vC=O at the highest frequency in the order: CH_3 (1708 cm⁻¹), $ClCH_2$ (1692 cm⁻¹), Cl_2CH (1713 cm⁻¹), and CCl_3 (1731 cm⁻¹). The inductive effect of the phenyl group tightens the C=O bond, thereby raising its vC=O frequency, and the N-H group becomes more acidic, causing it to form a stronger intramolecular $N-H\cdots Cl$ bond. The vN-H and vC=O frequency behavior with α -chloro substitution is comparable to that exhibited by the N-alkyl α -chlorinated analogs.

N-H INTENSITY

A study of Table 12.2 shows that the apparent intrinsic integrated absorption $(B \times 10^8)^*$ for the N–H stretching vibration is significantly raised by the intramolecular N–H···X bond, while the intensity is influenced only to a relatively small extent by the inductive effect.

In saturations of 10% or <10%, CCl_4 solutions bonded $vN-H\cdots O=C$ occur in the region 3280–3400 cm⁻¹ (see Table 12.2a). For those compounds that exhibited significant "amide II" overtone absorption, both the observed frequencies and frequencies corrected for Fermi resonance with the "amide II" overtone are listed.

The frequency separation between the vN-H frequency and the intermolecular $vN-H\cdots O=C$ frequency varies between 60 and 195 cm⁻¹. The intramolecularly hydrogenbonded secondary amides exhibit less intermolecular H-bonding than the simple N-alkyl acetamides, and exhibit higher bonded vN-H frequencies.

In contrast, pyrrolidone is a cyclic secondary amide whose N-H group is cis with the C=O group. In this case, the ν N-H frequency is nearly independent of concentration, ranging from

^{*}B × 108 [Intensity B = (1/CI) In (I_o/I)dv in CM² molecule $^{-1}$ s $^{-1}$, and represents the apparent intrinsic absorption for $\nu N-H$].

 $3207-3219\,\mathrm{cm^{-1}}$ at concentrations ranging from $0.01-1.0\,\mathrm{M}$ in CCl_4 solution. This indicates that only one bonded species is present: the cis dimer (10).

pyrrolidone cis intermolecular hydrogen bonded dimer

Table 12.3 lists IR data for N-alkyl α -substituted acetamides in 10% wt./vol. and 0.002 M CCl₄ solutions. In all cases, except for tert-butyl phenoxy-acetamide and tert-butyl trichloroacetamide, the ν C=O or "Amide I" mode occurs at higher frequency in dilute solution. Within each series, the tert-butyl analogs show the least frequency shift in going from 10% wt./vol. to 0.002 M in CCl₄ solution; and this is most likely due to the steric effect of the tert-butyl group, which prevents the N-H proton of another amide molecule from forming as strong an intermolecular hydrogen bond as in the case of the other N-alkyl analogs, or prevents intermolecular hydrogen bonding as in the case of tert-butyl trichloroacetamide.

Table 12.4 shows a comparison of primary and secondary amides in the solid phase. In this case, the vasym. NH_2 frequencies occur in the range $3310-3380 \, \mathrm{cm}^{-1}$ and vsym. NH_2 frequencies occur in the range $3150-3195 \, \mathrm{cm}^{-1}$ while vN-H for the secondary amides occur in the range $3242-3340 \, \mathrm{cm}^{-1}$. The primary amides exhibit NH_2 bending in the region $1620-1652 \, \mathrm{cm}^{-1}$ while the secondary amides exhibit N-H bending in the region $1525-1550 \, \mathrm{cm}^{-1}$. Inductive and resonance effects upon the vC=0 frequency are also apparent in the solid phase.

Table 12.4a lists IR data for the ν C=O frequencies for tertiary amides in the neat or solid phase. Formamides have the basic structure:

In the neat phase, when X and Y are C_2H_5 groups, $\nu C=0$ occurs at $1665 \, \mathrm{cm}^{-1}$. When X is C_2H_5 and Y is C_6H_5 , $\nu C=0$ occurs at $1670 \, \mathrm{cm}^{-1}$. When X is C_6H_5 and Y is C_6H_5 , $\nu C=0$ occurs at $1690 \, \mathrm{cm}^{-1}$. The increase in the $\nu C=0$ frequency when C_6H_5 is substituted for C_2H_5 is attributed to the larger inductive effect of C_6H_5 vs C_2H_5 . Tertiary amides have the following basic structure:

The tertiary acetamides exhibit vC=0 in the region 1650–1670 cm⁻¹, and the inductive effect of the X or Y alkyl and phenyl groups is also apparent. In the vapor phase, vC=0 for tertiary amides occur 40 ± 5 cm⁻¹ higher in frequency than they occur in the neat or solid phase. The lower

vC=O frequencies in the condensed phases most likely result from dipolar interaction between molecules such as the one illustrated here; this interaction weakens the C=O bond.

Table 12.5 shows a comparison of Raman data and assignments for acrylamide, methacrylamide, and their polymers. Study of Table 12.5 indicates that as the average molecular weight of polyacrylamide increases, the ν C=O frequency increases from 1658 to 1668 cm⁻¹, while the Raman relative band intensity decreases. The N-alkyl acrylamides exhibit a weak Raman band in the region 1657–1659 cm⁻¹ and a strong Raman band in the region 1627–1629 cm⁻¹, which are assigned to ν C=O and ν C=C, respectively. The N,N-dialkyl or N-alkyl, N-vinyl acrylamides exhibit a weak to strong Raman band in the region 1648–1666 cm⁻¹ and a strong Raman band in the region 1609–1625 cm⁻¹, which are assigned to ν C=O and ν C=C, respectively. The inductive effect of the N-vinyl group apparently affects both the frequency and Raman band intensity of ν C=O.

Methacrylamide exhibits a weak Raman band at $1673\,\mathrm{cm}^{-1}$, which is $9\,\mathrm{cm}^{-1}$ lower in frequency than vC=O for acrylamide. This decrease in the vC=O frequency is attributed to the inductive effect of the α -methyl group. The medium-strong Raman band at $1647\,\mathrm{cm}^{-1}$ is assigned as vC=C for methacrylamide while the strong Raman band at $1639\,\mathrm{cm}^{-1}$ is assigned as vC=C for acrylamide. Apparently the inductive effect of the α -methyl group in polymethacrylamide causes vC=O to occur at lower frequency than vC=O for polyacrylamide.

Table 12.5a lists Raman data for N-alkyl or N-aryl acrylamides and methacrylamides in the neat phase. The most distinguishing features between the N-alkyl or N-aryl acrylamides and the N-alkyl or N-aryl methacrylamides is the relative Raman band intensities of ν C=O/ ν C=C. In the case of the acrylamides it varies between 0.06 and 0.8 and in the case of the methacrylamides it varies between 0.11 and 3. Moreover, the frequency separation between ν C=O and ν C=C varies between 29–35 cm⁻¹ for the acrylamides and varies between 35–39 cm⁻¹ for the methacrylamides.

A strong Raman band in the range $875-881\,\mathrm{cm}^{-1}$ most likely results from a symmetric C-C-C skeletal stretching vibration of the group for the methacrylamide while a medium-strong Raman band in the range $1236-1256\,\mathrm{cm}^{-1}$ results from a skeletal vibration of the =C-C(=)-N group for the acrylamides.

Table 12.6 lists IR data for p-x-acetanilides and p-x, α -haloacetanilides. Study of Table 12.6 shows that in general all ν C=O modes occur at lower frequency in CHCl₃ solution than in CCl₄ solution. Part of the ν C=O frequency decrease is the result of intermolecular hydrogen bonding (C=O··HCCl₃). It should be noted that the ν C=O frequencies increase in the order α -bromo-p-x-acetanilide, p-x-acetanilide, and α , α , α -trichloro-p-x-acetanilide. The α -bromo analogs and the

 α,α,α -trichloro analogs in dilute solution exist in the intramolecular hydrogen bonded form as depicted here:

As discussed previously, substitution of the first α -halogen atom on the α -carbon atom decreases the ν C=O frequency. Addition of the second and third halogen atoms on the α -carbon atom additively increases the ν C=O frequency due to both inductive and field effects (7).

Figure 12.3 shows plots of the vC=O frequencies of α -bromo-p-x-acetanilide, p-x-acetanilide, and α,α,α -trichloro-p-x-acetanilide in 0.002 M solutions or less in CCl_4 and $CHCl_3$ vs the Hammett σ_p values. All six plots show that the vC=O mode increases linearly in frequency as the σ_p value increases. This is the result of the greater tendency of the para substituent to attract electrons (higher σ_p values), the smaller the nitrogen nonbonding electron pair. The carbonyl stretching frequency decreases as the electron density on the nitrogen atom increases as a result of an increased tendency toward shifting the mesomeric equilibrium:

For example, the higher the nitrogen electron density, the greater the tendency to impart double-bond character to the C-N bond at the expense of double-bond character of the C=O bond, thus reducing the C=O force constant (7).

ACETANILIDES

It has been shown that the IR vC=O band intensities for p- and m-substituted acetanilides are a function of Hammett σ_p and σ_m values (11). The higher the σ_p or σ_m values the lower the vC=O IR band intensities. Examples given here are from Reference (7):

р-х	p-x-acetanilide	α-bromo-p-x-acetanilide	α,α,α-trichloro-p-x-acetanilide
CH ₃ O	14.4	15.10	13.42
Cl	12.56	14.41	12.93
NO ₂	9.40	11.15	11.55

These absorbance values are $\times 10^7$ cm² molecule⁻¹ s⁻¹

Table 12.7 lists IR data for the N-H stretching frequencies for p-x-acetanilides and p-x, α -haloacetanilides and their absorbance values ($\times 10^7$ cm² molecule⁻¹ s⁻¹) obtained in CHCl₃ solution. The α N-H frequencies generally occur at lower frequency in CHCl₃ solution than in

CCl₄ solution. The ν N-H frequencies in CCl₄ solution decrease in the order p-x-acetanilide (3436–3445 cm⁻¹), α,α,α -trichloro-p-x-acetanilide (3415–3422 cm⁻¹), and α -bromo-p-x-acetanilide (3391–3405). In CHCl₃ solution they occur in the same order, 3429–3440 cm⁻¹, 3406–3415 cm⁻¹, and 3387–3395 cm⁻¹.

Study of the absorbance values shows that in general they increase progressing in the order p-x-acetanilide, α -bromo-p-x-acetanilide, and α,α,α -p-x-acetanilide. There is a general but not systematic increase in the absorbance values as the σ_p values increase. These data support that an intramolecular hydrogen bond is formed between N-H···X as already depicted here. In the case of the α -Br analog, the Br atom is larger than say a Cl atom, and the H···Br distance would be shorter than the H···Cl distance. A stronger intramolecular hydrogen bond would be formed as the distance is decreased, causing ν N-H···Br to decrease in frequency by approximately 40 cm^{-1} . These data show that as the N-H proton becomes more acidic, the ν N-H frequency decreases (7).

N-ALKYL BENZAMIDES

Table 12.8 lists the NH and C=O stretching frequencies for N-alkyl p-methoxybenzamide, N-alkyl p-chlorobenzamide, and N-alkyl methyl carbamate in CCl_4 solutions (6). The absorbance values are $\times 10^8$ cm² molecule⁻¹ s⁻¹ for the NH group.

The N-alkyl p-x-benzamides are also affected by the nature of the N-alkyl group. The ν N-H frequencies generally decrease with branching on the N-alkyl α -carbon atom.

The ν C=O frequencies for the N-alkyl p-methoxybenzamides occur in the range 1670–1676 cm⁻¹ and for N-alkyl p-chlorobenzamides in the range 1671–1681 cm⁻¹. Closer examination shows that in all cases ν C=O for n-alkyl p-methoxybenzamide occurs at a lower frequency than that for the comparable N-alkyl p-chloro-benzamide (N-methyl vs N-methyl, etc.). This is the result of Hammett σ_p values. The σ_p values also appear to affect the band intensities, because a higher σ_p value increases the band intensity.

N-ALKYL METHYL CARBANATES

The N-alkyl methyl carbanates exhibit vN-H in the region $3449-3478 \, \mathrm{cm}^{-1}$; and the frequencies tend to decrease with branching on the α -carbon atom. The N-phenyl analog exhibits vNH at $3450 \, \mathrm{cm}^{-1}$. The vC=O frequencies for the N-alkyl analogs occur in the range $1730-1738 \, \mathrm{cm}^{-1}$ while vC=O for the N-phenyl analog occurs at $1748 \, \mathrm{cm}^{-1}$ due to the inductive effect of the phenyl ring (6).

N,N'-DIALKYL OXAMIDES AND N,N'-DIARYL OXAMIDE

Table 12.9 lists IR and Raman data for both N,N'-dialkyl oxamides and N,N'-diaryl oxamides (12). In the case of IR, the samples were prepared as either split mulls or KBr pellets. Raman spectra were recorded of the solid samples. The out-of-phase $(N-H)_2$ stretching vibration (a B_{1u} mode) is IR active and in the case of the N,N'-dialkyl analogs occurs in the range 3279—

3311 cm⁻¹ while for the N,N'-diaryl analogs it occurs in the range $3295-3358\,\mathrm{cm}^{-1}$. The inphase (N-H)₂ stretching vibration (an Ag mode) is Raman active and in the case of the N,N'-dialkyl analogs it occurs in the range $3302-3325\,\mathrm{cm}^{-1}$ while for the N,N'-diaryl analogs it occurs in the range $3320-3349\,\mathrm{cm}^{-1}$. The IR band occurring in the range $1643-1660\,\mathrm{cm}^{-1}$ for N,N'-dialkyl oxamides is assigned to the amide I mode (in this case, out-of-phase (C=O)₂ stretching) while for the N,N'-diaryl analog it occurs in the range $1662-1719\,\mathrm{cm}^{-1}$. In the solid state, a weak shoulder appears in the region $1628-1638\,\mathrm{cm}^{-1}$ of the IR spectrum. It is the result of crystal splitting, as it is not present in solution phase or vapor-phase spectra (12). The in-phase (C=O)₂ stretching A_g mode is assigned to the Raman band occurring in the range $1686-1695\,\mathrm{cm}^{-1}$ in the case of the N,N'-dialkyl analogs while in the case of the N,N'-diaryl analogs it occurs in the range $1682-1741\,\mathrm{cm}^{-1}$.

The Amide II mode—the out-of-phase $(N-H)_2$ bending (B_{1u}) mode and the in-phase $(N-H)_2$ bending (A_{1g}) mode—occur in the range 1508–1541 cm⁻¹ and 1547–1567 cm⁻¹ for the N,N'-dialkyl oxamides, respectively, while for the N,N'-diaryl analogs they occur in the range 1484–1520 cm⁻¹ and 1537–1550 cm⁻¹, respectively. In all cases discussed here the A_g modes occur at higher frequency than the corresponding B_{1u} mode. These IR and Raman data indicate that the N,N'-diaryl oxamide exist in an intermolecularly hydrogen-bonded trans configuration in the solid state where each oxamide group can be viewed as having C_{2h} symmetry (12). In the vapor phase N,N'-dimethyloxamide also exists in the trans configuration (12).

The N,N'-dialkyloxamide exhibits B_{1u} modes in the range 1223–1251 cm⁻¹ (Amide III), 725–782 cm⁻¹ (Amide IV), 532–619 cm⁻¹ (Amide VI), and A_g modes in the region 1298–1315 cm⁻¹ (Amide III), and 1130–1210 cm⁻¹ ((C–N)₂ stretching) (12).

DIMETHYLACETAMIDE AND TETRAALKYLUREA

Table 12.10 lists IR data and assignments for dimethylacetamide and tetraalkylurea in different physical phases (13,14). These data show that the C=O stretching frequency of dimethylacetamide or tetraalkylurea is sensitive to the physical phase, and that in n- $C_6H_{14}/CHCl_3$ solutions clusters of tetramethylurea exist that exhibit vC=O at 1650.9 and 1635.4 cm⁻¹ in 14 mol % n- $C_6H_{14}/CHCl_3$ and at 1640.2 and 1629.5 cm⁻¹ in 80.6 mol % n- $C_6H_{14}/CHCl_3$ solutions.

In CCl_4 and/or $CHCl_3$ solutions, the behavior of the C=O stretching mode is explained on the basis of hydrogen-bonded complexes between solvent-solvent and solute-solvent and the bulk dielectric effects of the solvents. Figure 12.4 shows plots of ν C=O for 1 wt % solutions of acetone, dimethylacetamide, and tetramethylurea vs mole % $CHCl_3/CCl_4$. The plots become more complex proceeding in the series acetone, dimethylacetamide, and tetramethylurea. In the case of acetone, the nonlinear segment is attributed to the complex $(CH_3)_2$ $C=O\cdots HCCl_3$, and the first nonlinear segments in the other two plots are attributed to $C=O\cdots HCCl_3$ complexes with dimethylacetamide and tetraalkylurea. The second break in the case of dimethylacetamide is attributed to intermolecular hydrogen bonding between both $Cl_3CH\cdots O=C-N(\cdots HCCl_3)$. The third break may be due to a complex such as $(Cl_3CH\cdots)_2O=C-N\cdots HCCl_3$ and/or $Cl_3CH\cdots O=C-N(\cdots HCCl_3)_2$. The additional break in N,N,N',N'-tetramethylurea is attributed to the additional -N-group, which also is capable of forming a $Cl_3CH\cdots N$ bond.

It is interesting to compare the ν C=O frequencies of tetramethylurea (TMU), tetraethylurea (TEU), and tetrabutyl urea (TBU) in CCl₄ solution (1652.9, 1646.2, and 1643.2 cm⁻¹,

respectively, and in CHCl₃ solution (1627.3, 1620.1, and 1616.1 cm⁻¹, respectively). The frequency difference between these two solvents increases in the order 25.6, 26.1, and 27.0 cm⁻¹ for TMU, TEU, and TBU, respectively. In addition, it is noted that the C=O stretching frequency decreases in the order TMU, TEU, and TBU. These data show that as the alkyl groups contribute more of an inductive contribution to the C=O group the ν C=O mode decreases in frequency and the strength of the C=O···HCCl₃ bond increases (14).

Table 12.11 lists IR vapor-phase data for urea, thiourea, and guanidine derivatives. These data show that the 1,1,3,3-tetraalkylureas exhibit a weak IR band in the range 3338–3358 cm⁻¹, which results from the first overtone of C=O stretching. As 2ν C=O occurs at lower frequency than the calculated 2ν C=O frequency in each case, the 2ν C=O mode exhibits positive anharmonicity.

The 1,1,3,3-tetraethylthiourea exhibits a band at approximately $1085 \,\mathrm{cm}^{-1}$ that is assigned to C=S stretching, ν C=S. The $1619 \,\mathrm{cm}^{-1}$ band for 1,1,3,3-tetramethylquanidine is assigned to C=N stretching, ν C=N. All of the compounds listed in Table 12.11 exhibit a band in the range $1239-1334 \,\mathrm{cm}^{-1}$, which most likely results from an antisymmetric NCN stretching mode.

1,1,3,3-TETRAMETHYLUREA VS 1,3-DIMETHYL-2-IMIDAZOLIDINONE

Table 12.12 lists IR data for 1,1,3,3-tetramethylurea and 1,3-dimethyl-2-imidazolidinone in various solvents at 1% wt./vol. (14–16). These two compounds have the following empirical structures:

In all solvents, the vC=O mode for DMI occurs at higher frequency than vC=O for TMU. The only chemical difference between TMU and DMI is that a $(CH_2)_2$ group has been substituted for two CH_3 groups, and the chemical difference is minimal. The C=O group occurs at a significantly higher frequency in the case of DMI due to geometric restrictions of the 5-membered ring, which makes it more difficult for the carbonyl carbon atom to move in and out of the ring during a cycle of vC=O. (This is often referred to as ring strain. In any vC=O mode, the bond angle must change to some degree, and the smaller the X-C-Y angle the more difficult it is for the C=O bond to vibrate.)

$$\chi$$

In Table 12.12 under the solvent heading, the neat phase is listed as 1, hexane 2, sequentially to methyl alcohol as 20. These numbers are used to show for which solvent or next phase the particular data were recorded or the data difference was determined.

Figure 12.5 shows plots of vC=O of DMI and TMU in the neat phase or in 1 of the 19 solvents vs vC=O (hexane) minus vC=O (solvent). These two plots are linear, and any set of numbers treated in the same mathematical way will yield a linear relationship. The important point to note in these two plots is that the number in each plot is not in the identical sequence. These differences suggest that the solute-solvent interaction is not comparable in all cases (16). This suggests that the steric factor of the $(CH_3)_2$ or $(CH_3)_4$ and $(CH_2)_2$ groups alters the spatial distance between solute and solvent.

Figure 12.6 shows plots of vC=O for TMU and DMI vs the solvent acceptor number (AN). The numbers 17' through 20' are for the $vC=O\cdots$ HOR frequencies for these compounds in tertiary butyl alcohol, isopropyl alcohol, ethyl alcohol, and methyl alcohol, respectively. The numbers 17 through 20 are for vC=O in these same alcohols, but where the C=O groups are not intermolecularly hydrogen bonded. This indicates that intermolecularly bonded alkyl alcohols (R-OH) can cluster in surrounding TMU or DMI without forming intermolecular hydrogen bonds with the solute. Projection of these points by dashed lines onto the lower lines indicates that the AN values for the alcohols are much lower than the values determined by NMR (17). These projected AN values for the alcohols are comparable to the AN values for alkyl ethers.

Figure 12.7 shows plots of vC=0 for DMI and TMU vs mole % CHCl₃/CCl₄. Both plots show similar a, b, c, and d segments. It has been suggested that the concentration of DMI or TMU molecules are in equilibrium with the concentration of CHCl₃ and/or CCl₄ molecules in regions (a) through (d). In addition, as the mole % CHCl₃/CCl₄ is increased from 0 to 100, the (CHCl₃) one, two, three or four complexes are replaced by (CCl₃H:ClCl₂CH)_x complexes:

```
Region (a) DMI or TMU \cdots (HCCl_3)_1
Region (b) DMI or TMU \cdots (HCCl_3)_2
Region (c) DMI or TMU \cdots (HCCl_3)_3
Region (d) DMI or TMU \cdots (HCCl_3)_4
```

Complexes between CCl_4 and TMU or DMI would also decrease the $\nu C=0$ frequencies.

Different complexes are reported to be formed between DMI or TMU and mole % n- C_6H_{14}/CCl_4 or mole % n- $C_6H_{14}/CHCl_3$ solutions (15,16). Data in Table 12.13 show that in mole % CHCl₃/CCl₄ solutions only one ν C=O frequency is observed, in mole % CCl₄/n- C_6H_{14} solutions two ν C=O frequencies are observed, and in mole % CHCl₃/n- C_6H_{14} solutions three ν C=O frequencies are observed. These are due to the presence of different DMI clusters in these various complex solution mixtures.

CAFFEINE, ISOCAFFEINE, 1,3,5-TRIMETHYLURACIL, 1,3,6-TRIMETHYLURACIL, AND 1,3-DIMETHYL-2,4-(1H, 3H) QUINAZOLINEDIONE

Table 12.14 lists the in-phase and out-of-phase $(C=O)_2$ stretching frequencies for caffeine, isocaffeine, 1,3,5-trimethyluracil, 1,3,6-trimethyluracil, and 1,3-dimethyl-2,4-(1H,3H) quinazo-

linedione in CCl₄ and CHCl₃ solutions (18). All of these compounds contain the dimethyl cyclic 6-membered ring as shown here.

The two C=O stretching modes couple into in-phase $(C=O)_2$, v_{ip} $(C=O)_2$, and out-of-phase $(C=O)_2$ stretching, v_{op} $(C=O)_2$.

The $v_{\rm ip}$ (C=O) mode for caffeine occurs at 1721 cm⁻¹ in the vapor phase, at 1710.6 cm⁻¹ in CCl₄ solution, and at 1708.9 cm⁻¹ in CHCl₃ solution while the $v_{\rm op}$ (C=O)₂ mode occurs at 1685 cm⁻¹ in the vapor phase, 1667.5 cm⁻¹ in CCl₄ solution, and at 1658.4 cm⁻¹ in CHCl₃ solution. With change in phase, the $v_{\rm op}$ (C=O)₂ mode shifts more in frequency than the $v_{\rm ip}$ (C=O)₂ mode (17.5, 26.6, and 9.1 cm⁻¹) vs (10.4, 12.1, and 1.7 cm⁻¹).

In CCl₄ solution, caffeine, isocaffeine, 1,3,5-trimethyl uracil, 1,3,6-trimethyluracil, and 1,3-dimethyl-2,4-(1H,3H)-quinazolinedione exhibit v_{ip} (C=O)₂ in the range 1706.6–1716.3 cm⁻¹, and in CHCl₃ solution in the range 1700–1711.3 cm⁻¹.

The $v_{\rm op}$ (C=O)₂ mode for 1,3,5-trimethyluracil and 1,3-dimethyl-2,4-(1H,3H)-quinazolinedione is in Fermi resonance with a combination or overtone, and in these two cases $v_{\rm op}$ (C=O)₂ was corrected for F.R. Therefore, for these five compounds $v_{\rm op}$ (C=O)₂ occurs in the range 1663.4–1669 cm⁻¹ in CCl₄ solution and in the range 1652.4–1664 cm⁻¹ in CHCl₃ solution (18).

Table 12.15 lists IR data for uracils in the solid phase. In the solid phase, the uracils not substituted in the 1,3-position (contain two N–H groups) exhibit $v_{\rm ip}$ (C=O)₂ in the range 1704–1750 cm⁻¹ and $v_{\rm op}$ (C=O)₂ in the range 1661–1704 cm⁻¹. The 1,3,5-trimethyl and 1,3,6-trimethyl analogs exhibit both $v_{\rm ip}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ at lower frequency in the solid phase than in either CCl₄ or CHCl₃ solution. The frequency separation between $v_{\rm ip}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ varies between 23 and 80 cm⁻¹ in the solid phase.

IMIDES

Table 12.16 lists IR vapor-phase data and assignments for imides (1).

The imides exhibit an in-phase $[v_{\rm ip}~(C=O)_2]$ and out-of-phase $[v_{\rm op}~(C=O)_2]$ stretching vibrations. The $v_{\rm ip}~(C=O)_2$ mode has weaker absorbance than the absorbance for $v_{\rm op}~(C=O)_2$. On this basis $v_{\rm ip}~(C=O)$, and $v_{\rm op}~(C=O)_2$ for diacetamide, $[CH_3C(=O)]_2NH$, are assigned at 1738 and 1749 cm⁻¹, respectively, in the vapor phase. All of the other imides included in Table 12.16 exhibit $v_{\rm ip}~(C=O)$, at higher frequency than $v_{\rm op}~(C=O)_2$. For example, N-phenyldibenzamide, $C_6H_5(C=O)_2NC_6H_5$, exhibit $v_{\rm ip}~(C=O)_2$ and $v_{\rm op}~(C=O)_2$ at 1801 and 1702 cm⁻¹, respectively.

Succinimides, maleimides, and phthalimides contain 5-membered rings:

hydantoin also contains a similar type imide structure:

Succinimide exhibits $v_{\rm ip}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ at 1820 and 1772 cm⁻¹, respectively, while its N-(2,6-xylyl) analog exhibits $v_{\rm ip}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ at 1790 and 1741 cm⁻¹, respectively. In this case, the 2,6-xylyl group can not be coplanar with the N(-C=O)₂ group due to the steric factor of the 2,6-dimethyl groups. The N-alkylmaleimides and N-arylmaleimides exhibit $v_{\rm ip}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ in the range 1780–1820 cm⁻¹ and 1730–1745 cm⁻¹, respectively.

Phthalimide exhibits v_{ip} (C=O)₂ and v_{op} (C=O)₂ at 1795 and 1766 cm⁻¹ in the vapor phase, respectively. Substitution of a 3-or-4-nitro group raises both v(C=O)₂ modes, which most likely is the result of the σ_p and σ_m effect. Substitution of a 3-amino group lowers both modes significantly, and this most likely is the combined effect of intramolecular hydrogen bonding HNH···O=C and the σ_m effect.

N-alkylphthalimides exhibit $v_{\rm ip}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ in the range 1771–1789 cm⁻¹ and 1734–1740 cm⁻¹, respectively, while the N-aryl analogs exhibit $v_{\rm ip}$ (C=O)₂ and $v_{\rm op}$ (C=O)₂ in the range 1795–1800 cm⁻¹ and 1735–1746 cm⁻¹, respectively.

Hydantoins in the vapor phase exhibit v_{ip} (C=O)₂ and v_{op} (C=O)₂ at 1826 and 1785 cm⁻¹, respectively. The 5,5-dimethylhydantoin exhibits v_{ip} (C=O)₂ at 1811 cm⁻¹ and v_{op} (C=O)₂ at 1775 cm⁻¹ in the vapor phase; however, in the solid phase v_{ip} (C=O)₂ occurs at 1779 cm⁻¹, and v_{op} (C=O)₂ occurs as a doublet (1744 and 1716 cm⁻¹). Apparently in the solid phase the v_{op} (C=O)₂ mode is split by crystalline effects.

The s-triazine (1H,3H,5H)-triones have the basic structure:

and the substituent groups are joined to the N atoms (hydrogen, aliphatic or aromatic groups). For the three compounds recorded in the vapor phase, $v_{\rm op}$ (C=O)₂ occurs in the range 1710–1720 cm⁻¹. The $v_{\rm ip}$ (C=O)₂ mode for the 1,3-diphenyl-5-octyl analog occurs at 1766 cm⁻¹.

All of these imide type compounds exhibit a weak band in the range $3470-3570 \,\mathrm{cm}^{-1}$, which is assigned to the combination tone v_{ip} ($C=O)_2 + v_{\mathrm{op}}$ ($C=O)_2$. In the vapor phase, imides that contain N–H exhibit a weak band in the range $3415-3455 \,\mathrm{cm}^{-1}$ assigned to vN-H. In the case of hydantoins, vN-H occurs in the range $3482-3490 \,\mathrm{cm}^{-1}$ in the vapor phase, and in the range $3205-3215 \,\mathrm{cm}^{-1}$ in the solid phase. Of course in the solid phase hydantoins exist in an intermolecular hydrogen-bonded state.

4-BROMOBUTYLPHTHALIMIDE IN SOLUTION

Table 12.17 lists IR data for 4-bromobutylphthalimide in CCl_4 and/or $CHCl_3$ solutions (19). These data show that as the mole % $CHCl_3/CCl_4$ is increased from 0 to 100 both v_{ip} (C=O)₂ and v_{op} (C=O)₂ decrease in frequency. In addition, the v_{op} (C=O)₂ mode decreases more than v_{ip} (C=O)₂ by a factor of \sim 3.5.

HYDANTOINS

Table 12.18 lists IR data and assignments for hydantoins in the vapor and solid phases. The vN-H frequencies occur in the range 3485–3495 cm⁻¹ in the vapor and in the range 3150–3330 cm⁻¹ in the solid phase.

In the vapor phase, v_{ip} (C=O)₂ occurs in the range 1808–1825 cm⁻¹ and in the range 1755–1783 cm⁻¹ in the solid phase while v_{op} (C=O)₂ occurs in the range 1774-1785 cm⁻¹ in the vapor phase and in the range 1702–1744 cm⁻¹ in the solid phase. In the four cases where the same hydantoin was studied in both the vapor and solid phases, the frequency separation between v_{ip} (C=O)₂ and v_{op} (C=O)₂ is much less in the vapor phase (34–40 cm⁻¹) than it is in the solid phase (54–66 cm⁻¹).

TRIALLYL-1,3,5-TRIAZINE-2,4,6-(1H,3H,5H) TRIONE

Table 12.19 lists IR data and assignments for triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione in $CHCl_3$ and/or CCl_4 solutions (20). The empirical structure of this compound is

where R is allyl, and for simplicity we will name this compound T_3 one. T_3 one has been determined to have D_{3h} symmetry, the v_{ip} (C=O)₃ mode belongs to the E' species, and the v_{ip} (C=O)₃ mode belongs to the A' species. The v_{op} (C=O)₃ mode is doubly degenerate, and is IR active while v_{ip} (C=O)₃ is Raman active. T_3 one in 1% wt./vol. CCl₄ solution exhibits a strong Raman band at 1761.2 cm⁻¹, at 5% wt./vol. CCl₄ solution at 1762.3 cm⁻¹, and at 10% wt./vol.

 CCl_4 solution at 1763.0 cm⁻¹. In CHCl₃ solutions at the same % wt./vol. concentrations, strong Raman bands occur at 1758.3, 1760.5, and 1761.4 cm⁻¹, respectively. Therefore, in both CCl_4 and $CHCl_3$ solution the Raman band increases in frequency with an increase in the % wt./vol. T_3 one. A corresponding IR band is not observed, and this Raman band is assigned as v_{ip} (C=O)₃.

In the case of v_{op} (C=O)₃ for T₃one, 1 and 5% vol./wt. solutions in CCl₄ show that it decreases in frequency from 1698.6 cm⁻¹ to 1698.5 cm⁻¹ while at these same concentrations in CHCl₃ it decreases from 1695.7 cm⁻¹ to 1695.5 cm⁻¹.

The v_{op} (C=O)₃ mode for T₃one decreases in a nonlinear manner as the mole % CHCl₃/CCl₄ is increased from 0 to 100 as shown in Figure 12.8. These data indicate that different T₃one \cdots (HCCl₃)_n complexes are formed as the mole % CHCl₃/CCl₄ is increased, and that in general the v_{op} (C=O)₃ frequency decreases with increase in the mole % CHCl₃/CCl₄ are due to the dielectric effect of each particular solvent system.

A strong IR band assigned to v_{op} (C_3N_3) is assigned in the region 1455.2–1458.6 cm⁻¹. This mode increases in frequency in almost a linear manner as the mole % CHCl₃/CCl₄ is increased (see Figure 12.9).

The allyl groups in T_3 one exhibit three characteristic frequencies. The $\nu C = C$ mode is not affected by change in the solvent system, as it occurs at $1645.4 \, \text{cm}^{-1}$. On the other hand, the $C = CH_2$ wag mode decreases in frequency in a nonlinear manner as the mole % $CHCl_3/CCl_4$ is increased (see Figure 12.10).

Table 12.20 lists IR data and assignments for T_3 one in 1% wt./vol. solutions in various solvents (20). In these 18 solvents, v_{op} (C=O)₃ ranges from 1703.2 cm⁻¹ in hexane to 1693.3 cm⁻¹ in dimethyl sulfoxide. In the case of the four alcohols, v_{op} (C=O)₃ exhibits both v_{op} (C=O)₃ and v_{op} (C=O)₃···HOR. The former occurs in the range 1701.5–1703.5 cm⁻¹ and the latter in the range 1688–1690.6 cm⁻¹. Figure 12.11 shows a plot of the v_{op} (C=O)₃ frequency for T_3 one vs the solvent acceptor number (AN). The solid triangles show the data points for the T_3 one···HOR molecules; the solid squares show the data points for T_3 one molecules not intermolecularly hydrogen bonded in solution surrounded by intermolecularly hydrogen-bonded alcohol molecules. Projecting these points onto the broad linear line shows that the AN values for the alcohols when not hydrogen bonded to solvent molecules are very similar to the AN values for alkyl ethers. The AN values are not a precise measure of the solute-solvent interaction, as they do not accurately account for steric effects between solute and solvent, or do not distinguish between molecules that are or are not intermolecularly hydrogen bonded (20).

REFERENCES

- 1. Nyquist, R.A. (1984). The Interpretation of Vapor-phase Infrared Spectra: Group Frequency Data, Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Inc.
- 2. Richards, R.E. and Thompson, H.W. (1947). J. Chem. Soc. London, 1248.
- 3. Brown, T.L., Regan, J.E., Scheutz, D.R., and Sternberg, J. (1959). J. Phys. Chem., 63, 1324.
- 4. Lin-Vien, D., Cotthrup, N.B., Fateley, W.G., and Grasselli, J.G. (1991). The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecule, San Diego: Academic Press, Inc.
- 5. McLachlan, R.D. and Nyquist, R.A. (1964). Spectrochim. Acta, 20, 1397.
- 6. Nyquist, R.A. (1963). Spectrochim. Acta, 19, 509.

- 7. Nyquist, R.A. (1963). Spectrochim. Acta, 19, 1595.
- 8. Russell, R.A. and Thompson, H.W. (1956). Spectrochim. Acta, 8, 138.
- 9. Moccia, R. and Thompson, H.W. (1957). Spectrochim. Acta, 10, 240.
- 10. Klemperer, W., Cronyn, M., Maki, A., and Pimentel, G. (1954). J. Am. Chem. Soc., 76, 5846.
- 11. Thompson, H.W. and Jameson, D.A. (1958). Spectrochim. Acta, 13, 236.
- 12. Nyquist, R.A., Chrisman, R.W., Putzig, C.L., Woodward, R.W., and Loy, B.R. (1979). Spectrochim. Acta, 35A, 91.
- 13. Nyquist, R.A. and Luoma, D.A. (1991). Appl. Spectrosc., 45, 1501.
- 14. Nyquist, R.A. and Luoma, D.A. (1991). Appl. Spectrosc., 45, 1491.
- 15. Nyquist, R.A. and Luoma, D.A. (1991). Appl. Spectrosc., 45, 1497.
- 16. Nyquist, R.A., Putzig, C.L., and Clark, T.D. (1996). Vib. Spectrosc., 12, 81.
- 17. Gutmann, V. (1978). The Donor-acceptor Approach to Molecular Interactions, p. 29, New York: Plenum Press.
- 18. Nyquist, R.A. and Fiedler, S.L. (1995). Vib. Spectrosc., 8, 365.
- 19. Nyquist, R.A. (1990). Appl. Spectrosc., 44, 215.
- 20. Nyquist, R.A., Puehl, C.W., and Putzig, C.L. (1993). Vib. Spectrosc., 4, 193.

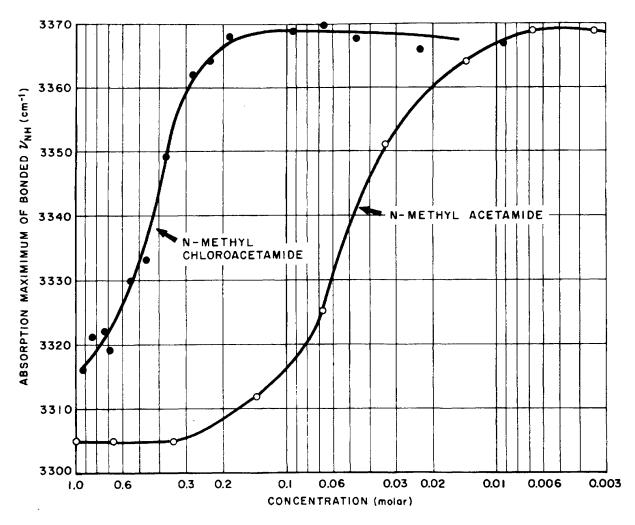


FIGURE 12.1 Plots of the $vN-H\cdots O=C$ frequencies for N-methylacetamide and N-methyl chloroacetamide vs the absorption maximum at each of the $v\cdots O=C$ frequencies.

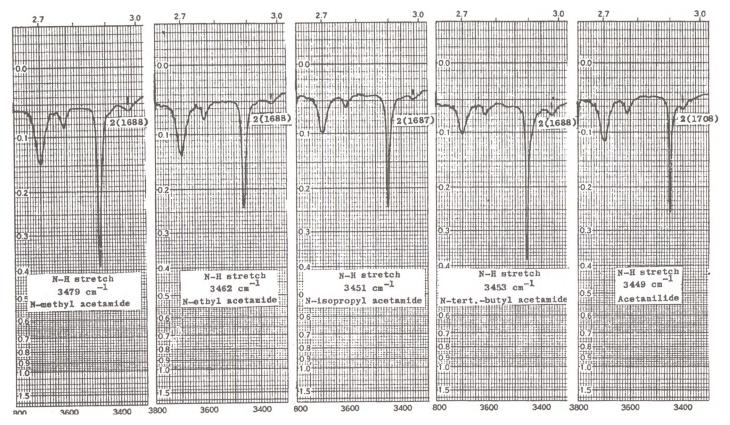


FIGURE 12.2 IR spectra of N-methyl acetamide, N-ethyl acetamide, N-isopropyl acetamide, N-tert-butyl acetamide, and acetamilide in CCl₄ solution in the region 3800–3300 cm⁻¹.

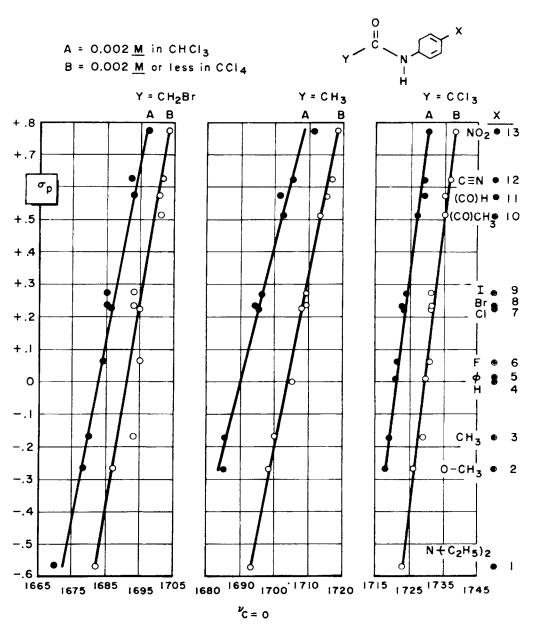


FIGURE 12.3 Plots of the ν C=O frequencies for α -bromo-p-x-acetanilide, p-x-acetanilide, and α,α,α -trichloro-p-x-acetanilide in 0.002 M solutions or less in CCl₄ and CHCl₃ vs Hammett σ_p values.

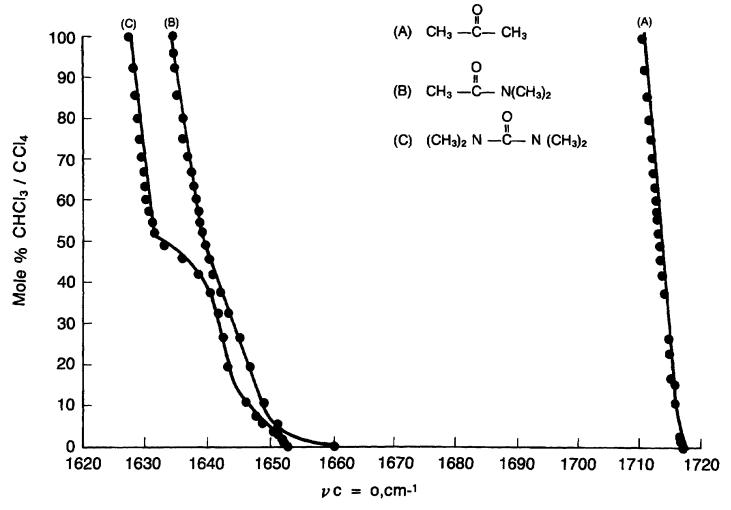


FIGURE 12.4 Plots of $\nu C=0$ for 1% wt./vol. solutions of acetone, dimethylacetamide, and tetramethylurea vs mole % CHCl₃/CCl₄.

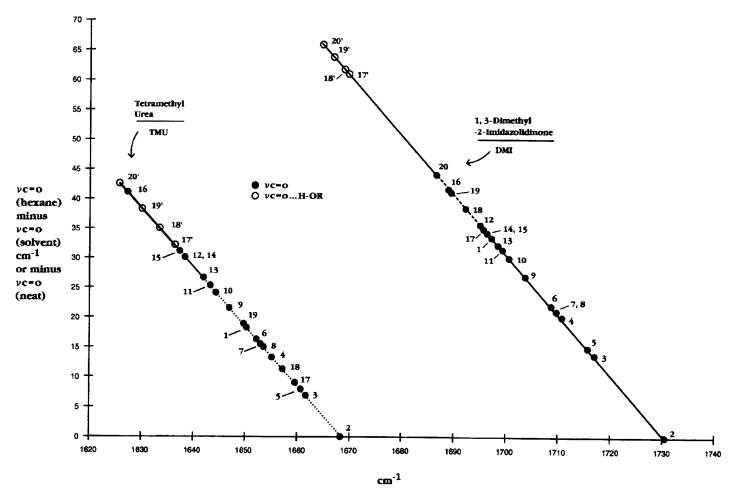


FIGURE 12.5 Plots of ν C=O of 1,3-dimethyl-2-imidazolidazolidinone (DMI) and 1,1,3-tetramethylurea (TMU) in the neat phase or in 1 of the 19 solvents vs ν C=O (hexane) minus ν C=O (solvent).

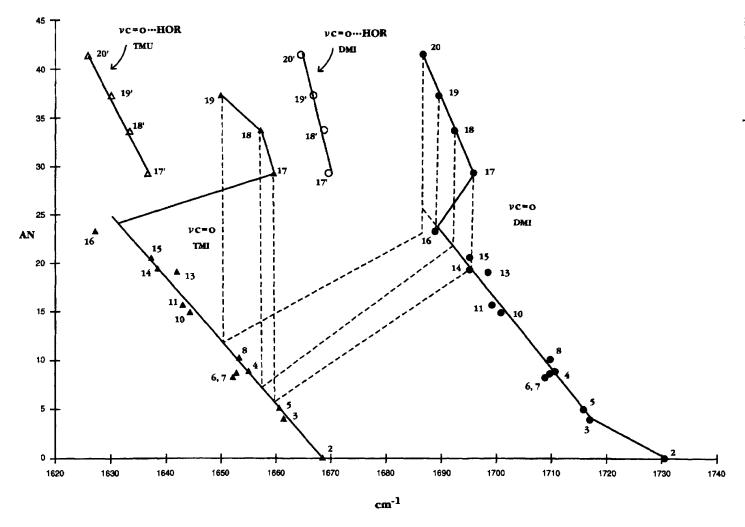


FIGURE 12.6 Plots of vC=O for 1,1,3,3-tetramethylurea (TMU) and 1,3-dimethyl-2-imidazolidinone (DMI) vs the solvent acceptor number (AN).

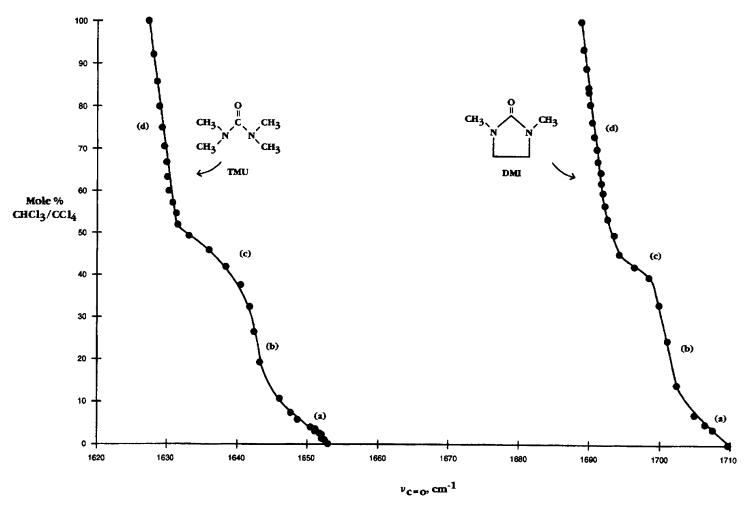
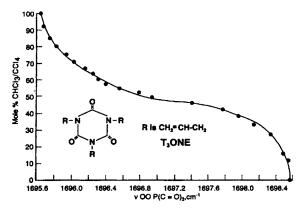
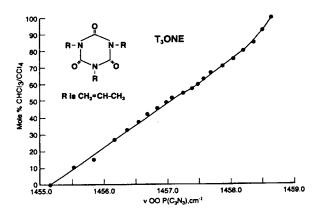




FIGURE 12.7 Plots of vC=O for 1,1,3,3-tetramethylurea (TMU) and 1,3-dimethyl-2-imidazolidinone (DMI) vs mole % CHCl₃/CCl₄.

 $\textbf{FIGURE 12.8} \quad \text{A plot of ν_{op} (C=O)$_3$ for triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione (T_3 one) vs mole \% CHCl$_3/CCl$_4.}$

 $\textbf{FIGURE 12.9} \quad \text{A plot of ν_{op} (C_3N_3) for triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H)$ trione $(T_3$ one)$ vs mole $\%$ $CHCl_3/CCl_4$.}$

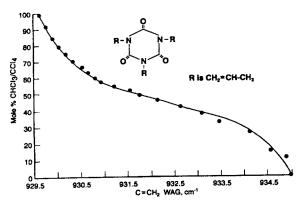


FIGURE 12.10 A plot of $C=CH_2$ wag for triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione (T₃ one) vs mole % $C+CH_3/CCl_4$.

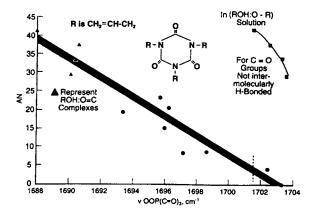


FIGURE 12.11 A plot of ν_{op} (C=O)₃ and ν_{op} (C=O)₃···HOR for triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione vs the solvent acceptor number (AN).

TABLE 12.1 A comparison of primary, secondary, and tertiary amides in various physical phases

Primary amide assignments	Vapor phase [Ref. 1] R-(C=O)NH ₂ cm ⁻¹	Vapor phase [Ref. 1] $C_6H_5-(C=O)NH_2$ cm^{-1}	Neat phase nonbonded [Refs. 2,3,4] cm ⁻¹	Intermolecular H-bonded [Refs. 2,3,4] cm ⁻¹
asym.NH ₂ str.	3548–3565	3556–3540	ca.3520	3350-3475
sym.NH ₂ str.	3430-3444	3435-3448	ca.3400	3160-3385
C=O str.	1732-1780	1719–1731* ¹	1675–1715	1640-1680
NH ₂ bending	1576-1600	1586-1600	1585–1620	1620-1640
C-N str.	1308-1400	1341-1355	1390-1430	1390-1430
NH ₂ rock			1100-1150	1100-1150
NH ₂ wag				600-750* ²
N-C=O in-plane bend			550-600	550–600
Secondary amide assignments	Vapor phase* ³		Neat phase nonbonded cm ⁻¹	H-bonded cm ⁻¹
NH str.,trans	3416–3419		3400–3490	3300
cis			3200	
[5 M.R.]* ⁴	3478			
[6 M.R.]	3 4 38			
[7 M.R.]	3442			
C=O str.	1698-1720		1650–1700	1630-1680
C=O str.[4 M.R.]				1730-1780
C=O str.[5 M.R.]	1759			1700-1750
C=O str. [6 M.R.]	1715			
C = str. [7 M.R.]	1711			
CNH strbend,trans			1500–1550	1510–1570
,cis			ca. 1450	1400-1490
CNH stropen,trans			1200–1250	1250–1310
,cis			ca.1350	1310–1350
Tertiary amide assignments				
C=O str.	1671–1731		1630–1680	

^{*1} See text.

^{*2} Broad.

^{*3} See text

^{*4} M.R. = membered ring or lactam.

TABLE 12.1A The NH stretching frequencies and absorbance data for N-methyl acetamide in concentration ranging from 1.37×10^{-3} to 1.37 mol/liter in CCl₄ solution

Concentration mole/liter			Band		Apparent intensity
N-methylacetamide	N-H str.	Α	halfwidth	% Bonded	B'×10(7)
0.00137	3476	0.199	6.8	0	3.6
0.00342	3475	0.426	7	11	3.2
0.00685	3 4 75	0.81	7.1	15	3
0.0137	3475	1.48	7.1	19	2.9
0.0342	3 4 75	2.87	7. 4	27	2.2
0.685	3474	3.99	7.3	56	1.6
0.137	3474	4.93	7.4	73	0.96
0.342	3 4 72	6.63	7.4	86	0.52
0.685	3472	7.1	7.1	92	0.28
1.027	3471	8.1	7. 4	94	0.21
1.37	3471	8.88	7.4	95	0.17
N-methyl chloroacetamide					
0.00921	3450	0.197	6.4	1	4.9
0.023	3450	0.479	6.4	4	4.8
0.046	3450	0.897	6.4	10	4.5
0.0681	3451	1.28	6.5	12	4.4
0.0921	3450	1.63	6.9	12	4.4
0.184	3450	2.6	7.2	26	3.7
0.23	3450	3.04	7.5	28	3.6
0.276	3449	3.41	7.5	33	3.3
0.368	3449	3.86	8	39	3.6
0.46	3449	3.97	8.2	50	2.5
0.553	3449	4.31	8.5	52	2.4
0.691	3448	4.37	9.1	58	2.1
0.727	3448	4.65	9.1	58	2.1
0.829	3447	4.89	9.2	61	2
0.921	3448	4.95	9.3	64	1.8

TABLE 12.1B $\,$ The NH stretching, C=O stretching, amide II, and amide III frequencies for N-methyl acetamide in CHBr $_3$ solutions

Concentration mole/liter [CHBr ₃] N-methylacetamide	N–H str.	N-H str. bonded	C=O str.	Amide II	Amide III
0.00685	3456		1668	1531	1278
0.027	3456		1668	1531	1279
0.137	3457		1668	1532	1278
0.685	3457	3325	1660	1537,1560	1279
2.05	3454	3320	1656	1561	1279
2.74	3451	3305	1649	1563	1279

TABLE 12.1C The overtone for amide II of N-methyl acetamide and N-methyl chloroacetamide in varying concentrations in CCl_4 solutions

Concentration mole/liter [CCl ₄]	* · · · · · · · · · · · · · · · · · · ·		D 11 16 :11	T 10(0)
N-methyl acetamide	2(amide II)	A	Band halfwidth	Intensity B×10(8)
0.342		0.02	30	0.6
0.0685	3102	0.059	28	9
0.137	3103	0.206	30	16
0.342	3104	0.775	30	25
0.685	3105	1.65	31	26
1.027	3104	2.76	30	29
1.37	3105	3.55	30	28
N-methyl chloroacetamide				
0.276	3098	0.049	26	1.7
0.46	3098	0.33	26	6.7
0.553	3098	0.46	26	7.8
0.727	3098	0.82	27	10.5
0.829	3099	0.93	27	11
0.921	3099	1.38	28	15

TABLE 12.2 IR data and assignments for N-alkyl acetamides, and N-alkyl α- substituted acetamides in dilute solutes

Compound acetamide	N-H str.	A*1	C=O str.	2(C=O str.) or cis N-H str.	N—H bending	CCN str.
- Compound accuming	., 11 341.		<u> </u>	or els iv ii su.	bending	
N-methyl	3478	21.5	1688	3365		
N-ethyl	3462	16.2	1688	3360		
N-propyl	3461	18.5	1690	3360		
N-n-butyl	3460	18.1	1688	3360		
N-isobutyl	3471	21.7	1689	3365		
N-isopropyl [vapor]	3460(0.051)		1714(1.240)	3420(0.020)	1490(0.803)	1244(0.372)
N-isopropyl	3451	18.9	1687	3360		
N-s-butyl	3450	23.2	1685	3360		
N-t-butyl	3453	25.4	1688	3360		
N-phenyl	3449	34.6	1708	3400		
α -chloro-acetamide						
N-n-butyl	3433	30.9	1684	3348		
N-isopropyl	3429		1682	3345		
N-s-butyl	3422		1680	3335		
N-t-butyl	3421	38.5	1684	3350		
N-phenyl	3409	56	1692	3350		
$\alpha,\alpha\text{-dichloroacetamide}$						
N-ethyl	3441	47.8	1707	3383		
N-propyl	3439	39.9	1706	3382		
N-n-butyl	3 4 39	43.4	1705	3395		
N-isopropyl	3430	40.8	1703	3385		
N-t-butyl	3427	31.6	1702	3365		
N-phenyl	3419	51.3	1713	3400		
$\alpha,\alpha,\alpha\text{-trichloroacetamide}$						
N-methyl	3462	58.9	1728			
N-ethyl N-ethyl	3449	45.4	1725			
N-propyl	3448	45.5	1724			
N-butyl	3 44 5	41.6	1726			
n-isobutyl	3 4 51	44.2	1725			
N-isopropyl	3439	39.3	1725			
N-s-butyl	3438	36	1724			
N-t-butyl[vapor]	3444(0.190)		1743(1.230)		1505(1.230)	1244(0.451)
N-t-butyl	3435	39.9	1725			
N-phenyl	3425	51.8	1731			
α -bromo-acetamide						
N-ethyl	3435	29.8	1680			
N-propyl	3432	30.9	1680			
N-n-butyl	3432	31.2	1681			
N-isobutyl	3433	32	1680			
N-isopropyl	3422	30.2	1679			
N-s-butyl	3420	30.6	1679			
N-t-butyl	3419	26.2	1680			

(continued)

TABLE 12.2 (continued)

Compound acetamide	N-H str.	A*1	C=O str.	2(C=O str.) or cis N-H str.	N–H bending	CCN
Compound acetamide	N-n str.	Α	C=O str.	or cis N=n str.	Dending	str.
α,α-dibromo-acetamide						
N-methyl	3450	35.8	1701			
N-ethyl	3439	32.7	1700			
N-propyl	3438	30.5	1700			
N-n-butyl	3 4 37	303.4	1700			
N-isobutyl	3440	30.2	1700			
N-isopropyl	3427	26.8	1699			
N-s-butyl	3422	26.8	1698			
N-t-butyl	3425	25.5	1701			
α,α,α-tribromoacetamide						
N-ethyl	3441	35.4	1712			
N-isopropyl	3430	28.2	1710			
N-t-butyl	3429	27.4	1717			
α,α,α-trifluoroacetamide						
N-methyl	3470	51.6	1741			
N-ethyl	3454	49.5	1736			
N-propyl	3456	46.6	1738			
N-n-butyl	3454	44.9	1736			
N-isobutyl	3456	56	1738			
N-isopropyl	3447	43.2	1735			
N-s-butyl	3443	38	1733			
N-t-butyl	3446	37.4	1736			
α-methoxy-acetamide						
N-ethyl	3438	30.7	1689			
N-propyl	3439	28.7	1690			
N-isobutyl	3440	38.3	1690			
N-isopropyl	3427	32	1687			
N-s-butyl	3422	31.1	1685			
N-t-butyl						
α-phenoxy acetamide						
N-ethyl	3446	35.5	1691			
N-propyl	3 44 7	35.6	1692			
N-n-butyl	3446	32.9	1691			
N-isobutyl	3449	35.2	1692			
N-isopropyl	3430	32.7	1688			
N-s-butyl	3430	29.4	1688			
N-t-butyl	3428	28.4	1689			

TABLE 12.2A The NH stretching frequencies for N-alkyl acetamides, N-alkyl X-halo, X,X-dihalo-, X,X,X-trihaloacetamides, and N-alkyl methoxyacetamide in CCl₄ solutions

Compound					
[10%(wt./vol.)			N-H str		
or saturated*] or		N-H str.	[corrected	delta	A (bonded)/
[2%* ¹] [CCl ₄]	N-H str.	H-bonded	for F.R.]	N–H str.	A (unbonded)
Acetamide N-alkyl					
ethyl*	3460	3300	3285	175	2.2
isobutyl*	3460	3288	3265	195	11
isopropyl*	3434	3280	3264	175	2.4
t-butyl*	3450	3303	3277	173	5.7
Bromoacetamide N-alkyl					
ethyl	3433	3299	3280	153	3.2
propyl	3430	3291	3268	162	4
butyl	3430	3294	3270	160	2.9
isopropyl	3420	3290	3269	151	2.7
t-butyl	3420	3272	148	148	0.7
Trifluoroacetamide N-alkyl					
methyl	3460	3325	3311	149	4.3
ethyl	3446	3310	3297	149	3.7
propyl	3451	3315	3305	146	3.5
isobutyl	3451	3320	3307	144	2.8
isopropyl	3440	3311	3295	148	2.3
s-butyl	3439	3310	3296	143	2.4
t-butyl	3438	3340	3313	125	0.6
Trichloroacetamide N-alkyl					
methyl*	3459	3390		69	0.15
ethyl	3443	3360		83	0.3
propyl	3442	3358		84	0.3
butyl	3447	3360		87	0.27
isobutyl	3448	3369		79	0.18
isopropyl	3437	3360		77	0.14
s-butyl	3430	3352		78	0.1
t-butyl	3 4 33	3370		63	0.01
Dibromoacetamide N-alkyl					
ethyl*1	3439	3354		85	0.17
propyl*1	3437	3355		82	0.2
butyl*1	3433	3355		78	0.17
isobutyl*1	3440	3368		72	0.14
isopropyl*	3420	3360		60	0.04
s-butyl*1	3419	3343		76	0.17
Methoxyacetamide N-alkyl					
ethyl	3433	3345		88	0.3

(continued)

TABLE 12.2A (continued)

Compound			NI 11		
[10%(wt./vol.) or saturated*] or [2%* ¹] [CCl ₄]	N–H str.	N—H str. H-bonded	N—H str [corrected for FR.]	delta N–H str.	A (bonded)/ A (unbonded)
propyl	3431	3345		86	0.35
butyl	3438	3351		87	0.31
isobutyl	3439	3351		88	0.27
isopropyl	3421	3335		86	0.19
s-butyl	3422	3335		86	0.18
t-butyl	3418	3352		66	0.07
Phenoxyacetamide N-alkyl					
ethyl	3441	3349		92	0.3
propyl	3445	3354		91	0.3
isobutyl	3444	3356		88	0.24
isopropyl	3439	3352		87	0.21
s-butyl	3430	3340		90	0.2
t-butyl	3430	3355		75	0.05

^{*}saturated at 2% in CCl4.

TABLE 12.3 IR data for N-alkyl α -substituted acetamides in 10% wt./vol. CCl₄ and 0.002 M CCl₄ solutions

Compound	C=O str. 10% (wt./vol.) [CCl ₄]	c=O str. (0.002 M) [CCl ₄]	delta C=O str.	Amide II	2(amide II)
Bromoacetamide N-alkyl				-	
ethyl	1668	1680	12	1525,1555	3090
propyl	1666	1680	14	1545	3087
butyl	1666	1681	15	1540	3086
isopropyl	1664	1680	16	1521,1552	3081
t-butyl	1674	1680	6	1522,1550	3071
Trifluoroacetamide N-alkyl					
methyl	1724	1741	17	1564	3120
ethyl	1716	1736	20	1553	3100
propyl	1720	1738	18	1555	3109
isobutyl	1720	1738	18	1554	3108
isopropyl	1716	1735	19	1548	3094
s-butyl s-butyl	1715	1733	18	1550	3099
t-butyl	1722	1736	14	1530	3076
Trichloroacetamide N-alkyl					
ethyl	1712	1725	13	1518	
propyl	1712	1724	12	1518	
butyl	1713	1726	13	1520	
isobutyl	1717	1725	8	1520	
isopropyl	1714	1721	7	1512	
s-butyl	1715	1724	9	1512	
t-butyl	1725	1725	0	1509	
Methoxyacetamide N-alkyl					
ethyl	1678	1689	11	1532	
propyl	1678	1690	12	1530	
isobutyl	1682	1690	8	1531	
isopropyl	1675	1687	12	1522	
s-butyl s	1680	1685	5	1524	
t-butyl	1685	1690	5	1523	
Phenoxyacetamide N-alkyl					
ethyl	1683	1691	8	1531	
propyl	1684	1692	8	1531	
isobutyl	1688	1692	4	1533	
isopropyl	1686	1688	2	1527	
s-butyl	1684	1688	4	1524	
t-butyl	1690	1689	-1	1527	

TABLE 12.4 A comparison of primary and secondary amides in the solid phase

Compound solid [KBr pellet]	asym.NH ₂ str. cm ⁻¹	sym.NH ₂ str. cm ⁻¹	C=O str. cm ⁻¹	${ m NH_2~bending} \ { m cm^{-1}}$	Gama NH ₂ cm ⁻¹
H ₂ N-C=OCH ₃	3310	3160	1686	1652	720
H ₂ N-C=OCH ₂ Cl	3380	3180	1650	1620	645
H ₂ N-C=OCHCl ₂	3320	3150	1670	1625	?
H ₂ N-C=OCH ₂ -OCH ₃	3380	3195	1635	1645	725
$H_2N-C=OC_6H_5$	3362	3170	1659	1625	650
$H_2N-C=OC_6H_4(2-OH)$	3398	3185	1661	1629	615
	NH: O=C cm ⁻¹	c=O:HN cm ⁻¹	$N-H$ bending cm^{-1}		
4-CH ₃ C ₆ H ₄ -NH-C=OCH ₃	3295	1660	1530		
$C_6H_5-NH-C=OC_2H_5$	3242	1660	1546		
C_6H_5 -NH-C=OC ₃ H ₇ -iso	3300	1664	1550		
C_6H_5 -NH-C=OC ₆ H ₅	3339	1648	1525		
CH_3 -NH-C= OC_6H_5	3340	1635	1546		

TABLE 12.4A A comparison of IR data for tertiary amides in the neat or solid phase

Compound	Phase	C=O str. cm ⁻¹
$(C_2H_5)2N-C=OH$	neat	1665
$(C_2H_5)(C_6H_5)N-C=OH$	neat	1670
$(C_6H_5)2N-C=OH$	KBr pellet	1690
$(C_6H_5)(CH_3)N-C=OCH_3$	KBr pellet	1659
$(C_6H_5)(C_2H_5)-C=OCH_3$	KBr pellet	1650
$(C_6H_5)2N-C=OCH_3$	film	1670
$(C_6H_5)N-C=O(CH_2)_3$	melt	1685*
$(C_4H_9)2N-C=OCH_3$	neat	1640
$(C_2H_5)2N-C=OC_2H_5$	neat	1636
$(C_4H_9)2N-C=OC_2H_5$	neat	1635
(CH3)2N-C=OC3H7	neat	1634
$(C_2H_5)2N-C=OC_3H_7$	neat	1634
$(CH_3)2N-C=OC_{11}H_{23}$	neat	1650
$1,2-C_6H_4(C=O-N(C_2H_5)_2)_2$	neat	1625

^{* 5-}Membered ring.

TABLE 12.5 A comparison of Raman data and assignments for acrylamide, methacrylamide, and their polymers

Compound	A.M.W.	C=O str.	C=O str. monomer C=O str. polymer	C=C str.	C=O str. C=C str.	RI C=O str./ RI C=C str.	C=O str. Acrylamide C=O str. N-alkyl or N,N-dialkyl- acrylamide	Acrylamide C=O str. Methacrylamide C=O str. and for their polymers
Acrylamide		1682(2)		1639(9)	43	0.22	0	9
Polyacrylamide	18,000,000	1668(2)	14					15
		1665(3)	17					13
		1660(3)					7	
	6,000,000	1659(3)	23					6
	5,000,000	1658(4)	24					5
Acrylamide								
N-methyl		1659(1)		1628(9)	31	0.11	23	
N-ethyl		1657(2)		1628(9)	29	0.22	25	
N-tert-butyl		1659(1)		1629(9)	30	0.11		
N-(1,1-dimethyl-3-oxybutyl) Acrylamide		1658(3)		1627(9)	31	0.33		
N,N'-dimethyl		1648(1)		1612(9)	36	0.11	34	
N,N'-diethyl		1649(2)		1609(9)	40	0.22	33	
N-methyl N'-vinyl		1666(8)		1625(7)	41	1.1	16	
Methacrylamide		1673(1)		1647(5)				
Polymethacrylamide		1653(1)	20					

TABLE 12.5A Raman data and assignments for N-alkyl or N-aryl acrylamides and methacrylamides

N-alkyl or		·				N-alkyl or N-aryl						
N-aryl	C=O	C=C	I=C-C-N	C=O str.	RI C=O str./	methacryl-	C=O	C=C	$CH_2 =$	s.C-C-C	C=O str	RI C=O str./
acrylamide	str.	str.	str.]	C=C str.	RI C=C str.	amide	str.	str.	bend	str.	C=C str.	RI C=C str.
N'-methy- lene-bis	1663(1)	1632(9)	1252(5)	31	0.11	N'-methy- lene-bis	1661(9)	1622(3)	1421(6)	879(8)	39	3
methyl	1659(1)	1628(9)	1252(5)	31	0.11							
ethyl	1657(2)	1628(9)	1250(6)	29	0.22	ethyl	1656(9)	1621(5)		875(8)	35	1.8
trimethylene-bis	1651(4)	1617(5)	1245(9)	34	0.8	,						
butyl	1657(2)	1628(9)	1248(6)	29	0.22							
isopropyl	1656(2)	1622(9)	1248(6)	34	0.22							
cyclohexyl	1656(3)	1624(9)	1247(5)	32	0.33							
octadecyl		1625(2)										
,						tert-butyl	1658(4)	1620(4)		881(9)	38	1
tert-octyl	1660(2)	1625(7)		35	0.29	•						
benzyl	1652(2)				1	benzyl	1653(4)					
N'-hexamethy- lene-bis	1654(5)	1620(9)	1240(9)	34	0.56	·						
isobutoxymethyl	1669(1)	1631(9)	1239(2)	38	0.11	isobutoxy- methyl	1664(7)	1620(4)			36	1.8
hydroxymethyl	1665(0.5)	1632(9)	1236(3)	33	0.06	ĺ						
, , ,						2-hydroxy- propyl	1652(9)	1620(4)				
						butoxy	1671(1)	1632(9)			39	0.11
phenyl		1638(6)	1256(9)			phenyl	1657(3)	1620(3)			37	1
P		-030(0)	1230(3)	29-35		r/-	(3)	(5)			35–39	_

TABLE 12.6 IR C=O stretching frequencies for p-x-acetanilides and p-x, α-haloacetanilides in CCl₄ and CHCl₃ solutions

p-x group X	Sigma p	Acetanilide $p-x$ $C=O$ str. $[CCl_4]$	Acetanilide p-x C=O str. [CHCl₃]	α -Bromo-p-x acetanilide C=O str. [CCl ₄]	α-Bromo-p-x acetanilide C=O str. [CHCl ₃]	α,α,α -Trichloro- p-x-acetanilide C=O str. [CCl ₄]	α,α,α -Trichloro- p-x-acetanilide C=O str. [CHCl ₃]
			52	-		10041	[0.10.3]
$N(C_2H_5)_2$	-0.57	1693		1682	1670	1723	
OCH ₃	-0.268	1698.5	1685	1687	1678	1726	1718
CH ₃	-0.17	1700	1700	1693	1680	1729	1719
Н	0	1705					
C_6H_5	0.01					1729.5	1721
F	0.062			1695	1684	1731	1721
Cl	0.227	1708	1695	1695	1686	1731	1723
Br	0.323	1709	1694	1693	1685	1731	1723
I	0.276	1709	1696	1693	1685	1731	1724
COCH ₃	0.516	1713	1702	1701	1686	1736	1727
СНО	0.575	1715	1701*	1701	1693*	1735	1729
CN	0.628	1716.5	1705	1701.5	1692	1737	1729
NO ₂	0.778	1718	1711	1703	1697	1738	1730
$N(C_2H_5)2:HCl$?						1730
p-x group							1150
COCH ₃		1685.5	1688	1687	1681	1689	1681
CHO		1701	1701	1700.5	1693	1706	1702

^{*} not resolved from vC=0 for the H-C=0 group.

TABLE 12.7 The NH stretching frequencies for p-x-acetanilides and p-x, α-haloacetanilides in CCl₄ and CHCl₃ solutions

p-x Group	Sigma p	p-x-acetanilide N—H str. [CCl ₄]	p-x-acetanilide N–H str. [CHCl ₃]	α-Bromo-p-x acetanilide N—H str. [CCl ₄	α-Bromo-p-acetanilide N–H str. [CHCl ₃]	α,α,α–Trichloro-p-x-acetanilide N–H str. [CCl ₄	α,α,α —Trichloro-p-x-acetanilide N—H str. [CHCl ₃]
				2405	2205	2422	
$N(C_2H_5)_2$	-0.57	3443	2440	3405	3395	3422	2415
OCH ₃	-0.268	3445	3 44 0	3403	3395	3421	3415
CH ₃	-0.17	3443	3435	3402	3395	3422	3414
Н	0	3441				2421	2400
C ₆ H ₅	0.01			2401	2202	3421	3409
F	0.062			3401	3393	3422	3413
Cl	0.227	3441	3435	3402	3392	3420	3413
Br	0.232	3441	3436	3400	3393	3420	3411
I	0.276	3442	3437	3399	3392	3419	3413
COCH ₃	0.515	3436	3431	3303	3388	3416	3409
CHO	0.575* ¹	3 4 39	3442	3399	3390	3415	3407
CN	0.628	3 4 37	3431	3393	3388	3416	3 4 09
NO ₂	0.778	3438	3430	3391	3387	3415	3406
$N(C_2H_5)_2:HCl$?		3429				
$N(C_2H_5)_2$			A*1		$A^{\star 1}$		A*1
OCH ₃			2.89		4.12		4.55
CH ₃			2.66		4.1		4.41
C_6H_5							
F							4.81
Cl					4.68		5.12
Br			2.68		4.47		5.06
I		,	3.17		4.8		5.09
COCH ₃			2.84		5.14		4.92
СНО			3.12				4.75
CN			3.16		4.82		
NO ₂			3.09		5.37		5.27
2			3.66		5.3		5.36

^{*1} Based on reading in Figure 12.3. See text.

TABLE 12.8 The NH and C=O stretching frequencies for N-alkyl p-methoxybenzamide, N-alkyl p-chlorobenzamide, and N-alkylmethyl carbamate in CCl_4 solutions

Compound			
[CCl ₄ solutions]	N-H str.		C=O str.
p-Methoxybenzamide	cm^{-1}	A*1	cm ⁻¹
N-methyl	3481		1676
N-ethyl	3463	22.1	1669
N-propyl	3464	20.5	1670
N-n-butyl	3464		1671
N-isobutyl	3469	20	1671
N-isopropyl	3456	18.3	1665
N-s-butyl	3451	18.4	1668
N-t-butyl	3452	15.9	1672
p-Chlorobenzamide			
N-methyl	3481	24.7	1681
N-ethyl	3460	22.3	1675
N-propyl	3463	22.3	1675
N-n-butyl	3463	21.9	1677
N-isobutyl	3469	23.7	1679
N-isopropyl	3450	17.9	1671
N-s-butyl	3451	21.5	1674
N-t-butyl	3451	17.2	1676
Methyl Carbamate			
N-methyl	3478	41.6	1738
N-propyl	3464	32.3	1736
N-n-butyl	3461		1735
N-isobutyl	3467	27.9	1735
N-isopropyl	3452	28.2	1732
N-s-butyl	3449	28.5	1730
N-t-butyl	3455	30.5	1738
N-phenyl	3450	47.2	1748

^{*1} Times 10⁸ cm² molecule⁻¹ sec⁻¹

TABLE 12.9 IR and Raman data for N,N'-dialkyl oxamide and N,N'-diaryl oxamide

Oxamide	o.p.(N-H) ₂ str.	i.p.(N-H) ₂ str.			Amide I	Amide II	Amide II	Amide IV
N,N'-dialkyl	IR	Raman	Amide I	Bu	Ag	Bu	Ag	Bu
Methyl	3309	3325	1659	1639sh	1692	1533	1567	761
Butyl	3299	3315	1651	1632sh	1688	1532	1560	760
Octyl	3299	3314	1645	1629sh	1690	1508	1551	725
Dodecyl	3311	3325	1645	1628sh	1689	1512	1555	725
Hexadecyl	3304	3320	1645	1629sh	1690	1508	1554	725
Octadecyl	3304	3321	1643	1628sh	1690	1509	1554	752
2-Chloroethyl	3290	3310	1654	1636sh	1695	1536	1562	769
3-Chloropropyl	3306	3320	1654	1633sh	1689	1528	1559	782
2-Hydroxyethyl	3292	3308	1653		1691	1541	1557	764
3-Hydroxypropyl	3308	3324	1655	1635sh	1691	1538	1560	767
2-Methylallyl	3295	3305	1660	1634sh	1686	1524	1559	777
Benzyl	3279	3302	1653	1634sh	1689	1524	1557	781
o-Methylbenzyl	3302		1653	1631sh		1514		750
Range	(3279–3311)	(3302-3325)	(1643-1660)	(1628-1638)	(1686-1695)	(1508-1541)	(1547-1567)	(725-782)
N-(2-Chloroethyl)	3295	3314	1653		1691	1536	1562	764
N'-(3-Hydroxypropyl)								
N-2-(Chloroethyl)	3299	3311	1657		1690	1535	1560	761
N'-(Allyl)								
N,N'-diaryl								
pl l	3298	3320	1662	1682	1520	1550	730	
Phenyl	3296	3320	1688sh	1697	1509sh	1550	750	
2 Chlamakamal	3308	3320	1669	1701	1518	1547	717	
3-Chlorophenyl	3306	3320	1009	1690	1310	1517	***	
3,4-Dichlorophenyl	3358	3335	1686	1704	1508	1545	693	
3, i Biemoropheny	3230sh			1690	1514sh			
3,6-Dichloro-2-pyridyl	3325	3338	1711	1727	1488	1536	627	
3,5-(Trifluoromethyl)-	3323	3349	1719	1741	1484	1537	638	
2-pyridyl	0021							
2,6-(Trifluoromethyl)- 4-pyridyl	3290	3325	1692	1723	1510	1549	660	
Range	(3295–3358)	(3320–3349	(16620–1719)	(1682–1741)	(1484–1520)	(1537–1550)	(628–750)	

TABLE 12.10 IR data and assignments for dimethylacetamide and tetraalkylurea in the vapor, neat and solution phases

Compound	C=O str. [vapor]	C=O str. $[n-C_6H_{14}]$	C=O str. [CCl ₄]	C=O str. CHCl ₃]	C=O str. 14.0 mol % [n-C ₆ H ₁₄ /CHCl ₃]	C=O str. 80.6 mol % $[\text{n-C}_6\text{H}_6/\text{CHCl}_3]$	C=O str. neat
Dimethylacetamide Urea	1690(1.250)		1660.5	1634.2			
Tetramethyl	1685(1.240)	1668.4(1.491)	1653.2 1652.9	1627.3	1650.9; 1635.4	1640.2; 1629.5	1649.6
Tetraethyl	1674(1.232)		1646.2	1620.1			1644
Tetrabutyl	1669(0.840)		1643.2	1616.1			
•	[vapor]- $[n-C_6H_{14}]$	[vapor]-[CCl ₄]	[vapor]-[CHCl3]	[CCl ₄]-[CHCl ₃]	[vapor]-[neat]		
Dimethylacetamide		29.5	55.8	26.3			
Urea							
Tetramethyl	16.6	31.9	57.7	25.8	35.4		
Tetraethyl		27.8	53.9	26.1			
Tetrabutyl		25.8	52.9	27.1	25		

TABLE 12.11 IR vapor-phase data and assignments for urea, thiourea, and guanidine derivatives

Urea	N–H str.	2(C=O str.)	C=O str.	a.NCN?	N-H bending
1,1,3,3-Tetramethyl		3358(0.011)	1685(1.240)	1239(0.210)	
1,1,3,3-Tetraethyl		3338(0.006)	1674(1.240)	1261(1.240)	
1,1,3,3-Tetrabutyl			1669(0.790)	1255(0.159)	
1,3-Diethyl-1,3-diphenyl		3340(0.005)	1680(1.240)	1273(0.610)	
, , , , ,			1741(1.243)		
1,3-Dimethyl	3480(0.073)		1732(1.043)	1334(0.460)	1522(1.149)
,			1726(1.143)		
Thiourea			C=S str.		
1,1,3,3-Tetraethyl			~1085(0.280)	1261(1.230)	
Guanidine			C=N str.		
1,1,3,3-Tetramethyl	3358(0.015)		1619(1.245)	1249(0.190)	

TABLE 12.12 IR data and assignments for tetramethylurea and 1,3-dimethyl-2-imidazolidinone in various solvents

Solvent	DMI C=O str. cm ⁻¹	A	DMI C=O:HO str. cm ⁻¹	[DMI C=O str.] [TMU C=O str.] cm ⁻¹	TMU C=O str. cm ⁻¹	TMU C=O str. [Hexane] C=O:HO str. cm ⁻¹	TMU C=O str. [Hexane] C=O str. [solvent] cm ⁻¹	TMU C=O str. [Hexane] C=O:HO str. [solvent] cm ⁻¹	DMI C=O str. [Hexane] C=O str. [solvent] cm ⁻¹	DMI C=O str. [Hexane] C=O:HO str. cm ⁻¹	AN
[Neat]	1697.1			47.4	1649.6		18.8		33.5		
Hexane	1730.6	0.922		62.2	1668.4		0		0		0
Diethyl ether	1716.8	0.974		55.3	1661.5		6.9		13.7		3.9
Tetrahydrofuran	1710.6	1.128		55.4	1660.7		13.2		20		8.8
Methyl t-butyl ether	1715.6	0.993		55	1660.7		7.7		14.9		5
Benzene	1708.7	1.091		56.6	1652.1		16.3		21.9		8.2
Carbon tetrachloride	1709.6	1.017		56.8	1652.9		15.5		21		8.6
Carbon disulfide	1709.6	1.321		56.2	1653.4		15		21		10.1
1,2-Dichlorobenzene	1703.6	1.267		56.6	1646.9		21.5		27		
Nitrobenzene	1700.6	0.935		56.2	1644.4		24		30		14.8
Benzonitrile	1699	1.017		55.9	1643.2		25.2		31.5		15.5
Nitromethane	1696.3	0.905		57.9	1638.4		30		34.3		
Acetonitrile	1698.3	1.04		56.4	1641.9		26.5		32.2		18.9
Dimethyl sulfoxide	1695.1	1.09		56.7	1638.4		30		35.5		19.3
Methylene chloride	1695	0.939		57.6	1637.4		31		35.6		20.4
Chloroform	1688.8	0.927		61.5	1627.3		41		41.7		23.1
t-Butyl alcohol	1695.6	0.901	1669.5	33	1659.5	1636.5	8.9	31.9	35	61.1	29.1
Isopropyl alcohol	1692.2	0.782	1668.7	35.3	1657.1	1633.4	11.3	35	38.4	61.9	33.5
Ethyl alcohol	1689.3	0.783	1666.8	39.2	1650.1	1630.1	18.3	38.3	41.3	63.8	37.1
Methyl alcohol	1686.5	0.599	1664.7	38.9		1625.8		43	44.1	65.9	41.3

TABLE 12.13 IR data and assignments for 1,3-dimethyl-2-imidazolidinone 1% wt./vol. in various solutions

Imidazolidinone [1% wt./vol.] Mole %	C=O str.	1,3-Dimethyl-2- imidazolidinone [1% wt./vol.] Mole %	C=O str.		C=O str.		1,3-Dimethyl-2- imidazolidinone [1% wt./vol.] Mole %	C=O str.		C=O str.		C=O str.	
CHCl₃/CCl₄	cm ⁻¹	CCl ₄ /n-C ₆ H ₁₄	cm^{-1}	Α	cm ⁻¹	A	CHCl ₃ /n-C ₆ H ₁₄	cm ⁻¹	A	cm ⁻¹	A	cm ⁻¹	Α
0	1709.6	0	1730.6				0	1730.6	0.855	1725.2	0.735		
3.51	1707.5	2.98	1729.8	0.826	1723	0.77	7.01	1727.9	0.309	1710.2	0.733	1698	0.397
4.67	1707.5	5.97	1729.4	0.774	1722.4	0.767	14.02	1728.3	0.193	1710.2	0.92	1697	0.57
7.01	1700.5	11.93	1729	0.748	1720.9	0.798	24.59	1728.7	0.154	1709.1	0.799	1696.3	0.699
14.02	1701.4	19.33	1728.7	0.675	1719.2	0.835	32.85	1729.5	0.122	1707.2	0.712	1695.3	0.79
24.59	1700.9	28.9	1728.6	0.621	1718.3	0.864	39.48	1729.1	0.092	1706.2	0.667	1694.6	0.84
32.85	1699.7	35.04	1728.3	0.602	1717.4	0.892	44.92	1729.5	0.085	1705.7	0.635	1694	0.865
39.48	1698.3	40.38	1727.9	0.595	1716.8	0.902	49.46	1729.5	0.085	1704.9	0.608	1693.7	0.886
42.2	1696.1	44.84	1727.5	0.592	1716.2	0.923	53.3	1729.1	0.08	1704.1	0.587	1693.2	0.912
44.92	1694.1	48.68	1727.5	0.475	1715.7	0.925	56.61	1729.1	0.074	1703.7	0.579	1692.9	0.928
49.46	1693.6	52.01	1727.5		1715.4		59.48	1729.1	0.06	1703.3	0.555	1692.6	0.883
53.3	1692.5	54.94	1727.1		1715		61.99					1692.4	0.925
56.61	1692.1	57.27			1714.8		64.4					1692.3	0.929
59.48	1691.9	60.09			1714.4		67.09					1692	0.932
61.99	1691.7	62.87			1714		69.97					1691.7	0.94
64.44	1691.5	65.93			1713.8		73.1					1691.5	0.95
67.09	1691.1	69.31			1713.4		78.53					1691.2	0.952
69.97	1690.0	73.04			1712.9		80.58					1690.8	0.963
73.1	1690.6	77.2			1712.4		84.69					1690.4	0.967
76.53	1690.4	81.87			1711.7		89.05					1690	0.974
80.58	1690.1	87.14			1711.3		93.52					1689.4	0.955
84.69	1689.8	93.13			1710.5		100					1688.7	0.985
89.05	1689.6	100			1709.5								
93.52	1689.2												
100	1688.8												
delta cm ⁻¹	20.8		-3.5		-13.5			-1.5		-21.9		-9.3	

TABLE 12.14 The in-phase and out-of-phase $(C=0)_2$ stretching frequencies for caffeine, isocaffeine, 1,3,5- trimethyluracil, 1,3,6-trimethyluracil, and 1,3-dimethyl-2,4-(1H,3H) 2, quinazolinedione in CCl_4 and $CHCl_3$ solutions

i.p. $(C=O)_2$ str.+ +o.p. $(C=O)_3$ str.	i.p.(C=O) ₂ str.	o.p.(C=O) ₂ str.	[vapor]-[CCL]	[vapor]-[CHCl ₂]	[CCl ₄]-[CHCl ₃]
			(1017-111-04)	(April (Circis)	
3395(0.005)	1721(0.731)	1685(1.250)			
					i.p. $(C=O)_2$ str.
				•	$o.p.(C=O)_2$ str.
					1.7
			17.5	26.6	9.1
	1708.9(0.204)	1658.4(0.210)			
					i.p. $(C=O)_2$ str.
					0.4*
					5.4*
	1711.3(0.487)	1664.0(0.487)			$o.p.(C=O)_2$ str.
					4.2*
					9.2*
		C1			. (6.0)
					i.p. $(C=O)_2$ str.
	1706 6(0 130)				o.p. $(C=O)_2$ str.
					6.6
	1700.0(0.124)	1032.4			11
	1710 8(0 160)	1668 3			8.8
					10.1
	1702.0(0.120)	1050.2			10.1
		Corrected			i.p.(C=O) ₂ str.
		Conceica			1.p.(C—O) ₂ sti.
		Fermi Res			$o.p.(C=O)_2$ str.
	1711.6(0.155)				7.9
					9.6
	+o.p.(C=O) ₂ str.	$+o.p.(C=O)_2$ str. i.p.(C=O) ₂ str.	+o.p.(C=O) ₂ str. i.p.(C=O) ₂ str. o.p.(C=O) ₂ str. 3395(0.005) 1721(0.731) 1685(1.250) 1710.6(0.193) 1667.5(0.298) 1708.9(0.204) 1658.4(0.210) 1716.7 1673.2 1716.3(0.016) 1669.0(0.019) 1711.3(0.487) 1664.0(0.487) Corrected Fermi Res. 1706.6(0.128) 1663.4 1700.0(0.124) 1652.4 1710.8(0.160) 1668.3 1702.0(0.126) 1658.2 Corrected Fermi Res. 1711.6(0.155) 1667	-i.p.(C=O) ₂ str. i.p.(C=O) ₂ str. o.p.(C=O) ₂ str. [vapor]-[CCl ₄] 3395(0.005) 1721(0.731) 1685(1.250) i.p.(C=O) ₂ str. o.p.(C=O) ₂ str. 10.4 1710.6(0.193) 1667.5(0.298) 17.5 1716.7 1673.2 1716.3(0.016) 1669.0(0.019) 1711.3(0.487) 1664.0(0.487) Corrected Fermi Res. 1706.6(0.128) 1663.4 1700.0(0.124) 1652.4 Corrected Fermi Res. 1710.8(0.160) 1668.3 1702.0(0.126) 1658.2 Corrected Fermi Res. 1711.6(0.155) 1667	1716.7 1673.2 1711.3(0.487) 1663.4 1700.0(0.124) 1658.2 Corrected Fermi Res. 1711.6(0.155) 1667. 1667. 1667. 1668.3 1701.0(0.155) 1667. 1667. 1667. 1667. 1667. 1667. 1667. 1667. 1668.3 1702.0(0.126) 1658.2 Corrected Fermi Res. 1711.6(0.155) 1667.

^{*} differences from 10.74 and 19.4 mol% $\text{CHCl}_3/\text{CCl}_4$ from CHCl_3 solution.

TABLE 12.15 IR data for uracils in the solid phase

Uracil [solid phase]	i.p.(C=O) ₂ str.	$o.p.(C=O)_2$ str.	$[i.p.(C=O)_2 \text{ str.}]-[o.p.(C=O)_2 \text{ str.}]$
5-Fluoro	1710	1661	49
5-Amino	1750	1670	80
5-Methyl	1745	1675	70
5-Bromo	1704	1680	24
5-Chloro	1718	1695	23
5-Nitro	1719	1695	24
5-Acetyl	1730	1704	26
6-Methyl	1720	1685	35
1,3-Dimethyl*	1733	1699	34
1,3-Dimethyl	1710	1658	52
1,3-Dimethyl-5-	1709	1659	50
(morpholine carbonyl)			
1,3-Dimethyl-5-nitro	1720	1668	52
1,6-Dimethyl-3-(p-chlorophenyl)-5-bromo	1700	1648	52
1,3-bis(2-Amino-ethyl-2HCl)	1701	1659	42
1,3,5-Trimethyl	1701	1667	34
1,3,6-Trimethyl	1689	1652	37
Range	1689–1750	1652–1704	23–80

^{*} Vapor phase

TABLE 12.16 IR vapor-phase data and assignments for imides

	$i.p.(C=O)_2$ str.+								A[i.p.(C=O) ₂]/
Compound	+o.p.(C=O) ₂ str.	A	N-H str.	Α	i.p.(C=O) ₂ str.	A	o.p.(C=O) ₂ str.	A	$A[o.p.(C=O)_2]/$
Diacetamide			3438	0.031	1738	0.941	1749	1.24	0.76
N-phenyldibenzamide	3485	0.011			1801	0.101	1702	0.84	0.08
Succinimide			3458	0.055	1820	0.089	1772	1.24	0.07
N-(2,6-xylyl)succinimide	3522	0.011			1790	0.041	1741	1.24	0.03
4-Cyclohexene-1,2-di-carboximide			3455	0.101	1799	0.201	1759	1.25	0.16
4-Methyl-N-(3',3',3'-trifluoromethyl-phenyl)- 4-cyclohexene-1,2-dicarboximide	3518	0.011			1795	0.051	1735	1.25	0.04
Maleimide			3490	0.135			1755	1.24	
N-ethylmaleimide	3499	0.011			1820	0.019	1735	1.23	0.02
N-benzylmaleimide	3500	0.011			1810	0.021	1735	1.23	0.02
N-phenylmaleimide	3510	0.015					1739	1.23	****
N-(4-iodophenyl)maleimide	3502	0.011			1795	0.091	1738	1.22	0.07
N-(3-chloro-4-methyl)phenylmaleimide	3504	0.011			1795	0.011	1738	1.23	0.01
N-(4-metoxyphenyl)maleimide	3504	0.011					1737	1.23	0.01
N-(p-tolyl)maleimide	3510	0.011					1740	1.23	
N-(4-isopropylphenyl)maleimide	3504	0.011			1790	0.031	1735	1.24	0.03
N-(1-naphthyl)maleimide	3509	0.011			1790	0.031	1740	1.24	0.03
N-(2-chlorophenyl)maleimide	3518	0.011					1742	1.24	0.03
N-(3,4-dimethoxyphenethyl)maleimide	3495	0.011			~1780	0.011	1730	1.23	0.01
N-[bis(3,5-trifluoromethyl)]phenyl]maleimide	3510	0.005					1743	0.731	
N,N'-m-phenyldimaleimide	3504	0.011			1795	0.031	1739	1.24	0.03
N-[-(dimethylamino)-o-tolyl]maleimide	3502	0.011			1880	0.026	1738	1.23	0.2
N-[(4-Chloro-2-trifluoromethyl)maleimide	3520	0.011			1785	0.101	1745	1.22	0.08
N-4-(dimethylamino)phenyl]maleimide	3508	0.011			1798	0.031	1739	1.23	0.03
N-(2,6-diisopropylphenyl)maleimide	3498	0.011					1731	1.24	
3,3-dimethylglutarimide			3415	0.093			1745	1.24	
Phthalimide			3479	0.111	1795	0.169	1766	1.23	0.14
4-Nitrophthalimide	3558	0.011	3470	0.281	1800	0.401	1769	1.23	0.33
3-Nitrophthalimide	3550	0.011	3470	0.205	1798	0.295	1768	1.23	0.24
3-Aminophthalimide			3450	0.141	1785	0.365	1745	1.24	0.29
	[a.NH ₂ str.] [3520]	[A] [0.0 4 9]	[s.NH ₂ str.) [3402]	[A] [0.075]					¥.=-
N-methylphthalimide	3510	0.011	•		1785	0.111	1739	1.22	0.09
N-[(dimethylamino)methyl]phthalimide	3475	0.111			1771	0.201	1735	1.24	0.16
N-(2-bromoethyl)phthalimide	3509	0.021			1789	0.281	1739	1.23	0.23

N-(2-chloroethyl)phthalimide	3510	0.011			1787	0.162	1740	1.222	0.13
N-(3-bromopropyl)phthalimide	3502	0.011			1788	0.171	1734	1.24	0.14
N-(3-chloro-2-hydroxypropyl)Phthalimide	3510	0.011			1785	0.151	1735	1.24	0.12
N-(2,5-dichlorophenyl)phthalimide	3524	0.011			1800	0.151	1746	1.22	0.12
N-(3-chloro-o-tolyl)phthalimide	3518	0.011			1795	0.121	1735	1.22	0.11
N-[[(3,4-methylenedioxy)benzylidene]amino]-	3522	0.011			1791	0.111	1740	1.21	0.09
phthalimide									
N-(2,6-dimethylphenyl)phthalimide	3502	0.011			1761	0.129	1745	1.22	0.11
N-[(5-bromo-2-hydroxybenzylidene)	3539	0.011			1789	0.201	1759	1.22	0.16
amino]phthalimide	[OH:N=C]	[A]							
-1	[3475]	[0.101]							
2-Phthalimidoglutaric anhydride	3478	0.011			masked		1745	0.245	
,					[Anhydride]	[A]	[Anhydride]	[A]	
					[1871]	[0.135]	[1799]	[1.23]	
N-2-propynylphthalimide	3510	0.011			1789	0.162	1741	1.24	0.13
, , ,	[CC-H str.]	[A]	[a',CCH bend]	[[A]	a",CCH bend	[A]			
	[3330]	[0.111]	[669]	[0.152]	[629]	[0.138]			
	[3310]	0.031							
Hydantoin			3495(0.074)		1826(0.133)		1785(1.245)		
1-Methylhydantoin	3564	0.011	3482	0.085	1815	0.221	1775	1.24	0.18
5,5-Dimethylhydantoin			3490	0.121	1811	0.231	1775	1.24	0.19
5,5-Dimethylhydantoin (solid phase)			3210(0.312)		1779(0.540)		1744(1.460)		
							1716(1.460)		
5-Methyl-5-propylhydantoin	3570	0.011	3490	0.241	1806	0.611	1775	1.21	0.55
5-Methyl-5-propylhydantoin (solid phase)			3215(0.271)		1761(0.415)		1707(1.170)		
5-Methyl-5-isopropylhydantoin	3570	0.011	3490	0.241	1805	0.682	1771	1.23	0.55
5-Methyl-5-isopropylhydantoin (solid phase)			3205(0.530)		1770(0.873)		1712(1.300)		
N-[(4,4-dimethyl-2,5-dioxoimidazolidinyl)-	[N-H:O=O str.]	[A]	3482	0.081	1810	0.201	1779	1.25	0.16
methyl]anthranilic acid, methyl ester									
	[3395]	0.075							
	[1719 ester]	0.501							
1,3-Diphenyl-5-octyl-s-triazine- (1H,3H,5H)-trione	3459	0.011			1766	0.161	1720	1.21	0.13
1-Benzyl-3,5-diallyl-s-triazine-2,4,6- (1H,3H,5H)-trione	3470	0.05					1711	1.24	
Triallyl-s-triazine-2,4,6-(1H,3H,5H)-trione	3470	0.05					1710	1.24	

TABLE 12.17 IR data for the in-phase and out-of-phase stretching frequencies of 4-bromobutyl phthalimide in $CHCl_3/CCl_4$ solutions

N-(4-bromobutyl)phthalimide [1% solutions] Mole % CHCl ₃ /CCl ₄	i.p.(C=O) ₂ str. cm ⁻¹	o.p.(C=O) ₂ str. cm ⁻¹	[ip.(C=O) ₂ str.]-[o.p.(C=O) ₂ str.] cm ⁻¹
0	1773.8	1718.7	55.2
26.53	1773.1	1716.9	56.2
52	1772.5	1715.6	56.9
70.65	1772.3	1714.2	58.1
100	1772.2	1713	59.2
delta cm ⁻¹	-1.6	-5.7	4

TABLE 12.18 IR data and assignments for hydantoins in the vapor and solid phases

Hydantoin	NH str. cm ⁻¹	A [NH str.]	i.p.(C=O) ₂ str.	o.p.(C=O) ₂ str. cm ⁻¹	A[i.p.(C=O) ₂ str.]	A[o.p.(C=O) ₂ str.]	A[i.p.(C=O) ₂ str.] /A[o.p.(C=O) ₂ str.]	{i.p.(C=O) ₂ str.}- -[o.p.(C=O) ₂ str. cm ⁻¹
1,3,5,5-H,H,H,H	[3495]	[0.082]	[1825]	[1785]	[0.13]	[1.27]	[0.10]	[40]
н,н,н,н	3262	0.25	1783	1717	0.705	1.25	0.56	66
	3150	0.26						
H,H,CH3,CH3	3210	0.31	1779	17 44	0.54	1.46	0.37	35
-				1716		1.46		63
H,H,C ₃ H ₇ ,C ₃ H ₇	3200	0.312	1766	1717	0.622	1.3	0.48	49
H,H,C6H ₁₁ ,C6H ₁₁	3180	0.2	1755	1702	0.4	1.07	0.37	53
H,H,CH ₃ ,C ₃ H ₇	3215	0.271	1761	1707	0.415	1.17	0.35	54
H,H,CH ₃ ,C ₃ H ₇	[3485]	[0.234]	[1809]	[1774]	[0.613]	[1.24]	[0.49]	[35]
H,H,CH ₃ ,iso-C ₃ H ₇	3205	0.53	1770	1712	0.873	1.3	0.67	59
H,H,CH ₃ ,iso-C ₃ H ₇	[3485]	[0.224]	[1808]	[1774]	[0.690]	[1.26]	[0.58]	[34]
H,H,CH ₃ ,iso-C ₄ H ₉	3180	0.345	1780	1718	0.65	1.25	0.52	62
H,H,CH ₃ ,iso-C ₄ H ₉	[3485]	[0.210]	[1809]	[1774]	[0.55]	[1.25]	[0.44]	[35]
H,H,CH ₃ ,C6H ₅	3270	0.47	1758	1720	0.64	1.24	0.52	38
	3200	0.52		1709		0.96	0.67	49
H,H,CH ₃ ,p-ClC ₄ H ₄	3250	0.13	1777	1727	0.3	0.9	0.33	50
	3185	0.15		1720		0.8	0.38	57
H,H,C ₃ H ₅ *,C ₃ H ₅ *	3300	0.16	1781	1720	0.19	1.14	0.17	61
	3165	0.08	1761	0.15			0.13	41
C6H ₅ ,C6H ₅ ,H,H			1782	1720	0.23	0.86	0.27	62
C ₂ H ₅ ,CH ₃ ,C6H ₅ ,C6H ₅			1778	1721	0.2	0.95	0.21	57
			1771		0.21	0.22		50
iso-C ₃ H ₇ ,CH ₃ ,C6H ₅ ,C6H ₅			1770	1711	0.49	1	0.49	59
iso-C4H9,CH3,C6H5,C6H5			1774	1720	0.39	1.05	0.37	54
iso-C ₅ H ₁₁ ,CH ₃ ,C6H ₅ ,C6H ₅			1779	1723	0.37	1.19	0.31	56
Range	3150-3300		1755-1783	1702-1744				3566
	[3485–3495] [] Sadtler vp at 280 °C		[1808–1825]	[1774–1785]				[34-40]

^{* =} allyl.

TABLE 12.19 IR data and assignments for tri-allyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione in CHCl₃/CCl₄ solutions

Triallyl-1,3,5-triazine-2,4,6- (1H,3H,5H) trione Mole % CHCl ₃ /CCl ₄	o.p.(C=O) ₃ str. cm ⁻¹	o.p.(CN) ₃ str. cm ⁻¹	C=C str. cm ⁻¹	CH=CH ₂ twist cm ⁻¹	CH=CH ₂ wag cm ⁻¹
0	1698.6	1455.2	1645.4	992	935
10.74	1698.6	1455.5	1645.4	991.8	934.9
15.07	1698.5	1455.8	1645.4	991.7	934.6
26.53	1698.3	1456.2	1645.4	991.7	934.1
52	1696.8	1457.1	1645.4	991.6	931.6
70.65	1696	1457.9	1645.4	991.7	930.4
85.05	1695.8	1458.4	1645.4	991.8	929.9
100	1695.7	1458.6	1645.4	991.8	929.7
delta cm ⁻¹	-2.9	3.4			-5.3

TABLE 12.20 IR data and assignments for tri-allyl-1,3,5- triazine-2,4,6-(1H,3H,5H) trione in various solvents

Triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione 1 wt./vol. % solutions	o.p. $(C=O)_3$ str. cm ⁻¹	o.p.(C=O) ₃ : HO str. cm ⁻¹	AN	
Hexane	1703.2		0	
Diethyl ether	1702.3		3.9	
Methyl t-butyl ether	1701.6		3.7	
Toluene	1698.7			
Carbon tetrachloride	1698.6		8.6	
Carbon disulfide	1698.2		0.0	
1,2-Dichlorobenzene	1697.1		8.2	
Acetonitrile	1695.5			
Nitrobenzene	1696		14.8	
Benzonitrile	1694.5			
Methylene chloride	1696.2		20.4	
Nitromethane	1695.9			
t-Butyl alcohol	1703.5	1690.1	29.1	
Chloroform	1695.7		23.1	
Dimethyl sulfoxide	1693.3		19.3	
Isopropyl alcohol	1702.2	1690.4	33.5	
Ethyl alcohol	1702.4	1690.6	37.1	
Methyl alcohol	1701.5	1688	41.3	

References			270
Figures		Tables	
Figure 13-1	271 (268)	Table 13-1	282 (267)
Figure 13-2	272 (268)	Table 13-1a	282 (268)
Figure 13-3	273 (268)	Table 13-2	282 (268)
Figure 13-4	274 (269)	Table 13-3	283 (269)
Figure 13-5	275 (269)	Table 13-4	284 (269)
Figure 13-6	276 (269)	Table 13-5	285 (270)
Figure 13-7	277 (270)	Table 13-6	286 (270)
Figure 13-8	278 (270)		
Figure 13-9	279 (270)		
Figure 13-10	280 (270)		
Figure 13-11	281 (270)		

^{*}Numbers in parentheses indicate in-text page reference.

Aldehydes are easily oxidized to the corresponding carboxylic acid. Therefore, the reader is cautioned to look for the presence of carboxylic acid impurities when interpreting the IR or Raman spectra of aldehydes. Several published spectra of aldehydes contain acid impurity, and the impurity is not marked on the IR spectrum.

Aldehydes contain the O=C-H group; the empirical structure for the aliphatic forms is R-C(=O)H, for the conjugated form it is C=C-C(=O)H, and for the aromatic form it is $C_6H_5C(=O)H$. Characteristic vibrations of the aldehyde group are:

- a) C=O stretching (IR, strong);
- b) the first overtone of C=O stretching (IR very weak);
- c) C-H bending (IR, medium); and
- d) C-H stretching in Fermi resonance with C-H bending (IR, weak-medium bands).

Table 13.1 compares IR data and assignments for some nonconjugated aldehydes recorded in different physical phases. In all cases the ν C=O frequency occurs at higher frequency in the vapor than in solution or neat phase. In the neat phase ν C=O for the compounds of form R-C(=O)H exhibit ν C=O in the range 1715–1731 cm⁻¹. Substitution of halogen atoms raises the ν C=O frequencies. For example, in CCl₄ solution ν C=O occurs at 1730, 1748, and 1768 cm⁻¹ for the Cl, Cl₂, and Cl₃ analogs of acetaldehyde, respectively (1). In the vapor phase, ν C=O occurs at 1760, 1778, and 1788 cm⁻¹ for the Br₃, Cl₃ and CF₃ analogs of acetaldehyde, respectively (2,3). Therefore, these data show that ν C=O for aldehydes increases

in the order of Br, Cl, and F substitution. The inductive power of the halogen atom also increases in this same order.

The aldehydic in-plane (O=C-H plane) bending mode occurs in the region 1350–1400 cm⁻¹, and its first overtone ($2\delta CH$) in Fermi resonance with $\nu C-H$ occurs in the regions 2800–2860 cm⁻¹ and 2680–2722 cm⁻¹. Usually the higher frequency band has more intensity than the lower frequency band in the Fermi resonance doublet. However, sometimes the two bands have nearly equal or equal intensity. Where both bands of the Fermi doublet have equal intensity, both bands result from equal mixtures of $\nu C-H$ and $2\delta C-H$. It is not theoretically correct to assign the stronger of the two bands to only the $\nu C-H$ fundamental.

Trichloroacetaldehyde does form a hydrate, and in its hydrate form it is no longer an aldehyde. It exists as a dihydroxide, CCl₃CH(OH)₂.

Table 13.1a list Raman data and assignments for several aldehydes. The Raman data were taken from Reference (4), and the assignments were made by Nyquist. Data in the parentheses indicate the relative Raman band intensities and p is polarized. These data show that the relative Raman band intensity for ν C=O is less than that for the band intensities for ν C-H and 2δ CH in Fermi resonance.

Acrolein is a conjugated aldehyde, $CH_2=CH-C(=O)H$ and the Raman bands at $1688 \, \mathrm{cm}^{-1}$ and $1618 \, \mathrm{cm}^{-1}$ are assigned to $\nu C=O$ and $\nu C=C$, respectively. Benzaldehyde, $C_6H_5C(=O)H$, is also conjugated, and its $\nu C=O$ mode occurs at $1701 \, \mathrm{cm}^{-1}$ in the condensed phase. In the case of salicylaldehyde, or 2-hydroxybenzaldehyde, the OH group is intramolecularly hydrogen bonded to the C=O group, and its $\nu C=O$ mode occurs at $1633 \, \mathrm{cm}^{-1}$ in the condensed phase.

Table 13.2 lists IR data for 4-X-benzaldehydes in the vapor, CCl_4 , and $CHCl_3$ solution phases (5). Many of the ν C=O frequencies have been corrected for Fermi resonance (ν C=O in Fermi resonance with 2ν C-H). As shown in Fig. 13.1, the ν C=O frequencies generally decrease as the Hammett σ_p values decrease. This figure shows plots of ν C=O for 4-X-benzaldehydes vs Hammett's σ_p value for the 4-X atom or group. The points on each line correspond to ν C=O frequencies assigned for the 0–100 mol % $CHCl_3/CCl_4$ solutions (5). Figure 13.2 shows plots of ν C=O for 4-X-benzaldehydes corrected for Fermi resonance in CCl_4 solution vs the frequency difference between ν C=O corrected for Fermi resonance in CCl_4 solution minus ν C=O corrected for FR for each of the mole % $CHCl_3/CCl_4$ solutions for each of the 4-X-benzaldehydes (5). These plots again demonstrate the effect of the 4-X substituent upon ν C=O as well as the effect of the solvent system. The mathematical treatment of the experimental data presented here always yields a linear relationship.

Figure 13.3 shows plots of vC=O and an overtone in Fermi resonance and their corrected frequencies vs mole % CHCl₃/CCl₄ for 4-(trifluoromethyl) benzaldehyde. After correction for FR, it can be readily seen that the corrected vC=O and OT frequencies are closer in frequency than their uncorrected observed frequencies. Figure 13.4 shows plots of vC=O and OT in Fermi resonance and their corrected frequencies vs mole % CHCl₃/CCl₄ for 4-bromobenzaldehyde. In this case it is noted that the corrected vC=O and OT frequencies converge at ~45 mol % CHCl₃/CCl₄. Below this point corrected vC=O occurs at higher frequency than corrected OT and above this point corrected vC=O occurs at lower frequency than corrected OT. Without correction for FR, the uncorrected vC=O mode occurs at higher frequency than uncorrected OT. Without correction for FR, both observed bands are some combination of vC=O and OT, which changes as the mole % CHCl₃/CCl₄ changes. Other examples of both types as just discussed are presented by Nyquist *et al.* (5). The general decrease in frequency in these plots is attributed to

the bulk dielectric effect of the solvent system together with intermolecular hydrogen bonding of form $C=O\cdots HCCl_3$.

Table 13.3 lists the unperturbed vC=O frequencies of 4-X-benzaldehydes in various solvent systems (6). The 4-X-benzaldehydes designated with an asterisk (*) list the vC=O frequency corrected for Fermi resonance. The overall vC=O frequency range for 4-X-benzaldehydes is 1664.4–1718.1 cm⁻¹. The highest vC=O frequency is exhibited by 4-nitrobenzaldehyde in hexane and the lowest vC=O frequency is exhibited by 4-(dimethylamino) benzaldehyde in solution in methyl alcohol.

Figure 13.4 shows plots of the vC=O frequency for each of the 4-X-benzaldehydes in a solvent vs the vC=O frequency difference between the vC=O frequency in hexane solution and each of the other solvents. These plots are similar to the plots shown in Fig. 13.2.

Figure 13.5 shows a plot of vC=O for each of the 4-X-benzaldehydes in dimethyl sulfoxide solution vs Hammett's σ_p values. Other plots of vC=O for each of the 4-X-benzaldehydes in each of the other solvents show similar plots with 4-OH, 4-CH₃-O, and 4-CH₃S analogs not correlating as well as the other 4-X analogs.

Figure 13.6 shows a plot of vC=O for 4-(dimethylamino benzaldehyde vs the solvent acceptor number (AN) for each of the solvents. Solvents are listed sequentially 1 through 17 starting with hexane as 1 and 17 for methyl alcohol. Two essentially linear relationships are noted in this figure. The plot 12, 15, 16, and 17 represents $vC=O\cdots HOR$ frequencies for tertbutyl alcohol, isopropyl alcohol, ethyl alcohol, and methyl alcohol, respectively. The 4-(dimethylamino) benzaldehyde would be expected to form the strongest $C=O\cdots HOR$ bond, because the $(CH_3)N$ group is the most basic and the weakest is the case of the 4-NO₂ analog. The lower linear relationship is for vC=O frequencies. Other 4-X-benzaldehydes in these same solvents show similar plots with somewhat more scattered data points (see (6) for other plots). This led to the conclusion that the solute/solvent interactions are complex because the solvent also interacts with certain 4-X groups as well as with the π system of the phenyl group. The AN values give a rough prediction of vC=O and vasym NO_2 , but do not take into account all of the solute/solvent interactions (e.g., steric factors, relative basic sites in the solute, intermolecular hydrogen bonding between solvent molecules vs between solute and solvent molecules).

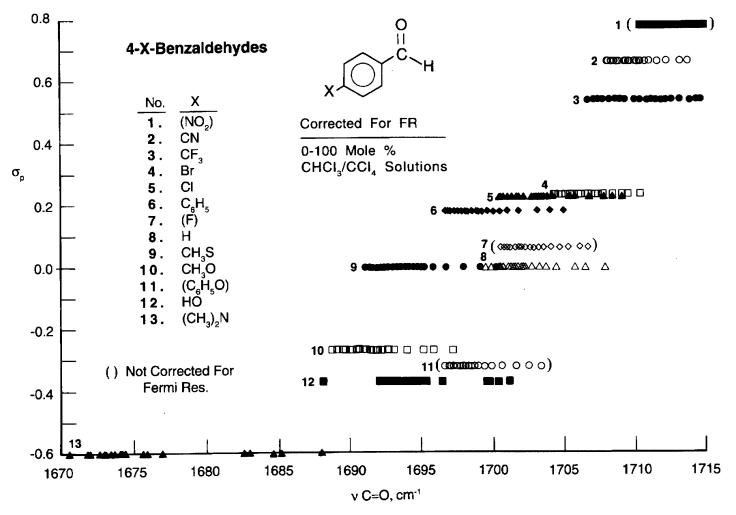
In general, the Hammett σ_p values for the 4-X atom or group for 4-X-benzaldehydes appear to correlate with the ν C=O frequencies. However, due to scattering of the data points in the plots in each of the other solvent systems (6), these values do not appear to take into account intermolecular hydrogen bonding, the relative basicity of the C=O group, and the interaction of the solvent with other sites in the 4-X-benzaldehydes.

The molecular geometry of both solvent and solute molecules, the basic and/or acidic sites in both solute and solvent molecules, the dipolar interactions between solute and solvent molecules, the steric factor of solute molecules, and the concentration of the solute most likely determine the overall solute/solvent interaction. Therefore, parameters such as AN values and Hammett σ_p values can not be expected to exhibit universal linear relationships between IR or Raman group frequencies. However, they do help in predicting the direction of frequency shifts within a class of compounds (6).

Table 13.4 lists the aldehydic C–H in-plane bending mode for 4-X-benzaldehydes in the CCl_4 and $CHCl_3$ solution and in the vapor phase (7). In CCl_4 solution, δC –H occurs in the range 1381.3–1392.1 cm⁻¹ and in $CHCl_3$ solution in the range 1382.9–1394.3 cm⁻¹ for the 4-X-benzaldehydes. The δC –H frequencies are higher by 1.5 to 4.1 cm⁻¹ in $CHCl_3$ solution. It is well

known that the aldehydic CH stretching mode, vCH, and the first overtone of the aldehydic CH in-plane bending mode, 2δ CH, are in Fermi resonance (8–12). Because δ CH frequencies are dependent upon the solvent system, one might expect that the amount of Fermi resonance interaction between vC-H and 2δ CH would also be dependent upon the solvent system. Table 13.5 lists the δ CH, calculated 2δ CH, and 2δ CH frequencies corrected for Fermi resonance in both CCl_4 and $CHCl_3$ solutions. The agreement between the calculated and corrected 2δ CH frequencies varies between \sim 0.4 to 15 cm⁻¹.

Table 13.6 lists IR data and assignments for the perturbed and unperturbed vC-H frequencies for the 4-X-benzaldehydes (7). The unperturbed vC-H frequencies for 4-X-benzaldehydes in CCl_4 solution occur in the range 2768.7–2789.7 cm⁻¹ and in $CHCl_3$ solution in the range 2776.6–2808.9 cm⁻¹.


Figure 13.7 shows plots of half of the Fermi doublet for each of the 4-X-benzaldehydes in the range $2726-2746\,\mathrm{cm^{-1}}$ vs mole % $\mathrm{CHCl_3/CCl_4}$ and Figure 13.8 show plots of half of the Fermi doublet in the range $2805-2845\,\mathrm{cm^{-1}}$ vs mole % $\mathrm{CHCl_3/CCl_4}$. Figure 13.9 shows plots of unperturbed $v\mathrm{CH}$ for each of the 4-X-benzaldehydes vs mole % $\mathrm{CHCl_3/CCl_4}$. These plots show that the Fermi doublet and the unperturbed $v\mathrm{CH}$ frequencies increase in frequency as the mole % $\mathrm{CHC_3/CCl_4}$ is increased. However, the $v\mathrm{C-H}$ or $2\delta\mathrm{CH}$ frequencies apparently do not correlate with Hammett σ_p values because the plots show that the frequencies do not increase or decrease in the order 1 through 13.

Submaxima are also noted for 4-X-benzaldehydes in the range 2726–2816 cm⁻¹, and these bands are assigned to combination tones.

Benzaldehyde and 4-phenylbenzaldehyde are examples of how the unperturbed ν CH and unperturbed 2δ CH cross over with change in the mole % CHCl₃/CCl₄. In the case of benzaldehyde the crossover is at \sim 55 mol % CHCl₃/CCl₄ and for 4-phenylbenzaldehyde the crossover is at \sim 35 mol % CHCl₃/CCl₄ (see Figures 13.10 and 13.11).

REFERENCES

- 1. Bellamy, L. J. and Williams, R. L. (1958). J. Chem. Soc. London, 3645.
- 2. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, Philadelphia: Sadtler Research Laboratories, Div. of Bio-Rad Inc.
- 3. Lin-Vien, D., Colthup, N. B., Fately, W. G., and Grasselli, J. G. (1991). The Handbook of Infrared and Raman Characteristic Frequencies or Organic Molecules, Boston: Academic Press, Inc.
- 4. Schrader, B. (1989). Raman/Infrared Atlas of Organic Compounds, 2nd ed., Weinheim, Germany: VCH.
- 5. Nyquist, R. A., Settineri, S. E., and Luoma, D. A. (1991). Appl. Spectrosc., 45, 1641.
- 6. Nyquist, R. A. (1992). Appl. Spectrosc., 46, 306.
- 7. Nyquist, R. A. (1992). Appl. Spectrosc., 46, 293.
- 8. Pozefsky, A. and Coggeshall, N. D. (1951). Anal. Chem., 23, 1611.
- 9. Pinchas, S. (1955). Anal. Chem., 27, 2.
- 10. Saier, E. L., Coussins, L. R., and Basillia, M. R. (1962). J. Phys. Chem., 66, 232.
- 11. Saier, E. L., Cousins, L. R., and Basillia, M. R. (1962). Anal. Chem., 34, 824.
- 12. Rock, S. L. and Hammaker, R. M. (1971). Spectrochim. Acta, 27, 1899.

FIGURE 13.1 Plots of ν C=O corrected for Fermi resonance for each of the 4-X-benzaldehydes vs σ_p for the 4-X atom or group. The points on each line correspond to ν C=O frequencies for 0–100% CHCl₃/CCl₄ solutions.

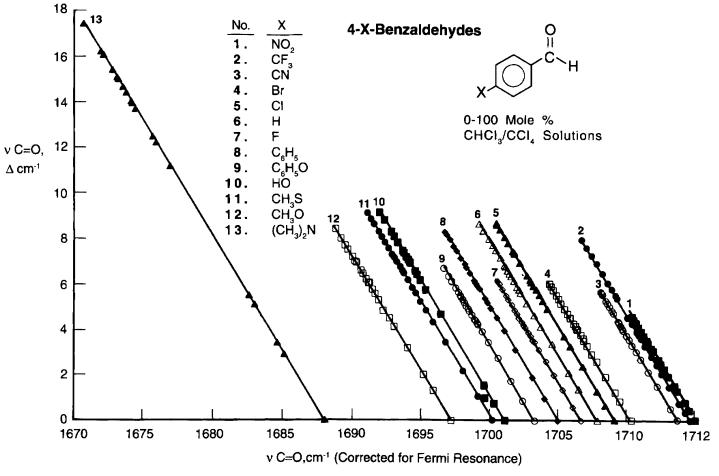


FIGURE 13.2 Plots of vC=0 corrected for Fermi resonance in CCl₄ solution vs the frequency difference between (vC=0 corrected for FR in CCl₄ solution minus vC=0 corrected for FR for each of the mole % CHCl₃/CCl₄ solutions) for each of the 4-X-benzaldehydes.

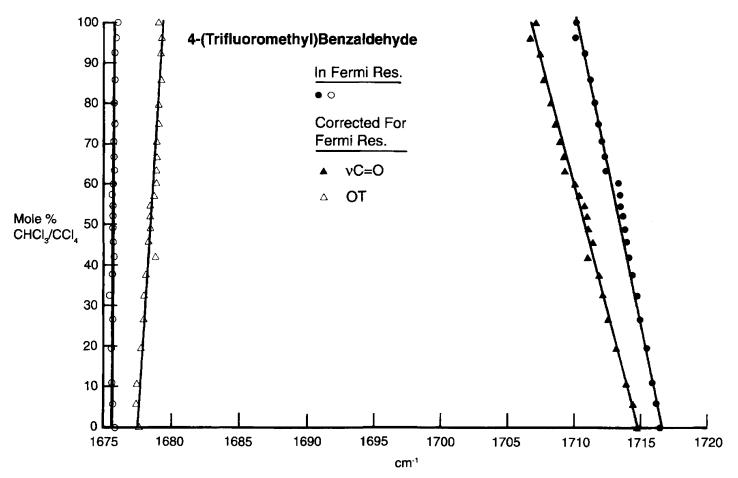


FIGURE 13.3 Plots of vC=O and an overtone in Fermi resonance and their corrected frequencies vs mole % CHCl₃/CCl₄ for 4-(trifluoromethyl) benzaldehyde.

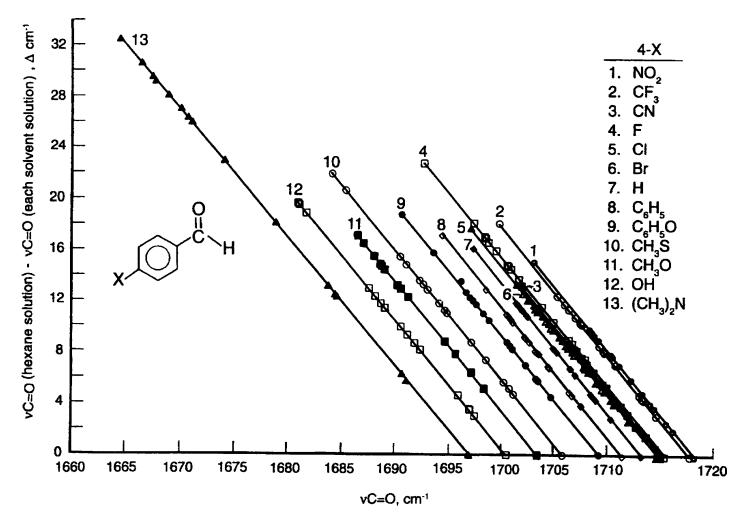


FIGURE 13.4 Plots of the ν C=O frequency for each of the 4-X-benzaldehydes in a solvent vs the ν C=O frequency difference between the ν C=O frequency in hexane solution and the ν C=O frequency in each of the other solvents used in the study.

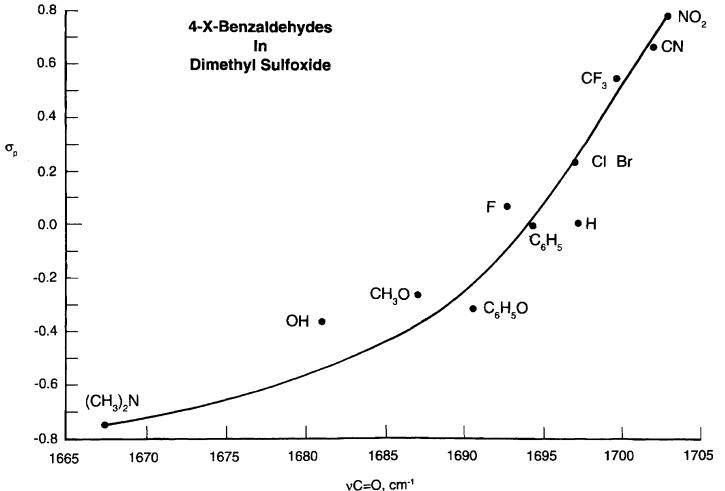


FIGURE 13.5 A plot of ν C=O vs Hammett σ_p for each of the 4-X-benzaldehydes in dimethyl sulfoxide solution.

4-(Dimethylamino) Benzaldehyde

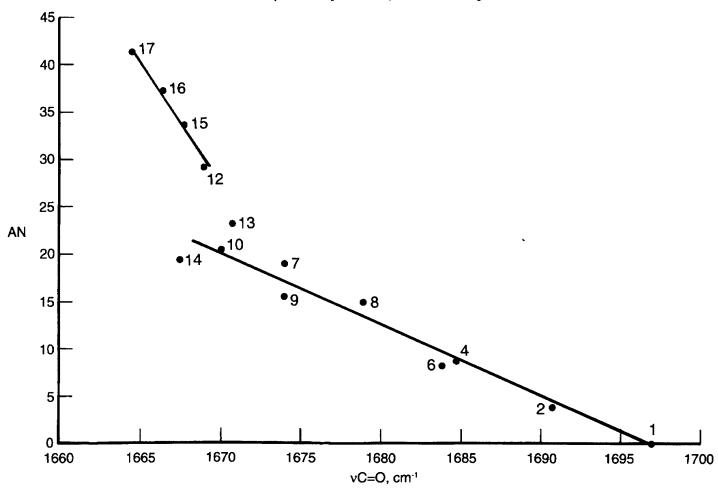


FIGURE 13.6 A plot of νC=O for 4-(dimethylamino) benzaldehyde vs the solvent acceptor number (AN) for each of the solvents.

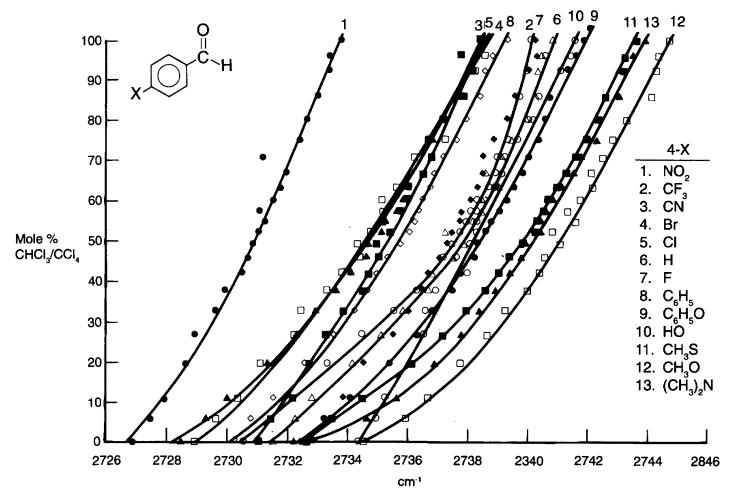


FIGURE 13.7 Plots of half of the Fermi doublet for each of the 4-X-benzaldehydes in the range 2726–2746 cm⁻¹ vs mol % CHCl₃/CCl₄.

FIGURE 13.8 Plots of half of the Fermi doublet for each of the 4-X-benzaldehydes in the range 2805–2845 cm⁻¹ vs mole % CHCl₃/CCl₄.

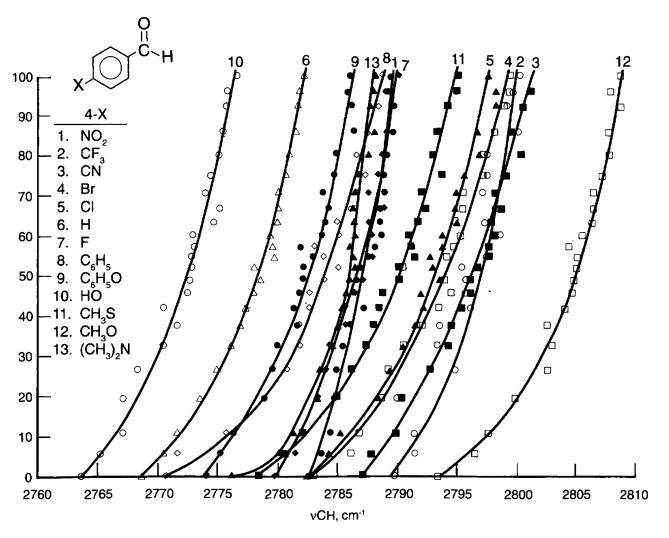


FIGURE 13.9 Plots of unperturbed vCH for each of the 4-X-benzaldehydes vs mole % CHCl₃/CCl₄.

FIGURE 13.10 Plots of νCH and 2δCH in Fermi resonance and νCH and δCH corrected for FR for benzaldehyde vs mole % CHCl₃/CCl₄.

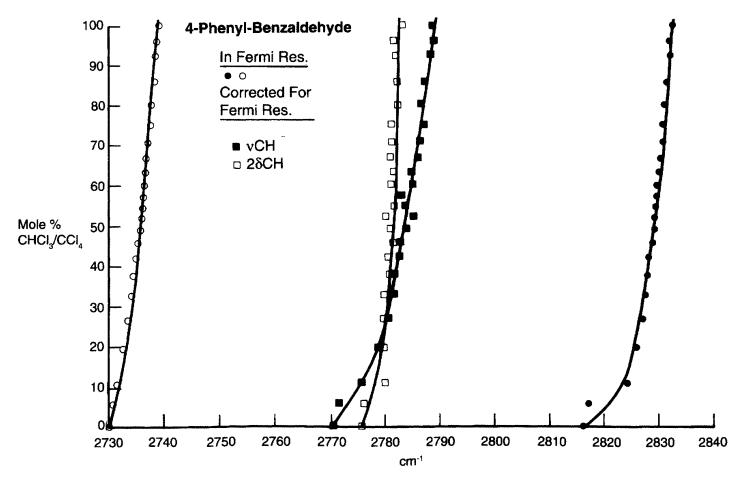


FIGURE 13.11 Plots of νCH and 2δCH in Fermi resonance and νCH and δCH corrected for FR for 4-phenylbenzaldehyde vs mole % CHCl₃/CCl₄.

TABLE 13.1 A comparison of IR data of nonconjugated aldehydes in different phases

Aldehyde	2(C=O str.) vapor cm ⁻¹	C=O str. vapor cm ⁻¹	C=O str. CCl ₄ soln. cm ⁻¹	2(C=O str.) neat cm ⁻¹	C=O str. neat cm ⁻¹	CH str. in FR. neat cm ⁻¹	2(CH bend) in FR. neat cm ⁻¹	CH bend neat cm ⁻¹
Butyr				3430	1721	2820	2720	1390
Isobutyr				3430	1721	2810	2710	1397
3-Cyclohexenyl	3462	1741		3420	1731	2830	2700	1392
Phenethyl	3452	1743		3410	1715	2810	2722	1400
Chloroacet			1730*1					
Dichloroacet			1748* ¹			vapor	vapor	vapor
Trifluoroacet		1788						
Trichloroacet		1778	1768* ¹			2859	2700	1365
Tribromoacet	3501	1760				2841	2680	1352

^{*1} See Reference 1.

TABLE 13.1A Raman data and assignments for aldehydes

Aldehyde	C=O str.	C-H str. in FR.	2(delta-C-H) in F.R.	delta-C–H	gama-C—H	C=C str.
Propion*	1723(7,p)	2830(9,p)	2718(9,p)	1337(1,p)	849(11,p)	
Isobutyr*	1730(5,p)	2813(5,p)	2722(9,p)		798(14,p)	
Hexanal*	1723(10,p)	•	2723(15,p)	1303(7)	891(7,p)	
Heptanal*	1723(9,p)		2723(14,p)	1303(7)	895(5,p)	
Bromal	1744(10,p)	2850(7,p)	•	1353(2,p)	785(9,p)	
Acrolein*	1688(42,p)	2812(3,p)		1359(32,p)	-	1618(22,p)
Benz*	1701	2815	2732			
Salicyl*	1633(22,P)					

^{*}Reference 4.

TABLE 13.2 IR data and assignments for 4-X-benzaldehydes in the vapor and CHCl₃ and CCl₄ solution

4-X-Benzaldehyde x-Group	C=O str. [vapor] cm ⁻¹ (A)	$C=O \text{ str.}$ $[CCl_4]$ $cm^{-1}(A)$	C=O str. [CHCl ₃] cm ⁻¹ (A)	[vapor]- [CCl ₄] cm ⁻¹	[vapor]- [CHCl ₃] cm ⁻¹	[CCl ₄]- [CHCl ₃] cm ⁻¹
NO ₂	1728(1.289)	1715.0(0.261)	1710.4(0.417)	13	17.6	5.4
CN		1713.7*	1708.1*			
CF ₃		1714.6*	1707.1*			
Br	1720(1.250)	1710.4	1704.3*	19.6	15.7	6.1
Cl	1722(1.250)	1709.1*	1700.5*	12.9	21.5	8.6
C_6H_5		1705.0*	1696.7*			
F	1719(1.230)	1706.7(0.862)	1700.6(0.808)	12.3	18.4	6.1
H		1707.9*	1699.2*			
CH ₃ S		1700.2*	1691.1*			
CH ₃ O	1717(1.240)	1697.2*	1688.8*	19.8	28.2	8.4
НО	1715(1.250)	1701.1*	1688.2*	13.9	26.8	12.9
$(CH_3)_2N$	1711(1.042)	1688.1*	1671.8*	22.9	39.2	16.3

^{*} Corrected for Fermi Res.

TABLE 13.3 The C=O stretching frequency for 4-X-benzaldehydes in various solvents

	4-NO ₂	4-CF ₃ *†	4-CN*†	4-F	4-Cl	4-Br*†	4-H
Solvent	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ^{−1}
Hexane	1718.1	1717.8	1715.2	1715.7*	1714.8	1714.8	1713.3
Diethyl ether	1714.1	1713.3	1711.9	1709.7	1710.4	1709.6	1709.1
Methyl t-butyl ether	1713.3	1713.4	1711.3	1706.4	1709.7	1708.1	1708.8
Carbon tetrachloride	1714.4	1714.6	1713.7	1706.7	1710.7	1710.4	1708.5
Carbon disulfide	1712.2	1713.1	1712.8	1705.1	1708.2	1709.5	1706.6
Benzene	1711.1	1710.7	1709.6	1703.9	1706.7	1707.8	1705.2
Acetonitrile	1709.2	1707.6	1707.6	1701.6	1703.9	1703.6	1702.5
Nitrobenzene	1708.6	1705.4	1707.1	1700.9	1703.1	1704.8	1702.1
Benzonitrile	1708.4	1707.6	1706.9	1700.7	1701.4	1703.3	1701.8
Methylene chloride	1710.3	1707.5	1708.7	1698.7*	1703.6	1704.3	1702.4
Nitromethane	1708.5	1706.4	1707.1	1698.5*	1702.6	1702.1	1701.5
t-Butyl alcohol	1716.2	1709.6	1707.9	1697.3*	1712.1	1706.2	1710.4
Chloroform	1710.4	1717.1	1708.1	1700.6	1703.4	1704.3	1701.9
Dimethyl sulfoxide	1703.1	1699.7	1702.1	1697.7	1697.1	1697.1	1697.2
Isopropyl alcohol	1716.2	1709.7	1709.9	1698.4*	1709.1	1706.9	1708.6
Ethyl alcohol	1715.6	1709.3	1708.7	1699.4*	1705.6	1706.4	1707.1
Methyl alcohol	1708.8	1706.1	1707.2	1697.5*	1704.6	1705.1	1705.1
Tetrahydrofuran	1709.9	1710.4	2.02	1704.8	1705.8	1707.4	1705.1
1,2-Dichlorobenzene	1703.7	1708.8		1702.7	1705.8	1705.4	1703.9
Range	(1718.2–1803.1)	(1717.8-1699.7)	(1715.2-1702.1)	(1715.4–1692.7)	(1714.8–1697.1)	(1714.8–1697.1)	(1713.3–1697.2
80	(1110)2 100311)	(111110 103711)	(112312 170211)	(1/13:1 10/2:1)	(111110 103111)	(1.17.0 1037.17)	(1113.3 1031.2
	4-C ₆ H ₅	4-C ₆ H ₅ O	4-CH ₃ S	4-CH ₃ O*†	4-OH	4-N(CH ₃) ₂ *†	
Hexane	1711.4	1709.3	1705.9	1703.5		1696.9	
Diethyl ether	1707.6	1704.7	1700.8	1698.3	1696.9	1690.7	
Methyl t-butyl ether	1706.7	1703.5	1701.2	1697.1	1697.4	1691.1	
Carbon tetrachloride	1706.5	1703.4	1700.2	1695.6	1700.5	1684.6	
Carbon disulfide	1704.6	1701.1	1698.5	1694.7	1697.1	1684.4	
Benzene	1703.5	1700.7		1691.2	1695.9	1683.8	
Acetonitrile	1701.1	1697.5	1694.1	1690.6	1689.1	1674.1	
Nitrobenzene	1700.8	1697.3	1692.6	1690.6	1689.1	1678.9	
Benzonitrile	1700.8	1697.3	1692.3	1690.4	1688.2	1674.1	
Methylene chloride	1701.1	1697.1	1693.1	1690.3	1689.1	1670.1	
Nitromethane	1700.8	1696.2	1694.7	1689.1	1688.8	1671.1	
t-Butyl alcohol	1698.6	1693.5	1685.3	1686.4	1681.7	1668.9	
Chloroform	1700.5	1696.6	1691.1	1688.8	1687.6	1670.6	
Dimethyl sulfoxide	1694.3	1690.6		1687.1	1681.1	1667.4	
Isopropyl alcohol	1702.4	1702.3	1685.3	1688.1	1680.9	1667.7	
Ethyl alcohol	1704.5	1701.1	1684.1	1688.6	1692.3	1666.4	
Methyl alcohol	1702.6	1698.3	1690.5	1687.1	1690.6	1664.4	
Tetrahydrofuran	1703.4	1700.6	1697.2	1697.8	1691.9	1685.4	
1,2-Dichlorobenzene	1702.3	1696.8	1694.8	1694.4	1691.2	1681.3	
Range	(1711.4–1694.3)	(1709.3-1690.6)	(1705.9–1684.1)	(1703.5–1686.4)	(1696.9–1680.9)	(1696.9–1666.4)	
Overall Range in all	(1711.4–1694.3)	(1107.5-1070.0)	(1105.7-1001.1)	(2103.5-1000.T)	(1090.9-1000.9)	(1090.9-1000. 1)	
solvents							

[†] See the explanatory text on page 269 for discussion of material designated by an asterisk.

TABLE 13.4 The CH bending vibration for 4-X-benzaldehydes in CCl₄ and CHCl₃ solutions and in the vapor phase

4-X-Benzaldehyde X	Vapor cm ⁻¹	l%(wt./vol.) PCCl ₄] cm ⁻¹	l%(wt./vol.) [CHCl ₃] cm ⁻¹	[CHCl ₃]–[CCl ₄]	[vapor]-[CHCl ₃] cm ⁻¹
NO ₂		1382.92	1384.79	1.87	
CF ₃		1386.36	1388.61	2.25	
CN		1381.28	1382.89	1.61	
Br	1387	1383.12			
Cl	1381	1383.6	1385.8	2.23	-4.8
0		1387.35	1390.11	2.76	
F	1386	1385.91	1388.39	2.48	-2.4
C_6H_5		1383.96	1385.45	1.49	
C_6H_5O		1386.52	1388.98	2.46	
OH		1393.46			
CH ₃ S		1387.34	1390.03	2.69	
CH ₃ O		1390.2	1394.31	4.11	
(CH ₃) ₂ N	1385	1392.07	1394.28	2.21	-9.3
Range		(1381.28–1392.07)	(1382.89–1394.28)	(1.49-4.11)	

TABLE 13.5 The overtone of CH bending in Fermi resonance with =CH stretching for 4-X-benzaldehydes corrected for Fermi resonance

4-X-benzaldehydes 1%(wt./vol.)	4-NO ₂ CH bend cm ⁻¹	4-CF ₃ CH bend cm ⁻¹	R-CN CH bend cm ⁻¹	4-Br CH bend cm ⁻¹	4-Cl CH bend cm ⁻¹	4-H CH bend cm ⁻¹	4-F CH bend cm ⁻¹	$C_6 H_5$ CH bend cm^{-1}	C_6H_5O CH bend cm ⁻¹	OH CH bend cm ⁻¹	CH_3S $CH \ bend$ cm^{-1}	CH ₃ O CH bend cm ⁻¹	4-N(CH ₃) ₂ CH bend cm ⁻¹
CCl ₄ CHCl ₃	1382.92 1384.79	1386.36 1388.61	1381.28 1382.89		1383.61 1385.84	1387.35 1390.11	1385.91 1388.39		1386.52 1388.98		1387.34 1390.03	1390.2 1394.31	1392.07 1394.28
delta-CH bend	1.87	2.25	1.61		2.23	2.76	2.48		2.46		2.69	4.11	2.21
[calculated 2(CH bend)]	•												
CCl ₄ CHCl ₃ delta-2(CH bend)	2765.84 2769.58 3.74	2772.72 2777.22 4.5	2762.56 2765.78 3.22	2766.24	2767.22 2771.68 4.46	2774.7 2780.22 5.52	2771.82 2776.78 4.96		2773.04 2777.96 4.92		2774.68 2780.06 5.38	2780.4 2788.62 8.22	
2(CH bend) corrected for Fermi Res.													
CCl₄ CHCl₃ delta-CH bend	2765.47 2771.7	2771.99 2775.96	2774.31 2777.44	2774.08 2775.53	2782.93 2788.78	2779.82 2788.78	2775.08 2779.13	2775.57 2783.4	2781.68 2787.33	2773.1 2780.74	2778.39 2782.08	2781.58 2778.21	2770.98 2777.53
CCl ₄ CHCl ₃	6.23	3.97	3.13	7.84	5.85	8.96	4.05	7.83	5.65	7.64	3.69	-3.37	6.55

TABLE 13.6 IR data and assignments for the observed and corrected for Fermi resonance CH stretching frequencies for 4-X-benzaldehydes in CCl₄ and CHCl₃ solutions

4-X-Benzaldehydes 1% solutions X	obs. =CH str. CCl ₄ cm ⁻¹	obs. =CH str. CHCl ₃ cm ⁻¹	[=CH str. corrected for FR.] CCl ₄ cm ⁻¹	[=CH str. corrected for F.R.] CHCl ₃ cm ⁻¹	obs. =CH str. $[CHCl_3]-[CCl_4]$ cm^{-1}	cor. F.R. [CHCl ₃]–[CCl ₄] cm ⁻¹	[obs.] [cor. F.R.] CCl ₄ cm ⁻¹	[obs.] [cor. FR. CHCl ₃ cm ⁻¹
NO ₂	2821.3	2827.3	2782.7	2789.4	6	6.7	38.6	37.9
CF ₃	2827.3	2836.2	2789.7	2800.3	8.9	10.6	37.6	35.9
CN	2830.4	2838.9	2787.1	2799.9	8.5	12.8	43.3	39
F	2822.1	2829	2779.8	2790.1	6.9	10.3	42.3	38.9
Cl	2828.1	2836.6	2782.9	2799.5	8.5	16.6	45.2	37.1
Н	2813.3	2821.8	2768.7	2782.2	8.5	13.5	44.6	39.6
C_6h_5	2815.9	2832.8	2770.6	2788.8	16.9	18.2	45.3	44
ОН	2806.2	2815.7	2763.6	2776.6	9.5	13	42.6	39.1
C_6H_5O	2823.3	2831.6	2774	2786.1	8.3	12.1	49.3	45.5
CH ₃ S	2824.2	2833.6	2778.4	2795.2	9.4	16.8	45.8	38.4
CH ₃ O	2840.5	2842.3	2793.4	2808.9	1.8	15.5	47.1	33.4
$(CH_3)_2N$	2814.9	2821.8	2776.1	2788.2	6.9	12.1	38.8	33.6

Solute-Solvent Interaction Affected by Steric Factors 285 Inductive, Resonance, and Temperature Effects 296 Other Chemical and Physical Effects 297 Other Conjugated Carbonyl Containing Compounds 294 Chalcones 295 Intramolecular Hydrogen Bonding 294 Cycloalkanones 295 Substituted 1,+Benzoquinones 295 Concentration Effects 295 References 295 Figures Tables 295 Figure 14-1 301 (288) Table 14-1 311 (288) Figure 14-2 302 (290) Table 14-2 312 (288) Figure 14-3 303 (291) Table 14-2 313 (288) Figure 14-4 303 (291) Table 14-3 314 (288) Figure 14-5 304 (295) Table 14-3 315 (289) Figure 14-6 305 (296) Table 14-3a 315 (289) Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-3 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (298) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7 320 (294) Figure 14-13 310 (298) Table 14-18 321 (294) Table 14-11 325 (298) Table 14-11 325 (298) Table 14-11 325 (298) Table 14-16 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-18 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-18 329 (298) Table 14-19 329 (298) Table 14-11 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-18 329 (298) Table 14-19 329 (298) Table 14-11 329 (298) Table 14-18 329 (298) Table 1				
Inductive, Resonance, and Temperature Effects		. ,		288
Other Chemical and Physical Effects Other Conjugated Carbonyl Containing Compounds Chalcones 1294 Intramolecular Hydrogen Bonding Cycloalkanones 295 Substituted 1,4-Benzoquinones 296 Concentration Effects 297 References Tables Figure 14-1 301 (288) Figure 14-2 302 (290) Figure 14-3 303 (290) Figure 14-4 303 (291) Figure 14-5 304 (295) Figure 14-6 305 (296) Figure 14-7 306 (296) Figure 14-8 307 (296) Figure 14-8 307 (296) Figure 14-9 308 (297) Figure 14-10 308 (297) Figure 14-10 308 (297) Figure 14-11 309 (298) Figure 14-12 309 (298) Figure 14-13 310 (298) Figure 14-14 310 (298) Figure 14-15 310 (298) Figure 14-16 305 (296) Figure 14-17 309 (297) Figure 14-18 310 (298) Figure 14-19 309 (298) Figure 14-10 309 (298) Figure 14-10 309 (298) Figure 14-11 310 (298) Figure 14-12 325 (298) Figure 14-13 310 (298) Figure 14-14 327 (296) Figure 14-15 328 (298) Figure 14-16 328 (298) Figure 14-17 329 (298) Figure 14-18 329 (298) Figure 14-16 328 (298) Figure 14-17 329 (298) Figure 14-18 329 (298) Figure 14-19 328 (298) Figure 14-10 328 (298) Figure 14-11 329 (298) Figure 14-12 329 (298) Figure 14-13 329 (298) Figure 14-14 327 (296) Figure 14-15 328 (298) Figure 14-16 328 (298) Figure 14-17 329 (298) Figure 14-18 329 (298)		-		289
Other Conjugated Carbonyl Containing Compounds 294 Chalcones 294 Intramolecular Hydrogen Bonding 294 Cycloalkanones 295 Substituted 1,4-Benzoquinones 295 Concentration Effects 299 References 299 Figures Tables Figure 14-1 301 (288) Table 14-1 311 (288) Figure 14-2 302 (290) Table 14-2 312 (288) Figure 14-3 303 (290) Table 14-2a 313 (288) Figure 14-4 303 (291) Table 14-3a 314 (288) Figure 14-5 304 (295) Table 14-3a 315 (289) Figure 14-6 305 (296) Table 14-3b 315 (290) Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-4 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-12 309 (298) Table 14-7a 320 (294) Figure 14-13 310 (298) Table 14-1		-	Effects	290
Chalcones Intramolecular Hydrogen Bonding Cycloalkanones Substituted 1,4-Benzoquinones Concentration Effects References Figures Tables Tables Figure 14-1 301 (288) Figure 14-2 302 (290) Figure 14-3 303 (290) Figure 14-4 303 (291) Figure 14-5 304 (295) Figure 14-6 305 (296) Figure 14-7 306 (296) Figure 14-8 307 (296) Figure 14-8 307 (296) Figure 14-9 308 (297) Figure 14-10 308 (297) Figure 14-10 308 (297) Figure 14-11 309 (297) Figure 14-12 309 (298) Figure 14-13 310 (298) Figure 14-13 310 (298) Figure 14-14 322 (298) Figure 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298)				291
Intramolecular Hydrogen Bonding		ed Carbonyl Containing	Compounds	
Cycloalkanones Substituted 1,4-Benzoquinones Concentration Effects References Figures Tables Figure 14-1 301 (288) Figure 14-2 302 (290) Figure 14-3 303 (290) Figure 14-4 303 (291) Figure 14-5 304 (295) Figure 14-6 305 (296) Figure 14-7 306 (296) Figure 14-8 307 (296) Figure 14-9 308 (297) Figure 14-10 308 (297) Figure 14-11 309 (298) Figure 14-12 309 (298) Figure 14-13 310 (298) Figure 14-14 309 (298) Figure 14-15 328 (298) Figure 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298)				
Substituted 1,4-Benzoquinones Concentration Effects References Figures Tables Figure 14-1 301 (288) Figure 14-2 302 (290) Figure 14-3 303 (290) Figure 14-4 303 (291) Figure 14-5 304 (295) Figure 14-6 305 (296) Figure 14-7 306 (296) Figure 14-8 307 (296) Figure 14-9 308 (297) Figure 14-10 308 (297) Figure 14-11 309 (298) Figure 14-12 309 (298) Figure 14-13 310 (298) Figure 14-13 310 (298) Figure 14-14 309 (298) Figure 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298)				
Concentration Effects References Tables Figure 14-1 301 (288) Figure 14-2 302 (290) Figure 14-3 303 (290) Figure 14-4 303 (291) Figure 14-5 304 (295) Figure 14-6 305 (296) Figure 14-7 306 (296) Figure 14-8 307 (296) Figure 14-9 308 (297) Figure 14-10 308 (297) Figure 14-11 309 (297) Figure 14-12 309 (298) Figure 14-13 310 (298) Figure 14-14 322 (296) Figure 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-16 328 (298) Table 14-17 329 (298)	•			
References Tables Figures Table 14-1 311 (288) Figure 14-2 302 (290) Table 14-2 312 (288) Figure 14-3 303 (290) Table 14-2a 313 (288) Figure 14-4 303 (291) Table 14-3a 314 (288) Figure 14-5 304 (295) Table 14-3a 315 (289) Figure 14-6 305 (296) Table 14-3b 315 (290) Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-3c 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-5 317 (290) Figure 14-11 309 (297) Table 14-6 318 (291) Figure 14-12 309 (298) Table 14-7 319 (294) Figure 14-13 310 (298) Table 14-7 320 (294) Table 14-13 326 (298) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-14 327 (298) Ta		-		
Figures		effects .		
Figure 14-1 301 (288) Table 14-1 311 (288) Figure 14-2 302 (290) Table 14-2 312 (288) Figure 14-3 303 (290) Table 14-2 313 (288) Figure 14-4 303 (291) Table 14-3 314 (288) Figure 14-5 304 (295) Table 14-3 315 (289) Figure 14-6 305 (296) Table 14-3b 315 (290) Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-4 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7a 320 (294) Figure 14-13 310 (298) Table 14-10 323 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298)	Reterences			299
Figure 14-2 302 (290) Table 14-2 312 (288) Figure 14-3 303 (290) Table 14-2a 313 (288) Figure 14-4 303 (291) Table 14-3 314 (288) Figure 14-5 304 (295) Table 14-3a 315 (289) Figure 14-6 305 (296) Table 14-3b 315 (290) Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-4 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7a 320 (294) Figure 14-13 310 (298) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298)	Figures		Tables	
Figure 14-2 302 (290) Table 14-2 312 (288) Figure 14-3 303 (290) Table 14-2a 313 (288) Figure 14-4 303 (291) Table 14-3 314 (288) Figure 14-5 304 (295) Table 14-3a 315 (289) Figure 14-6 305 (296) Table 14-3b 315 (290) Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-4 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7 320 (294) Figure 14-13 310 (298) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298)	Figure 14-1	301 (288)	Table 14-1	311 (288)
Figure 14-4 303 (291) Table 14-3 314 (288) Figure 14-5 304 (295) Table 14-3a 315 (289) Figure 14-6 305 (296) Table 14-3b 315 (290) Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-4 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7 320 (294) Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298)	~	302 (290)	Table 14-2	312 (288)
Figure 14-5 304 (295) Table 14-3a 315 (289) Figure 14-6 305 (296) Table 14-3b 315 (290) Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-4 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7 320 (294) Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298)	Figure 14-3	303 (290)	Table 14-2a	313 (288)
Figure 14-6 305 (296) Table 14-3b 315 (290) Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-4 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7 320 (294) Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298)	Figure 14-4	303 (291)	Table 14-3	314 (288)
Figure 14-7 306 (296) Table 14-3c 316 (290) Figure 14-8 307 (296) Table 14-4 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7 320 (294) Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298)	Figure 14-5	304 (295)	Table 14-3a	315 (289)
Figure 14-8 307 (296) Table 14-4 316 (290) Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7 320 (294) Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298)	Figure 14-6	305 (296)	Table 14-3b	315 (290)
Figure 14-9 308 (297) Table 14-5 317 (290) Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7a 320 (294) Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298)	Figure 14-7	306 (296)	Table 14-3c	316 (290)
Figure 14-10 308 (297) Table 14-6 318 (291) Figure 14-11 309 (297) Table 14-7 319 (294) Figure 14-12 309 (298) Table 14-7a 320 (294) Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298)	Figure 14-8	307 (296)	Table 14-4	316 (290)
Figure 14-11 309 (297) Figure 14-12 309 (298) Figure 14-13 310 (298) Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-17 329 (298)	Figure 14-9	308 (297)	Table 14-5	317 (290)
Figure 14-12 309 (298) Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298)	Figure 14-10	308 (297)	Table 14-6	318 (291)
Figure 14-13 310 (298) Table 14-8 321 (294) Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-18 329 (298)	Figure 14-11	309 (297)	Table 14-7	319 (294)
Table 14-9 322 (295) Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-18 329 (298)	Figure 14-12	309 (298)	Table 14-7a	320 (294)
Table 14-10 323 (295) Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-17 329 (298) Table 14-18 329 (298)	Figure 14-13	310 (298)	Table 14-8	321 (294)
Table 14-11 324 (296) Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-18 329 (298)			Table 14-9	322 (295)
Table 14-12 325 (298) Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-18 329 (298)			Table 14-10	323 (295)
Table 14-13 326 (298) Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-18 329 (298)			Table 14-11	324 (296)
Table 14-14 327 (298) Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-18 329 (298)			Table 14-12	325 (298)
Table 14-15 328 (298) Table 14-16 328 (298) Table 14-17 329 (298) Table 14-18 329 (298)			Table 14-13	326 (298)
Table 14-16 328 (298) Table 14-17 329 (298) Table 14-18 329 (298)			Table 14-14	327 (298)
Table 14-17 329 (298) Table 14-18 329 (298)			Table 14-15	328 (298)
Table 14-18 329 (298)			Table 14-16	328 (298)
			Table 14-17	329 (298)
Table 14-19 330 (299)			Table 14-18	329 (298)
			Table 14-19	330 (299)

^{*}Numbers in parentheses indicate in-text page reference.

Acetone is the simplest member of the ketone series. Its empirical structure is $CH_3-C(=O)-CH_3$. Table 14.1 lists IR and Raman data for acetone and acetone- d_6 (1,2). The CD_3 frequencies and assignments are listed directly under those for the CH_3 frequencies and assignments. The frequency ratios for CH_3/CD_3 vary between 1.11 and 1.38. The B_1 and B_2 CH_3 rocking mode to CD_3 rocking mode frequency ratios are 1.132 and 1.108, respectively, and this indicates that these two modes are coupled with B_1 and B_2 modes, respectively. These date illustrate that both IR and Raman data and deuterated analogs are required to make detailed assignments of molecular compounds.

SOLVENT-INDUCED FREQUENCY SHIFTS

Hallam has reviewed the literature concerning attempts to develop an accurate quantitative and physical meaningful explanation of solvent-induced stretching frequencies (3). Kirkwood *et al.* (4) and Bauer and Magot (5) related the observed frequency shifts and the dielectric constant ε of the solvent. The (K)irkwood (B)auer (M)agot work resulted in the KBM equation:

$$(v_{\text{vapor}} - v_{\text{solution}}/v_{\text{vapor}} = \Delta v/v = C[(\varepsilon - 1)/(2\varepsilon + 1)]$$

Josien and Fuson refined the equation to include a term based on the index of refraction of the solvent (6). Bellamy *et al.* found that $\Delta v/v$ for any solute plotted vs $(\Delta v/v)$ for any other solvent within a class of compounds produced a linear curve (7). They therefore predicted that group frequency shifts were local association effects between solute and solvent and not dielectric effects. Bellamy *et al.* proposed that v hexane should be substituted for v vapor in the KBM equation in order to negate the effects of phase change (7). Table 14.2 illustrates the application of the KBM equation using IR data for acetone vC=O frequencies in various solvents. Table 14.2 shows that the KBM equation predicts the vC=O mode within -2.1 to +14.3 cm $^{-1}$. The best fit is for acetone in solution with acetonitrile and the worst fit is for acetone in water. In the case of CHCl₃ and the four alcohols, the vC=O frequency differences between the calculated and observed range are between 4.3 and 7.7 cm $^{-1}$. The larger differences here compared to the other solvents are most likely the result of intermolecular hydrogen bonding (C=O···HCCl₃ or C=O···HOR).

Table 14.2a contains the calculated values for A - 1/2A + 1 and X-Y/X where A and Y are equal to 0 to 85 and X equals 85 (see the KBM equation). These two sets of data are plotted in Fig. 14.1. These data show that any set of numbers using the equivalent of the KBM equation or Bellamy's proposal yields a mathematical curve. In particular, the linear plot X-Y vs Y is thus meaningless in predicting $\nu C=0$ frequencies (8). Intermolecular hydrogen bonding and dipolar interaction between solute and solvent as well as dielectric effects must play a role in the $\nu C=0$ frequencies of carbonyl containing compounds. Steric factors, which also play a role between solute-solvent interaction, must also be considered in predicting $\nu C=0$ frequencies in any particular physical phase (see in what follows).

Table 14.3 lists the C=O stretching frequencies for aliphatic ketones in the vapor phase and in 1% wt./vol. in various solvents (9).

In this series of ketones (dimethyl ketone through di-tert-butyl ketone) the steric factor of the alkyl group(s) and the basicity of the carbonyl group both increase. As the steric factor of the alkyl group increases the intermolecular distance between the carbonyl group and a solvent

molecule increases. In the case of intermolecular hydrogen bonding between a solvent and a proton and a carbonyl group, the strength of the hydrogen bond depends upon at least four factors. These are, the basicity of the carbonyl group, the acidity of the solvent proton, the steric factor of the dialkyl groups of the dialkyl ketone, and the steric factor of the atoms or groups of the solvent molecules not involved directly with the intermolecular hydrogen bond.

All of the aliphatic ketones exhibit their vC=O mode at its highest frequency in the vapor phase (1699–1742 cm⁻¹). In solution, the highest vC=O frequencies are exhibited in hexane solution (1690.3–1727.2 cm⁻¹). With the exception of dimethyl ketone (acetone) in hexane, the vC=O frequency for the other dialkyl ketones decreases in frequency with increasing negative values for both σ^* (increasing electron release to the carbonyl group) and E_s (an increasing steric factor of the alkyl group) and the summation of σ^* times the summation of $E_s \cdot 10^{-2}$.

In the case of dimethyl ketone, its ν C=O mode occurs at a higher frequency than ν C=O for methyl ethyl ketone only in the following solvents, tert-butyl alcohol, chloroform, isopropyl alcohol. ethyl alcohol, and methyl alcohol. In these solvents there is intermolecular hydrogen bonding between solute and solvent (C=O···HOR and C=O···HCCl₃). Moreover, in these protic solvents the ν C=O frequency order for methyl ethyl ketone and diethyl ketone is reversed from the sequence that they exhibit when these dialkyl ketones are in the other solvents.

SOLUTE-SOLVENT INTERACTION AFFECTED BY STERIC FACTORS

Table 14.3a shows a comparison of the carbonyl stretching frequency difference for ketones in hexane solution and in each of the other solvents (9). The strength of an intermolecular hydrogen bond (C=O···HOR or C=O···HCCl₃) is proportional to this frequency difference. The larger this frequency difference, the stronger the intermolecular hydrogen bond. Or, in other words, the stronger the intermolecular hydrogen bond between the ketone solute and the protic solvent, the more vC=0 shifts to lower frequency when compared to vC=0 for the same ketone in n-hexane solution. The most acid proton for the alcohol series is that for methyl alcohol, and the least acidic proton is that for tert-butyl alcohol. In addition, the steric factor is the largest for tert-butyl alcohol, and the least for methyl alcohol. The most basic ketone carbonyl group is in the case of di-tert-butyl ketone and the least basic carbonyl group is in the case of dimethyl ketone. Neglecting steric factors, these facts would predict that the strongest intermolecular hydrogen bonds would be formed between methyl alcohol and di-tert-butyl ketone, and the weakest between tert-butyl alcohol, and dimethyl ketone. Study of Table 14.3a shows that the strongest intermolecular hydrogen is actually formed between methyl alcohol and diisopropyl ketone, and the strength of the intermolecular hydrogen bond with diisopropyl ketone decreases in the order methyl alcohol, ethyl alcohol, isopropyl alcohol, and tert-butyl alcohol. The strength of the intermolecular hydrogen bond formed between diisopropyl ketone and chloroform falls between that for tert-butyl alcohol and isopropyl alcohol. In the alcohol series, the strength of the intermolecular hydrogen is also stronger between diisopropyl ketone than between di-tertbutyl ketone. The strength of the intermolecular hydrogen bond is less in the case of ethyl isopropyl ketone compared to diisopropyl ketone, but it also is stronger than in the case of ditert-butyl ketone. These data show that steric factors increase the C=O···H intermolecular

hydrogen bond distance, thus weakening the possible strength of this intermolecular hydrogen bond

The ketone vC=O frequency shifts in nonprotic solvents are also less in the case of di-tert-butyl ketone vs the other dialkyl ketones. Therefore, steric factors of the alkyl groups also play a role in the dielectric effects of the solvent upon the carbonyl group.

Table 14.3b shows a comparison of the carbonyl stretching frequency difference for dialkyl ketones in methyl alcohol and other protic solvents (9). In this case, the strength of the intermolecular hydrogen bond ($C=O\cdots H$) decreases as the number increases. This comparison shows that steric factors also affect the strength of the intermolecular hydrogen bond.

Table 14.3c shows a comparison of the differences in the carbonyl stretching frequencies of dialkyl ketones in hexane solution and in alcohol solution for solute molecules not intermolecularly hydrogen bonded (9). These data show that the frequency difference decreases for these ketones in alcohol solution, progressing in the series methyl alcohol through tert-butyl alcohol. With increased branching on the α -carbon atom of the C-OH group, the intermolecular polar effect due to the alcohol oxygen atom is decreased; thus, there is a lesser polar effect upon dialkyl ketone carbonyl groups surrounded by intermolecularly hydrogen-bonded alcohol molecules progressing in the series methyl alcohol through tert-butyl alcohol. The ν C=O mode decreases in frequency as the polarity of the solvent increases.

Table 14.4 lists data for the C=O stretching frequencies for n-butyrophenone and tert-butyrophenone in 0–100 mol% CHCl₃/CCl₄ solutions (2% wt./vol.). The ν C=O mode for both n-butyrophenone (1691–1682.6 cm⁻¹) and tert-butyrophenone (1678.4–1674.1 cm⁻¹) decreases in frequency as the mole % CHCl₃/CCl₄ is increased from 0–100 cm⁻¹. However, it is noted that the ν C=O frequency for n-tert-butyrophenone decreases in frequency by only one-half as much as that for n-butyrophenone (4.3 cm⁻¹/9 cm⁻¹ = 0.48) in going from solution in CCl₄ to solution in CHCl₃. The C=O group for the tert-butyro analog is more basic than the n-butyro analog, and on this basis one would expect a stronger intermolecular hydrogen bond to be formed between C=O···HCCl₃ for the tert-butyro analog than for the n-butyro analog, and it is noted that this is not the case. The reason for this is that the steric effect of the tert-butyro group prevents the Cl₃CH proton from coming as close in space to the C=O oxygen atom in the case of tert-butyrophenone, which prevents it from forming as strong a C=O···HCCl₃ bond as in the case of the n-butyro analog where the n-butyro group has a lesser steric factor.

Figure 14.2 show a plot of the vC=O frequency for tert-butyrophenone vs the mole % $CHCl_3/CCl_4$. The resulting curve is nonlinear due to the formation of $C=O\cdots HCCl_3$ hydrogen bonds. The general decrease in frequency is due to the dielectric effects of the solvent system. The carbonyl stretching frequencies for n-tert-butyrophenone occur at lower frequencies (1678.4–1674.1 cm⁻¹) compared to those for di-tert-butyl ketone (1685.9–1680.7 cm⁻¹) in 0–100 mol% $CHCl_3/CCl_4$ due to conjugation of the phenyl group with the carbonyl group, which weakens the C=O bond (10).

INDUCTIVE, RESONANCE, AND TEMPERATURE EFFECTS

Table 14.5 list IR data for acetone, α -chloroacetone, acetophenone, and benzophenone in CS₂ solution between \sim 29 and $-100^{\circ}C$ (11). Figure 14.3 shows plots of the carbonyl stretching frequencies for these four compounds vs the temperature of the CS₂ solution in $^{\circ}C$. These plots

show that all of the vC=O modes decrease in frequency as the temperature is lowered from room temperature. Two vC=O frequencies are noted in the case of α -chloroacetone, and both occur at a higher frequency than vC=O for acetone. The inductive effect of an α -Cl atom increases the vC=O frequency, and the inductive effect is independent of spatial orientation. There is a field effect of a Cl atom near in space to the carbonyl oxygen atom, and it also causes the vC=O mode to increase in frequency. Thus, rotational conformer I is assigned to the higher frequency vC=O band, while rotational conformer II is assigned to the lower frequency vC=O band in the case of α -chloroacetone. The concentration of rotational conformer I increases while the concentration of rotational conformer II decreases with decrease in temperature (11).

Substitution of one or two phenyl groups for one or two methyl groups of acetone yields acetophenone (ν C=O, 1689.4 cm⁻¹) and benzophenone (ν C=O, 1663.3 cm⁻¹), respectively. Thus, the first phenyl group causes ν C=O to decrease in frequency by 28.1 cm⁻¹ while the second phenyl group causes ν C=O to decrease in frequency by an additional 26.1 cm⁻¹. The phenyl group(s) is (are) conjugated with the carbonyl group, and it weakens the C=O bond, which causes its ν C=O mode to vibrate at lower frequency.

OTHER CHEMICAL AND PHYSICAL EFFECTS

Table 14.6 shows a comparison of the ν C=O frequencies for 2% wt./vol. ketone in 0–100 mol% (CH₃)₂ SO/CCl₄ solutions. Figure 14.4 shows plots of ν C=O vs mole % (CH₃)₂ SO/CCl₄ for the same six ketones as shown in Table 14.6. All six curves decrease in frequency in a linear manner as mole % (CH₃)₂ SO/CCl₄ is increased from ~30 to 100 mol% (CH₃)₂SO/CCl₄. This is in the order of the increasing polarity of the solvent system. All six ketones appear to be affected in the same manner because the linear portion of the curves is parallel. The ν C=O frequencies decrease in the order acetone, 2,4,6-trimethylacetophenone, 4-nitroacetophenone, acetophenone, 4-methoxyacetophenone, and benzophenone. The effect of conjugation was discussed previously. In the case of 2,4,6-trimethylacetophenone, the carbonyl group and the phenyl group are not coplanar; therefore, the C=O group is not conjugated with the phenyl group. Thus, the C=O group is higher in frequency than that exhibited by acetophenone by 13 cm⁻¹, but lower in frequency than acetone by 14 cm⁻¹. Hammett σ_p values for 4-nitro and 4-methoxy benzophenone cause the ν C=O mode to be higher and lower in frequency, respectively, than ν C=O for acetophenone.

OTHER CONJUGATED CARBONYL CONTAINING COMPOUNDS

It is interesting to consider the possible molecular configurations of conjugated carbonyl containing compounds. Lin-Vien *et al.* (13) have reviewed the published studies of these compounds (14), and they report that a planar compound such as 3-buten-2-one exists in s-trans

and s-cis configurations in CCl_4 solution. These two conformers for 3-buten-2-one are illustrated here:

These two conformers result from 180° rotation of the C=C group about the C^2-C^3 single bond. This notation adequately describes the molecular configurations in the forementioned case (13–15).

In the vapor phase the C=O str. and C=C str. frequencies are assigned at 1715 and $1627\,\mathrm{cm^{-1}}$, respectively (16). The frequency separation between these two modes is $88\,\mathrm{cm^{-1}}$. Corresponding modes for the s-trans isomer are not detected in the vapor phase at elevated temperature. Therefore, 3-butene-2-one exists only as the s-cis conformer at elevated temperature in the vapor phase. The IR bands at 986 and $951\,\mathrm{cm^{-1}}$ confirm the presence of the CH=CH₂ group.

Similarly, a compound such as 3-methyl-3-buten-2-one can also be adequately defined as s-trans and s-cis conformers as illustrated here:

In the vapor phase at elevated temperature the IR bands at $1700\,\mathrm{cm^{-1}}$ and $1639\,\mathrm{cm^{-1}}$ are assigned to C=O stretching and C=C stretching, respectively (16). The frequency separation between these two modes is $61\,\mathrm{cm^{-1}}$. Therefore, 3-methyl-3-buten-2-one exists only as the s-cis conformer in the vapor-phase at elevated temperature. The IR band at $929\,\mathrm{cm^{-1}}$ confirms the presence of the C=CH₂ group.

Let us now consider the number of possible conformers for 4-methyl-3-buten-2-one:

Here we note that s-trans and s-cis do not define the spatial position of the CH₃ group. Therefore, the additional term trans CH₃ and cis CH₃ must be used to adequately specify each of the four possible conformers for 4-methyl-3-buten-2-one as shown in brackets in the conformers shown here.

The C=O and C=C stretching frequencies for 4-methyl-3-buten-2-one in CCl₄ solution are given here:

These data support only the presence of the s-cis or s-trans part of the conformer. NMR data are needed to help establish the presence of a cis or trans CH_3 group, and these data were not available. Similar compounds containing the trans CH=CH group exhibit a weak-medium band in the region $974-980 \, \mathrm{cm}^{-1}$.

As already shown, the C=C and C=O stretching frequencies for s-cis and s-trans conformers are very different. The question to answer is why they are different. It is possible that in one case the C=C and C=O stretching vibrations couple into in-phase and out-of-phase stretching modes in one conformer and not in the case of the other conformer.

In the case of 3-methyl-1,3-pentadiene the two C=OC-C=C groups are coupled into an inphase $(C=C)_2$ vibration and an out-of-phase $(C=C)_2$ vibration as depicted here:

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_4
 H_3C
 H_4
 H_5
 H_5
 H_5
 H_7
 In the case of 3-methyl-1,3-pentadiene, the in-phase str. mode occurs at $1650\,\mathrm{cm}^{-1}$ and the out-of-phase str. mode occurs at $1610\,\mathrm{cm}^{-1}$ in the vapor phase. In cases such as 2-methyl-2-pentene and 2,4,4-trimethyl-2-pentene the C=C bond is not conjugated and the C=C stretching mode occurs at 1665 and $1658\,\mathrm{cm}^{-1}$, respectively. Therefore, it appears that the in-phase (C=C)₂ stretching vibration occurs near that expected for isolated C=C stretching vibrations while the out-of-phase (C=C)₂ stretching vibrations occur considerably lower than isolated C=C stretching vibrations.

The same behavior for the C=O and C=C stretching modes was already noted here for the scis conformers. The C=O str. mode occurred at a frequency expected for a conjugated carbonyl containing compound, while the C=C str. mode occurred at a lower frequency than expected for an isolated C=C double bond. On the other hand, the s-trans conformers exhibited frequencies for C=O and C=C stretching expected for conjugated carbonyl containing compounds while the C=C stretching frequency occurred at frequencies comparable to those exhibited by compounds containing isolated trans CH=CH groups. On this basis, we believe that these modes are best described as in-phase and out-of-phase C=C-C=O stretching vibrations in the case of the s-cis conformers, and as C=O and C=C stretching modes in the case of the s-trans conformers. Compounds such as 3-methyl-4-phenyl-3-buten-2-one and α -hexylcinnamaldehyde contain the C=CH group, and we are only able to establish that they are in the s-cis configuration. The cis [H, CH₃] and cis [H, C₆H₁₁] are one of the two possibilities for these two compounds. The bands in the region 867–870 cm⁻¹ support the presence of the C=CH group.

Table 14.7 also lists IR vapor-phase data for chalcone and its derivatives. The IR data is recorded at elevated temperature, and all of the data indicate that these compounds exist only as the s-cis, trans CH=CH conformer.

CHALCONES

Chalcones have the following empirical planar structure:

The phenyl group of the styryl group is numbered 2 through 6, and the phenyl group of the benzoyl group is numbered 2' through 6'. Substitution in the 2,6-positions with Cl_2 or $(CH_3)_2$ would sterically prevent the styryl phenyl group from being coplanar with the rest of the molecule. Moreover, substitution of Cl_2 or $(CH_3)_2$ in the α ,2-positions on the styryl group would also sterically prevent the styryl phenyl group from being coplanar with the rest of the molecule. Substitution of Cl_2 or $(CH_3)_2$ in the 2',6'-positions would sterically prevent the phenyl group of the benzoyl group from being coplanar with the rest of the molecule. The six chalcones studied, (see Table 14.6) exhibit ν C=O in the region 1670–1684 cm⁻¹, and exhibit ν C=C in the region 1605–1620 cm⁻¹. The frequency separation between ν C=O and ν C=C varies between 59 and 73 cm⁻¹ (16). These data indicate that these chalcones exist in planar s-cis configurations. Noncoplanar chalcones were not available for study.

Table 14.7a lists some fundamental vibrations for the conjugated ketones studied. These group frequencies aid in identifying these compounds by additional spectra-structure identification.

INTRAMOLECULAR HYDROGEN BONDING

Table 14.8 lists IR data for 2-hydroxy-5-X-acetophenone in CCl₄ solution (3800–1333 cm⁻¹) and CS₂ solution (1333–400 cm⁻¹). The intramolecular ν OH···O=C and γ OH···O=C vibrations for 2-hydroxy-5-X-acetophenone were presented in Chapter 7.

The $vC=O\cdots HO$ frequencies for 2-hydroxy-5-X-acetophenones occur in the range 1641–1658 cm⁻¹ (17). These compounds exhibit $vC=O\cdots HO$ at lower frequency by 40 ± 10 cm⁻¹ compared to nonhydrogen bonded acetophenones due to the strength of the C=O···HO bond. In the solid phase (Nujol mull) the $vC=O\cdots HO$ mode occurs 13 to 17 cm⁻¹ lower in frequency than in CCl_4 solution.

The 2-hydroxy-5-X-acetophenones exhibit characteristic vibrations in the range 954–973 cm $^{-1}$ [C-C(=)-C stretching], 1283–1380 cm $^{-1}$ [phenyl-0 stretching], and 1359–1380 cm $^{-1}$ [symmetric CH₃ bending].

CYCLOALKANONES

In the vapor phase cycloalkanones exhibit vC=O frequencies in the range 1719–1816 cm⁻¹ (2). The frequencies decrease as the number of carbon atoms in the cycloalkanone ring increase from 4 to 8 and 10 (1816, 1765, 1732, 1721, 1720, and 1719 cm⁻¹, respectively). The behavior of the vC=O frequency is attributed to changes in the C-C(=)-C bond angle. During a cycle of C=O stretching, more or less energy is required to move the carbonyl carbon atom as the C-C(=)-C bond angle becomes smaller or larger than the normal C-C(=)-C bond angle for an open chain ketone such as dimethyl ketone (acetone). This is because during a cycle of C=O stretching, the C-C(=)-C angle must increase, and as the size of the cycloalkanone C-C(=)-C angle decreases from normal bond angles (cyclohexanone for example), the more difficult it is for a normal C=O vibration to occur. Conversely, in cases where the bond angle is larger than normal, the easier it is for the vC=O vibration to occur.

Table 14.9 lists IR vapor-phase data and assignments for cyclobutanone and cyclopentanone. The ν C=O frequencies were already discussed here. It should be noted that vasym. CH₂, ν sym. CH₂, CH₂ twisting, the ring deformation, and the first overtone of ν C=O also decrease in frequency while the CH₂ bending mode increases in frequency as the ring size is increased from four to five carbon atoms.

Table 14.10 lists the C=O stretching frequencies for cyclopentanone and cyclohexanone in the vapor, neat, and solution phases (18).

Cyclopentanone exhibits vC=0 at 1765 (vapor) and 1739.2 cm⁻¹ in neat phase after correction for Fermi resonance (18). In all solutions, vC=0 has been corrected for Fermi resonance. Cyclopentanone exhibits vC=0 at 1750.6 cm⁻¹ in n-hexane solution and at 1728.8 cm⁻¹ in water solution. Cyclohexanone exhibits vC=0 at 1723 cm⁻¹ in n-hexane solution and at 1701 cm⁻¹ in ethyl alcohol solution. After correction for Fermi resonance, vC=0 for cyclopentanone decreases in frequency by approximately 17.1 cm⁻¹ progressing in the series of solvents hexane through methyl alcohol (18). Progressing in the same series of solvents, vC=0 for cyclohexanone decreases in frequency by approximately 22 cm⁻¹. The C=0 group for cyclohexanone is more basic than the C=0 group for cyclopentanone, and this is given as the reason that there is more of a solute-solvent interaction in the case of cyclohexanone than in the case of cyclopentanone (18). The vC=0 frequencies for these two cycloalkanones do not correlate well with the solvent acceptor numbers (AN), and this is attributed to steric factors of the solvents that hinder solute-solvent interaction.

Figure 14.5 shows a plot of vC=0 for cycohexanone vs mole % CHCl₃/n-C₆H₁₄. Definite breaks in the plot are noted at ~2.5 to 1, ~6 to 1, ~50 to 1, and ~62.1 to 1 mol of CHCl₃ to 1 mol cyclohexanone. The cause of these vC=0 frequency shifts is most likely a result of

different hydrogen bonding complexes between C=O and CHCl₃ which changes with increasing CHCl₃ concentration, that is,

$$(CH_2)_5C=O\cdots HCCl_3$$

$$(CH_2)_5C=O\cdots HCCl_3(HCCl_3)_n$$

$$\vdots$$

$$(CH_2)_5C=O$$

$$\vdots$$

$$CHCCl_3(HCCl_3)_n$$

The general decrease in the vC=O frequency most likely is the result of continual change in solvent dielectric effect. Figure 14.6 shows a plot of vC=O for cyclohexanone vs mole % $CCl_4/n-C_6H_{14}$. This linear plot decreases in frequency as the mole % $CCl_4/n-C_6H_{14}$ increases. The dielectric effect of this solvent mixture increases as the mole % $CCl_4/n-C_6H_{14}$ increases, causing vC=O to occur at lower frequency in a linear manner. Unlike $CHCl_3$, there are no different CCl_4 solute complexes as noted.

Figure 14.7 show a plot of vC=O for 0.345 mol% acetone in $CHCl_3/CCl_4$ solution vs the mole % $CHCl_3/CCl_4$ (19). This plot shows that it is linear over the mole % $CHCl_3/CCl_4$ range of \sim 17 –100%. Extrapolation of the linear plot to zero mol% $CHCl_3$ indicates that the vC=O frequency for acetone in the range 0–17% ratio $CHCl_3/CCl_4$ varies from linearity by \sim 1 cm⁻¹. The mole fraction of $CHCl_3$ is in excess of the 0.345 mol% acetone present, even at the 1.49 mol% ratio $CHCl_3/CCl_4$ where the $CHCl_3$ protons forms weak hydrogen bonds between Cl atoms of other $CHCl_3$ molecules and CCl_4 molecules as well as with the carbonyl oxygen atom (19).

Figure 14.8 shows a plot of the ν C=O frequency for acetone vs the reaction field for each of the mole % CHCl₃/CCl₄ solutions. Comparison of Fig. 14.7 with Fig. 14.8 shows that the curves are identical. The reaction field $|R| = \frac{(e-1)}{2e+n^2}$, with e the dielectric constant of each solvent, and n the refractive index of each solvent. A plot of mole % CHCl₃/CCl₄ vs the reaction field yields a linear curve (19). Therefore, it appears as though the refractive index of the solvent as well as the dielectric value of the solvent system together with intermolecular hydrogen bonding with C=O of the solute affects the induced frequency shift of ν C=O in solution with CHCl₃/CCl₄. In summary, the frequency behavior of the solvent-induced ketone carbonyl stretching vibration, ν C=O, is affected by the reaction field, inductive effects, and solute-solvent intermolecular hydrogen bonding (29).

Table 14.11 lists IR data for 14H-dibenzo[a, j]xanthen-14-one in $CHCl_3/CCl_4$ and in various solvents (20). This ketone has the following empirical structure:

For simplicity, this compound is given the name DX-14-O. The maximum symmetry for DX-14-O is C_{2v} . The vC=O mode belongs to the A_1 species if it has C_{2v} symmetry. The DX-14-O has two significant IR bands in the region expected for vC=O, and a solution study in $CHCl_3/CCl_4$ solution was used to help explain the presence of these two IR bands. In order for vC=O to be in Fermi resonance in the case of DX-14-O both the combination (CT) or overtone (OT) and vC=O must belong to the A_1 symmetry species. In addition, the CT or CT would have to occur in the range expected for vC=O. It is obvious from the ketone structure given here that the IR doublet could not be due to the presence of rotational isomers.

Figure 14.9 shows IR spectra of DX-14-O in the region 1550–1800 cm⁻¹. Spectrum (A) is for a saturated solution in hexane, spectrum (B) is for a saturated solution in carbon tetrachloride, and spectrum (C) is for a 0.5% solution in chloroform. In hexane the IR bands occur at 1651.9 and 1636.8 cm⁻¹, in carbon tetrachloride the bands occur at 1648.9 and 1634.9 cm⁻¹, and in chloroform the bands occur at 1645.4 and 1633.1 cm⁻¹. Inspection of their IR spectra shows that the absorbance ratio of the low frequency band to the high frequency band increases in the solvent order n-C₆H₁₄, CCl₄, CHCl₃. Figure 14.10 shows a plot of ν C=O and the OT or CT in Fermi resonance, and ν C=O and OT or CT corrected for Fermi resonance. The corrected data show that unperturbed ν C=O occurs at higher frequency than unperturbed OT or CT at mole % CHCl₃/CCl₄ below ~28%; at mole % CHCl₃/CCl₄ above ~28% unperturbed ν C=O occurs at a lower frequency than unperturbed OT or CT. Without FR correction, each IR band results from some combination of ν C=O and the OT or CT. At the ~28 mol% CHCl₃/CCl₄, both IR bands result from equal contributions of ν C=O or OT or CT.

Figure 14.11 shows plots of vC=O and OT or CT and their corrected frequencies vs the solvent acceptor number (AN) for each of the eight solvents, numbered 1–8, and listed sequentically. These plots show that in general the two modes in Fermi resonance and unperturbed vC=O decrease in frequency as the AN of the solvent is increased. The scattering of data points suggests that the AN values do not take into account the steric factor of the solvent, which causes variance in the solute-solvent interaction. It should be noted that unperturbed vC=O occurs at lower frequency than the OC or OT in only chloroform and benzonitrile solutions.

SUBSTITUTED 1,4-BENZOQUINONES

The ketone 1,4-benzoquinone has the following planar structure:

It has two C=O groups, and these couple into an in-phase $(C=O)_2$ stretching vibration, $v_{ip}(C=O)_2$, and an out-of-phase $(C=O)_2$ stretching vibration, $v_{op}(C=O)_2$. In CCl₄ solution, 1,4-benzoquinone exhibits a strong IR band at 1670 cm⁻¹ and a medium strong band at 1656 cm⁻¹. Without consideration of the molecular symmetry of 1,4-benzoquinone, it would seem reasonable to assign the 1670 cm⁻¹ band to $v_{op}(C=O)_2$ and the 1656 cm⁻¹ band to $v_{ip}(C=O)_2$. However, 1,4-benzoquinone has a center of symmetry and it has V_h symmetry. The 30 fundamentals are distributed as $6A_g$, $1B_{1g}$, $3B_{2g}$, $5B_{1u}$, 5_{2u} , and $3B_u$. Only the u classes are IR

active, and only the g classes are Raman active. The $v_{\rm op}(C=O)_2$ mode belongs to the b_{1u} species, and the $v_{\rm ip}(C=O)_2$ mode belong to the A_g species. Of course, 1,4-benzoquinone can not have rotational conformers. Therefore, one of the forementioned IR bands either results from the presence of an impurity, or else it must result from a B_{1u} combination tone in Fermi resonance with the $v_{\rm op}(C=O)_2$, b_{1u} fundamental. It could not be in Fermi resonance from an overtone of a lower lying fundamental, because a first overtone would belong to the A_g species. The Raman band at $1661.4\,{\rm cm}^{-1}$ in CCl_4 solution is assigned to the $v_{\rm ip}(C=O)_2$, A_g mode.

Figure 14.12 shows plots of $v_{\rm op}(C=O)$, b_{1u} and the CT B_{1u} modes in Fermi resonance, and their unperturbed frequencies after correction for Fermi resonance for 1,4-benzonone in 0.5% wt./vol. or less in 0–100 mol% CHCl₃/CCl₄. The two observed IR band frequencies in Fermi resonance in this case increase in frequency as the mole % CHCl₃/CCl₄ is increased. However, unperturbed $v_{\rm op}(C=O)_2$ decreases in frequency as the mole % CHCl₃/CCl₄ increases, and this is always the case for other carbonyl containing compounds as the mole % CHCl₃/CCl₄ is increased. It is noted that the unperturbed CTb_{1u} mode increases in frequency as the mole % CHCl₃/CCl₄ is increased from 0–100%. In this case, at ~25 mol% CHCl₃/CCl₄ both IR bands result from equal contributions from $v_{\rm op}(C=O)_2$ and the CT b_{1u} mode.

Table 14.12 lists IR and Raman data for several 1,4-benzoquinones in CCl_4 and $CHCl_3$ solutions (at 0.5% wt/vol. or less due to saturation). The point group pertaining to their molecular symmetry is given for each of these ketones. None of the other 1,4-benzoquinones show IR evidence for the $v_{op}(C=O)_2$ mode being in Fermi resonance. The $v_{op}(C=O)_2$ mode for these 1,4-benzoquines occurs in the range 1657–1702.7 cm⁻¹ in CCl_4 solution and at slightly lower frequency in $CHCl_3$ solution. In $CHCl_3$ solution, $v_{ip}(C=O)_2$ occurs in the range 1666.9–1697.7 cm⁻¹. The increasing inductive effect of the halogen atoms (progressing in the order Br, Cl_4 , F) together with their field effect increase both $v_{op}(C=O)_2$ and $v_{ip}(C=O)_2$ frequencies (22).

Tables 14.13–14.17 list IR data for tetrafluoro-1,4-benzoquinone, tetrachloro-1,4-benzoquinone, tetrabromo-1,4-benzoquinone, chloro-1,4-benzoquinone, and 2,5-dichlorobenzo-quinone in three different solvent systems.

In the IR, tetrafluoro-1,4-benzoquinone exhibits strong IR bands at 1702.7 and 1667.6 cm⁻¹ in CCl₄ solution and at 1701.4 and 1668.4 cm⁻¹ in CHCl₃ solution. In all cases the higher frequency band has more intensity than the lower frequency band. These two IR are assigned to $v_{\rm op}(C=O)_2$ and $v_{\rm op}(C=C)$, respectively. Figure 14.13 shows plots of $v_{\rm op}(C=O)_2$ and $v_{\rm op}(C=C)_2$ for 1,4-tetrafluorobenzoquinone vs mole% CHCl₃/CCl₄. The $v_{\rm op}(C=O)_2$ mode decreases in frequency as expected as the mole% CHCl₃/CCl₄ is increased. The $v_{\rm op}(C=C)_2$ ring mode increases in frequency as the mole% CHCl₃/CCl₄ is increased.

The frequency behavior of the other substituted 1,4-benzophenones is discussed in detail in Reference 21, and the reader is referred to this paper for further information on these interesting solute-solvent interactions.

Table 14.18 lists IR data for 3,3',5,5'-tetraalkyl-1,4-diphenoquinones in CHCl₃ solution and in the solid phase (22). The 3,3',5,5'-tetraalkyl-1,4-diphenoquinones have the following empirical structure:

When the 3,3',5,5' positions are substituted with identical atoms or groups, the compounds have D_{2h} symmetry (22). These molecules have a center of symmetry, and only the $v_{op}(C=O)$, B_{3u} fundamental is IR active. The $v_{op}(C=O)_2$, A_g fundamental is only Raman active. The $v_{on}(C=O)_2$ mode for the 3,3',5,5'-tetraalkyl-1,4-diphenoquinones occurs in the range 1586– 1602 cm⁻¹ in the solid phase and in the range 1588–1599 cm⁻¹ in CHCl₃ solution. The compound 3,3'-dimethyl, 5,5'-di-tert-butyl-1,4-diphenoquinone has $C_{2\nu}$ symmetry, and in this case both $v_{in}(C=O)_2$ are IR active as well as Raman active. In this case the IR band at 1603 cm⁻¹ is assigned to both $v_{op}(C=O)_2$ and $v_{ip}(C=O)_2$. The frequencies in brackets in Table 14.18 are calculated. All of these five 3,3',5,5'-tetraalkyl-1,4-diphenoquinones exhibit a weak IR band in the range 3168-3204 cm⁻¹ in the solid phase and in the range 3175-3200 cm⁻¹ in CHCl₃ solution. These bands are assigned to the combination tone $v_{op}(C=O)_2 + v_{ip}(C=O)_2$. Using the observed $v_{op}(C=O)_2$ and combination tone frequencies for these compounds, the $v_{ip}(C=O)_2$ frequencies are calculated to occur in the range 1579-1601 cm⁻¹ in the solid phase and in the range 1583-1602 cm⁻¹ CHCl₃ solution (22). These data confirm a previous conclusion that diphenoquinones exhibit a strong IR band near 1600 cm⁻¹, which must include stretching of the C=O bond (23). Thus, it is possible to distinguish between 4,4'-diphenoquinones and 1,4benzoquinones, since the latter compounds exhibit carbonyl stretching modes 30 to $80\,\mathrm{cm}^{-1}$ higher in frequency (21).

CONCENTRATION EFFECTS

Table 14.19 lists data that show the dependence of the vC=O frequency of dialkyl ketones upon the wt./vol.% ketone in solution with CCl_4 or $CHCl_3$ (10). In CCl_4 solution, the vC=O mode for diisopropyl ketone decreases more in frequency in going from $\sim 0.8\%$ to 5.25% than it does for di-tert-butyl ketone at comparable wt./vol. ketone in CCl_4 solution (-0.19 to -0.08 cm⁻¹ at 5.25% wt./vol.). In $CHCl_3$ solution, the shift of vC=O is in the opposite direction to that noted for CCl_4 solutions. At 5.89% wt./vol. in $CHCl_3$ solution, vC=O increase 0.38 cm⁻¹ for diisopropyl ketone and at 5.78 wt./vol. in $CHCl_3$ for di-tert-butyl ketone the increase is 0.1 cm⁻¹. The smaller vC=O frequency shifts in the case of the di-tert-butyl analog compared to the diisopropyl analog is attributed to steric factors of the alkyl group. The steric factor of the tert-butyl groups does not allow as much solute-solvent interaction between C=O and the solvent as it does in the case of the diisopropyl analog. With increase in the wt./vol. of ketone/ $CHCl_3$ vC=O increases in frequency, indicating that the strength of the $C=O\cdots HCCl_2$ $Cl\cdots (HCCl_2Cl)_n$ intermolecular hydrogen bond becomes weaker as n becomes smaller.

REFERENCES

- 1. Schrader, B. (1989). Raman/Infrared Atlas of Organic Compounds, 2nd ed., Weinheim, Germany: VCH.
- Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, Philadelphia: Sadtler Research Laboratories, a Division of Bio-Rad Labortories, Inc.
- 3. Hallam, H. E. (1963). Infra-Red Spectroscopy and Molecular Structure, p. 420, M. Davies, ed., New York: Elsevier.
- 4. Kirkwood, J. G., West, W., and Edwards, R. T. (1937). J. Chem. Phys., 5, 14.
- 5. Bauer E. and Magot, M. (1938). J. Phys. Radium, 9, 319.

- 6. Josien M. L. and Fuson, N. (1954). J. Chem. Phys., 22, 1264.
- 7. Bellamy, L. J., Hallam, H. E., and Williams, R. L. (1959). Trans. Farad. Soc., 55, 1677.
- 8. Nyquist, R. A. (1989). Appl. Spectrosc., 43, 1208.
- 9. Nyquist, R. A. (1994). Vib. Spectrosc., 7, 1.
- 10. Nyquist, R. A., Putzig, C.L., and Yurga, L. (1989). Appl. Spectrosc., 43, 983.
- 11. Nyquist, R. A. (1986). Appl. Spectrosc., 40, 79.
- 12. Nyquist, R. A., Chrzan, V., and Houck, J. (1989). Appl. Spectrosc., 43, 981.
- 13. Lin-Vien, D., Colthup, N. B., Fatelely, W. G., and Grasselli, J. G. (1991). The Handbook of Infrared and Raman Characteristic Group Frequencies of Organic Molecules, San Diego: Academic Press, Inc.
- 14. Bowles, A. J., George, W. O., and Maddams, W. F. (1969) J. Chem. Soc., B, 810.
- 15. Cottee, F. H., Straugham, B. P., Timmons, C. J., Forbes, W. F., and Shilton, R. (1967). J. Chem. Soc., B, 1146.
- (1982) Sadtler Standard Infrared Vapor phase Spectra, Philadelphia: Sadtler Research Laboratories, a Division of Bio-Rad, Inc.
- 17. Nyquist, R. A. (1963). Spectrochim. Acta, 19, 1655.
- 18. Nyquist, R. A. (1990). Appl. Spectrosc., 44, 426.
- 19. Nyquist, R. A., Putzig, C. L., and Hasha, D. L. (1989). Appl. Spectrosc., 43, 1049.
- 20. Nyquist, R. A., Luoma, D. A., and Wilkening, D., (1991). Vib. Spectrosc., 2, 61.
- 21. Nyquist, R. A., Luoma, D. A., and Putzig, C. L. (1992). Vib. Spectrosc., 3, 181.
- 22. Nyquist, R. A. (1982). Appl. Spectrosc., 36, 533.
- 23. Gordon J. M. and Forbes, J. W. (1968). Appl. Spectrosc., 15, 19.

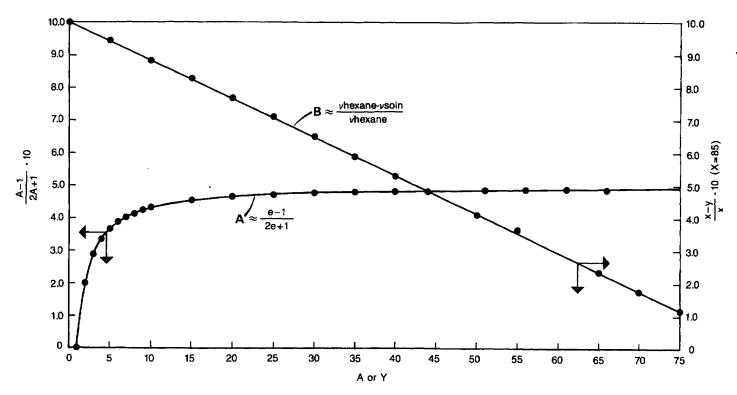


FIGURE 14.1 Plots of the number for A or Y vs the corresponding calculated value multiplied by a factor of 10 (see Table 14.2a).

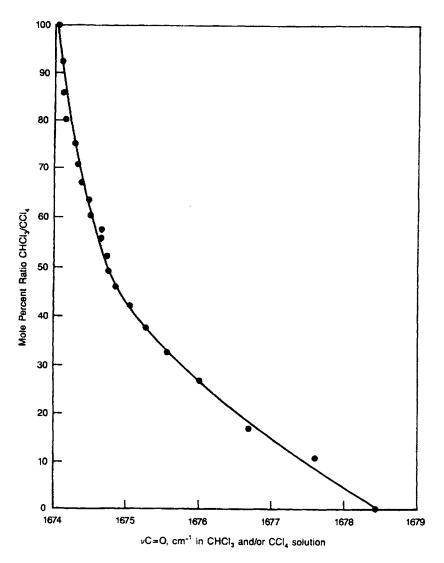


FIGURE 14.2 A plot of vC=O for tert-butyrophenone (phenyl tert-butyl ketone) vs mol % CHCl₃/CCl₄.

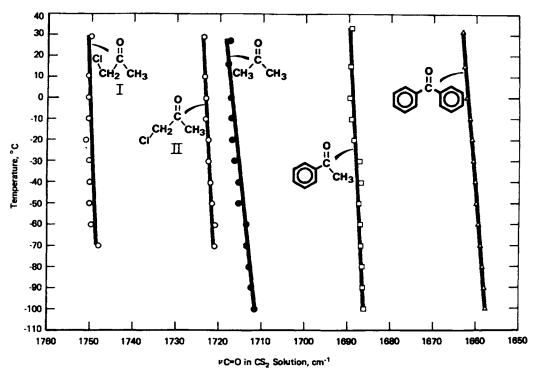


FIGURE 14.3 Plots of the νC =O frequencies for acetone, α -chloroacetone, acetophenone, and benzophenone in CS₂ solution between \sim 29 and $-100\,^{\circ}$ C.

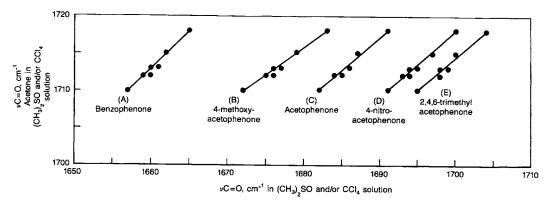


FIGURE 14.4 Plots of νC =O for 2% wt./vol. solutions of (A) benzophenone, (B) 4-methoxyacetophenone, (C) acetophenone, (D) 4-nitroacetophenone, (E) 2,4,6-trimethylacetophonone, and (F) acetone in mole % (CH₃)SO/CCl₄ solutions.

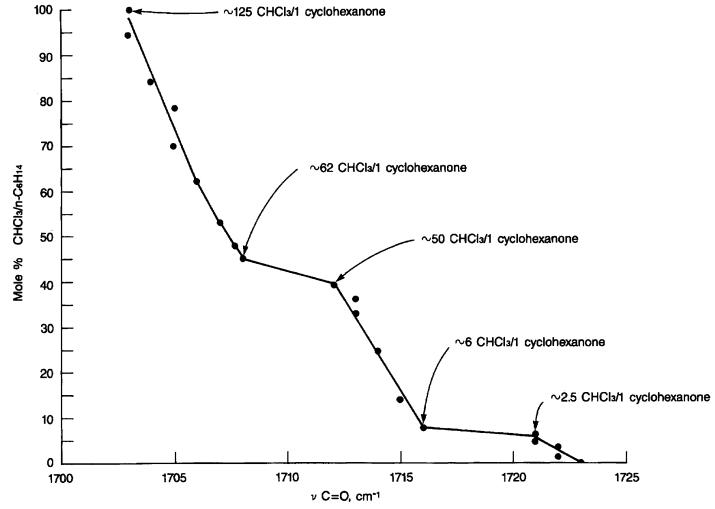


FIGURE 14.5 A plot of vC=O for 1% wt./vol. cyclohexanone vs mole % CHCl₃/n-C₆H₁₄ solutions.

FIGURE 14.6 A plot of ν C=O for 1% wt./vol. cyclohexanone vs mole % CCl₄/n-C₆H₁₄.

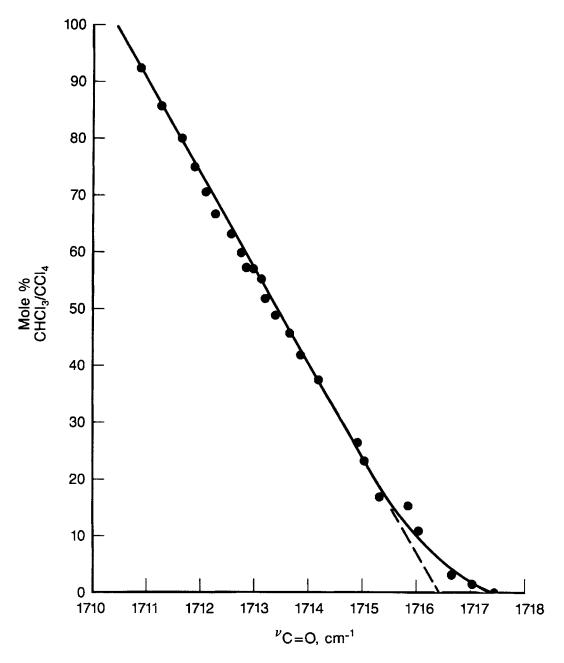


FIGURE 14.7 A plot of ν C=O for 0.345 mole % acetone vs mol % CHCl₃/CCl₄ solutions.

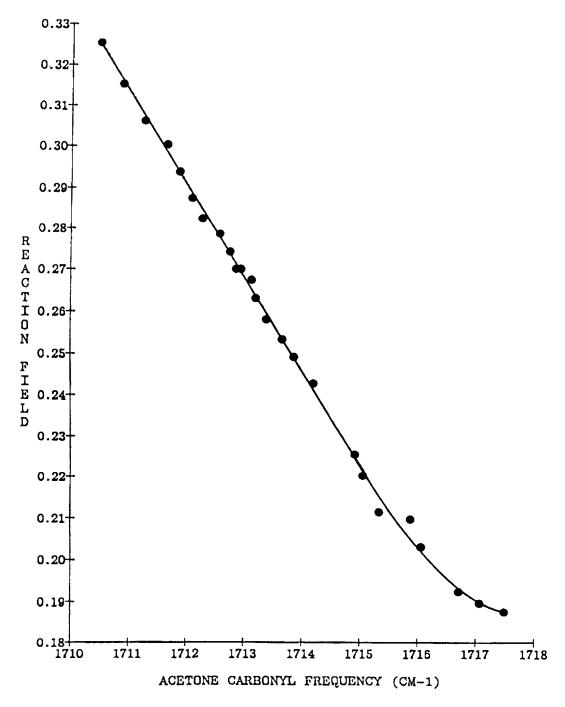


FIGURE 14.8 A plot of the reaction field vs νC =O for 0.345 mole % acetone in CHCl₃/CCl₄ solutions.

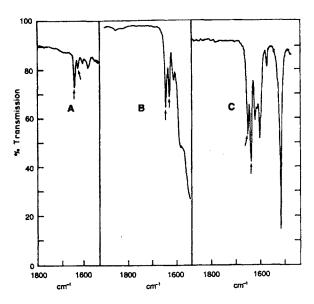


FIGURE 14.9 IR spectra for 14H-dibenzo [a,j] X anthen-14-one. (A) Saturated solution in hexane; (B) saturated solution in carbon tetrachloride; (C) 0.5% wt./vol. solution in chloroform.

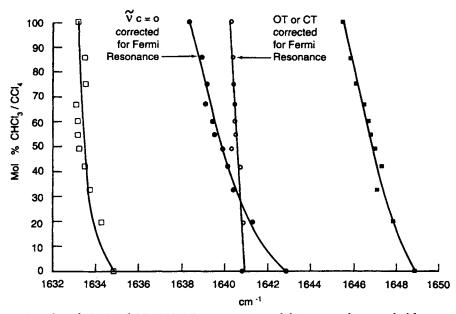


FIGURE 14.10 Plots of ν C=O and OT or CT in Fermi resonance and their corrected unperturbed frequencies for 14H-dibenzo [a,j] xanthen-14-one vs mole % CHCl₃/CCl₄. The solid squares and open squares represent uncorrected frequency data, the solid circle represents ν C=O corrected for Fermi resonance and the open circles represent OT or CT corrected for Fermi resonance.

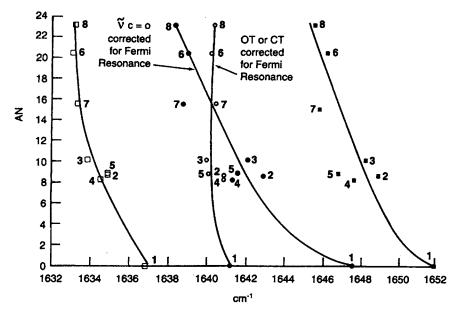


FIGURE 14.11 Plots of vC=0 and OT or CT uncorrected and corrected for Fermi resonance for 14H-dibenzo [a,j]-xanthen- 14-one vs the solvent acceptor number (A) for (1) hexane; (2) carbon tetrachloride; (3) carbon disulfide; (4) benzene; (5) tetrahydrofuran; (6) methylene chloride; (7) nitrobenzene; and (8) chloroform.

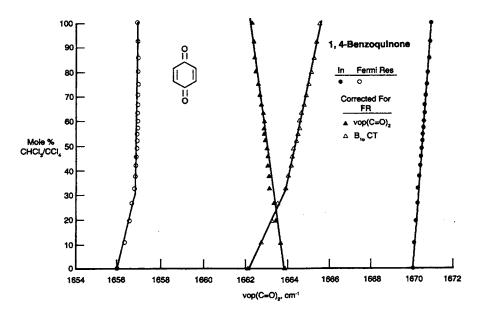


FIGURE 14.12 Plots of $v_{\rm op}(C=O)_2$ and B_{1u} CT in Fermi resonance and their unperturbed frequencies after correction for Fermi resonance for 1,4-benzoquinone vs mole % CHCl₃/CCl₄.

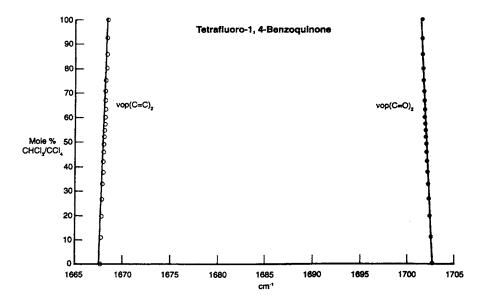


FIGURE 14.13 Plots of $v_{op}(C=O)_2$ and $v_{op}(C=C)_2$ for tetrafluoro-1, 4-benzoquinone vs mole % CHCl₃/CCl₄.

TABLE 14.1 IR vapor phase and Raman data for acetone and acetone-d₆

Compound	2(C=O str.) cm ⁻¹ (A)	a.CH ₃ str. cm ⁻¹ (A)	s.CH ₃ str. cm ⁻¹ (A)	C=O str. cm ⁻¹ (A)	? cm ⁻¹ (A)	a.CH ₃ bend cm ⁻¹ (A)	s.CH ₃ bend cm ⁻¹ (A)	a.CCC str. cm ⁻¹ (A)	CH ₃ rock B2 cm ⁻¹ (A)	CH ₃ rock Bl cm ⁻¹ (A)	delta C=O cm ⁻¹	s.CCC str. Raman* ¹ liquid cm ⁻¹	delta C=O Raman* ¹ liquid cm ⁻¹	gamma C=O Raman* ¹ liquid cm ⁻¹	gamma C=O IR2 vapor cm ⁻¹	CCC bend IR*2 vapor
		3000		1748			1378	1228			538					
		(0.120)		(1.110)			(0.500)	(0.530)			(0.080)					
Acetone	3460	2970	2941	1735	1550	1435	1362	1212	1092	900	525	786.5	530	493	484	385
	(0.03)	(0.150)	(0.090)	(1.250)	(0.050)	(0.140)	(0.620)	(0.650)	(0.040)	(0.050)	(0.135)					
				1721			1353	1200			510	stg.,pol.	medpol.?	wk.,depol.	wk.type C	wk. type B
				(1.050)			(0.550)	(0.510)			(0.120)				· ·	,.
				1745			1070	1250			485					
				(1.240)			(0.090)	(0.930)			(0.110)					
Acetone-db	3450	2250	2220	1738	1415	1140	1050	1239	986	795	472	695.5	478	393	405	321
	(0.030)	(0.074)	(0.090)	(1.210)	(0.060)	(0.060)	(0.140)	(1.130)	(0.050)	(0.020)	(0.140)					
				1729			1027				458	stg.,pol.	wk.,depol.	wk.,depol.	wk.type C	wk. type B
				(1.240)			(0.090)				(0.150)		-	-		
Acetone/Acetone-db	1.003	1.32	1.325	0.998	1.095	1.38	1.297	0.978	1.108	1.132	1.112	1.131	1.109	1.254	1.195	1.199

^{*1} Reference 1.

^{*2}Reference 2.

TABLE 14.2 Application of the KBM equation using IR data for acetone C=O stretching frequencies in various solvents

Solvent	For acetone [C=O(hexane)-C=O(soln.)]/ × 10(3) [C=O(hexane)]	Calculated C=O	delta C=O(obs.)-C=O(calc.) cm ⁻¹
Hexane			
Diethyl ether	2.322	1715.9	-2.1
Benzene	4.645	1717.9	3.9
Toluene	2.904	1717.8	3.8
Carbon tetrachloride	2.322		
Pyridene	5.226	1714.2	1.2
Nitrobenzene	5.226	1713.7	0.7
Acetonitrile	5.226	1713.5	0.5
Dimethyl sulfoxide	6.969	1713.4	3.4
Methylene chloride	5.388	1714.5	2.5
Chloroform	6.388	1715.6	4.6
t-Butyl alcohol	6.969	1714.3	4.3
Isopropyl alcohol	7.549	1713.7	4.9
Ethyl alcohol	8.13	1713.7	5.7
Methyl alcohol	8.711	1814.7	7.7
Water	13.36	1713.3	14.3

TABLE 14.2A The calculated values for A-1/2A + 1 and X-Y/X where A and Y equal 0 to 85 and X equals 85 [the KBM equation]

		X-Y/X
A or Y	A - 1/2A + 1	[X=85]
0	-1	1
1	0	0.988
2	0.22	0.976
3	0.286	0.964
4	0.333	0.953
5	0.364	0.941
6	0.385	0.929
7	0.4	0.918
8	0.412	0.906
9	0.421	0.894
10	0.428	0.882
15	0.452	0.824
20	0.463	0.765
25	0.47	0.706
30	0.475	0.647
35	0.478	0.588
40	0.481	0.529
45	0.483	0.471
50	0.485	0.412
55	0.486	0.353
60	0.488	0.294
65	0.489	0.235
70	0.4894	0.176
75	0.49	0.118
80	491	0.058
85	0.4912	0

TABLE 14.3 The C=O stretching frequencies for aliphatic ketones in the vapor phase and various solvents

Solvent	Dimethyl ketone cm ⁻¹	Methyl ethyl ketone cm ⁻¹	Diethyl ketone cm ⁻¹	Ethyl isopropyl ketone cm ⁻¹	Disopropyl ketone cm ⁻¹	Di-t-butyl ketone cm ⁻¹	AN
[Vapor]	1735	1742	1731	1730	1726	1699	0
Hexane	1722.4	1727.2	1725.1	1721.4	1720.3	1690.3	3.9
Diethyl ether	1719.6	1723	1721.4	1718.2	1717.8	1687.7	8.6
Carbon tetrachloride	1717.7	1721.3	1719.6	1716.5	1716	1685.9	
Carbon disulfide	1716.3	1720.1	1718.3	1715.2	1714.5	1684.9	18.9
Benzene	1715.8	1718.6	1717.4	1714	1713.5	1684.5	18.9
Acetonitrile	1713.3	1714	1713.7	1710.6	1707.8	1681.6	14.8
Nitrobenzene	1712.8	1714.3	1713.8	1710.6	1707.6	1681.7	15.5
Benzonitrile	1712.7	1713.9	1713.2	1710.2	1706.8	1682.2	20.4
Methyl chloride	1712	1712.6	1712.5	1709.6	1706.4	1680.5	
Nitromethane	1712.2	1712.4	1712.4	1709.5	1706.3	1680.6	
t-Butyl alcohol	1711.8	1711.2	1711.8	1709.2	1705.6	1678.5	29.1
t-Butyl alcohol*1		1722sh* ²	1722.5sh	1718.8sh	1718sh	1687.0sh	39.1
Chloroform	1710.6	1710.2	1710.7	1708.2	1705.3	1680.8	23.1
Dimethyl sulfoxide	1709.2	1709.7	1710.1	1707.4	1704.6	1680.1	19.3
Isopropyl alcohol	1710.3	1709.8	1710.3	1707.7	1704.2	1677.9	33.5
Isopropyl alcohol*1		1720.5sh	1720.5sh	1716.2sh	1717sh	1687sh	33.5
Ethyl alcohol	1709	1708.5	1710.1	1706.1	1703.1	1676.8	37.1
Ethyl alcohol*1	1717sh	1719.4sh	1717.8sh	1715.4sh	1716sh	1686.4sh	37.1
Methyl alcohol	1708	1707.5	1707.7	1704.8	1701.1	1675.2	41.3
Methyl alcohol*1	1716.2sh	1718.6sh	1717.0sh	1715sh	1715sh	1684.8sh	41.3
$\Sigma 6^{\star} \cdot \Sigma \alpha \cdot 10^{-2}$	0	0.7	2.8	15.7	35.7	184.8	
Σ6*	0	-0.1	-0.2	-0.29	-0.38	-0.6	
Σα	0	-0.07	-0.14	-0.54	-0.94	-3.08	

^{*1}C=O not H bonded.
*2sh = shoulder.

TABLE 14.3A A comparison of the carbonyl stretching frequency difference (delta C=O str. in cm^{-1}) for dialkyl ketones in hexane and each of the other solvents

Solvent	Dimethyl ketone cm ⁻¹	Methyl ethyl ketone cm ⁻¹	Diethyl ketone cm ⁻¹	Ethyl isopropyl ketone cm ⁻¹	Diisopropyl ketone cm ⁻¹	Di-t-butyl ketone cm ^{–1}
Hexane	0	0	0	0	0	0
Diethyl ether	2.8	4.2	3.6	3.2	2.5	[2.6]
Carbon tetrachloride	4.7	5.9	5.4	4.9	4.3	[4.4]
Carbon disulfide	6.1	7.1	6.7	6.2	5.8	5.35
Benzene	6.5	8.6	7.65	7.4	6.8	5.8
Acetonitrile	9	13.25	11.4	10.8	[12.5]	8.7
Nitrobenzene	9.6	12.9	11.2	10.8	[12.7]	8.6
Benzonitrile	9.7	13.3	11.8	11.2	[13.5]	8.1
Methyl chloride	10.3	14.6	12.6	11.8	[13.9]	9.8
Nitromethane	10.15	14.8	12.7	11.9	[14.0]	9.7
t-Butyl alcohol	10.5	16	13.25	12.2	[14.7]	11.8
t-Butyl alcohol		5.2	2.6	2.6	2.3	[3.3]
Chloroform	11.75	17	14.35	13.2	[15.0]	9.5
Dimethyl sulfoxide	13.1	17.5	14.9	14	[15.7]	10.2
Isopropyl alcohol	12	17.4	14.7	13.7	[16.1]	12.4
Isopropyl alcohol		6.7	4.5	5.2	3.3	3.3
Ethyl alcohol	13.3	18.7	14.9	[15.3]	[17.2]	13.5
Ethyl alcohol	5.35	7.8	7.3	6	4.3	3.9
Methyl alcohol	14.3	19.7	17.4	16.6	[19.2]	15.1
Methyl alcohol	6.15	8.6	8.05	6.4	5.3	[5.5]
•	0	0.7	2.8	15.7	35.7	184.8

TABLE 14.3B A comparison of the carbonyl stretching frequency difference (delta C=O str. in cm^{-1}) for dialkyl ketones in methyl alcohol and the other protic solvents

Protci solvent	Dimethyl ketone cm ⁻¹	Methyl ethyl ketone cm ⁻¹	Diethyl ketone cm ⁻¹	Ethyl isopropyl ketone cm ⁻¹	Diisopropyl ketone cm ⁻¹	Di-t-butyl ketone cm ^{–1}
Chloroform	2.6	2.7	3	3.4	4.2	5.7
t-Butyl alcohol	3.8	3.7	4.1	4.4	4.5	3.3
Isopropyl alcohol	2.3	2.3	2.7	2.9	3.1	2.7
Ethyl alcohol	1	1	2.5	1.3	2	1.7
Methyl alcohol	0	0	0	0	0	0

TABLE 14.3C A comparison of the differences in the carbonyl stretching frequencies (delta C=O str. in cm⁻¹) of dialkyl ketones in hexane solution and in alcohol solution [non-H-bonded C=O]

Alcohol	Dimethyl ketone cm ⁻¹	Methyl ethyl ketone cm ⁻¹	Diethyl ketone cm ⁻¹	Ethyl isopropyl ketone cm ⁻¹	Diisopropyl ketone cm ⁻¹	Di-t-Butyl ketone cm ^{–1}	
Methyl	6.15	8.6	8.05	6.4	5.3	5.5	
Ethyl	5.35	7.8	7.3	6	4.3	3.9	
Isopropyl		6.7	4.5	5.2	3.3	3.3	
t-Butyl		5.2	2.6	2.6	2.3	3.3	

TABLE 14.4 The C=O stretching frequencies for *n*-butyrophenone and tert-butyrophenone in 0 to 100 mol % CHCl₃/CCl₄ I3ICCl₄ solutions

Mole % CHCl ₃ /CCl ₄	n-Butryo-phenone C=O str.	t-Butryo-phenone C=O str.	delta C=O
0	1691	1678.43	12.6
10.8	1689	1677.6	11.4
16.9	1687	1676.7	10.3
26.7	1687	1676	11
32.6	1686	1675.6	10.4
37.7	1686	1675.3	10.7
42.1	1685	1675.1	10.9
45.9	1685	1674.9	10.1
49.2	1685	1674.8	10.2
52.2	1685	1674.7	10.3
55.7	1685	1674.7	10.3
57.4	1685	1674.7	10.3
60.2	1685	1674.5	10.5
63.4	1685	1674.5	10.5
66.89	1684	1674.4	9.6
70.8	1684	1674.3	9.7
75.2	1684	1674.3	9.7
80.2	1684	1674.2	9.8
85.8	1684	1674.1	9.9
92.4	1683	1674.1	8.89
100	1682	1674.1	7.9

TABLE 14.5 IR data for acetone, α - chloroacetone, acetophenone, and benzophenone in CS₂ solution between \sim 29 and -100° C

°C	Acetone $C=O$ str. $[CS_2]$ cm^{-1}	°C	α-Chloro-acetone conformer 1 C=O str. [CS ₂] cm ⁻¹	α-Chloro-acetone conformer 2 C=O str. [CS ₂] cm ⁻¹	[conformer 1]— [conformer 2] cm ⁻¹	°C	Acetophenone C=O str. [CS ₂] cm ⁻¹	°C	Benzophenone C=O str. [CS ₂] cm ⁻¹
27	1717.5	29	1750.2	1723.7	26.5	32	1689.4	31	1663.3
15	1717.3	11	1750.7	1723.7	27	15	1689.5	15	1662.7
0	1717.5	0	1750.5	1723.3	27.2	0	1689.7	0	1662.2
-10	1717.3	-10	1750.5	1723.3	27.2	-10	1689.2	-10	1661.5
-20	1717	-20	1751	1722.9	28.1	-20	1688.7	-20	1661
-30	1716.4	-30	1750.2	1722.4	27.8	-30	1687.4	-30	1660.7
-40	1715.4	-40	1749.9	1722	27.9	-40	1687	-40	1660.3
-50	1715.4	-50	1750	1721.6	28.4	-50	1687.4	-50	1660
-60	1713.6	-60	1749	1720.7	28.3	-60	1687.1	-60	1659.6
-70	1713.6	-70	1747.9	1721	26.9	-70	1687	-70	1659
-80	1713					-80	1686.5	-80	1658.5
-90	1712.7					-90	1686.4	-90	1658
-100	1711.7					-100	1686.2	-100	1657.8
delta C	delta C=O str.	delta C	delta str. C=O	delta C=O str.		delta C	delta C=O str.	delta C	delta C=O str.
[-127]	[-5.8]	[-99]	[-2.3]	[-2.7]		[-132]	[-3.2]	[-131]	[-5.5]

TABLE 14.6 A comparison of carbonyl stretching frequencies for 2% wt./vol. ketone in dimethyl sulfoxide and/or carbon tetrachloride solution

Mole % (CH ₃) ₂ SO/CCl ₄	Acetone cm ⁻¹	Aceto-phenone 2,4,6-Tri-methyl-cm ⁻¹	Aceto-phenone 4-nitro- cm ⁻¹	Aceto-phenone cm ⁻¹	Aceto-phenone 4-methoxy- cm ⁻¹	Aceto-phenone cm ⁻¹
0	1718	1704	1700	1691	1683	1665
11.87	1715	1700	1697	1687	1679	1662
29.48	1713	1699	1695	1686	1677	1661
40.48	1713	1698	1694	1686	1676	1660
48.78	1712	1698	1694	1685	1676	1660
57.63	1712	1698	1693	1684	1675	1659
100	1710	1695	1691	1682	1672	1657

TABLE 14.7 IR vapor-phase data for conjugated ketones

Compound and Conformer	2(C=O str.)*	C=O str.* (see text)*	C=C, str. (see text)*	CH=CH twist		[(A)C=C str.]/ $[(A)C=O str.]*$	[C=C str.]- [HC=CH twist]	$[(A)CH=CH twist]/$ $[(A)C=C str.]^*$	C=CH ₂ wag	CH=CH ₂ wag
s-cis,trans CH=CH										
Chalcone	3358(0.005)	1680(0.690)	1620(1.230)	980(0.129)	60	1.78	640	0.11		
4,4'-Difluoro-		1680(0.372)	1619(0.614)	980(0.090)	61	1.65	639	0.15		
4'-Fluoro-methoxy	3350(0.005)	1678(0.365)	1605(1.220)	979(0.131)	73	3.34	626	0.11		
3,4-Dichloro-4'-methyl	3350(0.005)	1675(0.491)	1612(1.240)	979(0.180)	63	2.53	633	0.15		
2-Chloro-2',4'-dimethyl	3330(0.005)	1670(1.230)	1611(0.225)	979(0.225)	59	0.68	632	0.27		
4-Nitro-	3360(0.005)	1684(0385)	1619(0.393)	978(0.130)	65	1.02	641	0.33		
s-cis		1730(0.735)	1630(0.129)					0.55		
3-Buten-2-one	3400(0.011)	1715(1.245)	1627(0.120)	986(0.250)	88	0.09	641	2.08	951(0.400)	760(0.030)
		1695(1.239)	1616(0.112)	[C=CH ₂ wag]				[(A)C=CH ₂ wag]/	[CH=CH twist]-	
				951(0.400)				(1-72 ····· MI)	[Orr Orrende]	
s-cis				[C=CH ₂ wag]				[(A)C=C str.]	[C=CH ₂ wag]	
3-Methyl-3-buten-2-one	3388(0.030)	1700(1.240)	1639(0.210)	929(0.520)	61	0.17	710	2.48	35	
s-cis 1-Penten-3-one										
	3399(0.020)	1712(1.240)	1624(0.210)	987(0.400)	88	0.17	637	1.9		
s-cis,trans HC=CH										
1-Phenyl-1-hepten-3-one	3395(0.010)	1690(0.920)	1620(1.210)	974(0.370)	70	1.32	646	0.31		
								[(Ao.p=C-H def.]/		
s-cis,cis(H,CH ₃)		1710(1.140)						[(A)C=C str.]		
Methyl 2-methyl-1-	3400(0.011)	1705(0.940)	1634(1.240)	821(0.091)	71	1.32	813	0.07		
propenyl ketone		1699(1.150)								
s-cis,cis(H,CH ₃)?				[o.p.=CH def.]						
3-Methyl-4-phenyl-	3358(0.005)	1690(1.250)	1627(0.160)	860(0.030)	63	0.13	767	0.19		
3-buten-2-one								[(A)o.p.=C-H def.]/		

TABLE 14.7A Other fundamental vibrations for conjugated ketones

	trans=C-H		i.p.o.p. 5H	o.p. Ring			
Compound	s. rock and a.CCC str.	i.p. Ring	def.	def.			
Chalcone	1320(0.600)	1015(0.500)	746(0.440)	691(0.381)			
			[o.p.2H def]				
4, 4'-Difluoro-	1320(0.261)	1015(0.285)	821(0.285)				
4'-Fluoro-4-methoxy	1320(0.295)	1015(0.385)	821(0.300)				
3,4-Dichloro-4'-methyl	1322(0.370)	1030(0.600)	801(0.400)				
,			[o.p.H def.]	[o.p.2H def.]	[o.p.4H def]		
2-chloro-2',4'-dimethyl	1310(0.490)	1009(0.360)	873(0.445)	817(0.180)	752(0. 44 0)		
,			[o.p.2H def.]	[a.NO ₂ str.]	[s.NO ₂ str.]		
4-Nitro-	1318(0.470)	1011(0.390)	851(0.232)	1538(0.542)	1348(1.230)		
	[CH ₂ =bend]	[s.CH ₃ bend]					
3-Buten-2-one	1410(0.310)	1380(0.359)	1240(0.365)	1175(0.390)	760(0.030)		
	$a.CH_2=str.$	[a.CH ₃ str.]	[s.CH ₃ str.]	[s.CH ₃ str.]	[a.CH3 bend]	[s.CH3 bend]	[CCC str.]
3-Methyl-3-buten-2-one	3100(0.172)	2988(0.540)	2938(0.680)	2880(0.285)	1450(0.399)	1369(0.830)	1145(1.030)
	, ,				$[CH_2=twist?]$	[gamma C=O]	
					700(0.070)	561(0.140)	
	$[a.CH_2=str.]$	$[CH_2=bend]$		[CCC str. ?]	[a.CH ₃ bend]		
1-Penten-3-one	3102(0.103)	1410(0.530)		1196(0.300)	1460(0.191)		
	[CH=str.]	[a.CH ₃ str.]	[s.CH ₃ str.]	[a.CH ₃ bend]	[s.CH4 bend]	[s.CH3 bend]	
Methyl-2-methyl-1-	3020(0.190)	2980(0.270)	2870(0.140)	1448(0.235)	1390(0.370)	1367(0.520)	
propenyl ketone	,						
property:	[a.CH ₃ str.]	[a.CH ₂ str.]	[s.CH ₂ str.]	[CH, bend]	[s.CH3 bend]		
1-Phenyl-1-hepten-3-	2970(0.940)	2940(0.790)	2885(0.400)	1451(0.280)	1385(0.100)		
one	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	,	[i.p.o.p.5H	[o.p. Ring	
	[CCC str.]				def.]	def.]	
	1325(0.430)				745(0.360)	690(0.320)	
	1323(0.130)			see text	see text	(/	
3-Methyl-4-phenyl-				770(0.068)	726(0.104)	695(0.146)	
3-buten-2-one				(,	, == (=== ,)	0.0 (0.0 /0)	
5 outen 2 one	IOC-H str.	[s(OC-H bend)	[OC-H bend]		[i.p.o.p.5H	[o.p. Ring	
	in ER.]	in FR.	(def.]	def.	
Cinnamaldehyde	2805(0.116)	2737(0.109)	1395(0.005)		741(0.157)	688(0.111)	
alpha-Hexyl cinnamaldehyde	2828(0.1180	2705(0.115)	1400(0.035)		745(0.082)	695(0.131)	
aipiia rickyr chinamaidenyde	2020(0.1100	2.03(0.113)			. 13(0.002)	3/3(0.131)	

TABLE 14.8 Infrared data for 2-hydroxy-5-X-acetophenone in CCl₄ and CS₂ solutions

2-Hydroxy-5-X- acetophenones 5-X	C=O: H=O cm ⁻¹ CCl ₄ soln.	C=O: H=O cm ⁻¹ NM	C=O: H=O cm ⁻¹ CHCl ₃	$C=OCH_3$ cm^{-1} CCl_4 soln.	delta cm ⁻¹	$C-C(=)-C str.$ cm^{-1} $CS_2 soln.$	$C_6H_5-C(=)$ str. cm^{-1} CS_2 soln.	$C_6H_5-O \text{ str},$ cm^{-1} $CS_2 \text{ soln}.$	sym. CH_3 bendom cm^{-1} CCl_4 soln.
NO2	1658	1645			13	973	1295	1192	1360*1
C=OCH ₃	1650	1073		1687	37	968,958	1302	1212	1370;1359
Н	1646.2		1642.3		3.9	957	1303	1212	1369
C ₆ H ₅	1650					958	1301	1212	1368
I	1641					954	1283	1190	1365
CH ₃	1654					960	1297	1213	1369
Br	1649					959	1318	1207	1363
Cl	1650					959	1321	1208	1367
F	1655					963	1322	1211	1371
CH ₃ O	1652					960	1370	1205	1370
NH ₂	1648	1641			7	961	1380	1211	1380
NH ₂						[969 solid]		[1218 solid]	
2	NH_2 bend cm^{-1}								
NH ₂	1636								

^{*1}and sym. NO₂ str.

TABLE 14.9 IR vapor-phase data and assignments for cyclobutanone and cyclopentanone

Compound	a.CH ₂ str. cm ⁻¹ (A)	s.CH ₂ str. cm ⁻¹ (A)	CH ₂ bend cm ⁻¹ (A)	CH ₂ wag cm ⁻¹ (A)	CH ₂ twist cm ⁻¹ (A)	CH ₂ rock cm ⁻¹ (A)	Ring def. cm ⁻¹ (A) breathing	Ring cm ⁻¹ (A)	2(C=O) str. cm ⁻¹ (A)	C=O str. cm ⁻¹ (A)
Cyclobutanone	3004 (0.240) 2980 (0.170)	2930 (0.105) 2904 (0.241)	1402 (0.070) 1404 (0.060) 1396 (0.070)	1254 (0.025)	1223 (0.050) 1210 (0.040) 1195 (0.030)	845 (0.010)	1072 (0.290) 1060 (0.232)	945 (0.010)	3602 (0.021)	1828 (1.041) 1815 (1.240) 1800 (1.141)
Cyclopentanone	2979 (0.841) 2965 (0.690)	2895 (0.321)	1419 (0.175)	1275 (0.063)	1142		964		3510 (0.040)	1767 (1.250)

TABLE 14.10 The C=O stretching frequencies for cyclopentanone and cyclohexanone in the vapor, neat, and solution phases

Cyclopentanone solvent	Corrected for fermi res. C=O str. 1 % (wt./vol.) cm ⁻¹	Corrected for fermi res. C.T cm ⁻¹	AN	delta C=O [Hexane]- [soln.] cm ⁻¹	Cyclohexanone	C=O str. 1 %(wt./vol.) cm ⁻¹	delta C=O str. [vap.]- [soln.] cm ⁻¹	delta C=O [Hexane]- C=O str. [soln.] cm ⁻¹
[Vapor]	1765					1732		
[Neat]	1739.2	1736.8						
Hexane	1750.6	1727.4	0			1723	0	27.6
Methyl t-Butyl ether	1745.8	1731.2		5.3		1718	5	27.3
Diethyl ether	1744.5	1730.5	3.9	6.1		1718	5	26.5
Carbon tetrachloride	1742.9	1731.1	8.6	7.7		1715	8	28.9
Benzene	1740.8	1731.2	8.2	9.8		1713	10	27.8
Carbon disulfide	1741.7	1727.3		8.9		1714	9	27.7
Benzonitrile	1736.9	1735.1	15.5	13.7		1706	10	30.9
Nitrobenzene	1736.1	1734.6	14.8	14.5		1707	18	29.8
Acetonitrile	1736.3	1736.7	18.9	14.3		1707	16	29.3
Methyl dichloride	1734.9	1735.1	20.4	15.7		1705	18	29.9
Nitromethane	1734.8	1737.2		15.8		1705	18	29.8
Dimethyl sulfoxide	1731.6	1735.4	19.3	19		1703(wet)	20	28.6
Chloroform						1703	20	30.6
Chloroform (4.0%)	1733.6	1735.4	23.1	17				
Chloroform (0.1%)	1733	1735	23.1	17.6				
Chloroforn-d	1733.4	1735.6	23.1	17.2				
t-Butyl alcohol	1734.9	1737.1	29.1	15.7				
Isopropyl alcohol	1735.8	1738.2	33.5	14.8				
Ethyl alcohol	1735.2	1737.7	37.1	15.4		1702	21	33.2
Methyl alcohol	1733.5	1738.5	41.3	17.1		1701	22	32.5
Water	1728.8	1734.7	54.8	22.8				

TABLE 14.11 IR data for 14H-dibenzo[a,j] xanthen-14-one in CHCl₃/CCl₄ and various solvents

14H-dibenzo[a,j] xanthen-14-one Mole % CHCl ₃ /CCl ₄	C=O str. in FR [1] cm ⁻¹	C=O str. [2] in FR cm ⁻¹	A[1]	A[2]	A[1]/A[2]	C=O str. corrected for FR cm ⁻¹	OT or CT corrected for FR cm ⁻¹	
0	1648.85	1634.85	0.148	0.11	1.345	1642.9	1640.8	
54.62	1648.78	1633.14	0.094	0.108	0.87	1639.5	1640.3	
100	1645.4	1633.08	0.197	0.273	0.721	1638.2	1640.2	
Solvent								AN*1
Hexane	1651.89	1636.83	0.076	0.031	2.45	16 4 7.5	1641.2	0
Carbon tetrachloride	1648.85	1634.85	0.148	0.031	1.345	1642.9	1640.8	8.6
Carbon disulfide	1648.18	1633.8	0.482	0.359	1.34	1642	1639.9	[10.1]
Benzene	1647.59	1634.49	0.178	0.166	1.07	1641.3	1640.8	8.2
Tetrahydrofuran	1646.74	1634.82	0.384	0.299	1.28	1641.5	1640	[8.8]
Methylene chloride	1646.06	1632.98	0.224	0.27	0.83	1638.9	1640.1	20.4
Benzonitrile	1645.79	1633.28	0.357	0.47	0.76	1638.7	1640.4	15.5
Chloroform	1645.4	1633.08	0.197	0.273	0.72	1638.2	1640.2	23.1

^{*1}AN = acceptor number.

TABLE 14.12 IR and Raman data for 1,4-benzoquinones in CCl₄ and CHCl₃ solutions

Substituted 1,4-benzoquinone	Point group	Species	IR data o.p.(C=O) ₂ str. [CCl ₄ soln.] cm^{-1}	IR data o.p.($C=O$) ₂ str. [$CHCl_3$ soln.] cm^{-1}	[CCl ₄ soln.]— [CHCl ₃ soln.] cm ⁻¹	Species	Raman data i.p. $(C=O)_2$ str. $[CCl_4$ soln.] cm^{-1}	Raman data i.p.(C=O) ₂ str. [CHCl ₃ soln.]	[CCl ₄ soln.]– [CHCl ₃ soln.]
Tetrafluoro	Vh	B_{1u}	1702.71	1701.42	-1.29	A_g	1696.8	1697.7	0.9
Tetrachloro	Vh	$B_{1\mu}$	1694.68	1693.37	-1.31			1685.1	
Trichloro	Cs	\mathbf{A}'	[1694]* ¹			$\mathbf{A_g}\\ \mathbf{A'}$	[1675]		
Tetrabromo	Vh	B_{1u}	1687.48	1685.37	-2.11	A_g			
2,5-Dichloro	C2h	B _u	1682.18	1681.25	-0.09	A_{σ}°	1672.5	1673.6	1.1
Chloro	Cs	\mathbf{A}'	1681.89	1680.95	-0.94	$\begin{matrix} \mathbf{A_g} \\ \mathbf{A'} \end{matrix}$	1659.3	1659.3	0
Unsubstituted	Vh	B_{lu}	1663.51* ²	1662	-1.51	A_{g}	1661.4	1661.8	0.4
Methyl	Cs	\mathbf{A}'	1662.47	1659.57	-2.9	\mathbf{A}'	1665.7	1665.9	0.2
2,6-Dimethyl	C2v	A_1	1657			A_1		1666.9	2.5

^{*1}CS₂ soln.
*2Corrected for FR.

326 Ketones

TABLE 14.13 $\,$ IR data for tetrafluoro-1,4-benzoquinone in CCl₄, CHCl₃, and C₆H₁₄ solutions

Tetrafluoro-	o.p. $(C=O)_2$ str.	o.p. $(C=C)_2$ str.	4133	4.501
1,4-benzoquinone	cm ⁻¹	cm ⁻¹	A[1]	A[2]
Mole % CHCl ₃ /CCl ₄				
0	1702.71	1667.63	1.279	1.164
26.53	1702.27	1667.88	1.308	1.157
52	1701.91	1668.05	1.506	1.314
75.06	1701.66	1668.21	1.614	1.416
100	1701.42	1668.35	1.805	1.525
delta cm ⁻¹	-1.29	0.72		
Mole % CHCl ₃ /C ₆ H ₁₄				
0	1705.03	1667.67	0.443	0.388
24.49	1704.07	1668.04	0.451	0.413
53.16	1702.82	1668.31	0.551	0.511
76.43	1702.09	1668.52	0.703	0.639
100	1701.21	1668.05	0.911	0.813
delta cm ⁻¹	-3.82	0.38		
Mole % CCl ₄ /C6H ₁₄				
0	1705.06	1667.67	0.466	0.408
28.26	1704.48	1667.72	0.495	0.439
51.96	1703.88	1667.78	0.539	0.49
73.01	1703.28	1667.79	0.563	0.517
100	1702.83	1667.79	0.78	0.713
delta cm ⁻¹	-2.23	0.12		

TABLE 14.14 $\,$ IR data for tetrachloro-1,4-benzoquinone in CHCl₃/n-C₆H₁₄, CCl₄/n-C₆H₁₄, and CHCl₃/CCl₄ solutions

Tetrachloro-	$o.p.(C=O)_2 str.$	
1,4-benzoquinone	cm ⁻¹	A
Mole % CHCl ₃ /n-C ₆ H ₁₄		
0	1696.3	0.222
24.29	1695.27	0.267
53.16	1694.86	0.539
76.43	1693.76	0.726
100	1693.27	1.024
delta cm ⁻¹	-3.03	
Mole % $CCl_4/n-C_6H_{14}$		
0	1696.4	0.217
28.26	1695.73	0.255
51.96	1695.19	0.32
73.01	1695.51	0.406
100	1694.66	0.593
delta cm ⁻¹	-1.74	
Mole % CHCl ₃ /CCl ₄		
0	1694.68	
26.563	1693.97	
52	1693.4	
75.06	1693.09	
100	1693.37	
delta cm ⁻¹	-1.31	

TABLE 14.15 IR data for tetrabromo-1,4-benzoquinone in CCl_4/C_6H_{14} , $CHCl_3/C_6H_{14}$, and $CHCl_3/CCl_4$ solutions

Tetrabromo-	$o.p.(C=O)_2 str.$	CT
1,4-benzoquinone	cm ⁻¹	cm ⁻¹
Mole % CCl ₄ /C ₆ H ₁₄		
0	1689.87	
28.26	1688.52	1676.44
51.96	1688.11	1672.04
73.01	1687.52	1670.82
73.01	1687.52	1670.82
100	1687.59	1669.38
delta cm ⁻¹	-2.28	
Mole % CHCl ₃ /C ₆ H ₁₄		
0	1689.54	
24.49	1688.33	1670.82
49.31	1687.82	1670.02
72.99	1686.76	1669.45
100	1685.39	1669.33
delta cm ⁻¹	-4.15	
Mole % CHCl ₃ /CCl ₄		
0	1687.48	
26.53	1686.89	1669.88
52	1686.41	1669.84
75.06	1685.78	1669.9
100	1685.37	
delta cm ⁻¹	-2.11	

TABLE 14.16 IR data for chloro-1,4-benzoquinone in CHCl₃/n-C₆H₁₄, CCl₄/n-C₆H₁₄, and CHCl₃/CCl₄ solutions

Chloro-1,4-benzoquinone	o.p. $(C=O)_2$ str.n cm ⁻¹	i.p. $(C=O)_2$ str. cm ⁻¹	A[1]	A[2]
Mole % CHCl ₃ /n-C ₆ H ₁₄			,	
0	1683.76	1662.23	0.595	0.252
24.49	1683.32	1661.56	0.485	0.234
49.31	1682.23	1660.96	0.517	0.272
74.71	1681.85	1660.37	0.675	0.379
100	1680.9	1660.32	0.616	0.361
delta cm ⁻¹	~2.86	-1.92	0.010	0.301
Mole % CCl ₄ /n-C ₆ H ₁₄				
0	1683.73	1662.19	0.599	0.256
28.26	1683.87	1661.71	0.526	0.235
51.96	1683.36	1661.33	0.565	0.254
77.17	1682.64	1660.86	0.613	0.288
100	1681.87	1660.37	0.689	0.34
delta cm ⁻¹	-1.86	-1.82		
Mole % CHCl ₃ /CCl ₄				
0	1681.89	1660.36	0.709	0.348
26.53	1682.01	1660.82	0.733	0.385
52	1681.59	1660.62	0.707	0.389
75.06	1681.31	1660.49	0.656	0.375
100	1680.95	1660.35	0.798	0.411
delta cm ⁻¹	-0.94	-0.01		

TABLE 14.17 IR data for 2,5-dichlorobenzoquinone in $CHCl_3/n\text{-}C_6H_{14},\ CCl_4/n\text{-}C_6H_{14},\ and\ CHCl_3/CCl_4\ solutions$

2,5-Dichloro-1,4-benzoquinone	o.p.(C=O) ₂ cm ⁻¹
Mole % CHCl ₃ /n-C ₆ H ₁₄	
0	1684.86
24.29	1683.25
53.16	1682.76
76.43	1681.59
100	1681.59
delta cm ⁻¹	-3.48
Mole % CCl ₄ /n-C ₆ H ₁₄	
0	1684.74
28.26	1683.9
51.96	1683.2
73.01	1683.33
100	1682.15
delta cm ⁻¹	-2.59
Mole % CHCl₃/CCl₄	
0	1682.18
26.53	1681.64
52	1681.87
75.06	1681.57
100	1681.25
delta cm ⁻¹	-0.83

TABLE 14.18 IR data for 3,3',5,5'-tetraalkyl-1,4- diphenoquinone in CHCl₃ solution and in the solid phase

3, 3',5,5'-Tetraalkyl- 1,4-diphenoquinone	Symmetry	o.p.(C=O) ₂ str. solid cm ⁻¹	o.p.(C=O) ₂ str. CHCl ₃ cm ⁻¹	i.p.(C=O) ₂ str. solid cm ⁻¹	i.p.(C=O) ₂ str. CHCl ₃ cm ⁻¹	o.p. $(C=O)_2$ str.+ i.p. $(C=O)_2$ str. solid cm ⁻¹	o.p.(C=O) ₂ str.+ i.p.(C=O) ₂ str. CHCl ₃ cm ⁻¹
(CH ₃) ₄	D_{2h}	1589	1595	[1589]	[1597]	3178	3192
(iso C ₄ H ₉) ₄	D_{2h}	1589	1592	[1579]	[1583]	3168	3175
$(\text{tert } C_4H_9)_4$	D_{2h}	1602	1597	[1602]	[1583]	3204	3180
(cyclo C ₅ H ₁₁) ₄	D_{2h}	1598	1598	[1601]	[1602]	3199	3200
3,3'-(CH ₃)2-5,5'	C _{2v}	1586	1588	[1582]	[1592]	3168	3180
$(\text{tert. } C_4H_9)_2$		1588	1589	1603	1603	3189 [3191]	3195 [3192]

330 Ketones

TABLE 14.19 The dependence of the C=O stretching frequency upon solute concentration of dialkyl ketones in $CCl_4/CHCl_3$ solutions

wt./vol. % solute [CCl ₄]	Diisopropyl ketone C=O str.	wt./vol. % solute [CCl ₄]	Di-t-butyl ketone C≕O str.
0.75	1715.91	0.8	1685.9
1.5	1715.87	1.2	1685.88
2.63	1715.8	1.8	1685.86
3.75	1715.75	2.62	1685.87
5.25	1715.72	3.94	1685.83
7.5	1715.67	5.25	1685.82
		6.26	1685.81
delta C=O str.	-0.24		-0.09
[CHCl ₃]		[CHCl ₃]	
0.22	1704.94	0.4	1680.71
0.43	1704.95	0.8	1680.99
1.08	1704	1.2	1680.73
2.16	1705.05	1.6	1680.73
4.04	1705.2	2.3	1680.73
5.89	1705.32	3.47	1680.78
7.29	1705.38	4.63	1680.79
8.62	1705.47	5.78	1680.81
delta C=O str.	0.53		0.1

-								
Conjugation Ef	fect		332					
Inductive Effec	332							
Intramolecular	Intramolecular Hydrogen Bonding							
Diesters			333					
Vapor vs Soluti	333							
Rotational Con	335							
Methods to Cor	337							
Lactones	337							
Alkyl Benzoates	s		341					
Salicylates and	341							
Phthalates	342							
Acrylates and M	343							
Cinnamates	345							
Phenoxarsine D)erivatives		346					
Thiol Esters			347					
Thiol Acids			349					
Thiol Acid Anh	ydrides		349					
Other Ester Vib	orations		350					
References			351					
Figures								
Figure 15-1	352 (333)	Figure 15-14	360 (340)					
Figure 15-2	353 (334)	Figure 15-15	361 (340)					
Figure 15-3	354 (334)	Figure 15-16	362 (341)					
Figure 15-4	355 (334)	Figure 15-17	363 (341)					
Figure 15-5	356 (335)	Figure 15-18	364 (341)					
Figure 15-6	356 (335)	Figure 15-19	365 (341)					
Figure 15-7	357 (337)	Figure 15-20	366 (342)					
Figure 15-8	357 (339)	Figure 15-21	367 (342)					
Figure 15-9	358 (339)	Figure 15-22	367 (343)					
Figure 15-10	358 (339)	Figure 15-23	368 (344)					
Figure 15-11	359 (339)	Figure 15-24	369 (347)					
Figure 15-12	359 (339)	Figure 15-25	370 (349)					
Figure 15-13	360 (340)	1 iguit 15 25	310 (315)					
6 13 13	300 (3.0)							
Tables								
Table 15-1	371 (332)	Table 15-3	373 (334)					
Table 15-2	372 (333)	Table 15-4	373 (335)					
	3.2 (333)	INDIC 15-1	313 (333)					

Table 15-5	373 (335)	Table 15-15	383 (345)
Table 15-5a	374 (335)	Table 15-15a	383 (346)
Table 15-6	374 (337, 338)	Table 15-15b	384 (346)
Table 15-7	375 (339)	Table 15-16	385 (346)
Table 15-8	375 (340)	Table 15-17	386 (348)
Table 15-9	376 (340)	Table 15-17a	386 (348)
Table 15-10	377 (341)	Table 15-17b	387 (348)
Table 15-11	378 (341)	Table 15-17c	387 (349)
Table 15-12	378 (342)	Table 15-18	388 (350)
Table 15-13	379 (343)	Table 15-19	389 (350)
Table 15-13a	380 (343)	Table 15-20	390 (350)
Table 15-14	381 (343)		

^{*}Numbers in parentheses indicate in-text page reference.

Table 15.1 lists IR data for the carbonyl stretching frequencies, vC=0, for some carboxylic acid esters. This table also shows how the vC=0 frequencies change or shift with change of phase or with change in the molecular structure (1).

In all cases, ν C=O occurs at higher frequency in the vapor phase than in the liquid or condensed phase. In the liquid phase the dipolar interaction of esters (dielectric effect) causes the C=O bond to weaken and occur at lower frequency. In any series of esters, the methyl analog will occur at the highest frequency, and the frequencies decrease with increased branching on the α -carbon atom. This is attributed to the inductive effect of the alkyl group, because the electron donation of the alkyl group increases with increased branching on the α -carbon atom, which causes ν C=O to weaken and vibrate at lower frequency.

The vinyl or phenyl esters of any series always occur at higher frequencies than their corresponding alkyl esters, and this is also due to the inductive effect. The vinyl or phenyl groups withdraw electrons, and this strengthens the C=O bond, which causes ν C=O to vibrate at higher frequency. For example, alkyl acetates exhibit ν C=O in the range 1755–1769 cm⁻¹, and ν C=O for vinyl acetate and phenyl acetates occur in the range 1781–1786 cm⁻¹ in the vapor phase.

CONJUGATION EFFECT

Conjugation of C=O with a vinyl or phenyl group (C=C-C=O or $C_6H_5-\omega C$ =O) causes νC =O to decrease in frequency. For example, alkyl propionates exhibit νC =O in the range 1751–1762 cm⁻¹ and alkyl acrylates exhibit νC =O in the range 1746–1751 cm⁻¹ in the vapor phase.

INDUCTIVE EFFECT

The inductive effect of the phenyl group also causes vC=O for phenyl benzoate to occur at higher frequency (1760 cm⁻¹) than vC=O for alkyl benzoates (1737–1749 cm⁻¹). The vC=O frequencies for dialkyl isophthalates, and dialkyl terephthalates occur in the range 1739–1753 cm⁻¹, and are essentially identical to those exhibited by the alkyl benzoates in the vapor phase.

INTRAMOLECULAR HYDROGEN BONDING

In the vapor phase at high temperature alkyl salicylates exhibit vC=O in the range 1740–1755 and $v(C=O)\cdots H-O$ in the range 1687–1698 cm⁻¹, and phenyl salicylates exhibit vC=O in the range 1750–1762 and $v(C=O)\cdots H-O$ in the range 1695–1706 cm⁻¹. The higher frequency vC=O mode is attributed to C=O groups not intramolecularly hydrogen bonded and the lower frequency $v(C=O)\cdots H-O$ mode is attributed to intramolecularly hydrogen-bonded C=O groups.

DIESTERS

It should be noted that dialkyl malonates, dialkyl succinates, and dialkyl adipates which contain two ester groups exhibit νC =O frequencies similar to those exhibited by the esters containing only one ester group in the vapor phase at elevated temperature.

VAPOR VS SOLUTION PHASES

Table 15.2 compares the ν C=O frequencies for alkyl alkanoates in the vapor phase and in various solvents at 0.5 % wt./vol. Here MA is methyl acetate, MP is methyl propionate, MIB is methyl isobutyrate, MTMA is methyl trimethylacetate, EA is ethyl acetate, EP is ethyl propionate, EIB is ethyl isobutyrate, and ETMA is ethyl trimethyl acetate (2).

A study of Table 15.2 shows that ν C=O for each of these esters occur at the highest frequency in the vapor phase, and in solution occur at the highest frequency in solution with n-hexane, a nonpolar solvent. In addition the ν C=O mode decreases in frequency as the branching is increased on the acetate α -carbon atom and as methyl is replaced by ethyl. From other studies, the ν C=O for the isopropyl and tert-butyl esters in each series would be expected to occur at subsequently lower frequency due to the increased inductive contribution of the isopropyl and tert-butyl groups.

It is interesting to compare the ν C=O frequency differences for these alkyl alkanoates in solution in n-hexane and in the neat phase. These frequency differences are 10.2, 9.1, 7.1, and 6.2 cm⁻¹ and 8.3, 7.8, 6.3 and 6.1 cm⁻¹ for the methyl and ethyl analogs of acetate, propionate, isobutyrate, and trimethyl isobutyrate, respectively. Moreover, the differences between the ν C=O frequencies of the methyl and ethyl analogs are 1.9, 1.3, 0.8 and 0.1 cm⁻¹ progressing in the series acetate, propionate, isobutyrate, and trimethylacetate. These data indicate that as the steric factor of the R-C=O and O-R' groups for R-C(=O)-OR' is increased there is less dipolar interaction between ester molecules in the near phase; thus, there is less of a frequency difference between the ν C=O frequencies in n-hexane solution than in the near phase (2).

Figure 15.1 shows plots of vC=O (solvent or neat) vs vC=O (hexane) minus vC=O (solvent or neat) for the alkyl alkanoates. These plots do not show data for the $v(C=O)\cdots H-O$ frequencies noted when in solution with the four alcohols included in this study. Methyl trimethylacetate exhibits two bands, and this is attributed to Fermi resonance (2). The plots demonstrate that the frequencies decrease in a progressive manner, as was discussed here. There is no theoretical significance to these linear plots because any set of data (numbers) treated mathematically in this manner yields a linear relationship.

shows plots of $v(C=O)\cdots HO(ROH)$ vs vC=O (hexane) minus $\nu(C=O)\cdots HO(ROH)$ for alkyl alkanoates. These plots show that the $\nu(C=O)\cdots HO$ frequencies decrease in each series in the order tert-butyl alcohol through methyl alcohol, and this is the order of progressive decreasing ROH acidity and progressive refractive index of these four alcohols. However, the dielectric constant of each alcohol increases progressively in the solvent order tert-butyl alcohol through methyl alcohol. Using these data to calculate the reaction field $[(R) = (e-1)/(2e+n^2)]$, where e is the dielectric constant and n is the refractive index (3,4) shows that the reaction field increases in the order of butyl alcohol through methyl alcohol. Therefore, the reaction field is responsible for lowering the vC=O frequencies in alkyl alkanoates in alkyl alcohols. The $v(C=O) \cdot \cdot \cdot HOR$ frequencies for these alkyl alkanoates are also progressively lowered in frequency by the increasing reaction field plus the additional lowering of the vC=0mode due to intermolecular hydrogen bonding between the ROH proton and the carbonyl oxygen atom. Therefore, a quantitative measure of the strength of the intermolecular hydrogen bonds formed between C=O···HOR is the difference between the vC=O and vC=O···HOR frequencies for each compound in each of the four alcohols. The larger the number, the stronger the intermolecular hydrogen bond. The strength of an intermolecular hydrogen bond between C=O···HOR is dependent upon three factors: 1) the acidity of the OH proton; 2) the basicity of the C=O groups; and 3) the steric factors of both the alkyl group of each alcohol and the alkyl groups in each alkyl alkanote. The larger their steric factors the larger the C=O···HOR bond distance. The strength of the hydrogen bond decreases as this C=O···HOR bond distance increases, and causes the frequency separation between vC=O and vC=O···HOR to decrease. The steric factor of the alkyl groups prevents the strongest intermolecular hydrogen bonds from being formed between the most acid OH proton (tert-butyl alcohol in this case) and the most basic carbonyl group (ethyl trimethylacetate in this case). The frequency differences between vC=O and $vC=O\cdots HOR$ in the alkyl alcohol solution of ethyl trimethylacetate should be less than exhibited by methyl trimethylacetate. Table 15.3 lists the frequency difference between vC=O and vC=O···HOR for the alkyl alkanoates. The data shows that the strongest intermolecular hydrogen bonds are formed between the carbonyl oxygen atom and the alcohol OH protons with minor exception in the case of methanol. With the exception of isopropyl alcohol, the strength of the intermolecular hydrogen bond formed is also greater in the case of methyl trimethylacetate than in the case of ethyl trimethyl acetate. These data support the supposition that steric factors of these molecules do affect the molecular association between solute and solvent. In addition, steric factors must then play a role in the dielectric or dipolar interaction between solute and solvent.

Figure 15.3 shows plots of vC=O for alkyl alkanoates vs AN for the solvent or neat alkyl alkanoate(s). AN is the solvent acceptor number (6). These plots show that AN values are not a precise measure of solute-solvent interaction due to steric factors if the alkyl groups and basicity of the carbonyl group (2).

Figure 15.4 shows plots of $vC=O\cdots HO(ROH)$ vs AN for alkyl alkanoates in alkyl alcohols. With the exception of ethyl acetate in methyl alcohol, the $vC=O\cdots OH$ frequencies decrease in essentially a linear manner as the acidity of the OH proton decreases in the order tert-butyl alcohol through methyl alcohol. Reversal of that order of $vC=O\cdots HOR$ frequency decrease with decreasing strength of the intermolecular hydrogen bond indicates that dielectric properties of the solvent play a major role in affecting molecular vibrations.

Figure 15.5 shows plots of $vC=O\cdots$ HOR for methyl acetate, ethyl acetate, isopropyl acetate, and tert-butyl acetate vs the solvent acceptor number (AN) for tert-butyl alcohol, isopropyl alcohol, ethyl alcohol, and methyl alcohol, numbered in solvent order 14–17 (5).

These alkyl acetates exhibit two bands in the carbonyl region of the IR spectrum in each of these four alkyl alcohols. Plots (A) through (D) are for the alkyl acetates in alcohol solution, but the carbonyl oxygen atoms are not intermolecularly hydrogen bonded. The lower frequency plots marked (A') through (D') are for the alkyl acetates in these alcohol solutions where the carbonyl oxygen atom is intermolecularly hydrogen bonded (C=O···HOR). Plots (A') through (D') show a relationship with the AN values of both the nonprotic and protic solvents, and this indicates that the AN values include a value for the intermolecular hydrogen bond to a basic site in a solute molecule. This is understandable when considering how these AN values were determined. Since $(C_2H_5)_3P=0$ was used as the solute molecule to determine the AN values of solvents by application of NMR(6), it is reasonable that in the case of the alkyl alcohols an intermolecular hydrogen bond was also formed between the P=O oxygen atom and the alcohol OH proton (P=O···HOR).

Table 15.4 lists the frequency difference between vC=O and $vC=O\cdots HO$ for alkyl acetates in solution with alkyl alcohols (5). In this case the basicity of the carbonyl group increases in the order methyl through tert-butyl acetate. With the exception of isopropyl acetate in solution in methanol, the strongest intermolecular hydrogen bonds are formed between the carbonyl oxygen atom of tert-butyl acetate and the OH proton of each of the four alcohols. Thus, the strongest intermolecular hydrogen bonds are formed in the molecule with the most basic carbonyl group. It then follows that branching on the $O-R\alpha$ -carbon atom does not have as much effect on intermolecular hydrogen bonding as does branching on the acetate α -carbon atom. This is reasonable, because the alkyl group joined to an acetate α -carbon atom is much closer in space to the carbonyl oxygen atom than are the alkyl groups joined to the $O-R\alpha$ -carbon atom.

Again it should be noted that both vC=O and $vC=O\cdots HOR$ decrease in frequency as the acidity of the OH proton decreases, which is the opposite of what one might predict. The overriding factor is that the reaction field increases in the order tert-butyl alcohol through methyl alcohol, and this causes a general decrease in both vibrational modes. In other words there is more dipolar interaction between the solute and solvent as the reaction field increases, which subsequently weakens the C=O bond. As previously discussed, steric factors also must affect dipolar interaction between solute and solvent. It is reasonable to assume that the AN values of the vC=O frequencies for alkyl acetates in these alkyl alcohols which are not intermolecularly hydrogen bonded are comparable to those AN values for dialkyl ethers, because these are the values predicted by projection of these frequencies onto the (A') through (D') curves.

ROTATIONAL CONFORMERS

Table 15.5 lists the ν C=O frequencies for alkyl 2,2-dichloroacetates and alkyl acetates in the vapor or net phases (1,7). The alkyl dichloroacetates in the vapor and neat phases exhibit rotational conformers 1 and 2, and both rotational conformer ν C=O modes occur at lower frequency in the neat phase than the vapor phase by 11–16 cm⁻¹. The ν C=O for rotational

conformer 1 is $21-25 \,\mathrm{cm}^{-1}$ higher in frequency than vC=0 for conformer 2, and the corresponding alkyl analogs of alkyl acetate and conformer 2 of alkyl 2,2-dichloroacetates exhibit vC=0 within $\pm 4 \,\mathrm{cm}^{-1}$ of each other. The inductive effect of the Cl atoms upon the C=0 bond is independent of molecular orientation; therefore, another factor is needed to explain the relatively low frequency exhibited by vC=0 of conformer 2 for alkyl dichloroacetates.

Comparison of the vC=O vapor-phase data for the methyl, ethyl, and butyl esters of 2-chloroacetates vs the corresponding alkyl acetates: (1770 vs 1769 cm⁻¹), (1764 vs 1761 cm⁻¹), and (1759 vs 1761 cm⁻¹), respectively, shows that substitution of a chlorine atom in the α -carbon atom has very little effect upon the vC=O mode. These vapor-phase data are recorded at high temperature. At ambient temperature in CCl_4 solution methyl chloroacetate exhibits vC=O for rotational conformer 1 at 1772 cm⁻¹ and rotational conformer 2 at 1747 cm⁻¹ (1). These data indicate that in the vapor phase at elevated temperature methyl chloroacetate exists in the form of rotational conformer 2 where the Cl atom is not cis of gauche with the carbonyl oxygen atom. It is suggested that the Cl atom is in a configuration in which the Cl atom is trans to the carbonyl oxygen atom.

In the case of the alkyl dichloroacetates, possible molecular rotational conformers are:

- a. 2 Cl atoms gauche to the carbonyl oxygen atom;
- b. 1 Cl atom cis and one Cl atom gauche to the carbonyl oxygen atom; and
- c. 1 Cl atom trans and one Cl atom gauche to the carbonyl oxygen atom.

In a rotational conformer where one Cl atom is trans and one Cl atom is gauche to the carbonyl oxygen atom, the O-C(=O)-C bond angle is most likely increased due to electrostatic repulsion between the trans Cl atom and the R-O oxygen atom. The increase in the O-C(=O)-C bond angle would lower the vC=O frequency for rotational conformer 2, and this factor then offsets the inductive effect of the Cl atoms which raise the vC=O frequency. This would account for the fact that vC=O for conformer 2 for alkyl 2-chloroacetate and vC=O for comparable alkyl acetates vibrate at comparable frequency.

Even though vC=O frequencies are always observed at lower frequency in the neat liquid phase than in CCl_4 or CS_2 solution, it is of interest to compare the following data, which data illustrate the inductive effect. The IR data for ethyl 2-chloroacetate is for CS_2 solution data, and for ethyl 2,2-dichloroacetate is for liquid phase data (7,8):

	ν C=O (cm ¹) rotation comformer	vC=O (cm ¹) rotation comformer 2
ethyl 2-chloroacetate (CS ₂)	1765.0	1740.5
ethyl 2,2dichloroacetate (neat)	1771	1750
ethyl acetate (CS ₂)		1740.8

The vC=O frequency for rotational conformer 2 increases with the addition of the second Cl atom when comparing data for ethyl 2-chloacetate and ethyl 2,2-dichloroacetate (Cl, 1740.5 cm⁻¹ vs 2 Cl, 1750 cm⁻¹) while vC=O for rotational conformer 1 also increases with the addition of the second Cl atom (Cl, 1765.0 cm⁻¹, Cl₂, 1771 cm⁻¹). The addition of the second Cl atom shows the additional inductive effect attributed by the second Cl atom. The

inductive effect of the first Cl atom is offset by the change in the O-C(=O)-C bond angle as already discussed here.

METHODS TO CONFIRM THE PRESENCE OF ROTATIONAL CONFORMERS

One method is to record IR spectra of a compound in CS_2 solution over a temperature range of $27^{\circ}C$ to approximately $-100^{\circ}C$ (8). The data in Table 15.5a is plotted in Fig. 15.6. The left plot shows vC=O rotational conformers 1 and 2 for ethyl 2-chloroacetate and vC=O for ethyl acetate in CS_2 solutions vs temperature in CS_2 solutions vs temperature in CS_2 conformer 2 vs temperature in CS_2 conformer 1/ CS_2 conformer 2 vs temperature in CS_2 show that all of the CS_2 modes decrease in frequency in a linear manner as the temperature of the CS_2 solution is lowered. In addition, the concentration of rotational conformer 1 increases while the concentration of rotational conformer 2 decreases with decrease in temperature.

Another method for determining the presence of rotational isomers is to record IR spectra of a compound in different solvents of mixtures of two solvents (8). Figure 15.7 illustrates this technique for methyl 2,4-dichlorophenoxyacetate in carbon tetrachloride and/or dimethyl sulfoxide solution. This figure shows a plot of the vC=O frequencies for rotational conformer 1 vs vC=O for rotational conformer 2 with change in the CCl_4 to $(CH_3)_2SO$ ratio. These data show that both frequencies decrease in a linear manner with change in the ratio of CCl_4 to $(CH_3)_2SO$. What it does not show is that both vC=O frequencies decrease in frequency as the concentration of CCl_4 is decreased or concentration of $(CH_3)_2SO$ is increased. This figure also shows that the absorbance ratio for (A)vC=O conformer 2/(A)vC=O conformer 1 decreases as the ratio of CCl_4 to $(CH_3)_2SO$ is decreased. Thus, the most polar isomer for methyl 2,4-dichlorophenoxyacetate is for rotational conformer 1. Rotational conformer 1 is where the phenoxy oxygen atom is near in space (cis or gauche) to the phenoxy oxygen atom, and rotational isomer 2 is where the phenoxy oxygen atom is away in space (trans or gauche) from the carbonyl oxygen atom (8).

LACTONES

Table 15.6 lists IR data for β -propiolactone in various solvents (1% wt./vol.) (9). Figure 15.8 shows IR spectra of β -propiolactone in CCl₄ solution (left) 52 mole % CHCl₃/CCl₄ solution (middle), and CHCl₃ solution (right). The β -propiolactone has the following empirical structure:

This structure is dsignated 4SR (4-membered saturated ring).

The C-C(=)-C bond angle is very small ($\sim 90^{\circ}$), and one would expect $\nu C=O$ to occur at a very high frequency. Inspection of Fig. 15.8 shows that the two lower frequency bands increase

in intensity while the higher frequency band decreases in intensity in progressing in the solvent series: CCl_4 , 52 mol % $CHCl_3/CCl_4$, and $CHCl_3$. These bands are the result of $\nu C=OA'$ being in Fermi resonance with the combination $\nu_6+\nu_{13}$, A' and the first overtone $2\nu_{10}$, A' (9). In this study of β -propiolactone an approximate correction for Fermi resonance based on perturbation theory for cases involving three modes was developed (9) (also see Chapter 1).

The data in Table 15.6 show that after correction for Fermi resonance, $\nu C=0$ for β -propiolactone occurs as high as $1850.2\,\mathrm{cm}^{-1}$ in n-hexane and as low as 1830.7 in methyl alcohol. Presumably the $1830.7\,\mathrm{cm}^{-1}$ band is for $\nu C=0\cdots HOCH_3$. The solvent acceptor numbers (AN) do not correlate with observed or unperturbed $\nu C=0$ β -propiolactone frequencies (9).

It is helpful to classify lactones as to the type of ring comprising the lactone group. For examples:

4 SR (see preceding text for β-propiolactone)
5 UR -2,3(5-membered unsaturated ring where C=C group is in the 2,3-positions.
6 UR-2,3,4,5 (6-membered unsaturated ring where the C=C groups are in the 2,3- and 4,5-positions. The α-pyrone and coumarin are examples containing this group.)

Lactones with 5 UR-2,3 structures are affected by alkyl substitution in the 4-position (1,10). In CCl_4 solution perturbed frequencies occur at 1785.4 and 1742 cm⁻¹ for 4-H, 4-H analog, at 1782 and 1765 cm⁻¹ for the 4-H, 4-CH₃ analog, and at 1776 and 1764 cm⁻¹ for the 4-CH₃, 4-HC₃ analog (10) after correction for Fermi resonance, ν C=O occurs at 1781.4, 1776.2, and 1769.9 cm⁻¹ for the 4H, 4H analog, the 4-H, 4-HC₃ analog, and the 4-HC₃, 4-HC₃ analog, respectively. The inductive effect of the CH₃ groups lowers the ν C=O frequencies. In addition, the ν C=O frequencies are lower in the case of 5 UR-2,3 compared to 5 SR lactones (1796 and 1784 cm⁻¹ in CCl_4 solution and ν C=O is 1789.1 cm⁻¹ after correction for Fermi resonance) due to conjugation of the C=C-C=O groups, which weakens the C=O bond and thus causes it to vibrate at a lower frequency (3).

The α -Pyrone has the following empirical structure:

In CCl_4 solution, IR bands are noted at 1752 and 1716 cm⁻¹, and after correction for Fermi resonance unperturbed $\nu C=0$ is 1749.4 cm⁻¹ (10).

Coumarin has the following empirical structure:

In CCl_4 solution at 1% wt./vol. coumarin exhibits IR bands at 1754.8 and 1741.3 cm⁻¹, and after correction for Fermi resonance ν C=O is calculated to be 1747.2 cm⁻¹. In CHCl₃ solution at 1% wt./vol., coumarin exhibits IR bands at 1729.9 and 1754.9 cm⁻¹, and after correction for Fermi resonance ν C=O is calculated to be 1734.9 cm⁻¹ (10). Figure 15.9 show a plot of the unperturbed ν C=O frequencies (corrected for FR.) for coumarin vs the mole % CHCl₃/CCl₄. This plot is essentially linear over the mole % ~10–95 % CHCl₃/CCl₄ range. Deviation from linearity below 10 mole % CHCl₃/CCl₄ is caused by C=O... HCCl₃.

Figure 15.10 shows a plot of unperturbed vC=O (corrected for F.R.) for coumarin vs the mole % (CH₃)₂SO/CCl₄ and Fig. 15.7 shows a plot of unperturbed vC=O (corrected for F.R.) for coumarin vs the mole % (CH₃)₂SO/CHCl₃ (10). In Fig. 15.10 the plot is essentially linear over the ~10–95% (CH₃)₂SO/CCl₄ range. In only CCl₄ or (CH₃)₂SO solution, there is deviation from linearity (10). In Fig. 15.11 the plot is unique, as the vC=O frequencies increase up to ~35 mol % (CH₃)₂SO/CHCl₃ stays relatively constant in the 40–50 mol % range, and decrease in frequency in the ~55–100 mol % range. The unique plot in Fig. 15.11 most likely is the result of intermolecular hydrogen bonding between the CHCl₃ proton and the coumarin carbonyl group and between the CHCl₃ proton and the oxygen atom of dimethyl sulfoxide. In the case of CHCl₃/CCl₄ solutions, the strength of the intermolecular hydrogen bonding between Cl₃CH····ClCCl₃ is much weaker than in the case of Cl₃CH····OS(CH₃)₂. Therefore, in CHCl₃/CCl₄ solution formation between C=O···HCCl₃ is apparent only after the first formation of (CH₃)₂SO···HCCl₃ (10).

Figure 15.12 shows a plot of the unperturbed vC=O frequencies for coumarin (corrected for FR.) vs the reaction field of the $CHCl_3/CCl_4$ solvent system (10). The reaction field is $(R) = (e-1)/2e + n^2$), where e is the solvent dielectric constant and n is the refractive index of the solvent, and this equation is derived from bulk dielectric theory (3,4). Bulk dielectric theory predicts a single band (vC=O, for example) which shifts in frequency according to the composition of the solvent mixture. Figure 15.12 shows deviation from linearity, which is attributed to the formation of intermolecular hydrogen bonding between the CHCl₃ proton and the coumarin carbonyl group (10).

Table 15.7 lists IR group frequency data for coumarin and derivatives in the vapor and solution phases (1,10). Coumarin exhibits vC=0 at $1776 \, \mathrm{cm}^{-1}$ in the vapor phase, which is higher than it occurs in any of the solvent systems. Substitution of a 3-Cl or 6-CH₃ group apparently does not affect the vC=0 frequency, as vC=0 is observed at $1775 \, \mathrm{cm}^{-1}$ in both cases (1). On the other hand, there is a noticeable increase in the vC=0 frequency in the case of 3,4-dihydrocoumarin,

In this case, the lactone has 6 UR-5,6 structure, and the C=O bond is not conjugated as it is in the case of coumarin; therefore, ν C=O occurs at a higher frequency (1802 cm⁻¹ vs 1776 cm⁻¹ in the vapor phase (1)).

In summary, the unperturbed vC=O frequencies for lactones in CCl_4 solution occur at or in the range:

1748.0-1749.4 cm⁻¹ with 6 UR-2,3,4,5 structure 1769.9-1781.4 cm⁻¹ with 5 UR-2,3 structure 1789.1-1792.7 cm⁻¹ with 5 SR structure 1841.8 cm⁻¹ with 4 SR structure

Figure 15.13 shows plots of unperturbed vC=O for coumarin 1% wt./vol. In various solvents vs the solvent acceptor number (AN). The solvents are numbered sequentially 1–16 as they are listed in Table 15.6. Two linear plots are noted. Solvent 13–16 are for the four alcohols. In this case the OH group is intermolecularly hydrogen bonded with the coumarin carbonyl oxygen atom. Steric factors of solute and solvent cause variations in solute-solvent interaction, plus intermolecular hydrogen bonding prevent the AN values to be a precise predictor of vC=O values. However, they are useful in predicting approximate vC=O frequencies in many cases (10).

Table 15.8 lists IR data for 1% wt./vol. phenyl acetate in $CHCl_3/CCl_4$ solutions (11). In the case of phenyl acetate, the ν C=O mode is in Fermi resonance with a combination tone (CT). Plots of the uncorrected and corrected ν C=O and CT frequencies are shown in Fig. 15.14. After correction for Fermi resonance, the ν C=O and CT frequencies converge as the mole % $CHCl_3/CCl_4$ increases. The ν C=O mode decreases in frequency while the CT increases in frequency. It is apparent from these plots that intermolecularly hydrogen bonding occurs between the $CHCl_3$ proton and the phenyl acetate carbonyl oxygen atom at low mole % $CHCl_3/CCl_4$ concentration. Identical plots are obtained plotting the same IR data for phenyl acetate vs the reaction field (R) [see preceding text]. Therefore, ν C=O is affected by bulk dielectric effects and refractive index of the solvent system as well as intramolecular hydrogen bonding (11).

Table 15.9 lists IR data for phenyl acetate 1% wt./vol. In various solvents, and Fig. 15.15 shows plots of the CT and vC=O modes in Fermi resonance and the vC=O and CT modes corrected for FR. vs the solvent acceptor number (AN) (11). The observed uncorrected C=O and CT modes converge for solvents 1–11, 14, and 15 and diverge for solvents 12, 13, 16, 17. After correction for F. R., vC=O and CT converge for solvents 1–11, 14, 15, cross-over in the case of solvent 12, tert-butyl alcohol, and diverge even more for solvents 13, 16, 17, the other three alcohols in order of increasing acidity of the OH proton. Steric factors of the solvent and solute and intermolecular hydrogen bonding prevent a simple precise correlation to be developed between vC=O for any given compound in a particular solvent using its AN value (11).

ALKYL BENZOATES

Table 15.10 lists IR data for alkyl benzoates in CS_2 solution between 29 and -10 °C (11). In each case, the ν C=O mode(s) decreases in frequency as the temperature is decreased from ambient temperature to 90 or 100 °C. Both methyl 2-bromobenzoate and methyl 2-methoxybenzoate exhibit two ν C=O IR bands. In each case, the lower frequency ν C=O mode decreases more in frequency than the higher frequency ν C=O mode. These two ν C=O modes result from the presence of rotational conformers. The higher frequency ν C=O band is assigned to conformer 1 and the lower frequency ν C=O band is assigned to conformer 2. Conformer 1 is assigned to the structure where the Br atom or methoxy oxygen atom is near in space to the carbonyl oxygen atom while conformer 2 is assigned to the structure where the Br atom or methoxy oxygen atom is near in space to the methyl ester oxygen atom. Methyl 2-methoxybenzoate exhibits two linear segments above and below \sim 50 °C. The other five plots are all linear (see Fig. 15.16). The break in the plots for methyl 2-methoxybenzoate is attributed to change in the rotational configuration of the 2-methoxy group (rotation of the 2-methoxy group about the aryloxygen bond.

Figure 15.17 shows plots of the absorbance ratios $A(\nu C=0 \text{ conformer } 1)/A(\nu C=0 \text{ conformer } 2)$. These plots show that conformer 1 increases and conformer 2 decreases in concentration as the temperature is lowered (11).

SALICYLATES AND 2-HYDROXYACETOPHENONE (A KETONE)

Table 15.11 lists IR data for methyl salicylate, phenyl salicylate, and 2-hydroxyacetophenone in various solvents at 1% wt./vol. The 19 solvents used in study this study are presented 1–19 in descending order (12). Figure 15.18 shows plots of these data vs the solvent acceptor number (AN) for each of the 19 solvents (12). These compounds are intramolecularly hydrogen bonded as shown in this figure. Linear relationships are noted for $\nu C=0\cdots HO$ vs (AN) for each of these compounds in solution with the alkyl alcohols (solvents 14, 17–19). However, a linear relationship is not observed for $\nu C=0\cdots HO$ for vs (AN) for the other 14 solvents. However, there is a general increase in frequency as the (AN) value becomes larger. This behavior is attributed to steric factors of both the solute and solvent, which prevents the AN values from being precise predictors of vibrational frequencies.

Figure 15.19 shows plots of $vC=O\cdots HO$ frequencies for 2-hydroxyacetophenone, methyl salicylate, and phenyl salicylate vs the frequency difference between $vC=O\cdots HO$ (hexane) and $vC=O\cdots HO$ (solvent) for each of the other solvents. These linear plots are due to the mathematical treatment of the data. However, they do show that the number sequence in each of the three plots is not the same, showing that the (AN) values of these solvents are not precise predictors of vibrational frequencies.

It is noted that the ν C=O···HO frequency for methyl salicylate and phenyl salicylate occur at 1680.4 and 1693.0 cm⁻¹ in CS₂ solution, respectively, while ν C=O for methyl benzoate at ambient temperature in CS₂ solution occurs at 1727 cm⁻¹. The 46.6 cm⁻¹ decrease in frequency between the ν C=O frequency for methyl benzoate and methyl salicylate is due to more than just

intramolecular hydrogen bonding. The resonance effect of the OH group would weaken the C=O bond, causing a decrease in the frequency. This latter effect may be offset by the field effect between the hydroxyl oxygen atom and the carbonyl oxygen atom. The larger inductive effect of the phenyl group vs the methyl group causes ν C=O···HO for phenyl salicylate to occur at a higher frequency than ν C=O···HO for methyl benzoate.

In going from solution in CCl_4 to solution in $CHCl_3$ the $vC=O\cdots HO$ frequency decreases by 4.3 and 4.8 cm⁻¹ for methyl salicylate and phenyl salicylate, respectively. In the case of phenyl benzoate, the vC=O frequency decrease is 9 cm⁻¹ in going from solution in CCl_4 to solution in $CHCl_3$. In going from solution in CCl_4 to solution in $(CH_3)_2SO$, the $vC=O\cdots OH$ or vC=O frequency decrease is 7.2, 6.3, and 10 cm^{-1} for methyl salicylate, phenyl salicylate, and phenyl benzoate, respectively. It is thus readily apparent that the $vC=O\cdots HO$ modes are not altered as much in frequency as vC=O modes in going from solution in CCl_4 to solution in $CHCl_3$ or $(CH_3)_2SO$. This is because the OH proton essentially neutralizes the basicity of the C=O oxygen atom and also acts as a site for $OH\cdots CICCl_3$ or $OH\cdots CICHCl_2$ interaction.

Figure 15.20 shows a plot of $vC=O\cdots$ HO for phenyl salicylate vs mole % CHCl₃/CCl₄ (12). This plot shows essentially three linear segments with breaks at ~23 and 69 mol % CHCl₃/CCl₄. The mole ratio of solvent to solute is 22.1:1 in CCl₄ solution and 26.7:1 in CHCl₃ solution. The mole ratio CHCl₃ to solute 6.1:18.4 at ~23 and 69 mol % CHCl₃/CCl₄, respectively. These data indicate that different complexes are formed between phenyl salicylate and the CHCl₃/CCl₄ solvent system in the mole % CHCl₃/CCl₄ ranges 0–23, 23–69 and 69–100.

PHTHALATES

Table 15.12 shows Raman group frequency data for dialkyl pthalates in the neat phase. The relative intensity (RI) values are normalizes to the strongest Raman band in the spectrum occurring near $1045\,\mathrm{cm^{-1}}$. The abbreviation denotes depolarization ratio. Figure 15.21 gives bar graphs of the Raman group frequencies for 21 dialkyl phthalates. The upper graph represents both the frequency ranges and intensities for each of the 12 group frequencies. The intensities are proportional to $(45\alpha')^2 + (4\beta')^2$ (α' and β' are the derivative of the mean polarizability and anisotropy, respectively, with respect to the normal coordinate of the polarizability tensor). The horizontal lines across the range of frequencies indicate minimum band intensity relative to the $\sim 1045\,\mathrm{cm^{-1}}$ group frequency. The lower graph of these Raman group frequencies is proportional to $(3\beta')^2$.

The Raman phthalate vC=0 mode occurs in the range 1728–1738 cm⁻¹, whose relative intensity has a value in the range 40–51. The strongest Raman band occurs in the range 1042–1047 cm⁻¹ and is assigned to the ortho phenylene ring breathing mode. It occurs at a slightly higher frequency than the breathing mode of the phenyl group for mono-substituted benzenes. Phthalates show a Raman band in the range 1277–1294 cm⁻¹ having a relative intensity value in the range 24–40, and it is polarized. This band is assigned to a complex skeletal mode of the aryl $[-C(=)O-R]_2$ groups. The other Raman group frequencies have been correlated with in-plane ring mode of 1,2-dichlorobenzene (13).

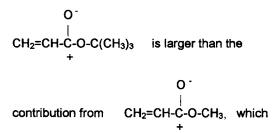

ACRYLATES AND METHACRYLATES

Table 15.13 lists Raman data for the vC=O and vC=C stretching vibrations for acrylates (14). The vC=O mode occurs in the range 1717–1774 cm⁻¹. The alkyl acrylates exhibit vC=O in range 1717–1740 cm⁻¹ and aryl acrylates exhibit vC=O in the range 1731–1774 cm⁻¹. Variations in frequency within each class can be attributed to the inductive effect of the alkyl or haloalkyl groups and branching on the $O-R\alpha$ -carbon atom.

The s-trans ν C=C mode for alkyl and aryl acrylates occurs in the range 1623–1640 cm⁻¹ in the neat phase. The relative Raman band intensity (RI) for s-trans ν C=C is higher than it is for s-cis ν C=C, and s-cis ν C=C occurs at lower frequency than s-trans ν C=C by \sim 14 –16 cm⁻¹. With the exceptions of hexafluoroisopropyl acrylate, pentabromophenyl acrylate, 1-naphthyl acrylate, and bis-phenol-A diacrylate, the ratio (RI) ν C=O/(RI) s-trans C=C is in the range 0.25 through 0.83.

Table 15.13a lists IR data for alkyl acrylates in CHCl₃ and/or CCl₄ solutions (1 % wt./vol. Of solute). In CCl₄ solution and in CHCl₃ solution, ν C=O occurs in the range 1722.9–1734.1 cm⁻¹ and 1713.8–1724.5 cm⁻¹, respectively (15,16). In CCl₄ solution and in CHCl₃ solution, s-trans ν C=C occurs in the range 1635.3–1637.0 cm⁻¹ and 1635.3–1637.9 cm⁻¹ respectively. In CCl₄ solution and in CHCl₃ solution, s-cis ν C=C occurs in the range 1619.2–1620.4 cm⁻¹ and 1618.5–1619.9 cm⁻¹, respectively. The CH=CH₂ twist and C=CH₂ wag modes occur in the range 982.6–985.6 cm⁻¹ and 966.3–983.4 cm⁻¹, respectively (15).

Figure 15.22 shows plots of vC=0 for seven alkyl acrylates vs mole % $CHCl_3/CCl_4$ (1% wt./vol.). The vC=0 mode for all of these acrylates decreases in frequency as the mole % $CHCl_3/CCl_4$ is increased. There is a distinct difference between the rate of vC=0 frequency in the $0 \sim 35$ mol % $CHCl_3/CCl_4$ range than at higher mole % $CHCl_3/CCl_4$. At the lower mole % $CHCl_3/CCl_4$ range, the faster rate of vC=0 frequency decrease is attributed to the formation of $C=0\cdots HCCl_3$ bonds, $(Cl_3CH\cdots ClCCl_3)_x$ and $(ClCl_2CH\cdots)_n$. The general gradual linear decrease with change in the mole % $CHCl_3/CCl_4$ is attributed to an increasing value of the solvent reaction field (R). In the case of tert-butyl acrylate vs methyl acrylate the inductive contribution

causes vC=0 mode for the tert-butyl analog to occur at lower frequency than for the methyl analog (15).

Table 15.14 shows Raman data for alkyl and aryl methacrylates in the neat phase, and a summary of the IR CCl_4 and $CHCl_3$ solution data for ν C=O and ν C=C (14). In the neat phase, alkyl methacrylates exhibit Raman bands in the range 1732–1762 cm⁻¹ (the alkyl analogs in the range 1713–1742 cm⁻¹, and the aryl analogs in the range 1735–1762 cm⁻¹). These bands are assigned to the ν C=O mode. In all cases, the Raman band assigned as ν C=C occurs in the range 1635–1642 cm⁻¹, and with the exceptions of 2-phenoxyethyl methacrylate, 2-methallyl metha-

crylate, and pentachlorophenyl methacrylate the Raman band intensity ratio (RI) vC=O/(RI)vC=C is always < 1. In cases where the Raman spectra were recorded of the same alkyl or phenyl acrylates and methacrylates, the vC=O mode always occurs at lower frequency in the case of the methacrylates than for that of the acrylates. The lower vC=O mode frequencies in the case of the methacrylate analogs are due to the inductive contribution of the α -methyl group to the C=O group. Moreover, with the exception of pentafluorophenyl methacrylate, the vC=C mode occurs at higher frequency than both s-trans vC=C and s-cis vC=C for corresponding alkyl or aryl acrylates.

Figure 15.23 shows plots of vC=O for corresponding alkyl acrylate and alkyl methacrylate analogs vs mole % CHCl₃/CCl₄ (15). The plots for the methacrylate and acrylate analogs appear to be comparable at \sim 40 mol % CHCl₃/CCl₄ and above, and are different below \sim 40 mol % CHCCl₃/CCl₄. That there are differences between the plots of these acrylate and methacrylate analogs warrants further discussion. In the case of the methacrylates the C=O group is more basic than the C=O group for the acrylates due to the inductive contribution of the α-methyl carbon atom to the C=O bond. Thus, a stronger intermolecular hydrogen bond would be expected to be formed between C=O···HCCl3 for methacrylates than in the case of the corresponding alkyl acrylates. However, it is noted that the vC=O frequency decrease for the allyl, butyl, and 2-ethylhexyl methacrylates in going from solution in CCl₄ to solution in CHCl₃ is 8.63, 9.43, and 9.99 cm⁻¹, respectively, while for the corresponding acrylate analogs the vC=Ofrequency decrease is 9.43, 10.58, and $10.82 \,\mathrm{cm}^{-1}$, respectively. In both cases, the vC=Ofrequency decreases in the order of increasing inductive contribution of the O-R alkyl group to the C=O group. However, the decrease in the vC=O frequency is larger in each case of the acrylates than in the case of the methacrylates. Thus, the C=O···HCCl₃ intermolecular hydrogen bond appears to be stronger in the case of alkyl acrylates than for alkyl methacrylates. However, the contribution of hydrogen bonding of the CHCl₃ proton to C=O group (C=O···HCCl₃) can not be separated from the contribution of the reaction field R) for acrylates and methacrylates in CHCl₃/CCl₄ solution merely by subtracting the vC=O frequencies in CCl₄ solution from those in CHCl3 solution. As the reaction field (R) is a linear function of mole % CHCl₃/CCl₄ it is reasonable to extrapolate the linear portion of each plot to 0 mol % CHCl₃/CCl₄ to obtain the delta-vC=O frequency decrease attributed to the C=O···HCCl₃ intermolecular hydrogen bond. This delta-vC=O frequency decrease divided by the total vC=O frequency decrease between vC=O(CCl₄) minus vC=O(CHCl₃) multiplied by 100 yields the percentage of the vC=O frequency decrease attributed to the intermolecular hydrogen bond. The results are as follows:

	acrylate	methacrylate
allyl	37.4%	45.1%
butyl	42.2%	49.4%
2-ethylhexyl	47.8%	54.6%

These calculations indicate that the percentage of vC=0 frequency decrease is larger in the case of the alkyl methacrylates than in the case of the alkyl acrylates. Thus, the reaction field (R) contributes more to the vC=0 frequency decrease in the case of alkyl acrylate than for alkyl

methacrylates. The most reasonable explanation for the preceding data is that the alkyl methacrylate exist in the s-trans configuration. By analogy

with the alkyl α -methyl branched acetates discussed previously, the α -methyl group in alkyl methacrylates would affect the spatial distance between the carbonyl carbon atom and the solvent system (CHCl₃/CCl₄). Thus, the reaction field would be less in the case of alkyl methacrylates in the s-trans configuration than for the alkyl acrylates in either the s-cis or s-trans configurations. The methacylate C=O group is more basic than the acrylate C=O group, and apparently a stronger C=O··HCCl₃ bond is formed in the case of the methacrylates even though the spatial distance between the carbonyl oxygen atom and the CHCl₃ proton is greater in the case of alkyl methacrylates.

CINNAMATES

Poly (vinyl cinnamate) has the following empirical structure:

The Raman spectrum for poly (vinyl cinnamate) exhibits bands at 1701 and 1638 cm⁻¹ whose relative band intensity ratio (RI) is 1:9 and these bands are assigned to ν C=O and ν C=C, respectively. Phenyl in-plane ring modes are assigned at 1601, 1030, 1002, and 620 cm⁻¹ whose (RI) ratios are 6:9, 1:9, 4:9, and 1:9, respectively. In most cases the phenyl breathing mode for monosubstituted benzenes has the highest Raman band intensity. In this case it occurs at $1002 \, \text{cm}^{-1}$ with an (RI) of 4 compared to an (RI) of 9 for ν C=C. Thus, the Raman band intensity of ν C=C for this polymer is very strong. The Raman bands for other alkyl cinnamates are expected to occur at similar frequencies.

Table 15.15 lists IR vapor-phase data and assignments for alkyl cinnanates (1). In the vapor phase the alkyl cinnamates exhibit vC=O in the range 1727–1740 cm⁻¹. The highest and lowest vC=O frequencies are exhibited by the methyl and tert-butyl cinnamates, respectively. Again the vC=O frequencies decrease in the order of the increasing inductive contribution of the O-R alkyl group to the C=O bond. The vC=C mode occurs in the range 1649–1642 cm⁻¹. The IR band intensity ratio (A)vC=C/(A)vC=O varies between 0.33 and 0.41.

As noted in the empirical structure for poly (vinyl cinnamate), the CH=CH is presented in the trans configuration. In the IR, the band in the range $972-980\,\mathrm{cm}^{-1}$ results from the trans

CH=CH twisting vibration, and confirms the trans configuration for the C=C bond. The IR band intensity ratio (A) CH=CH twist/(A) ν C=C varies between 0.42 and 0.67.

Table 15.15a lists IR vapor-phase data for alkyl cinnamates (1). In-plane phenyl ring modes are presented in columns [1] through [3] and these group frequencies occur in the ranges 1304–1314, $1245-1276\,\mathrm{cm^{-1}}$, and $1198-1200\,\mathrm{cm^{-1}}$, respectively. The phenyl ring in-phase out-of-plane 5-hydrogen deformation and the out-of-plane phenyl ring deformation occur in the range 750-765 and $685-696\,\mathrm{cm^{-1}}$, respectively.

With the exception of the isopropyl analog, the strongest IR band for the alkyl cinnamates occurs in the range $1154-1171 \, \text{cm}^{-1}$, it is attributed to a C-C(=)O stretching mode, and its intensity is used to normalize the 3 in-plane ring modes.

The ratio (A)[6]/(A)[7] is larger for the alkyl cinnamates than for benzyl cinnamate by a factor of 2 or more. The reason for this is that the comparable modes for the benzyl group are also absorbing at these frequencies. The ratio $(A) \ \nu C = C/(A) [4]$ shows that the $\nu C = C$ mode has much less IR absorbance than the absorbance for $\nu C - C(=)O$.

Table 15.15b lists IR data for the alkyl and phenyl groups of cinnamates.

The first overtone, 2vC=O, occurs in the range $3435-3470\,\mathrm{cm}^{-1}$. Phenyl ring carbonhydrogen stretching modes occur in the ranges $3065-3075\,\mathrm{cm}^{-1}$ and $3030-3040\,\mathrm{cm}^{-1}$. The vasym. CH₃ and vsym. CH₃ modes occur in the range $2961-2985\,\mathrm{cm}^{-1}$ and $2850-2945\,\mathrm{cm}^{-1}$, respectively. The vasym. CH₂ and vsym. CH₂ modes occur in the range $2942-2960\,\mathrm{cm}^{-1}$ and $2868-2895\,\mathrm{cm}^{-1}$, respectively. The δ asym. CH₃ and δ sym. CH₃ modes occur in the range $1452-1475\,\mathrm{cm}^{-1}$ and $1371-1400\,\mathrm{cm}^{-1}$, respectively. An in-plane ring mode and/or δ CH₂ occur in the range $1450-1453\,\mathrm{cm}^{-1}$.

PHENOXARSINE DERIVATIVES

The compound 10-phenoxarsinyl acetate has the following empirical structure:

IR data for the 10-phenoxarsinyl esters are listed in Table 15.16. In this series 10-phenoxarsinyl acetate, the trichloroacetate, and the trifluoroacetate derivatives, the ν C=O occurs at 1698, 1725, and 1738 cm⁻¹ in CCl₄ solution, respectively, and this increase in the ν C=O frequency is attributed to the inductive and field effects of the halogen atoms upon the C=O group (17). In CCl₄ solution, these ν C=O frequencies occur \sim 50 cm⁻¹ lower in frequency than ν C=O occurs for the corresponding ethyl acetates. This frequency difference can be attributed to the fact that arsenic is less electronegative than oxygen, which would induce some ionic character to the functional group [e.g., R-C(=O)O^--As^+]. This effect would reduce the C=O force constant because the C=O bond would contain less double character due to an increase of π overlap with the free pair of electrons on the O-As oxygen atom (17).

Figure 15.24 show IR spectra of 10-phenoxarsinyl chloroacetate in (A) CCl₄ (3800–1333 cm⁻¹) and CS₂ (1333–450 cm⁻¹) solutions and (B) as a split mull (Fluorolube 3800–1333 cm⁻¹ and Nujol, 1333–450 cm⁻¹). In CCl₄ solution, ν C=O bands are noted at 1720 and 1696 cm⁻¹ while in the Fluorolube mull ν C=O is noted at 1702 cm⁻¹. This occurs because in solution the chloroacetate derivative exists as rotational conformers while in the solid phase only one rotational conformer exists. The 1720 cm⁻¹ rotational conformer in CCl₄ solution and the 1702 cm⁻¹ band in the solid phase are assigned to the rotational conformer where the Cl atom is near in space to the carbonyl oxygen atom while the 1696 cm⁻¹ CCl₄ solution band is assigned to the rotational conformer where the Cl atom is near in space to the O–As oxygen atom.

The 10-phenoxarsinyl thiol esters of form As–S–C(=O)R exhibit νC =O in the range 1670–1681 cm⁻¹. Comparison of the As–S–C(=O)CH₃ vs the AsO–C(=O(CH)₃ (1681 cm⁻¹ vs 1698 cm⁻¹) shows that there is a frequency decrease of \sim 17 cm⁻¹ with the substitution of sulfur for oxygen; the reason for this is presented in a discussion on ordinary thiol esters [R–C(=O)–S–R'] that will follow.

The S-(10-phenoxarsinyl) thiol aryl esters of form As-S-C(=O) C_6H_5 exhibit ν C=O in the range 1638–1650 cm⁻¹, and the decrease in the ν C=O frequency compared to As-S-C(=O)R analogs is attributed to conjugation of the phenyl ring with the C=O group (17).

Compounds such as S-(10-phenoxarsinyl) α -(2,4,5-trichlorophenoxy) thiol acetate exhibit rotational conformer 1 at 1691 cm⁻¹ and rotational conformer 2 at 1665 cm⁻¹ in CCl₄ solution. In the solid phase, the ν C=O band at 1650 cm⁻¹ is assigned to the more stable structure conformer 2. Rotational conformer 1 is where the phenoxy oxygen atom is near in space to the carbonyl oxygen atom and rotational conformer 2 is where the phenoxy oxygen atom is near in space to the As-S sulfur atom.

The compound, S-(10-phenoxarsinyl)-thiol-2-furoate exhibits rotational conformer 1 at $1646\,\mathrm{cm^{-1}}$ and rotational conformer 2 at $1631\,\mathrm{cm^{-1}}$ in CCl_4 solution, and the more stable conformer 1 at $1630\,\mathrm{cm^{-1}}$ in the solid state. Rotational conformer 1 is where the furan ring oxygen atom is near in space to the carbonyl oxygen atom while rotational conformer 2 is where the furan ring oxygen atom is near in space to A_s –S sulfur atom.

THIOL ESTERS

Thiol esters of form R-C(=O)-S-R' exhibit $\nu C=O$ near $1690\,\mathrm{cm}^{-1}$ while esters of form R-C(=O)-O-R' exhibit $\nu C=O$ at $\sim 1735\pm 5\,\mathrm{cm}^{-1}$ (18). The reason substitution of sulfur for oxygen causes $\nu C=O$ to vibrate at a lower frequency needs to be addressed. This change in the $\nu C=O$ frequency is attributed principally to the change in the C=O force constants. The resonance form

for thiol esters is more important than resonance form

for ordinary esters. In terms of electronic theory, there appears to be a greater tendency toward overlap of the carbonyl carbon atom π -electron with a nonbonding electron pair of the sulfur atom than with a nonbonding of the oxygen atom. This weakens the C=O bond, and causes ν C=O to vibrate at a lower frequency than in the case of comparable ordinary esters (18). Otherwise, as will be discussed, the ν C=O frequencies for thiol esters are affected by resonance, inductive, field, and hydrogen bonding.

Table 15.17 lists IR data for alkyl and phenyl thiol esters (18). The frequencies reported in the region $3800-1333\,\mathrm{cm^{-1}}$ are for CCl_4 solution, and in the region of $1333\,\mathrm{cm^{-1}}$ and below they are CS_2 solution data. In all cases, the thiol esters of form $R-C(=O)-S-C_6H_5$ exhibit higher vC=O frequencies than those for the corresponding $R-C(=O)-S-C_6H_9$ or $R-C(=O)-S-C_6H_{13}$ analogs. This occurs because the inductive effect of the phenyl ring is larger than that for the S-R alkyl group.

The inductive and field effects of halogen atoms on the α -carbon of thiol ester also increase the ν C=O frequencies for compounds of forms: CHCH₃C(=O)-S-C₄H₉ (1695 cm⁻¹) Cl₃C(=O)-S-C₄H₉ (1699 cm⁻¹), and Cl₃C(=O)-S-C₄H₉ (1710 cm⁻¹), and for CH₃C(=O)-S-C₆H₅ (1711 cm⁻¹), CCl₃C(=O)-S-C₆H₅ (1722 cm⁻¹).

In the case of the mono- and dichloro thiol acetates in CCl_4 solution, both the S-R and S- C_6H_5 analogs exhibit rotational conformers (see Table 15.17a). The higher frequency ν C=O band for the $ClCH_2-C(=O)-S-R$ or $-S-C_6H_5$ and $Cl_2CH-C(=O)-S-R$ or $-S-C_6H_5$ analogs results from the rotational conformer 1 where the Cl atom (s) is (are) near in space to the carbonyl oxygen atom. The lower frequency ν C=O band is assigned to rotational conformer 2. In this case the Cl atom (s) is (are) near in space to S-R or S- C_6H_5 sulfur atom (18).

Thiol esters of oxalic ester have two C=O groups $[R-S-C(=O)-]_2$ and $[C_6H_5-S-C(=O)-]_2$; however, in each case only one vC=O band is observed (at 1680 and 1698 cm⁻¹ for the $S-C_4H_9$ and $S-C_6H_5$ analogs, respectively). Thus, these S, S'-dialkyl or S, S'-diphenyl dithiol oxalates exist in a trans configuration where the molecular structure has a center of symmetry lying between the O=C-C=O groups. Only the out-of-phase $(C=O)_2$ stretching mode is IR active; the in-phase $(C=O)_2$ stretching mode is Raman active.

The S-butyl thiol formate and S-phenyl thiol formate exhibit vC=O at 1675 and 1693 cm⁻¹, respectively. These compounds are readily identified by the formate vC-H and $2\delta CH$ frequencies, which occur in the region 2825–2835 cm⁻¹ and 2660–2680 cm⁻¹, respectively. The δCH mode occurs in the range 1340–1345 cm⁻¹. In all cases these three C-H modes for the S- C_6H_5 analog occur at lower frequency than for the -S- $-C_4H_9$ analog. Thus, the C-H bond is stronger for H--C(=O)S- $-C_6H_5$.

Thiol esters of form $C_6H_5-C(=O)-S-C_6H_5$ exhibit vC=O at higher frequency than the correspondingly ring-substituted thiol benzoates of form $C_6H_5-C(=O)-S-R$ (see Table 15.17b). This is attributed to the inductive effect of the $S-C_6H_5$ being larger than the S-R group.

Both the S–R and S– C_6H_5 analogs of 2-fluoro-thiol benzoate and 2-methoxy thiol benzoate exist as rotational isomers in CCl_4 solution. The higher frequency band in each set is assigned to

rotational conformer 1, the lower frequency band in each set is assigned rotational conformer 2. In these two cases, rotational isomers are presented here:

The phenyl 2-Cl, 2-Br, and 2-I thiol benzoates exhibit ν C=O at 1696, 1700, and 1698 cm⁻¹ in CS₂ solution, respectively. In these cases, all exist as conformer 1, as the C=O group can not be coplanar with the phenyl group due to the bulky S atom of the S-R or S-C₆H₅ group.

Phenyl thiol salicylate exhibits $vC=O\cdots HO$ at 1640 cm^{-1} , and this relatively low frequency is mainly the result of the intramolecular hydrogen bond between the 2–OH proton and the free pair of electrons on the carbonyl oxygen atom (18).

THIOL ACIDS

Table 15.17c lists IR data for thiol acids, thiol anhydrides, and potassium thiol benzoate (18). Thiol acids exist as R-C(=O)-SH and $C_6H_5-C(=O)-S-H$, and this is in marked contrast to carboxyl acids $(R-CO_2H)$ and $C_6H_5CO_2H$, which exist as cyclic intermolecularly hydrogenbonded dimers in the condensed phase (see Chapter 10).

Thiol acetic acid exhibits vC=O and vS-H at 1712 and 2565 cm⁻¹ in CCl_4 solution, respectively, and thiol benzoic acid exhibits vC=O and vS-H at 1690 and 2585 cm⁻¹ in CCl_4 solution, respectively. Conjugation lowers the vC=O frequency as shown for thiol benzoic acid vs thiol acetic acid. The S-H proton for thiol acetic acid is more acidic than that for thiol benzoic acid, and consequently its vS-H frequency occurs at lower frequency than it does for thiol benzoic acid. In CCl_4 solution, there is most likely intermolecular hydrogen bonding between the S-H proton and CCl_4 (e.g., $SH\cdots CICCl_3$).

THIOL ACID ANHYDRIDES

Thiol benzoic anhydride or (dibenzoyl sulfide) exhibits IR bands at 1739, 1709, and 1680 cm⁻¹, and only two ν C=O modes are expected. An IR band assigned as =C-S stretching occurs at 860 cm⁻¹, and its first overtone would be expected at below 1720 cm⁻¹. Most likely, the third IR band in this region of the spectrum results from Fermi resonance of 2ν =C-S with ν in-phase (C=O)₂ stretching (1680 cm⁻¹). The higher frequency IR band most likely results from the ν out-of-phase (C=O)₂ mode (see Fig. 15.25, which compares the IR spectra of thiol benzoic anhydride (dibenzoyl sulfide) and benzoic anhydride (dibenzoyl oxide)).

Potassium thiol benzoate exhibits vasym. COS at $1525 \,\mathrm{cm}^{-1}$ and its vC-S mode at $948 \,\mathrm{cm}^{-1}$ (18).

Table 15.18 lists Raman data and probable assignments for propargyl acrylate and propargyl methacrylate. As noted in Table 15.18, $vC \equiv C$ exhibits the most intense Raman band at $2132 \, \mathrm{cm}^{-1}$ for both acrylate and methacrylate. The next most intense Raman band is assigned to $vC \equiv C$ and it is less intense than $vC \equiv C$ by a factor of 7/9 and 5/9 for the acrylate and methacrylate, respectively. The $vC \equiv C$ modes occur at 1728 and 1724 cm⁻¹ for the acrylate and methacrylate, respectively. The lower $vC \equiv C$ frequency for the methyacrylate is attributed to the inductive contribution of the α -methyl group, which weakens the $C \equiv C$ bond. Apparently this causes the depolarization of the electron cloud to be larger in the case of methacrylates compared to the acrylates, since the relative Raman band intensity is 3 for the methacrylate and only 2 for the acrylate.

OTHER ESTER VIBRATIONS

Table 15.19 lists IR vapor-phase data for carboxylic acid esters (1).

Alkyl alkanoates and dialkyl diesters exhibit a strong IR band in the range $1110-1250\,\mathrm{cm}^{-1}$, which results from a complex mode involving R-C(=O)-OR' stretching. In the case of alkyl formate, H-C(=O)-OR', the mode most likely includes =C-O stretching, and it occurs in the range $1152-1180\,\mathrm{cm}^{-1}$. In the case of alkyl acetates, the mode occurs in the range $1231-1250\,\mathrm{cm}^{-1}$ for compounds of form $CH_3-C(=O)-OR'$, and in the range $1201-1215\,\mathrm{cm}^{-1}$ when R' is vinyl, isopropenyl, or phenyl. These data suggest that the stretching mode is complex and involves $CH_3-C(=O)-OR'$ skeletal stretching.

Study of α -substitution on the alkyl acetate series shows that the skeletal C-C(=O)-O-R' stretching mode decreases as the 2-alkyl group increases in length from 2-methyl through 2-butyl. Moreover, the skeletal C-C(=O)-OR' stretching mode decrease steadily in frequency as the substitution of α -methyl groups increases (e.g. $(CH_3)_2CH-C(=O)-OR'$, 1145-1159 cm⁻¹ and $(CH_3)_3C-C(=O)-OR'$, 1110-1156. cm⁻¹). These data support the conclusion that the C-C(=O)-OR' mode includes stretching of the C-C(=O)-OR', $(C-)_2C(=)O-R'$, or $(C-)_3C(=)-OR'$ groups.

Table 15.20 lists IR vapor-phase data for conjugated esters (1). The alkyl aromatic esters skeletal aryl-C(=)-OR' stretching modes in the range 1229–1311 cm $^{-1}$ (strong) and in the range 1082–1145 cm $^{-1}$ (medium). The alkyl crotonates exhibit skeletal C=C-C(=)-OR' stretching modes in the range 1176–1190 cm $^{-1}$ (strong) and 1021–1048 cm $^{-1}$ (medium).

All esters show strong or medium IR bands in these general regions of the vibrational spectrum. It is always helpful to have a collection of IR and/or Raman standard reference spectra available for comparison and positive identification. The most comprehensive sets of IR and Raman spectra for all types of organic materials are available from Sadtler Research Laboratories, a Division of Bio-Rad Laboratories, Inc.

REFERENCES

- Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data, Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad.
- 2. Nyquist, R. A. (1994). Vib. Spectrosc., 7, 1.
- 3. Buckingham, A. D. (1960). Can J. Chem., 308, 300.
- 4. Timmermans, J. (1959). Physical-Chemical Constants of Binary Systems, Vol. 1, pp. 308, 309, New York: Interscience Publishers.
- 5. Nyquist, R. A. (1991). Vib. Spectrosc., 2, 221.
- 6. Gutman, V. (1978). The Donor-acceptor Approach to Molecular Interactions, New York: Plenum.
- 7. Nyquist, R. A. (1986). Appl. Spectrosc., 40, 336.
- 8. Nyquist, R. A. (1986). Appl. Spectrosc., 40, 79.
- 9. Nyquist, R. A., Fouchea, H. A, Hoffman, G. A., and Hasha, D. L. (1991). Appl. Spectrosc., 45, 860.
- 10. Nyquist, R. A. and Settineri, S. E. (1990). Appl. Spectrosc., 44, 791.
- 11. Nyquist, R. A. and Settineri, S. E. (1990). Appl. Spectrosc., 44, 1629.
- 12. Nyquist, R. A., Putzig, C. L., Clark, T. L., and McDonald, A. T. (1996). Vib. Spectrosc., 12, 93.
- 13. Nyquist, R. A. (1972). Appl. Spectrosc., 26, 81.
- 14. (1996). View Master-Raman Basic Monomers and Polymers, Philadelphia: Sadtler Research Laboratories, A Division of Bio-Rad.
- 15. Nyquist, R. A. and Streck, R. (1994). Vib. Spectrosc., 8, 71.
- 16. Nyquist, R. A. and Streck, R. (1995). Spectrochim. Acta, 51A, 475.
- 17. Nyquist, R. A., Sloane, H. J., Dunbar, J. E., and Strycker, S. J. (1966). Appl. Spectrosc., 20, 90.
- 18. Nyquist, R. A. and Potts, W. J. Jr. (1959). Spectrochim. Acta, 15, 514.

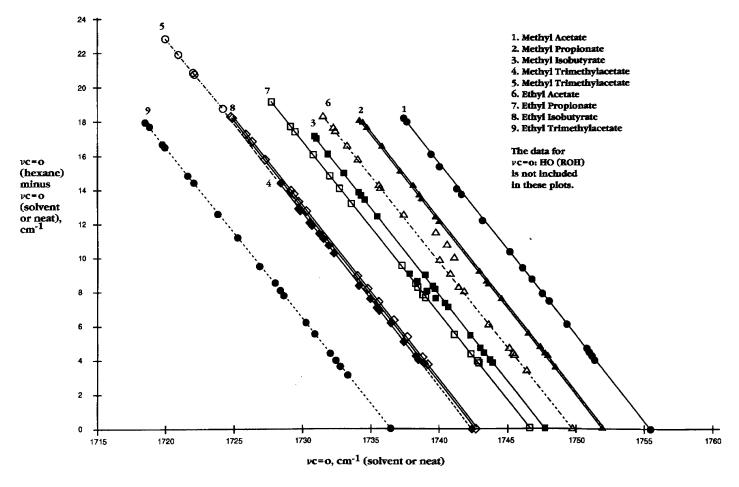


FIGURE 15.1 Plots of vCO (solvent or neat) vs vCO (hexane) minus vCO (solvent or neat) for alkyl alkanoate.

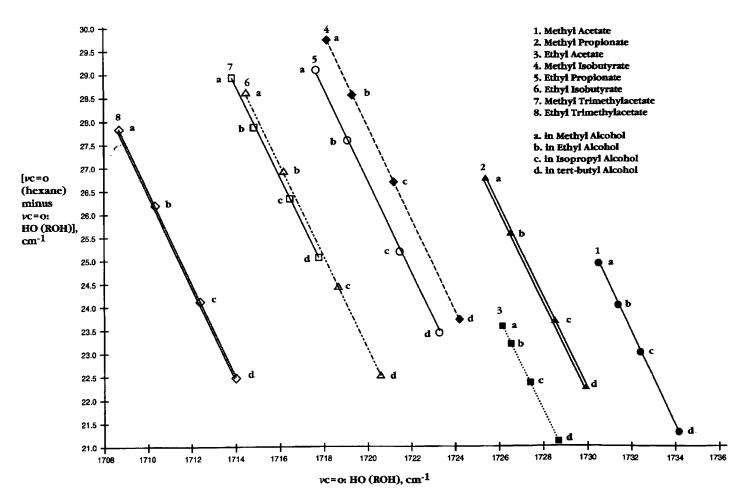


FIGURE 15.2 Plots of ν CO \cdots HO(ROH) vs ν CO (hexane) minus ν CO \cdots HO(ROH) for alkyl alkanoates.

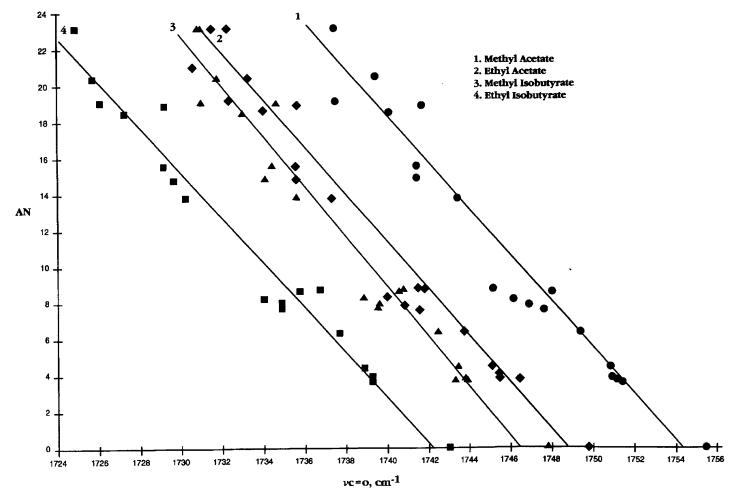


FIGURE 15.3 Plots of vCO for alkyl alkanoates vs the solvent acceptor number (AN) or neat alkyl alkanoate.

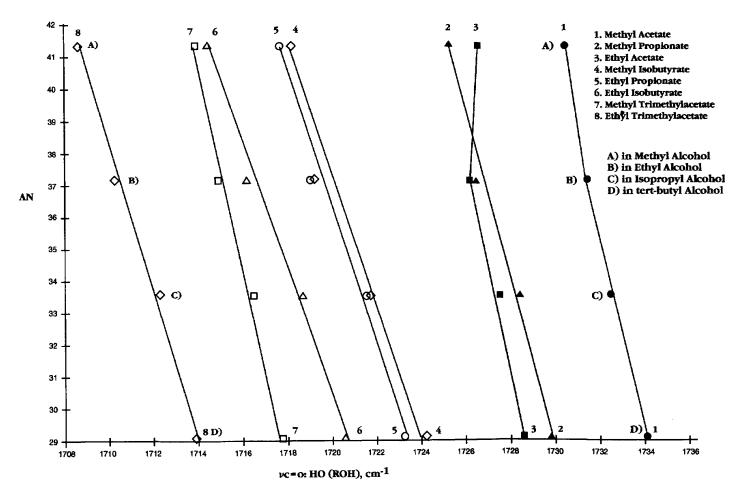


FIGURE 15.4 Plots of vCO···HO(ROH) vs the solvent acceptor number (AN) in alkyl alcohols.

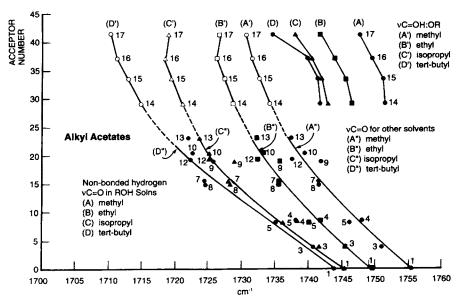
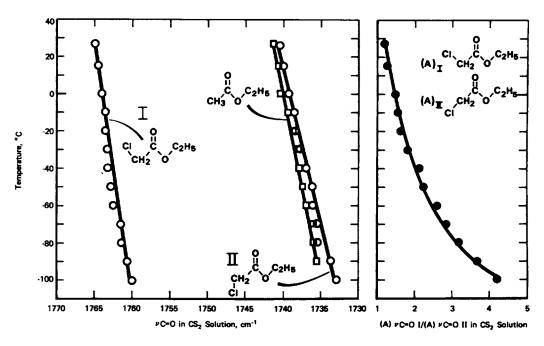
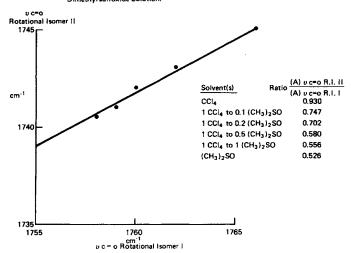




FIGURE 15.5 Plots of the vCO and vCO···HO(ROH) frequencies vs the solvent acceptor number (AN). Extrapolation of the points on curve A to A, curve B to B, curve C to C, and curve D to D yields the postulated AN values of 9.15, 4.15, 3.00, and 2.06 for methyl alcohol through tert-butyl alcohol, respectively.

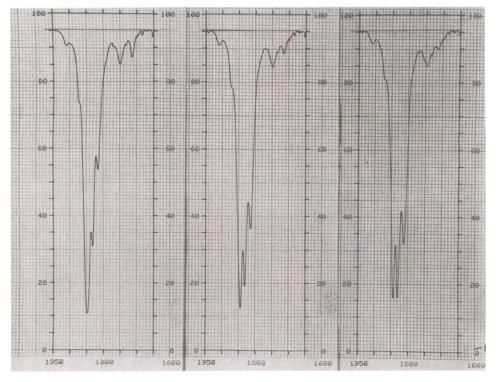


FIGURE 15.6 The left figure shows plots of vCO rotational conformers 1 and 2 for ethyl 2-chloroacetate and vCO for ethyl acetate frequencies in CS_2 solution vs temperature in $^{\circ}C$. The right figure shows a plot of the absorbance ratio for vCO rotational conformer 1/rotational conformer 2 vs temperature in $^{\circ}C$.

Methyl 2,4-Dichlorophenoxy Acetate In Carbon tetrachloride And/Or Dimethyl sulfoxide Solution.

FIGURE 15.7 A plot of the ν CO frequencies for rotational conformer 1 vs ν CO for rotational conformer 2 for methyl 2,4-dichlorophenoxyacetate with change in the CCl₄ to (CH₃)₂SO ratio.

FIGURE 15.8 Infrared spectra of β -propiolactone in CCl₄ solution (left), 52 mol % CHCl₃/CCl₄ solution (middle), and CHCl₃ solution (right).

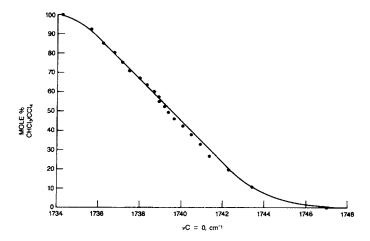


FIGURE 15.9 A plot of unperturbed ν CO frequencies for coumarin in 1% wt./vol. CHCl₃/CCl₄ solutions vs mole % CHCl₃/CCl₄.

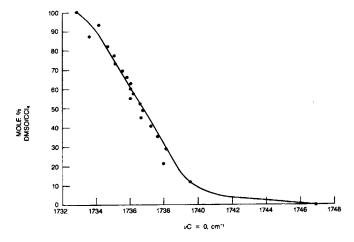


FIGURE 15.10 A plot of unperturbed vCO frequencies for coumarin in 1% wt./vol. (CH_3)₂SO/ CCl_4 .

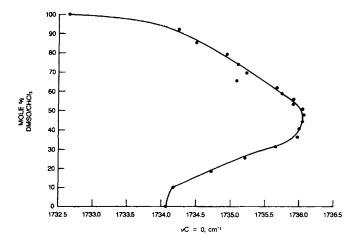


FIGURE 15.11 A plot of unperturbed ν CO frequencies for coumarin 1% wt./vol. in (CH₃)₂SO/CHCl₃ solutions vs mole % (CH₃)₂SO/CHCl₃.

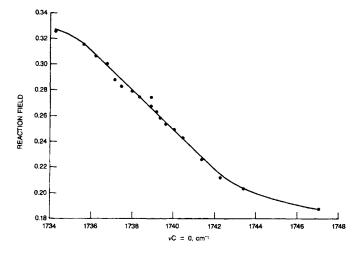


FIGURE 15.12 A plot of the unperturbed ν CO frequencies for coumarin 1% wt./vol. in CHCl₃/CCl₄ solution vs the reaction field for CHCl₃/CCl₄ solutions.

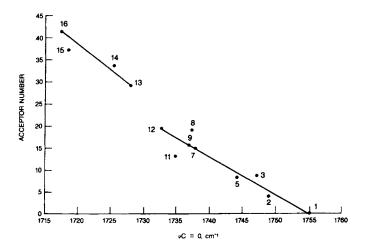


FIGURE 15.13 Plots of unperturbed νCO frequencies for coumarin 1% wt./vol. in various solvents vs the solvent acceptor number (AN).

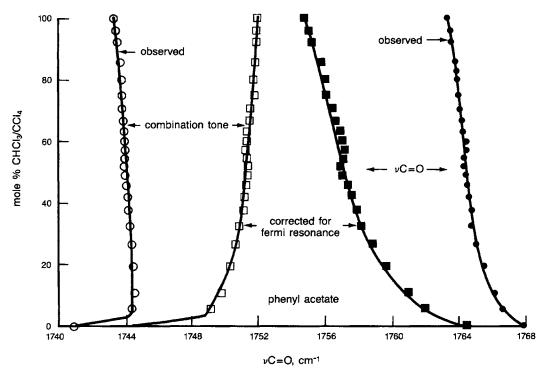


FIGURE 15.14 Plots of vCO and a combination tone in Fermi resonance and their unperturbed vCO and CT frequencies for phenyl acetate after correction for Fermi resonance vs mole % $CHCl_3/CCl_4$.

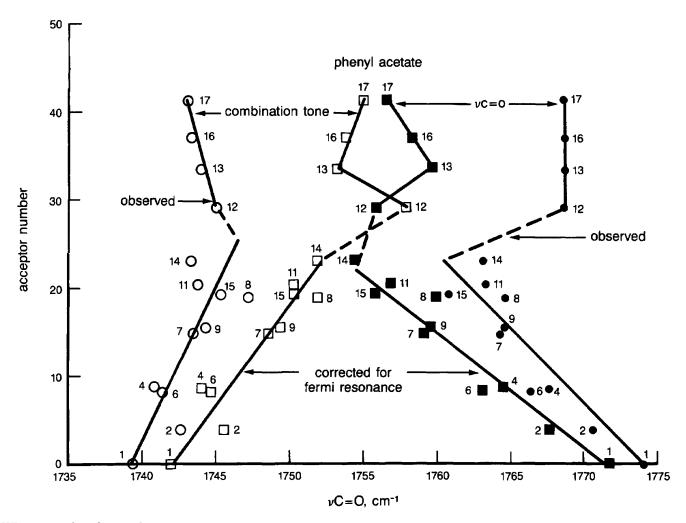


FIGURE 15.15 Plots of ν CO and a combination tone in Fermi resonance and their unperturbed ν CO and CT frequencies for phenyl acetate after correction for Fermi resonance vs the solvent acceptor number (AN).

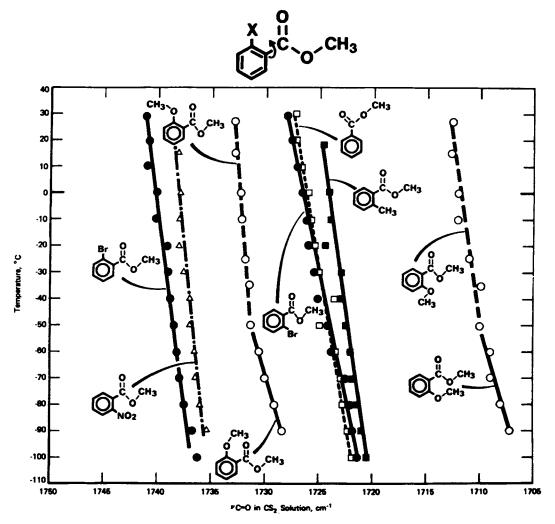


FIGURE 15.16 Plots of ν CO for methyl benzoates in CS₂ solution vs temperature in $^{\circ}$ C.

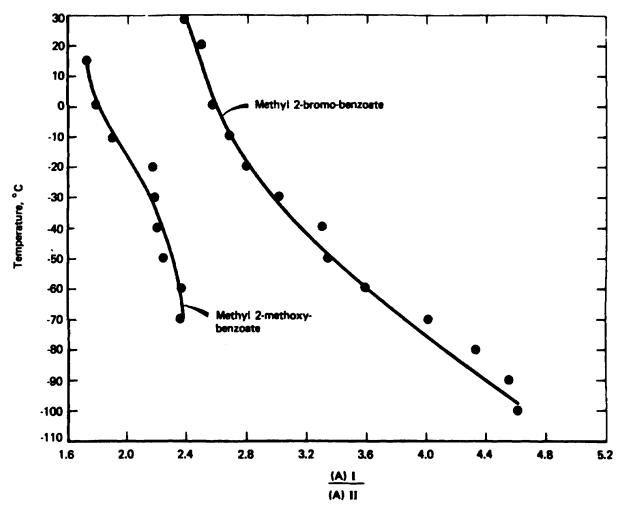


FIGURE 15.17 Plots of the absorbance ratio for A(vCO, rotational conformer 1)/A(vCO, rotational conformer 2) for methyl 2-methoxybenzoate and methyl 2-

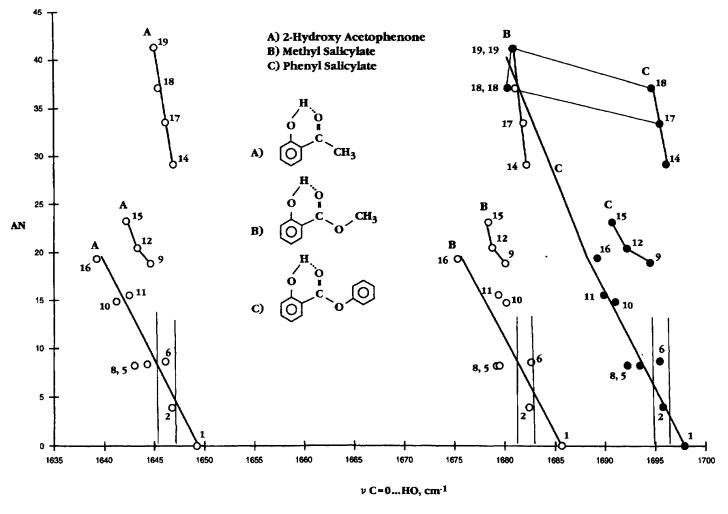


FIGURE 15.18 Plots of vCO···HO frequencies for 2-hydroxyacetophenone, methyl salicylate, and phenyl salicylate vs the solvent acceptor number (AN) for each of the solvents used in the study.

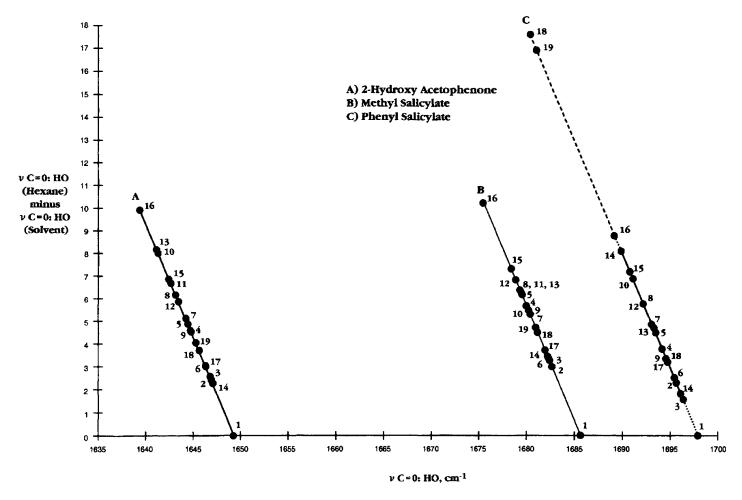


FIGURE 15.19 Plots of ν CO···HO for 2-hydroxyacetophenone, methyl salicylate, phenyl salicylate vs the frequency difference between ν CO···HO (hexane) and ν CO···HO (solvent) for each of the other solvents.

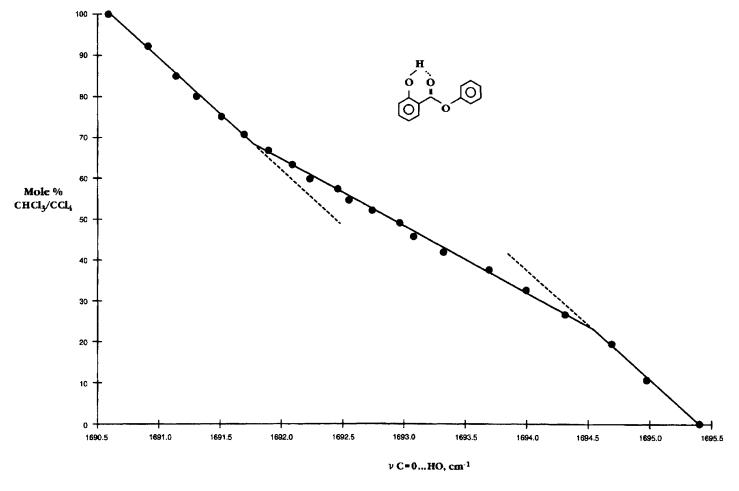


FIGURE 15.20 A plot of $\nu CO \cdots HO$ frequencies of phenyl salicylate vs mole % CHCl₃/CCl₄.

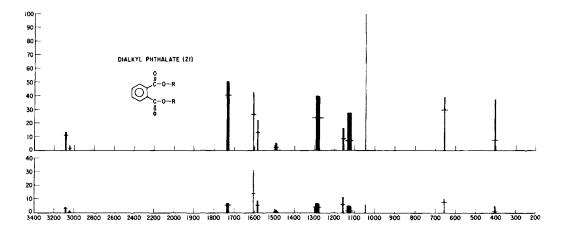


FIGURE 15.21 Bar graphs of the Raman group frequency data for 21 dialkyl phthalates.

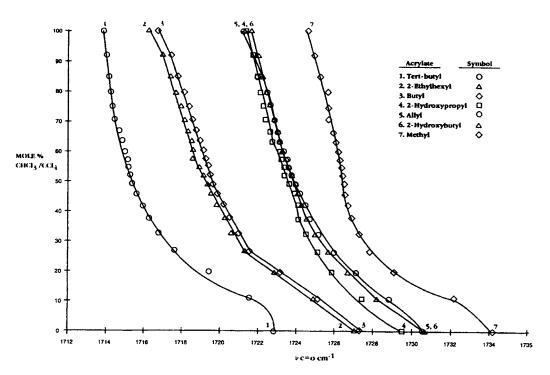


FIGURE 15.22 Plots of ν CO for seven alkyl acrylates in 1% wt./vol. CHCl₃/CCl₄ solutions vs mole % CHCl₃/CCl₄.

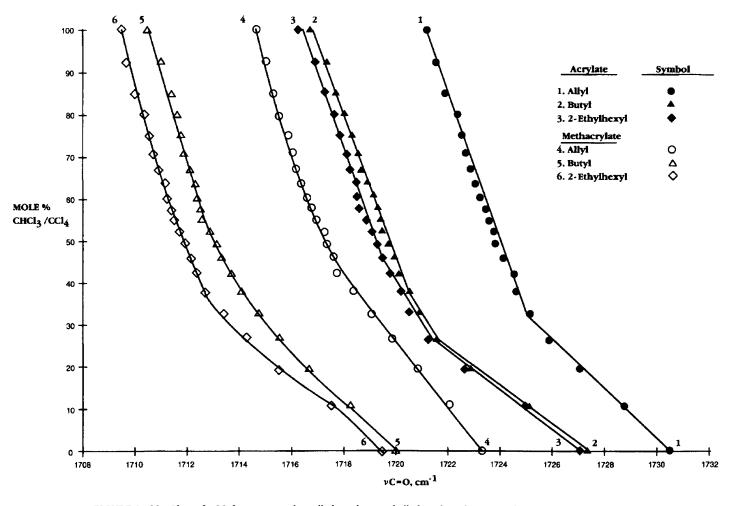


FIGURE 15.23 Plots of vCO for corresponding alkyl acrylates and alkyl methacrylates vs mole % CHCl₃/CCl₄ solutions.

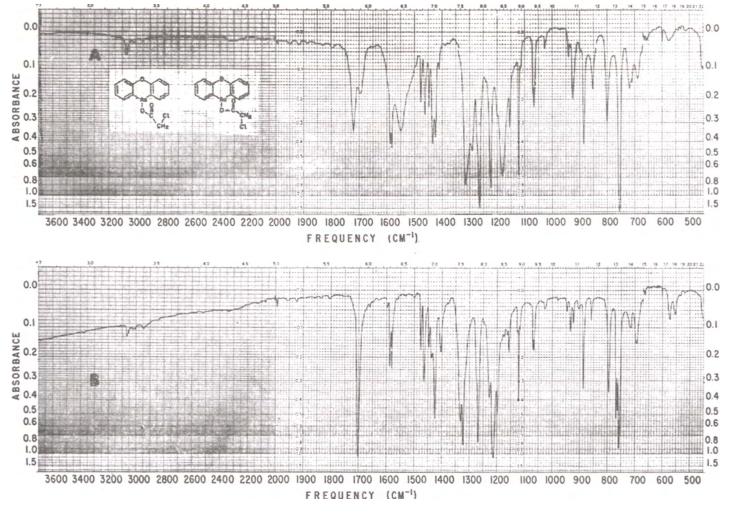


FIGURE 15.24 10-phenoxyarsinyl chloroacetate. (a) Saturated in CCl₄ and CS₂ solution, (b) split mull.

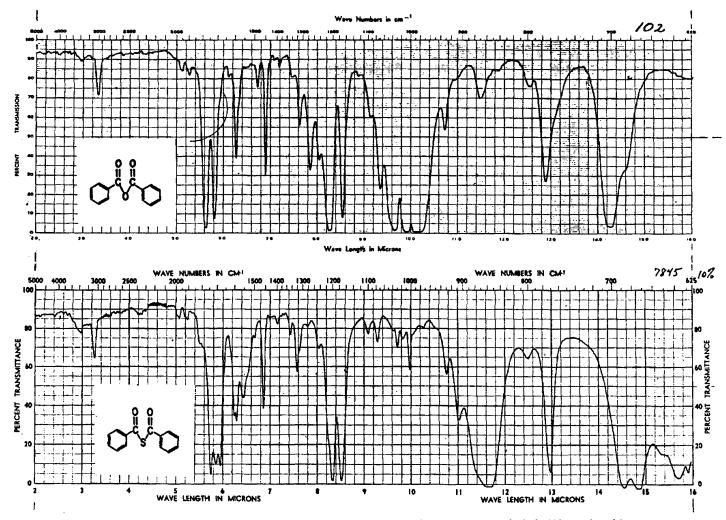


FIGURE 15.25 IR spectra of thiolbenzoic anhydride (dibenzoyl sulfide) and benzoic anhydride (dibenzoyl oxide).

TABLE 15.1 Carbonyl stretching frequencies for some carboxylic acid esters

Compound	C=O str. vapor cm ⁻¹	C=O str. liquid cm ⁻¹	Compound	C=O str. vapor cm ⁻¹	C=O: H-O str liquid cm ⁻¹
Alkyl formate	1741–1751	1715–1730			
Alkyl acetate	1755-1769	1735-1750			
Phenyl acetate	1781–1786				
Vinyl acetate	1784				
Alkyl propionate	1751-1762	1725-1740	Alkyl acrylate	1746-1751	
Phenyl propionate	1781		, ,		
Vinyl propionate	1777				
Alkyl isobutryate	1751-1760		Alkyl methacrylate	1739-1741	
Alkyl butyrate	1750-1760		,		
Alkyl valerate	1752-1761		Alkyl benzoate	1737-1749	
Alkyl hexanoate	1749-1759		Phenyl benzoate	1760	
Alkyl heptanoate	1752-1759		Methyl 2-nitrobenzoate	1751	
Alkyl octanoate	1751-1759		•		
Alkyl nonoate	1751-1759		Dialkyl phthalate	1735-1753	
Alkyl decanoate	1751-1760		Dialkyl isophthalate	1740-1746	
Vinyl decanoate	1780		Dialkyl terephthalate	1739-1749	
Alkyl undecanoate	1751-1760				
Alkyl octanoate	1740-1759		Alkyl isonicotinate	1750-1753	
Vinyl octanoate	1771		,		
Dialkyl malonate	1750-1770		Alkyl salicylate	1740-1755	1687-1698
Dialkyl succinate	1751-1761		Phenyl salicylate	1750-1762	1695-1705
Dialkyl adipate	1750-1760		,		

Carboxylic Acid Esters

[7.9]

TABLE 15.2 The C=O stretching frequencies for alkyl alkanoates in the vapor phase and in various solvents MA MΡ MIB MTMA MTMA E EA EIB **ETMA** AN C=O str. Solvent*1 cm^{-1} cm^{-1} cm^{-1} cm^{-1} cm^{-1} cm^{-1} cm^{-1} cm^{-1} cm^{-1} 1769 1662 [vapor] 1760 1755 1755 1761 1755 1752 1750 Hexane 1755.4 1752.1 1742.8 1747.9 1749.8 1746.7 1743 1736.4 0 Diethyl ether 1751 1747.8 1743.8 1739 1745.4 1742.8 1739.3 1732.4 3.9 Methyl t-butyl ether 1750.8 1747.3 1743.5 1738.7 1745.1 1742.4 1738.9 1732 [4.4] Carbon tetrachloride 1748 1744.6 1740.6 1735.8 1741.8 1739.1 1735.7 1728.3 8.6 Benzene 1746.1 1742.9 1738.9 1734.4 1740 1737.2 1734 1726.9 8.2 1.2-Dichlorobenzene 1743.5 1739.7 1735.5 1732.5 1737.3 1733.6 1730.3 1723.8 [13.8] Nitrobenzene 1741.5 1739.9 1734.1 1734.4 1735.5 171.9 1729.7 1725.3 14.8 Acetonitrile 1741.8 1738.7 1734.6 1731.6 1724.2 1735.7 1732.7 1729.3 1722 18.9 Benzonitrile 1741.4 1738.5 1734.3 1731.9 1722.1 1735.6 1732.7 1729.1 1721.6 1720 Nitromethane 1740.1 1737.1 1732.9 1738.8 1722.3 1734 1730.7 1727.2 1720 [18.5] Methylene chloride 1739.4 1735.8 1731.8 1730.6 1721 1733.2 1729.4 1725.17 1718.7 20.4 Chloroform 1737.4 1734.1 1730.9 1729.9 1720 1732.2 1727.7 1724.9 1718.36 23.1 Chloroform-d 1737.5 1734.2 1730.8 1729.7 1720 1731.5 1727.7 1724.9 1718.9 23.1 t-Butyl alcohol 1751.4 1747.7 1743.3 1738.6 1746.4 1742.8 1739.3 1733.2 [3.7] Isopropyl alcohol 1751.2 1748.6 1743.9 1738.6 1745.4 1742.9 1739.3 1732.8 [3.7]Ethyl alcohol 1749.5 1746.6 1742.5 1738.6 1743.7 1741.2 1737.7 1731 [6.3] Methyl alcohol 1747.6 1743.7 1739.5 1737.5 1741.5 1738.4 1734.9 1728.6 [7.6]Dimethyl sulfoxide 1737.5 1734.6 1731 1728.5 1720.9 1732.3 1729.1 1726.1 1719.9 19.1 [neat] 1745.2 1743 1740.8 1736.6 1741.5 1738.9 1736.7 1730.3 [8.7] Carbon disulfide 1746.9 1743.6

1735.1

1740.8

1738.2

1734.9

1727.9

1739.6

^{*1} Abbreviations for the various solvents are spelled out in the text.

TABLE 15.3 The frequency difference between ν C=O and ν C=O:HOR for alkyl alkanoates in alkyl alcohols [0.5 wt./vol. solute in solvent]

Alcohol	MA cm ⁻¹	MP cm ⁻¹	EA cm ⁻¹	MIB cm ⁻¹	EP cm ⁻¹	EIB cm ⁻¹	MTMA cm ⁻¹	ETMA cm ⁻¹	[M + E]/2 cm ⁻¹
tert-Butyl	17.32	17.82	17.55	19.16	19.55	18.77	20.81	19.26	18.78
Isopropyl	18.75	20.12	17.99	22.25	21.39	20.61	20.11	20.39	20.45
Ethyl	17.98	20.16	17.54	23.14	22.07	21.56	22.57	20.68	20.71
Methyl	17.05	18.33	14.97	21.36	20.71	20.42	21.81	20.01	19.33

TABLE 15.4 The frequency difference between vC=O and vC=O:HO for alkyl acetates in alkyl alcohols

Alcohol	Methyl acetate delta cm ⁻¹	Ethyl acetate delta cm ⁻¹	Isopropyl acetate delta cm ⁻¹	tert-Butyl acetate delta cm ⁻¹
Methyl	17.05	14.97	18.97	18.04
Ethyl	18.07	17.54	21.91	22.77
Isopropyl	17.75	18.02	22.43	23.41
tert-Butyl	17.32	17.75	21.67	23.13

TABLE 15.5 The C=O stretching frequencies for alkyl 2,2- dichloroacetates and alkyl acetates in the vapor and neat phases

Alkyl	[A] Alkyl 2,2-dichloroacetate [vapor phase] C=O str., Conformer 1 cm ⁻¹	[B] Alkyl 2,2-dichloroacetate [vapor phase] C=O str., Conformer 2 cm ⁻¹	[C] Alkyl acetate [vapor phase] C=O str. cm ⁻¹	[A]-[C] cm ⁻¹	[A]–[C] cm ⁻¹	[B]-[C] cm ⁻¹	[vapor]–[neat] cm ^{–1}
Methyl	1790	1765	1769	25	21	-4	
Ethyl	1785	1762	1761	23	24	1	
Ethyl[neat]	[1771]	[1750]		[21]			[14]:[12]
Hexyl	1783	1761	1760	22	23	1	
Hexyl[neat]	[1767]	[1750]		[17]			[16]:[11]
Nonyl	1782	1761	1761	21	21	0	
Dodecyl	1782	1761	1761	21	21	0	
sec.Butyl	1779	1758	1755	21	24	3	
Methyl			1751				
t-Butyl			1740				
[delta C=O str.]			[11]				

TABLE 15.5A $\,$ IR data for ethyl acetate and ethyl 2-chloroacetate in $\,$ CS $_2$ solution between 27 and -100° C

°C	Ethyl acetate acetate [CS ₂] cm ⁻¹	°C	Ethyl 2-chloroacetate conformer 1 [CS ₂] cm ⁻¹	Ethyl 2-chloroacetate conformer 2 [CS ₂] cm ⁻¹	A[conformer 1] A[conformer 2]	[conformer 1]– [conformer 1]– cm ⁻¹
27	1741.3	26	1765	1740.5	1.19	24.5
15	1740.7	15	176 4 .5	1740	1.25	24.5
0	1740.5	0	1764.1	1739.4	1.47	24.7
-10	1739.5	-10	1763.6	1738.5	1.55	25.1
-20	1738.6	-20	1763.6	1738.5	1.6	25.1
-30	1738	-30	1763.5	1738	1.81	25.5
-40	1738	-40	1763.4	1737	2.14	26.4
-50	1737.6	-50	1762.8	1736.2	2.32	26.6
-60	1737	-60	1762.5	1736.1	2.62	26.4
-70	1736	-70	1761.6	1735.5	2.85	26.1
-80	1736	-80	1761.3	1735.4	3.18	26.2
-90	1735.5	-90	1760.6	1733.6	3.69	27
-100		-100	1759.8	1732.8	4.2	27
delta C	delta C=O str.	delta C	delta C=O str.	delta C=O str.	delta	delta cm ⁻¹
[-117]	[-5.8]	[-126]	[-5.2]	[-7.7]	[A(conformer 1)]– [A(conformer 2)]– [3.01]	[2.22]

TABLE 15.6 IR data for β -propiolactone in various solvents

β-Propiolactone 1% wt./vol.				C=O str., A' corrected	v6 + V13A' corrected	2v10, A' corrected
solutions in the	C=O str., A'	v6 + v13, A'	2v10, A'	for F.R.	for F.R.	for F.R.
solvents listed below	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹
Hexane	1857.18	1832.01	1817.52	1850.21	1830.69	1826.81
Diethyl ether	1852.24	1838.04	1814.14	1843.8	1834.65	1825.97
Carbon tetrachloride	1850.5	1833.08	1816.28	1841.78	1831.62	1831.62
Nitrobenzene	1830.93	1843.31	1808.44	1828.74	1830.62	1823.33
Acetonitrile	1832.18	1845.07	1810.23	1830.55	1832.56	1824.37
Benzonitrile	1830.77	1843.31	1829.78	1829.72	1831.92	1825.23
Methylene chloride	1831.46	1844.86	1812.36	1830.87	1832.43	1825.38
chloroform	1845.02	1831.7	1813.04	1834.7	1829.67	1825.39
Nitromethane	1831.8	1845.07	1809.8	1830.12	1832.48	1824.07
t-Butyl alcohol	1832.02	1845.66	1813.4	1830.79	1833.28	1821.01
Isopropyl alcohol	1833.07	1845.72	1810.82	1830.84	1832.72	1826.05
Ethyl alcohol	1833.81	1845.72	1810.37	1831.14	1832.78	1825.99
Methyl alcohol	1834.23	1843.23	1809.89	1830.72	1832.01	1825.35

TABLE 15.7 IR group frequency data for coumarin and derivatives in the vapor phase and in solution

Compound vapor phase	2(C=O) cm ⁻¹ (A)	C=O str. $cm^{-1}(A)$	CCOC str. $cm^{-1}(A)$	CCOC str. $cm^{-1}(A)$	o.p. Ring cm ⁻¹ (A)	o.p. Ring cm ⁻¹ (A)
Coumarin	3530(0.015)	1776(1.240)	1265(0.078)	1178(0.160)	751(0.131)	825(0.140)
3,4-dihydro	3590(0.021)	1802(1.250)	1235(0.710)	1140(1.040)	755(0.295)	
3-chloro	3545(0.020)	1775(1.210)	1242(0.160)	1120(0.199)	750(0.354)	
6-methyl	3525(0.010)	1755(1.240)	1260(0.118)	1163(0.210)	897(0.141)	819(0.172)
		C=O str.	C=O: HO	AN	C=O str.	
Coumarin		corrected	corrected		not corrected	
1 wt. % (0.1 mm KBr)		for F.R.	for F.R.		for F.R.	
solvent		cm ⁻¹			cm ⁻¹	
Hexane		1755.16		0	1758.56	
Diethyl ether		1748.93		3.9	1755.16	
Carbon tetrachloride		1747.16		8.6	1741.25	
Carbon disulfide		1744.47			1739.49	
Benzene		1744.18		8.2	1738.64	
Toluene		1743.96			1739.3	
Nitrobenzene		1737.82		14.8	1733.47	
Acetonitrile		1737.31		18.9	1733.58	
Benzonitrile		1736.84		15.5	1733.5	
Nitromethane		1735.28			1732.06	
Chloroform		1734.89		23	1729.94	
Dimethylsulfoxide		1732.82		19.3	1729.22	
Tert-butyl alcohol			1727.9	29.1		
Isopropyl alcohol			1725.45	33.5		
Ethyl alcohol			1718.53	37.1	1739.74	
Methyl alcohol			1717.38	41.3	1738.18	

TABLE 15.8 IR data for phenyl acetate in CHCl₃/CCl₄

Phenyl acetate	C=O str. in F.R. cm ⁻¹	CT in FR. cm ⁻¹	A[1]	A[2]	A[1]/A[2]	C=O str. corrected for FR. cm ⁻¹	CT corrected for ER. cm ⁻¹
Mole % CHCl ₃ /CCl ₄							
0	1767.71	1740.99	0.433	0.059	0.133	1764.6	1744.1
52	1764.22	1743.94	0.612	0.35	0.572	1756.8	1751.3
100	1763.19	1743.32	0.287	0.217	0.756	1754.6	1751.9
delta C=O	-4.52	2.33				-9.9	7.8

TABLE 15.9 IR data for phenyl acetate invarious solvents

Phenyl acetate 1 % wt./vol. solutions [.207 mm KBr cell]	C=O str. in FR. cm ⁻¹	CT* ¹ in FR. cm ⁻¹	C=O str. corrected for ER. cm ⁻¹	CT corrected for FR. cm ⁻¹	AN*²
Solvent					
Hexane	1774.21	1736.5	1771.8	1741.9	0
Diethyl ether	1770.62	1742.62	1767.6	1745.6	3.9
Methyl t-butyl ether	1770.22	1743.3	1766.7	1746.8	
Carbon tetrachloride	1767.71	1740.99	1764.6	1744.1	8.6
Carbon disulfide	1766.46	1737.6	1763.9	1740.2	
Benzene	1766.39	1741.24	1763.1	1744.6	8.2
Nitrobenzene	1764.31	1743.48	1759.2	1748.6	14.8
Acetonitrile	1764.65	1747.24	1759.9	1751.9	18.9
Benzonitrile	1764.6	1744.34	1759.5	1749.4	15.5
Nitromethane	1763.88	1754.76	1758.1	1751.6	
Methylene chloride	1763.37	1743.79	1756.8	1750.3	20.4
t-Butyl alcohol	1768.72	1745.05	1755.9	1757.9	29.1
Isopropyl alcohol	1768.79	1744.07	1759.6	1753.3	33.5
Chloroform	1763.19	1743.32	1754.6	1751.9	23.1
Dimethyl sulfoxide	1760.83	1745.34	1755.8	1750.3	19.3
Ethyl alcohol	1768.82	1743.4	1758.3	1753.9	37.1
Methyl alcohol	1768.51	1743.17	1756.6	1755.1	41.3

^{*1}CT = combination tone.
*2AN = acceptor number.

TABLE 15.10 $\,$ IR data for alkyl 2-benzoates in CS_2 solution between 29 and $-100^{\circ}C$

°C	Methyl 2-bromobenzoate C=O str. conformer 1 [CS ₂] cm ⁻¹	Methyl 2-bromo- benzoate C=O str. conformer 2 [CS ₂] cm ⁻¹	[conformer 1]– [conformer 2] cm ⁻¹	°C	Methyl 2-methoxy- benzoate C=O str. conformer 1 [CS ₂] cm ⁻¹	Methyl 2-methoxy- benzoate C=O str. conformer 2 [CS ₂] cm ⁻¹	[conformer 1]– [conformer 2] cm ⁻¹
29	1741.2	1728	13.2	15	1732.8	1712.8	20
10	1741	1728	13				
0	1740	1727	13	0	1732.3	1712.2	20.1
-10	1740.2	1726.5	13.7	-10	1732.3	1712.1	20.2
-20	1739.2	1726	13.2	-24.5	1731.7	1711	20.7
-30	1739	1725.5	13.5	-35	1731.5	1709.8	21.7
-40	1738.8	1725	13.8	-40			
-50	1738.5	1724.2	14.3	-50	1731.5	1710.1	21.4
-60	1738.2	1723.8	14.4	-60	1730.5	1709	21.5
-70	1738	1722.5	15.5	-70	1730	1709	21
-80	1737.5	1722	15.5	-80	1729.1	1708	21.1
-90	1736.7	1722	14.7	-90	1728.5	1707.2	21.3
-100	1736.2	1721.5	14.7				
delta C	delta C=O str.	delta C=O str.		delta C	delta C=O str.	delta C=O str.	
[-129]	[-5.0]	[-6.5]	[1.5]	[115]	[-4.3]	[-5.6]	[1.3]

0.0	Ethyl 2-Nitrobenzoate C=O str.	0.0	Methyl benzoate C=O str.	0.0	Methyl 2-Methyl benzoate C=O str.
°C	cm ⁻¹	°C	cm ⁻¹	°C	cm ⁻¹
15	1738.2	30	1727	18	1724.7
0	1738	0	1726	0	1724.3
-10	1738	-10	1725.8	-10	1724
-20	1738	-20	1725.4	-20	1723.5
-30	1737.6	-30	1725	-30	1723
-40	1737	-40	1724.5	-40	1723.3
-50	1737	-50	1724	-50	1722.6
-60	1737.5	-60	1723.5	-60	1722
-70	1736.5	-70	1723	-70	1722
-80	1736	-80	1722.8	-80	1721.5
-90	1735.5	-90	1722.3	-90	1721.1
		-100	1721.7	-100	1720.6
delta C	delta C=O str.	delta C	delta C=O str.	delta C	delta C=O str.
[-115]	[-2.7]	[-130]	[-5.3]	[-118]	[-4.1]

TABLE 15.11 The C=O stretching frequencies for methyl salicylate, phenyl salicylate, and 2-hydroxyacetophenone in various solvents

2-Hydroxy- acetophenone C=O: H=O	Methyl salicylate C=O: H-O	Phenyl salicylate C=O: H-O	Phenyl salicylate C=O: (O-H),		
cm ⁻¹	cm ⁻¹	cm ⁻¹	cm^{-1}	Solvent	AN
1649.2	1685.6	1697.9		Hexane	0
1646.8	1682.3	1695.7		Diethyl ether	3.9
1646.7	1682.2	1696.3		Methyl t-butyl ether	
1644.7	1679.9	1694		Toluene	
1644.4	1679.4	1693.4		Benzene	8.2
1646.2	1682.5	1695.4		Carbon tetrachloride	8.6
1644.1	1680.4	1693		Carbon disulfide	
1643	1679.2	1692.1		1,2-Dichlorobenzene	8.2
1644.6	1680.1	1694.5		Acetonitrile	18.9
1641.2	1680.1	1691		Nitrobenzene	14.8
1642.5	1679.4	1689.8		Benzonitrile	15.5
1643.3	1678.7	1692.1		Methylene chloride	20.4
1641	1679.3	1693.2		Nitromethane	
1647	1682.1	1696.1		t-Butyl alcohol	29.1
1642.3	1678.3	1690.7		Chloroform	23.1
1639.3	1675.3	1689.1		Dimethyl sulfoxide	19.3
1646.2	1681.8	1695.5		Isopropyl alcohol	33.5
1645.5	1681.1	1694.7	1680.3	Ethyl alcohol	37.1
1645.1	1680.2		1680.9	Methyl alcohol	41.3

TABLE 15.12 Raman group frequency correlations for dialkyl phthalates in the neat phase

Dimethyl phthalate			Di-(isooctyl) phthalate		
cm ⁻¹	RI*1	DR*2	cm ⁻¹	RI	DR
3082	11.1	0.31	3079	11.6	0.31
3042	2.1	0.64	3039	1.5	0.75
1731	45.3	0.14	1731	45.7	0.14
[1753 vapor, IR]					
1604	26.7	0.77	1603	31.9	1.76
1584	14	0.43	1583	15.9	0.45
1494	3.8	0.31	1492	2.2	0.33
1287	26.2	0.16	1278	30.8	0.19
1170	9	0.83	1167	14.2	0.73
1129	17	0.1	1135	9.4	0.15
1044	100	0.05	1043	100	0.06
652	30.2	1.3	652	32.6	0.27
405	37	0.11	405	13.1	0.14

^{*}¹RI = relative intensity.

 $^{*^2}DR = depolarization ratio.$

TABLE 15.13 Raman data for C=O and C=C stretching for acrylates

	[R]C=O str.	RI	C=C str.	RI	C=O strC=C str.	RI C=O/
Group	cm ⁻¹		cm ⁻¹		cm ⁻¹	RI C=C
Methyl	1726	4	1636	9	90	0.44
Propyl	1723	5	1639	9	84	0.56
Butyl	1723	4	1639	9	84	0.44
Heptyl	1725	4	1639	9	86	0.44
Nonyl	1726	3	1639	8	87	0.38
Undecyl	1726	3	1640	9	86	0.33
2-Ethylhexyl	1725	4	1638	7	87	0.57
Isopropyl	1721	3	1640	9	81	0.33
Cyclohexyl	1720	3	1639	6	81	0.51
isoButyl	1725	3	1638	9	87	0.33
isoAmyl	1725	5	1639	9	86	0.56
Benzyl	1723	1	1636	2	87	0.51
2-Phenylethyl	1722	1	1637	4	85	0.25
2-(2-Ethyoxyethoxy) ethyl	172 4	4	1639	9	85	0.44
2-Hydroxyethyl	1722	3	1639	9	83	0.33
2-Hydroxypropyl	1722	3	1639	9	83	0.33
2-Hydroxybutyl	1721	3	1638	9	83	0.33
2-Methoxyethyl	1723	4	1639	9	84	0.44
3-Methoxybutyl	1724	5	1639	9	85	0.56
Triethyleneglycol,di-	1721	4	1638	9	83	0.44
1,4-Tetramethylene,di	1721	4	1636	9	82	0.44
Ethylene,di	1723	4	1639	9	85	0.44
1,2-Propanediol,di	1723	5	1638	9	86	0.56
	1724	4	1637	7	84	0.56
1,3-Propanediol,di	1721	4	1638	9	83	
1,6-Hexamethylene,di 1,10-Decanediol,di	1721	5	1638	9	84	0.44 0.56
*	1722	4	1637	9	85	
2,-Butene-1,4-diol,di						0.44
Cinnamyl	1722	1	1637	3	85	0.33
2-Bromoethyl	1726	2	1637	5	89	0.41
2,3-Dibromopropyl	1717	1	1636	3	81	0.33
Tribromoneopentyl	1730	1	1637	3	93	0.33
2,2,2,Trifluoroethyl	1748	4	1638	9	110	0.44
Hexafluorobutyl	1746	4	1639	9	107	0.44
Pentafluorooctyl	1752	4	1639	9	113	0.44
1,H,1H,11H-Eicos-fluorodecanyl	1747	1	1639	2	108	0.51
Hexafluorisopropyl	1757	3	1640	4	117	0.75
Phenyl	1739	l	1635	3	104	0.33
p-Chlorophenyl	1742	3	1637	9	105	0.33
p-Nitrophenyl	1748	~ 0.51	1632	2	116	~ 0.25
2,4,6,Tribromophenyl	1737	2	1623	~ 0.50	114	~ 0.13
Pentabromophenyl	1738	2	1625	~ 0.25	113	\sim 4.0
Pentachlorophenyl	1752	1	1638	3	114	0.33
Pentaflourorphenyl	1774	2	1636	5	138	0.41
p-Phenylene,di-	1726	5	1637	6	89	0.83
Bisphenol A,di-	1726	6	1626	5	100	1.21
1-Naphthyl	1731	1	1637	1	94	1
2-Naphthyl	1735	1	1634	2	101	0.51

(continued)

TABLE 15.13 (continued)

Group	[R]C=O str. cm ⁻¹	RI	C=C str. cm ⁻¹	RI	C=O strC=C str. cm ⁻¹	RI C=O/ RI C=C
Vinyl	1740	4	1630	9	110	0.44
Propargyl	1728	2	1637	7	91	0.29
N,N-dimethylaminoethyl	1724	4	1638	9	86	0.44
2-(N-morpholino)ethyl	1723	4	1637	4	86	0.57
3-Dimethylamino-neopentyl	1725	4	1636	7	89	0.57
3-Sulfopropyl potassium salt	1719	1	1638	4	81	0.25
Range	1717–1774		1623–1640		81–138	

TABLE 15.13A IR C=O stretching frequency data and other group frequency for alkyl acrylates [CHCl₃ and CCl₄ solutions]

		2-Hydroxy-		2-Hydroxy-	_	2-Ethyl-	
	Methyl	butyl	Allyl	propyl	Butyl	hexyl	
Mole %	acrylate	acrylate	acrylate	acrylate	acrylate	acrylate	tert-Butyl
CHCl ₃ /CCl ₄	C=O str.	acrylate					
[vapor]	1751				1741		
0	1734.1	1730.6	1730.5	1729.4	1727.3	1727.1	1722.9
100	172 4 .5	1721.6	1727.1	1721.3	1716.7	1716.3	1713.8
[delta cm ⁻¹]	16.9;26.5;9.6	9	3.4	8.1	13.8;24.3;10.6	10.8	9.1
	s-trans						
	C=C str.						
0	1635.3	1636.5	1635.4	1637	1637.2	1635.7	1635.6
100	1635.1	1636.1	1635.4	1636.6	1635.8	1636.3	1635.8
[delta cm ⁻¹]	-0.2	-0.4	o	-0.4	-1.4	0.6	0.2
	s-cis						
0	1620.4	1619.3			1619.7		1619.2
100	1619.9				1619.2		1618.5
[delta cm ⁻¹]	-0.5				-0.5		-0.7
	CH ₂ =bend						
0		1406.4	1404.6	1406.6	1407.2	1406.5	1401.6
100		1409.4	1407	1409.5	1410.3	1409.9	1404
[delta cm ⁻¹]		3	2.4	2.9	3.1	3.4	2.4
	HC=CH						
	twist	twist	twist	twist	twist	twist	
0	984.9	982.6	984.7	983.3	983.5	983.6	984.45
100	985	983.4	984.4	983.9	984.3	984.5	985.6
[delta cm ⁻¹]	0.1	0.8	-0.3	0.6	0.8	0.9	1.1
	C=CH ₂ wag						
0	968.1	982.6			968.4		966.3
100	970.3	983.4			969		966.5
[delta cm ⁻¹]	2.2	0.8			0.6		0.2

TABLE 15.14 Raman data for methacrylates in the neat phase and summary of IR data in CHCl₃ and CCl₄ solutions

	C=O str.	RI	C=C str.	RI	C=O str. minus C=C str.	RI C=O str./ RI C=C str.	C=O str.Acr C=O str. Methacr.	C=C str.Methacr C=C str.Acr.
		KI	C=C str.	NI .	C=C su.	RI C=C SII.	C=O Str. Methacr.	C=C Str.Acr.
Methyl [IR vapor]	1741							
Propyl	1719	5	1641	7	78	0.71	4	2
Pentyl [IR vapor]	1739							
Pentyl	1719	4	1641	6	78	0.67		
Hexyl	1720	3	1640	5	80	0.6		
Heptyl	1720	3	1640	4	80	0.75	5	1
Octyl	1720	3	1641	4	79	0.75		
Nonyl	1720	3	1641	79	0.75	6	2	
Decyl [IR vapor]	1739							
Decyl	1720	3	1641	4	79	0.75		
Undecyl	1720	3	1641	9	79	0.33	6	1
Dodecyl	1721	2	1641	3	80	0.67	6	2
Hexadecyl	1721	2	1641	2	80	1	7	3
Octadecyl	1721	1	1640	2	81	0.5		
2-Ethylhexyl	1720	3	1641	4	79	0.75	5	3
Oleyl	1720	2	1641	3	79	0.67	8	2
Isopropyl	1716	4	1641	6	75	0.67	5	1
sec-Butyl	1715	4	1640	5	75	0.8		
isoBornyl	1716	2	1640	3	76	0.67	6	2
isoButyl	1719	5	1641	7	78	0.71	6	3
isoAmyl	1719	4	1640	6	79	0.67	6	1
isoDecyl	1720	3	1641	4	79	0.75		
2-Phenylethyl	1717	2	1641	2	77	1	5	3
2-Phenoxyethyl	1720	1	1639	2	81	0.5		
2-Ethylethyl	1719	4	1640	79	0.67			
Ethoxytriethylene glycol	1719	4	1640	5	79	0.8		
2-Hydroxyethyl	1718	5	16 4 0	9	78	0.56	4	1
2-Hydroxybutyl	1716	4	1639	9	77	0.44	5	1
2-Methoxypropyl	1717	5	1640	7	77	0.71		
2-Methoxybutyl	1718	4	1640	6	78	0.67	6	1
Glyceryl tri-	1721	7	1639	9	82	0.78		
Ethylene, di-	1720	6	1640	9	80	0.67	3	1
1,9-Nonanediol,di	1717	4	1640	6	77	0.67		
1,10-Decanediol,di	1717	4	1640	6	77	0.67	5	2

381

TABLE 15.14 (continued)

					C=O str. minus	RI C=O str./	C=O str.Acr	C=C str.Methacr
	C=O str.	RI	C=C str.	RI	C=C str.	RI C=C str.	C=O str. Methacr.	C=C str.Acr.
2-Bromoethyl	1720	1	1639	2	81	0.5	6	2
tribromoneopentyl	1723	1	1639	2	84	0.5	7	2
Trichloroethyl	1742	2	1637	l	105		2	
2,2,2-Trifluoroethyl	1738	6	1640	9	98	0.67	10	2
1,H,1H,3H-Tetra-fluoropropyl	1735	6	1640	9	95	0.67		
Hexafluorobutyl	1736	6	1641	9	95	0.67	10	2
Dodecafluoro-1-heptyl	1739	4	1641	7	98	0.57		
Pentadecylfluoro-octyl	1743	5	1641	7	102	0.71	9	2
1H,1H,2H-Hepta-decylfluorodecyl	1727	3	1642	4	85	0.75		
Phenyl	1735	3	1639	4	96	0.75	4	4
p-Nonylphenyl	1738	4	1639	5	99	0.8		
p-Nitrophenyl	1742	2	1636	1	106	2	6	4
Pentabromophenyl	1737	1	1635	1	102	1	1	10
Pentachlorophenyl	1745	4	1637	1	108	1.33	7	-1
Pentafluorophenyl	1762	2	1639	2	123	1	12	3
Bisphenol A, di-	1718	5	1639	7	79	0.79	8	13
4-Hydroxy-benzophenone	1737	2	1629	7	108	0.29		
2-Naphthyl	1729	2	1639	2	90	1	6	5
Methyallyl	1720	5	1640	8	80	0.63		
Allyl	1720	5	1641	8	79	0.63		
Propargyl	1724	3	1640	5	84	0.6		
N,N-Dimethylamino-ethyl	1719	6	1640	8	79	0.75	5	2
2-(1-Aziridinyl) ethyl	1718	6	1640	8	78	0.75		
2-Aminoethyl hydrochloride	1719	4	1639	8	78	0.5		
Trimethylammonium ethyl methosulfate	1717	1	1640	3	77	0.33		
3-Sulfopropyl	1713	2	1639	3	74	0.67	6	1
Range	1713–62		1635-42		77–123		-	_
Infrared Range in CCl ₄ soln.	1719–26		1637.3–38					
Infrared Range in CHCl ₃ soln.	1709.5-18		1635.7–37.3					

TABLE 15.15 IR vapor-phase data and assignments for alkyl cinnamates [C=C stretching, CH=CH twisting, and C=O stretching]

Cinnamate	C=O str.	C=C str.	[(A)C=C]/ [(A)C=O]	HC=CH twist	[(A)HC=CH twist]/ [(A)C=C str.]	[(A)HC=CH twist]/ [(A)C=O str.]
Methyl	1740(1.141)	1640(0.431)	0.38	975(0.181)	0.42	0.16
Ethyl	1735(1.050)	1640(0.370)	0.35	975(0.169)	0.46	0.16
Butyl	1731(1.141)	1641(0.379)	0.33	978(0.205)	0.54	0.18
Isobutyl	1735(0.806)	1641(0.310)	0.38	975(0.130)	0.42	0.16
Isopentyl	1737(0.830)	1642(0.282)	0.34	980(0.171)	0.61	0.21
Isopropyl	1731(1.250)	1641(0.500)	0.41	982(0.310)	0.62	0.25
Tert-butyl	1727(1.030)	1640(0.370)	0.36	972(0.247)	0.67	0.24
Cyclohexyl	1731(0.654)	1642(0.214)	0.33	980(0.129)	0.6	0.2
Benzyl	1739(0.959)	1640(0.371)	0.39	980(0.246)	0.66	0.26

TABLE 15.15A IR vapor-phase data and assignments for alkyl cinnamates [in-plane and out-of-plane phenyl ring vibrations]

	[1]	[2]	[3]	[4] CCO str.	[5] COC str.	[6] i.p.o.p.5H Ring def.	[7] o.p.Ring def.
Cinnamate	cm ⁻¹ (A)	cm ⁻¹ (A)					
Methyl	1314(0.750)	1269(0.850)	1199(0.700)	1166(1.240)	1045(0.180)	765(0.199)	695(0.159)
Ethyl	1309(0.599)	1259(0.690)	1199(0.490)	1165(1.240)	1042(0.325)	761(0.158)	690(0.120)
Butyl	1309(0.490)	1265(0.605)	1199(0.465)	1170(1.240)		764(0.136)	688(0.110)
Isobutyl	1310(0.440)	1250(0.500)	1199(0.460)	1161(1.240)		763(0.115)	690(0.080)
Isopentyl	110(0.470)	1252(0.450)	1200(0.370)	1165(1.210)		764(0.110)	688(0.072)
Isopropyl	1309(0.690)	1268(0.770)	1199(1.250)	1171(1.250)		763(0.162)	688(0.130)
Tert-butyl	1314(0.589)	1276(0.559)	1199(0.580)	1155(1.250)		761(0.166)	685(0.094)
Cyclohexyl	1307(0.280)	1268(0.365)	1199(0.292)	1170(1.240)	1042(0.180)	764(0.081)	690(0.061)
Benzyl	1304(0.511)	1245(0.750)	1198(0.480)	1154(1.234)	1011(0.331)	750(0.192)	696(0.345)
	[(A)[1]]/[(A)[4] [(A)[2]]/[(A)[4]] [(A)[3]],	/[(A)[4]]	[(A)[6]]/[(A)[7]] [(A)C=C	str.]/[(A)[4]]
Methyl	0.61	0.68	0.	56	1.25	(0.35
Ethyl	0.48	0.56	0.	41	1.32	(0.31
Butyl	0.41	0.48	0.	38	1.24	(0.31
Isobutyl	0.35	0.4	0.	37	1.44	(0.25
Isopentyl	0.39	0.37	0.	31	1.53	(0.23
Isopropyl	0.55	0.62	0.	48	1.25	(0.41
Tert-butyl	0.47	0.45	0.	46	1.75	(0.31
Cyclohexyl	0.23	0.29	0.	24	1.32	(0.17
Benzyl	0.41	0.61	0.	39	0.56	0	.131

Carbox
ylic
Acid
Esters

		Ring	Ring	•					CH ₂ bend+	
Cinnamate	2(C=O) cm ⁻¹ (A)	C-H cm ⁻¹ (A)	C-H cm ⁻¹	a.CH ₃ str. cm ⁻¹ (A)	a.CH ₂ str. cm ⁻¹ (A)	s.CH ₃ str. cm ⁻¹ (A)	s.CH ₂ str. cm ⁻¹ (A)	a.CH ₃ def. cm ⁻¹ (A)	Ring cm ⁻¹ (A)	s.CH ₃ def. cm ⁻¹ (A)
Methyl	3470(0.010)	3075(0.200)	3040(0.150)	2961(0.281)		2850(0.051)		1442(0.290)		
Ethyl	3459(0.010)	3070(0.160)	3035(0.100)	2985(0.211)	2942(0.119)	2910(0.070)	2885(0.050)	1470(0.090)	1450(0.110)	1400(0.070)
Butyl	3458(0.005)	3075(0.149)	3040(0.090)	2984(0.392)	2943(0.199)		2895(0.112)	1452(0.132)		1385(0.122)
Isobutyl	3458(0.005)	3075(0.080)	3040(0.081	2975(0.350)	2960(0.200)		2885(0.129)	1469(0.080)	1451(0.100)	1379(0.150)
Isopentyl	3458(0.005)	3075(0.120)	3040(0.070)	2969(0.440)	2950(0.190)	2920(0.170)	2882(0.120)	1470(0.101)	1451(0.110)	1390(0.090)
Isopropyl	3446(0.011)	3075(0.175)	3040(0.115)	2985(0.487)		2945(0.142)	2888(0.060)	1470(0.090)	1451(0.140)	1380(0.169)
Cyclohexyl	3446(0.005)	3075(0.0830	3040(0.052)		2942(0.652)		2868(0.159)		1453(0.095)	
Tert-butyl	3435(0.008)	3065(0.150)	3030(0.090)	2984(0.420)		2939(0.161)		1475(0.090)	1451(0.120) 1371(0.300)	1395(0.170)
Benzyl	3469(0.005)	3070(0.289)	3039(0.080)		2960(0.099)	2899(0.029)			1450(0.143)	

TABLE 15.15B IR data for alkyl cinnamates

TABLE 15.16 The C=O stretching frequencies for phenoxarsine derivatives in the solid state and in CCl $_4$ solution

	C=O str.	C=O str.
Phenoxarsine	[CCl ₄ soln.]	[Nujol mull]
X=O-(C=O)-R	cm ⁻¹	cm ⁻¹
R		
methyl	1698	
chloromethyl	1720	1702
,	1696	
trichloromethyl	1725	1717
trifluoromethyl	1738	1737
X=S-(C=O)-R		
R		
methyl	1681	
ethyl	1680	1671
propyl	1671	1661
isopropyl	1675	1669
isobutyl	1675	
octyl	1677	
cyclohexyl	1669	1660
2-cyclohexylethyl	1671	1661
benzyl	1670[CS2]	1671
phenoxymethyl	1694;1665	
2,4,5-trichloro-phenoxymethyl	1691;1665	1650
alpha-(2,4,5-tri-chlorophenoxy)ethyl	1682;1665	
carbethoxy	1759;1675	1762;1670
,	1742	
2-furyl	1646;1631	1630
phenyl	1645	
4-t-butylphenyl	1650	
4-methoxyphenyl	1638[CS2]	1628
4-n-butoxyphenyl	1641	
4-n-pentoxyphenyl	1643	1635
3,4,5-triethoxyphenyl		1625
diethylamino	1624	
piperidino	1631	

TABLE 15.17 IR data for alkyl thiol esters and phenyl thiol esters

Alkyl thiol ester $R-C(=O)-S-R'$ R' is C_4H_9 or C_6H_{13}	_	C=O str. cm ⁻¹	Phenyl thiol ester $R-C(=O)-S-C_6H_5$			S-C=str. R' analog cm ⁻¹	S-C=str. C_6H_5 analog cm^{-1}
R			R		•		
Formate*	1675	1693	Formate			755	730
Acetate	1695	1711	Acetate	1137	1111	955	947
chloro-	1671(s)	1691(s)	chloro-	1089	1065	1000	986
	1699(m)	1725(m)					
dichloro-	1682(s)	1700(s)	dichloro-	1085	1070	990	976
	1703(m)	1736(m)					
trichloro-	1699	1711	trichloro-	?	?	1032	1018
trifluoro-	1710	1722	trifluoro-	?	955	?	930
Propionate	1691	1710	Proprionate	1090	1088	937	925
Butyrate	1693	1710	Butyrate	1111	1111	989	975
Dialkyl dithiol esters							
Oxalate	1680	1698	Oxalate			790	770
Succinate	1690	1705	Succinate	~ 1050	~ 1050	985	970
Adipate		1710			~ 1010		~ 940
	C-H str. cm ⁻¹	C–H str. cm ⁻¹		C–H bend cm ⁻¹	C-H bend cm ⁻¹	2(C-H bend) cm ⁻¹	2(C-H bend) cm ⁻¹
Formate*	2835	2825		1345	1340	2680	2660

TABLE 15.17A IR data for alkyl thiolesters and phenyl thiol esters

Alkyl thiol ester R-C(=O)-S-R' R' is C_4H_9 or C_6H_{13}	C=O str.	C=O str.	Phenyl thiol ester R-C(=O)-S-C ₆ H ₅
R	cm ⁻¹	cm ⁻¹	R
Acetate	1695	1711	Acetate
chloro-	1671(s)	1691(s)	chloro-
	1699(m)	1725(m)	
dichloro-	1682(s)	1700(s)	dichloro-
	1703(m)	1736(m)	
trichloro-	1699	1711	trichloro-
trifluoro-	1710	1722	trifluoro-
Propionate	1691	1710	Propionate
Butyrate	1693	1710	Butyrate

TABLE 15.17B IR data for Thiolbenzoates

Thiol benzoate ring substitution	Alkyl thiol benzoate C=O str. cm ⁻¹	Phenyl thiol benzoate C=O str. cm ⁻¹	Alkyl analog C—C str. cm ⁻¹	Phenyl analog C–C str. cm ⁻¹	Alkyl analog S–C str. cm ⁻¹	Phenyl analog S–C str. cm ⁻¹
Thiol benzoate	1665	1685	1203	1205	915	898
2-F	1648	1667	1205	1196	920	906
	1675	1690				
	1701(w)	1701(w)				
2-Cl		1696		1198		898
2-Br		1700		1198		898
2-I	1679	1698	1205	1200	910	897
2-CH ₃ O	1640	1652	1193	1190	904	888
•	1672	1700				
2-HO		1640		1192		918
3-I	1670	1689	1195	1191	938	913
3-NO ₂		1689		1203		939
4-Br	1669	1681	1204	1199	913	898
4-NO ₂		1683		1197		907
Dithiol phthalate		1675		1193		913
diphenyl		1690		1211		

TABLE 15.17C IR data for thiol acids, thiol anhydrides, and potassium thiol benzoate

Compound	C=O str.	C-C str.	S-C str.	S–H str.	S-H bend
Thiol acetic acid	1712	1122	988	2565	828
Thiol benzoic acid	1690	1210	950	2585	835
2-chloro-	1700	1207	945	2580	837
	[O=C]2-S				
	str.				
Thiol benzoic anhydride	1739	1202	860		
,	1709	1178			
	1680				
	asym.COS str.	1203	948		
Potassium thiol benzoate	1525				

TABLE 15.18 Raman data and assignments for propargyl acrylate and propargyl methacrylate

Propargyl	•	Propargyl
acrylate	Assignment	methacrylate
3111(1)	a.CH ₂ =str.	3110(1)
3042(2)	$s.CH_2 = str.$	
2994(1)	a.CH ₂ str.	2998(2)
2953(1)	s.CH ₂ str.	
	s.CH ₃ str.	2933(2)
2132(9)	CC str.	2132(9)
1728(2)	C=O str.	1724(3)
1637(7)	C=C str.	1640(5)
1439(1)	CH ₂ bend	1439(1)
1410(2)	CH_2 =bend	1405(3)
1368(0)	CH ₂ wag	1372(1)
	CH=rock	1319(0)
1293(2)	CH=rock	
1073(0)	CH ₂ =rock	
	s.COC str.	1016(1)
992(2)	CH ₂ rock	
958(2)	s.COC=str.	962(2)
	CH ₃ rock?	946(2)
935(1)	C-C str.	
	C-C str.	922(0)
	C-C str.	852(1)
842(2)	C-C str.	
	CH ₂ =twist	820(3)
		605(1)
		592(1)
		564(0)
408(1)		277(1)
		377(1)
	C-O-O ₃ bend,a'	350(2)
309(5)	C-CC bend,a"	306(5)
238(6)	C–CC bend,a′	227(5)

TABLE 15.19 IR vapor-phase data for R-C(=)-OR' skeletal stretching

R-C(=O)-O-R'	R' is Alkyl cm ⁻¹	R' is Allyl cm ⁻¹	R' is Benzyl cm ⁻¹	R' is Vinyl cm ⁻¹	R' is Isopropenyl cm ⁻¹	R' is Phenyl cm ⁻¹
Formate	1158–1180	_	1152–1159			
Acetate	1231-1250	1231		1215	1202	1201-1203
Propionate	1182-1194	1180		1162		1200
Butyrate	1176-1185		1170	1155		
Valerate	1171-1178	1165				
Hexanoate	1168-1171					
Heptanoate	1165-1170					
Octanoate	1165-1169	1160				
Nonanoate	1162-1169	1160				
Decanoate	1160-1169			1151		
Tetradecanoate	1170-1177					
Octadecanoate	1165-1178			1150		
Acetate	1231-1250					
2-Methylacetate	1182-1194					
2-Ethylacetate	1176-1181					
2-Propylacetate	1173-1178					
2-Butylacetate	1168-1171					
2-Alkylacetates	1165-1172					
2,2-Dimethylacetate	1145-1159					
2,2,2-Trimethylacetate	1110-1156					
2,-Cyanoacetate	1160-1172					
2-Chloroacetate	1159-1171					
2,2-Dichloroacetate	1160					1101
2,2,2-Trichloroacetate	1235-1241					1181
Diesters						
Oxalate	1152-1164					
Malonate	1139-1153					
Succinate	1159-1166					
Glutarate	1170-1175					
Adipate	1151–1179					
Sebacate	1161-1171					

TABLE 15.20 IR vapor-phase data for conjugated esters [aryl-C(=)-OR or C=C-C(=)-OR skeletal stretching

Compound	Alkyl or Dialkyl cm ⁻¹	Phenyl cm ⁻¹	Alkyl or Dialkyl cm ⁻¹	Phenyl cm ⁻¹
Benzoate	1235–1294	1260	1089–1145	1200
Phthalate	1260-1281		1111-1128	
Isophthalate	1229-1240		1092-1095	
Terephthalate	1263-1270		1100-1107	
Nicotinate	1272-1280		1105–1111	
Isonicotinate	1272-1281		1115–1120	
Picolinate	1305-1311		1130-1131	
Salicylate	1300-1305	1300	1082-1111	1061
Crotonate	1176–1190		1021-1048	

Organic Carbonates, Thiol Carbonates, Chloroformates, Thiol Chloroformates, Acetyl Chloride, Benzoyl Chloride, Carbamates, and an Overview of Solute-Solvent Effects upon Carbonyl Stretching Frequencies

	~ ,~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Carbonates (-C	O-) ₂ C=O		392			
Monothio Carb	393					
	$R-O-C(=O)Cl$ and ϕ		393			
	ates $(-S-C(=O)-S-)$		393			
Ring Strain						
Thiol Chlorofor	rmates Cl-C(=O)-S		39: 394			
	Hydrogen Bonding		396			
	f the Solute-Solvent Effe	ects Upon Carbonyl				
Stretching Freq		1 ,	397			
Solvent Accepto	or Numbers (AN)		398			
Concentration 1			399			
Dipolarity-Polar	rizability Effect		399			
References	•		400			
Figures						
Figure 16-la	402	Figure 16-4	407 (394)			
Figure 16-1b	403	Figure 16-5	408 (394)			
Figure 16-1c	404	Figure 16-6	409 (395)			
Figure 16-2	405	Figure 16-7	410 (399)			
Figure 16-3	<u> </u>					
· ·						
Tables						
Table 16-1	409 (390)	Table 16-3	411			
Table 16-2	410 (392)	Table 16-4	412 (392)			

Table 16-4a	413 (392)	Table 16-5	415 (393)
Table 16-4b	413 (392)	Table 16-6	415 (392, 293)
Table 16-4c	414 (393)	Table 16-7	416 (393, 397)
Table 16-4d	414 (393)	Table 16-8	417

^{*}Numbers in parentheses indicate in-text page reference.

In developing spectra-structure correlations it is helpful to know the molecular vibrations of some relatively simple model compounds. In this case, these include dihalocarbonyl compounds such as $F_2C=O$, FCIC=O, and $Cl_2C=O$. The normal modes as obtained by Overend and Scherer (1) for these three carbonyl halides are depicted in Figs. 16.1a–c. The normal skeletal stretching modes for $F_2C=O$ and $Cl_2C=O$ are best described as symmetric and asymmetric X_2C stretching, while for FCIC=O they are best described as C-X and C-Y stretching. These model compounds are useful in predicting where the similar molecular vibrations for compounds of forms $(R-O)_2C=O$, $(R-S-)_2C=O$, (R-S-)(R-O-)C=O, (R-S)C(=O)Cl, (R-O-)C(=O)Cl, $(R-O-)C(=O)NH_2$, etc. are expected to occur in the IR region of the electromagnetic spectrum.

In addition, Overend and Evans (2) have shown that the force constant of the out-of-plane skeletal deformation is similar to the sum of Taft σ_R and σ_I parameters, therefore, it is expected that this out-of-plane skeletal deformation is sensitive to the mass as well as the resonance and inductive parameters of the X and Y substituents for compounds containing the XYC=O skeletal structure.

Table 16.1 summarizes the IR group frequency data for organic carbonates, thiol carbonates, chloroformates, thiol chloroformates, carbamates and related compounds (3). In all of the compounds listed in Table 16.1 it is noted that when compounds whose carbonyl substituents are phenyl-O- or phenyl-S- are compared to analogous compounds whose substituents are alkyl-O- or alkyl-S-, consistent frequency differences are noted: (1) the carbonyl stretching frequency is always higher for the aromatic containing compounds than for the aliphatic containing compounds; (2) the frequency of the asymmetric $X_2C=$ or $Y_2C=$ stretch, or the X-C= stretch in unsymmetrical XYC=O compounds, is always lower for the aromatic compounds than for the analogous aliphatic compounds; and (3) the carbonyl stretching frequency for the alkyl-O- or phenyl-O- always occurs at higher frequency than the analogous alkyl-S- or phenyl $-S-X_2C=O$ or XYC=O compounds.

A possible explanation for these frequency shifts is that they are caused by resonance competition between the π -electron of the phenyl ring and the π -electron of the carbonyl atom for overlap with the nonbonding electron pair of oxygen or sulfur: increase of electron overlap between the phenyl π electron and a nonbonding pair on oxygen or sulfur takes place at the expense of overlap between the carbonyl carbon π -electron and oxygen or sulfur non-bonding pairs; this results in a reduced force constant and stretching frequency for $X_2C=$, $Y_2C=$ and XYC= bonds, but increased force constant and stretching frequency of the C=O bond (3).

CARBONATES $(-O-)_2C=O$

The carbonyl stretching frequency for compounds of type (R-O-)(R'-O)C=O is ~ 1739 cm⁻¹, for compounds of type $(\phi-O-)(R-O-C=O)$, the range is 1754–1787 cm⁻¹, and it is 1775–

 $1819\,\mathrm{cm^{-1}}$ for compounds of type $(\phi-O-)_2C=O$. These carbonates exhibit asymmetric $C(-O-)_2$ stretching in the range $1205-1280\,\mathrm{cm^{-1}}$, and the out-of-plane skeletal deformation occurs in the range $785-800\,\mathrm{cm^{-1}}$ (3).

MONOTHIOL CARBONATES -O-C(=O)-S-

Compounds of types (R-O-)C(=O)-S-R) and $(\phi-O-)C(=O(-S-R))$ exhibit their carbonyl stretching frequencies in the range $1702-1710\,\mathrm{cm}^{-1}$ and $1730-1739\,\mathrm{cm}^{-1}$, respectively, while for compounds of type $(R-O-)C(=O(-S-\phi))$ in the range $1719-1731\,\mathrm{cm}^{-1}$. The band in the range $1056-1162\,\mathrm{cm}^{-1}$ is assigned to the C-O stretching vibration. The out-of-plane skeletal deformation occurs in the range $650-670\,\mathrm{cm}^{-1}$.

CHLOROFORMATES R-O-C(=0)Cl AND ϕ -O-C(=0)Cl

The alkyl chloroformates exhibit the carbonyl stretching frequency in the range $1775-1780\,\mathrm{cm^{-1}}$, and it occurs at $1784\,\mathrm{cm^{-1}}$ in the case of phenyl chloroformate. The C–O stretching vibration is assigned in the range $1139-1169\,\mathrm{cm^{-1}}$ and at $1113\,\mathrm{cm^{-1}}$ for alkyl chloroformates and phenyl chloroformate, respectively.

DITHIOL CARBONATES (-S-C(=O)-S-)

The carbonyl stretching frequencies for the dithiol carbonates occur in the range 1640–1655, 1649, and $1714-1718\,\mathrm{cm^{-1}}$ for compounds of $(R-S)_2C=O$, $(R-S-)(\phi-S-)C=O$, and $(\phi-S-)_2C=O$, respectively. The strong band in the range 827–880 cm⁻¹ is assigned to the asymmetric $S_2C=$ stretching vibration (see Fig. 16.2), which shows the IR spectrum of diallyl dithiol carbonate (upper) and dipropyl dithiol carbonate (lower), respectively. The weak band in the range 554–595 cm⁻¹ is assigned to the out-of-plane carbonyl skeletal deformation. A weak band in the region 700–750 cm⁻¹ is assigned to C-S stretching.

The asymmetric $S_2C=$ mode exhibits a strong first overtone that is sometimes higher or lower in frequency than the carbonyl stretching absorption band and it is in Fermi resonance with $\nu C=0$. The $\nu C=0$ frequencies are corrected in Table 16.1.

RING STRAIN

Ethylene carbonate, ethylene monothiol carbonate, and ethylene dithiol carbonate exhibit vC=O at 1818.3, 1757, and $\sim 1687\,\mathrm{cm}^{-1}$, respectively. These vC=O frequencies occur at higher frequency than their analogous open chain analogs by approximately 70, 50, and $40\,\mathrm{cm}^{-1}$, respectively, after correction for Fermi resonance. This is the order of increasing ring size due to the fact that sulfur is larger than oxygen. As the ring size becomes smaller, there is a decrease in the X-C-X bond angle, which makes it more difficult for the carbonyl carbon atom to vibrate in and out of the 5-membered ring. Thus, as the ring strain is increased, the carbonyl stretching mode increases in frequency.

THIOL CHLOROFORMATES Cl-C(=O)-S

Alkyl thiol chloroformates and aryl thiol chloroformates exhibit vC=0 in the range 1766–1772 cm⁻¹ and 1769–1775 cm⁻¹, respectively, which is not as much difference as shown between alkyl chloroformates and phenyl chloroformate (1775–1780 cm⁻¹ and 1784 cm⁻¹). However, the vC=0 mode for alkyl thiol chloroformate is ~ 1760 cm⁻¹ CCl_4 solution after correction for Fermi resonance vs 1769–1775 cm⁻¹ for aryl thiol chloroformate (see Fig. 16.3 for a comparison of the IR spectrum of methyl thiol chloroformate vs phenyl chlorothiol chloroformate). The strong IR band at ~ 845 cm⁻¹ for the methyl ester and the strong IR band at ~ 815 cm⁻¹ for the phenyl ester are assigned to asymmetric S–C–Cl stretching. A more comprehensive vibrational assignment for methyl thiol chloroformate will be presented later in Table 16.6.

Ethylene carbonate has $C_{2\nu}$ symmetry, its vibrational spectrum has been assigned, and its carbonyl stretching mode has been reported to be in Fermi resonance with the first overtone of the skeletal breathing mode. The skeletal breathing mode occurs at 897 cm⁻¹ in the liquid phase, at 894 cm⁻¹ in CHCl₃ solution, at 880 cm⁻¹ in the vapor phase, and at 900 cm⁻¹ in water solution, while the perturbed C=O stretching mode is located in the region 1810–1870 cm⁻¹, depending upon the physical state of the sample (4).

Table 16.2 lists the carbonyl stretching frequency for ethylene carbonate in various solvents. The IR band in the ranges $1770-1780 \,\mathrm{cm^{-1}}$ and $1790-1815 \,\mathrm{cm^{-1}}$ is in Fermi resonance. In each solvent system, the vC=O mode has been corrected for Fermi resonance, and it occurs as low as $1791.7 \,\mathrm{cm^{-1}}$ in solution in methanol and as high as $1812.5 \,\mathrm{cm^{-1}}$ in solution in carbon tetrachloride (5).

Figure 16.4 shows plots of the vC=O frequencies of ethylene carbonate corrected for Fermi resonance vs the solvent acceptor number (AN). Two separate plots are apparent. The upper plot includes methylene chloride, chloroform, tert-butyl alcohol, isopropyl alcohol, ethyl alcohol, and methyl alcohol while the lower plot includes diethyl ether, carbon tetrachloride, benzene, nitrobenzene, acetonitrile, benzonitrile, and dimethyl sulfoxide. Thus, it is apparent that the protic solvents correlate in a different manner than the so-called aprotic solvents. Thus, it again shows that the AN values do not take into account the factors determining the strength of the intermolecular hydrogen bond formed between the carbonyl oxygen atom of ethylene carbonate and the OH or C-H proton of the solvent system (5).

Figure 16.5 shows a plot of the carbonyl stretching frequencies of ethylene carbonate corrected for Fermi resonance vs the reaction field of the $CHCl_3/CCl_4$ solutions. The linear plot demonstrates a good correlation between $\nu C=0$ and its surrounding reaction field.

Table 16.3 compares the vibrational assignments for methyl chloroformate, 3-propynyl chloroformate, and chlorofluoro carbonyl (6). This comparison shows the value of utilizing the vibrational modes of a model compound such as FCI C=O in assigning the six OCI C=O skeletal vibrations for the alkyl chloroformates (6). It was shown that 3-propynyl chloroformate exists as rotational conformers.

Tables 16.4, 4a, and 4b list IR and Raman data and assignments for acetyl chloride, acetyl- d_3 chloride, and acetyl- d_1 chloride (7). These data serve as model compounds in the development of spectra structure correlations for compounds of forms $CH_3-C(=O)(-S-R)$ and $CH_3-C(=O)(-S-aryl)$. In the case of the d_1 analog, the presence of trans and gauche conformers is apparent (7). The ν C=O mode occurs at 1807, 1812, and 1802 cm⁻¹ for the

CH₃, CD₃, and CDH₂ analogs, respectively. Data such as these show that the C=O stretching mode is not a "pure" molecular vibration.

Table 16.4c lists IR spectra-structure correlations for carboxylic acid halides in the vapor phase. Comparison of the vC=O frequency for acetyl fluoride (1869 cm⁻¹) to vC=O for benzoyl fluoride (1832 cm⁻¹) shows that the benzoyl analog exhibits vC=O 37 cm⁻¹ lower in frequency than the acetyl analog. This lower vC=O frequency is the result of conjugation of the phenyl group with the CO group, which weakens the C=O bond.

The vC=Cl mode for compounds of form R-C(=O)Cl occurs in the range 570-601 cm⁻¹, and in the range 821-889 cm⁻¹ for compounds of form ϕ -C(=O)Cl. The vC-F mode for acetyl fluoride is assigned at 827 cm⁻¹ and for benzoyl fluoride it is assigned at 1022 cm⁻¹.

Table 16.4d lists IR spectra-structure correlations for benzoyl halides in the neat phase. Most of these compounds exhibit IR bands in the region $1750-1812 \, \text{cm}^{-1}$ and in the region $1693-1815 \, \text{cm}^{-1}$. The presence of two IR bands is the result of ν C=O being in Fermi resonance with an overtone or a combination tone of a lower lying fundamental (s). The ν C=O and the overtone have been corrected for Fermi resonance (see Table 16.4d).

An IR band in the region $1172-1245 \,\mathrm{cm}^{-1}$ is assigned to a complex mode involving aryl-C stretching. The vC-X mode is assigned in the region $840-1000 \,\mathrm{cm}^{-1}$ in the neat phase.

Table 16.5 lists IR data for benzoyl chloride in CS_2 solution at temperatures between 31 and $-70\,^{\circ}$ C. Figure 16.6 shows plots of vC=O, 2vC-C(=)Cl, and $v\phi-C(=)Cl$ frequencies for benzoyl chloride in CS_2 vs temperature in $^{\circ}$ C. The carbonyl stretching frequency is in Fermi resonance with the first overtone of the C_6H_5-C-Cl stretching mode in the case of benzoyl chloride. Neither vC=O nor $2v\phi-C-Cl$ has been corrected for Fermi resonance in this case (8). Perturbed vC=O decreases in frequency from $1774.6\,\mathrm{cm}^{-1}$ at $31\,^{\circ}$ C to $1771.2\,\mathrm{cm}^{-1}$ at $-70\,^{\circ}$ C while perturbed 2vC-C-Cl decreases in frequency from $1732.5\,\mathrm{cm}^{-1}$ at $31\,^{\circ}$ C to $1731.3\,\mathrm{cm}^{-1}$ at $-70\,^{\circ}$ C. Moreover, vC-C-Cl increases in frequency from $871.5\,\mathrm{cm}^{-1}$ at $31\,^{\circ}$ C to $874.1\,\mathrm{cm}^{-1}$ at $-70\,^{\circ}$ C. In addition, the absorbance ratio A[vC=O]/A[2vC-C-Cl] decreases from 4.44 at $31\,^{\circ}$ C to 3.03 at $-70\,^{\circ}$ C. Thus, the absorbance of 2vC-C-Cl becomes larger as the vC-C-Cl frequency increases with a decrease in temperature. These experimental data prove conclusively that the extent of Fermi interaction between these two vibrational modes increases with decreases in temperature. Of course, the combination or overtone must belong to the same symmetry species as the fundamental vibration. In this case vC=O and 2vC-C-C belong to the A' symmetry species.

Table 16.6 compares the vibrational data for S-methyl thiol chloroformate with those for $Cl_2C=O$ and s-methyl phosphoro-dichloridothioate. These comparisons show the value of model compounds in making the vibrational assignments for the S-C(=O)Cl group based on the molecular vibrations for $Cl_2C=O$. Moreover, the value of comparing vibrational assignments for a compound containing the CH_3-S- group is also demonstrated (9).

Table 16.7 lists IR spectra-structure correlations for carbamic acid: aryl-, alkyl esters (10). These carbamates have the following empirical structure:

In CCl₄ solution these compounds exhibit the C=O stretching mode in the range 1730–1755 cm⁻¹ and the intermolecularly hydrogen-bonded ν C=OH-N frequency in the range 1705–1734 cm⁻¹. In the solid state, ν C=O occurs at lower frequency at \sim 1690 cm⁻¹. The N-H stretching mode occurs in the range 3409–3461 cm⁻¹ and ν N-H \cdot O=C occurs in the range 3295–3460 cm⁻¹. These IR bands are no longer present in dilute CCl₄ solution because in dilute solution these carbamates are not intermolecularly hydrogen bonded.

The in-plane bending and out-of-plane N-H bending modes occur in the ranges $1504-1546\,\mathrm{cm^{-1}}$ and $503-570\,\mathrm{cm^{-1}}$, respectively. In the solid phase the out-of-phase N-H bending mode occurs at even higher frequency, $624-680\,\mathrm{cm^{-1}}$. A complex mode involving aryl-N stretching is assigned in the range $1237-1282\,\mathrm{cm^{-1}}$.

In solution, an IR band occurs in the range $1195-1225\,\mathrm{cm}^{-1}$ and shifts to the range $1219-1257\,\mathrm{cm}^{-1}$ in the solid phase. This complex mode most likely is a mixture of N-C-O stretching and N-H in-plane bending (10).

INTRAMOLECULAR HYDROGEN BONDING

These carbamates have the following empirical structure:

where X is a halogen atom or a phenyl group.

The vN-HX mode for 2-substituted carbamates occurs at 3345, 3419, 3409, and 3425 cm⁻¹ in 10 % wt./vol. In CCl_4 solution where X is F, Cl, Br, and phenyl, respectively. Comparable 3-and 4-substituted carbamates show IR evidence for intermolecular hydrogen bonding, but only the 2-F analog shows IR evidence for a small amount of intermolecular hydrogen bonding. In this case, F forms the weakest hydrogen bond in the series, which is most likely due to the relatively small size of the F atom. The strength of the intramolecular hydrogen $N-H\cdots X$ bond increases in the order F, Cl, and Br, and this is in the order of increasing size of the halogen atom. The larger size of Cl and Br also sterically interferes with intermolecular hydrogen bonding, and most likely contributes to the stabilization of the intramolecular hydrogen bond (10).

In the case of the 2-phenyl analog, the $\nu N-H\cdots \phi$ mode occurs at 3425 cm⁻¹. The 2-phenyl group in this case has to be perpendicular to the carbamate phenyl group in order for the N-H group to intramolecularly hydrogen bond to its π system.

The 1-naphthyl alkyl carbamates differ from the 2-naphthyl alkyl carbamates in that they exhibit vN-H in the ranges $3441-3461 \, \text{cm}^{-1}$ and $3425-3442 \, \text{cm}^{-1}$ while the 2-naphthyl analog only exhibits a band near $3445 \, \text{cm}^{-1}$. The two vN-H bands in the case of the 1-naphthyl analogs are attributed to the existence of rotational conformers [rotation about the napthyl-N bond (10)].

The vN-H frequencies within each series vary by as much as $20\,\mathrm{cm}^{-1}$ depending on the nature of the O-R group in compounds of form $\phi-N-H-C(=O)-O-R$. Compounds of form $\phi-NH-C(=O)-O-CH_2-CH_2-N(-CH_3)_2$ exhibit the lowest N-H frequencies in each series

studied, and occur in the region $3411-3440\,\mathrm{cm}^{-1}$. These data suggest that there is a weak intramolecular hydrogen bond formed between the N–H proton and the β -nitrogen atom of the O–R group (10).

AN OVERVIEW OF THE SOLUTE-SOLVENT EFFECTS UPON CARBONYL STRETCHING FREQUENCIES

In $CHCl_3/CCl_4$ solutions the carbonyl stretching mode for a variety of compounds decreases in frequency as the mole % solvent is increased from 0 to 100. Mole % solvent is directly equivalent to the Reaction field surrounding the solute molecules. The Reaction field (R) involves both the dielectric constant and the refractive index of the solvent system.

$$|\mathbf{R}| = (\varepsilon - 1)/(2\varepsilon + n^2)$$

where ε is the dielectric constant and n is the refractive index of the solvent.

$$\varepsilon = \frac{Q_1 Q_2}{fr^2} \quad \text{(Reference 11)}$$

 Q_1 and Q_2 are the two charges of the solvent. f is the force between the two charges. r is the distance between the two charges.

Thus, the carbonyl stretching mode decreases in frequency as the Reaction field (R) increases; this is due mainly to the increasing electrically charged solvent molecules surrounding the solute molecules. In an aprotic solvent system such as CCl_4/C_6H_{14} the carbonyl stretching frequency for a compound such as 1,1,3,3-tetramethylurea decreases in a linear manner as the mole % CCl_4 increases from 0 to 100. However, in the $CHCl_3/CCl_4$ solvent system the carbonyl stretching frequency for 1,1,3,3-tetramethylurea decreases in frequency in linear segments A, B, and C. It is suggested that segment A represents $TMU(CHCl_3)_1$, segment B represents $TMU(CHCl_3)_2$, and segment C represents $TMU(CHCl_3)_3$ complexes within the $CHCl_3/CCl_4$ solvent system (10). In contrast, acetone in $CHCl_3/CCl_4$ solvent system exhibits only one point of deviation from linearity as the mole % is increased from 0 to 100. In this case, the decrease due to intermolecular $C=OHCCl_3$ occurs within 17 mol % $CHCl_3/CCl_4$ (12).

The degree of carbonyl stretching frequency decrease in going from solution in CCl_4 to solution depends upon the basicity of the carbonyl group. For example, the carbonyl stretching frequency for acetone occurs at 1717.5 cm⁻¹ in CCl_4 and at 1710.5 cm⁻¹ in $CHCl_3$, a decrease of 7 cm⁻¹ (12). In the cases of 1,1,3,3-tetramethylurea, 1,1,3,3-tetraethylurea, and 1,1,3,3-tetrabutylurea the carbonyl stretching frequency in going from CCl_4 to $CHCl_3$ solution decreases by 25.6, 26.1, and 27.0, respectively (13). The carbonyl group becomes more basic as the four alkyl groups become larger as reflected by larger frequency decrease in going from CCl_4 to $CHCl_3$ solution.

The carbonyl stretching frequency for acetone occurs at 1735 cm⁻¹ in the vapor phase and at 1713 cm⁻¹ in the liquid phase while for 1,1,3,3-tetramethylurea it occurs at 1685 cm⁻¹ in the vapor phase and at 1649.6 cm⁻¹ in the liquid phase (10, 12). Thus, acetone shows a decrease of 22 cm⁻¹ and 1,1,3,3-tetramethylurea shows a decrease of 35.4 cm⁻¹ in going from the vapor to

the neat phase. These data indicate that the dipolar interaction between carbonyl groups $[(+C-O^-)_n]$ is larger in the case of 1,1,3,3-tetramethylurea than in the case of acetone (12). This is what is expected, as the carbonyl group of 1,1,3,3-tetramethylurea is more basic than the carbonyl group for acetone.

It has been shown that the carbonyl stretching frequency for ketones and esters is affected by steric factors of the R-(C=O)-R' groups and for the R_1 group of $R_1-(C=O)-OR$. The steric factor of these alkyl groups increases as the dipolar distance increases between the dipolar sites in the solute and the dipolar sites of the solvent.

In summary, factors affecting solute-solvent interactions include the following:

- a. basicity of the C=O group (dipolarity);
- b. acidity of the solvent group;
- c. the dielectric constant of the solvent (dipolarity);
- d. the refractive index of the solvent;
- e. steric factors of the solvent;
- f. steric factors of the solute;
- g. other basic sites in the solute; and
- h. concentration of the solute in the solvent.

Thus, the dipolar interaction between sites in the solute and solvent which causes shifts in the carbonyl stretching mode is complex and the magnitude of the carbonyl stretching shift can not be determined by a simple equation.

SOLVENT ACCEPTOR NUMBERS (AN)

Gutman developed solvent acceptor numbers utilizing NMR spectroscopy (14). The AN is defined as a dimensionless number related to the relative chemical shift of 31 P in $(C_2H_5)_3$ PO in that particular solvent with hexane as the reference solvent on one hand, and $C_2H_5)_3$ PO · SbCl₅ in 1,2-dichloroethane on the other—to which the acceptor numbers 0 and 100 have been assigned, respectively:

$$AN = \frac{\delta \operatorname{corr} - 100}{\delta \operatorname{corr} (C_2 H_5)_3 \operatorname{PO} \cdot \operatorname{SbCl}_5} = \operatorname{Corr} - 2.348$$

Studies included in this book show that these AN values for the alcohols also included intermolecular hydrogen bonding between $C=O\cdot HOR$. In cases where both C=O and $C=O\cdot \cdot HOR$ were determined, the carbonyl frequencies for the ketones or esters not intermolecularly hydrogen bonded, but surrounded by intermolecularly hydrogen-bonded alkyl alcohols, exhibit their carbonyl stretching mode at frequencies comparable to those recorded in dialkyl ethers. Thus, a large portion of the AN value for each alkyl alcohol is due to intermolecular hydrogen bonding, and a smaller portion of the AN value results from the R-O portion of the alcohol complex.

Steric factors of the solute and solvent also appear to affect a linear correlation of carbonyl stretching frequencies vs AN. However, the AN values do help in spectra-structure identification of unknown chemical compounds.

CONCENTRATION EFFECTS

In an aprotic solvent such as CCl_4 dialkyl ketones would tend to cluster due to dipolar interaction between molecules $[(+C-O^-)_n]$, where n becomes larger as the wt. % solute/volume solvent increases. The carbonyl stretching frequency for diisopropyl ketone decreases 0.24 cm⁻¹ in going from 0.75 to 7.5 % wt./vol. In CCl_4 solution and for di-tert-butyl ketone it decreases 0.05 cm⁻¹ in going from 0.8 to 6.56 % wt./vol. In CCl_4 ; and although this carbonyl frequency decrease is attributed to clustering of ketone molecules, steric factors of the tert-butyl group prevent close interaction of the carbonyl groups compared to that for diisopropyl ketone (15).

In the case of CHCl $_3$, the carbonyl stretching frequency for diisopropyl ketone increases $0.53\,\mathrm{cm}^{-1}$ in going from $0.22\,\%$ wt./vol. To $8.6\,\%$ wt./vol. in CHCl $_3$ solution, and for di-tert-butyl ketone $0.1\,\mathrm{cm}^{-1}$ in going from $0.40\,\%$ wt./vol. to $5.78\,\%$: wt./vol. in CHCl $_3$. This suggests that clustering of the diisopropyl ketone molecules at higher % wt./vol. solutions decreases the effect of intermolecular hydrogen bonding by a small amount. The effect appears to be small in the case of the tert-butyl analog due to steric effects of the tert-butyl groups compared to the isopropyl groups (14).

DIPOLARITY-POLARIZABILITY EFFECT

Recently, it has been reported that there is a coupled dipolarity-polarizability influence of the solvent upon the carbonyl stretching mode for 1,1,3,3-tetramethylurea (16). This observation is based in part on an SCRF-MO model, which assumes that the solute is located in a spherical cavity within an unstructured dielectric continuum. It is stated that the solvent dipolarity appears to exert the larger effect, along with making solvent polarizability detectable. However, it does not predict the effect of hydrogen bonding upon the carbonyl stretching frequency for 1,1,3,3-tetramethylurea (15).

It is interesting to compare the IR data used to develop the SCRF-MO model developed by Kolling (16) and the data reported by Nyquist (10, 13) and Wohar (17) as shown in Table 16.8. The AN values are those developed by Gutman (14) with the exception of the AN values in brackets, which are estimated from IR spectra-structure correlations.

Comparison of columns A, B, and C shows that there are some serious discrepancies between the three sets of data generated in three different laboratories.

It should be pointed out that with the exception of chloroform, methyl alcohol, ethyl alcohol, isopropyl alcohol, and tert-butyl alcohol, the carbonyl stretching frequencies correlate in a linear manner in the case of 1,1,3,3-tetramethylurea (10). The four alkyl alcohols also show two linear relationships vs AN. The linear relationship for the $\nu C=0\cdots$ HOR frequencies includes intermolecular hydrogen bonding in the Gutman AN value. The linear relationship for the $\nu C=0$ frequency (molecules surrounded by intermolecular hydrogen-bonded alcohols, but where C=0 is not hydrogen bonded) vs AN occurs at a significantly lower frequency. Projecting the points on the linear segment of $\nu C=0$ vs AN onto points on the plot for the aprotic solvents indicates that the AN values for intermolecularly hydrogen-bonded tert-butyl alcohol, isopropyl alcohol, and ethyl alcohol are approximately 5, 7, and 10, respectively (see Fig. 16.7). Thus, approximately 26–27 of the Gutman AN values for the four alkyl alcohols appear to be the result of

intermolecular hydrogen bonding (e.g., C=O···HOR). The AN values of 5, 7, and 10 for tert-butyl alcohol, isopropyl alcohol, and ethyl alcohol for intermolecularly hydrogen-bonded alcohols, respectively, are comparable to the AN values for diethyl ether [3.9], methyl tert-butyl ether [5.0], and tetrahydrofuran [8.9] (10).

In the writer's opinion there are two reasons why the Gutman AN values are not a precise predictor of ν C=O frequencies in solvent systems. The first reason is intermolecular hydrogen bonding. The second is the steric factor of the solute and of the solvent, which alters the distance between the carbonyl group and the interactive site of the solvent molecules. Otherwise the AN values are useful in predicting the general direction of ν C=O frequency shift in a particular or similar type solvent.

The Nyquist values do correlate well with the AN values. However, there are serious discrepancies in the three sets of IR data for ν C=O for 1,1,3,3-tetramethylurea in hexane, diethyl ether, tetrahydrofuran, and hexamethyl phosphoramide (see Table 16.8). In these four cases the data are significantly lower than the Nyquist (12) or Wohar data (17).

In the writer's opinion, the Kolling model is not correct in assuming that the solute is located in a spherical cavity within an unstructured dielectric continuum because steric factors of both the solute and solvent alter the spatial distance between the dipolar interactive sites between the solute and solvent. Furthermore, the accuracy of the experimental data is in question. The presence of a more polar solvent not flushed from the IR cell, or from the presence of water in the solute-solvent system would lower the ν C=O frequencies. Further experimental data are suggested to help clarify the theoretical aspects of solute-solvent interaction.

Finally, carbonyl stretching vibrations are often perturbed by Fermi interaction. Solvents either increase or decrease the amount of Fermi resonance between vC=0 and a combination or overtone of the same symmetry species as vC=0. Therefore, in order to obtain the exact frequency for vC=0 in this case in any solvent or solvent system, it is necessary to correct for Fermi resonance (vC=0 for 1,1,3,3-tetramethylurea is not in Fermi resonance).

REFERENCES

- 1. Overend, J. and Scherer, J. R. (1960). J. Chem. Phys., 32, 1296.
- 2. Overend, J. and Evans, J. C. (1959). Trans. Faraday Soc., 551, 1817.
- 3. Nyquist, R. A. and Potts, W. J. Jr. (1961). Spectrochim. Acta, 17, 679.
- 4. Angell, C. L. (1956). Trans. Faraday Soc., 52, 1178.
- 5. Nyquist, R. A. and Settineri, S. E. (1991). Appl. Spectrosc., 45, 1075.
- 6. Nyquist, R. A. (1972). Spectrochim. Acta, 28A, 285.
- 7. Overend, J., Nyquist, R. A., Evans, J. C., and Potts, W. J. Jr. (1961). Spectrochim. Acta, 17, 1205.
- 8. Nyquist, R. A. (1986). Appl. Spectrosc., 40, 79.
- 9. Nyquist, R. A. (1967-68). J. Mol. Structure, 1, 1.
- 10. Nyquist, R. A. (1973). Spectrochim. Acta, 29A, 1635.
- 11. Lange, N. A. (ed.) (1961). Handbook of Chemistry p. 1728, 10th ed., New York: McGraw-Hill.
- 12. Nyquist, R. A., Putzig, C. L., and Hasha, D. L. (1989). Appl. Spectrosc., 43, 1049.
- 13. Nyquist, R. A. and Luoma, D. A. (1991). Appl. Spectrosc, 45, 1491.

- 14. Gutman, V. (1978). The Donor-Acceptor Approach to Molecular Interactions, p. 29, New York: Plenum Press.
- 15. Nyquist, R. A. and Putzig, C. L. (1989). Appl. Spectrosc., 43, 983.
- 16. Kolling, O. W. (1999). Appl. Spectrosc., 53, 29.
- 17. Wohar, M., Seehra, J., and Jagodzinski, P. (1988). Spectrochim. Acta, 44A, 999.

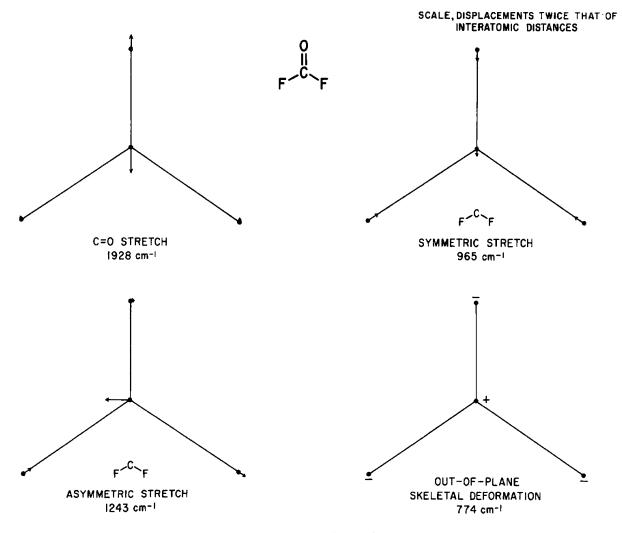


FIGURE 16.1a Normal modes for COF₂.

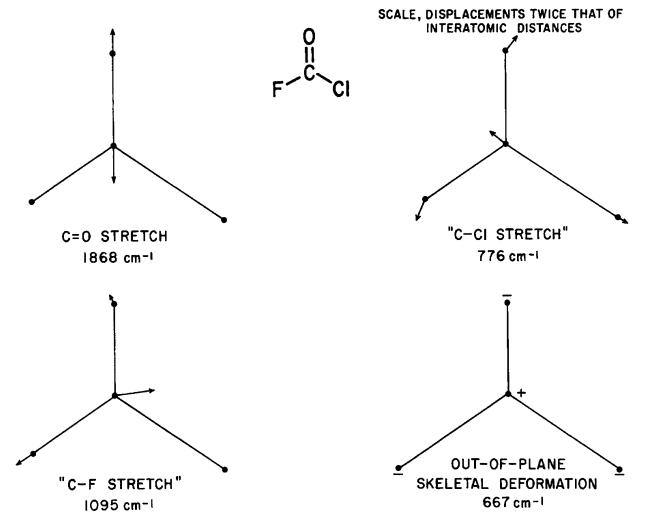


FIGURE 16.1b Normal modes for COCIF.

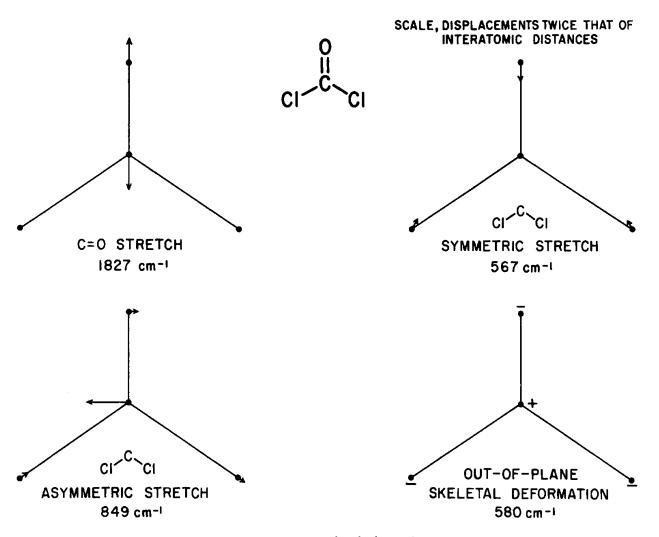


FIGURE 16.1c Normal modes for COCl₂.

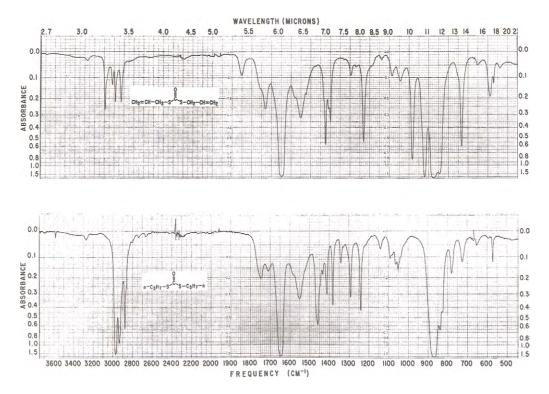


FIGURE 16.2 (Upper) — Infrared spectrum of diallyl dithiol carbonate. (Lower) — Infrared spectrum of dipropyl dithiol carbonate.

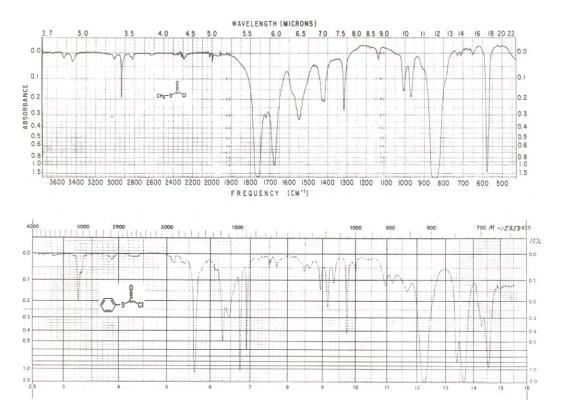


FIGURE 16.3 (Upper) — Infrared spectrum of methyl thiol chloroformate. (Lower) — Infrared spectrum of phenyl thiol chloroformate.

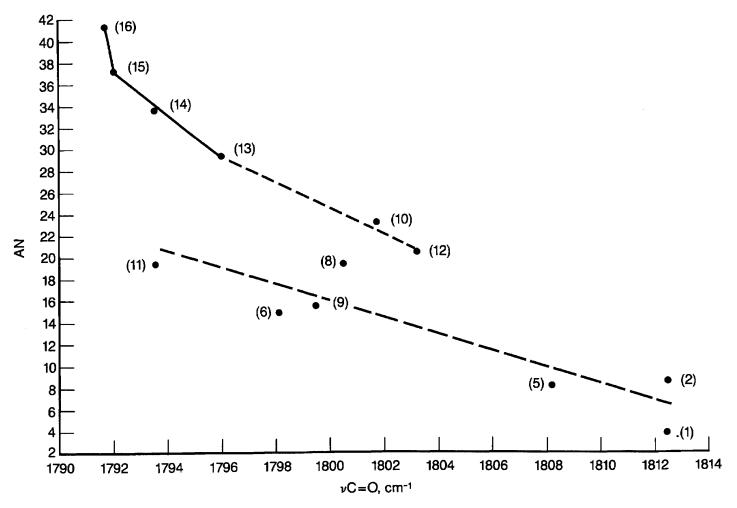


FIGURE 16.4 Plots of ν C=O frequencies of ethylene carbonate corrected for Fermi resonance vs the solvent acceptor number (AN).

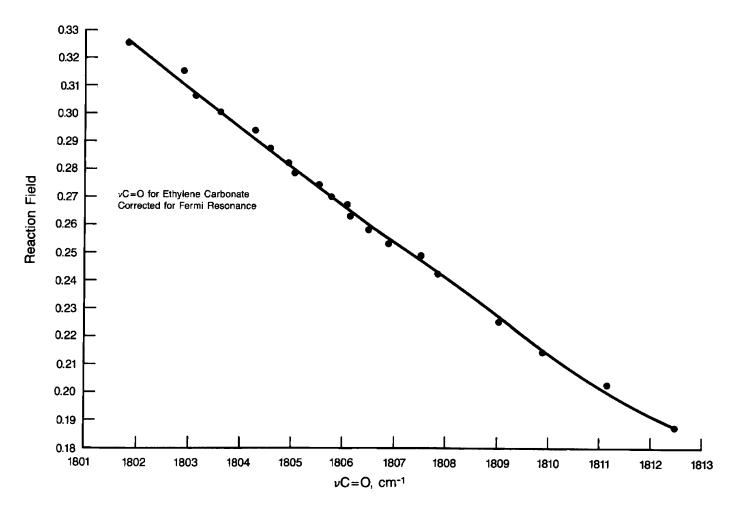


FIGURE 16.5 A plot of the ν C=O frequencies for ethylene carbonate corrected for Fermi resonance vs the reaction field of the CHCl₃/CCl₄ solutions.

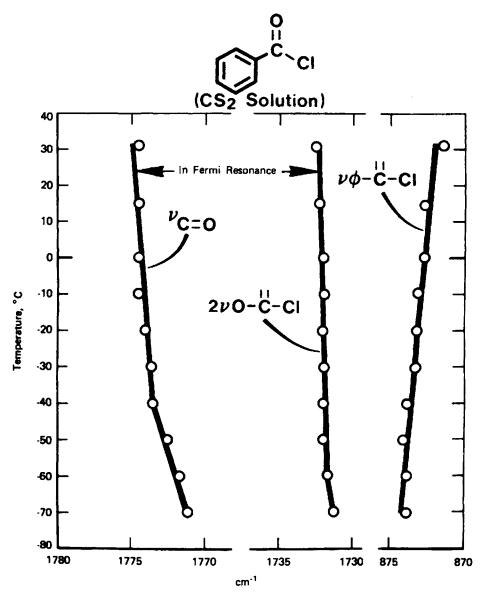


FIGURE 16.6 Plots of ν C=O, 2ν C-C(=)Cl, and $\nu\phi$ -C(=)Cl frequencies for benzoyl chloride in CS₂ solution vs temperature in °C.

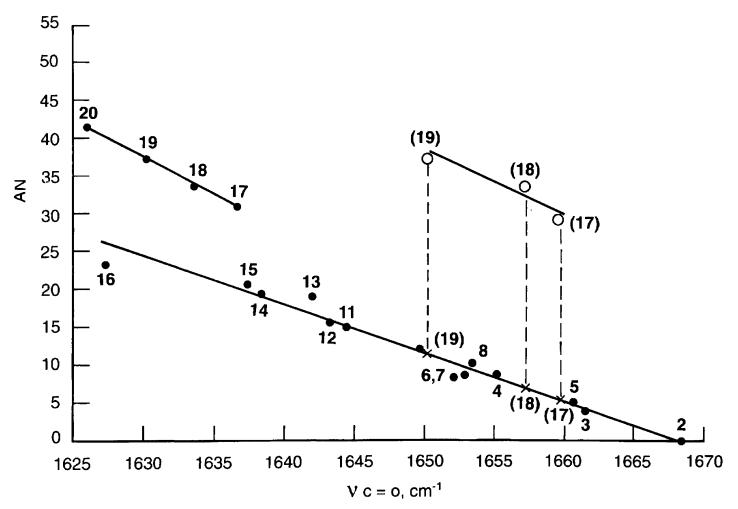


FIGURE 16.7 Plots of νC=O for tetramethylurea in various solvents vs the solvent acceptor number (AN).

TABLE 16.1 IR group frequency correlations for organ carbonates, thiol carbonates, chloroformates, and thiol chloroformates

Compound type	C=O str. cm ⁻¹	a.X-C-X str.	s.X-C-X str.	C-X str. cm ⁻¹	C-Y str.	a.Y-C-Y str. cm ⁻¹	s.Y-C-Y str. cm ⁻¹	ABC=O o.p.def. A and B =X or Y cm ⁻¹	C=O str. Corrected for Fermi Res. cm ⁻¹
(R-O-)2C=O	1739-41	1240–80	~ 900					785–80	
$(R-O-)C=O(-O-C_6H_5)$	1754-87	1211-48	~ 900					~ 800	
$C_6H_5-O-)2C=O$	1775–1819	1205-21							
$(CH_2-O-)2C=O$	1818.3	~ 1140	~ 900						1812.5*
(R-S-)2C=O	1640–66					870–80	~ 572	~ 593	~ 1655*
$(R-S-)C=O(-S]-C_6H_5)$	1649					839	~ 567	~ 554	~ 166 4*
$(C_6H_5-S-)2C=O$	1714–18					827–33	~ 560	~ 572	~ 1690*
$(CH_2-S-)2C=O$	~ 1678					880			~ 169 4*
(R-O-)C=O(-S-R)	1702–10			1142–62		~ 800		~ 670	
$(R-O-)C=O(-S-C_6H_5)$	1719–31			1125-451		~ 800		~ 670	
$(C_6H_5-O-)C=O(-S-R-)$	1730–9			1056-1102				650–655	
$(-O-CH_2CH_2-S-)C=O$	1757			1070 or 1040					[C=N str.
$(R-S-)C=O(O-N=C(R')_2$	1720-25			1117–19		~ 800			[1649–56]
(R-O-)C=O(Cl)	1775–80 1784			1139–69		000		685–87	
$(C_6H_5-O-)C=O(Cl)$ (R-S-)C=O(Cl)	1766–72			1113		~ 800	570	~(0	19701001.38
(K-3-)C-O(CI)	1700-72					840–50	579	~ 560	$\sim 1760[CCl_4]^*$ $\sim 1763[vapor]^*$ for CH ₃ -S-C=O(Cl)
$(C_6H_5-S-)C=O(CI)$	1769-75					814-16	595	~ 560	191 6113 5 6 6 617
(R-O-)C=O(NHR')	1732-38	1210-1250						760–80	N-H str.(not N-H: O=C
$(R-S-)C=O(NH_2)$	1699								in dilute soln.) a.NH ₂ str.,3530 s.NH ₂ str.,3414 (not H-bonded in dilute soln.)
(R-S-)C=O(NHR')	1690–95			1170–1230					N-H str.,3431 (in dilute soln.)
$(R-S-)C=O(NHC_6H_5)$	1652–59			1152–60					N-H str.,3289-3320
$(R-S-)C=O(N(R')_2)$	1650-60			1220-65					i.p.NH def.,1517-56
$(C_6H_5-S-)C=O(N(R')_2)$	1666			1248					
$(R-S-)C=O(N(C_6H_5)_2$	1670			~ 1275					
$(R)(_2NC=O(Cl)$	1739			1091?		671		660?	C=O str.,1763[vapor] for C_2H_5 analog
(C_6H_5) 2NC=O(Cl)	1743 1751sh			1138?				661?	

^{*}Corrected for Fermi resonance.

TABLE 16.2 The C=O stretching frequency for ethylene carbonate n1various solvents [1% wt./vol.]

Ethylene carbonate 1 % wt./vol. in different solvents Solvent	cm ^{−1}	$ m cm^{-1}$	C=O corrected for F.R. cm ⁻¹	cm ⁻¹	AN
			-		
Diethyl ether	1771.2	1818.69	1812.43	1777.46	3.9
Carbon tetrachloride	1771.93	1818.31	1812.45	1777.79	8.6
Carbon disulfide	1769.98	1816.82	1811.73	1775.07	
Toluene	1772.14	1715.24	1810.58	1776.8	
Benzene	1772.67	1714.72	1808.14	1779.25	8.2
Nitrobenzene	1775.06	1807.9	1798.12	1784.84	14.8
Nitromethane	1778.26	1806.91	1799.03	1786.14	
Acetonitrile	1777.9	1807.86	1800.51	1785.25	19.3
Benzonitrile	1775.69	1807.93	1799.46	1784.16	15.5
chloroform	1778.97	1810.27	1801.74	1787.44	23.1
Dimethyl sulfoxide	1774.37	1801.73	1793.54	1782.56	19.3
Methylene chloride	1777.57	1810.16	1803.21	1784.52	20.4
t-Butyl alcohol	1779.23	1806.43	1796	1789.66	[29.3]
Isopropyl alcohol	1778.88	1804.95	1793.53	1790.3	33.5
Ethyl alcohol	1779.14	1804.17	1793.01	1791.3	37.1
Methyl alcohol	1778.77	1804.68	1791.68	1791.77	41.3

TABLE 16.3 Vibrational assignments for methyl and 3-propynyl chloroformate, and FCl(C=O)

Methyl chloroformate	3-Propynyl chloroformate	F-C(=0)Cl	
cm ⁻¹	cm ⁻¹	cm ⁻¹	Assignment
1797	1782	1868	C=O str.
1150	1141(conformer 1)		a.C-O-C(=) str.
	1121(conformer 2)		
		1095	C-F str.
954	1014(conformer 1)		s.C-O-C(=) str.
	974(conformer 2)		
822	834(conformer 1)	776	C-Cl str.
	807(conformer 2)		
690	687	667	out-of-plane C=O def.
484	4 79	501	O-C=O or F-C=O bend
413	362	415	O-C-Cl or F-C-Cl bend
277	255		C-O-R bend
167	~170		C-O-R torsion
3044			a.CH ₃ str.
3018			a.CH ₃ str.
2961			s, CH ₃ str.* ¹
2844			2(s.CH ₃ bend)*1
1453			a.CH ₃ bend
1434			s.CH ₃ bend
1202			CH ₃ rock
	3314		C-H str.
	3012		a.CH ₂ str.
	2959		s.s.CH ₂ str.
	2149		CC str.
	1459(conformer 1)		CH ₃ bend
	1439(conformer 2)		
	1366		CH ₂ wag
	1366		CH ₂ twist
	992		CH₂ rock
	916(conformer 1_		C–C str.
	937(conformer 2		C–C str.
	687		in-plane C–H bend
	634		out-of-plane C-H bend
	531(conformer 1)		out-of-plane C-C-O bend
	574(conformer 2)		out-of-planeC-C-O bend
	306		out-of-plane C-CC
	222		in-plane C–CC bend

^{*1}on Fermi resonance.

TABLE 16.4 IR and Raman data and assignments for acetyl chloride, acetyl-d3 chloride, and acetyl-d1 chloride

				$CH_2DCC(=O)Cl$		$CH_2DCC(=O)Cl$	
CH3C(=O)Cl		Assign-	Descrip-	$ m cm^{-1}$	Assign-	cm^{-1}	Descrip-
cm ⁻¹	cm ⁻¹	ment	tion	[trans]	ment	[gauche]	tion
3010		v1,v11		2955	vl		s.CH ₂ str.
		·			$\mathbf{v1}$	3020	a. CH_2 str.
	2248	v1		2245	v2		C-D str.
					v2	2955	s.CH ₂ str.
					v 3	2245	C-D str.
2930		v2		1802	v3		C=O str.
					v4	1802	C=O str.
	2104	v2		1397	v4		CH ₂ bend
					v 5		CH ₂ bend
1807	1812	v3	C=O str.	1254	v 5		
					v6	1281	
1421		v4,v12		1011	v6		
					v7	1254	
	1132	v4		908	v 7		C-D wag
					v8	1088	
1361		v5		554	v8		C=O bend
	1040	v 5		437	v9		C(=O)Cl bend
					v10	852	CD wag+C-C str
1098		v6		340	v10		CCCl bend
					vll	588	C=O bend
	962	v6		3005	vll		a.CH ₂ str.
					v12	487	gamma C=O
953		v7		1281	v12		
					v13	437	C(=O)Cl bend
	818	v7		973	v13		
					v14	340	CCCl bend
59 4	563	v8		503	v14		gamma C=O
436	438	v9		?	v15	?	
348	317	v10					
3010		vll,vl					
	2257	vl1					
1421		v12,v4					
1021		v13					
	887	v13					
514	522	v14					
238	?	v15					

TABLE 16.4a IR and Raman data and assignments for acetyl chloride and acetyl-d₃ chloride

Mode	CH ₃ C(=O)Cl Calculated	CH ₃ C(=O)Cl Observed	Approximate description	Mode	CD ₃ C(=O)Cl Calculated	CD ₃ C(=O)Cl Observed	Approximate description
A′	cm ⁻¹	cm ⁻¹	description	A'	cm ⁻¹	cm ⁻¹	uesempuon
vl	3002	3029	$a > CH_3$ str.	v1	2232	2280	a.CH ₃ str.
v2	2939	2934	s.CH3 str.	v2	2114	2104	s.CD ₃ str.
v3	1780	1822	C=O str.	v3	1777	1820	C=O str.
v4	1441	1432	a.CH3 bend	v4	1147	1132	s.CD ₃ bend+a.CCCl str
v5	1378	1370	s.CH ₃ bend	v5	1031	1040	a.CD ₃ bend
v6	1104	1109	CH_3 rock + $C-C$ str.	v6	986	962	a.CCCl +s.CD ₃ bend
v7	962	958	C-C str.+CH ₃ rock	v 7	802	818	CD ₃ rock
v8	661	608	C-Cl str.	v8	601	563	CCl str.
v9	4 69	436	O=C-Cl bend	v9	462	437	O=CCl bend
v10	391	348	CCCl bend	v10	355	317	CCCl bend
A"				A''			
vll	3000	3029	a.CH3 str.	v11	2227	2280	a.CD ₃ str.
v12	1444	1432	a.CH ₃	v12	1031	1040	a.CD ₃
v13	1040	1029	CH ₃ rock	v13	854	877	CD ₃ rock
v14	568	514	gamma C=O	v14	516	498	gamma C=O
v15	136	238	CH ₃ torsion	v15	100	?	CS ₃ torsion

TABLE 16.4b IR and Raman data and assignments for acetyl-d₁ chloride

A'	CH ₂ DC(=O)Cl Calculated trans [D-eclipsed] cm ⁻¹	CH ₂ DC(=O)Cl Observed trans [D-eclipsed] cm ⁻¹	Approximate description	Mode A'	CH ₂ DC(=O)Cl Calculated gauche [H-eclipsed] cm ⁻¹	CH ₂ DC(=O)Cl Observed gauche [H-eclipsed] cm ⁻¹	Approximate description
vl	2962	2972	a.CH ₂ str.	v 1	3002	3020	a.CH ₂ str.
v2	2192	2255	C-D str.	v2	2962	2972	s.CH ₂ str.
v3	1778	1820	C=O str.	v3	2189	2255	C-D str.
v4	1418	1408	bend	v4	1780	1820	$C=O-H_2$ str.
v5	1266	1265	CH ₂ wag	v 5	1417	1422	CH ₂ bend
v6	1033	1020	C-C str.	v 6	1300	1290	CH ₂ wag
v7	899	909	C-D wag.	v 7	1260	1265	CH ₂ rock
v8	607	565	C-Cl str.	v 8	1085	1088	C-C str.+CH ₂ rock
v9	467	437	O=CCl	v9	968	987	C-D bend+ $C-C$ str.
v10 A"	381	340	CCCl bend	v10 A"	847	851	C-D bend+C-C str.
vll	3000	3020	a.CH ₂	v11	657	588	C-Cl str.
v12	1306	1290	CH ₂ twist	v12	539	489	gamma C=O
v13	974	987	C-D o.p.bend	v13	467	437	O=CCl bend
v14	568	507	gamma C=O	v14	378	340	CCCl bend
v15	120	?	CH ₂ D torsion	v15	121	?	CH ₂ D torsion

TABLE 16.4c IR spectra-structure correlations for carboxylic acid halides in the vapor phase

Carboxylic acid halides	vC=O cm ⁻¹	See Text cm ⁻¹	$vC-X$ cm^{-1}	gamma C=O cm ⁻¹
	1960	1022	927	500
acetyl fluoride	1869	1032	827	599
acetyl chloride	1818	1108	601	514
acetyl bromide	1818	1095	552	
trichloroacetyl chloride	1814	1023	591	622
hexanoyl chloride	1810	960	577	
octanoyl chloride	1809	965	570	
benzoyl fluoride	1832	1251	1022	
3-fluoro, benzoyl chloride	1790	1255	821	
4-trifluoromethyl, benzoyl chloride	1782.7*1	1181	882	
2-fluoro, benzoyl chloride	1794.9* ¹	1198	889	
2-bromo, benzoyl chloride	1801.8* ¹	1200	874	
2,6-dichloro, benzoyl chloride	1802*1			

^{*1}Corrected for Fermi resonance.

TABLE 16.4d IR spectra-structure correlations for benzoyl halides in neat phase

Benzoyl halide	perturbed C=O str. cm ⁻¹ [A]	perturbed overtone cm ⁻¹ [A]	C=O str. corrected for FR. cm ⁻¹	overtone corrected for F.R. cm ⁻¹	complex aryl—C str. cm ⁻¹	complex aryl-C-X str. cm ⁻¹
fluoride	1812[0.94]	1778[0.75]	1796.9	1793.1	1000	
chloride	1785[0.88]	1735[0.66]	1762.9	1757.1	1205	875
bromide	1775[0.67]	1693[0.10]	1764.4	1703.6	1190	847
3-bromo, bromide	1775[0.84]	1754[0.84]	1764.5	1764.5	1179	875
2-methyl, chloride	1765[0.87]	1710[0.38]	1757.2	1717.8	1203.	870
2-trifluoromethyl, chloride	1803[1.12]	1750[0.38]	1789.6	1763.4	1200	871
2-fluoro, chloride	1788[1.07]	1756[0.94]	1774	1771	1195	884
2-chloro, chloride	1780[0.94	1735[0.45]	1765.4	1749.6	1190	865
2-bromo, chloride	1797[1.13]	1747[0.21]	1789.2	1754.8	1200	864
2-nitro, chloride*1	1800[0.70]	1758[0.37]	1785.5	1772.5	1195	870
3-fluoro, chloride	1771[1.03]	1741[1.03]	1756	1756	12 4 5	785
3-chloro, chloride	1765[1.03]	1815[0.15]	1780	1798.8	1200	918
3-bromo, chloride	1750[1.15]	1795[0.59]	1765.3	1779.7	1172	884
3-nitro, chloride*2	1752[1.14]	1783[0.74]	1758.3	1776.7	1191	840?
4-methyl, chloride	1775[1.04]	1740[0.85]	1769.3	1745.7	1203	875
4-tert-butyl, chloride	1782[1.13]	1730[0.94]	1758.4	1753.6	1210	874
4-trifluoromethyl, chloride	1775[0.58]	1740[0.55]	1758	1757	1200	879
4-chloro, chloride	1780[1.15]	1732[0.95]	1768	1743.8	1190	860

^{*1}vasym.NO₂, 1530 cm⁻¹; vsym.NO₂, 1342 cm⁻¹. *2vasym.NO₂, 1529 cm⁻¹; vsym.NO₂, 1340 cm⁻¹.

TABLE 16.5 $\,$ IR data for benzoyl chloride in CS_2 solution in the temperature between 31 and $-70^{\circ}C$

Benzoyl chloride [CS ₂] °C	C=O str. in Fr cm ⁻¹	$2[C_6H_5-C-Clstr.]$ in FR cm ⁻¹	C_6H_5-C-C] str. cm^{-1}	A[C=O str.] /A[2(C ₆ H ₅ -C-Cl str.)]
31	1774.6	1732.5	871.5	4.44
15	1774.5	1732.2	873	4.31
0	1774.5	1732	873	4.17
-10	1774.4	1732	873.5	3.82
-20	1774	1732.1	873.7	3.62
-30	1773.6	1732	873.7	3.53
-40	1773.5	1732	873.9	3.5
-50	1772.4	1732	874.3	3.25
-60	1771.5	1731.7	873.8	3.25
-70	1771.2	1731.3	874.1	3.03
delta C	delta C=O str.	delta $2[C_6H_5-C-Cl]$	delta C_6H_5-C-Cl	delta A[C=O str.]
[-101]	[-3.4]	[-1.2]	[-2.6]	$/A[2(C_6H_5-C-Cl)]$ [-1.41]

TABLE 16.6 Vibrational assignments for S-methyl thiol chloroformate

CH ₃ -S-C(=O)Cl S-C(=O)Cl fundamentals	Infrared 25 % solutions in 0.1 KBr cell cm ⁻¹	C(=O)Cl ₂ fundamentals	Infrared cm ⁻¹	CH ₃ -S-C(=O)Cl Raman liquid cm ⁻¹ (R.I.)	Dep. ratio
C=O str.	1767.2(0.862)*	C=O str.	1827	1757(14.9)	0.34
asym.S-C-Cl str.	846.4(0.831)*	asym.Cl-C-Cl str.	847	840(5.2)	0.74
sym.S-C-Cl str.	580.7(0.137)*	sym.Cl-C-Cl str.	567	5881(100.0)	0.09
gamma C=O	571sh	gamma C=O	580		
C=O rock	430.2(0.371)	C=O rock	440	422(43.2)	0.45
S-C-Cl bend	304	Cl-C-Cl bend	285	305(89.8)	0.29
C-S-C fundamentals C-S str. C-S-C bend C-S-C torsion	712.8(0.059) 205 126			710(50.0) 199(5.6)	0.22 0.32
CH ₃ -S fundamentals		$CH_3-S-P-(=O)Cl2$ CH_3 fundamentals			
asym.CH ₃ str.	3020.5(0.065_	asym.CH3 str.	3011	3013(2.8)	0.64
sym.CH ₃ str.	2938.3(0.435)	sym.CH ₃ str.	2938	2932(36.0)	0.05
asym.CH ₃ bend	1422.3(0./608)	asym.CH ₃ bend	1431	1420	
sym.CH ₃ bend	1316.5(0.605)	sym.CH ₃ bend	1321	1311(2.0)	0.44
CH ₃ rock	972.7(0.464)	CH ₃ rock	972	967(2.5)	0.35
CH ₃ torsion	?	CH ₃ torsion	?		

 $^{^{*}2\,\%}$ solutions in 0.1 mm KBr cell] [CCl₄ solution 3800–1333 cm $^{-1}$] [CS $_{2}$ solution 1333–400 cm $^{-1}$.

TABLE 16.7 IR spectra-structure correlations for carbamic acid: aryl-, alkyl esters

Aryl-NH-C(=O)-O-R	R	C=O str. cm ⁻¹	C=O: H-N str. intermolecular* ¹ cm ⁻¹	N-HO=C str. intermolecular* ¹ cm ⁻¹	N-H str.	2–X: H–N str. intramolecular cm ⁻¹	N-H i.pbend cm ⁻¹	N–H o.pbend cm ⁻¹	Aryl-N str.	N-C-O and N-H bend cm ⁻¹
Phenyl										
2-, 3-, or 4-										
F, Cl, Br, or C ₆ H ₅ H-CCCH ₂	1730–1758	1705–1734	3295-3460 1690*²	3409–3461		1504–1546	503–570	1237-1282 624-680* ²	1195–1225	1219–1 2 57*²
	(CH3)2N(CH2)2					3411-3440				
2-F	H-CC-CH2					3435				
2-Cl	H-CC-CH2					3419				
2-Br	H-CC-CH2					3409				
$2-C_6H_5$	H-CC-CH2					3425				
1-Naphthyl	H-CC-CH2			3325-3340	3441-3461					
2-Naphthyl	H-CC-CH2			3360	3445					

^{*&}lt;sup>1</sup>Disappears upon dilution. *²Solid phase.

TABLE 16.8 The carbonyl stretching frequency for 1,1,3,3-tetramethylurea in aprotic solvents [Nyquist data vs Kolling and Wohar data] vs solvent parameters

Solvent	AN* ³	[A] C=O str. Nyquist data cm ⁻¹	[B] C=O str. Kolling data cm ⁻¹	[C] C=O str. Wohar data cm ⁻¹	[A]-[B] cm ⁻¹	[A]-[C] cm ⁻¹	[B]-[C] cm ⁻¹	e*1	n* ²
Hexane	0	1668.4	1658	1656	10.4	12.4	2	1.88	1.3719
Diethyl ether	3.9	1661.5	1651	1658	10.5	3.5	- 7	4.33	1.3494
Methyl tert-butyl ether	[5.0]	1660.7							
Tetrahydrofuran	[8.8]	1655.1	1646		9.1			7.58	1.405
Carbon disulfide	[10.1]	1653,2	1652		1,4			2.64	1.6241
Carbon tetrachloride	8.6	1652.9		1653		-0.1		2,24	1.457
Benzene	8.2	1652.1	1654	1654	-1.9	-1.9	0	2.28	1.5017
Hexamethylphosphoramide	10.6		1643	16 4 9			-6	30	1.457
Acetone	12.5		16 4 6	1648			-2	20.7	1.356
Nitrobenzene	14.8	1644.4	1642.		2.4			34.82	1.55
Benzonitrile	15.5	1643.2		1642			1.2	25.2	1.5257
Acetonitrile	19.3	1638.4	1639	1638	-0.6	0.4	1	46.68	1.4771

 $^{*^{}I}e = dielectric constant.$

 $^{*^2}$ n = refractive index.

 $^{*^3}AN =$ solvent acceptor number.

CHAPTER 3

3.1	IR data for a. and s. CH ₃ stretching for <i>n</i> -alkanes in 0.5 mol % solutions in CCl ₄ ,	
	in CDCl ₃ , and 54.6 mol % CHCl ₃ /CCl ₄	41
3.2	IR absorbance data for n-alkanes: a. and s.CH ₂ and CH ₃ stretching and CH ₂	
	bending	42
3.2a	Absorbance ratios for CH ₃ and CH ₂ groups for <i>n</i> -alkanes	43
3.3	IR data for a. and s.CH ₂ stretching for n-alkanes in 0.5% solutions in Cl ₄ ,	
	54.6 mol % CDCl ₃ /CCl ₄ , and CDCl ₃	44
3.4	The frequency separation between the a. and s.CH ₃ and the a. and s.CH ₂	
J.,	stretching vibrations for n-alkanes in CCl ₄ , CDCl ₃ /CCl ₄ , and CDCl ₃ solutions	45
3.5	The CH ₃ and CH ₂ bending frequencies and frequency separations for <i>n</i> -alkanes	45
3.6	IR vapor-phase data for the alkyl group of 1,2-epoxyalkanes	46
3.7	IR and Raman data for (CH ₃)2PO ₂ Na in water and in the solid phase	47
3.8	IR data and assignments for CH ₃ HgSCH ₃ , CH ₃ SC(C=O)C, and (CH ₃)2Hg	47
3.9	IR vapor-phase data for cycloalkanes	48
3.10	Raman data for compounds containing cycloalkyl groups	49
3.11	Raman data for the CH stretching and bending modes of the alkyl group, and	
	C-C-C=O skeletal bending for monomers and polymers	50
3.12	IR vapor-phase data for cyclopropane derivatives	52
3.13	IR data for octadecane, octadecane-D38, tetracosane, and tetracosane-D50	53
3.13	The data for occurrence, occurrence 200, total 2000, t	
CHAP	PTER 4	
4.1	IR vapor-phase data and assignments for 1-alkenes	72
4.2	The IR vapor-phase frequencies and assignments for the X-CH=CH ₂ group	73
4.2a	IR absorbance ratio and assignments for X-CH=CH ₂ compounds	74
4.2b	Raman data and assignments for X-CH=CH ₂ compounds	75
4.2c	IR vapor-phase data for vinyl alkyl ethers	76
		77
4.3	CH_2 = wag frequencies vs (sigma ρ -sigma') for group G	.,

4.3a	IR carbon disulfide solution data for the CH=CH twist frequency for compounds	
	of form $G-CH_2CO_3H$ vs σ' of G and pK_a of $G-CH_2CO_2H$	77
4.4	IR data and assignments for the cis and gauche conformers of allyl halides	78
4.5	IR data and assignments for cyclopentene, cyclohexene, 1,4-cyclohexadiene, and	
	1,3-cyclohexadiene [$C=C$ and ($C=O$) ₂ stretching]	78
4.5a	IR vapor-phase data and assignments for cis-cycloalkene derivatives	78
4.6	IR C=O stretching frequency data for alkyl acrylates [CHCl ₃ and CCl ₄ solutions]	79
4.6a	IR data and assignments for alkyl methacrylates in CHCl ₃ and CCl ₄ solutions	
	[C=O and C=C stretching]	80
4.7	IR vapor-phase data for trans-alkenes	81
4.8	IR data for the CH=CH twist frequency for trans disubstituted ethylenes	82
4.9	IR data for the $=CH_2$ wag and its overtone for 1,1-disubstituted ethylenes	82
4.10	A comparison of the fundamentals for 1,1-dihaloethylenes	83
4.11	IR vapor-phase data and assignments for alkyl cinnamates [C=C stretching,	
	CH=CH twisting, and C=O stretching]	84
4.11a	IR vapor-phase data and assignments for cinnamyl esters	85
4.12	Raman data and assignments for vinyl esters of carboxylic acids	85
4.13	Raman data and assignments for styrene monomers	86
4.14	IR group frequency data for styrene and substituted styrenes	87
4.15	IR group frequency data for α -halostyrenes, α -methylstyrenes, and related	
	compounds	88
4.16	IR vapor-phase data for butadienes and propadienes	90
4.17	IR vapor-phase data for carbon hydrogen stretching vibrations and other	
	vibrations for 1-alkenes	90
4.18	IR data and assignments for the alkyl group of vinyl alkyl ethers	91

CHAPTER 5

5.1	IR data and assignments for terminal acetylenic compounds	106				
5.2	IR and Raman data and assignments for 3-halopropynes	107				
5.3	IR vapor-phase data and assignments for 1-alkynes					
5.4	IR data and assignments for 1-chloropropyne and 1-bromopropyne	109				
5.4a	Coriolis coupling constants for 1-halopropyne-1, propyne, and propyne-1-d	109				
5.5	IR data for phenylacetylene in CHCl ₃ /CCl ₄ solutions	109				
5.6	IR data and assignments for 1,4-diphenylbutadiyne in CHCl ₃ /CCl ₄ solutions	110				
5.6a	IR data for phenylacetylene in various solvents	110				
5.7	Vibrational assignments for propargyl alcohol, propargyl alcohol-od, propargyl					
	alcohol-1d, od, and propargyl fluoride	111				
5.8	Vibrational data for 1,3-dichloropropyne and 1,3-dibromopropyne	112				
5.9	Vibrational data and assignments for phenylacetylene and phenylacetylene-1d	113				

CHAF	PTER 6				
6.1	IR and Raman data and assignments for 1-halopropadienes and 1-bromopropadiene-1d				
СНАН	PTER 7				
7.1 7.2 7.3	IR vapor-phase data and assignments for alcohols IR vapor-phase data for substituted phenols A comparison of OH: X stretching frequencies in the vapor and CCl ₄ solution	135 137			
7.4	phases The OH stretching frequency for 4-hydroxybenzaldehyde in 0 to 100 mol %	138			
7.5	CHCl ₃ /CCl ₄ solutions The OH stretching frequencies for phenol and intramolecular hydrogen-bonded	139			
	phenols and the OH torsion frequency for phenol and the out-of-plane OH:X deformation frequencies for intramolecularly hydrogen-bonded phenols	140			
СНАР	PTER 8				
8.1 8.2	IR vapor-phase data and assignments for primary alkyl amines Raman data and assignments for primary amines	147 148			
CHAP	PTER 9				
9.1	IR data for the a. and s. NH_2 stretching frequencies of 3-X and 4-X-anilines in the vapor phase, and in n - C_6H_{14} , CCl_4 , and $CHCl_3$ solutions	158			
9.2	The calculated NH ₂ bond angles for 3-X and 4-X anilines in <i>n</i> -C ₆ H ₁₄ , CHCl ₃ , and CCl ₄ solutions	159			
9.3	IR data for the frequency separation between $a.NH_2$ and $s.NH_2$ stretching in the vapor, and in $n-C_6H_{14}$, CCl_4 , and $CHCl_3$ solutions for 3-X and 4-X-anilines	160			
9.3a	IR data for the frequency separation between a. and s.NH2 bending for 3-X and 4R-X-anilines in the vapor-phase and in solutions with n - C_6H_{14} , CCl_4 , and $CHCl_3$	161			
9.4	IR data for the NH ₂ stretching frequencies of aniline and 4-chloroaniline in CS ₂ solution in the temperature between 27 and -60 °C	162			
9.5	IR and Raman data and assignments for azines	163			
9.6	IR and Raman data for glyoximes in the solid state $[(N=C-)_2]$ stretching vibrations	164			

CH	A D	ΓFR	10
.	A F	1 1 1	

10.1	IR vapor-phase data, CCl ₄ and CHCl ₃ solution-phase data, and assignments for	
10.1	aliphatic carboxylic acids	194
10.2	Raman data and assignments for out-of-phase and in-phase (C=O) ₂ stretching modes and C=C stretching modes for carboxylic acids	195
10.3	IR group frequency data for acetic acid and its derivatives in the vapor and	
•••	solution phases	196
10.4	IR data and assignments for 4-X-benzoic acids in the vapor and solution phases	197
10.4a	Factors affecting the CO ₂ H and (CO ₂) ₂ groups for 4-X-benzoic acids in CHCl ₃ and/or CCl ₄ solutions	198
10.5	IR vapor-phase data and assignments for anthranilic acids	199
10.6	Infrared data for methacrylic acid and acrylic acid in CHCl ₃ and/or CCl ₄	
	solutions	200
10.7	Raman data and assignments for carboxylic acid salts	201
10.8	The asymmetric and symmetric CO ₂ stretching frequencies for carboxylic acid	
100	salts	202
10.9	IR data for carboxylic acid salts	203
CHAP	TER 11	
11.1	IR vapor-phase data and Raman data in the neat phase for anhydrides	210
11.2	Raman data and assignments for carboxylic anhydrides	210
11.3	IR data for maleic anhydride in n -C ₆ H ₁₄ /CHCl ₃ , CHCl ₃ /CCl ₄ , and	211
11.4	$n-C_6H_{14}/CCl_4$ solutions The in-phase and out-of-phase (C=O) ₂ stretching vibrations for carboxylic	211
11.7	anhydrides in the vapor phase and in various solution phases	212
	amy arides in the vapor phase and in various solution phases	212
CHAP	TER 12	
12.1	A comparison of primary, secondary, and tertiary amides in various physical	
13.1	phases	241
12.1a	The NH stretching frequencies and absorbance data for N-methyl acetamide in concentration ranging from 1.37×10^{-3} to 1.37 mols/liter in CCl ₄ solution	242
12.1b	The NH stretching, C=O stretching, amide II, and amide III frequencies for	242
14.10	N-methyl acetamide in CHBr ₃ solutions	242
12.1c	The overtone for amide II of N-methyl acetamide and N-methyl chloroacetamide	- 14
	in varying concentrations in CCl ₄ solutions	243
12.2	IR data and assignments for N-alkyl acetamides, and N-alkyl α -substituted	
	acetamides in dilute solutes	244

12.2a	The NH stretching frequencies for N-alkyl acetamides, N-alkyl X-halo,	
	X,X-dihalo-, X,X,X-trihaloacetamides, and N-alkyl methoxyacetamide in	246
12.3	CCl ₄ solutions IR data for N-alkyl α -substituted acetamides in 10% wt./vol. CCl ₄ and 0.002 M	240
12.5	CCl ₄ solutions	248
12.4	A comparison of primary and secondary amides in the solid phase	249
12.4a	A comparison of IR data for tertiary amides in the neat or solid phase	249
12.5	A comparison of Raman data and assignments for acrylamide, methacrylamide, and their polymers	250
12.5a	Raman data and assignments for N-alkyl or N-aryl acrylamides and methacrylamides	251
12.6	IR C=O stretching frequencies for p-x acetanilides and p-x, α -haloacetanilides in CCl ₄ and CHCl ₃ solutions	252
12.7	The NH stretching frequencies for p-x-acetanilides and p-x, α -haloacetanilides in CCl ₄ and CHCl ₃ solutions	252
12.8	The NH and C=O stretching frequencies for N-alkyl p-methoxybenzamide, N-alkyl p-chlorobenzamide, and N-alkylmethyl carbamate in CCl ₄ solutions	254
12.9	IR and Raman data for N,N'-dialkyl oxamide and N,N'-diaryl oxamide	255
12.10	IR data and assignments for dimethylacetamide and tetraalkylurea in the vapor, neat and solution phases	256
12.11	IR vapor-phase data and assignments for urea, thiourea, and guanidine	
	derivatives	257
12.12	IR data and assignments for tetramethylurea and 1,3-dimethyl-2-imidazolidinone in various solvents	258
12.13	IR data and assignments for 1,3-dimethyl-2-imidazolidinone 1% wt./vol. in various solutions	259
12.14	The in-phase and out-of-phase (C=O) ₂ stretching frequencies for caffeine, isocaffeine, 1,3,5-trimethyluracil, 1,3,6-trimethyluracil, and 1,3-dimethyl-2,4-	
	(1H,3H) 2, quinazolinedione in CCl ₄ and CHCl ₃ solutions	260
12.15	IR data for uracils in the solid phase	261
12.16	IR vapor-phase data and assignments for imides	262
12.17	IR data for the in-phase and out-of-phase stretching frequencies of 4-bromobutyl	
	phthalimide in CHCl ₃ /CCl ₄ solutions	264
12.18	IR data and assignments for hydantoins in the vapor and solid phase	265
12.19	IR data and assignments for tri-allyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione in CHCl ₃ /CCl ₄ solutions	266
12.20	IR data and assignments for tri-allyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione in various solvents	266
СНАБ	PTER 13	
13.1	A comparison of IR data of nonconjugated aldehydes in different phases	282
13.1a	Raman data and assignments for aldehydes	282

13.2	IR data and assignments for 4-X-benzaldehydes in the vapor and CHCl ₃ and CCl ₄ solution	282
13.3	The C=O stretching frequency for 4-X-benzaldehydes in various solvents	283
13.4	The CH bending vibration for 4-X-benzaldehydes in CCl ₄ and CHCl ₃ solutions and in the vapor phase	284
13.5	The overtone of =CH bending in Fermi resonance with =CH stretching for	205
13.16	4-X-benzaldehydes corrected for Fermi resonance IR data and assignments for the observed and corrected-for Fermi resonance CH	285
	stretching frequencies for 4-X-benzaldehydes in CCl ₄ and CHCl ₃ solutions	286
CHAI	PTER 14	
14.1	IR vapor phase and Raman data for acetone and acetone-d ₆	311
14.2	Application of the KBM equation using IR data for acetone C=O stretching	
14.2-	frequencies in various solvents	312
14.2a	The calculated values for $A-1/2A + 1$ and $X-Y/X$ where A and Y equal 0 to 85 and X equals 85 [the KBM equation]	313
14.3	The C=O stretching frequencies for aliphatic ketones in the vapor phase and	515
	various solvents	314
14.3a	A comparison of the carbonyl stretching frequency difference (delta C=O str.	
1 4 21	in cm ⁻¹) for dialkyl ketones in hexane and each of the other solvents	315
14.3b	A comparison of the carbonyl stretching frequency difference (delta C=O str.	215
14.3c	in cm ⁻¹) for dialkyl ketones in methyl alcohol and the other protic solvents A comparison of the differences in the carbonyl stretching frequencies (delta	315
150	C=O str. in cm ⁻¹) of dialkyl ketones in hexane solution and in alcohol solution	
	[non-H-bonded C=O]	316
14.4	The C=O stretching frequencies for <i>n</i> -butyrophenone and tert-butyrophenone in	
~	0 to 100 mol % CHCl ₃ /CCl ₄ solutions	316
14.5	IR data for acetone, α -chloroacetone, acetophenone, and benzophenone in CS ₂ solution between \sim 29 and -100° C	217
14.6	A comparison of carbonyl stretching frequencies for 2% wt./vol. ketone in	317
1 7.0	dimethyl sulfoxide and/or carbon tetrachloride solution	318
14.7	IR vapor-phase data for conjugated ketones	319
14.7a	Other fundamental vibrations for conjugated ketones	320
14.8	Infrared data for 2-hydroxy-5-X-acetophenone in CCl ₄ and CS ₂ solutions	321
14.9	IR vapor-phase data and assignments for cyclobutanone and cyclopentanone	322
14.10	The C=O stretching frequencies for cyclopentanone and cyclohexanone in the	222
14.11	vapor, neat, and solution phases IR data for 14H-dibenzo[a,j] xanthen-14-one in CHCl ₃ /CCl ₄ and various	323
17.11	solvents	324
14.12	IR and Raman data for 1,4-benzoquinones in CCl ₄ and CHCl ₃ solutions	325
14.13	IR data for tetrafluoro-1,4-benzoqinone in CCl_4 , $CHCl_3$, and C_6H_{14} solutions	326
14.14	IR data for tetrachloro-1,4-benzoquinone in $CHCl_3/n$ - C_6H_{14} , CCl_4/n - C_6H_{14} , and	
	CHCl ₂ /CCl ₄ solutions	327

Factors A	ffecting Molecular Vibrations and Chemical Shifts	427
14.15	IR data for tetrabromo-1,4-benzoquinone in CCl_4/C_6H_{14} , $CHCl_3/C_6H_{14}$, and $CHCl_3/CCl_4$ solutions	328
14.16	IR data for chloro-1,4-benzoquinone in $CHCl_3/n$ - C_6H_{14} , CCl_4/n - C_6H_{14} , and $CHCl_3/CCl_4$ solutions	328
14.17	IR data for 2,5-dichlorobenzoquinone on $CHCl_3/n$ - C_6H_{14} , CCl_4/n - C_6H_{14} , and $CHCl_3/CCl_4$ solutions	329
14.18	IR data for 3,3',5,5'-tetraalkyl-1,4-diphenoquinone in CHCl ₃ solution and in the solid phase	329
14.19	The dependence of the C=O stretching frequency upon solute concentrations of dialkyl ketones in CCl ₄ /CHCl ₃ solutions	330
СНАР	PTER 15	
15.1 15.2	Carbonyl stretching frequencies for some carboxylic acid esters The C=O stretching frequencies for alkyl alkanoates in the vapor phase and	371
	in various solvents	372
15.3	The frequency difference between $vC=O$ and $vC=O$: HOR for alkyl alkanoates in alkyl alcohols [0.5 wt./vol. solute in solvent]	373
15.4	The frequency difference between $vC=O$ and $vC=O$: HO for alkyl acetates in alkyl alcohols	373
15.5	The C=O stretching frequencies for alkyl 2,2-dichloroacetates and alkyl acetates in the vapor and neat phases	373
15.5a	IR data for ethyl acetate and ethyl 2-chloroacetate in CS_2 solution between 27 and -100° C	374
15.6	IR data for β -propiolactone in various solvents	374
15.7	IR group frequency data for coumarin and derivatives in the vapor phase and	
	in solution	375
15.8	IR data for phenyl acetate in CHCl ₃ /CCl ₄	375
15.9	IR data for phenyl acetate in various solvents	376
15.10	IR data for alkyl 2-benzoates in CS_2 solution between 29 and -100° C	377
15.11	The C=O stretching frequencies for methyl salicylate, phenyl salicylate, and 2-hydroxyacetophenone in various solvents	378
15.12	Raman group frequency correlations for dialkyl phthalates in the neat phase	378
15.13	Raman data for C=O and C=C stretching for acrylates	379
15.13a	IR C=O stretching frequency data and other group frequency for alkyl acrylates [CHCl ₃ and CCl ₄ solutions]	380
15.14	Raman data for methacrylates in the neat phase and summary of IR data in CHCl ₃ and CCl ₄ solutions	381
15.15	IR vapor-phase data and assignments for alkyl cinnamates [C=C stretching,	
1 = 1 = -	CH=CH twisting, and C=O stretching]	383
15.15a	IR vapor-phase data and assignments for alkyl cinnamates [in-plane and	383
15.15b	out-of-plane phenyl ring vibrations]	384
13.130	IR data for alkyl cinnamates	707

	List of	Iubics
15.16	The C=O stretching frequencies for phenoxarsine derivatives in the solid state and in CCl ₄ solution	385
15.17	IR data for alkyl thiol esters and phenyl thiol esters	386
15.17a	IR data for alkyl thiol esters and phenyl thiol esters	386
15.17b	IR data for thiolbenzoates	
15.17c	IR data for thiolocineoates IR data for thiol acids, thiol anhydrides, and potassium thiol benzoate	387 387
15.17	Raman data and assignments for propargyl acrylate and propargyl methacrylate	388
15.19	IR vapor-phase data for $R-C(=)-OR'$ skeletal stretching	389
15.20	IR vapor-phase data for conjugated esters $[aryl-C(=)-OR \text{ or } C=C-C(=)-OR$	209
13.20	skeletal stretching	390
	skeletai streteining	390
CHAF	PTER 16	
16.1	IR group frequency correlations for organic carbonates, thiol carbonates,	
	chloroformates, and thiol chloroformates	411
16.2	The C=O stretching frequency for ethylene carbonate in various solvents	
	[1% wt./vol.]	412
16.3	Vibrational assignments for methyl and 3-propynyl chloroformate, and	
	FCI(C=O)	413
16.4	IR and Raman data and assignments for acetyl chloride, acetyl-d ₃ chloride, and	
	acetyl-d ₁ chloride	414
16.4a	IR and Raman data and assignments for acetyl chloride and acetyl-d ₃ chloride	415
16.4b	IR and Raman data and assignments for acetyl-d ₁ chloride	415
16.4c	IR spectra-structure correlations for carboxylic acid halides in the vapor phase	416
16.4d	IR spectra-structure correlations for benzoyl halides in the neat phase	416
16.5	IR data for benzoyl chloride in CS ₂ solution in the temperature between 31 and	
	−70° C	417
16.6	Vibrational assignments for S-methyl thiol chloroformate	417
16.7	IR spectra-structure correlations for carbamic acid: aryl-, alkyl esters	418
16.8	The carbonyl stretching frequency for 1,1,3,3-tetramethylurea in aprotic solvents	
	[Nyquist data vs Kolling and Wohar data] vs solvent parameters	419

List of Figures

CHAPTER 1

1.1	Infrared vapor-phase spectrum for hydrogen bromide (5-cm glass cell with KBr windows: 600 mm Hg HBr).	9
1.2	Infrared vapor-phase spectrum for hydrogen chloride (5-cm glass cell with KBr windows: $200 \text{ mm} \text{ Hg HCl}$, total pressure $600 \text{ mm} \text{ Hg with } N_2$).	10
1.3	Infrared vapor-phase spectrum for carbon monoxide (5-cm glass cell with KBr	10
	windows: 400 mm Hg CO, total pressure 600 mm Hg with N_2).	11
1.4	Infrared vapor-phase spectrum for nitrogen oxide, NO.	12
1.5	Infrared vapor-phase spectrum for carbon dioxide (5-cm glass cell with KBr	
	windows: 50 and 200 mm Hg CO ₂ , total pressure 600 mm with N ₂).	13
1.6	Infrared vapor-phase spectrum for carbon disulfide (5-cm glass cell with KBr	
	windows: 2 and 100 mm Hg CS ₂ , total pressure 600 mm Hg with N ₂).	14
1.7	Infrared vapor-phase spectrum for acetylene (5-cm glass cell with KBr windows:	
	$50 \text{ mm Hg } C_2H_2$, total pressure $600 \text{ mm Hg with } N_2$).	15
1.8	Infrared vapor-phase spectrum for methane (5-cm glass cell with KBr windows:	
	150 mm Hg CH ₄ , total pressure $600 \text{ mm Hg with N}_2$).	16
1.9	Infrared vapor-phase spectrum for carbon tetrafluoride (5-cm glass cell with KBr	
	windows: 100 mm Hg CF ₄ , total pressure 600 mm Hg with N ₂).	17
1.10	Infrared vapor-phase spectrum for methyl chloride (5-cm glass cell with	
	windows: 200 mm Hg CH ₃ Cl, total pressure 600 mm Hg with N ₂).	18
1.11	Infrared vapor-phase spectrum for methyl bromide (5-cm glass cell with KBr	
	windows: 100 mm Hg CH ₃ Br, total pressure 600 mm Hg with N ₂).	19
1.12	Infrared vapor-phase spectrum for methyl iodide (5-cm glass cell with KBr	
	windows: 200-mm Hg CH ₃ I, total pressure 600 mm Hg with N ₂).	20
1.13	Infrared vapor-phase spectrum for 1-bromopropyne, C ₃ H ₃ Br.	21
1.14	Infrared vapor-phase spectrum for 1-iodopropyne, C ₃ H ₃ I.	22
1.15	Infrared vapor-phase spectrum for benzene (5-cm glass cell with KBr windows:	
	40 mm Hg with C_6H_6 ; total pressure 600 mm Hg with N_2).	23
1.16	Infrared vapor-phase spectrum for ethylene oxide (5-cm glass cell with KBr	
	windows: 50-mm Hg C ₂ H ₂ O, total pressure 600 mm Hg with N ₂).	24

430 List of Figures

CH	Δ	PΊ	FR	3
$\mathbf{L}\mathbf{\Pi}$	л		$\mathbf{E}\mathbf{R}$	

3.1	Plots of vasym. CH ₃ vs the molecular weight of each <i>n</i> -alkane.	36
3.2	Plots of vsym. CH ₃ vs the molecular weight of each n-alkane.	37
3.3	A plot of the absorbance ratio A(vasym. CH_3)/A(vasym. CH_2) vs the absorbance ratio A (vsym. CH_3)/A (vsym. CH_2) in CCl_4 solution for C_5H_{12} to $C_{18}H_{38}$.	38
3.4	A plot of the absorbance ratio A(vsym. CH_3)/A(vsym. CH_2) vs the absorbance ratio A (vasym. CH_3)/A (vasym. CH_2) in CCl_4 solution for C_5H_{12} to $C_{18}H_{38}$.	39
3.5	Plots of vasym. CH ₂ vs vsym. CH ₂ in CCl ₄ , 54.6 mol % CDCl ₃ /CCl ₄ , and CDCl ₃	
3.6	solutions. Plots of vasym. CH ₃ vs vsym. CH ₃ in CCl ₄ , 54.6 mol % CDCl ₃ /CCl ₄ , and CDCl ₃	39
3.7	solutions. Plots of the frequency separation (vasym. CH ₃ -vsym. CH ₃) vs the frequency	40
	separation (vasym. CH ₂ -vsym. CH ₂) for each n-alkane in CCl ₄ , 54.6 mol % CDCl ₃ /CCl ₄ , and CDCl ₃ solutions.	40
CHAF	PTER 4	
4.1	Shows plots of the $vC=C$ or $v(C=C)_2$ modes for 1,3-cyclohexadienes, 1,4-cyclohexadienes, cyclopentene, and cyclohexene vs mole % CDCl ₃ /or	
	CHCl ₃ /solvent system.	68
4.2	Infrared and Raman spectra for 1-bromo-1-chloroethylene.	69
4.3	Plots of the $C=CH_2$ wag frequencies for styrenes and ring substituted styrenes vs the pK_a values for correspondingly substituted phenols.	70
4.4	A plot of the frequency separation between $CH=CH_2$ twist and $C=CH_2$ wag for	70
4 ~	styrene and ring-substituted styrenes.	70
4.5	A plot of the $C=CH_2$ wag frequencies for styrene and ring-substituted styrenes vs the $C=CH_2$ wag frequency for α -methyl- α -methyl styrenes.	71
CHAP	PTER 5	
5.1	A plot of absorbance ratios for the 1-alkynes vs the number of carbon atoms in	100
5.2	the 1-alkynes. A plot of $v = C - H$ for phenylacetylene vs mole % CHCl ₃ /CCl ₄ .	100 101
5.2 5.3	A plot of $v \equiv C$ —If for phenylacetylene vs mole % CHCl ₃ /CCl ₄ . A plot of $vC \equiv C$ for phenyl acetylene vs mole % CHCl ₃ /CCl ₄ .	101
5. 4	A plot of the in-plane $\equiv C-H$ mode vs mole % CHCl ₃ /CCl ₄ .	102
5.5	A plot of out-of-plane $\equiv C-H$ mode vs the in-plane $\equiv C-H$ bending mode.	102
5.6/5.7	Vapor- and solution-phase infrared spectra of 1,3-dichloro-propyne.	103
5.8	The expected normal modes of 1-halopropynes, 3-halopropynes, and	105
	1,3-dihalopropynes.	105

CHAPTER 6	CH	AP	TE	R	6
-----------	----	----	----	---	---

6.1	Infrared solution and vapor-phase spectra of 3-bromopropyne-1d impure with	110
6.3	3-bromopropyne.	118
6.2	Raman spectra of 3-bromopropyne-1d impure with 3-bromopropyne.	118
6.3	IR solution and vapor-phase spectra of 1-bromopropadiene-1d impure with 1-bromopropadiene.	119
6.3a	Raman spectrum of 1-bromopropadiene-1d impure with 1-bromopropadiene.	119
6.4	IR vapor-phase spectra of 1-chloropropadiene.	120
6.5	IR vapor-phase spectra of 1-bromopropadiene.	121
6.6	IR vapor-phase spectra of 1-iodopropadiene.	122
6.7	Plots of the fifteen fundamentals, certain first overtones, and one combination band vs. Pauling electronegativity. The solid lines represent observed data, and the dashed extension is the extrapolation used to predict the partial spectrum of fluoropropadiéne (see text).	122
СНА	PTER 7	
7.1	A plot of vOH for 4-hydroxybenzaldehyde vs mole % CHCl ₃ /CCl ₄ .	132
7.2	A plot of the $\gamma OH \cdots X$ frequencies vs the $\nu OH \cdots X$ frequencies for	
	2-X-substituted phenols.	133
7.3	A plot of Tafts $(\sigma_p - \sigma') + (\sigma_m - \sigma')$ vs $\gamma OH \cdots O=C$ frequencies.	134
7.4	Plots of intramolecular hydrogen-bonded OH: Cl stretching frequencies for chlorinated phenols in CS_2 solution vs temperature in ${}^{\circ}C$.	134
СНА	PTER 9	
9.1	A plot of vasym. NH ₂ for 3-X and 4-X anilines in CCl ₄ solutions vs Hammett σ_m	
	and σ_p values for the 3-X and 4-X atoms or groups. The open circles are for 3-X	
	anilines and the closed circles are for 4-X anilines.	155
9.2	A plot of vsym. NH ₂ for 3-X and 4-X anilines in CCl ₄ solutions vs Hammett σ_m	
	and σ_p values for the 3-X and 4-X atoms or group. The open circles are for 3-X	
	anilines and the closed circles are for 4-X anilines.	155
9.3	A plot of vasym. NH ₂ vs vsym. NH ₂ for 3-X and 4-X anilines in solution with	17.6
0.4	C_6H_{14} , CCl_4 , and $CHCl_3$.	156
9.4	A plot of σ_m and σ_p vs the calculated NH ₂ bond angles for the <i>m</i> - and	156
9.5	p-substituted anilines. A plot of both vNH_2 frequencies for aniline and 4-chloroaniline in CS_2 solution	156
9.)	vs °C.	157
СНА	PTER 10	
10.1	Plots of the number of protons on the acid α -carbon atom of the carboxylic acid vs ν C=O for alkyl carboxylic acids in 2% wt./vol. in CCl ₄ and in 2% wt./vol. CHCl ₃ solutions.	175

432 List of Figures

10.2	Plots of the mole % CHCl ₃ /CCl ₄ vs vC=O for alkyl carboxylic acids in 2% wt./vol. CHCl ₃ and/or CCl ₄ solutions.	176
10.3	Plots of the mole % CHCl ₃ /CCl ₄ vs v_{op} (C=O) ₂ for alkyl carboxylic acids in 2%	170
10.5	wt./vol. CHCl ₃ and/or CCl ₄ solutions.	177
10.4	Plots of the mole % CHCl ₃ /CCl ₄ vs absorbance $[\nu(C=O)]$ /absorbance	1//
10.1	[$v_{op}(C=O)_2$] for the alkyl carboxylic acids in 2% wt./vol. CHCl ₃ and/or CCl ₄	
	$V_{op}(C=O/2)$ for the alkyl carboxylic acids in 2% wt./voi. CHCi ₃ and/or CCi ₄ solutions.	170
10.5		178
10.5	A schematic of the number of possible rotational isomers for the tri-, di-, and	
	haloacetic acids not in the form of intermolecular hydrogen-bonded dimers. X is	
	a halogen atom, 2X is two halogen atoms, 3X is three halogen atoms.	179
10.6	Plots of ν C=O for each carboxylic acid in CCl ₄ solution vs the pK _a value for each	
	carboxylic acid.	180
10.7	Plots of $vC=0$ for each carboxylic acid in CHCl ₃ solution vs the pK_a value for	
	each carboxylic acid.	181
10.8	Plots of $v_{op}(C=O)_2$ for each carboxylic acid in CCl ₄ solution vs the pK _a value for	
	each carboxylic acid.	182
10.9	Plots of $v_{op}(C=O)_2$ for each carboxylic acid in CHCl ₃ solution vs the pK _a value	
	for each carboxylic acid.	183
10.10	Plots of $vC=0$ for each carboxylic acid in CCl ₄ solution vs the σ^* value for each	103
	carboxylic acid.	184
10.11	Plots of $v(C=0)$ for each carboxylic acid in CHCl ₃ solution vs the σ^* value for	101
	each carboxylic acid.	185
10.12	Plots of $v_{op}(C=O)_2$ for each carboxylic acid in CHCl ₃ solutions vs the σ^* value	10)
10.12	for each carboxylic acid.	186
10.13	,	
	Plots of $v(C=O)_2$ for trihalo, dihalo, and haloacetic acids vs mole % CHCl ₃ /CCl ₄ .	187
10.14	Plots of $v_{op}(C=O)_2$ for trihalo, dihalo, and haloacetic acids vs mole %	100
10.15	CHCl ₃ /CCl ₄ .	188
10.15	Plots of the vOH mode for 4-X-benzoic acids in CCl ₄ solution and in CHCl ₃	
	solution vs σ_p values for the 4-X atom or group.	189
10.16	Plots of the $v(C=O)$ mode for 4-X-benzoic acids in CCl ₄ solution and in CHCl ₃	
	solution vs σ_p values for the 4-X atom or group.	190
10.17	Plots of the $v_{op}(C=O)_2$ frequencies for 4-X-benzoic acids in CCl ₄ solution and	
	CHCl ₃ solution vs σ_p values for the 4-X atom or group.	191
10.18	Plots of the $v_{op}(C=O)_2$ frequencies for 4-X-benzoic acids vs mole % CHCl ₃ /CCl ₄ .	192
10.19	(a) Parts of the infrared spectrum of mulls containing sodium hydrogen	
	diacetate; above 1330 cm ⁻¹ Fluorolube was used and below 1330 cm ⁻¹ , Nujol.	
	(b) A Nujol mull spectrum of NaH(CD ₄ COO) ₂ .	193
	· · · · · · · · · · · · · · · · · · ·	
CHAP	PTER 11	

11.1 IR spectra of phthalic anhydride in the region 2000–1600 cm $^{-1}$. The spectrum on the left is for a saturated solution in CCl_4 , the center spectrum is for a saturated solution in a 23.1 % vol. $CHCl_3/CCl_4$, and the spectrum on the right is for a saturated solution in $CHCl_3$.

209

CHAPTER 12

12.1	Plots of the $vN-H\cdots O=C$ frequencies for N-methylacetamide and N-methyl chloroacetamide vs the absorption maximum at each of the $v\cdots O=C$	
12.2	frequencies. IR spectra of N-methyl acetamide, N-ethyl acetamide, N-isopropyl acetamide,	232
	N-tert-butyl acetamide, and acetanilide in CCl ₄ solution in the region 3800–3300 cm ⁻¹ .	233
12.3	Plots of the ν C=O frequencies for α -bromo- p -x-acetanilide, p -x-acetanilide, and α,α,α -tricloro- p -x-acetanilide in 0.002 M solutions or less in CCl ₄ and CHCl ₃ vs	
12.4	Hammett σ_p values. Plots of vC =O for 1% wt./vol. solutions of acetone, dimethylacetamide, and tetramethylurea vs mole % CHCl ₃ /CCl ₄ .	234235
12.5	Plots of ν C=O of 1,3-dimethyl-2-imidazolidazolidinone (DMI) and 1,1,3-tetramethylurea (TMU) in the neat phase or in 1 of the 19 solvents vs ν C=O	
12.6	(hexane) minus $vC=O$ (solvent). Plots of $vC=O$ for 1,1,3,3-tetramthylurea (TMU) and 1,3-dimethyl-2-	236
12.7	imidazolidinone (DMI) vs the solvent acceptor number (AN). Plots of vC=O for 1,1,3,3,-tetramethylurea (TMU) and 1,3-dimethyl-2- imidazolidinona (DMI) vs mala % CHCl /CCl	237
12.8	imidazolidinone (DMI) vs mole % CHCl ₃ /CCl ₄ . A plot of $\nu_{\rm op}$ (C=O) ₃ for triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione (T ₃ one) vs mole % CHCl ₃ /CCl ₄ .	238239
12.9	A plot of $v_{op}(C_3N_3)$ for triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione (T ₃ one) vs mole % CHCl ₃ /CCl ₄ .	239
12.10	A plot of $C=CH_2$ wag for triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione (T ₃ one) vs mole % $CHCl_3/CCl_4$.	239
12.11	A plot of $v_{op}(C=O)_3$ and $v_{op}(C=O)_3 \cdots$ HOR for triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H) trione vs the solvent acceptor number (AN).	240
CTT 4.3	OTED 12	
CHA	PTER 13	
13.1	Plots of ν C=O corrected for Fermi resonance for each of the 4-X-benzaldehyde vs σ_p for the 4-X atom or group. The points on each line correspond to ν C=O	
13.2	frequencies for 0–100% CHCl ₃ /CCl ₄ solutions. Plots of ν C=O corrected for Fermi resonance in CCl ₄ solution vs the frequency difference between (ν C=O corrected for FR in CCl ₄ solution minus ν C=O corrected for FR for each of the mole % CHCl ₃ /CCl ₄ solutions) for each of the	271
13.3	4-X-benzaldehydes. Plots of vC=O and an overtone in Fermi resonance and their corrected	272
	frequencies vs mole % CHCl ₃ /CCl ₄ for 4-(trifluoromethyl) benzaldehyde.	273
13.4	Plots of the $vC=0$ frequency for each of the 4-X-benzaldehydes in a solvent vs the $vC=0$ frequency difference between the $vC=0$ frequency in hexane solution and the $vC=0$ frequency in each of the other solvents used in the study.	274
	and the ν C=O frequency in each of the other solvents used in the study.	214

434	List of Figures
-----	-----------------

13.5	A plot of $vC=O$ vs Hammett σ_p for each of the 4-X-benzaldehydes in dimethyl sulfoxide solution.	275
13.6	A plot of $vC=0$ for 4-(dimethylamino) benzaldehyde vs the solvent acceptor number (AN) for each of the solvents.	276
13.7	Plots of half of the Fermi doublet for each of the 4-X-benzaldehydes in the range 2726–2746 cm ⁻¹ vs mole % CHCl ₃ /CCl ₄ .	277
13.8	Plots of half of the Fermi doublet for each of the 4-X-benzaldehydes in the range 2805–2845 cm ⁻¹ vs mole % CHCl ₃ /CCl ₄ .	
13.9	Plots of unperturbed vCH for each of the 4-X-benzaldehydes vs mole %	278
13.10	CHCl ₃ /CCl ₄ . Plots of vCH and 2 δ CH in Fermi resonance and vCH and δ CH corrected for FR	279
13.11	for benzaldehyde vs mole % CHCl ₃ /CCl ₄ . Plots of ν C=H and 2 δ CH in Fermi resonance and ν CH and δ CH corrected for FR	280
	for 4-phenylbenzaldehyde vs mole % CHCl ₃ /CCl ₄ .	281
CHAP	PTER 14	
14.1	Plots of the number for A or Y vs the corresponding calculated value multiplied by a factor of 10 (see Table 14.2a).	301
14.2	A plot of ν C=O for tert-butyrophenone (phenyl tert-butyl ketone) vs mole % CHCl ₃ /CCl ₄ .	302
14.3	Plots of the vC =O frequencies for acetone, α -chloroacetone, acetophenone, and benzophenone in CS ₂ solution between \sim 29 and -100° C.	303
14.4	Plots of $vC=0$ for 2% wt./vol. solutions of (A) benzophenone, (B) 4-methoxyacetophenone, (C) acetophenone, (D) 4-nitroacetophenone, (E) 2,4,6-trimethylacetophonone, and (F) acetone in mole % (CH ₃)SO/CCl ₄ solutions.	303
14.5	A plot of vC =O for 1% wt./vol. cyclohexanone vs mole % CHCl ₃ / n -C ₆ H ₁₄ solutions.	304
14.6 14.7	A plot of vC =O for 1% wt./vol. cyclohexanone vs mole % CCl_4/n - C_6H_{14} . A plot of vC =O for 0.345 mol % acetone vs mole % $CHCl_3/CCl_4$ solutions.	305 306
14.8	A plot of the reaction field vs ν C=O for 0.345 mole % acetone in CHCl ₃ /CCl ₄ solutions.	
14.9	IR spectra for 14 H-dibenzo [a,j] X anthen-14-one. (A) Saturated solution in hexane; (B) saturated solution in carbon tetrachloride; (C) 0.5% wt./vol. solution	307
14.10	in chloroform. Plots of vC=O and OT or CT in Fermi resonance and their corrected unperturbed forgue raise for 14H dibarra [a il venthon 14 and venthol of CHC]. The	308
14.11	frequencies for 14H-dibenzo [a,j] xanthen-14-one vs mole % CHCl ₃ /CCl ₄ . The solid squares and open squares represent uncorrected frequency data, the solid circle represents ν C=O corrected for Fermi resonance and the open circles represent OT or CT corrected for Fermi resonance. Plots of ν C=O and OT or CT uncorrected and corrected for Fermi resonance for 14H-dibenzo [a,j]-xanthen-14-one vs the solvent acceptor number (A) for (1)	308
	2.32	

14.12	hexane; (2) carbon tetrachloride; (3) carbon disulfide; (4) benzene; (5) tetrahydrofuran; (6) methylene chloride; (7) nitrobenzene; and (8) chloroform. Plots of $v_{op}(C=O)_2$ and a B_{1u} CT in Fermi resonance and their unperturbed frequencies after correction for Fermi resonance for 1,4-benzoquinone vs mole %	309
	CHCl ₃ /CCl ₄ .	309
14.13	Plots of $v_{\rm op}(C=O)_2$ and $v_{\rm op}(C=C)_2$ for tetrafluoro-1,4-benzoquinone vs mole % CHCl ₃ /CCl ₄ .	310
СНАР	PTER 15	
15.1	Plots of $vC=O$ (solvent or neat) vs $vC=O$ (hexane) minus $vC=O$ (solvent or neat) for alkyl alkanoates.	352
15.2	Plots of $vC=O\cdots HO(ROH)$ vs $vC=O$ (hexane) minus $vC=O\cdots HO(ROH)$ for alkyl alkanoates.	353
15.3	Plots of vC =O for alkyl alkanoates vs the solvent acceptor number (AN) or neat alkyl alkanoate.	354
15.4	Plots of ν C=O···HO(ROH) vs the solvent acceptor number (AN) in alkyl alcohols.	355
15.5	Plots of the $vC=O$ and $vC=O\cdots HO(ROH)$ frequencies vs the solvent acceptor number (AN). Extrapolation of the points on curve A to A, curve B to B, curve C	333
15.6	to C, and curve D to D yields the postulated AN values of 9.15, 4.15, 3.00, and 2.06 for methyl alcohol through tert-butyl alcohol, respectively. The left figure shows plots of $vC=O$ rotational conformers 1 and 2 for ethyl	356
15.7	2-chloroacetate and $vC=O$ for ethyl acetate frequencies in CS_2 solution vs temperature in °C. The right figure shows a plot of the absorbance ratio for $vC=O$ rotational conformer 1/rotational conformer 2 vs temperature in °C. A plot of the $vC=O$ frequencies for rotational conformer 1 vs $vC=O$ for rotational	356
	conformer 2 for methyl 2,4-dichlorophenoxyacetate with change in the CCl ₄ to (CH ₃) ₂ SO ratio.	357
15.8	Infrared spectra of β -proprolactone in CCl ₄ solution (left), 52 mol % CHCl ₃ /CCl ₄ solution (middle), and CHCl ₃ solution (right).	357
15.9	A plot of unperturbed ν C=O frequencies for coumarin in 1% wt./vol. CHCl ₃ /CCl ₄ solutions vs mole % CHCl ₃ /CCl ₄ .	358
15.10	A plot of unperturbed ν C=O frequencies for coumarin in 1% wt./vol. (CH ₃) ₂ SO/CCl ₄ .	358
15.11	A plot of unperturbed ν C=O frequencies for coumarin 1% wt./vol. in (CH ₃) ₂ SO/CHCl ₃ vs mole % (CH ₃) ₂ SO/CHCl ₃ .	359
15.12	A plot of the unperturbed ν C=O frequencies for coumarin 1% wt./vol. in CHCl ₃ /CCl ₄ solution vs the reaction field for CHCl ₃ /CCl ₄ solutions.	359
15.13	Plots of unperturbed vC =O frequencies for coumarin 1% wt./vol. in various solvents vs the solvent acceptor number (AN).	360
15.14	Plots of $vC=0$ and a combination tone in Fermi resonance and their unperturbed $vC=0$ and CT frequencies for phenyl acetate after correction for Fermi resonance vs mole % CHCl ₂ /CCl ₄	360

436 List of Figures

15.15	Plots of vC =O and a combination tone in Fermi resonance and their unperturbed vC =O and CT frequencies for phenyl acetate after correction for Fermi resonance	
	vs the solvent acceptor number (AN).	361
15.16	Plots of $vC=0$ for methyl benzoates in CS_2 solution vs temperature in ${}^{\circ}C$.	362
15.17	Plots of the absorbance ratio for $A(\nu C=0)$, rotational conformer 1)/ $A(\nu C=0)$, rotational conformer 2) for methyl 2-methoxybenzoate and methyl	302
	2-bromobenzoate in CS ₂ solution vs temperature in °C.	363
15.18	Plots of $vC=O\cdots HO$ frequencies for 2-hydroxyacetophenone, methyl salicylate, and phenyl salicylate vs the solvent acceptor number (AN) for each of the	
	solvents used in the study.	364
15.19	Plots of $vC=O\cdots HO$ for 2-hydroxyacetophenone, methyl salicylate, phenyl salicylate vs the frequency difference between $vC=O\cdots HO$ (hexane) and	
	$C=O\cdots HO$ (solvent) for each of the other solvents.	365
15.20	A plot of $vC=O\cdots HO$ frequencies of phenyl salicylate vs mole % CHCl ₃ /CCl ₄ .	366
15.21	Bar graphs of the Raman group frequency data for 21 dialkyl phthalates.	367
15.22	Plots of $vC=0$ for seven alkyl acrylates in 1% wt./vol. CHCl ₃ /CCl ₄ solutions vs	
1-00	mole % CHCl ₃ /CCl ₄ .	367
15.23	Plots of $vC=0$ for corresponding alkyl acrylates and alkyl methacrylates vs mole	260
15 24	% CHCl ₃ /CCl ₄ solutions.	368
15.24	10-phenoxarsinyl chloroacetate. (a) Saturated in CCl ₄ and CS ₂ solution, (b) split mull.	369
15.25	IR spectra of thiolbenzoic anhydride (dibenzoyl sulfide) and benzoic anhydride (dibenzoyl oxide).	370
СНАР	TER 16	
16.1a	Normal modes for COF ₂ .	402
16.1b	Normal modes for COCIF.	403
16.1c	Normal modes for COCl ₂ .	404
16.2	(Upper)—Infrared spectrum of diallyl dithiol carbonate. (Lower)—Infrared spectrum of dipropyl dithiol carbonate.	405
16.3	(Upper)—Infrared spectrum of methyl thiol chloroformate. (Lower)—Infrared	,03
	spectrum of phenyl thiol chloroformate.	406
16.4	Plots of vC=O frequencies of ethylene carbonate corrected for Fermi resonance	
	vs the solvent acceptor number (AN).	407
16.5	A plot of the vC=O frequencies for ethylene carbonate corrected for Fermi	
	resonance vs the reaction field of the CHCl ₃ /CCl ₄ solutions.	408
16.6	Plots of ν C=O, 2ν C-C(=)Cl, and $\nu\phi$ -C(=)Cl frequencies for benzoyl chloride	
	in CS ₂ solution vs temperature in °C.	409
16.7	Plots of $vC=0$ for tetramethylurea in various solvents vs the solvent acceptor number (AN).	

Name index

A	Cronyn, M., 231n10
Alain, M., 153n14	Cross, P. C., xvn2, 8n2
Albert, N., 174n19	
Angell, C. L., 400n4	
	ъ
	D
.	Daly, L. H., xvn3, 8n4, 67n9
B	Dauben, W. S., 208nl
Badger, R. M., 174n19	Davidson, D. W., 99n8
Baker, A. W., 131n8	Decius, J. C., xvn2, 8n2
Baraceló, J. R., 173n9	de Haseth, J. A., xvn8
Bardet, L., 153n14	Deno, N. C., 131n10
Basillia, M. R., 270nn10, 11	Dunbar, J. E., 351n17
Bauer, E., 299n5	Dutz, H., 131n11
Bellamy, L. J., 131n2, 154n19, 208n2, 270n1, 300n7	
Bellanato, J., 173n9	
Bennett, G. M., 131n7	E
Bondybey, V. E., 153n8	Edwards, R. T., 299n4
Bowell, R. J., 30n6	Eglinton, G., 173n12
Bowles, A. J., 300n14	Epstein, W. W., 208n1
Boyd, D.R.J., 99n9	Evans, J. C., 30n4, 67nn17, 18, 99nn2, 6, 17, 116n1,
Brooks, C.J.W., 173n12	117n3, 131n6, 174n20, 400nn2, 7
Brooks, G. L., 131n7	
Brown, T. L., 230n3	
Buckingham, A. D., 173n4, 351n3	T
Budde, P. B., 153n7	F
	Fateley, W. G., xvn10, 67n10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13
C	Fiedler, S. L., 35n1, 99n14, 231n18
Califano, S., 153n3	Forbes, J. W., 300n23
Cherskaya, N. O., 153n15	El 37 E 200-15
	Forbes, W. F., 300n15
	Forches, W. F., 500113 Fouchea, H. A., 8n10, 351n9
Chiorboli, P., 208n5	
Chiorboli, P., 208n5 Chrisman, R. W., 231n12	Fouchea, H. A., 8n10, 351n9
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8	Fouchea, H. A., 8n10, 351n9
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12 Cleveland, F. F., 99n8	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6 G George, W. O., 300n14
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12 Cleveland, F. F., 99n8 Coggeshall, N. D., 270n8	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6 G George, W. O., 300n14 Glasstone, S., 131n7
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12 Cleveland, F. F., 99n8 Coggeshall, N. D., 270n8 Cole, K. C., 153n12	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6 G George, W. O., 300n14 Glasstone, S., 131n7 Golden, J.D.S., 173n10
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12 Cleveland, F. F., 99n8 Coggeshall, N. D., 270n8 Cole, K. C., 153n12 Coleyshaw, E. E., 30n6	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6 G George, W. O., 300n14 Glasstone, S., 131n7 Golden, J.D.S., 173n10 Gordon, J. M., 300n23
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12 Cleveland, F. F., 99n8 Coggeshall, N. D., 270n8 Cole, K. C., 153n12 Coleyshaw, E. E., 30n6 Colthup, N. B., xvnn3, 10, 8n4, 67n9, 10, 131n12,	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6 G George, W. O., 300n14 Glasstone, S., 131n7 Golden, J.D.S., 173n10 Gordon, J. M., 300n23 Grasselli, J. G., xvn10, 67n10, 131n12, 146n3, 154n18,
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12 Cleveland, F. F., 99n8 Coggeshall, N. D., 270n8 Cole, K. C., 153n12 Coleyshaw, E. E., 30n6 Colthup, N. B., xvnn3, 10, 8n4, 67n9, 10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6 G George, W. O., 300n14 Glasstone, S., 131n7 Golden, J.D.S., 173n10 Gordon, J. M., 300n23 Grasselli, J. G., xvn10, 67n10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12 Cleveland, F. F., 99n8 Coggeshall, N. D., 270n8 Cole, K. C., 153n12 Coleyshaw, E. E., 30n6 Colthup, N. B., xvnn3, 10, 8n4, 67n9, 10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13 Connelly, B. J., 208n2	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6 G George, W. O., 300n14 Glasstone, S., 131n7 Golden, J.D.S., 173n10 Gordon, J. M., 300n23 Grasselli, J. G., xvn10, 67n10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13 Griffith, W. P., 30n6
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12 Cleveland, F. F., 99n8 Coggeshall, N. D., 270n8 Cole, K. C., 153n12 Coleyshaw, E. E., 30n6 Colthup, N. B., xvnn3, 10, 8n4, 67n9, 10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13 Connelly, B. J., 208n2 Cottee, F. H., 300n15	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6 G George, W. O., 300n14 Glasstone, S., 131n7 Golden, J.D.S., 173n10 Gordon, J. M., 300n23 Grasselli, J. G., xvn10, 67n10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13 Griffith, W. P., 30n6 Griffiths, P. R., xvn8
Chiorboli, P., 208n5 Chrisman, R. W., 231n12 Christensen, J. J., 173n8 Chrzan, V., 300n12 Clark, T. D., 173nn2, 7, 14, 231n16, 351n12 Cleveland, F. F., 99n8 Coggeshall, N. D., 270n8 Cole, K. C., 153n12 Coleyshaw, E. E., 30n6 Colthup, N. B., xvnn3, 10, 8n4, 67n9, 10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13 Connelly, B. J., 208n2	Fouchea, H. A., 8n10, 351n9 Fuson, N., 300n6 G George, W. O., 300n14 Glasstone, S., 131n7 Golden, J.D.S., 173n10 Gordon, J. M., 300n23 Grasselli, J. G., xvn10, 67n10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13 Griffith, W. P., 30n6

438 Name Index

H Hallam, H. E., 299n3, 300n7 Hammaker, R. M., 270n12 Hansen, L. D., 173n8 Hasha, D. L., 8n10, 173n5, 300n19, 351n9, 400n12 Herzberg, G., xvn1, 8n1 Hoffman, G. A., 8n10, 351n9 Houck, J., 300n12	M Maddams, W. F., 300n14 Magot, M., 299n5 Maki, A., 231n10 Mann, J. R., 35n4 McDonald, A. T., 351n12 McLachlan, R. D., 67n7, 230n5 Merrifield, R. E., 99n11 Mills, H. H., 174n18 Mills, I. M., 8n8
I Isatt, R. M., 173n8	Mirone, P., 208n5 Mitsch, R. A., 153n13 Moccia, R., 153n3, 231n9 Moran, J. F., 173n12
J Jagodzinski, P., 401n17 Jameson, D. A., 231n11 Johnson, A. L., 99n16 Josien, M. L., 300n6 Joyner, P., 67n15	N Nakamoto, K., xvnn13, 14 Nibbler, J. W., 153n8 Nivorozhkin, L. E., 153n11 Nolin, B., 8n7 Nyquist, I. M., 8n8 Nyquist, R. A., xvnn5–6, 11, 12, 8nn5, 6, 10, 30nn3–5,
K Kagel, R. O., xvn12 Kahovec, L., 154n17 Kallos, G. J., 99nn4, 5, 116n2, 117n4 Killingsworth, R. B., 153n10 King, S. T., 153n13 Kirkwood, J. G., 299n4 Kirrman, A., 153n9	35nnl-6, 67nnl-5, 7, 8, 11-13, 17, 18, 99nnl-7, 13-17, 116nnl, 2, 117nn3, 6, 131nnl, 4, 5, 13, 146n.1, 153nnl, 2, 6, 7, 173nnl, 2, 5, 7, 14-16, 174nl7, 208nn3, 4, 6, 7, 230nnl, 5, 6, 231nn7, 12-16, 18-20, 270nn2, 5-7, 299n2, 300nn8-12, 17-22, 351nn1, 2, 5, 7-18, 400nn3, 5-10, 12, 13, 401n15
Kitaev, Yu P., 153n11 Klemperer, W., 231n10 Kohlrausch, K. W., 154n17 Kolling, O. W., 401n16 Kriegsman, H., 131n11 Krueger, P. J., 153n5	Ogden, P. H., 153n13 Ogilvie, J. E, 153n12 Overend, J., 67n16, 153n13, 400nn1, 2, 7 Owen, N. L., 67n6
L Lange, N. A., 400n11 Langseth, A., 8n9 Leugers, M. A., xvn11, 30n5, 174n17 Linnett, I. W., 153n4 Lin-Vien, D., xvn10, 67n10, 131n12, 146n3, 154n18, 230n4, 270n3, 300n13 Lo, YS., 67nn17, 18, 99n16, 116n1 Lord, R. C., 8nn7, 9, 99n11 Loy, B. R., 231n12 Luoma, D. A., 131n4, 153n1, 231nn13–15, 270n5, 300nn20, 21, 400n13 Lutz, E.T.G., 131n3	P Pauling, L., 117n7 Pawloski, C. E., 117n5 Person, W. B., 8n8 Peters, T. L., 153n7 Phillpots, A. R., 208n2 Pimentel, G., 231n10 Pinchas, S., 270n9 Plegontov, S. A., 153n11 Potts, W. J., Jr., xvn4, 8n3, 30n1, 67n5, 99n1, 117n6, 351n18, 400nn3, 7 Pozefsky, A., 270n8 Puehl, C. W., 153n1, 231n20

Putzig, C. L., xvn11, 30n5, 99n13, 173n5, 174n17, 231nn12, 16, 20, 300nn10, 19, 21, 351n12, 400n12, 401n15

R

Raevskii, O. A., 153n11 Raktin, O. A., 153n15 Reder, T. L., 99nn4, 5, 116n2 Regan, J. E., 230n3 Richards, R. E., 230n2 Rock, S. L., 270n12 Russell, R. A., 231n8

Straugham, B. P., 300n15

S Saier, E. L., 270nn10, 11 St. Fleet, M., 173n11 Scherer, J. R., 67n16, 400n1 Scheutz, D. R., 230n3 Schrader, B., 208n8, 270n4, 299n1 Seehra, J., 401n17 Settineri, S. E., 131n4, 173n15, 270n5, 351nn10, 11, 400n5 Sheppard, N., 67n6 Shilton, R., 300n15 Shlyapochnikov, V. A., 153n15 Shulgin, A. T., 131n8 Simon, A., 131n11 Skell, P. S., 131n10 Sloane, H. J., 351n17 Slockler, G., 67n15 Socrates, G., xvn9 Splakman, J. C., 174n18 Stec, F. F., 99n5, 116n2 Sternberg, J., 230n3 Stewart, R. L., 117n5, 173n2

Streck, R., 67n11, 173n2, 351nn15, 16 Strycker, S. J., 351n17 Sundaram, S., 99n8

Т

Taft, R. W., Jr., 131nn9, 10, 173n3 Thompson, H. W., 99nn9, 10, 230n2, 231nn8, 9, 11 Thompson, J. W., 67n13 Timmermans, J., 351n4 Timmons, C. J., 300n15 Titoya, S. Z., 153n11

\mathbf{v}

van der Maas, J. H., 131n3

W

Ward, G. R., 99n4
Welti, D., 30n2, 173n13
West, W., 153n10, 299n4
Westover, L. B., 117n4
Wiebenga, E. H., 99n12
Wilberley, S. E., xvn3, 8n4, 67n9
Wilkening, D., 300n20
Williams, A. L., 208n2
Williams, R. L., 270n1, 300n7
Wilson, E. B., Jr., xvn2, 8n2
Wilti, D., 30n2
Winter, R., 67n14
Wohar, M., 401n17
Woodward, R. W., 231n12

Y

Yurga, L., 300n10

Subject index

4	Raman data, 268, 282
A Absorbance ratios, band, 57–58	Aliphatic amines. See Amines, aliphatic
	Alkanes, 31–34, 36, 37, 41–45
Acceptor number (AN) values, 269, 276, 354, 355, 356	Alkanoates, 333–335, 352, 353, 354
solvent, 398, 399–400	
Acetamides, 215, 216–217, 242–248	Alkenes, 55, 58, 67, 90
dimethyl, 224–225, 256	stretching vibrations, 60
Acetanilides, 222–223, 252, 253	trans, 63–64, 81
Acetates, 369, 373, 374	Alkyl acetamide, 216–217
Acetone, 288, 306, 307, 311	Alkyl acrylates and methacrylates, 62–63, 79–80
Acetophenone, hydroxy-, 341-342, 378	Alkyl alkanoates, 333–335, 352, 353, 354
Acetyl chloride, 414, 415	Alkylamines. See Amines, aliphatic
Acetylene, 3–4, 15	Alkyl benzoates, 341, 377
phenylacetylene, 96-97, 99, 101, 109, 113	Alkyl carbon-hydrogen vibrations, 31–32
terminal, 93–94, 106	cycloalkanes, 35, 48
Acid halides. See Carboxylic acid halides	cycloalkyl groups, 35, 49–53
Acrolein, 268	epoxyalkanes, 34, 46
Acrylates, 62-63, 79-80, 343-345, 379-380, 388	methylthiomethyl mercury, dimethylmercury, and
Acrylic acid, 172, 200	methylthiochloroformate, 35, 47
Acrylonitrile, 56, 57, 73, 74	sodium dimethylphosphonate $(CH_3)_2P(O)_2Na)$,
Adipate, 371	34–35, 47
Alcohol(s)	summary, 32–34
C-O stretching, 127	Alkyl chloroacetamide, 216–217
OH stretching, 125-127, 135	Alkylcinnamates, 64, 84
primary, 125, 127	Alkyl ethers, vinyl, 67, 91
propargyl, 98, 111	Alkyl groups, 67, 90
secondary, 125, 126	Alkynes, 93, 94-95, 108
tertiary, 125	absorbance ratios versus number of α-carbon atoms,
Aldehydes	95, 100
benzaldehydes, 268-270, 282, 283	Allyl halides, 61, 78
conjugated, 267	Amides
Fermi resonance, 268, 270, 273, 280, 281	acetamides, 215, 216-217, 242-248
inductive effect, 268	carboxamides, 213, 214, 215, 241
IR data, 267, 282	inductive effects, 219
nonconjugated, 267, 282	intramolecular hydrogen bonding, 215, 219
plots of half Fermi doublet versus mole %	N-H intensity, 219-222, 232
CHCl ₃ /CCl ₄ , 277, 278	primary, 214, 220, 241, 249
plots of unperturbed vCH versus CHCl ₃ /CCl ₄ , 279,	secondary, 214, 220, 241, 249
280	tertiary, 214, 220-221, 241, 249
plots of vC=O (4-phenylbenzaldehyde) versus mole %	trans and/or cis secondary, 217-219
CHCl ₃ /CCl ₄ , 281	Amines, aliphatic
plots of vC=O versus acceptor number, 276	chemical reactions of primary and secondary,
plots of vC=O versus vC=O (hexane) and vC=O	145–146
(solvents), 274	primary, NH ₂ bending for alkylamines, 145
plots of vC=O versus mole % CHCl ₃ /CCl ₄ , 268, 273	primary, Raman data for, 145, 148
plots of vC=O versus σ_p , 268, 271, 275	primary, NH ₂ stretching, 143–144, 150–151
i	. ,

Subject Index

Amines, aliphatic (continued)	Fermi resonance, 408
primary, symbol for, 143	monothiol, 393
primary, wag frequencies, 144	thiol, 411
secondary, 143, 146	Carbon-carbon double bonds (C=C), 55
symbols for, 143	absorbance ratios and frequency separations, 57–58
tertiary, 143	alkene stretching vibrations, 60
AN. See Acceptor number	alkyl acrylates and methacrylates, 62–63, 79–80
Anhydrides	alkyl cinnamates, 64, 84
conjugated, 205, 206	alkyl groups of alkenes and vinyl alkyl ethers, 67, 90,
Fermi resonance, 206, 207	91
in- and out-of-phases, 207–208, 212	allyl halides, 61, 78
inductive effect, 206	butadienes, 66, 89
IR vapor-phase data and Raman data, 210	cinnamyl esters, 64, 85
maleic, 207–208, 211	cycloalkenes and cycloalkadienes, 61-62, 78
phthalic, 206–207, 209	disubstituted ethylenes, 65, 82
ring strain, 206	in-plane vibrations, 56
structures of, 205	out-of-plane vibrations, 56–57
thiol acid, 349-350, 387	propadienes, 66, 89
Anilines (arylamines), 149-150	Raman data, 58, 75
bond angles, 156	rotational conformers (rotamers) and Fermi
plot of vasym, 155, 156	resonance, 58-60
plot of vsym, 155	styrenes, 65-66, 86, 87, 88
stretching frequencies versus temperature, 150-151	trans-alkenes, 63-64, 81
Anthranilic acids, 171–172, 199	twist frequencies versus σ' , 60
Asymmetric molecules, 6	vinyl alkyl ethers, 67, 91
Azines, 151–152, 163	wag frequencies versus sigma, 60, 77
	Carbon dioxide, 3, 13
	Carbon disulfide, 3, 14
В	Carbon-hydrogen vibrations, 127
Benzaldehydes, 268-270, 282, 283	Carbon monoxide, 3, 11
Benzamides, 215	Carbon tetrafluoride, 4, 17
N-alkyl, 223, 254	Carbonyl bond angle effects, 412
Benzene, 5, 23	Carbonyl Fermi resonance, 407
Benzoates, 341, 377	Carbonyl halides, 392, 402–404
Benzoic acids, 170–172, 189, 191, 192, 197–198	Carbonyl stretching frequencies, solute-solvent effects
Benzoquinones, 297-299, 309, 310	on, 397–398
Benzoyl chloride, 409, 417	Carbonyl temperature effects, 409, 417
Benzoyl halides, 416	Carboxamides, 213
Bromobutylphthalimide, 229, 264	intramolecular hydrogen bonding, 215
Bromocyclohexane, 49	primary, 214, 241
Bromocyclopropane, 52	secondary, 214, 241
Bromopropadiene, 115–123	tertiary, 214, 241
Bromopropyne, 5, 21	Carboxylic acid halides, 416
Butadienes, 66, 89	Carboxylic acids
Butyrate, 371	acrylic and methacrylic acids, 172, 200
Butyrophenone, 290, 316	asymmetric and symmetric stretching, 172, 202
	benzoic acids, 170–172, 189, 191, 192, 197–198 half salts of, 172–173
C	inductive effects, 168, 169 IR data for salts, 172, 203
Caffeine, 226–227, 260	IR group frequency data, 167–168, 196
Carbanates, 395, 396, 418	IR vapor-phase data, 166, 194
Carbanates, N-alkyl methyl, 223	IR vapor-phase data for anthranilic acids, 171–172,
Carbonates, 392–393 dithiol, 393, 405	199
ditinoi, 373, 103	

mole % CHCl ₃ /CCl ₄ versus absorbance vC=O and	thiol esters, 347-349, 386
v_{op} C=O ₂ , 178	vapor versus solution phases, 333–335
mole % CHCl ₃ /CCl ₄ versus ν C=0, 176	Center of symmetry, glyoximes and, 153
mole % CHCl ₃ /CCl ₄ versus v_{op} C=O ₂ , 177	Chalcone, 294
plots of vC=O and v_{op} C=O ₂ , 168–169, 180–191	Chloride
plots of vC=O versus α^* , 184, 185	acetyl, 414, 415
=	benzoyl, 409, 417
plots of vC=O versus α_p , 190 plots of vC=O versus pK _a , 180, 181	Chloroformates, 393, 411, 413
	thiol, 394–396, 406, 411, 417
plots of $v_{op}C=O_2$ versus CHCl ₃ /CCl ₄ , 187, 188	Chloropropadiene, 116, 120
plots of $v_{op}C=O_2$ versus α^* , 186	Christiansen effect, 25–26
plots of $v_{op}C=O_2$ versus α_p , 191	Cinnamates, 345–346, 383, 384
plots of v_{op} C=O ₂ versus pK _a , 182, 183 plots of mole, 166–167, 176–178	Cinnamyl esters, 64, 85
plots of OH versus α_p , 189	Concentration effects, 299, 399
plots of v_c =O versus mole % CHCl ₃ /CCl ₄ , 192	Condensed IR spectra, vapor-phase versus, 7
proton numbers on α -carbon atom, 175	Conjugation effects, 332
Raman data, 167, 195	Coriolis coupling constants, 95, 96
Raman data for salts, 172, 201	C—O stretching, alcohol, 127
reaction field, 167	Coumarin, 339–340
rotational conformers, 168, 179	Cycloalkadienes, 61–62, 78
salts, 172	Cycloalkanes, 35, 48
structures of, 165–166, 168	Cycloalkanols, 127
vinyl esters of, 65, 85	Cycloalkanones, 295–297
Carboxylic acid salts, 172, 331	Cycloalkenes, 61–62, 78
acrylates, 62–63, 79–80, 343–345, 379–380, 388	Cycloalkyl groups, 35, 49–53
alkyl benzoates, 341, 377	Cyclohexanone, 304, 305
cinnamates, 345–346, 383, 384	Cyclohexene, 61–62, 68, 78
conjugation effects, 332	Cyclopentene, 61, 62, 68, 78
diesters, 333	-y r ,,,,
ester vibrations, 350	
Fermi resonance, 360, 361	D
field effects, 348	Depolarization, 30
half salts of, 172–173	Dialkyl ketones, 289, 290, 315, 316
inductive effects, 332, 348	Dielectric constant, 288, 296, 334, 397
intermolecular hydrogen bonding, 334	Diesters, 333
intramolecular hydrogen bonding, 333, 341	Dihalopropynes, 98–99, 112
lactones, 337-340	Dimethylacetamide, 224–225, 256
methacrylates, 62-63, 79-80, 343-345, 388	Dimethylmercury, 35, 47
phenoxarsine derivatives, 346-347, 385	Dimethyl-2,4-quinazolinedione, 226-227, 260
phthalates, 342, 378	Dimethyl-2-imidazolidinone (DMI), 225-226, 258, 259
plot of vCO for alkyl acrylates and methacrylates	Diphenylbutadiyne, 97-98, 110
versus mole % CHCl ₃ /CCl ₄ , 368	Dipolar interaction, 221, 269, 288, 398
plot of vCO for alkyl acrylates versus mole %	Dipolarity-polarizability effect, 399-400
CHCl ₃ /CCl ₄ , 367	Dipole moment change, 33
plot of vCO HO versus acceptor number, 364	Disubstituted ethylenes, 65, 82
plot of vCO HO(ROH) versus acceptor number, 355	Dithiol carbonates, 393, 405
plot of vCO HO versus mole % CHCl ₃ /CCl ₄ , 366	Divinylsulfone, 56, 57, 73, 74
plot of vCO rotational conformer I versus II, 357	•
plot of vCO versus acceptor number, 354, 355, 356	
rotational conformers, 335-337, 356, 357, 363	E
salicylates, 341–342, 378	Epoxyalkanes, 34, 46
temperature effects, 356, 362, 363	Esters
thiol acid anhydrides, 349-350, 387	cinnamyl, 64, 85
thiol acids, 349, 387	thiol, 347-349, 386

444 Subject Index

Esters (continued)	I
vinyl, 65, 85	Imides, 227-229, 262-263
Ethers, vinyl, 58-60, 67, 91	Infrared (IR) spectra
Ethylene carbonates, 393, 407, 408, 412	acetamides, 217-218, 233, 244-245
Ethylene oxide (C_2H_2O) , 6, 24	acetylene, 3-4, 15
Ethylenes, disubstituted, 65, 82	alkanoates, 372
Ethyl isobutyrate, 333	benzene, 5, 23
Ethyl acetate, 333	bromochloroethylene, 69
Ethyl propionate, 333	bromopropadiene, 115, 116, 118, 119, 121, 123
Ethyl trimethylacetate, 333	bromopropyne, 5, 21, 115, 118, 119
Evans Transmission Hole, 173, 193	carbon dioxide, 3, 13
	carbon disulfide, 3, 14
	carbon monoxide, 3, 11
F	carbon tetrafluoride, 4, 17
Fermi resonance (F.R.), 58-60, 206, 207, 217, 360, 361	carboxylic acid esters, 371
aldehydes, 268, 270, 273, 280, 281	chloropropadiene, 116, 120
carbonate, 407, 408	dichloropropyne, 98, 103, 104
correcting for, 7–8	dithiol carbonate, 405
ketones, 290–291	ethylene oxide, 6, 24
Field effects, 348	halopropadienes, 115-123
Fluoride, propargyl, 98, 111	hydrogen bromide, 3, 9
Fluorolube, 26	hydrogen chloride, 3, 10
Foramides, 220	iodopropadiene, 116, 122
Formates, 371	iodopropyne, 5, 22
Frequency separations, 57–58	maleic anhydride, 207, 211
Fumarate, 50	methane, 4, 16
Tumanuc, 50	methyl bromide, 4-5, 19
	methyl chloride, 4-5, 18
	methyl iodide, 4-5, 20
G	nitrogen oxide, 3, 12
Gas chromatography, 29, 30	phthalic anhydride, 206-207, 209
Glyoximes, 152–153, 164	propiolactone, 357
Group frequencies, 30	thiol benzoic anhydrides and benzoic anhydrides, 370
phthalates and Raman, 367	thiol chloroformate, 406
Group Theory, 2	vapor-phase versus condensed, 7
Guanidine derivatives, 225, 257	Infrared (IR) spectra, obtaining
	liquid films, 27–28
	mull technique, 26
Н	potassium bromide disk technique, 26
Half salts of carboxylic acids, 172-173	solids (excluding single crystals), 25–27
Halogenated acetic acids, rotational conformers, 168,	solutions technique, 27
169	vapors and gases, 28-30
Halopropadienes, 115–123	In-plane vibrations, 56
Halopropynes, 94, 95–96, 107	Iodopropadiene, 116, 122
Hammett values, 170, 222, 268, 269	lodopropyne, 5, 22
Hydantoins, 229, 265	Isocaffeine, 226–227, 260
Hydrogen bonding, 206–207	
intermolecular, 97, 125, 126, 127, 169, 170, 171, 216,	
220, 288, 289, 290, 334	K
intramolecular, 126–127, 128, 131, 152, 169, 215,	KBM (Kirkwood, Bauer, Magot) equation, 288, 301, 312,
216, 219, 268, 294–295, 333, 341, 396–397	313
Hydrogen bromide, 3, 9	KBr (potassium bromide) disk technique, 26
Hydrogen chloride, 3, 10	Ketones, 287
Hydroxyacetophenone, 341-342, 378	acetone, 288, 306, 307, 311

aliphatic, 288–289	spherical, 4
chalcones, 294	symmetric, 4–5
chemical and physical effects, 291	Molecular weight
concentration effects, 299	absorbance ratios versus number of carbon atoms, 95
conjugated carbonyl containing compounds, 291–294,	100
319–320	vasym, 31, 36
cycloalkanones, 295–297	vsym, 31, 37
dialkyl, 289, 290, 315, 316	Monothiol carbonates, 393
dimethyl, 289	Mull technique, 26
hydroxyacetophenone, 341-342, 378	
inductive, resonance, and temperature effects,	
290–291	N
intramolecular hydrogen bonding, 294–295	N-H intensity, 219-222
plot of reaction field, 307	Nitrogen oxide, 3, 12
plot of vC=O and σ_p , 291	Nujol, 26
reaction field, 296	Nyquist Rule, xiv
ring deformation, 295	
solute-solvent interaction affected by steric factors,	
289–290	O
solvent-induced frequency shifts, 288-289	OH groups
substituted benzoquinones, 297-299, 309, 310	bending, 128
	intermolecular hydrogen bonding, 128
	intramolecular hydrogen bonding, 128-131
L	mole % CHCl ₃ /CCl ₄ , 128
Lactams, 217	stretching for alcohols, 125-127, 135
Lactones, 337-340, 357	stretching for phenols, 127
Linear molecules, 2–4	unassociated, 127
Liquid films, 27–28	Out-of-plane vibrations, 56-57
	Oxamides, 223-224, 255
	Oxide, ethylene, 6, 24
M	Oximes, 152–153
Maleic anhydrides, 207-208, 211	
Malonates, 371	
Methacrylates, 62-63, 79-80, 343-345, 388	P
Methacrylic acid, 172, 200	Parallel band, 3
Methane, 4, 16	Perpendicular band, 3
Methyl acetamide, 216-217, 242, 243	Perturbation theory, 173
Methyl acetate, 333	Phenols, 125
Methyl bromide, 4–5, 19	intramolecular hydrogen bonding, 130-131
Methyl carbanates, N-alkyl, 223	OH bending, 128
Methyl chloride, 4-5, 18	OH stretching, 127
Methyl chloroacetamide, 217, 243	temperature effects, 131
Methyl iodide, 4–5, 20	Phenoxarsine derivatives, 346-347, 385
Methyl isobutyrate, 333	Phenyl acetate, 340, 360, 361
Methyl methacrylamide, 216	Phenyl acetylene, 96-97, 99, 101, 109, 113
Methyl propionate, 333	Phenyl ring, 223
α-Methylstyrenes, 65–66, 86, 87	Phthalates, 342, 367, 378
Methylthiochloroformate, 35, 47	Phthalic anhydrides, 206-207, 209
Methylthiomethyl mercury, 35, 47	Phthalimide, bromobutyl, 229, 264
Methyl trimethylacetate, 333	Polarization, de-, 30
Molecular structure, examples of	Potassium bromide disk technique, 26
asymmetric, 6	Pressure effect, 6
linear, 2–4	Propadienes, 66, 89, 115-123
mull technique, 26	Propargyl alcohol and fluoride, 98, 111

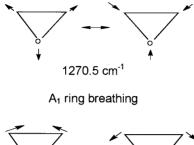
446 Subject Index

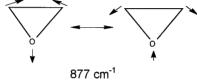
n	
Propynes	T
dihalo, 98–99, 112	Temperature effects, 6-7, 131, 409, 417
halo, 94, 95–96, 107	carboxylic acid esters, 356, 362, 363
Pyrone, 338	ketones, 290–291
Pyrrolidone, 219–220	NH ₂ stretching frequencies versus temperature, 150–151
	Tert-butyrophenone, 290, 302, 316
	Tetraalkylurea, 224–225, 256
Q	Tetrabutylurea (TBU), 224-225, 258
Quinazolinedione, 226–227, 260	Tetraethylurea (TEU), 224-225, 258
Quinones, benzo-, 297-299, 309, 310	Tetramethylurea (TMU), 224-226, 258, 410, 419
	Thiol acid anhydrides, 349-350, 387
	Thiol acids, 349, 387
R	Thiol carbonates, 411
Raman data	Thiol chloroformates, 394-396, 406, 411, 417
	Thiol esters, 347-349, 386
for anhydrides, 206, 210	Thiourea, 225, 257
for bromochloroethylene, 69	Trans-alkenes, 63-64, 81
for bromopropadiene, 115, 116, 118, 119, 121, 123	s-triazinetrione, 229-230, 266
for bromopropyne, 5, 21, 115, 118, 119	Trichloroacetaldehyde, 268
for primary amines, 145, 148	Trimethyluracil, 226-227, 260
for styrenes, 65–66, 86	Twist frequencies versus σ' and pK _a , 60
for vinyl esters of carboxylic acids, 65, 85	Twist vinyl group, 57–58
for X-CH=CH ₂ compounds, 58, 75	, 6 1,
Rayleigh scattering, 25	
Reaction field, 296, 334, 339, 397	U
Refractive index, 340, 397	Uracils, 261
Ring strain, 225, 337, 338, 393	trimethyl, 226–227, 260
Rotational conformers (rotamers), 7, 58–60	Urea
carbonyl groups, 168, 179, 335–337, 356, 357, 363	cyclic, 225
	tetraalkylurea, 224–225, 256
	tetrabutylurea (TBU), 224–225, 258
S	tetraethylurea (TEU), 224–225, 258
Salicylates, 341–342, 378	tetramethylurea (TMU), 224–226, 258
Sigma, wag frequencies versus, 60, 77	thiourea, 225, 257
Sodium dimethylphosphonate, 34–35, 47	11104164, 223, 231
Sodium hydrogen diacetate, 172–173	
Solids (excluding single crystals), samples, 25–27	V
Solute-solvent effects	Vapor-phase
affected by steric factors, 289–290	trans CH=CH, 294
carbonyl stretching frequencies and, 397–398	versus condensed IR spectra, 7
Solutions technique, 27	Vibrational spectroscopy
Solvent acceptor number, 398, 399–400	examples of molecular structure, 2–6
Solvent Field effect, 128	Fermi resonance, 7–8
Solvent-induced frequency shifts, 288–289	
Spherical molecules, 4	pressure effect, 6 temperature effect, 6–7
Steric factors, 289–290	theory of, 1–2
Styrenes, 65–66, 86, 87, 88 Sulfides, dibenzoyl, 370	vapor-phase versus condensed IR spectra, 7 Vinyl groups
Sulfones	absorbance ratios and frequency separations,
divinyl, 56, 57, 73, 74	57–58
vinyl phenyl, 58	alkyl ether, 59–60
Sulfoxide, dimethyl, 207	allyl halides, 61, 78
Symmetric molecules, 4–5	conjugated, 58
symmetric morecules, 1-3	conjugacou, 50

cycloalkadienes, 61–62, 78 cycloalkenes, 61–62, 78 esters, 65, 85 ethers, 58–59, 67, 91 phenyl sulfone, 58 rotational conformers (rotamers) and Fermi resonance, 58–60 twist, 57–58 twist frequencies versus σ' and pK_a , 60

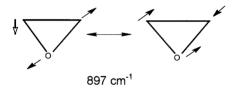
wag, 57–58 wag frequencies versus sigma, 60, 77

W Wag frequencies for aliphatic amines, 144 versus sigma, 60, 77 Wag vinyl group, 57–58


Epoxides			1
Glycidyl Ether	4		
Cyclic Ethers	5		
Open Chain A	5		
Vinyl Ethers	6		
References			6
Figures		Tables	
Figure 1-1	8 (1)	Table 1-1	15 (1)
Figure 1-2	9 (2)	Table 1-2	16 (2, 3)
Figure 1-3	10 (2)	Table 1-2a	17 (2, 3, 4)
Figure 1-4	10 (3)	Table 1-2b	18 (4)
Figure 1-5	11 (3)	Table 1-3	19 (4)
Figure 1-6	12 (3, 4)	Table 1-4	20 (4)
Figure 1-7	13 (4)	Table 1-5	21 (5)
Figure 1-8	13 (4)	Table 1-6	22 (5)
Figure 1-9	14 (5)	Table 1-7	23 (5)
		Table 1-8	24 (6)
		Table 1-9	25 (6)


^{*}Numbers in parentheses indicate in-text page reference.

EPOXIDES


Ethylene oxide is a cyclic three-membered ring with the molecular formula C_2H_4O , and it has C_{2v} symmetry. The vapor-phase infrared (IR) spectrum of ethylene oxide is shown in Figure 1.1, and Potts has assigned its vibrational spectrum (1). However, assignment of the antisymmetric B_1 ring deformation was not apparent using $1\,\mathrm{cm}^{-1}$ resolution. A vapor-phase IR spectrum of ethylene oxide has been recorded using $0.25\,\mathrm{cm}^{-1}$ resolution and the antisymmetric ring deformation was observed at $897\,\mathrm{cm}^{-1}$ (2). The fundamental vibrations of ethylene oxide are given in Table 1.1.

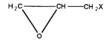
The three characteristic ring modes in ethylene oxide are ring breathing, symmetric ring deformation, and antisymmetric ring deformation. These three modes are illustrated here:

A₁ symmetric ring deformation

B₁ antisymmetric ring deformation

Figure 1.2 shows a vapor-phase IR spectrum of 1,2-propylene oxide. This molecule does not even have a plane of symmetry, and its molecular symmetry is C_1 . The vapor-phase IR bands near 1269, 839, and 959 cm⁻¹ are assigned as ring breathing, symmetric ring deformation, and antisymmetric ring deformation, respectively. For the 1,2-epoxyalkanes (3-alkyl-1,2-ethylene oxide) studied (3), these three fundamentals occur in the ranges 1248–1271, 830–877, and 883–941 cm⁻¹, respectively.

The ring breathing mode decreases in frequency as the 3-carbon atom becomes increasingly branched. Thus, the ring breathing mode occurs at 1265, 1259, 1256, and 1248 cm $^{-1}$ for the 3-methyl, 3-ethyl, 3-isopropyl and 4-tert-butyl analogs respectively, of 3-alkyl-1,2-ethylene oxide in CCl_4 solution. It is suggested that the ring breathing mode frequency decrease is due to the electron release of the 3-alkyl group to the C_2 atom, which increases with increased branching in the C_3 atom and which then weakens the bonds, respectively (see Tables 1.2 and 1.2a).



An extensive study of styrene oxide in $CDCl_3/CCl_4$ shows that the epoxy ring breathing mode increases in frequency in a systematic manner from $1252.4\,\mathrm{cm^{-1}}$ in CCl_4 solution to $1252.9\,\mathrm{cm^{-1}}$ in $52\,\mathrm{mol}$ % $CDCl_3/CCl_4$ solution to $1253.5\,\mathrm{cm^{-1}}$ in $CDCl_3$ solution. Figure 1.3 shows a plot of mole % $CDCl_3/CCl_4$ vs the epoxy ring breathing mode frequency for styrene

oxide, which illustrates the smooth increase in frequency as the mol % CDCl₃/CCl₄ is increased (4). Figure 1.4 shows a plot of the symmetric ring deformation frequency for styrene oxide vs mole % CHCl₃/CCl₄. This plot shows that symmetric ring deformation decreases in frequency as the mole % CHCl₃/CCl₄ is increased (4). Figure 1.5 is a plot of antisymmetric ring deformation frequency for styrene oxide vs CDCl₃/CCl₄, and it shows that this mode increases in frequency as the mole % CDCl₃/CCl₄ is increased (4). The reaction field becomes larger as the mole % CDCl₃/CCl₄ is increased, and, consequently, there is a larger dipolar interaction between styrene oxide as the mole % CDCl₃/CCl₄ is increased. The linear frequency shift is attributed to dipolar effects between styrene oxide and the solvent system. Breaks in the plots are attributed to hydrogen bonding to the oxygen atom of the epoxy group and to the π system of the phenyl group of styrene oxide (4).

The compound 2,4-dichlorostyrene oxide exhibits bands at 1249, 989, and 880 cm⁻¹, which are assigned to epoxy ring breathing, asymmetric deformation, and symmetric deformation, respectively. These assignments are comparable to those exhibited by styrene oxide (see Table 1.2a).

The epihalohydrins, or 3-halo-1,2-epoxypropanes, have the empirical structure:

Electron-diffraction studies of epichlorohydrin (5) and epibromohydrin (6) in the vapor phase have shown that both exist in a molecular configuration where the C(3)-X bond eclipses the C(2)-H bond and where the halogen atom is almost trans relative to the midpoint of the C(1)-O bond about the C(2)-C(3) bond.

Table 1.2 lists the characteristic epoxy ring modes for the F, Cl, Br, and I analogs for the epihalohydrins. The RT rotational conformer corresponds to the rotational conformer, which is nearly trans to the midpoint of the C–O bond (7, 8). In solution or neat phases, the IR bands, which decrease in intensity with a decrease in temperature, correspond to the trans rotational conformer (RT). The bands, which increase in intensity with decrease in temperature, are assigned to the rotational conformer (R1). Ring breathing, antisymmetric deformation, and symmetric deformation fall within the same ranges exhibited by the 1,2-epoxyalkanes (see Table 1.2). Complete vibrational assignments for the epihalohydrins have been made using IR and Raman data (see Table 1.2a) (7).

Trans-2,3-epoxybutane (or trans-1,2-dimethyl ethylene oxide) exhibits epoxy ring breathing at $1252\,\mathrm{cm^{-1}}$ in CS_2 solution while the corresponding mode for the cis isomer occurs at $1273\,\mathrm{cm^{-1}}$. Both the cis and the trans isomer exhibit epoxy antisymmetric deformation at $885\,\mathrm{cm^{-1}}$ in CS_2 solution. In the case of epoxy symmetric deformation, the trans isomer occurs at $810\,\mathrm{cm^{-1}}$ and it occurs at $778\,\mathrm{cm^{-1}}$ for the cis isomer. Thus, the cis and the trans isomers of 2,3-epoxybutane exhibit symmetric epoxy deformation at lower frequency than those exhibited by the 1,2-epoxyalkanes ($883-985\,\mathrm{cm^{-1}}$) (see Table 1.2). The IR vapor-phase spectrum for trans-2,3-epoxybutane is shown in Figure 1.6. The ring breathing, antisymmetric deformation, and symmetric deformation are assigned near $1258,\,885,\,$ and $817\,\mathrm{cm^{-1}}$ in the vapor phase.

Tetrachloroethylene oxide has C_{2v} symmetry and the A_1 ring breathing mode is assigned at $1332 \, \text{cm}^{-1}$, the A_1 symmetric ring deformation at $890 \, \text{cm}^{-1}$, and the B_1 antisymmetric ring deformation at $978 \, \text{cm}^{-1}$. All three of these epoxy in-plane ring modes occur at higher frequency

than do the corresponding modes for ethylene oxide (1270, 877, and 897 cm⁻¹, respectively). The rise in frequency for each mode most likely results from the positive inductive effect of the four Cl atoms, which has the effect of strengthening the bonds of the group.

Vibrational assignments for the CH_2X groups for 3-halo-1,2-epoxypropanes are compared to those for 3-halopropynes, 3-halopropenes, and PCH_2X -containing compounds and they are presented in Table 1.3. In several cases, there is spectral evidence for rotational conformers.

Table 1.2b also lists the symmetric CH_3 bending, in-phase $(CH_3)_2$ or $(CH_3)_3$ bending, and out- of-phase $(CH_3)_2$ or $(CH_3)_3$ bending modes for some 1,2-epoxy alkanes. These fundamentals are useful in distinguishing between the 1,2-epoxyalkanes.


Table 1.4 lists both the frequency and absorbance data for oxirane ring breathing, oxirane symmetric in-plane ring deformation, and oxirane asymmetric in-plane ring deformation for 1,2-epoxyalkanes (3). The oxirane CH_2 modes are also listed (3). The oxirane asym. CH_2 stretching mode occurs in the range 3038–3065 cm⁻¹, the oxirane sym. CH_2 stretching mode in the range 2990–3001 cm⁻¹, the oxirane CH_2 bending mode in the range 1479–1501 cm⁻¹, and the oxirane CH_2 wagging mode in the range 1125-1130 cm⁻¹.

Figure 1.6 is a plot of the absorbance data (A) for the oxirane ring breathing mode divided by (A) for the oxirane antisymmetric CH_2 stretching mode vs the number of carbon atoms for the 1,2-epoxy alkanes (the exception is the data point for the ethylene oxide).

Figure 1.7 is a plot of (A) for the ring breathing mode divided by (A) for the oxirane antisymmetric CH_2 stretching mode vs the number of carbon atoms in 1,2-epoxyalkanes. Figure 1.8 is a plot of (A) for oxirane antisymmetric CH_2 stretching divided by (A) for antisymmetric CH_2 stretching of the alkyl group vs the number of carbon atoms in the 1,2-epoxyalkanes (3). The plots for both figures show a relatively smooth correlation and that the absorbance ratios decrease as the length of the alkyl group increases.

GLYCIDYL ETHERS AND GLYCIDYLACRYLATE

The glycidyl group is also named 2,3-epoxypropyl, and the sym. epoxy ring deformation, asym. epoxy ring deformation, and the epoxy ring breathing vibration for four compounds occur in the ranges $840-853\,\mathrm{cm^{-1}}$, $912-920\,\mathrm{cm^{-1}}$, and near $1241-1251\,\mathrm{cm^{-1}}$, respectively, for bis-(2,3-epoxypropyl) ether, 2,3-epoxy propyl phenyl ether, di-glycidyl ether of bis-phenol-A, and 2,3-epoxypropyl acrylate (see Table 1.2a). Strong absorption from a band involving phenyl-oxygen stretching near $1240\,\mathrm{cm^{-1}}$ appears to mask the epoxy ring breathing vibrations. Further, the strong absorption from C-C-O stretching in the case of the acrylate also masks the epoxy ring breathing vibration. Monomers of this type are important in the manufacture of epoxy-based paints.

CYCLIC ETHERS

Figure 1.9 is a vapor-phase IR spectrum of tetrahydrofuran. The IR bands near 1071 and $817 \, \text{cm}^{-1}$ are assigned to antisymmetric and symmetric C–O–C stretching, respectively. In the IR the antisymmetric C–O–C mode is more intense than the symmetric C–O–C mode while the opposite is observed in the Raman spectrum.

Table 1.5 lists correlations for the ring stretching vibrations for cylic ethers. Study of this table shows that there is a trend for the antisymmetric C-O-C stretching vibration to increase in frequency while the symmetric C-O-C stretching vibration decreases in frequency as the number of atoms in the ring increase from 3 to 6.

OPEN CHAIN ALIPHATIC AND ALIPHATIC AROMATIC ETHERS

Dimethyl ether has the basic structure $(CH_3-)_2O$, and it is the first member of the open chain aliphatic ethers. The antisymmetric $(C-)_2O$ and symmetric $(C-)_2O$ vibrations are assigned at 1102 and 929 cm⁻¹, respectively (14). In the vapor phase, asymmetric $(C-)_2O$ occurs in the range 1111–1140 cm⁻¹ in the series $(C_2H_5-)_2O$ through $(C_{10}H_{21}-)_2O$, and it tends to decrease in frequency as n increases in the $(C_nH_{2n+1+-})_2O$ series (15). Table 1.6 lists IR data for several ethers. The situation becomes more complex when the ether alpha carbon atoms become branched. There is considerable mixing of $(C-)_nC$ stretching and C-O stretching, and the correlations are not as straightforward as those for $(n-C_nH_{2n+1})_2O$. In the case of branched ethers such as methyl tert-butyl, ether bands at 1187 and 1070 cm⁻¹ involve stretching of the $(CH_3)_3$ C-O and CH_3-O groups.

Both methyl phenyl ether, commonly named anisole (1248 and 1041 cm⁻¹), and ethyl phenyl ether, commonly named phenetole (1245 and 1049 cm⁻¹), exhibit two bands in the IR assigned to the phenyl-O–R group. These may be assigned as antisymmetric and symmetric phenyl-O–R stretching, respectively. However, the 1245–1248 cm⁻¹ band involves a complex mode involving phenyl-oxygen stretching. The 1041–1049 cm⁻¹ band could be viewed as C–O stretching.

Poly (ethyleneglycol), poly (propyleneglycol), and poly (epichlorohydrin) exhibit a strong IR band near 1100, 1105, and 1105 cm $^{-1}$, respectively. These bands are assigned to antisymmetric $(C-)_2O$ stretching in these polymer chains.

In a study of the correspondingly ring-substituted anisoles and phenetoles in the vapor phase, several correlations were developed (16). The phenyl-oxygen-stretching mode for anisole occurs in the range 1243–1280 cm⁻¹ and for phenetole in the range 1240–1260 cm⁻¹. Moreover, ring-substituted anisoles occur at higher frequency than those for correspondingly ring-substituted phenetoles. The C–O stretching frequency for the anisoles occurs in the range 1041–1059 cm⁻¹ and for phenetoles in the range 1040–1051 cm⁻¹. The C–O stretching frequencies for the phenetoles are not consistently higher in frequency than those for the corresponding ring-substituted anisoles (16).

Table 1.7 lists IR data for 3-X- and 4-X-anisoles in the neat and CS₂ solution phases. The CH₃-O stretching vibration in the neat phase for 3-X- and 4-X-anisoles occurs in the range 1021–1052 cm⁻¹. In the vapor phase, it occurs at higher frequency [e.g., 4-NO₂, 1022 (neat) vs

1041 (vapor)]. Strong IR bands in the region 1198–1270 cm⁻¹ are assigned to the complex phenyl-oxygen stretching vibration.

Table 1.8 lists Raman data for vinyl phenyl ether and alkyl vinyl ethers (17). Tentative assignments are presented for these data.

In the case of phenyl vinyl ether, the Raman bands at 1026, 1002 and 615 cm⁻¹ whose relative intensities are 4, 9, and 1 are characteristic of mono-substituted benzenes. These bands are very insensitive to substituent groups (18). Infrared spectra and assignments for vinyl ethers are given in Reference 19.

VINYL ETHERS

Infrared bands in the regions $933-972\,\mathrm{cm^{-1}}$ and $800-826\,\mathrm{cm^{-1}}$ are assigned to vinyl twist and vinyl CH₂ wag, respectively. These vinyl groups exist in cis and gauche forms where C=C stretching vibrations occur in the region $1600-1665\,\mathrm{cm^{-1}}$. The higher frequency band is assigned to the gauche isomer while the lower frequency band is assigned to the cis isomer. Another band present is due to the first overtone of vinyl CH₂ wag being in Fermi resonance with C=C stretching. An IR strong band in the region $1165-1210\,\mathrm{cm^{-1}}$ results from C=C-O stretching.

In the case of divinyl ether, gauche and cis C=C stretching are assigned at 1650 and $1626 \,\mathrm{cm}^{-1}$, respectively (19).

Aryl vinyl ethers exhibit gauche and cis C=C stretching in the regions $1639-1645 \, \mathrm{cm}^{-1}$ and $1623-1631 \, \mathrm{cm}^{-1}$, respectively (19). In addition to the medium strong IR band in the region $1137-1156 \, \mathrm{cm}^{-1}$ assigned as C=C-O stretching, the vinyl aryl ethers exhibit a strong IR band at higher frequency ($1190-1250 \, \mathrm{cm}^{-1}$) assigned to a complex mode involving stretching of the phenyl-oxygen bond. This vibration appears to increase in frequency as the phenyl ring becomes increasingly substituted (19).

Table 1.8 for vinyl ethers shows that the Raman band intensity for the cis C=C stretching conformer is usually more intense than for the gauche C=C stretching conformer while in the case of IR the cis C=C stretching band intensity is also usually more intense than it is for band intensity for the gauche C=C stretching vibration. Temperature studies of 2-ethylhexyl vinyl ether has shown that the cis conformer is the more stable form (20).

Table 1.9 lists vapor-phase IR data for the alkyl group of vinyl alkyl ethers (21). These data are helpful in spectra-structure identification of compounds of this type. The Sadtler collection of vapor-phase IR spectra are essential for spectroscopists utilizing the GC/FT-IR techniques (21).

REFERENCES

- 1. Potts, W. J. (1965). Spectrochim. Acta, 21: 511.
- 2. Nyquist, R. A. and Putzig, C. L. (1986). Appl. Spectrosc., 40: 112.
- 3. Nyquist, R. A. (1986). Appl. Spectrosc., 40: 275.
- 4. Nyquist, R. A. and Fiedler, S. (1994). Vib. Spectrosc., 7: 149.
- 5. Igarashi, M. (1955). Bull. Chem. Soc. Japan, 28: 58.

- 6. Igarashi, M. (1961). Bull. Chem. Soc. Japan, 34: 165.
- 7. Nyquist, R. A., Putzig, C. L., and Skelly, N. E. (1986). Appl. Spectrosc., 40: 821.
- 8. Evans, J. C. and Nyquist, R. A. (1963). Spectrochim. Acta, 19: 1153.
- 9. Nyquist, R. A., Reder, T. L., Ward, G. R., and Kallos, G. J. (1971). Spectrochim. Acta, 27A: 541.
- 10. Nyquist, R. A., Reder, T. L., Stec, F. F., and Kallos, G. J. (1971). Spectrochim. Acta, 27A: 897.
- 11. McLachlan, R. D. and Nyquist, R. A. (1968). Spectrochim. Acta, 24A: 103.
- 12. Nyquist, R. A. (1968). Appl. Spectrosc., 22: 452.
- 13. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra, Group Frequency Data. Philadelphia: Sadtler Research Laboratories, A Division of Bio-Rad Laboratories, p. 428.
- 14. Herzberg, G. (1945). Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules. Princeton, NJ: D. Van Nostrand Company, Inc.
- 15. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra, Group Frequency Data. Philadelphia: Sadtler Research Laboratories, A Division of Bio-Rad Laboratories, p. 434.
- 16. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra, Group Frequency Data. Sadtler Research Laboratories, A Division of Bio-Rad Laboratories, p. 440.
- 17. Sadtler Standard Raman Spectral Data.
- 18. Nyquist, R. A. and Kagel, R. O. (1977). Organic Materials. *Infrared and Raman Spectroscopy*, Part B, Practical Spectroscopy Series, vol. 1, E. G. Brame and J. G. Grasselli, eds., Marcel Dekker, Inc., New York, p. 476.
- 19. Nyquist, R. A. (1989). *The Infrared Spectra Building Blocks of Polymers*. Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Laboratories Inc., p. 33 and IR spectra 1–158 through 1–171.
- 20. Owen, N. L. and Sheppard, N. (1964). Trans. Faraday Soc., 60: 634.
- 21. (1977). Sadtler Standard Infrared Vapor Phase Spectra. Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Laboratories Inc.

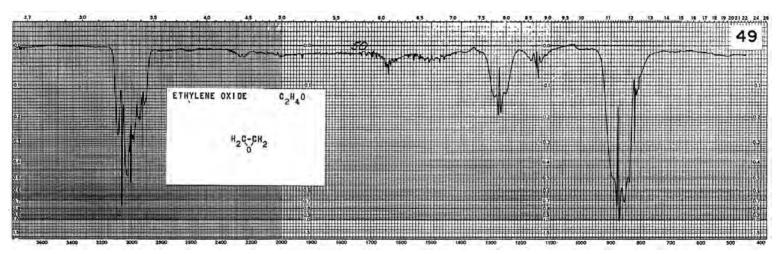


FIGURE 1.1 Vapor-phase IR spectrum of ethylene oxide.

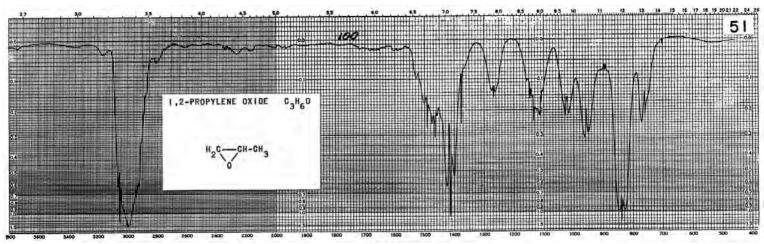


FIGURE 1.2 Vapor-phase IR spectrum of propylene oxide.

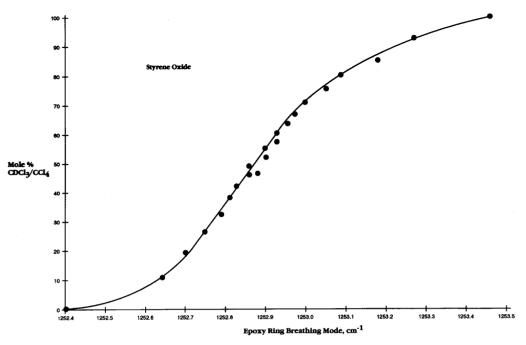
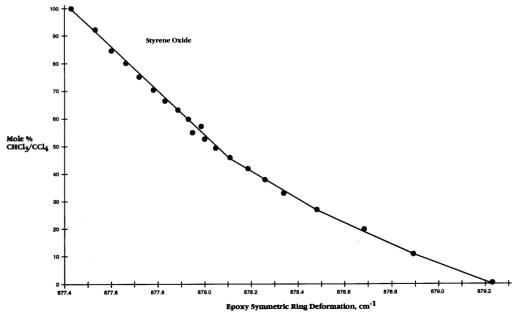



FIGURE 1.3 A plot of the epoxy ring breathing mode frequency for styrene oxide vs the mole % CDCl₃/CCl₄ (4).

 $FIGURE~1.4~A~plot~of~the~symmetric~ring~deformation~frequency~for~styrene~oxide~vs~mole~\%~CDCl_3/CCl_4~(4).$

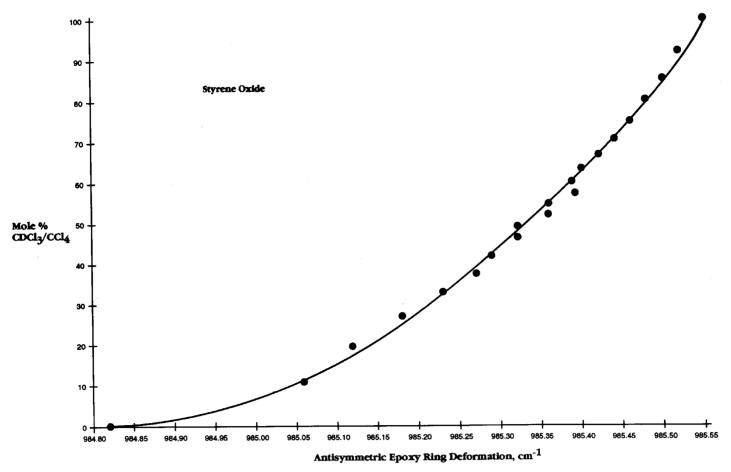


FIGURE 1.5 A plot of the antisymmetric ring deformation frequency for styrene oxide vs mole % CDCl₃/CCl₄ (4).

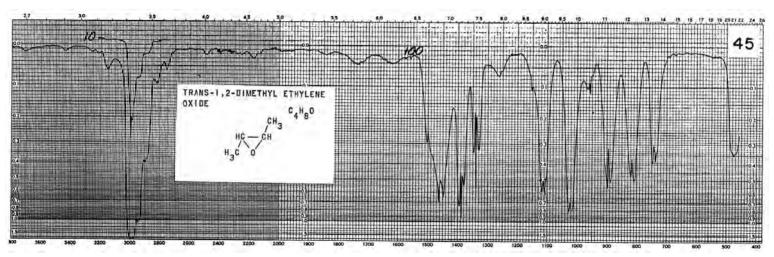


FIGURE 1.6 Vapor-phase IR spectrum of trans-2,3-epoxybutane (or trans-1,2-dimethyl ethylene oxide).

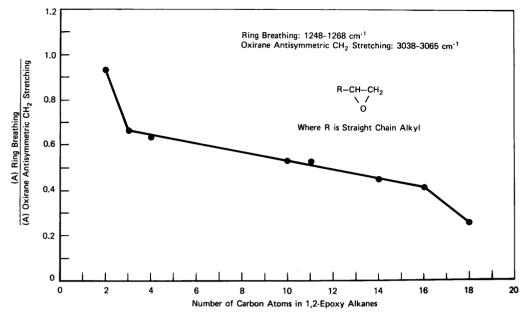


FIGURE 1.7 A plot of the absorbance (A) for the oxirane ring breathing mode divided by (A) for the oxirane antisymmetric CH_2 stretching mode vs the number of carbon atoms for the 1,2-epoxyalkanes (ethylene oxide is the exception).

FIGURE 1.8 A plot of (A) for oxirane antisymmetric CH_2 stretching divided by (A) for antisymmetric CH_2 stretching for the alkyl group vs the number of carbon atoms in the 1,2-epoxyalkanes.

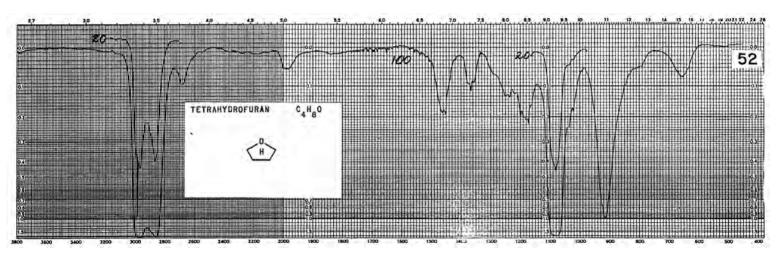


FIGURE 1.9 Vapor-phase IR spectrum of tetrahydrofuran.

TABLE 1.1 Vibrational assignments for ethylene oxide

Species and mode	Ethylene oxide cm ⁻¹
-	
A_1	(1,2)
s.CH ₂ str.	~3006
CH ₂ deformation	1497.5
Ring breathing	1270.5
CH ₂ wagging	~1130
s.Ring deformation	897
B ₂	
a.CH ₂ str.	3065
CH ₂ twisting	1412
CH ₂ rocking	821.5
B_1	
s.CH ₂ str.	3006
CH ₃ deformation	1471.5
CH ₂ wagging	1151
a.Ring deformation	897
A_2	
a.CH ₂ str.	~3065
CH ₂ twisting	~1300
CH ₂ rocking	~860

Epoxides and Ethers

TABLE 1.2 Characteristic epoxy ring modes

References	(1,2) Ethylene oxide	(3) 1,2-Epoxy alkanes	(4) Styrene oxide	(5) 1,2-Epoxy- propane 3-fluoro-	(5) 1,2-Epoxy- propane 3-chloro-	(5) 1,2-Epoxy- propane 3-bromo	(5) 1,2-Epoxy- propane 3-iodo-	Rotational isomer	Range
Epoxy ring modes									
Ring breathing	1270.5	1248–1271	1252.4	1257.4 [—]	1254.8 1266.8	1256.1 1262	1260 1253	R1 RT	1248–1271
Antisymmetric deformation	897 [5]	883–941	984.8	906.4	905.8	888.2	911	R1	883–985
Symmetric deformation RT = trans isomer R1 = gauche isomer?	877	830–877	879.2	860 838.2	854 845	845.8 833.2	841 862	R1 RT	830–877
Asym. CH ₂ str. Sym. CH ₂ str. CH ₂ bending CH ₂ wagging	(~3065) (~3006) 1497.5 (~1130)	3038–3051 2989–3001 1479–1501 1125–1130		3067.7 3011 1530	3063.4 3003.9 1520	3059.4 3000 1512	3051 2991 1500		3038–3068 2989–3011 1497–1530 1125–1130
	trans-2,3- epoxy- butane [vapor]; [CS ₂]	3,4-epoxy- 1-butene [vapor]	1,2-epoxy- propane [vapor]	1,2-epoxy- 3-isopropoxy- propane [neat]	cis-2,3-epoxy butane [CS ₂]	tetrachloro- ethylene oxide [CS ₂]	2-methyl-2,3- epoxy- butane [neat]	ethyl 2,3- epoxy- butyrate [CS]	
Ring breathing Antisymmetric	[1258]; [1252] [885]; [885]	1251 915?	1269 959	1250 928	1273 885	1332 978	1250 952	1246? 929	1246–1332 885–978
Symmetric deformation	[817]; [810]	825	839	832	778	890	860	864	818–890

[?] tentative assignment.

TABLE 1.2a Vibrational assignments for 1-halo-1,2-epoxypropanes (or epihalohydrins)

3-Halo,1,2-epoxy-propane					Assignment (7) epoxy
or (epihalohydrin)	F	Cl	Br	I	group
	3067.7	3063.4	3059.7	3151	a.CH ₂ str.
	3011	3003.9	3000	2991	s.CH ₂ str.
	1484.3	1480.6	1477.4	1475	CH ₂ bend* ¹
	1530	1520	1512	1500	2(CH ₂ rock)* ¹
	1409.8	1398.2	1395	1392	CH ₂ wag
	1164.4	1142	1135.9	1131	CH ₂ twist [R1]
	1137.5	1136.6			CH ₂ twist [RT]* ²
	749.1	781.7	779.9	750	CH ₂ rock [RT]
	766.4	760.7	756.5	770	CH ₂ rock [R1]
	2959.8	2962.8	2967.3	2967	CH str. (see text)
	1252	1208.7	1195.7	1186	CH bend [R1]
	1232	1192.6	1181.7	1100	CH bend [RT]
	1082.4	1081	1081.4	1075	CH wag [R1]
	1113.6	1001	1001.7	10.5	CH wag [RT]
	1257.4	1254.8	1256.1	1260	Ring breath [R1]
	1257.1	1266.8	1262	1253	Ring breath [RT]
	[906.4]	905.8	888.2	[911]	a.deformation [R
	860	854	845.8	841	s.deformation [R
	838	845	833.2	862	s.deformation [R
	030	015	033.2	002	C-CH ₂ -X group
	3007.1	2999	2991	2991	a.CH ₂ str.
	2959.8	2962.8	2967.3	2967	s.CH ₂ str.
	1456.2	1432.5	1428.8	1420	CH ₂ bend
	1363.3	1276.8	1221.2	1212	CH ₂ wag [R1]
	1346.1	1266.8	1221.2	1212	CH ₂ wag [R1]
	1148	1091.8	1061.4	1018	CH ₂ wag [R1] CH ₂ twist [R1]
	1110	10,1.0	1036.3	1010	CH ₂ twist [RT]
	949.5	961.6	948.6	937	C-C str. [RT]
	[906.4]	926.9	915.7	[911]	C–C str. [R1]
	[500.1]	877	861.2	826	CH ₂ rock [RT]
	~983	836	001.2	816	CH ₂ rock [R1]
	1018.5	695.8	654.9	604	C-X str. [RT]
	992	727.5	643.5	001	C-X str. [R1]
	601.1	517.9	461.7	417	Skeletal bend [R]
	496.5	442.3	426.1	395	Skeletal bend [R]
	365	373	361	359	Skeletal bend [R]
	397	363	340	318	Skeletal bend [R]
	260	222	180	177	Skeletal bend
	~ 150	115	113	105	Torsion
	- 100	11)	113	100	10151011

^{*1} Solid phase.
*2 [RT] is the trans rotational conformer.

Epoxides and Ethers

TABLE 1.2b A comparison of IR data for epoxy ring modes and CH₃, (CH₃)₂ and (CH₃)₃ bending modes

Epoxy Ring modes	Bis-(2,3-epoxy-) propyl) ether [CS ₂] cm ⁻¹	2,3-Epoxy- propyl phenyl ether [CS ₂] cm ⁻¹	Di-glycidyl ether of bis-phenol-A [fluorolube] cm ⁻¹	2,3-epoxy- propyl acrylate [CS ₂] cm ⁻¹	Ethyl 2,3-epoxy- butyrate [CS ₂] cm ⁻¹	Styrene oxide [CS ₂] cm ⁻¹	2,4-Dichloro- styrene oxide [neat] cm ⁻¹	2,3-Epoxy-2- methyl-4- decyne [neat] cm ⁻¹	Range cm ⁻¹
Ring breathing	1251	1245 or masked	1241 or masked by C ₆ H ₄ -O str.	masked	1246?	1252	1249	1249	1246?–1252
Antisymmetric deformation	912	918	920	913	929	984	989	972	912–989
Symmetric deformation	846	843	840	853	864	879	880	881	840–881
	1,2-epoxy- propane [CS ₂]	1,2-epoxy-4- methyl-pentane [CS ₂]	1,2-epoxy- butane [CS ₂]	1,2-epoxy-3- methyl-butane [CS ₂]	1,2-epoxy-3,3- dimethyl-butane [CS ₂]	Ethylene oxide [CS ₂]	α -Methyl styreneoxide [CS ₂]		
Ring breathing Antisymmetric	1265 893	1260 919	1259 908	1256 932	1248 916	1268 897 [vapor]	1267 997		1248–1268 893–997
Symmetric deformation	829	843	830	878	848	877	861		829–878
Symmetric CH ₃ bending	1370 [CCl ₄]		1379 [CCl ₄]		1381 [CCl ₄]				1370–1381
In-phase (CH ₃) ₂ or (CH ₃) ₃ bending		1388 [CCl ₄]		1382 [CCl ₄]	1366 [CCl ₄]				1366–1382
Out-of-phase (CH ₃) ₂ or (CH ₃) ₃ bending		1371 [CCl ₄]		1366 [CCl ₄]					1366–1371

[?] tentative assignment.

TABLE 1.3 Vibrational assignments for the CH₂X groups for 3-halo-1,2-epoxypropanes, 3-halopropynes, 3-halopropenes, and PCH₂X-containing compounds

[References] Assignment	(7) 1,2-Epoxy- propane 3-fluoro-	(8) 3-Fluoro- propyne	(8) 1,2-Epoxy propane 3-chloro-	3-Chl	oro- 3-Chloro	1 1	(8) 3-Bromo- propyne	(10) 3-Bromo- propyne-1-d	(7) 1,2-Epoxy- propane 3-iodo-	(8) 3-Iode- propyne	Range
Asym. CH ₂ str.	3007.1	2955	2999	296	8 2969	2991	2976	2978	2991	2958	2958–3007
Sym. CH ₂ str.	2959.8	2972	2962.8	300	2992	2967.3	3006	3008	2967	3008	2959-3008
CH ₂ bending	1456.2	1465	1432.5	144	1 1442	1428.8	1431	1436	1420	1423	1423-1465
CH ₂ wagging [RT]* ¹	1363.3	1381	1276.8	127	1 1265	1221.2	1218	1215	1212	1160	1160-1381
CH ₂ wagging [R1]* ²	1346.1		1266.8			[—]			1172		1172-1267
CH ₂ twisting [R1]	1148	1242	1091.8	117	9 1176	1061.4	1152	1151	1018	1116	1061-1092
CH ₂ twisting [RT]	[—]		[—]			1036.3			[—]		1036-[]
C-C str. [RT]	949.5	940	961.6	96	0 943	948.6	961	945	937	959	937-962
C-C str. [R1]	906.4		926.9			915.7			911		906-927
CH ₂ rocking [RT]	[—]	1018	877	90	908	861.2	866	866	826	810	810-1018
CH ₂ rocking [R1]	983		836			[—]			816		816-983
C-X str. [RT]	1018.5	1039	695.8	72	5 723	654.9	621	634	604	570	570-1019
C-X str. [R1]	992		727.5			643.5			[—]		643–992
	(11)	(11)	(11)	(11)	(12)	(12)	(12)	(1	2)		
References	3-Fluoro-	3-Chloro-	3-Bromo-	3-Iodo-		$ClCH_2-P=OCl_2$	$ClCH_2-P=$	SCl ₂ BrCH ₂ -	$P=OCl_2$		
Assignments	propene	propene	propene	propene	Cs* ³ ; C1* ⁴	Cs; C1	Cs; C1	Cs;	C1	Range	
Asym. CH ₂ str.	2989.6	2990.2	2986.2	2984.4	3000; [—]	2999: 2989	3000; 299	93 3011;	3000 29	84–2990	2989–3011
Sym. CH ₂ str. [g]* ⁵	2939	2958.3	2967.7	2967.8	2937; [—]	2933; [—]	2927; [—	-] 2946	; [—] 29	39-2968	2927-2946
Sym. CH ₂ str. [c]* ⁶	2956.9	[—]	[—]	[—]					29	57-[—]	
CH ₂ bending [g]	1459.2	1445.5	1442.4	1438.8	1391; [—]	1389; [—]	1381; [—	-] 1373;	1384 14	38-1446	1373-139
CH ₂ bending [c]	1467.7	[—]	[—]	[—]					14	68-[]	
CH ₂ wagging [g]	1383	1289.5	1245.2	1201	1188; [—]	1212; 1207	1207; [—	-] 1161;	1169 12	201-1333	1161-1212
CH ₂ wagging [c]	1239.8	1201	1195	1186.9					13	86-1240	
CH ₂ twisting [g]	1239.8	1178.2	1154	1088	1098; [—]	1121; 1116	1118; [—	-] 1072;	1080 10	088-1240	1072-112
CH ₂ twisting [c]	989.3	985.2	983.9	980.9					Ç	80-989	
C-C str. [g]	935	931.1	925.7	919.9					Ģ	20-935	
C-C str. [c] or P-C str	901	[—]	[—]	[—]	812; [—]	818; 811	801; 83	33 788	3; 778	001-[]	778-833
CH ₂ rocking [g]	1027	895.5	866.2	825.1	775; [—]	769; [—]	769; [—	-] 757	7; 772	78–833	757–775
C-X str. [g]	1005.8	739.4	690.6	669.1	682; [—]	709; [—]	736; [—	-] 636	6; 623	669–1006	623-709
		[—]		[—]					; [—]		

^{*&}lt;sup>1</sup> [RT] = trans. *² [R1] = gauche. *³ Cs = plane of sym.

^{*} 4 C1 = gauche. * 5 [g] = gauche. * 6 [c] = cis.

TABLE 1.4 Vapor-phase IR data for the oxirane ring vibrations of 1,2-epoxyalkenes*

1,2-Epoxy- alkane R	Oxirane ring breathing cm ⁻¹	A	Oxirane sym. in-plane def. cm ⁻¹	A	Oxirane asym. in- plane def. cm ⁻¹	A
	CIII	71	CIII	71	CIII	11
Н	1268	0.362	877	1.677	892	
CH_3	1265	0.401	829	1.755	893	0.156
C_2H_5	1259	0.279	830	1.25	908	1.23
C_3H_7	1259	0.229	843, 831	0.533, 0.644	883	0.48
iso-C ₄ H ₉	1260	0.26	845, 843	0.622, 0.713	919	0.578
iso-C ₃ H ₇	1256	0.285	878	1.357	932	0.779
t-C ₄ H ₉	1248	0.348	848	1.165	916	1.094
C_8H_{17}	1259	0.079	831	0.21	913	0.13
C_9H_{19}	1259	0.06	834	0.153	915	0.099
$C_{12}H_{25}$	1259	0.05	831	0.154	912	0.11
$C_{14}H_{29}$	1259	0.041	830	0.13	911	0.081
$C_{16}H_{33}$	1255	0.023	830	0.065	909	0.047
Range	1255–1268		830–877		883–932	
	Oxirane	Oxir	rane	Oxirane	Oxiran	2

	Oxirane		Oxirane		Oxirane		Oxirane	
	a.CH ₂ str.		s.CH ₂ str.		CH ₂ bending		CH ₂ wagging	
R	cm^{-1}	A	cm^{-1}	A	cm ⁻¹	A	cm^{-1}	A
Н	3065	0.391	3000	0.429	1491	0.025	1130	
CH_2	3049	0.615	2995	1.305	1501	0.258	1129	
C_2H_5	3044	0.435	masked		1481	0.415	1129	
C_3H_7	3045	0.41	2989	0.736	1481	0.305	1128	
iso-C ₄ H ₉	3049	0.367	2999	0.407	1482	0.232	1126	
iso-C ₃ H ₇	3049	0.359	2996	0.57	1484	0.387	1128	
t-C ₄ H ₉	3051	0.265	3001	0.398	1482	0.886	1129	
C_8H_{17}	3040	0.15	2990	sh	1480	0.1	1129	
C_9H_{19}	3041	0.115	2990	sh	1480	0.084	1129	
$C_{12}H_{25}$	3040	0.111	2990	sh	1480	0.076	1129	
$C_{14}H_{29}$	3040	0.099	2990	sh	1479	0.06	1125	
$C_{16}H_{33}$	3038	0.091	2990	sh	1479	0.06	1125	
Range	3038–3065		2990-3001		1479–1501		1125–1130	

^{*} Reference (12).

TABLE 1.5 Correlations for the ring stretching vibrations for cyclic ethers

Compound or type compound	Ring size atoms in ring	asym. C-O-C stretching [vapor]; (13) cm ⁻¹	asym. $C-O-C$ stretching [neat or CS_2] cm^{-1}	sym. C-O-C stretching [vapor]; (13) cm ⁻¹	sym. $C-O-C$ stretching [neat or CS_2] cm^{-1}
Ethylene oxides and derivatives	3	883–912	883–912	1246–1332	1246–1322
Tetramethylene oxide	4	[—]	986 [CS ₂] IR; stg 980 [neat] R; wk	[—]	1029 [CS ₂] IR; wk 1027 [neat] R; stg
Tetrahydrofuran	5	1170	1060 [neat]	919	903 [neat]
Tetrahydrofuran 3-methyl	5	1194	[—]	919	[—]
Tetrahydropyran	6	1095	[—]	820	[—]
Range for four compounds	6	1094–1132	[—]	820–860	[—]

Epoxides and Ethers

TABLE 1.6 Infrared data for ethers

Ether	asym. C-O-C str. neat cm ⁻¹	asym. C-O-C str. vapor cm ⁻¹	CH ₂ rocking neat cm ⁻¹	in-phase (CH ₃) ₂ bending cm ⁻¹	out-of-phase (CH ₃) ₂ bending cm ⁻¹
Methyl	[—]	1102			
Ethyl	1121	~1140			
Propyl	1115	1133			
Butyl	1116	1130	735		
Hexyl	1111	1126	724		
Octyl	1118	1111	725		
Isopropyl	1125	1121		1379	1363
Bis-(2,3-epoxy-	1100 [CS ₂]				
propyl)					
Benzyl	1095	1095			
Bis-(alpha-methyl- benzyl)	1085	[—]			
Phenyl	1235	[—]			
4-Methoxyphenyl	1212; [1030]	. ,			
Methyl butyl	1126	1129	734		
Ethyl butyl	1127	1129	742		
Ethyl isobutyl	1120	[—]			
Ethyl octadecyl	1121	<u>i—</u> i	720		
Propyl isopropyl	1125	[—]	751	1378	1361
Methyl tert-butyl	1200; 1085	1209; 1091		1382	1360
Ethyl tert-butyl	1187; 1070	[—]		1388	1356
Isopropyl tert- butyl	1195; 1105			1378; 1368	1355
Methyl benzyl	1100	[—]			
Methyl phenyl	1248; 1041	[—]			
Ethyl phenyl	1245; 1049	[—]			
Propyl phenyl	1229; 1064	[—]			
Poly(ethyleneglycol)	~1100			CH_2 bending ~ 1454	CH_2 wagging ~ 1345
Poly(propyleneglycol)	~1105			sym. CH ₃ bending 1371	asym. CH ₃ stretching 2960
Poly(epichlorohydrin)	~1105			C-Cl stretching 743; 704	CH_2 wagging ~ 1335

TABLE 1.7 Infrared data for the a and s Aryl-O-R stretching vibrations for 3-X- and 4-X-anisoles in CS_2 solution, vapor, and in the neat phase

Anisole	a. C_6H_4 -O-C H_3 str. or C_6H_4 -O str. [neat] cm ⁻¹	$s.C_6H_4-O-CH_3$ str. or CH_3-O str. [neat] cm^{-1}	$s.C_6H_4-O-CH_3$ str. or CH_3-O str. [vapor]; (11b) cm^{-1}	a. C_6H_4 -O- CH_3 str. or C_6H_4 -O str. [CS_2 soln.] cm ⁻¹
4-X				
NO_2	1262	1022	1041	1264
CH ₃ SO ₂	1260	1021	1032	
CH ₃ CO	1249	1021		1261
$CO_2C_2H_5$	1252	1028		1258
CN	1240	1024		1259
H	1248	1042		1246
$CH=CH_2$	1248	1040	1043	
C_6H_5	1249	1032		
CH ₂ OH	1245	1030		1248
iso-C ₃ H ₇	1249	1037		
2-ClC ₂ H ₄	1240	1031		
Br	1240	1029	1041	1246
$2-BrC_2H_4$	1245	1031	1044	
Cl	1242	1032		1247
CH ₃	1242	1028		1244
C_2H_5	1248	1037		1248
$n-C_3H_7$	1244	1038	1041	
t-C ₄ H ₉	1248	1037	1050	1248
CH ₃ O	1246	1029		1243
$C_6H_5CH_2O$	1230	1033		
NH_2	1238	1034		1241
C_6H_5O	1230	1039		
3-X				
CH ₃ O	1211	1052		
OH	1200	1043	1046	
NH_2	1198	1029		
Cl	1237	1029		
CH_3	1259	1042	1054	
CH ₃ CO	1270	1040		
3-BrC ₃ H ₆	1250	1034		

TABLE 1.8 Raman data and assignments for vinyl ethers

Vinyl phenyl ether cm ⁻¹ (A)	Assignment	Vinyl isobutyl ether cm ⁻¹ (A)	Vinyl isooctyl ether cm ⁻¹ (A)	Vinyl decyl ether cm ⁻¹ (A)	Vinyl docdecyl ether cm ⁻¹ (A)	Vinyl octadecyl ether cm ⁻¹ (A)	Vinyl-2-(2-ethoxy ethyl)ethyl ether cm ⁻¹ (A)	Divinyl ether of butanediol cm ⁻¹ (A)	Divinyl ether of diethyleneglycol cm ⁻¹ (A)	Assignment [possible]
		3122 (1)	3121 (0)	3121 (0)	3121 (0)		3120 (1)	3120 (1)	3120 (2)	a.CH ₂ = str.
3068 (4)	Ring CH str.									-
3035 (3)	CH= str.	3046 (3)	3046 (3)	3046 (2)	3046 (1)	3046 (1)	3045 (2)	3044 (4)	3045 (4)	CH= str.
		3023 (2)	3022 (1)	3022 (1)	3022 (1)			3022 (2)		s.CH ₂ str.
		2962 (5)	2961 (5)				2975 (4)			a.CH ₃ str.
		2943 (4)	2933 (7)				2934 (9)	2924 (4)	2930 (3)	a.CH ₂ str.
		2911 (6)	2913 (7)							a.CH ₂ str.
1644 (3)	C=C str.			2902 (8)	2895 (8)	2890 (7)				
1593 (2)	Ring 4	2876 (9)	2874 (9)	2874 (9)	2874 (8)		2874 (8)	2876 (4)	2880 (3)	s.CH ₃ str.
1311 (2)				2854 (9)	2853 (9)	2852 (9)				s.CH ₂ str.
1232 (1)		2724 (1)		2730 (0)	2728 (0)	2725 (0)				s.CH ₂ str.
1171 (1)	Ring 6	1638 (2)	1638 (1)	1637 (1)	1638 (0)	1638 (0)	1639 (1)	1639 (3)	1639 (3)	C=C gauche
1157 (1)		1612 (3)	1611 (1)	1611 (2)	1610(1)	1609 (0)	1620 (2)	1616 (4)	1620 (4)	C=C cis
		1464 (2)						1474 (1)		CH ₂ bend
			1450 (3)				1459 (4)		1456 (1)	CH ₂ bend
1026 (4)	Ring 8			1439 (4)	1439 (3)	1439 (3)		1436 (1)		CH ₂ bend
		1415 (0)						1414 (0)	1415 (0)	CH ₂ bend
		1342 (2)								CH ₂ wag
1002 (9)	Ring 9	1322 (7)	1320 (4)	1321 (5)	1320 (4)	1320 (2)	1323 (4)	1322 (9)	1323 (9)	CH= rock

		1254 (0) 1254 (0) 1181 (1) 1135 (1)	1142 (0)			1303 (2)	1281 (2) 1140 (1)	1206 (0)	1207 (0)	i.p. $(CH_2)_n$ twist CH_2 wag $C(C)_2$ str. $a.C-O-C$ str. $C(C)_2$ str. $C-C$ str.
963 (1)		1155 (1)	1112 (0)	1127 (0)	1128 (0)		11 (0 (1)		1128 (1)	C-C str.
802 (1)				1079 (1)	1079 (1)	1080 (1)			- (/	C-C str.
			1041 (0)				1044 (1)		1044 (1)	C-C str.
		1013 (1)								CH ₃ rock?
									979 (1)	s.C-O-C?
		956 (1)	957 (1)							s.C-C-C
		941 (1)								C-C str.
								933 (1)		C-C str.
		913 (1)								C-C str.
					892 (1)	891 (1)				s.C-C-C str.
759 (0)	Ring 10			851 (1)	846 (1)		845 (3)	840 (2)		s.C-C-C str.
		833 (5)								s.C-C-C
		808 (2)	815 (1)	813 (1)	812 (1)	811 (1)			827 (2)	$CH_2 = wag$
			768 (1)							CH ₂ rock?
615 (1)	Ring 20						490 (1)	498 (0)	499	C-O-C bend
		452 (3)								C-C-C bend
391 (3)										C-O-C bend
		289 (3)								C-C-C def.
269 (1)	C-O-C wag	263 (1)	(-)	(-)	/->		(-)	>	(-)	
			226 (1)	233 (1)	231 (1)		238 (1)	224 (1)	230 (2)	C-O-C wag

TABLE 1.9 Vapor-phase IR data and assignments for the alkyl group of vinyl alkyl ethers*

Vinyl alkyl												
ether	a.CH ₃ str.	s.CH ₃ str.	a.CH ₃ bend	CH ₃ rock	CH ₃ rock							
Methyl	2958 (0.310) 2930 (0.240)	2870 (0.100) 2860 (0.095) 2850 (0.110)	1460 (0.152)		1145 (0.260) 1136 (0.190) 1127 (0.210)	1024 (0.186) 1011 (0.175) 997 (0.171)						
	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	a.CH ₃ bend	s.CH ₃ bend	CH ₂ wag and or C–C str.	CH ₂ twist	CH ₃ rock and or C–C str.	CH ₂ rock	C-Cl str.	C-Cl str.
Ethyl	2997 (0.434) 2984 (0.370)	2940 (0.270)	2900 (0.260)		1476 (0.087)	1391 (0.225) 1388 (0.200) 1377 (0.210)	1128 (0.481)	1079 (0.226)	1059 (0.271)			
Butyl Isobutyl	2971 (0.790) 2965	2950 (0.690) 2925	2894 (0.410) 2897		1476 (0.135) 1475	1379 (0.190) 1388	1135 (0.249) 1145	1083 (0.270) 1080	1030 (0.177) 1019			
2-Ethylhexyl	(0.840) 2970 (1.245)	(0.392) 2938 (1.245)	(0.376) 2882 (0.640)		(0.200) 1470 (0.250)	(0.195) 1380 (0.180)	(0.232)	(0.280) 1079 (0.266)	(0.310) 1015 (0.164)	735 (0.035)		
							a.C-O-C str.					
2-Methoxyethyl	2995 (0.322)	2930 (0.902)	2890 (0.555)	2830 (0.327)	1462 (0.185)	1360 (0.185)	1135 (1.150)	1095 (0.560)	1039 (0.250)			
2-Chloroethyl		2980 (0.105)		2895 (0.065)	1466 (0.060)	1377 (0.100)		1086 (0.240)	1013 (0.145) 1010 (0.138) 1001 (0.142)		764 (0.170)	687 (0.082)? and CH=CH ₂ wag?
Bis[2-(vinyloxy)ethyl]ether		2938 (0.291)		2880 (0.256)	1460 (0.090)	1359 (0.140)	1140 (0.970)	1092 (0.350)	1010 (0.165) 980 (0.200)			

^{*} Reference (13).

Nitriles, Isonitriles, and Dialkyl Cyanamides

Nitriles			27
Isonitriles			30
Dialkyl Cyana	mides		31
Organothiocya			31
References			31
Figures		Tables	
Figure 2-1	32 (28)	Table 2-1	39 (27)
Figure 2-2	32 (29)	Table 2-2	40 (29)
Figure 2-3	33 (29)	Table 2-3	40 (29)
Figure 2-4	34 (29)	Table 2-4	41 (29)
Figure 2-5	35 (29)	Table 2-5	42 (30)
Figure 2-6	36 (30)	Table 2-6	42 (30)
Figure 2-7	37 (30)	Table 2-7	43 (31)
Figure 2-8	38 (30)		

^{*} Numbers in parentheses indicate in-text page reference.

NITRILES

Table 2.1 lists IR and/or Raman data for nitriles in different physical phases. In the vapor phase, compounds of form R-CN or $NC-(CH_2)_4-CN$ exhibit the CN stretching vibration in the region 2250–2280 cm⁻¹, while in the neat phase the CN stretching vibration for the corresponding compound occurs at a frequency 5 to $22\,\mathrm{cm}^{-1}$ lower than in the vapor phase.

Conjugated organonitriles such as benzonitrile, 2-X-, 3-X- or 4-X-substituted benzonitriles, and acrylonitrile exhibit CN stretching in the region 2222–2240 in the vapor phase, and at a frequency 8–19 cm⁻¹ lower in the neat phase. Conjugation with the CN group causes the CN stretching mode to vibrate at a lower frequency compared to those for alkylnitriles.

Compounds such as 3-halo-propynonitrile (or 1-cyano-2-haloacetylene) have the following empirical structure: $X-C \equiv C-C \equiv N$. It is apparent that the CN group is joined to the $C \equiv C$ group in a linear manner. Thus, the CN and CC groups are conjugated, and one might expect that CN stretching frequencies would occur at lower frequencies than those for alkanonitriles, benzonitriles, and methyacrylonitrile. However, it is noted that the CN stretching vibration occurs in the region $2263-2298 \, \text{cm}^{-1}$ (CCl₄ solution) and $2270-2293 \, \text{cm}^{-1}$ (vapor phase). These CN stretching frequencies are higher than expected. In CCl₄ solution, the $C \equiv C$ stretching vibration

occurs at 2195, 2122, and $2128\,\mathrm{cm}^{-1}$ for the Cl, Br and I analogs of 3-halopropynonitrile, respectively (6). It is likely that there is coupling between the $C \equiv C - C \equiv N$ stretching modes, which causes the CN stretching mode to occur at higher frequency and the $C \equiv C$ stretching vibration to occur at lower frequency than expected.

Figure 2.1 is a plot of the Raman data (CN stretching) for acetonitrile, proprionitrile, isobutyronitrile, pivalonitrile vs the number of protons on the α -carbon atom and this plot shows that the CN stretching vibration decreases in frequency as the number of α -hydrogen atoms decreases from 3 to 0 (7). Tafts σ^* values for CH₃, CH₃CH₂, (CH₃)₂CH, and (CH₃)₃C are 0, -0.100, -0.190, and -0.300, respectively (7). Thus, the CN stretching vibration decreases in frequency as the inductive electron release to the nitrile group is increased. This effect would tend to lengthen the CN bond, causing it to vibrate at a lower frequency.

In all cases, in Table 2.1 the CN stretching frequency occurs at a higher frequency in the vapor phase than in the neat or solution phase by 5–47 cm $^{-1}$. It is of interest to note that the frequency difference between the CN stretching mode in the vapor- and neat phases decreases by 31, 20, 17, and $14 \, \text{cm}^{-1}$ for acetonitrile, propronitrile, isobutyronitrile, and pivalonitrile, respectively, and this is in decreasing frequency order for both vapor- and neat phases. It is of interest to consider why the frequency difference for CN stretching decreases between the two physical phases progressing in the series from acetonitrile through privalonitrile. It is suggested that this difference is caused by steric factors of the alkyl groups, which alter the amount of dipolar interaction between nitrile groups in the neat phase, while in the vapor phase the dipolar interaction between the nitrile groups is negligible. The steric constant E_s for CH₃, C₂H₅, (CH₃)₂CH, and (CH₃)₃C is 0.00, -0.07, -0.47, and -1.54, respectively (9). Thus, as E_s becomes larger the CN groups in the neat phase are spaced farther apart, which weakens the dipolar interaction between nitrile groups. The inductive effect of the alkyl group most likely contributes to some extent to the amount of dipolar interaction, but this is probably a smaller effect because the inductive effect is independent of physical phase.

$$\begin{array}{c} \text{R-C=N} \\ + - \\ - + \\ \text{N=C-R} \\ \text{dipolar interaction} \end{array}$$

The cyanogen halides exhibit the CN stretching vibration at 2290, 2201, 2187, and 2158 cm⁻¹ in the neat phase for the F, Cl, Br and I analogs, respectively (4). In the vapor phase the CN stretching for the Cl and Br analogs occurs at frequencies higher by 47 and 13 cm⁻¹, respectively (4, 5).

In this cyanogen halide series the CN stretching vibration decreases as the C \equiv N bond length increases. For example, in the solid state the CN bond length in the solid state is 1.26, 1.58, 1.77, and 2.03 Å for FCN, ClCN, BrCN, and ICN, respectively (10). In the vapor phase the CN bond is less restricted, and the C \equiv N bond length is 1.67 and 1.79 Å for ClCN and BrCN, respectively (10). The relative steric factor of F, Cl, Br, CH₃, and I (based on F as zero) is (0.00), -0.31, -0.49, -0.49, and -0.69, respectively. The inductive value σ^* for F, Cl, Br, and I is 1.10, 1.05, 1.00, and 0.85, respectively (11). Thus, the steric factor of the halogen atom increases as the C \equiv N bond length increases, while the inductive effect of the halogen atom decreases progressing in the series FCN through ICN. Combination of the preceding factors is most likely the cause for

the CN stretching frequency for compounds of form R-CN to occur at intermediate frequencies between FCN and ClCN (see Table 2.1). The dipolar interaction between these linear XCN molecules could also be different than for R-CN molecules, which are not linear. For example,

The larger inductive effect of Cl vs Br, and the large steric effect of Br vs Cl could account for the fact that the frequency difference between the vapor and neat phases for the CN stretching frequency is $47\,\mathrm{cm}^{-1}$ for ClCN and $13\,\mathrm{cm}^{-1}$ for BrCN.

Table 2.2 lists IR data for acetonitrile 1% wt./vol. in various solvents (12). The solvents are numbered 1–15 in Table 2.2. The CN stretching vibration and the combination tone C–C stretching plus symmetric CH₃ bending are in Fermi resonance (FR). The CN stretching vibration has been corrected for FR in each of the solvents. Figure 2.2 shows a plot for unperturbed ν C \equiv N for acetonitrile vs AN, where AN is the solvent acceptor number (12). This plot shows that the ν CN frequency does not correlate well with AN, especially the AN value for dimethyl sulfoxide (DMSO).

Figure 2.3 shows plots of $v\equiv CN$ (uncorrected and corrected for FR) vs ($v\equiv CN$ in methyl alcohol) minus ($v\equiv CN$ in solvent). Both plots are linear, and any set of data plotted in this manner yields a linear mathematical relationship (12). The plots clearly show that FR causes vCN to occur at lower frequency due to resonance with the $vC-C+\delta$ sym. CH₃ combination tone (CT). It should be noted that the numbering sequence is different in both plots. The extent of FR interaction between vCN and CT ($vC-C+\delta$ sym. CH₃) is altered in each solvent system because vC-C and δ sym. CH₃, as well as vCN are affected differently.

Table 2.3 compares IR ν CN stretching frequencies for benzonitrile 10 wt./vol.% and 1 wt./vol.% vs those for 1% wt./vol. acetonitrile ν CN frequencies corrected for FR in different solvents (12). This table shows that ν CN for benzonitrile occurs at lower frequency than ν CN for acetonitrile (corrected for FR), from 27 to 34 cm⁻¹ in these solvents. The shift to lower frequency in the case of benzonitrile is due to resonance of the CN group with the π system of the phenyl group.

Table 2.3 also shows that vCN for benzonitrile occurs at lower frequency in solution at 10 wt./vol.% than at 1 wt./vol.%. These data are plotted in Figure 2.4. These plots indicate that at higher wt./vol.% solute there is some dipolar interaction between solute molecules, which lowers the vCN frequency.

Figure 2.5 is a plot of unperturbed $vC \equiv N$, (1% wt./vol. acetonitrile), cm⁻¹ vs $vC \equiv N$ for benzonitrile (1% wt./vol. benzonitrile), cm⁻¹ where each compound has been recorded individually in the same solvent. Point 1 for hexane does not fit the essentially linear relationship.

Table 2.4 lists IR data for the ν CN frequency for 4-cyanobenzaldehyde in 0 to 100 mol% CHCl₃/CCl₄ solutions (1 wt./vol.% solutions). Figure 2.6 shows a plot of ν =CN for 4-cyanobenzaldehyde vs mol% CHCl₃/CCl₄ (13). The ν CN mode increases in frequency as the mole % CHCl₃/CCl₄ increases to ~45%. It then decreases in frequency to ~75%, after which ν CN frequency is relatively constant. The ν CN frequency for 4-cyanobenzaldehyde is higher in frequency in CHCl₃ solution than in CCl₄ solution, and this same observation has been noted for

benzonitrile (12, 13). The behavior of vC=O for 4-cyanobenzonitrile has already been discussed; furthermore, its frequency increases as the reaction field is increased (14). Figure 2.6 then shows that $vC\equiv N$ as well as vC=O are affected, although not in the same manner.

The nitrile group is not always readily detected in the IR. In the case of compounds such as 2,4,4,4-tetrachloro-butyronitrile, the ν CN mode is extremely weak, but in the Raman it is readily detected (15). In the vapor phase, benzonitrile and substituted benzonitriles exhibit ν CN in the region 2220–2250 cm⁻¹, and the IR band intensity varies from very-weak to weak-medium compared to the most intense IR band in these spectra (2a). In general, the ν CN band intensity is significantly higher for atoms or groups with negative Hammett's σ values (OH, OCH₃, NH₂ etc.) than for those with positive values (NO₂, CN, CF₃ etc.). In the vapor phase, the CN group is intramolecularly hydrogen bonded in cases such as 2-hydroxybenzonitrile (ν CN, 2225 cm⁻¹) and 2-aminobenzonitrile (ν CN, ~2222 cm⁻¹) (2a). The highest vapor-phase frequency is noted at 2250 cm⁻¹ for 2,6-difluorobenzonitrile, and this overlaps the region for compounds of form R–CN(ν CN, 2250–2260 cm⁻¹) in the vapor phase (2a). The high frequency exhibited by 2,6-difluorobenzonitrile is attributed to a field effect between F and the CN group.

Table 2.5 lists Raman data for the C \equiv N and C=C groups of organonitriles. In most cases, the $vC\equiv$ N mode is the strongest band in the Raman spectrum. However, in the case of 1,1-azo bis-(cyclohexane carbonitrile) the symmetric CH₂ stretching vibration is the most intense Raman band. In the case of crotononitrile and 2-methyl crotononitrile the Raman band for $vC\equiv$ N is approximately twice as strong as the Raman band for vC=C.

ISONITRILES

Methyl isonitrile, ethyl isonitrile, isopropyl isonitrile, and tert-butyl isonitrile exhibit $vN \equiv C$ at 2183, 2160, 2140, and 2134 cm⁻¹, respectively (16). Figure 2.7 is a plot of the number of protons on the alkyl α -C-N \equiv atom vs $vN \equiv C$ for alkyl isonitriles. This plot shows that $vN \equiv C$ decreases in frequency with increased branching on the alkyl α -C-N \equiv atom (17). Figure 2.8 shows a plot of Taft's σ^* vs $vN \equiv C$ for alkyl isonitriles (17). Therefore, $vN \equiv C$ decreases in frequency as the electron release to the isonitrile group is increased. This effect should increase the N $\equiv C$ bond length. Table 2.6 compares the IR data for organonitriles and organoisonitriles.

In the series of alkanonitriles and alkanoisonitriles presented in Table 2.6, ν CN occurs in the range 2236–2249 cm⁻¹ and ν NC occurs in the range 2134 through 2183 cm⁻¹. The frequency separation between ν CN an ν NC increases as the electron release of the alkyl group to the CN or NC group is increased (66 to 102 cm⁻¹). In the series 3-x and 4-x substituted benzonitriles and isobenzonitriles presented in Table 2.6, ν CN occurs in the range 2226–2240 cm⁻¹ and ν NC occurs in the range 2116–2125 cm⁻¹. The frequency separation between ν CN and ν NC (101–122 cm⁻¹) tends to increase somewhat as σ_p or σ_m increase in value. The frequency separation between ν CN for 4-chlorobenzonitrile (2233 cm⁻¹) and 2-chlorobenzonitrile (2237 cm⁻¹) is 4 cm⁻¹ while for 4-chloroisobenzonitrile (2116 cm⁻¹) and 2-chloroisobenzonitrile (2166 cm⁻¹) is 50 cm⁻¹. The frequency separation between ν CN and ν NC for 2-chlorobenzonitrile and 2-chloroisobenzonitrile is 71 cm⁻¹. The relatively high ν NC frequency exhibited by 2-chloroisobenzonitrile suggests that a field effect of the Cl atom upon the N atom of the NC group causes ν NC to shift to higher frequency.

DIALKYL CYANAMIDES

Dialkyl cyanamides have the following empirical structure $(R-)_2N-C\equiv N$. In the vapor phase dimethyl cyanamide and diallyl cyanamide exhibit $\nu C\equiv N$ near $\sim 2228 \, \mathrm{cm}^{-1}$ and $2221 \, \mathrm{cm}^{-1}$, respectively (2B). In the neat phase dialkyl cyanamide and dibenzyl cyanamide exhibit $\nu C\equiv N$ at 2200 and 2190 cm⁻¹, respectively.

ORGANOTHIOCYANATES

Table 2.7 compares IR data for the vapor and neat phases of organothiocyanates. In the neat phase alkyl thiocyanates (R-S-CN) exhibit vCN in the range 2145–2160 cm $^{-1}$ and in the vapor phase in the range 2161–2175 cm $^{-1}$. In the neat phase arylthiocyanates vCN occurs in the range 2166–2174 cm $^{-1}$, and occur at higher frequency than alkylthiocyanates in the neat phase. The alkyl group releases electrons to the SCN group and the aryl group withdraws electrons from the SCN group. Therefore, vCN for arylthiocyanates occur at higher frequency than vCN for alkylthiocyanates.

REFERENCES

- 1. Nyquist, R. A. (1984). *The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data.* vol. 1. Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Laboratories, Inc., p. 443.
- 2. Nyquist, R. A. (1984). Ibid., p. 450.
- 2a. Nyquist, R. A. (1984). Ibid., p. 443.
- 2b. Nyquist, R. A. (1984). Ibid., p. 446.
- 3. Standard Raman Spectra. Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Laboratories, Inc.
- 4. Colthup, N. B., Daley, L. H., and Wiberley, S. E. (1990). *Introduction to Infrared and Raman Spectroscopy*. 3rd ed., Boston: Academic Press, Inc., p. 183.
- 5. Nyquist, R. A., Putzig, C. L., and Leugers, M. A. (1997). Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts. Vol. 3, Boston: Academic Press, p. 198.
- 6. Klaeboe, P. and Kloster-Jensen, E. (1967). Spectrochim. Acta, 23A: 1981.
- 7. Nyquist, R. A. (1987). Appl. Spectrosc., 41: 904.
- 8. Newman, M. S. Editor (1956). Steric Effects in Organic Chemistry. New York: John Wiley & Sons, Inc., p. 591; R. W. Taft (1956). Separation of Polar, Steric, and Resonance Effects in Reactivity.
- 9. Newman, M. S. (1956). Ibid., p. 601.
- 10. Wyckoff, R. (1963). Crystal Structure. Vol. 1, New York: John Wiley & Sons, Inc., p. 173.
- 11. Newman, M. S. (1956). Steric Effects in Organic Chemistry. New York: John Wiley & Sons, Inc., p. 595; R. W. Taft (1956). Separation of Polar, Steric, and Resonance Effects in Reactivity.
- 12. Nyquist, R. A. (1990). Appl. Spectrosc., 44: 1405.
- 13. Nyquist, R. A., Settineri, S. E., and Luoma, D. A. (1992). Appl. Spectrosc., 46: 293.
- 14. Nyquist, R. A., Settineri, S. E., and Luoma, D. A. (1991). Appl. Spectrosc., 45: 1641.
- 15. Brame, Jr., E. G. and Grasselli, J. G. (1977). Infrared and Raman Spectroscopy, Part B, Practical Spectroscopy Series. Vol. 1, New York: Marcel Dekker, Inc., p. 471; R. A. Nyquist and R. O. Kagel (19XX). Organic Materials.
- 16. Bellamy, L. J. (1968). Advances In Infrared Group Frequencies. London: Methuen.
- 17. Nyquist, R. A. (1988). Appl. Spectrosc., 42: 624.

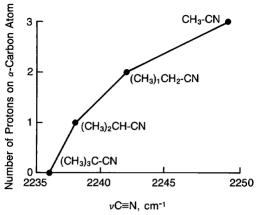


FIGURE 2.1 A plot of $\nu C \equiv N$ for alkanonitriles vs the number of protons on the α -carbon atom.

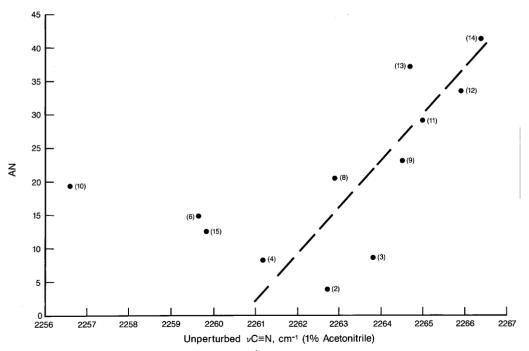


FIGURE 2.2 A plot of unperturbed $vC \equiv N$, cm⁻¹ (1% wt./vol.) vs AN (the solvent acceptor number).

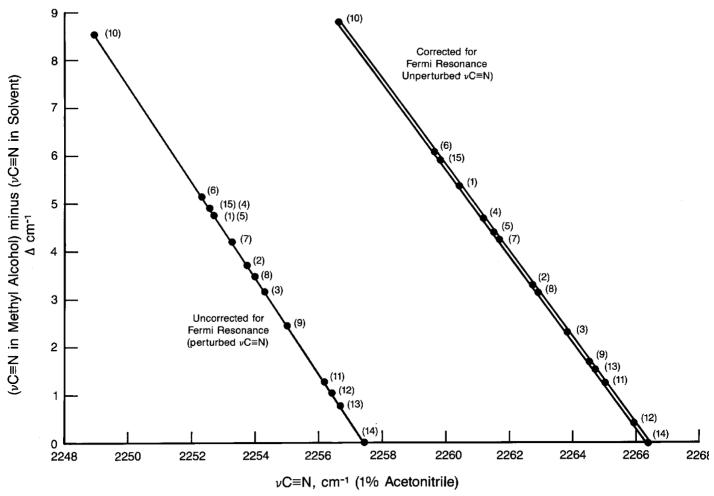


FIGURE 2.3 Plots of $\nu C \equiv N$, cm⁻¹ for acetonitrile (1 wt./vol.%) vs ($\nu C \equiv N$ in methyl alcohol) minus ($\nu C \equiv N$ in another solvent). The two plots represent perturbed and unperturbed $\nu C \equiv N$.

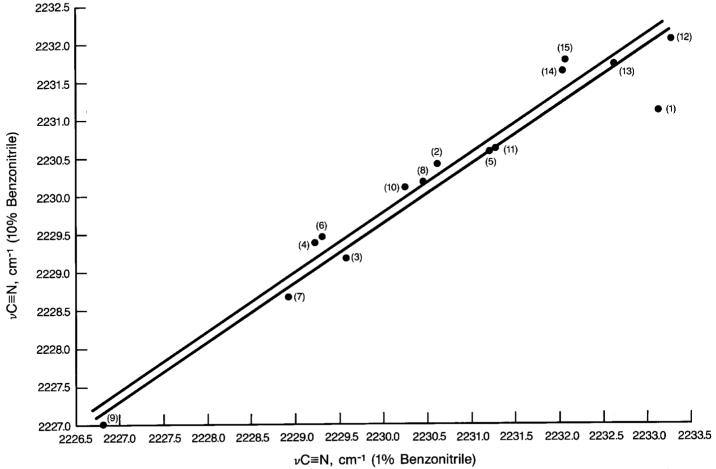


FIGURE 2.4 A plot of *v*C≡N for 1 wt./vol. % vs *v*C≡N for 1% wt./vol. in 15 different solvents.

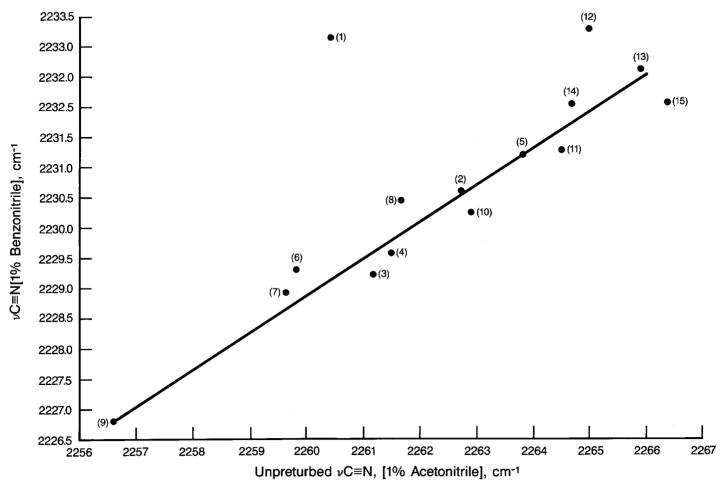


FIGURE 2.5 A plot of unperturbed $\nu C \equiv N$ for acetonitrile vs $\nu C \equiv N$ for benzonitrile. Both compounds were recorded at 1% wt./vol. separately in each of the 15 solvents.

4-Cyanobenzaldehyde

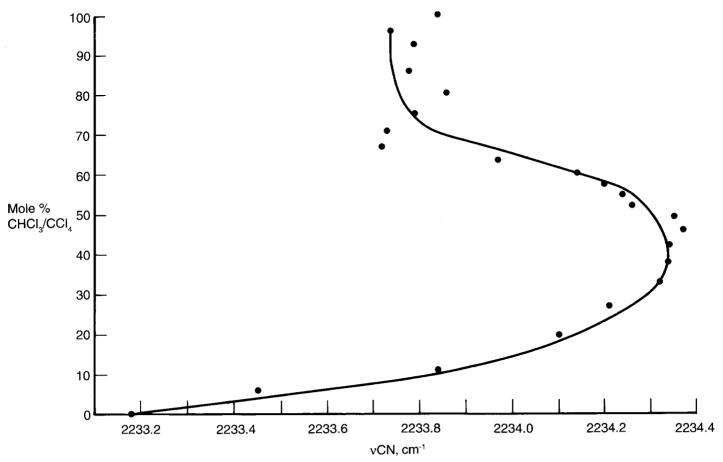


FIGURE 2.6 A plot of $\nu C \equiv N$ for 4-cyanobenzaldehyde in cm $^{-1}$ vs mole % CHCl $_3$ /CCl $_4$.

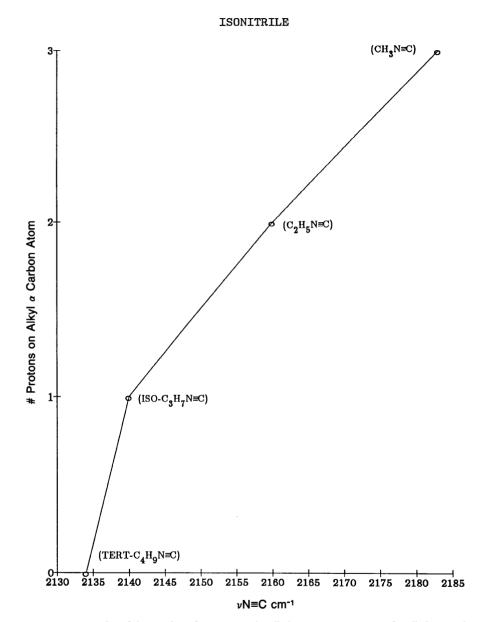


FIGURE 2.7 A plot of the number of protons on the alkyl α -C-N atom vs ν NC for alkyl isonitriles.

ISONITRILE

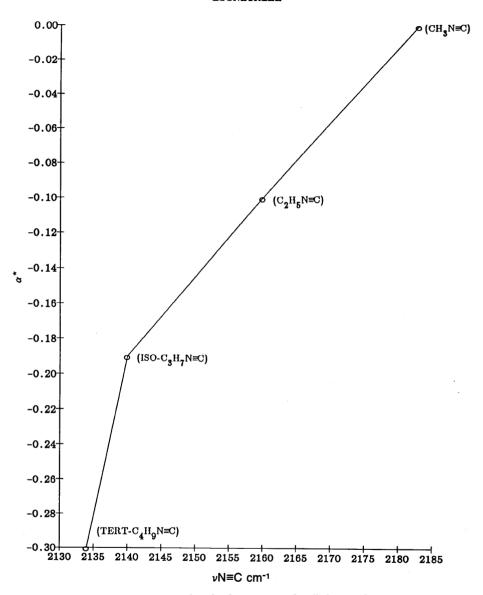


FIGURE 2.8 A plot of Taft's σ^* vs ν NC for alkyl isonitriles.

TABLE 2.1 Infrared data for nitriles and cyanogen halides in the vapor and/or neat phases

	CN str.			CN str.			CN str.	A
	cm^{-1}			cm^{-1}			cm^{-1}	
	[vapor]	A	Compound	[vapor]	A	Compound	[vapor]	
IR (1)								
	2320	0.078					2244	0.02
acetonitrile	2280	0.11	benzonitrile	2240	0.118	acrytonitrile	2239	
	2252	0.07	benzonitrile			,	2221	0.012
butyronitrile	2260	0.03	4-hydroxy	2238	0.156	methacrylonitrile	2230	0.025
isobutyronitrile	2255	0.032	4-bromo	2238	0.12	2-chloroacryl-	2241	0.039
valeronitrile	2260	0.029	4-nitro	2240	0.011	nitrile		
isovaleronitrile	2255	0.035	3-hydroxy	2230	0.059			
tetradecanenitrile	2250	0.019	3-chloro	2239	0.115			
adiponitrile	2258	0.051	3-cyano	2241	0.085			
undecanedinitrile	2250	0.049	2-amino	2222	0.21			
			2-hydroxy	2225	0.21			
	[neat]	[vapor]-		[neat]	[vapor]-		[neat]	[vapor]-
		[neat]			[neat]			[neat]
	${\rm cm}^{-1}$	cm^{-1}		cm^{-1}	${\rm cm}^{-1}$		${\rm cm}^{-1}$	$\rm cm^{-1}$
butyronitrile	2250	10	benzonitrile	2221	19	acrylonitrile	2224	15
isobutyronitrile	2240	5	benzonitriic	2221	17	methacrylonitrile	2222	8
valeronitrile	2238	22				methacryfoliume		O
isovaleronitrile	2242	13						
-	neat	IR [vapor]	IR (CCl ₄)					
	cm ⁻¹	cm ⁻¹	111 (0014)					
Raman (2, 3)								
acetonitrile	2249	2280	2264*		31			
propionitrile	2242	2262	-20.		20			
isobutyronitrile	2238				17			
pivalonitrile	2236	2250			14			
chloroacetonitrile	2258							
trichloroacetonitrile	2250	2255			5			
acrylonitrile	2222	2239						17
methacrylonitrile	2230	2230						0
benzonitrile	2230	2260						10
2-chloroacrylonitrile	2234	2241						
•	CCl_4							
1-cyano-2-halo-acetylene								
-2-chloro-[IR; (6)]	2292	2301; 2293			5			
-2-bromo-[IR; (6)]	2278	2295; 2289			14			
-2-iodo-[IR; (6)]	2263	2270			7			
cyanogenhalides [IR]	neat (4)	vapor (5)						
FCN (4)	2290							
ClCN (4)	2201	2248			47			
BrCN (4)	2187	2200			13			
ICN (4)	2158							

^{*} Corrected for Fermi resonance.

TABLE 2.2 Infrared data for acetonitrile in various solvents

Acetonitrile [1 wt./vol. %] Solvent	AN	In FR cm ⁻¹	In FR cm ⁻¹	C-C str. cm ⁻¹	s.CH ₃ bend cm ⁻¹	CN str. cor. for FR cm ⁻¹	[C-C str.] + [s.CH ₃ bend] cor. for FR cm ⁻¹
1. Hexane	0	2292.1	2252.7			2260.4	2284.4
 Diethyl ether Carbon tetrachloride 	3.9 8.6	2292.1 2292.5	2253.7 2254.3	918.6	1374.7	2262.7 2263.8	2283.1 2283
4. Benzene	8.2	2292.3	2252.5	917.9	1373.8	2261.2	2282.2
5. Toluene	0.2	2290.0	2252.5	917.9	1373.0	2261.5	2282.3
6. Nitrobenzene	14.8	2291.4	2252.3			2259.6	2284.1
7. Nitromethane		2291.2	2253.2			2261.7	2282.8
8. Methylene chloride	20.4	2292.1	2254	918.1	1373.2	2262.9	2283.2
9. Chloroform	23.1	2292.4	2255	919.8	1373	2264.5	2282.9
10. Dimethyl sulfoxide	19.3	2293.4	2248.9			2256.6	2285.7
11. tert-Butyl alcohol	29.1	2294.9	2256.2			2265	2286.1
12. Isopropyl alcohol	33.5	2294.9	2256.4			2265.9	2285.4
13. Ethyl alcohol	37.1	2295.2	2256.7			2264.7	2287.1
14. Methyl alcohol	41.3	2295.5	2257.4			2266.4	2286.5
15. Acetone	12.5	2293.3	2252.7			2259.8	2286.1

TABLE 2.3 A comparison of the IR vCN stretching frequencies for acetonitrile [corrected for Fermi resonance] with those for benzonitrile

Solvent	Benzonitrile 10 wt./vol. % cm ⁻¹	Benzonitrile 1 wt./vol. % cm ⁻¹	Acetonitrile 1 wt./vol. % cor. for FR cm ⁻¹	[Acetonitrile]- [Benzonitrile] 1 wt./vol. % cm ⁻¹
Hexane	2231.12	2233.14	2260.42	27.28
Diethyl ether	2230.41	2230.61	2262.72	32.11
Benzene	2229.38	2229.22	2261.17	31.95
Toluene	2229.18	2229.57	2261.49	31.92
Carbon tetrachloride	2230.58	2231.21	2263.8	32.59
Acetone	2229.46	2229.32	2259.81	30.5
Nitrobenzene	2228.67	2228.92	2259.63	30.71
Nitromethane	2230.18	2230.45	2261.66	31.21
Dimethyl sulfoxide	2227.01	2226.81	2256.6	29.79
Methylene chloride	2230.11	2230.25	2262.89	32.64
Chloroform	2230.62	2231.28	2264.49	33.21
tert-Butyl alcohol	2232.06	2233.28	2264.98	31.7
Isopropyl alcohol	2231.73	2232.62	2265.9	33.28
Ethyl alcohol	2231.64	2232.04	2264.67	32.63
Methyl alcohol	2231.78	2232.07	2266.37	34.3

TABLE 2.4 The CN stretching frequency for 4-cyanobenzaldehyde in 0 to $100\,\text{mol}\%$ CHCl₃/CCl₄ solutions [1 wt./vol. % solutions]

4-Cyanobenzaldehyde 1% (wt./vol.)	CN str. cm ⁻¹	A
1 /0 (Wt./ VOI.)	CIII	
Mole %		
CHCl ₃ /CCl ₄		
0	2233.2	0.065
5.68	2233.5	0.071
10.74	2233.8	0.076
19.4	2234.1	0.083
26.53	2234.2	0.085
32.5	2234.3	0.089
37.57	2234.3	0.092
41.93	2234.3	0.094
45.73	2234.4	0.094
49.06	2234.4	0.097
52	2234.3	0.097
54.62	2234.2	0.098
57.22	2234.2	0.1
60.07	2234.1	0.101
63.28	2234	0.109
66.74	2233.7	0.111
70.65	2233.7	0.112
75.06	2233.8	0.112
80.05	2233.9	0.114
85.75	2233.8	0.118
92.33	2233.8	0.125
96.01	2233.7	0.126
100	2233.8	0.123
Δ CN str.	1.2	
	-0.6	
ΔΑ		0.061

TABLE 2.5 Raman data for the C≡N group and C=C group of organonitriles*

Compound	CN str. cm ⁻¹	C=C str. cm ⁻¹
Isobutyl 2-cyanoacrylate	2239 (9)	
2,2-Azobis(4-methoxy-2,4-dimethylvaleronitrile)	2239 (8)	
1,1-Azobis(cyclohexane carbonitrile)	2236 (2)	
2,2-Azobis(2- methylbutyronitrile)	2241 (9)	
4,4'-Azobis(4-cyanovaleric acid)	2246 (9)	
Cyanoethylated cellulose	2251 (9)	
Crotononitrile	2223 (9)	1639 (4)
		1629 (5)
2-Methyl crotononitrile	2218 (9)	1646 (4)

^{*} Reference (3).

TABLE 2.6 A comparison of infrared data for organonitriles vs organoisonitriles

Compound	${\rm CN~str.} \ {\rm cm^{-1}}$	$NC str.$ cm^{-1}	Compound	σ_p or σ_m	σ_p - σ'	σ^*	CN str NC str. cm ⁻¹
Benzonitrile			Benzoisonitrile				
4-CH ₃ O	2226	2125	4-CH ₃ O	[-0.27]	[-0.50]	[0.52]	101
4-CH ₃	2229	2125	4-CH ₃	[-0.17]	[-0.13]	[-0.10]	104
3-CH ₃	2229	2125	3-CH ₃	[-0.07]	[-0.02]	[-0.10]	104
4-H	2229	2123	4-H	[0.00]	[0.00]	[0.00]	106
4-Cl	2233	2116	4-Cl	[0.23]	[-0.24]	[1.05]	117
4-NO ₂	2238	2116	4-NO ₂	[0.78]	[0.15]	[1.40]	122
3-NO ₂	2240	2120	3-NO ₂	[0.71]	[0.08]	[1.40]	120
2-CH ₃	2226	2122	2-CH ₃				104
2-Cl	2237	2166	2-Cl				71
Alkanonitrile			Alkanoisonitrile				
Acetonitrile	2249	2183	Acetoisonitrile			[0.000]	66
Propionitrile	2242	2160	Propionoisonitrile			[-0.100]	82
Isobutyronitrile	2238	2140	Isobutyroisonitrile			[-0.190]	98
Pivalonitrile	2236	2134	Pivaloisonitrile			[-0.300]	102

TABLE 2.7 A comparison of the infrared data for organothiocyanates in the vapor and neat phases

Thiocyanate	Vapor cm ⁻¹	Neat cm ⁻¹	Vapor-heat cm ⁻¹	Neat cm ⁻¹
Methyl	2175	2160	15	
Ethyl	2165	2160	5	
Pentyl	2165	[—]	[—]	
Isopentyl	2164	[—]	[—]	
Octyl	2161	2145	16	
Decyl	2164	2150	14	
Chloromethyl	2170	2150	20	Raman*
Benzyl	2164	2150	14	2150 (40)
Range	2161-2175	2145-2160		
2,6-Dichlorobenzyl	[—]	2115	[—]	
Thiocyanate				
Phenyl	[—]	2170	[—]	
4-Nitrophenyl	[—]	2174	[—]	
4-Aminophenyl	[—]	2166	[—]	
Range	[—]	2166–2174	[—]	
	Phenyl	Phenyl	Phenyl	
	ring	ring	ring	
	cm^{-1}	cm ⁻¹	cm ⁻¹	
	1029 (10)	1003 (80)	631 (5)	

^{*} Relative intensity.

Azines, Isocyanates, Isothiocyanates, and Carbodiimides

Azines			45
Isocyanates			46
Isothiocyanates			49
Carbodiimides			50
References			50
Figures		Tables	
Figure 3-1	51 (47)	Table 3-1	57 (46)
Figure 3-2	51 (47)	Table 3-2	58 (46)
Figure 3-3	52 (47)	Table 3-3	59 (46)
Figure 3-4	52 (47)	Table 3-4	60 (48)
Figure 3-5	53 (47)	Table 3-5	60 (49)
Figure 3-6	53 (47)	Table 3-6	61 (49)
Figure 3-7	54 (47)	Table 3-6a	62 (49)
Figure 3-8	54 (49)	Table 3-7	63 (50)
Figure 3-9	55 (49)		
Figure 3-10	55 (49)		
Figure 3-11	56 (49)		

^{*} Numbers in parentheses indicate in-text page reference.

AZINES

Infrared and Raman studies of aldehyde and ketone azines have been summarized by Dollish *et al.* (1). Azines have the following empirical structures:

(Where R can be hydrogen, alkyl, and/or aryl in the case of aldehyde azines, and in the case of ketone azines R can be alkyl and/or aryl.)

These molecules exist in an s-transoid configuration and have a center of symmetry (2-7). In these cases, the antisymmetric $(C=N-)_2$ stretching vibration is only IR active while the symmetric $(C=N-)_2$ stretching vibration is only Raman active. The compound, $(F_2C=N-)_2$, is reported to have a trans planar structure (6). Infrared and Raman studies of benzaldehyde azines are also reported to have a center of symmetry (7).

Table 3.1 lists IR and Raman data for the benzaldehyde azines (7) and also summarizes the v asym. $(C=N-)_2$ and v sym. $(C=N-)_2$ vibrations for other azines (2–7). The IR bands assigned to v asym. $(C=N-)_2$ were not apparent in the Raman spectrum and Raman bands assigned to v sym. $(C=N-)_2$ were not apparent in the IR spectrum. The v sym. $(C=N-)_2$ mode yields the most intense Raman band in each azine spectrum. For example, v sym. V_2 in nitrobenzenes has high Raman band intensity. In the Raman spectrum of 2-nitrobenzaldehyde azine, v sym. V_2 wibration at 1348 cm⁻¹ (7). With the exception of 2,6-dichlorobenzaldehyde azine, v sym. V_2 vibration at 1348 cm⁻¹ (7). With the exception of 2,6-dichlorobenzaldehyde azine, v sym. V_2 occurs in the region 1539–1563 cm⁻¹ while the 2,6-dichloro analog exhibits v sym. V_2 at 1587 cm⁻¹. This higher frequency is intermediate between arylaldehyde azines and alkylaldehyde azines (7). This intermediate v sym. V_2 frequency is due to the fact that the 2,6- V_2 atoms prevent the two 2,6-dichlorophenyl groups from being coplanar with the V_2 frequency, is absent in the case of the 2,6-dichloro analog. Further, only the inductive effect operates in this case, causing v sym. V_2 to occur at the intermediate 1587 cm⁻¹ frequency.

In the IR benzaldehyde azines exhibit v asym. $(C=N-)_2$ at lower frequency than those for alkylaldehyde azines (1606–1632 vs 1636–1663 cm⁻¹, respectively) due to resonance of the phenyl groups with the $(C=N-)_2$ group (7).

It is interesting to note that in the case of $(F_2C=N-)_2$ the ν sym. $(C=N-)_2$ frequency (1758 cm⁻¹) occurs at a higher frequency than that for ν asym. $(C=N-)_2$ at 1747 cm⁻¹ (6). In all other cases ν asym. $(C=N-)_2$ occurs at a higher frequency than that for ν sym. $(C=N-)_2$.

ISOCYANATES

Table 3.2 lists IR data for alkyl and aryl isocyanates in various physical phases. In the liquid phase, methyl, ethyl and isopropyl isocyanate exhibit v asym. N=C=O at 2288, 2280, and 2270 cm⁻¹, respectively, and v sym. N=C=O at 1437, 1432, and 1421 cm⁻¹, respectively (8). Phenyl isocyanate and Cl₃Si isocyanate in the liquid phase exhibit v asym. N=C=O at 2285 and 2311 cm⁻¹, respectively (9, 10).

In CCl₄ solution, *n*-butyl, *n*-pentyl, isobutyl and sec-butyl isocyanate exhibit *v* asym. N=C=O at 2273, 2274, 2263, and 2261, respectively (11). Aryl isocyanates in CCl₄ solution exhibit *v* asym. N=C=O in the region $2242-2278 \, \text{cm}^{-1}$ (11) (see Table 3.2). In the case of phenyl isocyanate, two IR bands are observed in the region expected for *v* asym. N=C=O and these two bands are reported to arise from *v* asym. N=C=O in Fermi resonance (FR) with a combination tone of the same symmetry species (12). The *v* sym. N=C=O mode for phenyl isocyanate has been assigned at 1448 cm⁻¹ (10).

Table 3.3 lists IR data for alkyl isocyanates in 0 to $100 \text{ mol } \% \text{ CHCl}_3/\text{CCl}_4$ in 0.5 wt./vol. % solutions (13, 14). In the case of methyl isocyanate, IR bands are noted at 2285.6 cm^{-1} (A is

1.176), $2256.3 \, \text{cm}^{-1}$ (A is 0.716), and $2318.3 \, \text{cm}^{-1}$ (A is 0.314) in CCl₄ solution, and 2286.0 cm⁻¹ (A is 0.478), 2253.3 cm⁻¹ (A is 0.478), and 2315.9 cm⁻¹ (A is 0.519) in CHCl₃ solution. The data listed in Table 3.3 have been corrected for FR by the method developed in Reference (14), and these frequencies corrected for FR have been plotted vs mole % CHCl₃/CCl₄ as shown in Figure 3.1. These plots show that unperturbed v asym. N=C=O and an unperturbed combination tone $v(C_{\alpha}-N)+\delta$ sym. CH_3 both increase in frequency while the combination $v(C_x-N)+v$ sym. N=C=O decreases in frequency as the mole % CHCl₃ is increased (14). Figure 3.2 shows a plot of these same bands in FR (14). In the case of the uncorrected IR data where all three bands are in FR, the band with the most intensity has the most contribution from v asym. N=C=O. This band decreases only $0.5 \,\mathrm{cm}^{-1}$ in going from solution in CCl₄ to solution in CHCl₃ while after correction for FR v asym. N=C=O decreases 3 cm⁻¹, as might be expected due to intermolecular hydrogen bonding between the CHCl₃ proton and the N=C=O group and the increase in the field effect of the solvent system. Ethyl isocyanate and propyl isocyanate also show that v asym. N=C=O is in FR with a combination tone (CT), while isopropyl isocyanate and tert-butyl isocyanate exhibit only unperturbed v asym. N=C=O (14).

Figure 3.3 shows plots of v asym. N=C=O frequencies for n-butyl, isopropyl and tert-butyl isocyanate, and of the frequencies for the most intense IR band for v asym. N=C=O (uncorrected for FR) for methyl, ethyl and n-propyl isocyanate vs the mole % CHCl₃/CCl₄ (13). Figure 3.4 shows plots of unperturbed v asym. N=C=O frequencies for the alkyl isocyanates vs mole % CHCl₃/CCl₄ solutions (in this case the v asym. N=C=O mode for the methyl, ethyl and n-propyl isocyanates have been corrected for FR). In this case, the six plots decrease in frequency in the order methyl, n-butyl, ethyl, n-propyl, isopropyl and tert-butyl isocyanate. The n-butyl analog occurs at a higher frequency than would be predicted by the reasons given here. Figure 3.5 show plots of v asym. N=C=O for alkyl isocyanates in CCl₄ solution and in CHCl₃ solution vs σ^* (the inductive value of the alkyl group). Figure 3.6 show plots of v asym. N=C=O for alkyl isocyanates in CCl₄ solution and in CHCl₃ solution vs E_s (the steric parameter of the alkyl group). Figure 3.7 show plots of v asym. N=C=O frequencies for alkyl isocyanates vs σ^* times E_s . Figures 3.5–3.7 show that v asym. N=C=O for these six alkyl isocyanates occur at higher frequency in CHCl₃ solution than in CCl₄ solution (13). In addition, the data points for *n*-butyl isocyanate do not correlate with the other five alkyl isocyanates. In CCl₄ solution, the five alkyl isocyanates apparently exist as a complex such as A or B. A complex such as A or B:

would weaken the N=C=O bond, and it would vibrate at lower frequency (13).

In the case of N-butyl isocyanate, ν asym. N=C=O decreases in frequency in the order CHCl₃ (2278.7 cm⁻¹), CCl₄ (2274.5 cm⁻¹), and C₆H₁₄ (2270.5 cm⁻¹), and this is the reverse solvent effect order exhibited upon carbonyl stretching frequencies (ν C=O). Therefore, a complex between CHCl₃ or CCl₄ must cause the ν asym. N=C=O to vibrate at a higher frequency than occurs in solution with hexane. It is suggested that the complex between CHCl₃ and n-butyl isocyanate is either a steric or intramolecular hydrogen-bonded complex such as C, which stabilizes the N=C=O group and thus prevents a hydrogen-bonding complex from being formed between the Cl₃CH proton and the isocyanate nitrogen atom.

$$H_2C$$
 H_2C
 In the case of tert-butyl isocyanate, the tert-butyl group would have more of an electron release toward the isocyanate group, and it would have the most contribution from the resonance form *D*. The steric factor

of the tert-butyl group is also higher than that of the other alkyl groups. Thus, structures E and A would help contribute the lower v asym. N=C=O frequencies exhibited by the tert-butyl analog than when in hexane solution

Table 3.4 lists IR data for v asym. N=C=O for the alkyl isocyanates in both CCl₄ and CHCl₃ solutions. Examination of Table 3.4 clearly shows that v asym. N=C=O in CHCl₃ solution always occurs at higher frequency than when in CCl₄ solution (13).

$$CI \qquad CI(HCCI_3)_n$$

$$CI \qquad H$$

$$\frac{-}{+} \qquad \frac{+}{-}$$

$$-$$

$$(H_3C)_3C$$

$$F$$

Table 3.5 lists IR and Raman data for alkyl isocyanates. The last column lists the Raman data for these compounds (15). These data show that the frequency of v sym. N=C=O decreases, progressing in the order of methyl isocyanate through tert-butyl isocyanate; this is the order of electron release of the alkyl group to the isocyanate group.

ISOTHIOCYANATES

Table 3.6 lists IR data for 1% wt./vol. alkyl isothiocyanates in 0 to 100 mol % CHCl₃/CCl₄ or CDCl₃/CCl₄ solution. The unperturbed v asym. N=C=S frequencies for the alkyl isothiocyanates occur at higher frequency in CHCl₃ or CDCl₃ solution than in CCl₄ (16). Figure 3.8 and Figure 3.9 show plots of v asym. N=C=S in FR resonance and v asym. N=C=S corrected for FR, respectively. The propyl analog was not corrected for FR and is not included in Figure 3.9. Both plots show that v asym. N=C=S generally increases in frequency as the mole % CHCl₃/CCl₄ or CDCl₃/CCl₄ is increased (16). Examination of Figure 3.9 shows that v asym. N=C=S frequency for the methyl, ethyl and tert-butyl analogs decrease in frequency as the σ^* values decrease (increasing electron release to the C=N=S group). The exception is the n-butyl analog. It is suggested that the explanation used here to explain the behavior of v asym. N=C=O for n-butyl isocyanate can also be used to explain the behavior of v asym. N=C=S for n-butyl isothiocyanate (16).

Figure 3.10 shows a plot of v asym. N=C=S and 2vC-N in FR and the same two modes corrected for FR for methyl isothiocyanate vs mole % CHCl₃CCl₄ (16). Figure 3.11 shows a plot of vC-N for methyl isothiocyanate vs mole % CHCl₃/CCl₄. Figure 3.11 shows that vC-N decreases in frequency as the mole % CHCl₃/CCl₄ is increased. Figure 3.10 shows that 2vC-N decreases in frequency while the v asym. N=C=S increases in frequency as the mole % $CHCl_3/CCl_4$ is increased. In CCl_4 solution, the amount of FR between v asym. N=C=S and 2vC-N is the least; it is the most in CHCl₃ solution because the IR band intensity ratio of perturbed v N=C=O/perturbed 2vC-N is 0.808/0.200 = 4.04 in CCl₄ solution and 0.690/0.371 = 1.86 in CHCl₃ solution. In addition, that perturbed v asym. N=C=S increases 18.0 cm⁻¹ while perturbed 2vC-N decreases 10.7 cm⁻¹ in going from solution in CCl₄ to solution in CHCl₃. Another way to look at these data is that the frequency separation between perturbed v asym. N=C=S and perturbed 2vC-N is 116.5 cm⁻¹ in CCl₄ solution and 87.8 cm⁻¹ in CHCl₃ solution, while the frequency separation between v asym. N=C=S and 2vC-Ncorrected for FR is 70.2 cm⁻¹ in CCl₄ solution and 26.4 cm⁻¹ in CHCl₃. In other words, the closer in frequency that unperturbed v asym. N=C=S and 2vC-N occur, the larger the amount of Fermi interaction between the fundamental and the first overtone. The first overtone gains intensity from the fundamental during the FR interaction.

The correction for FR is readily performed by application of the equation presented here (17, 18):

$$W^{o} = \frac{W_{a} + W_{b}}{2} \pm \frac{W_{a} - W_{b}}{2} \cdot \frac{I_{a} - I_{b}}{I_{a} + I_{b}}$$

where W_a and W_b are the observed band frequencies, I_a and I_b are their intensities, and the two values of W^o calculated by this equation will be approximately the unperturbed frequencies.

Table 3.6a lists vibrational data for alkyl and aryl isothiocyanates in different physical phases. In the case of heptyl isothiocyanate, v asym. N=C=S gives a depolarized Raman band at

2090 cm⁻¹ and v sym. N=C=S gives a polarized Raman band at 1070 cm⁻¹. Raman data for the three aryl isothiocyanates are assigned as v asym. N=C=S in the range 2070–2150 cm⁻¹ and v sym. N=C=S in the range 1245–1250 cm⁻¹.

CARBODIIMIDES

Table 3.7 lists vapor- and neat-phase infrared data for dialkyl and diaryl carbodiimides (19). In the vapor phase the compounds of form R-N=C=N-R exhibit v asym. N=C=N in the region $2118-2128\,\mathrm{cm}^{-1}$ and compounds of form ϕ -N=C=N- ϕ exhibit a doublet. One band of the doublet occurs in the regions $2100-2120\,\mathrm{cm}^{-1}$ and the other band of the doublet occurs in the region $2150-2170\,\mathrm{cm}^{-1}$. In the neat phase, the compounds of form R-N=C=N-R exhibit a doublet. One band of the doublet occurs in the region $2040-2098\,\mathrm{cm}^{-1}$ and the other band of the doublet occurs in the region $2120-2158\,\mathrm{cm}^{-1}$ (19). The higher frequency band in the doublet always has more intensity than the lower frequency band. These two bands result from v asym. N=C=N in FR with a combination tone or an overtone (18). The unperturbed v asym. N=C=N frequencies for the diaryl carbodiimides occur at higher frequency ($2124-2145\,\mathrm{cm}^{-1}$) than do those for the dialkyl carbodiimides ($2105-2125\,\mathrm{cm}^{-1}$). The higher frequency for the diaryl analog is attributed to the positive inductive effect of the two aryl groups vs the negative inductive effect of the two alkyl groups. In addition, the v asym. N=C=N mode occurs at higher frequency in the vapor phase than in the neat phase.

REFERENCES

- 1. Dollish, F. R., Fateley, W. G., and Bentley, F. K. (1974). Characteristic Raman Frequencies of Organic Compounds. New York: Wiley.
- 2. Kirrman, A. (1943). Comp Rend., 217: 148.
- 3. West, W. and Killingsworth, R. B. (1938). J. Chem. Phys., 6: 1.
- 4. Kitaev, Yu. P., Nivorozhkin, L. E., Plegontov, S. A., Raevskii, O. A., and Titova, S. Z. (1968). Dokl. Acad. Sci. USSR, 178: 1328.
- 5. Ogilivie, J. F. and Cole, K. C. (1971). Spectrochim. Acta, 27A: 877.
- 6. King, S. T., Overend, J., Mitsch, R. A., and Ogden, P. H. (1970). Spectrochim. Acta, 26A: 2253.
- 7. Nyquist, R. A. and Peters, T. L. (1978). Spectrochim. Acta, 34A: 503.
- 8. Hirschmann, R. P., Kniseley, R. N., and Fassel, V. A. (1965). Spectrochim. Acta, 21: 2125.
- 9. Koster, D. F. (1968). Spectrochim Acta, 24A: 395.
- 10. Stephenson, C. V., Coburn, Jr. W. C., and Wilcox, W. S. (1961). Spectrochim Acta, 17: 933.
- 11. Hoyer, H. (1956). Chem. Ber., 89: 2677.
- 12. Ham, N. S. and Willis, J. B. (1960). Spectrochim. Acta, 16: 279.
- 13. Nyquist, R. A., Luoma, D. A., and Putzig, C. L. (1992). Appl. Spectrosc., 46: 972.
- 14. Nyquist, R. A., Putzig, C. L., and Hasha, D. L. (1989). Appl. Spectrosc., 43: 1049.
- 15. Herzberg, G. and Reid, C. (1950). Discuss. Faraday Soc., 9: 92.
- 16. Nyquist, R. A. and Puehl, C. W. (1993). Appl. Spectrosc., 47: 677.
- 17. Nyquist, R. A., Fouchea, H. A., Hoffman, G. A., and Hasha, D. L. (1991). Appl. Spectrosc., 45: 860.
- 18. Nyquist, R. A. (1984). *The Interpretation of Vapor-phase Infrared Spectra: Group Frequency Data*. Vol. 1, Philadelphia: Sadtler Research Laboratories, Division of Bio-Rad Laboratories, Inc., p. 43.
- 19. Nyquist, R. A. (1984). Ibid., p. 461.

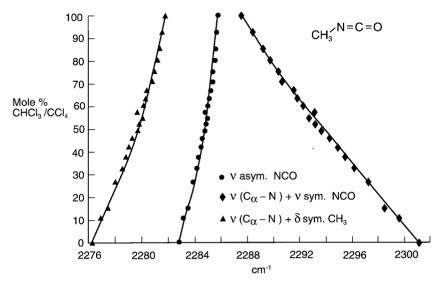
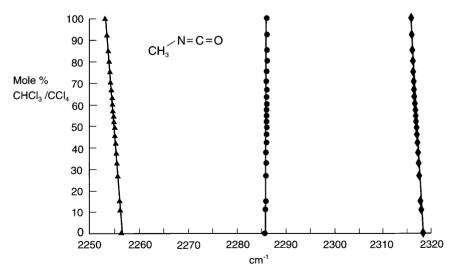



FIGURE 3.1 Plots of ν asym. N=C=O and the combination tone ν (C_{α} -N) + ν sym. N=C=O and ν (C_{α} -N) + sym. CH₃ for methyl isocyanate all corrected for Fermi resonance.

 $FIGURE \ 3.2 \quad \text{Plots of the three observed IR bands for methyl isocyanate occurring in the region 2250–2320 vs mole \% \\ CHCl_3/CCl_4.$

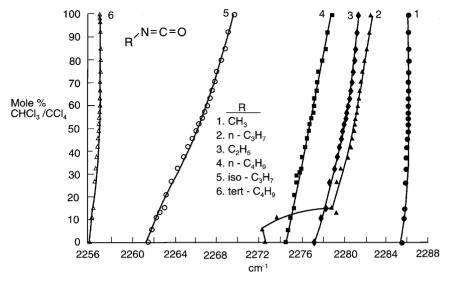


FIGURE 3.3 Plots of the v asym. NCO frequencies for n-butyl, isopropyl and tert-butyl isocyanate and of the frequencies of the most intense IR band for v asym. N=C=O in FR (uncorrected for FR) for methyl, ethyl and n-propyl isocyanate vs mole % CHCl₃/CCl₄.

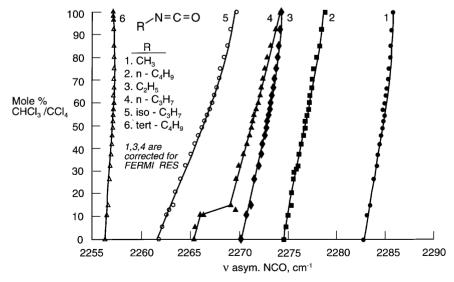
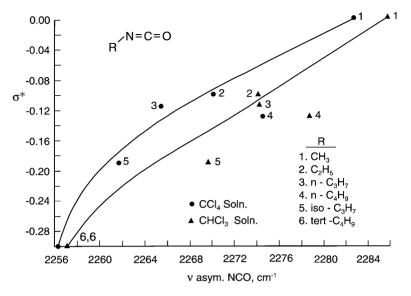



FIGURE 3.4 Plots of unperturbed v asym. N=C=O for the alkyl isocyanates vs mole % CHCl₃/CCl₄.

FIGURE 3.5 Plots of v asym N=C=O frequencies for alkyl isocyanates in CCl₄ solution and in CHCl₃ solution vs σ^* . (The inductive release value of the alkyl group.)

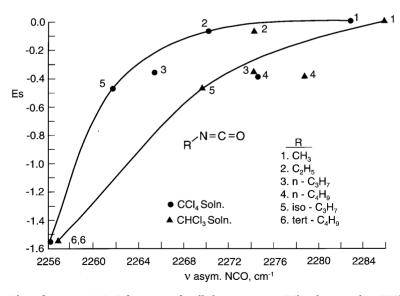
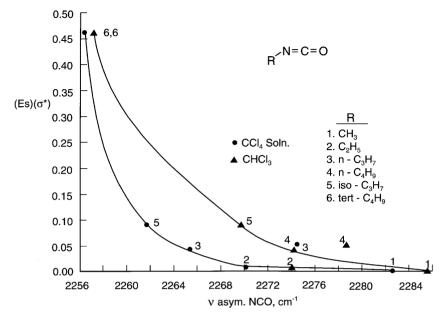



FIGURE 3.6 Plots of v asym. N=C=O frequencies for alkyl isocyanates in CCl₄ solution and in CHCl₃ solution vs E_s . (The stearic parameter of the alkyl group.)

FIGURE 3.7 Plots of ν asym. N=C=O frequencies for alkyl isocyanates in CCl₄ solution and in CHCl₃ solution vs (E_s) (σ^*) .

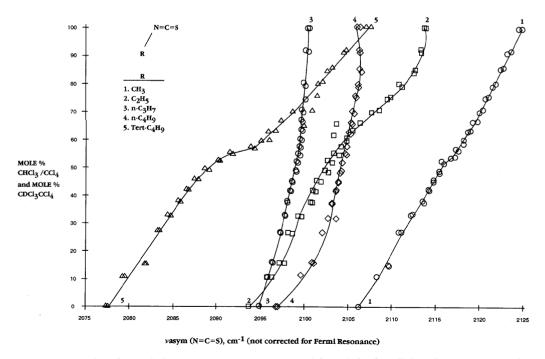


FIGURE 3.8 A plot of perturbed ν asym. N=C=S (not corrected for FR) for five alkyl isothiocyanates vs mole % CHCl₃/CCl₄).

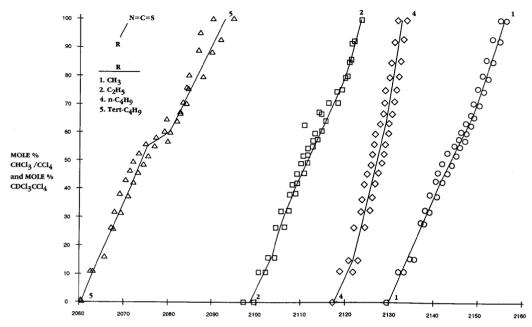


FIGURE 3.9 A plot of unperturbed ν asym. N=C=S (corrected for FR) for four alkyl isothiocyanates vs mole % CHCl₃/CCl₄ and CDCl₃/CCl₄.

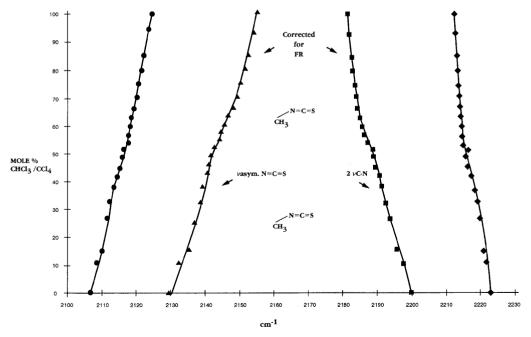


FIGURE 3.10 A plot of perturbed 2ν C-N and perturbed ν asym. N=C=S and unperturbed 2ν C-N and unperturbed ν asym, N=C=S vs mole % CHCl₃/CCl₄.

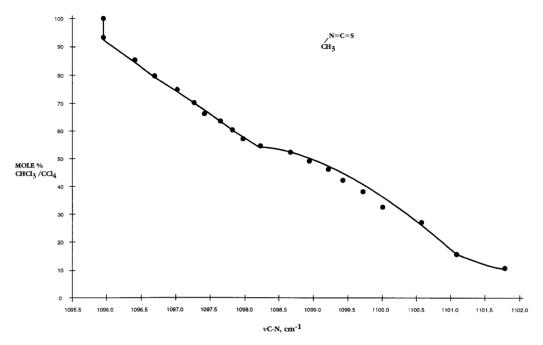


FIGURE 3.11 A plot of ν C-N for methyl isothiocyanate vs mole % CHCl₃/CCl₄.

TABLE 3.1 Infrared and Raman data and assignments for the $(C=N-)_2$ antisymmetric and symmetric stretching vibrations for azines

Aldehyde Azines	asym. $(C=N-)_2$ str. IR active cm^{-1}	sym. $(C=N)_2$ str. Raman active cm^{-1}	asym. $(C=N)_2$ str sym. $(C=N)_2$ str. cm^{-1}
4-X-benzaldehyde			
X	1.000		
dimethylamino	1608	1539	69
methoxy	1605	1553	52
methyl	1623	1553	70
hydrogen fluoro	1628	1556	72 73
	1633	1561	72
chloro	1627	1547	80
acetoxy	1631	1562	69 70
trifluoromethyl	1631	1561	70
cyano	1624	1541	83
2-X-benzaldehyde X			
methoxy	1619	1552	67
chloro	1618	not recorded	[-]
hydroxy	1630	1555	75
nitro	1627	1560	67
3-X-benzaldehyde X			
nitro	1629	1551	78
benzaldehyde			
2,4-dimethoxy	1617	1546	71
3,4-dimethoxy	1626	1557	69
2-hydroxy-4-methoxy	1630	1554	76
2,4-dihydroxy	1632	1563	69
3-methoxy-4-hydroxy	1629	1558	71
2,6-dichloro	1629	1587	42
Summary Azine Type			
benzaldehyde	1606–1632	1539-1563	52-83
2,6-Cl ₂ -benzaldehyde	1629	1587	42
alkylaldehyde and alkyketone	1636–1663	1608–1625	28–38
$CF_2=$	1747	1758	[-11]
Range	1606–1747	1539–1758	r1

TABLE 3.2 The symmetric and/or antisymmetric stretching frequencies for alkyl and aryl isocyanates in various physical phases

Alkyl and phenyl isocyanate				
R-N=C=O and	a.N=C=O	s.N=C=O	Physical	
$C_6H_5-N=C=O$	cm ⁻¹	cm ⁻¹	phase	Reference
Methyl	2288	1437	L^{*1}	8
Ethyl	2280	1432	L	8
Isopropyl	2270	1421	L	8
t-Butyl	2270		L	9
Phenyl	2285	1448	L	10
Cl ₂ Si	2311	1467	L	8
Н	2274	1318	V^{*2}	13
n-Butyl	2273		CCl ₄ * ³	11
n-Pentyl	2274		CCl_4	11
Isobutyl	2263		CCl_4	11
sec-Butyl	2261		CCl_4	11
	2262			11
Cyclohexyl	2255		CCl_4	11
Benzyl	2266		CCl ₄	11
	2265			
Acetyl	2246		CCl ₄	11
Phenyl	2260		CCl ₄	11
	2278			
4-X-phenyl				
X				
Ethoxy	2274		CCl ₄	11
Chloro	2266		CCl_4	11
Methyl	2263		CCI ₄	11
Nitro	2261		CCl_4	11
Cyano	2258		CCl ₄	11
3-X-phenyl				
Methoxyl	2267		CCl_4	11
Methyl	2266		CCl ₄	11
Chloro	2265		CCl_4	11
2-X-phenyl				
Methyl	2273		CCl_4	11

 $^{^{*1}}$ L is liquid. *2 V is vapor. *3 CCl₄ is in CCl₄ solution.

TABLE 3.3 Infrared data for alkyl isocyanates in 0 to $100\,\mathrm{mol}~\%$ CHCl₃/CCl₄ in $0.5\,\mathrm{wt./vol}~\%$ solutions

Methyl isocyanate CH ₃ -N=C=O [0.5% solutions] Mole % CHCl ₃ /CCl ₄	cm^{-1}	cm^{-1}	cm^{-1}	Corrected for FR a.N=C=O str. cm ⁻¹	Corrected for FR C-N str. + s.CH ₃ bend cm ⁻¹	Corrected for FR $C-N$ str. $+$ s.N=C=O str. cm^{-1}
0	2205 56	2256.26	2318.28	2202.0	2276.2	2301.1
0 10.74	2285.56 2285.7	2256.26	2317.87	2282.8 2283.1	2276.3 2276.9	2299.6
				2283.5		
15.07 26.53	2285.8	2255.93	2317.7	2283.5	2277.5	2298.5 2297.2
	2285.87	2255.74	2317.51		2278	
32.5	2285.93	2255.59	217.31	2284.1	2278.6	2296.1
37.5	2285.92	2255.4	2317.21	2284.3	2278.8	2295.5
41.93	2285.99	2255.3	2317.09	2284.4	2279.1	2294.9
45.73	2285.99	2255.1	2316.99	2284.5	2279.3	2294.3
49.06	2286.04	2255.08	2316.96	2284.7	2279.7	2293.7
52	2286.05	2254.93	2316.84	2284.8	2279.8	2293.2
54.62	2286.06	2254.86	2316.76	2284.9	2280.1	2292.7
57.22	2286.08	2254.78	2316.7	2284.8	2279.7	2293.1
60.07	2286.08	2254.67	2316.62	2285	2280.1	2292.3
63.28	2286.09	2254.56	2316.54	2285.1	2280.3	2291.8
66.73	2286.1	2254.51	2316.49	2285.2	2280.4	2291.5
70.65	2286.1	2254.2	2316.36	2285.3	2280.8	2290.7
75.06	2286.1	2254.23	2316.28	2285.4	2280.9	2290.4
80.06	2286.12	2254.1	2316.21	2285.5	2281.2	2289.7
85.05	2286.12	2253.93	2316.21	2285.6	2281.4	2289.2
92.33	2286.07	2253.6	2316	2285.6	2281.6	2288.4
100	2286.03	2253.27	2315.87	2285.8	2281.8	2287.6
Δ [CCl ₄]-[CHCl ₃]	0.47	-2.99	-2.41	3.02	5.56	-13.51
$C_2H_5N=C=O$						
0	2277.25	2220.81		2270.1	2227.9	
100	2281.25	2217.65		2274.1	222.8	
Δ [CCl ₄]-[CHCl ₃]	4	-3.13		4	-3.2	
$C_3H_7-N=C=O$						
Δ [CCl ₄]-[CHCl ₃]						
0	2272.63	2259.31		2265.4	2266.6	
100	2282.47	2264.8		2274.3	2273	
Δ [CCl ₄]-[CHCl ₃]	9.84	5.49		8.9	6.5	
$C_4H_9-N=C=O$						
0	2274.57					
100	2278.8					
Δ [CCl ₄]-[CHCl ₃]	4.23					

TABLE 3.4 Infrared data for the antisymmetrical N=C=O stretching frequency and two combination tones for alkyl isocyanates in CHCl₃ and CCl₄ solutions

Alkyl isocyanate	${ m cm}^{-1}$	${ m cm}^{-1}$	${ m cm}^{-1}$	Corrected for FR a.N=C=O cm ⁻¹	Corrected for FR C-N str. + s.CH ₃ bend or CT cm ⁻¹	Corrected for FR C-N str. + s.N=C=O str. cm ⁻¹	Solvent
Methyl	2285.6	2256.3	2318.3	2282.8	2276.3	2301.1	CCl ₄ soln.
	2286	2253.3	2315.9	2285.8	2281.8	2287.6	CHCl ₃ soln.
Ethyl	2277.3	2220.8		2270.1	2227.9		CCl ₄ soln.
	2281.3	2217.7		2274.1	2224.8		CHCl ₃ soln.
Propyl	2272.6	2259.3		2265.4	2266.6		CCl ₄ soln.
	2282.5	2264.8		2274.3	2273		CHCl ₃ soln.
	v asym. N=C=O						
n-Butyl	2274.6						CCl ₄ soln.
	2278.8						CHCl ₃ soln.
Isopropyl	2261.7						CCl ₄ soln.
	2269.7						CHCl ₃ soln.
tert-Butyl	2256.3						CCl ₄ soln.
•	2257.1						CHCl ₃ soln.

[CT is a combination tone].

TABLE 3.5 Infrared and Raman data for alkyl isocyanates

	IR (13)	IR (13)	IR (13)	Raman	
	a.N=C=O str.	a.N=C=O str.	a.N=C=O str.	(15)	
	C_6H_{14}	CCl_4	$CHCl_3$	s.N=C=O str.	
Raman data for	soln.	soln.	soln.	liquid	
Alkyl isocyanate	cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}	E_N^*
Methyl	2283.8	2282.8	2285.8	1437	0.000-0.00
Ethyl	2270.8	2270.1	2274.1	1431.7	-0.100 - 0.07
n-Propyl	2266.9	2265.4	2274.3	1431	-0.115– 0.36
n-Butyl	2270.5	2274.5	2278.7	1431	-0.130 - 0.39
Isopropyl	2262.9	2261.7	2269.7	1422.9	-0.0190 - 0.47
tert-Butyl	2258.8	2256.3	2257.1	1396.9	-0.300-1.54

^{*} Raman NC=O.

TABLE 3.6 Infrared data for 1 wt./vol. % alkyl isothiocyanates in 0 to $100 \, \text{mol} \, \% \, \text{CHCl}_3/\text{CCl}_4 \, \text{solutions} \, [\text{the } \textit{v} \, \text{asym.} \, \text{N=C=S} \, \text{and} \, \text{the first overtone of } \, \text{C-N} \, \text{stretching frequencies in Fermi resonance}]$

CH ₃ -N=C=S [1 wt. % solutions]			Corrected for Fermi res. N=C=S str.	Corrected for Fermi res. 2(C–N str.)
Mole % CHCl ₃ /CCl ₄	cm^{-1}	cm ⁻¹	cm ⁻¹	cm ^{−1}
0	2106.35	2222.81	2129.5	2199.7
10.74	2108.14	2221.46	2131.9	2197.7
15.07	2109.64	2220.65	2134.4	2195.9
26.53	2111.07	2219.47	2136.4	2194.2
32.5	2112.17	2218.74	2137.9	2193
37.57	2113.01	2217.54	2138.9	2191.7
41.93	2113.95	2216.91	2140.2	2190.7
45.73	2114.6	2215.93	2141.1	2189.4
49.06	2115.27	2215.42	2141.9	2188.8
52	2115.8	2215.8	2142.9	2188.7
54.62	2117.04	2214.33	2144.6	2186.8
57.22	2117.31	2214.1	2145	2186.4
60.07	2117.96	2213.76	2145.8	2186
63.28	2118.48	2213.57	2146.5	2185.6
66.73	2119.41	2213.34	2148.1	2184.7
70.65	2119.95	2213.16	2148.6	2184.5
75.06	2120.67	2213.01	2141.6	2184.1
80.06	2121.49	2212.73	2150.9	2183.3
85.05	2122.37	2212.55	2152.1	2182.8
92.33	2123.33	2212.35	2153.5	2182.2
100	2124.38	2212.14	2155.1	2181.5
Mole % CDCl ₃ /CCl ₄		,		
0	2222.81	2106.3	2129.4	2199.8
10.65	2221.58	2108.1	2129.4	2196.7
14.94	2220.78	2109.75	2135.3	2195.2
26.31	2219.62	2110.87	2137.1	2193.4
32.23	2219.04	2112.03	2138.8	2192.3
37.26	2218.06	2113.27	2140.6	2190.7
41.58	2217.4	2114	2141.7	2189.7
45.35	2216.82	2114.66	2142.8	2188.7
48.65	2216.34	2115.31	2143.6	2188
51.57	2215.73	2115.96	2144.4	2187.3
54.17	2215.75	2116.68	2145.4	2186.6
56.74	2214.96	2117.48	2146.5	2185.9
59.57	2214.64	2117.87	2146.9	2185.6
62.75	2214.51	2118.34	2147.8	2185
66.18	2214.23	2118.82	2148.6	2184.4
70.06	2214	2119.69	2149.8	2183.9
74.44	2213.78	2119.09	2150.8	2183.4
79.39	2213.78	2121.15	2150.8	2182.7
84.34	2213.35	2122.07	2152	2182.1
91.56	2213.12	2122.07	2153.5	2183.3
100	2213.12	2122.93	2154.7	2180.7

(continues)

TABLE 3.6 (continued)

CH ₃ -N=C=S [1 wt. % solutions] Mole % CHCl ₃ /CCl ₄	$ m cm^{-1}$	${ m cm}^{-1}$	Corrected for Fermi res. N=C=S str. cm ⁻¹	Corrected for Fermi res. 2(C-N str.) cm ⁻¹	
Mole % CHCl ₃ /CCl ₄					
$C_2H_5-N=C=S$					
0	2093.85		2099.6		
100	2113.9		2124		
$C_3H_7-N=C=S$					
0	2094.8		(not corrected		
100	2100.09		for FR)		
$C_4H_9-N=C=S$					
0	2096.65		2117.6		
100	2106.1		2133.9		
tert C ₄ H ₉ -N=C=S					
0	2077.1		2060.4		
100	2106.7		2090.2		

TABLE 3.6a Vibrational data for organoisothiocyanates

Compound	Phase	a.N=C=S str. cm ⁻¹	2(C-N str.) cm ⁻¹	s.N=C=S str. or $2(s.N=C=S str.)$ cm^{-1}	N=C=S bend cm ⁻¹
$CH_3-N=C=S$ $(CH_3)_3C-N=C=S$ $C_7H_{15}-N=C=S$	vapor [IR] liquid [Raman] liquid [Raman]	2085 (1.240) 2082 (dep.) 2090 (dep.)	2228 (0.233) 2170	~1090 (0.020) 1005 (pol.) 1070 (pol.)	685 (0.020) 625 (pol.) 655 (pol.)
$C_7H_{15}-N=C=S$ $C_6H_5-N=C=S$ $4-Br-C_6H_4-N=C=S$ $2,4,6-(CH_3)_3-C_6H_2-N=C=S$	vapor [IR] Δ [v-l] liquid [Raman] solid [Raman] solid [Raman]	2061 (1.250) [29] 2150 (dep.) 2070 2150	2170sh 2120sh	1110 (0.020) [40] 1245 (pol.) 1250 1245	

TABLE 3.7 Vapor- and neat-phase infrared data for dialkyl and diaryl carbodiimides

Carbodiimide	a.N=C=N str. vapor cm ⁻¹	A	Not corrected for FR a.N=C=N str. OT or CT neat cm ⁻¹	A	Corrected for FR a.N=C=N str. CT or OT cm ⁻¹
dicyclohexyl tert-butyl	2128 2118	1.245 1.225	2110 2045 2110	1.179 0.51 1.895	2090.4 (neat) 2064.6 (neat) 2105.8 (neat)
triphenylmethyl	Not corrected for FR		2040	0.122	2044.2 (neat)
	a.N=C=N OT or CT				
bis-(2-methylphenyl)	2150 2120	1.246 0.498	2139 2105	1.18 0.88	2124.5 (neat) 2119.5 (neat) 2141.4 (vapor) 2122.6 (vapor)
bis-(2,6-diethylphenyl)	2170 2100	1.231 0.212	2158 2098	1.168 0.323	2145 (neat) 2111 (neat) 2147.4 (vapor) 2122.6 (vapor)

Thiols, Sulfides and Disulfides, Alkanethiols, and Alkanedithiols (S—H stretching)

Alkanethiols (S-H stretching)		65
Benzenethiols	(S-H stretching)		66
Alkanethiols a	66		
Alkanethiol, A	lkane Sulfides, and Alk	ane Disulfides	66
Carbon Hydro	gen Modes		67
Dialkyl Sulfide	67		
Dialkyl Disulfi	des, Aryl Alkyl Disulfic	des,	
and Diaryld	isulfide		67
4-Chlorobenze	67		
Phosphorodith)	68	
Alkyl Groups	Joined to Sulfur, Oxyge	en, or Halogen	68
Methyl (Methy	lthio) Mercury		69
References			69
Figures		Tables	
Figure 4-1	71 (68)	Table 4-1	74 (65, 66)
Figure 4-2	73 (69)	Table 4-1a	75 (66)
Figure 4-3	73 (69)	Table 4-2	76 (66, 67)

ALKANETHIOLS (S-H STRETCHING)

Table 4.1 lists IR and Raman S—H stretching frequency data for alkanethiols and benzenethiols in different physical phases.

Table 4-3

Table 4-4

Table 4-5

Table 4-6

78 (67)

79 (67)

80 (68)

81 (68)

In the vapor phase v S–H for alkanethiols and alkanedithiols exhibit a weak IR which occurs in the region 2584–2598 cm $^{-1}$. In CCl₄ solution v S–H occurs at lower frequency in the region 2565–2583 cm $^{-1}$ (1), and in the liquid phase 2554–2585 cm $^{-1}$ (2, 3). There is a decrease in the v S–H frequency in going from vapor to CCl₄ solution, with this most likely resulting from intermolecular hydrogen bonding between S–H and CCl₄ to form S–H····ClCCl₃.

^{*}Numbers in parentheses indicate in-text page reference.

In going from CCl_4 solution to the liquid phase, the v S–H frequency decreases 13–21 cm⁻¹ for alkanethiols, with the exception of tert-butylthiol, which increases in frequency by 6 cm⁻¹. This decrease in frequency is attributed to intermolecular hydrogen bonding between S–H groups $(S-H)_n$. In the case of tert-butylthiol the steric factor of the tert-butyl group apparently prevents such a strong intermolecular hydrogen bond from forming between S–H groups.

The Raman band assigned to v S–H (2571–2583 cm⁻¹, liquid) has weak-medium to strong intensity and it is polarized (2).

BENZENETHIOLS (S-H STRETCHING)

Benzenethiols exhibit v S—H in the region $2560-2608\,\mathrm{cm}^{-1}1$ in the vapor phase, with most absorbing in the region $2582-2608\,\mathrm{cm}^{-1}$ (1). The compounds 2-aminobenzethiol and toluene-3,4-dithiol exhibit v S—H \cdots NH $_2$ at $2560\,\mathrm{cm}^{-1}$ and v S—H \cdots SH at $2570\,\mathrm{cm}^{-1}$. These relatively low frequencies are the result of intramolecular hydrogen bonding between S—H \cdots NH $_2$ and S—H \cdots SH groups, respectively (1).

ALKANETHIOLS AND ALKANEDITHIOLS (C-S STRETCHING)

The C–S stretching (ν C–S) vibration decreases in frequency as the branching on the sulfur α -carbon atom is increased, and the ν C–S mode is often observed as a doublet in both the IR and Raman due to the existence of rotational conformers (5). For example, Table 4.1 shows that ν C–S for methanethiol occurs at 703 cm⁻¹, butanethiol at 651 cm⁻¹, isopropylthiol at 629 and 616 cm⁻¹, and tert-butyl thiol at 587 cm⁻¹. This decrease in frequency is attributed to the increased electron release to the C–S bond progressing in the order CH₃–S to (CH₃)₃CSH, which weakens the C–S bond.

The major rotational conformer has strong Raman band intensity and the lesser rotational conformer has weak- to medium Raman band intensity depending upon the concentrations of the two rotational conformers. In both cases the *v* S—H band is polarized (2). Table 4.1a lists Raman liquid-phase data for some compounds containing SH groups (6).

ALKANETHIOL, ALKANE SULFIDES, AND ALKANE DISULFIDES

Table 4.2 lists IR vapor phase data for alkanethiols, alkane sulfides, and alkane disulfides. The compounds are compared (methanethiol vs dimethyl sulfide vs dimethyl disulfide, etc.) in Table 4.2. In the series for the methyl analog, v C—S decreases in frequency progressing in the order CH₃SH, (CH₃)₂S, and (CH₃S)₂. In the case of the dialkyl sulfides vs dialkyl disulfides, weak IR bands are noted in the regions 760–786 cm⁻¹ and 732–751 cm⁻¹. The higher frequency IR band has more intensity than the lower frequency band, and these IR bands are assigned to v asym.(C)₂S and v sym.(C)₂S, respectively. In the IR v asym.(C)₂S and v sym.(C)₂S are weak, and

these bands are not readily apparent in the higher molecular weight dialkyl sulfides and dialkyl disulfides.

CARBON HYDROGEN MODES

Table 4.2 also lists vibrational assignments for the alkyl groups for the alkanethiols, alkane sulfides, and alkane disulfides as a convenience to the reader.

DIALKYL SULFIDES (ROTATIONAL CONFORMERS)

Table 4.3 lists IR and Raman data for organic sulfides and disulfides (2). Examination of these data show that v asym.(C)₂ and v sym.(C)₂ occur at approximately the same frequency in either CS_2 solution or the liquid phase. In the case of methyl ethyl sulfide an IR band at $729 \, \mathrm{cm}^{-1}$ and the depolarized medium Raman band at $732 \, \mathrm{cm}^{-1}$ are assigned to v asym.(C)₂S. The IR band at $652 \, \mathrm{cm}^{-1}$ and the polarized Raman band at $661 \, \mathrm{cm}^{-1}$ are assigned to v sym.(C)₂S for the low-temperature conformer. The $672 \, \mathrm{cm}^{-1}$ IR band and the $684 \, \mathrm{cm}^{-1}$ polarized medium Raman band are assigned to v sym.(C)₂S for the other rotational conformer. In the case of diethyl sulfide, there is both IR and Raman evidence to support the presence of three rotation conformers. One has C_1 symmetry, one has C_2 symmetry, and one has C_2 symmetry.

DIALKYL DISULFIDES, ARYL ALKYL DISULFIDES, AND DIARYLDISULFIDE

Table 4.3 lists IR and Raman data for dialkyl disulfides, aryl alkyl disulfide, and diaryl disulfide (2). A weak IR band in the region $502-528 \,\mathrm{cm}^{-1}$ and a polarized weak-medium to strong Raman band in the region $501-529 \,\mathrm{cm}^{-1}$ are assigned to $v \,\mathrm{S-S}$ (2). In some cases $v \,\mathrm{S-S}$ is observed as a doublet in both the IR and Raman spectra due to the existence of rotational conformers.

4-CHLOROBENZENTHIOL

Table 4.4 compares the vibrational assignments of 4-chlorobenzenethiol (7) and 1,4-dichlorobenzene (8). Sulfur and chlorine masses are 32 and \sim 35, respectively, the 30 ring modes occur at very similar frequencies, and they have comparable IR and Raman band intensities. The ν S–H mode is observed at 2579 cm⁻¹ in the solid-phase IR spectrum and at 2569 cm⁻¹ in the liquid Raman spectrum (7). Thus, it is helpful in spectra-structure identification of chlorinated benzenethiol isomers to have IR and Raman spectra of comparable chlorinated benzene isomers for reference. Vibrational data and assignments are available for the chlorinated benzenes (8, 9, 10), and normal coordinates data for these chlorinated benzenes have also been determined (11). In-plane vibrations have also been assigned for a large number of differently substituted

benzenes whose IR spectra have been recorded in the vapor phase (12), and for the out-of-plane deformations and their combination and overtones (13).

PHOSPHORODITHIOATES (S-H STRETCHING)

Table 4.5 lists the v S–H frequencies for O,O-(dialkyl) phosphorodithioate and O,O-bis-(2,4,5-trichlorophenyl) phosphorodithioate (14). The v S–H rotational conformer 1 is assigned to a band in the region 2575–2588 cm⁻¹ and v S–H rotational conformer 2 is assigned in the region 2549–2550 cm⁻¹ (14). Figure 4.1 shows IR spectra for O,O-bis-(2,4,5-trichlorophenyl) phosphorodithioate in CS₂ solution in the region 2700–2400 cm⁻¹ for temperatures ranging from 29 °C to -100 °C. The higher frequency band is more intense than the lower frequency band at 29 °C but the lower frequency band steadily increases in intensity as the temperature is decreased and at -100 °C it is more intense than the higher frequency band (14). These data support the postulation that v S–H occurs as a doublet due to rotational conformers (15). Rotational conformers 1 and 2 are assigned to the following empirical structures:

The v S $-H\cdots$ OR mode for conformer 2 is lower in frequency than v S-H for conformer 1 due to intramolecular hydrogen bonding between the S-H proton and the OR oxygen atom S $-H\cdots$ OR (14).

In summary, the v S-H or v S-H \cdots X vibrations are compared here:

	ν S–H cm ⁻¹	$v \text{ S-H} \cdots \text{X cm}^{-1}$
Phosphorodithioates Benzenethiols	2575–2588 2582–2608	2549–2550 2560–2570
Alkane thiols	2565–2583	2300–2370
Range:	2565–2608	2549–2570

ALKYL GROUPS JOINED TO SULFUR, OXYGEN, OR HALOGEN

Table 4.6 compares IR vapor-phase data for compounds where the same alkyl group is joined to S, O, or halogen (1). These data show that it is an aid in spectra structure identification of

unknown chemicals to be able to compare the unknown spectrum with spectra of other chemical compounds containing the same alkyl group.

METHYL (METHYLTHIO) MERCURY

Methyl (methylthio) mercury has the empirical structure $CH_3-Hg-S-CH_3$ (16). Figure 4.2 (top) is a liquid-phase IR spectrum of methyl (methylthio) mercury between KBr plates, and Figure 4.2 (bottom) is a liquid-phase IR spectrum of methyl (methylthio) mercury between polyethylene plates. The band at \sim 72 cm $^{-1}$ is a lattice mode for polyethylene. Figure 4.3 (top) is a Raman liquid-phase spectrum of methyl (methylthio) mercury in a small glass capillary tube. The sample was positioned perpendicularly to both the laser beam and the optical axis of the spectrometer. The bottom Raman spectrum is the same as the top one except that the plane of polarization of the incident beam was rotated through 90° (16).

The $692 \,\mathrm{cm^{-1}}$ IR band and the $700 \,\mathrm{cm^{-1}}$ Raman band are assigned to $v \,\mathrm{C-S}$. The $533 \,\mathrm{cm^{-1}}$ IR band and $537 \,\mathrm{cm^{-1}}$ Raman band are assigned to $v \,\mathrm{C-Hg}$ (16). The $v \,\mathrm{S-Hg}$ vibration is assigned to the $333 \,\mathrm{cm^{-1}}$ IR band and the $329 \,\mathrm{cm^{-1}}$ Raman band. Characteristic CH₃ vibrations for the CH₃-S and CH₃-Hg group are:

CH ₃ -S cm ⁻¹	Assignment	CH ₃ -Hg cm ⁻¹
2984	v asym. CH ₃	2984
2919	v sym. CH ₃	2919
1432	δ asym. CH ₃	1408
1309	δ sym. CH ₃	1177
956	ρ CH ₃	765

REFERENCES

- 1. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data. Philadelphia: Bio-Rad Laboratories Sadtler Div., p. 468.
- 2. Nyquist, R. A. and Kagel, R. O. (1977). *Infrared and Raman Spectroscopy*. Part B, Chap. 6, E. G. Brame, Jr. and J. G. Grasselli, eds., New York: Marcel Dekker, Inc., p. 497.
- 3. Simons, W. W. (ed.) (1978). The Sadtler Handbook of Infrared Spectra. Philadelphia: Bio-Rad Laboratories, Sadtler Div., p. 360.
- 4. Nyquist, R. A. and Evans, J. C. (1961). Spectrochim. Acta, 17: 795.
- 5. Sheppard, N. (1950). Trans. Faraday Soc., 46: 429.
- 6. (19XX). Sadtler Raman Spectra. Philadelphia: Bio-Rad Laboratories Sadtler Div.
- 7. Nyquist, R. A. and Evans, J. C. (1961). Spectrochim. Acta, 17: 795.
- 8. Stojilykovic, A. and Whiffen, D. H. (1958). Spectrochim. Acta, 12: 47.
- 9. Scherer, J. R. and Evans, J. C. (1963). Spectrochim. Acta, 19: 1793.
- 10. Scherer, J. R., Evans, J. C., Muelder, W. W., and Overend, J. (1962). Spectrochim. Acta, 18: 57.
- 11. Scherer, J. R. (1963). Planar Vibrations of Chlorinated Benzenes. Midland, MI: The Dow Chemical Company.

- 12. Nyquist, R. A. (1984). *The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data*. Philadelphia: Bio-Rad Laboratories Sadtler Div., p. 708.
- 13. Nyquist, R. A. (1984). *The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data*. Philadelphia: Bio-Rad Laboratories Sadtler Div., p. 635.
- 14. Nyquist, R. A. (1969). Spectrochim Acta, 25A: 47.
- 15. Popov, E. M., Kabachnik, M. I., and Mayants, L. S. (1961). Russian Chem. Rev., 30: 362.
- 16. Nyquist, R. A. and Mann, J. R. (1972). Spectrochim. Acta, 28A: 511.

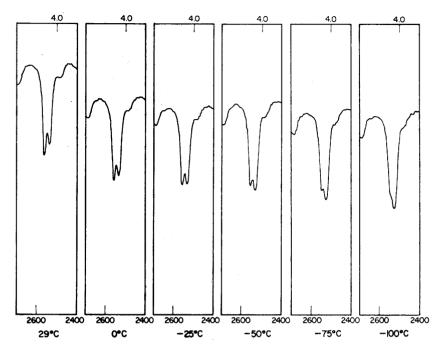


FIGURE 4.1 Infrared spectra of O,O-bis-(2,4,5-trichlorophenyl) phosphorodithioate in 5 wt/vol in CS_2 solution (2700–2400 cm $^{-1}$) at temperatures ranging from 29 to $-100\,^{\circ}C$.

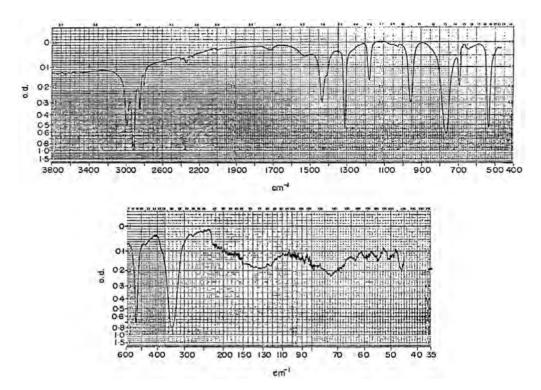


FIGURE 4.2 top: Liquid-phase IR spectrum of methyl (methylthio) mercury between KBr plates in the region $3800-450\,\mathrm{cm}^{-1}$. bottom: Liquid-phase IR spectrum of methyl (methylthio) mercury between polyethylene plates in the region $600-45\,\mathrm{cm}^{-1}$. The IR band near $72\,\mathrm{cm}^{-1}$ is due to absorbance from poly (ethylene).

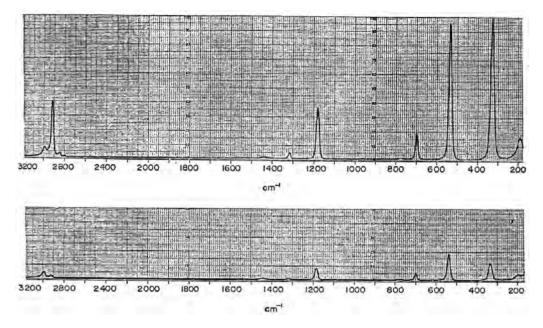


FIGURE 4.3 top: Raman liquid-phase spectrum of methyl (methylthio) mercury in a glass capillary tube. The sample was positioned perpendicularly to both the laser beam and the optical axis of he spectrometer. bottom: Same as top except that the plane of polarization of the incident beam was rotated 90° .

TABLE 4.1 Infrared and Raman data for alkanethiols and benzenethiols

Alkanethiol	[1] (A) IR [vapor] SH str. cm ⁻¹	[2] (B) IR [CCl ₄] SH str. cm ⁻¹	(A)–(B) and [(A)–(C)] cm ⁻¹	[3] (C) IR [liqud] SH str. cm ⁻¹	(B)–(C) cm ⁻¹	(B)–(D) cm ⁻¹	[2] (D) R [liquid] SH str. cm ⁻¹	(2) (E) RI	[2] (F) Dep. Ratio	[2] (G) IR [CS ₂] CS str. cm ⁻¹	[2] (H) IR [liquid] CS str. cm ⁻¹	[2] (I) R [liquid] CS str. cm ⁻¹	(2) (J) RI	[2] (K) Dep. Ratio
R CH ₃ C ₂ H ₅ n-C ₄ H ₉ n-C ₅ H ₁₁ iso-C ₃ H ₇ s-C ₄ H ₉ tert-C ₄ H ₉	2601 ~ 2600 ~ 2590	2584 2580 2576 2579 2572 2579	17 [18] 31	2560 2555 2562 2559 2585	20 21 17 13 -6	0 -4 1 -10 -4	2580 2580 2578 2582 2583	100	0.1 0.09 0.13 0.13	608	610; 619sh	657 657 635; 622sh 625; 618sh 587	100; 85.0 100	0.13; 0.14 p
HSCH ₂ CH ₂ Alkanedithiol R 2,6-(CH ₃) ₂ 2,6-octane		2569 ~ 2550		2550	19	3	2566	100	0.24	635; 667	635; 667	641; 675	89.5; 20.0	0.15; 0.68
Benzenethiol 2-CH ₃ 2-NH ₂ 3-CH ₃ 3-NH ₂ 4-CH ₃ 4-tert-C ₄ H ₉ 4-Cl [4] 4-Br 2,5-Cl ₂	2560 2595 2590 2595 2600	2589	[50] [33] [20] [45]	~ 2560 ~ 2510 ~ 2562 ~ 2550 ~ 2570 ~ 2550 [2579] ~ 2562 ~ 2575 [solid]	10	20	2569	55	p					

TABLE 4.1A Raman data for organic thiols

Compound	SH str. cm ⁻¹ (RI)	C=O str. cm ⁻¹ (RI)
Ethylene bis-(thioglycolate) Ethylene bis-(thiopropionate) Thiophenol Toluenethiol isomers Thioxylenol isomers	2574 (9) 2572 (7) 2569 (1) 2570 (4) 2570 (6)	1734 (3) 1734 (3)

TABLE 4.2 Vapor-phase infrared data for alkanethiols, alkane sulfides, and alkane disulfides

	a.CH ₃	s.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	OT in FR or CT	S–H str.	a.CH ₃ bend and or CH ₂ bend	s.CH ₃ bend		CH ₂		CH ₃ rock	C-C str. or a.CCC str.	s.CCC str.	CH ₂ twist	CH ₂ rock	C-S str.	a.(C) ₂ S str.	s.(C) ₂ S.
Compound	str. cm ⁻¹ (A)				or C1) cm ⁻¹ (A)				cm ⁻¹ (A)	wag cm ⁻¹ (A)	cm ⁻¹ (A)	cm ⁻¹ (A) cm ⁻¹ (A)							str. cm ⁻¹ (A)
	3028		2882		2822	2820	1470	1348				1089					728		
	(0.240)		(1.240)		(0.140)	(0.022)	(0.140)	(0.150)				(0.135)					(0.030)		
Methanethiol*	3018		2864		2864	2601	1452	1331				1071					710		
	(0.250)		(1.040)		(0.100)	(0.015)	(0.090)	(0.060)				(0.095)					(0.037)		
			2858		2828	2592	1445	1319				1060							
			(0.740)		(0.130)	(0.020)	(0.151)	(0.132)				(0.155)							
	3000 (0.370)																		
Methyl sulfide	2968		2935		2860		1439	1311				1011					695		
,	(0.890)		(1.250)		(0.290)		(0.432)	(0.112)				(0.121)					(0.015)		
			2910		2838														
			(1.150)		(0.220)														
Methyldisulfide	3000		2962		2920		1430										688		
-	(0.305)		(1.240)		(0.130)		(0.305)										(0.030)		
Ethanethiol	2991	2960	2900	2880		2598	1455	1390		1280		1100	982			866	659		
	(1.240)	(1.035)	(0.270)	(0.244)		(0.041)	(0.190)	(0.052)		(0.301)		(0.056)	(0.102)			(0.030)	(0.050)		
Ethyl sulfide	2975	2940		2890			1458	1389		1260		1075	975					776	651
	(1.250)	(1.050)		(0.380)			(0.170)	(0.090)		(0.380)		(0.020)	(0.095)					(0.039)	(0.005)
Ethyl disulfide	2987	2940		2884	2838		1454	1383		1251		1045	970					760	645
	(1.250)	(0.930)		(0.315)	(0.060)		(0.190)	(0.110)		(0.470)		(0.055)	(0.081)					(0.081)	(0.010)
Propyl sulfide	2970	2942		2890			1460	1390	1340	1295	1237	1092		896	845			784	742
	(1.235)	(1.035)		(0.585)			(0.185)	(0.104)	(0.030)	(0.149)	(0.202)	(0.040)		(0.095)	(0.019)			(0.050)	(0.039)
Propyl disulfide	2970	2942		2882		2882	1460	1388	1339	1290	1230	1088	1054	894	825			785	732
	(1.240)	(0.610)		(0.340)		(0.040)	(0.140)	(0.078)	(0.045)	(0.139)	(0.170)	(0.020)	(0.019)	(0.020)	(0.015)			(0.040)	(0.019)
1-Butanethiol	2965	2942	2895	2880		2600	1460	1396		1288	1235	1104		960				779	740
		(1.050)	(0.410)	(0.418)		(0.021)	(0.139)	(0.050)		(0.121)	(0.060)	(0.040)		(0.025)				(0.020)	(0.030)
Butyl sulfide	2975	2950		2885			1465	1389	1347	1270	1227	1098	1050	918		880		786	751
		(1.150)		(0.750)			(0.241)	(0.058)	(0.041)	(0.100)	(0.080)	(0.010)	(0.005)	(0.019)		(0.011)		(0.020)	(0.030)
Butyl disulfide	2970	2940		2880			1466	1385	1347	1272	1218	1097	1065	914		876		782	749
	(1.250)	(1.050)		(0.550)			(0.200)	(0.100)	(0.070)	(0.140)	(0.140)	(0.031)	(0.015)	(0.042)		(0.042)		(0.029)	(0.062)

1-Pentanethiol	2972	2940	2880		2600	1462	1385	1348	1277	1226		1102				730	
	(1.140)		(0.370)		(0.020)	(0.101)	(0.032)	(0.030)	(0.072)	(0.032)		(0.020)				(0.024)	
Pentyl disulfide	2965	2938	2872			1465	1385	1348	1271	1259	1210	1105	1075			730	
	(1.122)		(0.385)			(0.240)	(0.060)	(0.090)	(0.080)	(0.080)	(0.050)	(0.010)	(0.010)			(0.035)	
Hexanethiol	2962	2938	2868		2596	1460	1384	1350	1295	1254	1214					740	
	(0.950)	(1.240)	(1.000)		(0.020)	(0.150)	(0.058)	(0.052)	(0.090)	(0.058)	(0.053)					(0.043)	
Hexyl disulfide	2972	2940	2870			1460	1289	1340	1290	1260	1208					730	
	(1.010)	(1.220)	(0.491)			(0.151)	(0.061)	(0.070)	(0.081)	(0.075)	(0.030)					(0.035)	
Heptyl sulfide	2970	2938	2865			1465	1385	1351	1300	1248		1105		900		728	
	(0.580)	(1.220)	(0.420)			(0.120)	(0.031)	(0.049)	(0.040)	(0.048)		(0.005)		(0.005)		(0.015)	
Heptyl disulfide	2970	2935	2865			1460	1380	1350	1300	1240						720	
	(0.560)	(1.250)	(0.410)			(0.131)	(0.040)	(0.040)	(0.042)	(0.050)						(0.030)	
1-Octanethiol	2970	2935	2864	2680	2595	1463	1385	1355	1289	1249	1175	1110				727	
	(0.690)	(1.235)	(0.552)	(0.030)	(0.021)	(0.140)	(0.040)	(0.040)	(0.061)	(0.040)	(0.011)	(0.011)				(0.037)	
Octyl sulfide	2970	2935	2862			1465	1382	1352	1280	1230							
•	(0.364)	(1.204)	(0.244)			(0.080)	(0.029)	(0.029)	(0.028)	(0.025)							
Octyl disulfide	2972	2935	2862			1461	1385	1350	1294	1238		1109				720	
,	(0.660)	(1.250)	(0.550)			(0.140)	(0.059)	(0.050)	(0.069)	(0.049)		(0.010)				(0.030)	
Nonyl sulfide	2970	2936	2862			1461	1380	1350	1301	1255	1191					719	
	(0.290)	(1.240)	(0.368)			(0.090)	(0.020)	(0.020)	(0.040)	(0.250)	(0.040)					(0.020)	
1-Decanethiol	2970	2935	2860		2595	1464	1380	1352	1308			1110		900		716	
	(0.500)		(0.500)		(0.100)	(0.100)	(0.025)	(0.030)	(0.038)			(0.011)		(0.010)		(0.024)	
Decyl sulfide	2970	2935	2864			1460	1381									722	
,	(0.400)	(1.250)	(0.366)			(0.091)	(0.030)									(0.018)	
Decy disulfide	2970	2935	2862			1460		1350	1299								
,	(0.271)		(0.290)			(0.060)		(0.027)	(0.020)								
Dodecyl sulfide	2970	2935	2862			1460	1380	1351	1300							720	
	(0.320)	(1.220)	(0.400)			(0.080)	(0.005)	(0.026)	(0.020)							(0.010)	
1-Tetradecanethiol	2970	2938	2862		2595	1464	()	1355	1305							(010-0)	
	(0.120)	(1.250)	(0.330)		(0.005)	(0.053)		(0.022)	(0.020)								
1-Octadecanethiol	2970	2935	2861		2595	1460		(0.00)	1300							715	
	(0.250)		(0.550)		(0.010)	(0.100)			(0.040)							(0.025)	
Cyclohexanethiol	(0.230)	(1.230)	2860		2596	1453		1345	(0.010)	1266	1210	1129	1000	884	818	735	
Cyclonicamethioi			(0.040)		(0.020)	(0.120)		(0.039)		(0.020)	(0.064)		(0.058)	(0.031)	(0.029)	(0.20)	
			(0.010)		(0.020)	(0.120)		(0.055)		(0.020)	(0.501)	(0.010)	(0.050)	(0.031)	(0.02)	(0.20)	

^{* [}SH bend, 958 (0.058)?].

TABLE 4.3 Infrared and Raman data for organic sulfides and disulfides

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R-S-R' R; R'	IR $[CS_2]$ a.CSC str. cm ⁻¹	IR [neat] a.CSC str. cm ⁻¹	IR [CS ₂] s.CSC str. cm ⁻¹	IR [neat] s.CSC str. cm ⁻¹	R [neat] a.CSC str. cm ⁻¹	RI	Dep. ratio	R [neat] s.CSC str. cm ⁻¹	RI	Dep. ratio
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ ; CH ₃	743	746	691	693	745	15.3	0.81	696	100	0.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH ₃ ; C ₂ H ₅		729		652; 672	732	43.8	0.75	661; 684	100; 40.8	0.19; 0.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_2H_5 ; C_2H_5	761	762	651	652	766	5.9	0.29	651	0.25; C ₁	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		782	781	637	638	782	5.7	0.29	641	0.23; C ₂	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		694	694	694	694	696	55.8	0.66	696	0.66; C _{2v}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_2H_5 ; n - C_4H_9	743	743	651	661	750	28.4	0.72	660	100	0.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									643	38.6	0.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									694	41.5	0.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-C ₄ H ₉ ; n-C ₄ H ₉	745	746	650	660	750	78.6	0.47	659	100	0.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									670	81.3	0.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									688	48.6	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Dep.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R; R'	cm ⁻¹	cm ⁻¹	RI	ratio						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ ; CH ₃	511	511	100	0.06						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_2H_5 ; C_2H_5	511; 526	511; 528	98.0; 49.2	0.06; 0.12						
CH ₃ ; C ₆ H ₅ 507; 525 512; 529 24.8; 23.0 0.22; 0.21 [solid]	iso-C ₄ H ₉ ; iso-C ₄ H ₉	512; 528	516; 528	58,8; 37.5	0.06; 0.14						
[solid]	tert-C ₄ H ₉ ; tert-C ₄ H ₉	502	515	7.2	0.09						
C. H. C. H. mot chosmod 546 26.0	CH_3 ; C_6H_5	507; 525		24.8; 23.0	0.22; 0.21						
$C_6\Pi_5$, $C_6\Pi_5$ HOLODSEIVED 540 20.8	$C_6H_5; C_6H_5$	not observed	546	26.8							

^{*} Low-temperature conformer.

TABLE 4.4 Vibrational assignments for 4-chlorobenzenethiol and 1,4-dichlorobenzene

4-Chlorobenzenethiol	1,4-Dichlorobenzene	
cm ⁻¹	cm ⁻¹	Interpretation
al	al	
3060	3072	C-H stretch
3050	3050	C-H stretch
1575	1573	C-C stretch
1481	1475	Ring stretch
1178	1169	C–H deformation
1098	1106	Ring stretch
1067	1087	Ring stretch
1017	1013	C–H deformation
745	747	Ring deformation
545	546	C–X stretch
329	405	C-X stretch
a2	a2	
951	951	C-H deformation
817	811	C-H deformation
403	405	Skeleton deformation
bl	b1	
935	934	C-H deformation
812	816	C–H deformation
692	689	Skeleton deformation
485	484	Skeleton deformation
293	299	C–X deformation
122	125	C–X deformation
b2	b2	C 11 delormation
3078	3095	C-H stretch
3050	3072	C–H stretch
1575	1573	C–C stretch
1397	1393	C–C stretch
1298	1291	C–H deformation
1260	1260	C–C stretch
1104	1104	C–H deformation
629	628	Ring deformation
342	351	C–X deformation
221	226	C-X deformation
2589	220	S–H stretch
915		S—H deformatio S—H free rotation

TABLE 4.5 The P=S, P-S, and S-H stretching frequencies for O,O-dialkyl phoshorodithioate and O,O-bis-(aryl)phosphorodithoate

(CH ₃ -O-) ₂ P(=S)SH cm ⁻¹	$(C_2H_5-O-)_2P(=S)SH$ cm^{-1}	$(2,4,5-Cl_3-C_6H_4-O-)_2$ P(=S)SH cm^{-1}	Assignment
2588	2582	2575	S-H str., rotational conformer 1
2550	2550	2549	S-H str., rotational conformer 2
670sh	670sh		P=S str., rotational conformer 1
659	659		P=S str., rotational conformer 2
524	535		P-S str. rotational conformer 1
490	499		P-S str., rotational conformer 2

TABLE 4.6 A comparison of the alkyl groups joined to sulfur, oxygen, or halogen

Compound	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	a.CH ₃ bend	CH ₂ bend	o.p.[CH ₃]2 bend	i.p.[CH ₃]2 bend								
Isobutyl disulfide	2970 (1.250)	2962 (0.581)	2905 (0.390)	2880 (0.430)	1469 (0.189		1385 (0.180)	1375 (0.160)	1323 (0.080)	1240 1215 (0.150) (0.080)	1170 (0.101)	1109 (0.021)	1075 946 926 (0.030) (0.030) (0.030)	856 (0.030)	800 (0.030)	tr. C-X str.
Isobutyl chloride	2980	2962		2880	1471	1444	1389	1381	1334 (0.095) 1329	1272 (0.085) 1267 1220	1168	1100	951 938	889 (0.030) 880	812 (0.090) 808 744	
isobuty: emoriae	(1.040)	(1.240)		(0.310)	(0.200)	(0.170)	(0.160)	(0.170)	(0.090) 1322 (0.100)	(0.080) (0.020) 1260 (0.051)	(0.030)	(0.020)	(0.070) (0.090)	(0.025) 87190.030	(0.080) (0.310	
Isopentyl sulfide	2962 (1.250)	2925 (0.500)		2882 (0.330)	1470 (0.120)	1444 (0.069)	1390 (0.97)	1373 (0.086)	1350 (0.050)	1280 1226 (0.075) (0.060)	1170 (0.060)	1110 (0.010)	920 (0.010)	885 (0.007)	745 (0.015)	
Isopentyl disulfide					1471 (0.172)											
Isopentyl chloride	2965 (1.250)	2930 (0.058)		2885 (0.460)	1469 (0.165) 1462 (0.172)		1382 (0.141)	1367 (0.100)	1351 (0.094)	1296 1250 (0.161) (0.060)	1170 (0.059)		930 (0.025)	872 (0.060)	741 (0.180	670 0) (0.135)
Isopentyl bromide	2965 (1.250)	2940 (0.550)		2885 (0.421)	1470 (0.180)		1385 (0.149)	1370 (0.110)	1351 (0.080)	1267 1220 (0.251) (0.180)	1170 (0.080)		1025 950 922 (0.029) (0.015) (0.029)	860 (0.055)	750 652 (0.020) (0.12)	
	a.CH ₃ str.	s.CH ₃ str.	2 (a.CH ₃	a.CH ₃ bend	i.p.[CH ₃]2		o.p[CH ₃]2					s.C[C]2 str	r. C-X str.			
			bend) in FR. (s.CH ₃)		bend		bend									
				1470 (0.180)					1262 (0.240)							
Isopropanethiol* ¹	2979 (1.240)	2930 (0.490)	2898 (0.290)	1459 (0.240) 1444 (0.140)	1390 (0.190) 1382 (0.170)		1370 (0.120)		1251 (0.240) 1242 (0.190)	1165 1090 (0.101) (0.090)	940 (0.020)	861 (0.040)	625 (0.040)			
Isopropyl disulfide	2970 (1.250)	2935 (0.700)	2880 (0.450)	1454 (0.220)			1375 (0.220)	1311 (0.050)	1238 (0.470)	1155 1047 (0.230) (0.190)	928 (0.021)	876 (0.019)	620 (0.010)			
	2995 (1.240)			1470 (0.180)					1276 (0.330)	1166 1075 (0.160) (0.190)		897 (0.122)	639 (0.270)			

TABLE 4.6 (continued)

Compound	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	a.CH ₃ bend	CH ₂ bend	o.p.[CH ₃]2 bend	i.p.[CH ₃]2 bend						
Isopropyl chloride	2980	2941	2885	1450	1390		1372	1315	1265	1161 1061	945		885	630
	(1.250)	(0.361)	(0.160)	(0.240)	(0.270)		(0.170)	(0.035)	(0.430)	(0.190) (0.240)	(0.020)		(0.140)	(0.358)
		2925	2870	1440	1384				1253	1150 1053			87590.120)	
		(0.0140)	(0.120)	(0.120)	(0.250)				(0.350)	(0.172) (0.160)				(0.340)
	2998								1235	1051			889	
	(1.240)								(0.882)	(0.172)			(0.142)	
sopropyl bromide	2982	2932	2885	1470	1385		1372	1330	1229	1160 1042	945		880	540
	(1.240)	(0.630)	(0.291)	(0.270)	(0.380)		(0.260)	(0.037)	(0.932)	(0.520) (0.210)	(0.025)		(0.160))	(0.345)
									1220	1035			875	
									(0.912)	(0.182)			(0.150)	
	2998			1465					1210					
	(1.040)			(0.220)					(0.690)					
sopropyl iodide	2980	2922	2890	1459	1382		1372	1330	1203	1150 1021	950		874	495
	(1.240)	(0.600)	(0.420)	(0.260)	(0.330)		(0.220)	(0.090)	(0.840)	(1.030) (0.159	(0.060)		(0.090)	(0.150)
				1440					1197					
				(0.170)					(0.670)					
				1471						1090	968			
				(0.140)						(0.320)				
opropyl alcohol*2	2980	2890		1460	1380				1250	1147 1080	951		817	
	(1.250)	(0.460)		(0.151)	(0.510)				(0.275)	(0.540) (0.300)	(0.400)		(0.070)	
										1075	941			
										(0.320)	(0.380)			
propyl ether														
	a.CH ₃ str.	s.CH ₃ str.	O.T.	a.CH ₃ bend	i.p.[CH ₃]3 bend		o.p.[CH ₃]3 bend	CH ₃ rock a	a.C[C]3 str.		s.C[C]3 str.		C-X str.	
		2930												
ert-Butyl sulfide	2975	(0.650) 2910	2721	1470	1399		1370	1208	1156	1024 926	810		604	
are Dutyr Sumue	(1.250)	(1.250)	(0.029)	(0.230)	(0.100)		(0.360)	(0.100)	(0.560)	(0.010) (0.010)			(0.021)	
	(1.230)	2891 (0.660) 2925	(0.029)	(0.230)	(0.100)		(0.500)	(0.100)	(0.300)	(0.010) (0.010)	(0.010)		(0.021)	1
		(0.610)											[01 3-3 Str.	J
tert-Butyl disulfide	2970	2902	2720	1461	1392		1368	1214	1160	1017 931	800		564	
	(1.250)	(0.550)	(0.021)	(0.241)	(0.090)		(0.410)	(0.080)	(0.620)	(0.011) (0.011)			(0.030)	
		2890 (0.440)												
		,		1470			1378	1238			819		581	
				(0.170)			(0.631)	(0.180)			(0.039)		(0.180)	
rt-Butyl chloride	2995	2938	2720	1462	1388		1365	1228	1154	1018 930	810		570	500
	(1.224)	(0.500)	(0.020)	(0.220)	(0.329)		(0.290)	(0.212)	(0.550)	(0.015) (0.041)	(0.045)		(0.340)	(0.070)
	2980			1450										
	(1.139)			(0.150)										
								1238			810			
. D . 11	2002	2021	2#20	1.470	1263		1270	(0.1300	1167	27-	(0.070)	WC 2	#2.0	
ert-Butyl bromide	2990	2924	2738	1459	1391		1378	1228	1151	918	802	790	520	
	(0.930)	(0.459)	(0.020)	(0.190)	(0.240)		(0.440)	(0.120)	(1.240)	(0.020)	(0.090)	(0.070)	(0.172)	

tert-Butyl alcohol*3	2980 (1.250)	2900 (0.320)		1490 (0.075) 1472 (0.125) 1460 (0.099)	1389 (0.440)		1371 (0.550) 1360 (0.350)		1214 (0.450)	1141 (0.450)	931 (0.290) 1018 919 (0.060) (0.400)		760 (0.010) 750 (0.034) 735 (0.020)				
tert-Butyl hydroperoxide*4	2990 (1.250)	2945 (0.298)		1478 (0.086) 1469 (0.099) 1452 (0.070)	1379 (0.340) 1369 (0.591)		1369 (0.591)	1330 (0.440) 1320 (0.465)	1248 (0.381)	1210 (0.401) 1202 (0.451)	1140 (0.053)	855 (0.050) 845 (0.150) 835 (0.060)	755 (0.025) 746 (0.040) 732 (0.025)	520 (0.050)			
Di-tert-butyl peroxide	2990 (1.245)	2941 (0.320)		1477 (0.081) 1469 (0.070) 1460 (0.068)	1388 (0.170)		1369 (0.590)		1245 (0.281)	1200 (1.041)	1025 920 (0.030) (0.025)	880 (0.380)	750 (0.060)	531 (0.020)			
tert-Butyl amine* ⁵	2965 (1.250)	2900 (0.480)	[a.NH2 str.] 3402 (0.010)	1470 (0.190)	1380 (0.370)		1368 (0.540)		1235 (0.440)		1125 1032 941 (0.030) (0.040) (0.060) 1110 (0.030)	(0.898)	740 (0.160)				
			[2(trans N=O str.)]										[trans				
tert-Butyl nitrite* ⁶	2985 (0.520)	2945 (0.150)	3280 (0.025)	1472 (0.040)	1388 (0.160)		1376 (0.220)		1250 (0.109)	1200 (0.211)	1142 1035 (0.063) (0.032)	810 (0.501)	N-O str.] 759 (1.240)				
2,2-Dimethylpropio- nitrile	2995 (1.245)	2940(0240)	[CN str.]) 2250 (0.020)	1470 (0.190)	1390 (0.190)		1380 (0.230)		1246 (0.150)	1215 (0.170)	1140 1039 (0.020) (0.011)		759 (0.009)				
2-Methyl-2-nitropropane* ⁷	2999 (0.600)	2948 (0.260)	[a.NO2 str.] 1555 (1.250)	1495 (0.240) 1482 (0.280) 1472 (0.260)	1417 (0.180) 1409 (0.250)		1376 (0.500) 1360 (0.450)		1248 (0.230)	1199 (0.200)	1036 935 (0.010) (0.011)	800 (0.050)	[C-N str.] ? 860 (0.180)	568 (0.061)			
2-Butanethiol* ⁸	2979 (1.240)	2938 (0.830)		s.CH ₂ str. 2890 (0.261)	CH ₃ bend 1459 (0.205)		s. CH ₃ bend 1390 (0.141)		1290 (0.096)	1234 (0.112)	1150 1078 (0.055) (0.043)	1005 (0.060)		965 (0.040)	835 792 670 (0.040) (0.040) (0.020)	625 (0.020)	
2-Chlorobutane	2975	2942		2890	1462	1450	1389		1293	1250	1150 1068	1000		962	838 800 670	625	
2-Bromobutane	(1.250)	(0.760)		(0.368)	(0.240)	(0.265)	(0.220)		(0.210)	(0.220)	(0.110) (0.090)	(0.100)		(0.128)	(0.130) (0.110) (0.130) 611	(0.200) 529	
2-Iodobutane						*6[trans N=O str	:]								(0.070) 590 (0.041)	(0.080) 490 (0.041)	
-						1662											

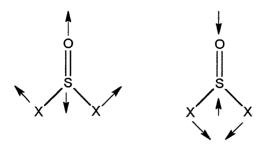
1662 (0.850) *2[OH str.] *3[OH str.] *4[OH str.] *5[s.NH2 str.] *5[NH2 bend] *7[s.NO2 str.] *8[SH str.] "1[SH str.,2580 1652 (0.046)]" (1.150) 3325 1625 1350 3660 3645 3600 1645 2598 (0.130) (0.114) (0.230) (0.040)(0.201) (0.750) (0.445)(0.022)

Sulfoxides, Sulfones, Sulfates, Monothiosulfates, Sulfonyl Halides, Sulfites, Sulfonamides, Sulfonates, and N-Sulfinyl Anilines

S=O Stretchi	ng Frequencies			86													
SO ₂ Stretchin	ng Frequencies			87													
Diakyl Sulfor	nes and Dimethyl Sulfo	oxide		87													
Diaryl Sulfon	ies			88													
Sulfate and T	hiosulfate Phenoxarsin	ne Derivatives		88													
Dialkyl Sulfit	es			89													
Primary Sulfe				89													
Secondary an	Secondary and Tertiary Sulfonamides																
Organic Sulfo	onates			90													
Organosulfonyl Chlorides Organosulfonyl Fluorides																	
													Summary of	S=O and SO ₂ Stretchin	ng Frequencies in		
Different Physical Phases v asym. SO ₂ and v sym. SO ₂ Correlations SO ₂ Stretching Vibrations in CHCl ₃ /CCl ₄ Solutions																	
													Calculated v	SO ₂ Frequencies			93
													Sulfinyl Anili	-			93
References				93													
Figures																	
Figure 5-1	96 (86)	Figure 5-5	100 (92)														
Figure 5-2	97 (92)	Figure 5-6	101 (92)														
Figure 5-3	98 (92)	Figure 5-7	102 (93)														
Figure 5-4	99 (92)	Figure 5-8	103 (93)														
Tables																	
Table 5-1A	104 (86)	Table 5-3	109 (88)														
Table 5-1B	105 (87)	Table 5-4	110 (89)														
Table 5-1C	107 (87)	Table 5-5	111 (89)														
Table 5-1D	108 (88)	Table 5-6	111 (89)														
Table 5-2	109 (88)	Table 5-6A	112 (89)														

Ta	h	les

-				_
Table 5-7	112 (90)	Table 5-10	116 (92)	
Table 5-8	113 (91)	Table 5-11	117 (92)	
Table 5-9	114 (91)	Table 5-12	117 (92)	
Table 5-9A	115 (91)			


^{*}Numbers in parentheses indicate in text page reference.

S=O STRETCHING FREQUENCIES

Table 5.1a lists infrared and Raman data for compounds containing an S=O group. In the vapor phase v S=O occurs in the range 1092-1331 cm⁻¹, and in the neat phase v S=O usually occurs at lower frequency in the range 1035-1308 cm⁻¹. The decrease in the v S=O frequency in going from the vapor to the neat phase is attributed to dipolar interaction between the S=O groups of these molecules in the neat phase. In solution, this type of intermolecular interaction is called a reaction field (RF). The equation for determining RF has been presented previously. This equation includes both the dielectric constants of all molecules present and their refractive indices. Because the contribution of the refractive indices is minor compared to the contribution of the dielectric constants in chemical mixtures, the refractive indices are usually ignored in the RF calculations. The v S=O vibration is highly dependent upon the dielectric surroundings of the S=O groups and the steric factors, which determine the spatial distance between S=O groups or the spatial distance between S=O groups and solvent molecules. Examples are presented here:

Perhaps a better descriptive name for RF is a name such as intermolecular force field association (IFFA).

Figure 5.1 shows plots of the sum of the σ^* constants for the atoms or groups joined to the S=O or SO₂ groups vs the v S=O frequencies and the mean average of the v sym. SO₂ and v sym. SO₂ frequencies (1). The plot for the v S=O frequencies for (CH₃)₂S=O, (CH₃O)₂S=O, and F₂S=O vs $\sigma^{*'}$ is linear, and the plot for v S=O for (CH₃O)₂S=O, (CH₃O)(Cl)S=O, and Cl₂S=O vs $\Sigma \sigma'$ is essentially linear. It is also noted that there is a good correlation between the mean average of v asym. SO₂ and v sym. SO₂ for the (CH₃)₂SO₂, (CH₃O)₂SO₂, and F₂S=O vs $\Sigma \sigma'$. Both v S=O for Cl₂S=O and the mean average for the v SO₂ modes occur at lower frequency than do the linear or pseudolinear plots for the three other S=O analogs. This suggests that mass is also a factor in affecting the v S=O frequencies. Chlorine is heavier than C, O, and F by a factor of 2 to 3. During a cycle of vC=O, the X-S-X bond angle opens and closes as depicted here,

This increased mass of Cl would cause $v \in S=O$ to vibrate at lower frequency, as the Cl atoms impedes the motion of the S atom during a cycle of S=O stretching.

SO₂ STRETCHING FREQUENCIES

Table 5.1b compares the v asym. SO_2 and v sym. SO_2 frequencies for a variety of chemical compounds in the vapor and neat phases. In the vapor phase the v asym. SO_2 vibration occurs in the range 1335-1535 cm⁻¹ and in the neat phase in the range 1295-1503 cm⁻¹. In the vapor phase the v sym. SO_2 vibration occurs in the range 1141-1300 cm⁻¹ and in the neat phase in the range 1125-1270 cm⁻¹ (1-42).

Study of the last two columns in Table 5.1b shows that in all but two cases the v asym. SO_2 shifts more to lower frequency than v sym. SO_2 does in going from the vapor phase to the neat phase. One exception is Cl_2SO_2 where the shift is less for v asym. SO_2 ($24 \, \text{cm}^{-1}$) than for v sym. SO_2 ($28 \, \text{cm}^{-1}$). The effect of the mass of Cl upon the v SO_2 mean average was already discussed here, and this may be the reason for the deviation from this group frequency spectra-structure correlation. It should be noted that the shift to lower frequency for v asym. SO_2 is $18 \, \text{cm}^{-1}$ and for v sym. SO_2 is $19 \, \text{cm}^{-1}$ for Cl_2SO_2 in going from the vapor phase to a CCl_4 solution.

DIALKYL SULFONES AND DIMETHYL SULFOXIDE

Table 5.1c lists vapor-phase IR data for methyl sulfoxide and dialkyl sulfones. The v asym. (C)₂S and v sym. (C)₂S vibrations are assigned at 755 cm⁻¹ and 669 cm⁻¹ for methyl sulfoxide, respectively. Corresponding vibrations for dimethyl sulfone are assigned at 742 cm⁻¹ and 680 cm⁻¹, respectively. Thus, the v asym. (C)₂S vibration decreases 13 cm⁻¹ while the v sym. (C)₂S vibration increases 11 cm⁻¹ when S=O is substituted SO₂[(CH₃)₂S=O to (CH₃)₂SO₂]. The v asym. (C)₂S (742–812 cm⁻¹) and v sym. (C)₂S (680–702 cm⁻¹) vibrations increase in frequency, progressing in the series (CH₃)₂SO₂ through (n-C₆H₁₃)SO₂. However, v sym. SO₂ decreases in frequency (1160–1140 cm⁻¹), progressing in the series (CH₃)₂SO₂ through (n-C₆H₁₃)SO₂. The v asym. SO₂ mode also decreases in frequency (1351–1335 cm⁻¹), progressing in the series (CH₃)₂SO₂ through (n-C₆H₁₅)SO₂, but not in a decreasing order. It is possible that the v sym. (C)₂S (680–702 cm⁻¹) and v sym. SO₂ vibrations (1160–1140 cm⁻¹) are coupled, because both modes belong to the A₁ symmetry species [assuming (CH₃)₂SO₂ has C_{2v} symmetry] together with the fact that as v sym. (C)₂ increases in frequency, v sym. CO₂ decreases in frequency. The v asym. (C)₂S and v asym. SO₂ vibration can not couple, because v

asym. (C)₂S and ν asym. SO₂ belong to the B₁ and B₂ symmetry species, respectively. The only mode that could couple with ν asym. SO₂ would be a ρ (C)₂ B₂ vibration.

Table 5.1d lists vapor- and solid-phase IR data for dimethyl sulfoxide and dialkyl sulfones. When dimethyl sulfoxide goes from the vapor to the liquid phase the v asym. (C)₂S and v S=O vibrations decrease by $60\,\mathrm{cm^{-1}}$ and $50\,\mathrm{cm^{-1}}$ while the v sym. (C)₂S vibration decreases by $5\,\mathrm{cm^{-1}}$. In going from the vapor to the solid phase the v asym. (C)₂S and v sym. (C)₂S vibrations decrease in frequency by 8 and $5\,\mathrm{cm^{-1}}$, respectively. In addition, in going from the vapor to solid phase the v asym. SO_2 and v sym. SO_2 vibrations decrease in frequency by $65\,\mathrm{cm^{-1}}$ and $36\,\mathrm{cm^{-1}}$, respectively. These data are consistent with the spectra-structure correlation that the antisymmetric vibrations of the same group shift more in frequency than the symmetric vibration in going from the vapor phase to the solid or liquid phase.

DIARYL SULFONES

Table 5.2 lists IR vapor- and solid-phase data for diaryl sulfones. In the vapor phase v asym. SO_2 and v sym. SO_2 occur in the range 1348-1354 cm⁻¹ and 1161-1170 cm⁻¹, respectively. In the solid phase, v asym. SO_2 and v sym. SO_2 occur in the ranges 1318-1325 cm⁻¹, and 1145-1170 cm⁻¹, respectively. In all cases, v asym. SO_2 shifts more to lower frequency than v sym. SO_2 in going from the vapor to the solid phase.

SULFATE AND THIOSULFATE PHENOXARSINE DERIVATIVES

Phenoxarsine has the empirical structure presented here:

Table 5.3 lists IR data for these phenoxarsine derivatives in CS₂ solution.

Both of these types of phenoxarsine derivatives exhibit v asym. SO₂ in the region 1320-

 $1328 \,\mathrm{cm^{-1}}$ (35). On the other hand, the v sym. SO_2 mode for the O–SO₂-R analog occurs in the range $1161-1171 \,\mathrm{cm^{-1}}$ while the S–SO₂-R analog exhibits v sym. SO_2 in the range $1125-1141 \,\mathrm{cm^{-1}}$.

Table 5.4 lists IR data for the SO_2 stretching vibrations for compounds in $CHCl_3$ and CCl_4 solutions (37). Table 5.4 lists data for sulfate, a benzenesulfonate, benzenesulfonyl chloride, and two sulfones. In all cases the v asym. SO_2 vibration shifts more in frequency than the v sym. SO_2 vibration in going from solution in CCl_4 to solution in $CHCl_3$. In $CHCl_3$ solution part of the decrease in both v SO_2 frequencies is the result of intermolecular hydrogen bonding of the form $SO_2 \cdots HCCl_3$ and/or $SO_2 (\cdots HCCl_3)_2$ (see discussion on SO_2 containing compounds in mole % $CHCl_3/CCl_4$ solutions). This set of data is consistent with previous discussions about the shifts in v SO_2 frequencies with change in physical phase.

DIALKYL SULFITES

Table 5.5 lists IR data for dialkyl sulfites (see Reference 5). The v S=O frequency decreases in frequency by 6 to $13 \, \mathrm{cm}^{-1}$ in going from the vapor phase to the liquid phase. The IR bands in the ranges 955–1010 cm^{-1} and 685–748 cm^{-1} are attributed to C-O-S stretching vibrations. These IR bands also shift with change of phase.

PRIMARY SULFONAMIDES

Tables 5.6 and 5.6a list IR data for primary sulfonamides in the vapor and solid phases. In the vapor phase, ν asym. SO₂ occurs in the range 1370–1382 cm⁻¹, and in the solid phase in the range 1308–1355 cm⁻¹. In the vapor phase ν sym. SO₂ occurs in the range 1170–1178 cm⁻¹ and in the solid phase it occurs in the range 1140–1158 cm⁻¹. In all cases the ν asym. SO₂ vibration shifts more to lower frequency than does the ν sym. SO₂ vibration in going from the vapor phase to the solid phase. Part of the reason both modes shift to lower frequency in the solid phase is that the NH₂ group is intermolecularly hydrogen-bonded to the SO₂ group of another molecule (NH₂ ··· O₂S).

In the vapor phase, the v asym. NH₂ mode for these primary sulfonamides occurs in the range 3456-3479 cm⁻¹ and in the solid phase it occurs in the range 3323-3397 cm⁻¹. The v sym. NH₂ mode occurs in the range 3365–3378 cm⁻¹ in the vapor phase and in the range 3228–3275 cm⁻¹ in the solid phase. The compounds methanesulfonamide, benzenesulfonamide, and 4-toluenesulfonamide all show that v asym. NH₂ decreases more in frequency than v sym. NH₂ in going from the vapor phase to the solid phase. The decrease in frequency varies between 137–155 cm⁻¹ for v asym. NH₂ and between 120–137 cm⁻¹ for v sym. NH₂ in going from the vapor phase to the solid phase. The situation is reversed in the case of 2-toluenesulfonamide. The decrease in the v sym. NH₂ (90 cm⁻¹) vibration is more than the v asym. NH₂ (68 cm⁻¹) in going from the vapor phase to the solid phase. Moreover, these frequency decreases are much less than those for the other three sulfonamides. These data indicate that the strength of the intermolecular hydrogen bond $(NH_2 \cdots O_2S)$ is less in the case of 2-toluenesulfonamide due to the steric factor of the 2methyl group, which increases the spatial distance between the $NH_2 \cdots O_2S$ groups in the solid phase as compared to this case for the other sulfonamides. The data for 2,4,6-trimethylbenezenesulfonamide presented in Table 5.6a shows the same correlation as for 2-toluenesulfonamide.

The ν S–N mode is assigned in the range 846–918 cm⁻¹ and NH₂ bending is assigned in the range 1545–1569 cm⁻¹. The ν S–N frequency occurs at lower frequency in the vapor phase than

in the solid phase. In the case of NH_2 bending there is no consistent spectra-structure correlation with change in physical phase.

SECONDARY AND TERTIARY SULFONAMIDES

The vN-H frequency for N-butyl 4-toluenesulfonamide and 4-toluenesulfonamilide in the vapor phase are assigned at $3419 \,\mathrm{cm}^{-1}$ and $3402 \,\mathrm{cm}^{-1}$, respectively, as listed in Table 5.6a.

Table 5.7 lists IR data for secondary and tertiary sulfonamides. In the vapor phase, compounds of form R-SO₂–NHR' (where R and R' can be both alkyl, both aryl, or one aryl and one alkyl group) exhibit ν asym. SO₂ in the range 1344–1360 cm⁻¹. The compound whose empirical structure is presented here:

appears to be intramolecularly hydrogen-bonded in the vapor phase, because its v asym. SO_2 frequency occurs at $1325 \, \mathrm{cm}^{-1}$. Its v sym. SO_2 vibration is assigned at $1150 \, \mathrm{cm}^{-1}$ in the vapor phase, and v sym. SO_2 for the other compound occurs at higher frequency in the region $1160-1175 \, \mathrm{cm}^{-1}$. In the case of the one secondary sulfonamide studied in both the vapor and solid

states, v asym. SO_2 decreases $66 \, \mathrm{cm}^{-1}$ while v sym. SO_2 decreases $10 \, \mathrm{cm}^{-1}$.

Tertiary sulfonamides of form R-SO₂N(CH₃)₂, where R is either CH₃ or aryl, exhibit v asym. SO₂ in the range 1362–1365 cm⁻¹ in the vapor phase and in the range 1324–1334 cm⁻¹ in the solid phase. The v asym. SO₂ vibration occurs in the range 1165–1169 cm⁻¹ in the vapor phase and in the range 1142–1164 cm⁻¹ in the solid phase. Again v asym. SO₂ vibration shifts more the v sym. SO₂ vibration in going from the vapor phase to the liquid phase.

The secondary sulfonamides exhibit v S–N in the range 825–920 cm⁻¹, and the tertiary sulfonamides in the range 770–815 cm⁻¹ from the limited spectra included in the study.

The νNH frequencies for the secondary sulfonamides in the vapor phase (excluding the intramolecularly hydrogen-bonded compound just discussed) occur in the range 3400–3422 cm⁻¹. In the series, 4-CH₃C₆H₄SO₂NHR (where R is CH₃, n-CH₄H₉ and tert-C₄H₉) νN -H decreases in the order 3422 cm⁻¹1, 3418 cm⁻¹, and 3400 cm⁻¹. This is the order of increased branching on the nitrogen α -carbon atom which is also on the order of increasing electron release of the alkyl group to the nitrogen atom. The increasing electron release steadily weakens N-H bond, causing νN -H to vibrate at increasingly lower frequency.

ORGANIC SULFONATES

Table 5.8 lists IR data for organic sulfonates. Sulfonates of form CH_3SO_2OR and $C_6H_5SO_2OR$ in the vapor-phase exhibit v asym. SO_2 in the ranges $1368-1380\,\mathrm{cm}^{-1}$ and $1389-1391\,\mathrm{cm}^{-1}$, respectively. Moreover, these same two classes of sulfonates in the vapor phase exhibit v sym. SO_2 in the ranges $1185-1190\,\mathrm{cm}^{-1}$ and $1188-1195\,\mathrm{cm}^{-1}$, respectively.

The two examples in which vapor-phase and liquid phase data are compared show that the shift in frequency in going from the vapor phase to the liquid phase for these sulfonates is larger for the v asym. SO_2 vibration than for the v sym. SO_2 vibration.

Vibrations involving stretching of the C-O-S bonds are assigned in the ranges 934–1019 cm⁻¹ and 751–810 cm⁻¹.

The frequency separation between v asym. SO_2 and v sym. SO_2 in the vapor phase increases in the order: CH_3SO_2OR , 188-192 cm⁻¹; $C_6H_5SO_2OR$, 195-197 cm⁻¹; and $4-CH_3C_6H_4SO_2OR$, 200-202 cm⁻¹.

ORGANOSULFONYL CHLORIDES

Table 5.9 lists IR data for organosulfonyl chlorides. Compounds of forms RSO₂Cl and ArSO₂Cl in the vapor phase exhibit v asym. SO₂ in the range 1390–1408 cm⁻¹ and v sym. SO₂ in the range 1179–1192. In the liquid or solid phase, these same sulfonyl chlorides exhibit v asym. SO₂ and v sym. SO₂ in the regions 1362–1382 cm⁻¹ and 1170–1174 cm⁻¹. With change in physical phase from vapor to neat phases, the v asym. SO₂ vibration shifts more in frequency than the v sym. SO₂ vibration.

An IR band in the region $529-599\,\mathrm{cm}^{-1}$ is assigned to v SCl, and the frequency separation between v asym. SO_2 and v sym. SO_2 varies between $208-236\,\mathrm{cm}^{-1}$ in the vapor phase and $191-212\,\mathrm{cm}^{-1}$ in the neat phase.

ORGANOSULFONYL FLUORIDES

Table 5.9a lists IR data for organosulfonyl fluorides of form ArSO₂E. In the vapor phase, v asym. SO₂ and v sym. SO₂ occur in the ranges 1428–1441 cm⁻¹ and 1211–1235 cm⁻¹, respectively. An exception here is the sulfonyl fluoride substituted in the 2-position with an NH₂ group, because v asym. SO₂ and v sym. SO₂ occur at 1411 and 1204 cm⁻¹, respectively. These normal modes occur at lower frequency due to intramolecular hydrogen bonding as presented here:

In the liquid phase, v asym. SO_2 and v sym. SO_2 occur in the ranges 1399-1420 cm⁻¹ and 1186-1214 cm⁻¹, respectively. Compound A in the liquid phase exhibits v asym. SO_2 and v sym. SO_2 at 1384 cm⁻¹ and 1186 cm⁻¹, respectively. In all cases the v asym. SO_2 vibration shifts more in frequency than the v sym. SO_2 vibration in going from the vapor phase to the liquid phase.

The band in the region 750–811 cm $^{-1}$ is assigned to v S-F in either the liquid or vapor phase. However, v S-F occurs at higher frequency in the vapor phase compared to the liquid phase. The frequency separation between v asym. SO $_2$ and v sym. SO $_2$ varies between 207 and 219 cm $^{-1}$ in the vapor phase and between 190 and 206 cm $^{-1}$ in the liquid phase.

SUMMARY OF S=O AND SO₂ STRETCHING FREQUENCIES IN DIFFERENT PHYSICAL PHASES

Tables 5.10 and 5.11 list IR data for S=O and SO_2 containing compounds in different physical phases. In all cases the v S=O or v SO_2 vibrations occur at lower frequency in the neat phase than in the vapor phase.

v asym. SO₂ AND v sym. SO₂ CORRELATIONS

Figure 5.2 is a plot of v asym. SO_2 vs v sym. SO_2 vapor-phase frequencies for 13 compounds. This plot shows that there is an essentially linear relationship between these two v SO_2 vibrations (24).

Figures 5.3 and 5.4 are plots of v asym. SO_2 and v sym. SO_2 , respectively, vs the summation of the inductive σ' values of the atoms or groups joined to the SO_2 group. These plots show that in general both v SO_2 vibrations decrease in frequency as the electron release of the two groups joined to the SO_2 group decreases in value (24).

SO₂ STRETCHING VIBRATIONS IN CHCl₃/CCl₄ SOLUTIONS

Figure 5.5 shows plots of the v asym. and v sym. SO₂ frequencies for 1 wt./vol.% in mole % CHCl₃/CCl₄ solutions (36). Both v SO₂ vibrations decrease in frequency as the mole % CHCl₃/CCl₄ is increased. The v asym. SO₂ vibration occurs in the range 1317.7–1325.7 cm⁻¹ and the v sym. SO₂ vibration occurs in the range 1153.2–1157.4 cm⁻¹. Over the 0 to 100 mol % CHCl₃/CCl₄ the v asym. SO₂ frequency shifts to lower frequency by \sim 8 cm⁻¹ while the v sym. SO₂ frequency shifts to lower frequency by \sim 4 cm⁻¹. With the first introduction of CHCl₃ to CCl₄ the v SO₂ vibrations show a marked decrease in frequency, and after \sim 35 mol % CHCl₃/CCl₄ both plots are essentially linear. This results from the formation of intermolecular hydrogen bonding between SO₂ ··· HCCl₃, which lowers the v SO₂ frequencies. The continued decrease in both v SO₂ frequencies is the result of the increased RF surrounding methyl phenyl sulfone molecules. Figure 5.6 shows a plot of v asym. SO₂ vs v sym. SO₂ for these same solutions. This plot is not linear over the 0–100 mol % CHCl₃/CCl₄. The break in linearity reflects the formation of different complexes with the methyl phenyl sulfone molecules. This could be where CHCl₃ also intermolecularly hydrogen bonds with the π system of the phenyl group as the mole % CHCl₃/CCl₄ is increased.

Figure 5.7 shows plots of v asym. SO_2 and v sym. SO_2 frequencies for 1 wt./vol.% in mole % $CDCl_3/CCl_4$ solutions (36). Both v SO_2 frequencies decrease as the mole % $CDCl_3/CCl_4$ is increased. With the first addition of $CDCl_3$, intermolecular deutero bonds are formed between SO_2 groups of dimethyl sulfate and $CDCl_3$ (viz. $SO_2 \cdots DCCl_3$). After formation of the intermolecular $SO_2 \cdots DCCl_3$ complexes, the v SO_2 vibrations decrease essentially in a linear manner due to the increased RF surrounding dimethyl sulfate molecules.

Figure 5.8 shows a plot of v asym. SO_2 vs v sym. SO_2 for 1% solutions of dimethyl sulfate in 0 to $100 \text{ mol} \% \text{ CDCl}_3/\text{CCl}_4$. This plot shows that both v asym. SO_2 and v sym. SO_2 decrease essentially in a linear manner as the mole % $CDCl_3/\text{CCl}_4$ is increased.

CALCULATED v SO₂ FREQUENCIES

Using dimethyl sulfone v SO₂ vapor-phase frequencies as the standard, two equations were developed for calculating v asym. SO₂ and v sym. SO₂ frequencies within ± 7 cm⁻¹ (43). These equations are:

vasym.
$$SO_2 = 1351 \text{ cm}^{-1} + \Sigma(X + Y \text{ shift constants in cm}^{-1})$$

vsym. $SO_2 = 1160 + \Sigma(X + Y \text{ shift constants in cm}^{-1})$

For those interested in applying these equations to predict v SO₂ frequencies, the series of shift constants are available in Reference 43.

SULFINYL ANILINES

These sulfinyl anilines have the empirical structure presented here:

These molecules have v asym. N=S=O and v sym. N=S=O vibrations, where the v asym. N=C=O has strong IR band intensity and the v sym. N=C=O IR band has medium intensity. The v asym. N=S=O and v sym. N=S=O vibrations occur in the ranges 1254–1290 cm⁻¹ and

$$N = s = 0$$

1157–1173 cm⁻¹, respectively (see Table 5.12 for details). In the cases where both modes of a sulfinyl aniline derivative were recorded in two physical phases, ν asym. N=S=O shifts more in frequency (24 cm⁻¹) than ν sym. N=S=O (14 cm⁻¹) in going from the vapor phase to CS₂ solution.

REFERENCES

- 1. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data. Philadelphia: Bio-Rad Lab. Inc., Sadtler Div., p. 509.
- 2. Dollish, F. R., Fateley, W. G., and Bentley, F. F. (1974). *Characteristic Raman Frequencies of Organic Compounds*. New York: John Wiley & Sons, pp. 46–53.
- 3. Bellamy, L. J. (1975). The Infrared Spectra of Complex Molecules. New York: John Wiley & Sons, pp. 394-410.
- 4. Lin-Vien, D., Colthup, N. B., Fateley, W. G., and Grasselli, J. G. (1991). The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Boston: Academic Press, Inc., p. 241.
- 5. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data. Philadelphia: Bio-Rad Lab. Inc. Sadtler Div., p. 495.
- 6. Nyquist, R. A. (1984). pp. 479, 517.
- 7. Klaeboe, P. (1968). Acta Chem. Scand., 22: 2817.
- 8. Paetzold, R. and Ronsch, E. (1970). Spectrochim. Acta, 26A: 569.
- 9. Nyquist, R. A., Putzig, C. H., and Leugers, M. A. (1997). Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts. Vol. 3, Boston: Academic Press, p. 285.
- 10. Nyquist, R. A. et al. (1997). Ibid., p. 235.
- 11. Nyquist, R. A. (1984). *The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data*. Philadelphia: Bio-Rad Lab. Inc., Sadtler Div., p. 480.
- 12. Bender, P. and Wood, Jr. J. M. (1955). J. Chem. Phys., 22: 1316.
- 13. Martz, D. E. and Lagemann, R. T. (1956). J. Chem. Phys., 25: 1277.
- 14. Stammreich, H., Forneris, R., and Tavares, Y. (1956). J. Chem. Phys., 25: 1277.
- 15. Geisler, G. and Hanschmann, G. (1972). J. Mol. Struct., 11: 283.
- 16. Detoni, S. and Hadzi, D. (1957). Spectrochim. Acta, 11: 601.
- 17. Ubo, T., Machida, K., and Hanai, K. (1971). Spectrochim. Acta, 27A: 107.
- 18. Fawcett, A. H., Fee, S., Stuckey, M., and Walkden, P. (1987). Spectrochim. Acta, 43A: 797.
- 19. Nyquist, R. A., Putzig, C. H., and Leugers, M. A. (1997). Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts, Vol. 13, Boston: Academic Press, p. 225.
- Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Dates, Philadelphia: Bio-Rad Lab. Inc., Sadtler Div., p. 495.
- 21. Nyquist, R. A. (1984). Ibid., p. 496.
- 22. Nyquist, R. A. (1984). p. 489.
- 23. Nyquist, R. A. (1984). p. 490.
- 24. Nyquist, R. A. (1984). p. 497.
- 25. Nyquist, R. A. (1984). p. 474.
- 26. Nyquist, R. A. (1984). p. 485.
- 27. Nyquist, R. A. (1984). p. 484.
- 28. Bouquet, M., Chassaing, G., Corset, J., Favort, J., and Limougi, J. (1981). Spectrochim. Acta, 37A: 727.
- 29. Joshi, U. C., Joshi, M., and Singh, R. N. (1981). Ind. J. Pure & Appl. Phys., 19: 1226.
- 30. Hanai, K., Okuda, T., Uno, T., and Machida, K. (1975). Spectrochim. Acta, 31A: 1217.
- 31. Uno, T., Machida, K., and Hanai, K. (1966). Spectrochim. Acta, 22: 2065.
- 32. Tanka, Y., Tanka, Y., and Saito, Y. (1983). Spectrochim. Acta, 39A: 159.
- 33. Tanka, Y., Yanka, Y., Saito, Y., and Machida, K. (1978). Bull. Chem. Soc. Ipn., 51: 1324.
- 34. Hanai, K. and Okuda, T. (1975). Spectrochim. Acta, 31A: 1227.
- 35. Kanesaki, I. and Kawai, K. (1970). Bull. Chem. Soc. Jpn., 43: 3298.
- 36. Nyquist, R. A., Sloane, H. J., Dunbar, J. E., and Strycker, S. J. (1966). Appl. Spectrosc., 20: 90.

- 37. Nyquist, R. A. (1990). Appl. Spectrosc., 44: 594.
- 38. (1977) Sadtler Standard Infrared Vapor Phase Spectra. Philadelphia: Bio-Rad Inc., Sadtler Div.
- 39. Nyquist, R. A., Putzig, C. H., and Leugers, M. A. (1997). Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts. Vol. 3, Boston: Academic Press, p. 231.
- 40. Nyquist, R. A. et al. (1997). Ibid., p. 232.
- 41. CS₂ Solution Data. The Dow Chemical Company, Analytical Laboratories.
- 42. Sportouch, S., Clark, R. J. H., and Gaufres, R. (1974). J. Raman Spectrosc., 2: 153.
- 43. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data. Philadelphia: Bio-Rad Lab. Inc., Sadtler Div., p. 506.

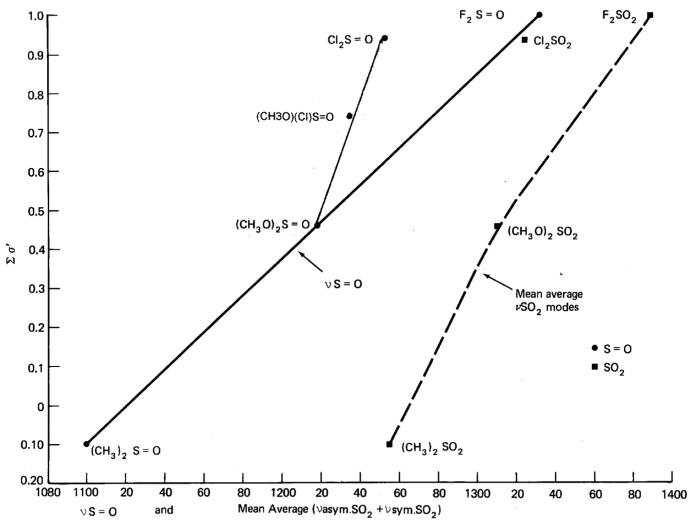


FIGURE 5.1 Plots of ν S=O and the mean average of (ν asym. SO₂ + ν sym. SO₂) vapor-phase frequencies for compounds containing the S=O or SO₂ group vs $\Sigma \sigma'$.

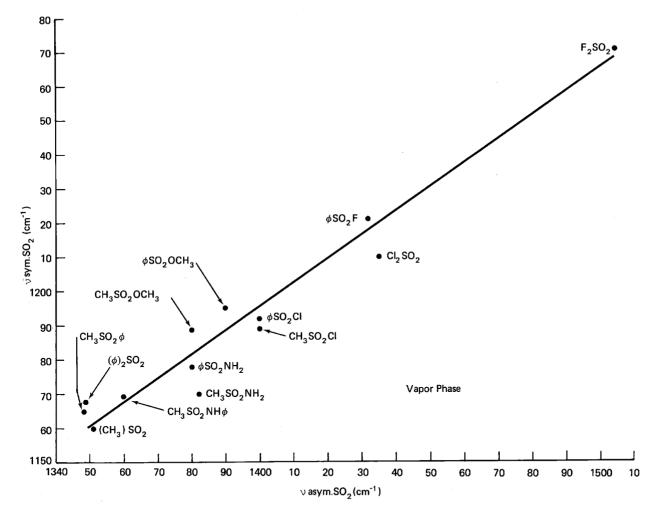


FIGURE 5.2 A plot of v asym; SO_2 vs v sym. SO_2 vapor-phase frequencies for a variety of compounds containing the SO_2 group.

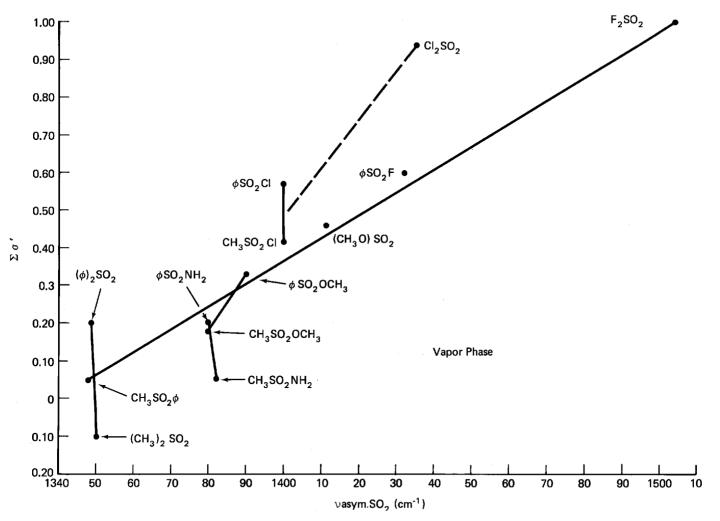


FIGURE 5.3 Plots of v asym. SO_2 vapor-phase frequencies for a variety of compounds containing a SO_2 group vs $\Sigma \sigma'$.

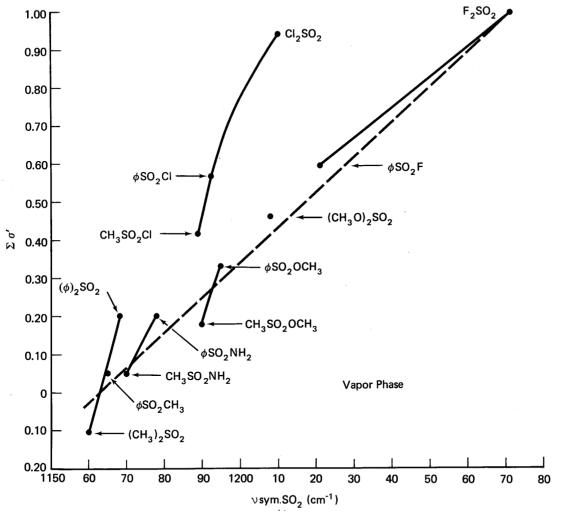


FIGURE 5.4 Plots of v sym. SO₂ vapor-phase frequencies for a variety of compounds containing the SO₂ group vs $\Sigma \sigma'$.

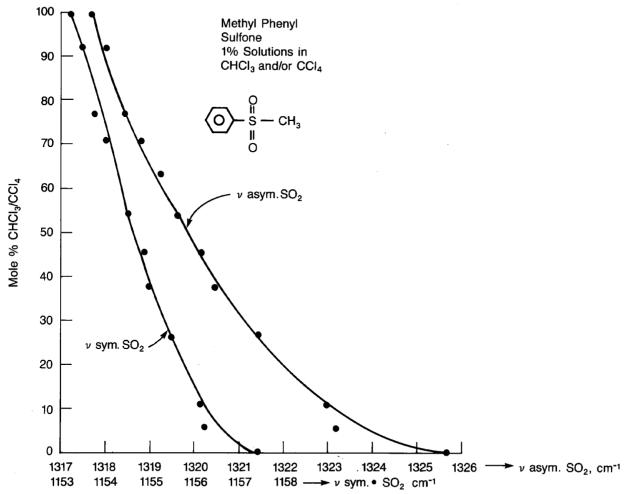
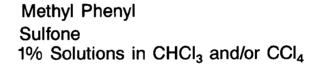



FIGURE 5.5 Plots of v asym. and v sym. SO₂ for methyl phenyl sulfone in 10 wt./vol. solvent vs mole % CHCl₃/CCl₄.

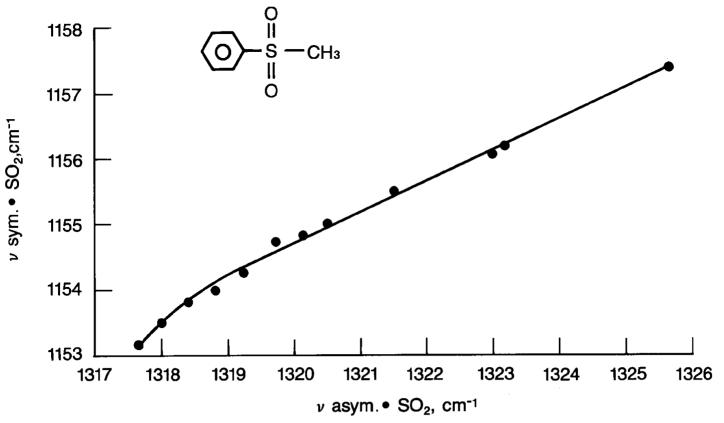


FIGURE 5.6 A plot of v asym. SO₂ vs v sym. SO₂ for methyl phenyl sulfone in 1% wt./vol. solvent vs mole % CHCl₃/CCl₄.

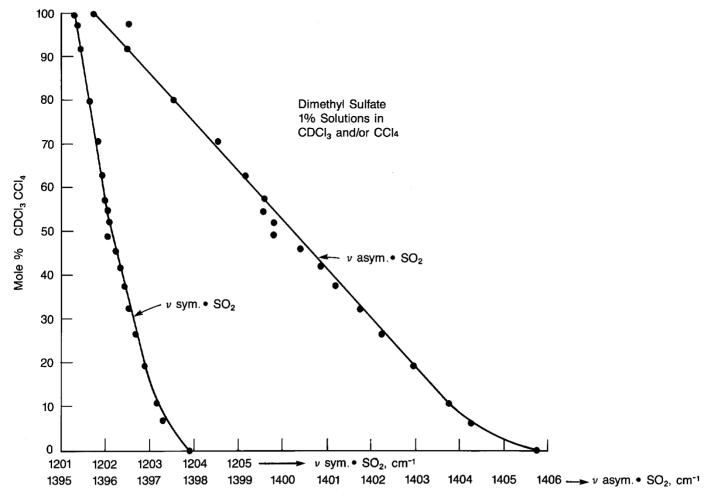


FIGURE 5.7 Plots of v asym. SO₂ and sym. SO₂ for dimethyl sulfate in 1% wt./vol. solvent vs mole % CDCl₃/CCl₄.

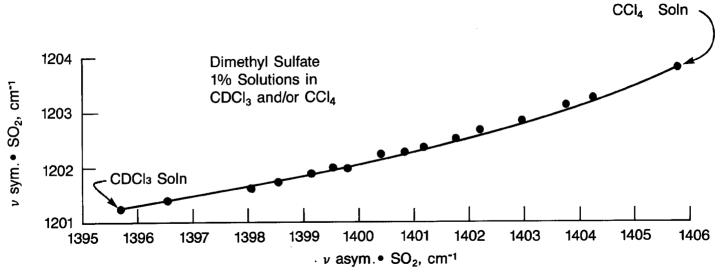


FIGURE 5.8 A plot of v asym. SO₂ vs v sym. SO₂ for dimethyl sulfate 1% wt./vol. solvent vs mole % CDCl₃/CCl₄.

TABLE 5.1a A comparison of the S=O stretching frequencies for S=O containing compounds

Compound	vS=O		vS=O			
or compound	vapor		Ref. 3			
type	cm ⁻¹	References	cm ⁻¹	IR	R	References
$(R-)_2S=O$	[—]		1035–1070	vs	w-m	2, 3, 4
$(CH_3-)_2S=O$	1100	5				
$(CD_3-)_2S=O$	1092	5				
(R-)S(=O)(-Ar)	[—]		1040-1050	vs	w-m	4
$(Ar-)_2S=O$	[—]		1035-1042	vs	w-m	2, 3, 4
$(CH_3-O-)_2S=O$	1218	6	1207	vs	vs, p	7
$(R-O-)_2S=O$	1209-1218	6	1198-1209	s		2, 3, 4
$(CH_2-O)_2S=O$	1240	6				
	1230					
$[(CH_3)_2N]_2S=O$	[—]		1108	vs	m	8
$(CH_3)_2NS(=O)Cl$	[—]		1185	vs	m	8
(R-O-)S(=O)Cl	[—]		1214-1221			2, 4
$(CH_3-O-)S(=O)Cl$	1232	9				
$F_2S=O$	1331	10	1308			12
$Cl_2S=O$	1251	10	1253			13
$Br_2S=O$	[—]		1121			14

TABLE 5.1b A comparison of asym. SO_2 and sym. SO_2 stretching frequencies in different physical phases, and asym. N=S=O and sym. N=S=O frequencies in CS_2 solution

Compound or compound Type	ν asym. SO ₂ vapor cm ⁻¹	v sym. SO ₂ vapor cm ⁻¹	Ref.	v asym. SO ₂ Ref. 3 cm ⁻¹	IR	R	ν sym. SO ₂ Ref. 3 cm ⁻¹	IR	R SO ₂	Ref.	[v asym. SO ₂ vapor]- [v asym. neat or CCl ₄] cm ⁻¹	[v sym. SO ₂ vapor]- [v sym. neat or CCl ₄] cm ⁻¹
SO ₂	1360	1150	19									
(R-) ₂ SO ₂	1335–1371	1141-1160	20	1295-1330	vs	w-m	1125–1152	VS	vs. p 2	2. 3. 15–18	8 [40]–[41]	[9]–[8]
(Ar-)SO2(-R)	1346–1349	1159–1172	21	1325–1334	s	W	1150-1160	s	w	3, 28	[21]–[15]	[9]–[12]
$(Ar)_2SO_2$	1351–1357	1158–1169	21	1328		VS	1162		vs, p	29		[-4]– $[-7]$
(R-)SO ₂ (-OH)	[—]	[—]		1342–1352	VS		1150–1165		, г	16	[-0] [-1]	. ,,,
$(R-)SO_2(-OR)$	<u>[—]</u>	<u>[</u> —]		1352–1358		m	1165–1172		vs, p	2, 4		
$(CH_3-)SO_2(-OR)$	1368–1380	1185–1190	22						, r	, .		
$(Ar-)SO_2(-OR)$	1390-1400	1188–1195	22	1338-1363		W	1185–1192		vs	2, 4	[52]–[37]	[3]–[3]
$(Ar-)SO_2(-OAr)$	1402-1409	1178-1190	23							,		
$Cl-SO_2(-OR)$				1401-1406		m-s	1184-1191	vs	2, 4			
$(R-)SO_2(-SR)$				1305-1344	m-s	1126-1128		s	2, 4			
$(RO-)_2SO_2$	1408-1420	1200-1219	24	1372-1388		s	1188-1196		vs	2, 4	[36]–[32]	[12]-[26]
$(Ar-As-O-)SO_2(-OR$ or $-OAr)$				1325	s		1161–1171	s		34	[69]	[25]
$(CH_3-)SO_2(-NH_2)$	1382	1170	25	1315	vs	m	1145	vs	vs	28		
$(C_2H_5-)SO_2(NH_2)$	1375	1161	25	1515	٧3	111	1115	VS	VS	20		
$(C_2H_5-)SO_2(NH_2)$ $(C_2H_5-)SO_2(NH_2)$	1380	1178	25				1157		s	2, 4	[?]	[21]
(Ar-)SO2(NH2)	1370–1380	1172–1178	25				1157		3	2, 1	[.]	[21]
$(CH_3-)SO_2(-NHC_6H_5)$	1360	1160	25									
$(CH_3-)SO_2$	1325	1150	25									
$(-2NH_2-4-C_6H_3)$	1525	1130	23									
(Ar-)SO2(-NHR)	1344-1366	1160–1175	26									
$(CH_3-)SO_2(-N(CH_3)_2)$	1362	1165	26									
$(Ar-)SO_2(-N(CH_3)_2)$	1365	1169	26									
$(NH_2)_2SO_2$	1303	1107	20	1358	vs		1156	vs		31		
$((CH_3)_2N-)SO_2(-NH_2)$				1335	vs	m	1140	S	s	32		
$((CH_{32}N-)SO_2(-Cl)$	1411	1190	36	1385	vs	m, dp	1177	vs	s, p	33	[26]	[13]
$(CH_3-)SO_2(-F)$	-,	1170		1401		m m	1186	.5	vs vs	2, 4	[20]	[+0]
(Ar-)SO2(-F)	1428-1442	1211-1229	26	1402–1412		w-m	1167–1197		vs	2, 4	[18]_[32]	[11]-[27]

(continues)

TABLE 5.1b (continued)

Compound or compound Type	v asym. SO_2 vapor cm^{-1}	v sym. SO ₂ vapor cm ⁻¹	Ref.	v asym. SO ₂ Ref. 3 cm ⁻¹	IR	R	v sym. SO ₂ Ref. 3 cm ⁻¹	IR R SO ₂ SO		[v asym. SO ₂ vapor]- [v asym. neat or CCl ₄] cm ⁻¹	[v sym. SO ₂ vapor]- [v sym. neat or CCl ₄] cm ⁻¹
$(R-)SO_2(-Cl) \\ (Ar-)SO_2(-Cl) \\ (Cl-)SO_2(-N=C=O) \\ (F-)_2SO_2 \\ (Cl-)_2SO_2 \\ (Cl-)_2SO_2$	1400–1402 1390–1410 1438 [1420, CCl ₄ soln.]	1177–1189 1172–1192 1210 [1191, CCl ₄ soln	27 27 39 .] 40	1366 1361–1384 1442 1497; [1503] 1414	vs vs	w w-m m w s	1171 1169–1184 1182 1263; [1270] 1182	vs s, j vs vs m vs	2, 4 35 2, 4	[34]-[36] [29]-[25] [42] [24]* [18]*	[6]–[5] [3]–[8] [28]* [19]*
				v asym. N=S=C)		v sym. N=S=O cm ⁻¹				
(Ar-)N=S=O [in CS_2 soln.]				1254–1290	s		1158–1175	m	41		

^{*} An exception (see text).

TABLE 5.1c Vapor-phase infrared data for dimethyl sulfoxide and dialkyl sulfones

Sulfone Di	a.CH ₃ str. cm ⁻¹ (A)	a.CH ₂ str. cm ⁻¹ (A)	s.CH ₃ str. cm ⁻¹ (A)	s.CH ₂ cm ⁻¹ (A)	a.CH ₃ bend cm ⁻¹ (A)	-	s.CH ₃ bend cm ⁻¹ (A)	,			a.SO ₂ str. cm ⁻¹ (A)	s.SO ₂ str. cm ⁻¹ (A)	s.SO ₂ str./	s.SO ₂ str./	s.SO ₂ str./	s.SO ₂ str./	- ,
Methyl Propyl Butyl Hexyl	3022 (0.026) 2979 (0.930) 2975 (1.240) 2970 (0.835)	2943 (1.230) 2942 (0.770)		2890 (0.480) 2885 (0.430)	1425 (0.044) 1465 (0.185) 1464 (0.180) 1461 (0.150)	1415 (0.125) 1414 (0.120)			779 (0.195) 810 (0.130)	699 (0.205) 700 (0.130)	1351 (1.250) 1335 (1.250) 1338 (1.240) 1338 (0.680)	1145 (1.250) 1142 (1.040)	2.61 2.42	40.01 1.34 0.84 0.69	11.18 6.09 8.01 7.25	3.85 6.41 8.01 7.25	0.34 1.05 1.01 1.01
											[SO str.]		SO str./	Ratio (A) SO str./ a.CH ₃ str.			
Sulfoxide Methyl	3000 (0.152)		2921 (0.115)		1441 (0.170)	1420 (0.135)	1310 (0.086)	930 (0.135)	755 (0.020)	669 (0.169)	[1100 (1.220)]		10.61	8.03			0.45

TABLE 5.1d Vapor- and solid-phase infrared data for dimethyl sulfoxide and dialkyl sulfones

Sulfone Di	Phase	$a.(C)_2$ str. cm^{-1} (A)	s.(C) ₂ S str. cm ⁻¹ (A)	a. SO_2 str. cm ⁻¹ (A)	s.SO ₂ str. cm ^{-1} (A)	[a.SO ₂ str.]- [s.SO ₂ str.] cm ⁻¹	Ratio (A) A[s.SO ₂ str.]/ A[s.(C) ₂ S str.]	Ratio (A) A[s.SO ₂ str.]/ A[a.(C) ₂ str.]	Ratio (A) A[s.(C) ₂ str.]/ A[a.(C) ₂ str.]
Methyl	vapor	742 (0.270)	680 (0.093)	1351 (1.250)	1160 (1.040)	191	11.18	3.85	0.34
Methyl	solid	750 (0.765)	685 (0.245)	1286 (1.145)	1124 (1.031)	162	4.21	1.35	0.33
,	Δ [v-s]	[8]	[5]	[-65]	[-36]	[-29]			
Propyl	vapor	779 (0.195)	699 (0.205)	1335 (1.250)	1145 (1.250)	190	6.09	6.41	1.05
Propyl	solid	781 (0.300)	699 (0.170)	1309 (stg)	1127 (stg)	182			0.57
				1280 (stg)		153			
	Δ [v-s]	[2]	[0]	[-26]; $[-55]$	[-18]	[-8]; [-37]			
Butyl	vapor	810 (0.130)	700 (0.130)	1338 (1.240)	1142 (1.040)	196	8.01	8.01	1.01
Butyl	solid	810 (0.350)	699 (0.150)	1311 (stg)	1117 (stg)	194			0.43
				1290 (stg)		173			
	Δ [v-s]	[0]	[-1]	[-28]; [-48]	[-25]	[-2]; [-23]			
Hexyl	vapor	812 (0.080)	702 (0.080)	1338 (0.680)	1140 (0.580)		7.25	7.25	1.01
Sulfoxide				[SO str.]					
Methyl	vapor	755 (0.020)	669 (0.169)	[1100 (1.220)]					0.45
Methyl	liquid	695 (0.240)	664 (0.094)	1050 (1.050)					0.39
,	Δ [v-l]	[-60]	[-5]	[-50]					

TABLE 5.2 Vapor- and solid-phase infrared data for diaryl sulfones

Compound Diaryl sulfone	Phase	a.SO ₂ str. cm^{-1} (A)	s.SO ₂ str. cm ⁻¹ (A)	SO ₂ bend cm ⁻¹ (A)	SO ₂ wag cm ⁻¹ (A)	[a.SO ₂ str.]- [s.SO ₂ str.] cm ⁻¹	A[s.SO ₂ str.]/ A[a.SO ₂ str.]
$(4-CH_3-C_6H_4-)SO_2$	vapor	1348 (0.850)	1165 (1.240)	678 (1.024)	558 (0.950)	183	1.46
$(4-CH_3-C_6H_4-)SO_2$	solid	1318 (0.840)	1152 (1.150)		554 (0.830)	166	1.37
		1301 (0.611)			546 (0.835)	149	1.88
	Δ [v-s]	[-30]; $[-47]$	[-13]	[-1]	[-4]; [-12]	[-17]; $[-34]$	
$(4-F-C_6H_4-)_2SO_2$	vapor	1351 (0.470)	1161 (1.240)	680 (0.321)	550 (1.250)	190	2.64
$(4-F-C_6H_4-)_2SO_2$	solid	1325 (0.860)	1155 (1.168)	671 (0.392)	550 (1.032)	170	1.36
	Δ [v-s]	[-26]	[-6]	[-9]	[0]	[-20]	
$(4-Cl-C_6H_4-)_2SO_2$	vapor	1352 (0.534)	1169 (0.773)	631 (1.010)	581 (0.180)	183	1.45
$(4-Cl-C_6H_4-)_2SO_2$	solid	1319 (0.840)	1145 (1.240)	628 (0.855)	574 (0.575)	174	1.48
	Δ [v-s]	[-33]	[-24]	[-3]	[-7]	[-9]	
$(4-NO_2-C_6H_4-)SO_2-$	vapor	1354 (0.790)	1170 (0.750)	607 (1.240)	564 (0.255)	184	0.95
C_6H_5*	solid	1318 (0.650)	1164 (1.150)	608 (0.950)	564 (0.766)	154	1.77
		1301 (0.839)				137	
	Δ [v-s]	[-36]; [-53]	[-6]	[1]	[0]	[-30]; [-47]	
					A[s.NO ₂ str.]/ [a.N	NO ₂ str.]-
		a.N	O ₂ str.	.NO ₂ str.	A[a.NO ₂ str	.] [s.	NO ₂ str.]
$(4-NO_2-C_6H_4)SO_2-C_6$	H ₅ v	apor 1548	(0.500) 13	54 (0.970)	1.94		194
$(4-NO_2-C_6H_4)SO_2-C_6$	-		'	51 (0.950)	0.83		178
2 3 47 2 - 0	,		-19]	[-3]			[-16]

TABLE 5.3 Infrared data for phenoxarsine derivatives containing the $S(SO_2)R$ and $O(SO_2)R$ groups in CS_2 solution

Phenoxarsine					
[CS ₂]	a.SO ₂ str.	s.SO ₂ str.	C-S str.	SO ₂ bend	SO ₂ rock
X=S-SO ₂ -R					
R					
Methyl	1328	1137	740		
Ethyl	1322	1125	751	601	548
n-butyl	1320	1126	753	601	537
Phenyl	1322	1141	715	591	538
$X=O-SO_2-R$					
R					
Methyl	1325	1161			
Phenyl	1325	1171			

TABLE 5.4 Infrared data for the SO₂ stretching vibrations for compounds in CHCl₃ and CCl₄ solutions

Compound	a.SO $_2$ str. CCl $_4$ soln. cm $^{-1}$	a.SO $_2$ str. CHCl $_3$ soln. cm $^{-1}$	[CCl ₄ soln.]– [CHCl ₃ soln.] cm ⁻¹	s.SO ₂ str. CCl ₄ soln. cm ⁻¹	s.SO $_2$ str. CHCl $_3$ soln. cm $^{-1}$	[CCl ₄ soln.]- [CHCl ₃ soln.] cm ⁻¹	[a.SO ₂ str.]- [s.SO ₂ str.] CCl ₄ soln. cm ⁻¹	[a.SO ₂ str.]- [s.SO ₂ str.] CHCl ₃ soln. cm ⁻¹	[CCl ₄ soln.]- [CHCl ₃ soln.] cm ⁻¹
Dimethyl sulfate	1405.7	1395.7	-10	1203.8	1201.8	-2	201.9	193.9	-8
4'-Chlorophenyl 4-chloro- benzenesulfonate	1392.4	1382.9	-9.5	1178.9	1176.8	-2.1	213.5	206.1	-7.4
Benzenesulfonyl chloride	1387.4	1380.3	-7.1	1177.8	1177.1	-0.7	209.6	203.2	-6.4
Diphenyl sulfone	1326.8	1319.1	-7.7	1161.4	1157.6	-3.8	165.4	161.5	-3.9
Methyl phenyl sulfone	1325.7	1317.7	-8	1157.4	1153.2	-4.2	168.3	164.5	-3.8

TABLE 5.5 Infrared data for dialkyl sulfites

Compound R-O-SO-O-R R	Phase	S=O str. cm ⁻¹	A	a.C-O-S str. cm ⁻¹	A	s.C-O-S str. cm ⁻¹	A
CH ₃	vapor	1218	0.588	979	1.25	685	1.142
CH ₃	liquid	1205	0.85	990	0.721	730	0.48
	-			955	0.81	685	0.58
	Δ [v-l]	[-13]		[11]; [-24]		[45]; [0]	
C_2H_5	vapor	1210	0.499	1010	0.84	695	0.735
C_2H_5	liquid	1204		1019		748	
	•			1001		717	
	Δ [v-l]	[-6]		[9]; [-9]		[55]; [22]	

TABLE 5.6 Infrared data for primary sulfonamides in the vapor and solid phases

Compound	l	a.NH ₂ str.		s.NH ₂ str.	1	NH ₂ bendin	g A	N(NH ₂ bending)/	A(NH ₂ bending)	/
R-SO ₂ NH ₂	Phase	cm ⁻¹	A	cm^{-1}	A	cm ⁻¹	A	A(a.NH ₂ str.)	A(s.NH ₂ str.)	
Methane	vapor	3472	0.19	3378	0.173	1553	0.237	1.25	1.37	
Methane	solid	3335	0.98	3258	0.62	1569	0.09	0.09	0.15	
	Δ [v-s]	[-137]		[-120]		[16]				
Benzene	vapor	3479	0.094	3378	0.135	1552	0.136	1.45	1.01	
Benzene	solid	3339	0.659	3241	0.721	1547	0.225	0.34	0.31	
	Δ [v-s]	[-140]		[-137]		[-5]				
4-Toluene	vapor	3478	0.048	3370	0.074	1552	0.08	1.67	1.08	
4-Toluene	solid	3323	1.02	3238	0.94	1545	0.154	0.15	0.16	
	Δ [v-s]	[-155]		[-132]		[-7]				
2-Toluene	vapor	3465	0.073	3365	0.103	1550	0.14	1.92	1.36	
2-Toluene	solid	3397	0.56	3275	0.635		0.175	0.31	0.28	
	Δ [v-s]	[-68]		[-90]		[8]				
		[a.NH ₂ str.]	-							[a.SO ₂ str.]-
			a.SO ₂ str.		s.SO ₂ str.		SN str.		A[s.SO ₂ str.]/	[s.SO ₂ str.]
		cm^{-1}	cm^{-1}	A	cm^{-1}	A	cm^{-1}	A	A[a.SO ₂ str.]	cm^{-1}
Methane	vapor	94	1382	1.262	2 1170	1.035	856	0.402	0.82	212
Methane	solid	77	1308		1140	0.82	871	0.135	0.75	168
			1355		1158	0.65			0.31	197
	Δ [v-s]		[-74]		[-30]		[15]			
	Δ [v-s]		[-27]		[-12]					
Benzene	vapor	101	1380	0.848	3 1178	1.265	851	0.359	1.49	202
Benzene	solid	98	1325	0.97	1152	0.88	900	0.21	0.91	198
	Δ [v-s]		[-55]		[-26]		[45]			
4-Toluene	vapor	108	1380	0.523	3 1172	1.248	851	0.231	2.39	208
4-Toluene	solid	85	1325	0.96	1150	0.875	909	0.29	0.91	175
	Δ [v-s]		[-55]		[-22]		[58]			
2-Toluene	vapor	100	1370	1.1	1172	1.245	846	0.312	1.13	198
2-Toluene	-	122	1311	1.03	1148	1.1	918	0.155	1.03	163
	Δ [v-s]		[-59]		[-24]		[72]			

TABLE 5.6a $\,$ Infrared data for some NH and NH $_2$ vibrations for compounds containing SO $_2$ NH $_2$ or SO $_2$ NH groups in different physical phases

Amides	a.NH $_2$ str. cm $^{-1}$	s.NH $_2$ str. cm $^{-1}$	$ m NH_2~bend \ cm^{-1}$	Temperature	Physical phase
Methanesulfonamide	3470	3375	1552	280℃	vapor
	3335	~3255	~1568		KBr
	135	120	[-16]		vapor-KBr
Benzenesulfonamide	3480	3370	1551	280°C	vapor
	~ 3335	~3242	~1548		KBr
	145	128	[-17]		vapor-KBr
Benzenesulfonamide	3460	3360	1552		vapor
2,4,6-trimethyl	3370	3258	1551		KBr
, , , , , , , ,	90	102	1		vapor-KBr
	NH str.				
p-Toluenesulfonamide	3419			280℃	vapor
N-butyl	~ 3370				KBr
,	49				vapor-KBr
<i>p</i> -Toluenesulfonanilide	3402				vapor
1					KBr
					vapor-KBr

In KBr it is NH₂: O₂S; str. or NH: O₂S str.

TABLE 5.7 Infrared data for secondary and tertiary sulfonamides

Compound R-SO ₂ —NH-R'		NH str		a.SO2 st1	·.	s.SO2 str		SN str.		A[s.SO ₂ str.]/	[a.SO ₂ str.]-
R;R'	Phase	${\rm cm}^{-1}$	A	cm^{-1}	A	cm^{-1}	A	${\rm cm}^{-1}$	A	A[a.SO ₂ str.]	cm^{-1}
CII C II		2.420	0.07	1260	0.17	1160	1 2 4 1	000	0.10	7.0	101
CH ₃ ; C ₆ H ₅	vapor	3420		1360	0.17		1.241		0.18	7.3	191
CH_3 ; 2- NH_2 -4- CH_3 - C_6H_3	vapor	3298	0.189	1325	0.67	1150	1.202	881	0.135	1.79	175
C_6H_5 ; n - C_4H_9	vapor	3420	0.062	1355	0.363	1170	1.21	840	0.09	3.33	185
$4-CH_3-C_6H_4$; CH_3	vapor	3422	0.09	1355	0.49	1175	1.248	825	0.35	2.55	180
$4-CH_3-C_6H_4$; $n-C_4H_9$	vapor	3418	0.083	1356	0.42	1169	1.246	839	0.138	2.97	187
4-CH ₃ -C ₆ H ₄ ; tert-C ₄ H ₉	vapor	3400	0.09	1344	0.58	1160	1.22	852	0.2	2.1	184
$4-CH_3-C_6H_4$; C_6H_5	vapor	3402	0.07	1403	0.54	1170	1.22	888	0.18	2.56	233
$4-CH_3-C_6H_4$; C_6H_5	solid	3255	0.33	1337	0.32	1160	1.07	920	0.25	3.34	177
	Δ [v-s]	[-1.47]]	[-66]		[-10]		[32]			
$R-SO_2-N(-CH_3)_2$											
R											
CH ₃	vapor			1362	1.25	1165	1.049	770	0.7	0.84	197
CH ₃	liquid			1324	stg.	1142	stg.	770	mstg.		182
	Δ [v-l]			[-38]	Ü	[-23]		[0]			
$4-CH_3-C_6H_4$	vapor			1365	0.7	1169	1.25	770	0.87	1.79	196
4-CH ₃ -C ₆ H ₄	solid			1334	stg.	1164	mstg.	815	m		
,	Δ [v-s]			[-31]	J	[-5]	O	[45]			

TABLE 5.8 Infrared data for organic sulfonates

Compound							[a.SO ₂ str.]-				
CH_3-SO_2-O-R		a. SO_2 str.		$s.SO_2$ str.		$A[s.SO_2 str.]/$	$[s.SO_2 str.]$	a.COS str.		s.COS str.	
R	Phase	cm^{-1}	A	cm^{-1}	A	A[a.SO ₂ str.]	cm ⁻¹	cm ⁻¹	A	cm ⁻¹	A
CH ₃	vapor	1380	1.25	1190	1.15	0.92	190	1011	1.2	795	0.95
C_2H_5	vapor	1378	1.25	1190	1.15	0.92	188	1020	0.76	790	0.47
$n-C_4H_9$	vapor	1377	1.16	1185	1.25	1.08	192	950	1.25	800	0.47
n-C ₄ H ₉	liquid	1350	stg.	1173	mstg.		177	934	mstg.	807	m
	Δ [v-l]	[-27]		[-12]	Ü		[-15]	[-16]		[7]	
nC ₁₈ H ₃₇	vapor	1368	0.089	1190	0.17	1.91	178	960	0.087	810	0.04
$C_6H_5-SO_2-O-R$	•										
R											
CH ₃	vapor	1390	0.53	1195	1.25	2.36	195	1015	0.69	775	0.7
C_2H_5	vapor	1391	0.619	1194	1.24	2	197	1019	0.65	770	0.41
n-C ₄ H ₉	vapor	1390	0.49	1194	1.24	2.53	196	950	0.57	789	0.28
$4-CH_3-C_6H_4-SO_2-$	•										
O-R											
R											
CH ₃	vapor	1389	0.531	1189	1.251	2.36	200	1010	0.68	752	0.781
C_2H_5	vapor	1390	0.5	1189	1.24	2.48	201	1012	0.51	751	0.385
n-C ₄ H ₉	vapor	1390	0.275	1188	1.24	4.51	202	949	0.261	772	0.15
n-C ₄ H ₉	liquid	1355	1.14	1173	1.15	1.01	182	940	0.95	785	0.5
	Δ [v-l]	[-35]		[-15]				[-9]		[13]	

TABLE 5.9 Infrared data for organosulfonyl chlorides

Compound R-SO ₂ —Cl	Phase	a.SO ₂ str. cm ⁻¹ (A)	s.SO ₂ str. cm ⁻¹ (A)	SCl str. cm ⁻¹ (A)	CS str. cm ⁻¹ (A)	[a.SO ₂ str.]- [s.SO ₂ str.] cm ⁻¹	A[s.SO ₂ str.]/ A[a.SO ₂ str.]
CH ₃	vapor	1400 (1.240)	1189 (0.690)	540 (1.040)	746 (0.200)	211	0.56
CH ₃	liquid	1362 (1.059)	1170 (1.041)	530 (0.656)	742 (0.370)	192	0.98
	Δ [v-l]	[-38]	[-19]	[-10]	[-4]	[-19]	
C_2H_5	vapor	1402 (1.250)	1177 (0.870)	541 (0.480)	704 (0.400)	225	0.7
Aryl-SO ₂ -Cl							
C_6H_5	vapor	1400 (0.581)	1192 (0.679)	549 (0.459)		208	1.17
C_6H_5	liquid	1372 (0.724)	1181 (0.770)	548 (0.810)		191	1.06
	Δ [v-l]	[-28]	[-11]	[1]		[-17]	
$4-F-C_6H_4$	vapor	1401 (0.579)	1191 (0.910)	525 (0.485)		210	1.57
$4-F-C_6H_4$	liquid	1372 (0.910)	1174 (0.815)	529 (0.775)		198	0.9
	Δ [v-l]	[-29]	[-17]	[14]		[-12]	
$4-CH_3-C_6H_4$	vapor	1399 (0.836)	1189 (1.234)	533 (0.401)		210	1.48
$4-CH_3-C_6H_4$	solid	1379 (0.940)	1189 (0.620)	530 (0.915)		190	0.66
		1364 (0.920)	1172 (0.670)			192	0.73
	Δ [v-s]	,	[0]; [-17]	[-33]		[-20]; [-18]	
$2,5-(CH_3)_2-C_6H_5$	vapor	1390 (0.650)	1179 (1.060)	562 (0.921)		211	1.63
$2,5-(CH_3)_2-C_6H_5$	liquid	1369 (0.965)	1171 (0.980)	569 (0.958)		198	0.81
	Δ [v-l]	[-21]	[-8]	[7]		[-13]	
4-Cl,3-NO ₂ -C ₆ H ₃ *	vapor	1408 (1.149)	1190 (1.250)	559 (0.411)		218	1.09
$4-Cl_3-NO_2-C_6H_3*$	solid	1382 (1.310)	1170 (1.040)	551 (0.810)		212	0.79
0.0 ((01) 0.77	Δ [v-s]	[-26]	[-20]	[-8]		[-6]	0.50
$2,3,4-(Cl)_3-C_6H_2$	vapor	1408 (1.250)	1172 (0.730)	599 (0.481)		236	0.58
$2,4,5-(Cl)_3-C_6H_2$	vapor	1408 (0.850)	1189 (0.939)	560 (1.240)		219	1.1
$2,4,5-(Cl)_3-C_6H_2$	liquid	1371 (1.010)	1170 (0.992)	561 (0.859)		201	0.98
	Δ [v-l]	[-37]	[-19]	[1]		[-18]	
						[a.NO ₂ str.]-	A[s.NO ₂ str.]
		a.NO ₂ str.	s.NO ₂ str.			[s.NO ₂ str.]	A[a.NO ₂ str.]
4-Cl,3-NO ₂ -C ₆ H ₃ *	vapor	1560 (0.620)	1350 (0.465)			210	0.75
4-Cl,3-NO ₂ -C ₆ H ₃ *	solid	1542 (1.310)	1360 (0.910)			182	0.69
, 2 0 3	Δ [v-s]	[-18]	[10]			[-28]	

^{*} reference 38.

^{*} Sadtler Standard Infrared Spectra, Philadelphia, PA.

TABLE 5.9a Infrared data for organosulfonyl fluorides

Compound Aryl-SO ₂ F	Phase	asym.SO ₂ cm ⁻¹ (A)	sym.SO ₂ cm ⁻¹ (A)	SF str. cm ⁻¹ (A)	[asym.SO ₂]- [sym.SO ₂] cm ⁻¹	A[sym.SO ₂]/ A[asym.SO ₂]
C ₆ H ₅	vapor	1429 (0.718)	1221 (1.240)	782 (1.232)	208	1.73
C_6H_5	liquid	1404 (1.100)	1204 (1.250)	780 (0.735)	200	1.14
	[v-l]	[25]	[17]	[2]	[8]	
4-CH ₃ -C ₆ H ₄	vapor	1430 (1.085)	1220 (1.240)	775 (1.095)	210	1.14
4-CH ₃ -C ₆ H ₄	solid	1399 (1.011)	1209 (0.920)	750 (0.905)	190	0.91
			1200 (9.30)			0.92
	[v-s]	[31]	[11]	[25]	[20]; [11]	
$4-NH_2-C_6H_4$	vapor	1428 (0.608)	1218 (1.265)	777 (1.027)	210	2.08
$3-NH_2-C_6H_4$	vapor	1430 (0.812)	1211 (1.245)	780 (0.976)	219	1.53
3-NH ₂ ,4-ClC ₆ H ₃	vapor	1431 (1.050)	1219 (1.150)	785 (1.250)	212	1.1
3-NH ₂ ,4-ClC ₆ H ₃	liquid	1399 (0.790)	1208 (0.639)	771 (1.020)	191	0.81
2, 0 3	[v-l]	[32]	[11]	[14]	[21]	
$2-NH_2-C_6H_4$	vapor	1411 (0.598)	1204 (0.950)	785 (1.229)	207	1.59
$2-NH_2-C_6H_4$	liquid	1384 (0.919)	1186 (0.919)	775 (0.690)	198	1
2 0 ,	[v-l]	[27]	[18]	[10]	[9]	
$2-NO_2-C_6H_4*^1$	vapor	1438 (0.821)	1228 (1.240)	811 (0.808)	210	1.51
$2-NO_2-C_6H_4$	liquid	1411 (1.124)	1210 (1.113)	800	201	0.99
2 -0 4	[v-l]	[18]	[11]	[11]	[9]	
$3-NO_2-C_6H_4*^2$	vapor	1440 (0.931)	1235 (1.131)	800 (0.932)	205	1.21
$3-NO_2-C_6H_4$	liquid	1411 (0.770)	1208 (0.870)	790 (0.621)	203	1.13
2 0 1	[v-l]	[29]	[27]	[10]	[2]	
$3-NO_2-4-Cl-C_6H_3*^3$	vapor	1441 (0.640)	1222 (1.240)	801 (0.850)	219	1.94
3-NO ₂ -4-Cl-C ₆ H ₃	liquid	1420 (0.680)	1214 (0.715)	796 (0.610)	206	1.05
0 1.02 / 01 00-15	[v-l]	[21]	[8]	[5]	[13]	
				[a.NO ₂ str.]–	A[s.NO ₂ str.]/	
		asym.NO ₂ str.	sym.NO ₂ str.	[s.NO ₂ str.]	A[a.NO ₂ str.]	
2-NO ₂ -C ₆ H ₄ * ¹	vapor	1568 (0.939)	1358 (0.349)	210	0.37	
$2-NO_2-C_6H_4$	liquid	1543 (1.270)	1354 (0.974)	189		
- * .	[v-l]	[25]	[4]	[21]		
$3-NO_2-C_6H_4*^2$	vapor	1551 (0.745)	1352 (0.750)	199	1.01	
$3-NO_2-C_6H_4$	liquid	1530 (0.869)	1347 (0.830)	183	0.96	
	[v-l]	[21]	[5]	[16]		
$3-NO_2-4-Cl-C_6H_3*^3$	vapor	1562 (0.360)	1351 (0.264)	211	0.73	
$3-NO_2-4-Cl-C_6H_3$	liquid	1545 (0.669)	1350 (0.619)	195	0.93	
2 0 3	[v-l]	[17]	[1]	[16]		

^{*1} reference 38 *2 reference 38 *3 reference 38

TABLE 5.10 Infrared data for organosulfur compounds containing SO_4 , SO_3 , SO_2N , and SO_2X groups in different physical phases

	a.SO ₂ str. cm ⁻¹	s.SO ₂ str. cm ⁻¹		a.SO ₂ str. cm ⁻¹	a.SO ₂ str. cm ⁻¹	s.SO ₂ str. cm ⁻¹	IR or cm ⁻¹	
Compound	Vapor	Vapor	Temperature	Neat	Neat	Vapor-Neat	Vapor-Neat	Raman
Dimethyl sulfate	1401	1208	200 ℃	1391	1200	10	17	IR
Methanesulfonate								
methyl	1380	1189	200 ℃	1340	1169	40	20	IR
ethyl	1378	1188	240 °C	1344	1168	34	20	IR
Propanesultone	1395	1190	280 ℃	1344	1165	51	25	IR
<i>p</i> -toluenethiolsulfonic acid, S-methyl ester	1360	1155	175℃	~1319	~1134	41	21	IR
Methanesulfonamide	1382	1170	280 ℃	1308 KBr	1140	42	30	IR
Benzenesulfonamide	1380	1175	280 ℃	1328 KBr	1151	52	24	IR
Benzenesulfonamide 2,4,6-trimethyl	1368	1170	280 ℃	1337 KBr	1152	31	18	IR
<i>p</i> -Toluenesulfonamide N-butyl	1410	1170	280 ℃	1315	1150	95	20	IR
<i>p</i> -Toluenesulfonanilide	1404	1170	275 ℃	1336	1160	68	10	IR
Methanesulfonyl chloride	1393	1189		1375	1172	18	17	IR; R
Benzenesulfonyl chloride	1400	1192		1381	1177	18	15	IR; R
<i>p</i> -Toluenesulfonyl chloride	1399	1188	240℃	1378	1188 or 1175	21	0 or 13	IR
p-Bromobenzenesulfonyl	1401	1180	200 ℃	1370	1162	31	18	IR
chloride		1200			1183		17	IR
<i>m</i> -fluorosulfonylbenzene	1410	1192	200 ℃	1390	1184	20	8	IR
sulfonyl chloride	1442	1228		1430	1221	12	7	IR
Benzenesulfonyl fluoride	1429	1221		1411	1215	18	6	IR; R
<i>p</i> -Toluenesulfonyl fluoride	1430	1220	280 ℃	1400	1200	30	20	IR

TABLE 5.11 Infrared data for sulfones and sulfoxides in different physical phases

Compound	a.SO ₂ str. cm ⁻¹ Vapor	s.SO ₂ str. cm ⁻¹ Vapor	Temperature	a.SO ₂ str. cm ⁻¹ Neat	s.SO ₂ str. cm ⁻¹ Neat	a.SO ₂ str. cm ⁻¹ Vapor-Neat	s.SO ₂ str. cm ⁻¹ Vapor-Neat
Sulfone							
Di-butyl	1336	1142	280 ℃	1321CS ₂	1132CS ₂	15* ¹	10*1
Methyl p-tolyl	1350	1164	220℃	1300	1147	50	17
Di-phenyl	1348	1165	280 ℃	1324CS ₂	1160CS ₂	24*1	5* ¹
Di-phenyl	1348	1165	280 ℃	1311	1159	37	6
Phenyl <i>p</i> -tolyl	1347	1167	240 ℃	1309	1155	38	12
Di-(P-tolyl)	1348	1165	280 ℃	1327CS ₂	1158CS ₂	21*1	7* ¹
	SO str.		SO str.	SO str.	SO str.	SO str.	
	cm^{-1}		cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}	
Sulfoxide	Vapor	Temperature	Neat	Vapor-Neat	CCl ₄ soln.	Vapor-CCl ₄ soln.	
Dimethyl	1100	200℃	1050	50	1070	30	
Dimethyl-d ₃	1095	200 ℃	1060; 1031	35; 64	1068	27	
Phenyl methyl	1102	160℃	1050	52	1057	45	
p-Bromophenyl methyl	1101	280 ℃	1050	51	[—]	[—]	
Di-phenyl	1100	280 ℃	1046	\sim 54	1052	48	
Di-(p-tolyl)	1098	280 ℃	1040	~ 58			
Di-(o-tolyl)	1088	280 ℃	1028 KBr	$\sim 60^{*2}$	[—]	[—]	
Di-(p-chlorophenyl)	1090	280℃	1042 Nujol	$\sim 48^{*3}$	[—]	[—]	

^{*&}lt;sup>1</sup> CS₂ soln. *² KBr. *³ Nujol.

TABLE 5.12 Infrared data for N-sulfinyl-4-X-anilines and N,N'-disulfinyl-p-phenylenediamine

N-Sulfinyl 4-X-aniline X	asym. N=S=O CS ₂ soln. cm ⁻¹	sym. N=S=O CS ₂ soln. cm ⁻¹	[asym. N=S=O]- [sym. N=S=O] CS ₂ soln. cm ⁻¹	asym. N=S=O vapor-CS ₂ soln. cm ⁻¹	sym. N=S=O vapor-CS ₂ soln. cm ⁻¹
CH ₃ –O	1254 1272	1158 1162 or 1173	96 110 or 99		
CH ₃	1283	1157	126		
Н	1274; [1298 vapor]	1162; [1176 vapor]	114; [112 vapor]	24	14
NO ₂	1290	1175	115		
	Nujol mull cm ⁻¹	Nujol mull cm ⁻¹	Nujol mull cm ⁻¹		
N,N'-disulfinyl <i>p</i> -phenylenediamine	1271	1166	105		

Halogenated Hydrocarbons

Halopropadie	s s l Halides pyne, 1,2-Epoxypropane, a		120 121 122 122 123 125 127 127 128
Figure 6-1	129 (120)	Figure 6-21	151 (125)
Figure 6-2	130 (120)	Figure 6-22	152 (125)
Figure 6-3	131 (121)	Figure 6-23	153 (125)
Figure 6-4	132 (122)	Figure 6-24	154 (125, 127)
Figure 6-5	133 (123)	Figure 6-25	154
Figure 6-6	134	Figure 6-26	155
Figure 6-7	135	Figure 6-27	155
Figure 6-8	136	Figure 6-28	156
Figure 6-9	137	Figure 6-29	156
Figure 6-10	138	Figure 6-30	157
Figure 6-11	139	Figure 6-31	157
Figure 6-12	140	Figure 6-32	157
Figure 6-13	141	Figure 6-33	158
Figure 6-14	142 (125)	Figure 6-34	158
Figure 6-15	143 (125)	Figure 6-35	159
Figure 6-16	144, 145 (125)	Figure 6-36	160
Figure 6-17	146, 147 (125)	Figure 6-37	161
Figure 6-18	148 (125)	Figure 6-38	162
Figure 6-19	149 (125)	Figure 6-39	163
Figure 6-20	150 (125)		
Tables			
Table 6-1	164 (120, 127)	Table 6-5	168 (123, 127)
Table 6-2	164 (121, 127)	Table 6-6	169 (123, 127)
Table 6-2a	165 (121, 127)	Table 6-7	170 (123, 127)
Table 6-3	166 (121, 127)	Table 6-8	171 (125)
Table 6-4	167 (122, 127)		

^{*}Numbers in parentheses indicate in-text page reference.

HALOGENATED METHANES

The IR and Raman data for halogenated hydrocarbons have been summarized (1, 2), and some examples will be discussed in this chapter.

Table 6.1 lists vapor-phase IR data for the methyl halides (also study Figs. 6.1–6.3). The v C–X stretching frequencies for the F, Cl, Br, and I analogs occur at 1044, 732, 608, and 530 cm⁻¹, respectively. These v C–X vibrations decrease in frequency as the mass of the halogen atom increases, as the C–X bond length increases, as the value of the inductive parameter σ' for X decreases, and as the value of the C–X force constants decreases in value in the order F through I. In general, other carbon-halogen stretching frequencies behave similarly. However, in many cases the situation becomes more complex due to the presence of rotational conformers, and also due to the presence of v asym. CX_n and v sym. CX_n vibrations.

The methylene halides CH_2X_2 exhibit ν asym. CX_2 and ν sym. CX_2 vibrations. The ν asym. CX_2 (F-I) decrease in frequency in the order 1180, 742, 640, and 570 cm⁻¹, respectively (also study Figs. 6.4 and 6.5). The ν sym. CX_2 (F-I) decrease in frequency in the order 1110, 704, 577, and 480 cm⁻¹, respectively. It is noted that in all cases the ν asym. CX_2 mode always occurs at a higher frequency than does the ν sym. CX_2 mode for each CX_2 analog. Moreover, the Raman band intensity for ν sym. CX_2 is higher than the Raman band intensity for ν asym. CX_2 and in both cases of ν CX_2 the Raman band intensities increase in the order F, Cl, Br, and I (3).

Comparison of the v asym. CX₂ and v sym. CX₂ frequency shifts in going from the vapor phase to the liquid phase shows that the v sym. CX_2 vibration shifts more in frequency (9 to -30 cm^{-1}) compared to v asym. CX₂ (-1 to -5 cm⁻¹). In other cases discussed in previous chapters, the opposite spectra-structure correlation has been observed. The asymmetric vibration also shifted more in frequency than did the symmetric vibration with change in physical phase. In the case of the CH_2X_2 compounds, the v asym. CX_2 vibrations occur at lower frequency in the liquid phase than in the vapor phase. However, the v sym. CX₂ vibration for CH₂Cl₂ occurs at a higher frequency in the liquid phase than in the vapor phase, while for CH₂Br₂ and CH₂I₂ the v sym. CX₂ vibrations occur at increasingly lower frequencies in the liquid phase than in the vapor phase, progressing in the order of Br₂ to I₂. In other words, it is apparently easier for v sym. X₂ for the Br2 and I2 analogs to vibrate in the liquid phase than in the vapor phase. Mass and the decreasing C-X force constants progressing in the series F₂ through I₂ apparently account for this frequency behavior during expansion and contraction of surrounding molecules during the v sym. CX₂ modes. In the case of v asym. CX₂, there is an equal tradeoff in energy as the one C-X bond expands toward neighboring molecules and the other C-X bond contracts from neighboring molecules. Hence, there is not as much of a shift in frequency with a change in physical phase for v asym. CX₂ as there is for v sym. CX₂. With a lesser force constant for C-Br and C-I, it is relatively easier for the C-Br or C-I bonds to vibrate without exerting as much pressure against neighboring molecules in the liquid state.

Table 6.2 lists IR and Raman data for trihalomethane and tetrahalomethane (also study Figs. 6.6 through 6.12). The ν asym. F_3 vibration for CHF $_3$ and the ν asym. CF $_4$ vibration for CF $_4$ occur at $1376\,\mathrm{cm}^{-1}$ and $1283\,\mathrm{cm}^{-1}$, respectively. The ν sym. F_3 vibration for CHF $_3$ and the ν sym. F_4 vibration for CF $_4$ occur at $1165\,\mathrm{cm}^{-1}$ and $908\,\mathrm{cm}^{-1}$, respectively. The ν asym. CX $_4$ mode for the CF $_4$, CCl $_4$, and CBr $_4$ occurs at 1283, 797, and 671 cm $^{-1}$, respectively. In the liquid phase, the ν sym. CX $_4$ mode for CF $_4$ through Cl $_4$ occurs at 908, 790, 662, and $560\,\mathrm{cm}^{-1}$, respectively.

Table 6.2a lists a comparison of CX, CX₂, CX₃, and CX₄ stretching frequencies. The C–F_n, C–Cl_n, C–Br_n, and C–I_n stretching frequencies in this methane series occur in the regions 908–1376 cm⁻¹, 667–797 cm⁻¹, 541–662 cm⁻¹, and 480–572 cm⁻¹, respectively. Moreover, the ν CX₂ vibrations occur at higher and lower frequencies than is the case for the ν C–X vibrations. The ν asym. CX₃ vibrations occur at higher frequencies than those of the ν asym. CX₂ vibrations. The other ν CX_n modes do not correlate as well as the ones just discussed.

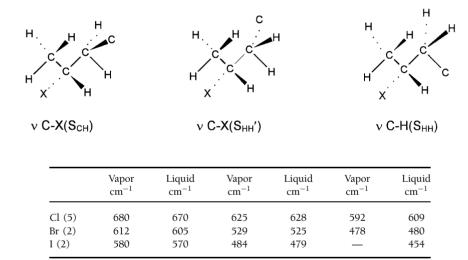
1-HALOALKANES

Haloalkanes exist as rotational conformers, and Shipman *et al.* have specified the notation for describing these rotational conformers (4). The notation P, S, and T denote primary, secondary and tertiary carbon atoms to which the halogen atom is joined. Atom X is joined to the β -carbon atom in a trans position to the α -halogen atom in a zig-zag plane together with subscript C or H for the trans X atom denotes the specific rotational conformer. Applying this nomenclature for the planar skeleton trans rotational conformer for n-propyl chloride,

C , the notation is P
$$_{\mathcal{C}}$$
 , and

for the gauche skeleton rotational conformer,

H , the notation is
$$P_H$$


Table 6.3 lists vapor- and liquid-phase IR data for the carbon-halogen stretching frequencies for 1-haloalkanes. The ν CCl (P_c rotational conformers) for the 1-chloroalkanes (C_3 – C_{18}) occur in the region 738–750 cm⁻¹ in the vapor phase and in the region 732–758 cm⁻¹ in the liquid phase. The ν CCl P_H gauche (skeletal rotational conformer) occurs in the region 660–664 cm⁻¹ in the vapor phase and in the region 650–659 cm⁻¹ in the liquid phase. Study of the absorbance data for $A(\nu$ CCl $P_c)/A(\nu$ CCl P_H) for these 1-chloroalkanes shows that the ratio is less in the liquid phase than in the vapor phase. (Another band in this region in the case of the 1-chloroalkanes results from (CH₂)_n rocking.) These data show that the concentration of P_c and P_H rotational conformers change with change in phase. Assuming that the extinction coefficient for the absorbance values are equal for both the P_c and P_H conformers, the concentrations for 1-chloropropane are 55.6% P_c and 44.4% P_H in the vapor phase and 49.1% P_c and 50.9% P_H in liquid phase.

In the case of 1-bromalkanes, C_4 through C_{19} , v $CBr(P_c)$ occurs in the region 645–653 cm⁻¹, and v $CBr(P_H)$ occurs in the region 562–572 cm⁻¹ in the vapor phase. In all cases, these v CBr modes occur at lower frequency in the liquid phase.

In the case of 1-iodoalkanes, C_3 – C_{16} , the v $Cl(P_c)$ rotational conformer (P_c) occurs in the region 591–598 cm⁻¹ and the v $Cl(P_H)$ rotational conformer occurs in the region 500–505 cm⁻¹ in the vapor phase. Both v $Cl(P_c)$ and v $Cl(P_H)$ occur at lower frequency in the liquid phase and the concentration of the rotational conformer P_c decreases in going from the vapor to the liquid phase. 1-Fluorodecene exhibits v $CF(P_c)$ at 1050 cm⁻¹ and v $CF(P_H)$ at 1032 cm⁻¹ in the vapor phase and v $CF(P_c)$ at 1042 and v $CF(P_H)$ at 1005 cm⁻¹ in the liquid phase.

2-HALOALKANES

The 2-haloalkanes exist as three rotational conformers, and these are S_{CH} , $S_{HH'}$, and S_{HH} . Vaporand liquid-phase IR data are listed in Table 6.4 for 2-halobutane and tert-butyl halide. These data for the 2-halobutenes are also shown here under the rotational conformer for which the ν CX vibration is assigned.

The H' notation is used to specify a rotation of the carbon skeleton away from the zigzag carbon plane at the 3-position where the trans hydrogen is located. In the S_{HH} conformer, the first four carbon atoms are in a planar zigzag configuration while only the first three carbon atoms are in a planar zigzag configuration in the case of conformer $S_{HH'}$.

TERTIARY BUTYL HALIDES

In the liquid phase the tert-butyl halides exhibit ν C $-X(T_{HHH})$ at Cl (570 cm $^{-1}$), Br(520 cm $^{-1}$), and I (492 cm $^{-1}$). In the case of 2-halo-2-methylbutanes, ν CX(T_{HHH}) occurs at Cl (566 cm $^{-1}$), Br (510 cm $^{-1}$), and ν CX(T_{CHH}) occurs at Cl (621 cm $^{-1}$), Br (577 cm $^{-1}$) (2).

Table 6.5 lists vapor- and liquid-phase IR data for 1-halocycloalkanes. 1-Halocycloalkanes containing four or more ring carbon atoms can exist in an equatorial or axial configuration as presented here for 1-halocyclohexanes. In general, the ν CX(S_{cc}) vibrations

$$\begin{array}{ccc} X & & & \\ & & & \\ & & & \\ & & & \\ S_{cc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

occur at higher frequencies than v CH($S_{H'H'}$) vibrations. In the case of 1-halocyclohexane in the vapor phase v CX(S_{cc}) occurs at 740 cm $^{-1}$ (Cl), 692 cm $^{-1}$ (Br), and 664 cm $^{-1}$ (I), and for v CX($S_{H'H'}$) it occurs at 690 cm $^{-1}$ (Cl), 661 cm $^{-1}$ (Br), and 635 cm $^{-1}$ (I). The frequency separation between v CX(S_{cc}) and v CX($S_{H'H'}$) decrease, progressing in the series Cl through I in both the vapor and liquid phases, where

In addition, study of the absorbance ratios for $(A)\nu$ $CX(S_{H'H'})$ shows that their concentration changes in going from the vapor to the liquid state. The concentration of conformer S_{cc} is higher than the concentration of conformer $S_{H'H'}$ in the vapor phase than in the liquid phase. If we assume for purposes of comparison that the extinction coefficients for (A) for each conformer are identical in both the liquid and vapor states, the following calculations can be performed for 1-halocyclohexane:

	Vapor % v CX(S _{cc})	Vapor % v CS(S _{H'H'})	Liquid % v CX(S _{cc})	Liquid % v CX(S _{H'H'})
Cl	72.3	27.7	70.3	29.7
Br	78.1	21.9	65.3	34.7
I	84.2	15.8	72.9	27.1

In the vapor phase, there is only IR evidence for the presence of v CX(S_{cc}) for 1-halocyclopentane and their v CX(S_{cc}) frequencies occur at 620 cm $^{-1}$ (Cl), 520 cm $^{-1}$ (Br), 476 cm $^{-1}$ (I). In the liquid phase v CCl($S_{H'H'}$) is assigned to a very weak Raman band at 588 cm $^{-1}$ (8). No spectral evidence is reported for the presence of v CBr($S_{H'H'}$) or v CH($S_{H'H'}$) conformers.

Table 6.6 lists vapor- and liquid-phase IR data for primary dihaloethane through dihalohexane. These P,P-dihaloalkanes also exist as rotational conformers. It is interesting to compare the highest ν CX vapor-phase frequency in each series:

	v CCl cm ⁻¹	v CBr cm ⁻¹	v Cl cm ⁻¹	
1,2-dihaloethane	730	594	485*	(also study
1,3-dihalopropane	740	655	602	Fig. 6.13)
1,4-dihalobutane	778	659	599	_
1,5-dihalopentane	748	654	584*	
1,6-dihalopentane	740	654	600	
Range:	730–778	594–659	485*-602	

^{*} Liquid.

These v CX frequencies are affected by the number of $(CH_2)_n$ groups between the two CH_2X groups. The v CX frequencies increase in the order n = 0, 1, 2, and then decrease or stay relatively constant in the order n = 3, 4.

It is also interesting to compare the lowest v CX vapor-phase frequency in each series:

	v CCl cm ⁻¹	ν C Br cm ⁻¹	v Cl cm ⁻¹
1,2-dihaloethene	660	545*	_
1,3-dihalopropane	660	559	526
1,4-dihalobutane	660	572	505
1,5-dihalopentane	662	571	492*
1,6-dihalohexane	660	570	509
Range:	660–662	545–572	492*-526

^{*} Liquid.

The v CX rotational conformer that occurs between the high and low v CX rotational conformer is not noted in all of the spectra studied. In this case only the liquid-phase data are compared for the intermediate v CX rotational conformer.

	v CCl* cm ⁻¹	ν C Br* cm ⁻¹	v Cl* cm ⁻¹
1,2-dihaloethane	662	_	_
1,3-dihalopropane	_	585	_
1,4-dihalobutane	735	_	_
1,5-dihalopentane	720	_	604

^{*} Liquid.

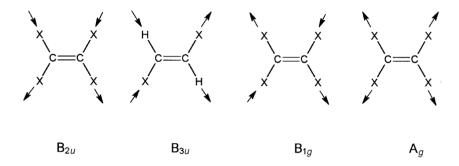
A study of the absorbance ratios in Table 6.6 shows that the concentrations of these conformers change with their physical phase. Take for example, 1,3-dibromopropane (assume the extinction coefficient for (A) is equal). Then the % concentrations of the 3-rotational conformers in the vapor and liquid phases are listed here for 1,3-dibromopropane.

Rotational Conformer, cm ⁻¹	Vapor Phase %	Liquid Phase %	Rotational Conformer, cm ⁻¹
655	30.5	24.8	645
599	26.5	31.4	585
559	43.0	43.8	543

Table 6.7 lists Raman data for the methyl halides and IR and Raman data for tetrabromoalkanes. Vapor-phase IR data for the ν CX frequencies are presented in Table 6.1. Tentative assignments for the ν CBr₂ and ν CBr vibrations are compared here.

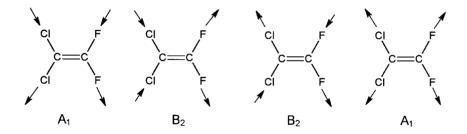
	v_a CBr $_2$ cm $^{-1}$	v_a CBr cm ⁻¹	vs CBr ₂ cm ⁻¹
1,1,2,2-Br ₄ ethane	714	664	537
	v CBr cm ⁻¹	v CBr cm ⁻¹	v CBr cm ⁻¹
1,2,3,4-Br ₄ butane	702	567	532

ETHYLENE, PROPYNE, 1,2-EPOXYPROPANE, AND PROPADIENE HALOGENATED ANALOGS


Table 6.8 lists carbon halogen stretching frequencies for ethylene, propyne, 1,2-epoxypropane, and propadiene analogs. The first six examples, 3-halopropene through 1,3-dihalopropyne all contain an isolated CH_2 —X group. (Study Figs. 6.14 through 6.24.) The ranges for ν CF, ν CCl, ν CBr, and ν Cl for the CH_2 X group are listed here.

v CF	v CCl	v CBrv	Cl
cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹
989–1006	695–740	613–691	570–670

The ν CX vibrations for 1-fluoroethylene (vinyl fluoride) and 1-chloroethylene (vinyl chloride) are assigned at $1157\,\mathrm{cm}^{-1}$ and $719\,\mathrm{cm}^{-1}$, respectively. In the case of the 1,1-dihaloethylenes,


the two vibrations are v asym. CX_2 and v sym. CX_2 . These molecules have C_{2v} symmetry, and v asym. CX_2 vibration belongs to the B_2 symmetry species and the v sym. CX_2 vibration belongs to the A_1 symmetry species. Both of these vibrations decrease in frequency, progressing in the series CF_2CH_2 through CBr_2CH_2 ; v asym. CX_2 occurs in the region 1301–698 cm $^{-1}$, and v sym. CX_2 occurs in the region 922–474 cm $^{-1}$. The compounds, 1-bromo-1-chloroethylene, has C_s symmetry, and both modes belong to the A' symmetry species (study Figs. 6.25 and 6.28) (19).

The tetrahaloethylenes have v_h symmetry, and the four C_2X_4 carbon halogen stretching vibrations are depicted here (see Figs. 6.36 through 6.39).

The B_{2u} and B_{3u} C_2X_4 stretching vibrations are allowed in the IR, and the B_{1g} and A_g C_2X_4 stretching vibrations are allowed in the Raman. In the series C_2F_4 through C_2Br_4 , the B_{2u} v C_2X_4 mode occurs in the region 909–1340 cm⁻¹ and the B_{3u} v C_2X_4 mode occurs in the region 632–875 cm⁻¹.

In the case of 1,1-dichloro-2,2-difluoroethylene, the molecular symmetry is C_{2v} , and the two A_1 and two B_2

 $C_2Cl_2F_2$ stretching vibrations are IR active. These four modes are assigned in the region 890–1219 cm⁻¹.

The ethylenes of form C_2X_3Y have C_s symmetry. The four C_2X_3Y stretching frequencies belong to the A' symmetry species. Trichloroethylene has three C_2Cl_3 stretching frequencies and one ν CH mode. Three of the C_2X_3Y stretching vibrations occur in the ranges 1329-1330 cm⁻¹, 1202-1211 cm⁻¹, and 1025-1052 cm⁻¹ for both the C_2F_3Cl and C_2F_3Br analogs, and they occur in the ranges 931-1181 cm⁻¹, 852-987 cm⁻¹, and 639-869 cm⁻¹ for both C_2Cl_3F and C_2HCl_3 .

HALOPROPADIENES

The 1-halopropadienes have C_s symmetry and the v CX vibration decrease in frequency, progressing in the series Cl, 767 cm⁻¹, Br, 681 cm⁻¹, and I, 609 cm⁻¹ (study Figs. 6.29–6.35). Evidently these v CX vibrations are complex, because v CBr for 1-bromopropadiene-1-d occurs at 636 cm⁻¹ while v CBr for 1-bromopropadiene occurs at 681 cm⁻¹, a shift of 45 cm⁻¹ by substitution of D for H on the same C–Br carbon atom. The v CF vibration for 1-fluoropropadiene is estimated to occur at 1050 cm⁻¹ (23).

Halogen atoms joined to a carbon–carbon triple bond occur at relatively low frequency. In the case of 1-halopropyne and 1,3-dihalopropyne the $v \equiv C - X$ vibrations occur in the range Cl, 574–617 cm⁻¹, Br, 464–512 cm⁻¹, and I, 403 cm⁻¹ (study Figs. 6.30 and 6.39) (16, 24).

Figure 6.24 shows the approximate skeletal bending modes of propyne, 3-halopropynes, and 1,3-dihalopropynes. Vibrations involving bending of the carbon–halogen bonds occur at low frequencies (25).

HALOGENATED METHANES WITH T_d AND C_{3v} SYMMETRY

Compounds for form CX_4 have T_d symmetry. The ν asym. CX_4 mode is triply degenerate and decreases in frequency, progressing in the series CF_4 , $1265 \, \mathrm{cm}^{-1}$, CCl_4 , $776 \, \mathrm{cm}^{-1}$, and CB_4 , $672 \, \mathrm{cm}^{-1}$. The ν sym. CX_4 mode decreases in frequency, progressing in the series CF_4 , $904 \, \mathrm{cm}^{-1}$, CCl_4 , $458 \, \mathrm{cm}^{-1}$, and CB_7 , $267 \, \mathrm{cm}^{-1}$ (26).

Compounds of form CX_3Y have C_{3v} symmetry. The v asym. CX_3 mode is doubly degenerate. These molecules also have a v sym. CX_3 vibration and a v CY vibration. These three stretching frequencies also decrease in frequency, progressive in the order F through Br.

Compound: (22)	v asym. CX ₃ cm ⁻¹	ν sym. X ₃ cm ⁻¹	v CY cm ⁻¹
CF ₃ Cl	1210	1101	780
CF ₃ Br	1201	1080	759
CCl ₃ F	840	930	1080

Study of Tables 6.1 through 6.8 shows that different *v* CX frequencies overlap in several cases in the Cl through I series. More extensive coverage of the vibrational spectra and frequencies of the halogenated alkanes can be found in References 1–10.

Standard vapor and neat IR spectra and standard Raman spectra of these halogenated materials as well as other organic compounds are readily available from Bio-Rad Sadtler Division, and these spectra are valuable in identifying unknown chemical compositions.

Figures 6.1 through 6.39 are included as a convenience to the reader, since some of the data discussed in this chapter were obtained from these IR and Raman spectra.

REFERENCES

- 1. Lin-Vien, D., Colthup, N. B., Fateley, W. G., and Grasselli, J. G. (1991). The Infrared and Raman Characteristic Frequencies of Organic Molecules. Boston: Academic Press, Inc., p. 29.
- 2. Nyquist, R. A. (1984). *The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data*. Philadelphia: Bio-Rad Laboratories, Sadtler Div.
- 3. Schrader, B. (1989). Raman/Infrared Atlas of Organic Compounds. 2nd Edition, New York, VCH-Verl.-Ges. Weinkeim.
- 4. Shipman, J. J., Folt, V. L., and Krimm, S. (1962). Spectrochim. Acta, 18: 1603.
- 5. George, W. O., Goodfield, J. E., and Maddams, W. F. (1985). Spectrochim. Acta, 41A: 1243.
- 6. Rothschild, W. G. (1966). J. Chem. Phys., 45: 1214.
- 7. Durig, J. R., Karriker, J. M., and Wertz, D. M. (1969). J. Mol. Spectrosc., 31: 237.
- 8. Ekejiuba, I. O. C. and Hallam, H. E. (1969). Spectrochim. Acta, 26A: 59.
- 9. Rey-Lafon, M., Rouffi, C., Camiade, M., and Forel, M. (1970). J. Chim. Phys., 67: 2030.
- 10. Wurrey, C. J., Berry, R. J., Yeh, Y. Y., Little, T. S., and Kalasinsky, V. J. (1983). J. Raman Spectrosc., 14: 87.
- 11. McLachlan, R. D. and Nyquist, R. A. (1968). Spectrochim. Acta, 24A: 103.
- 12. Nyquist, R. A., Putzig, C. L., and Skelly, N. E. (1986). Appl. Spectrosc., 40: 821.
- 13. Evans, J. C. and Nyquist, R. A. (1963). Spectrochim. Acta, 19: 1153.
- 14. Nyquist, R. A., Reder, T. L., Ward, G. F., and Kallos, G. J. (1971). Spectrochim. Acta, 27A: 541.
- 15. Nyquist, R. A., Stec, F. F., and Kallos, G. J. (1971). Spectrochim. Acta, 27A: 897.
- 16. Nyquist, R. A., Johnson, A. L., and Lo, Y.-S. (1965). Spectrochim. Acta, 21: 77.
- 17. Nyquist, R. A. (1984). *The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data*. Philadelphia: Bio-Rad Laboratories, Sadtler Div.
- 18. Nyquist, R. A. and Thompson, J. W. (1977). Spectrochim. Acta, 33A: 63.
- 19. Joyner, P. and Glockler, G. (1952). J. Chem. Phys., 20: 302.
- 20. Winter, F. (1970). Z. Naturforsch., 25a: 1912.
- 21. Scherer, J. R. and Overend, J. (1960). J. Chem. Phys., 32: 1720.
- 22. Nyquist, R. A. (1989). The Infrared Spectra Building Blocks of Polymers. Philadelphia: Bio-Rad, Sadtler Div.
- 23. Nyquist, R. A., Lo, Y.-S., and Evans, J. C. (1964). Spectochim. Acta, 20: 619.
- 24. Nyquist, R. A. (1965). Spectrochim. Acta, 21: 1245.
- 25. Herzberg, G. (1945). Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules. New York: Van Nostrand Co., Inc., p. 167.
- 26. Erley, D. S. and Blake, B. H. (1965). Infrared Spectra of Gases and Vapors, Vol. II. *Grating Spectra*. The Dow Chemical Co.

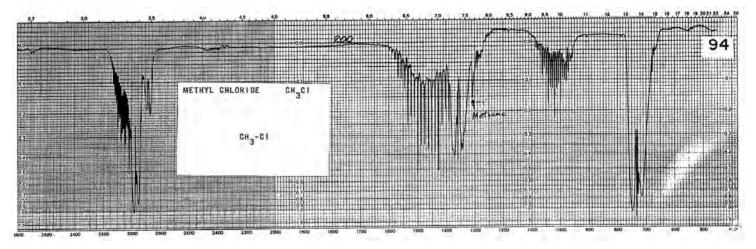


FIGURE 6.1* Methyl chloride (200-mm Hg sample) (26).

^{*}Those vapor-phrase infrared spectra figures for Chapter 6 with an asterisk following the figure number have a total vapor pressure of 600-mm Hg with nitrogen (N_2) , in a 5-cm KBr cell. The mm Hg sample is indicated in each figure.

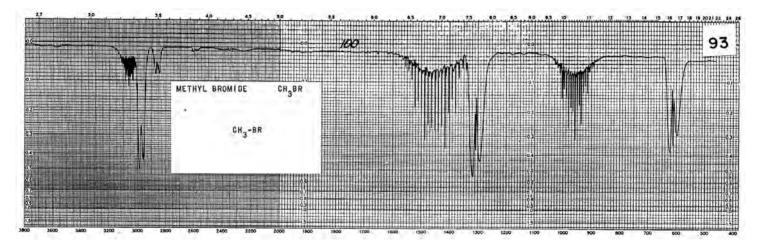


FIGURE 6.2* Methyl bromide (100-mm Hg sample) (26).

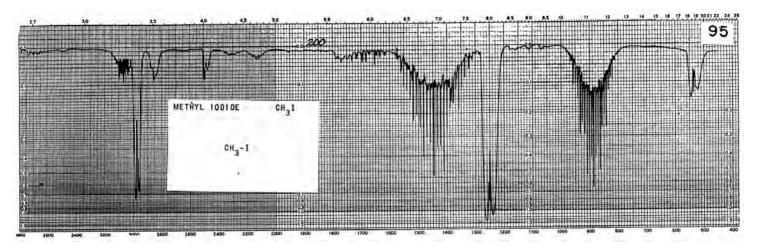


FIGURE 6.3* Methyl iodide (200-mm Hg sample) (27).

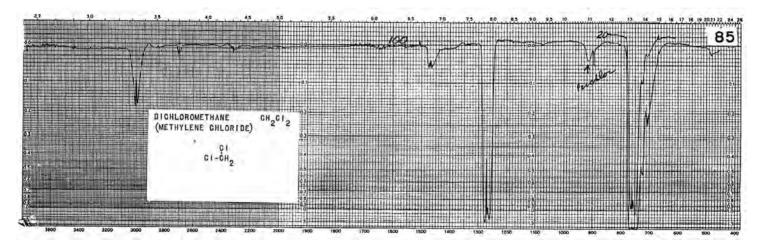


FIGURE 6.4* Methylene chloride (20- and 100-mm Hg sample) (26).

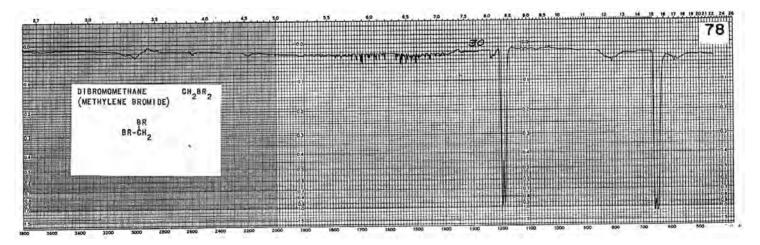


FIGURE 6.5* Methylene bromide (30-mm Hg sample) (26).

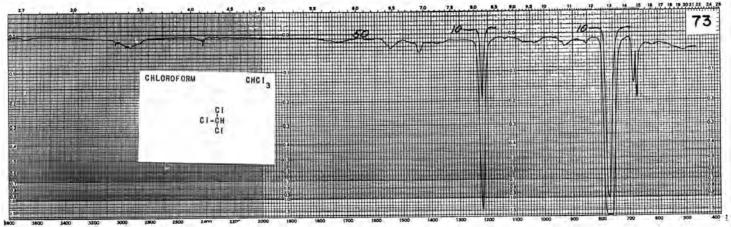


FIGURE 6.6* Trichloromethane (chloroform) (10- and 50-mm Hg sample) (26).

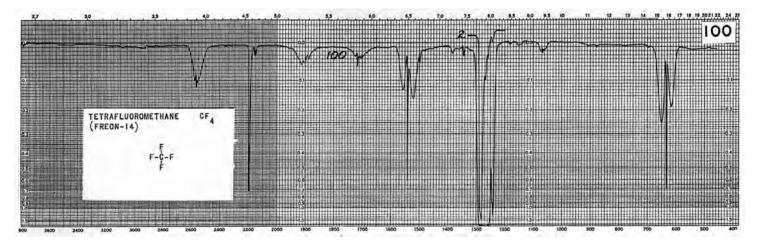


FIGURE 6.7 Tetrafluoromethane (Freon 14) (2 and 100 Hg sample) (26)

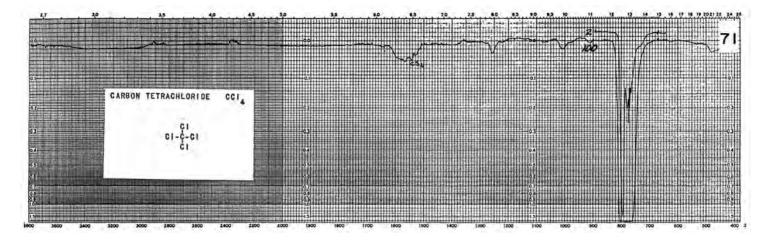


FIGURE 6.8* Tetrachloromethane (carbon tetrachloride) (2- and 100-mm Hg sample) (26).

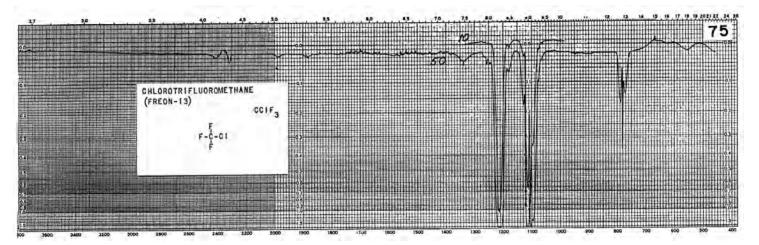


FIGURE 6.9* Chlorotrifluoromethane (10- and 50-mm Hg sample) (26).

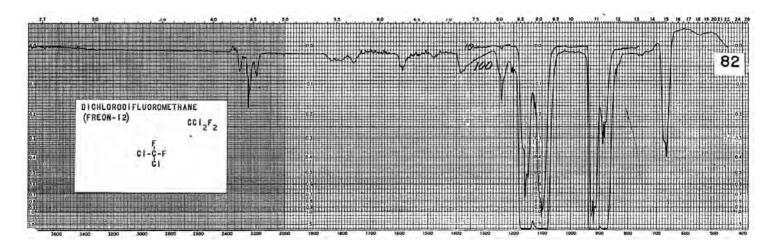


FIGURE 6.10* Dichlorodifluoro methane (10- and 100-mm Hg sample) (26).

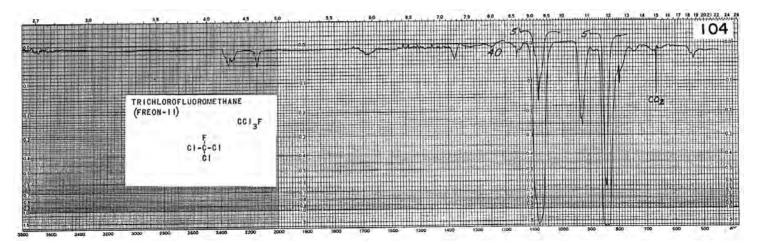


FIGURE 6.11* Trichlorofluoromethane (f and 40-mm Hg sample) (26).

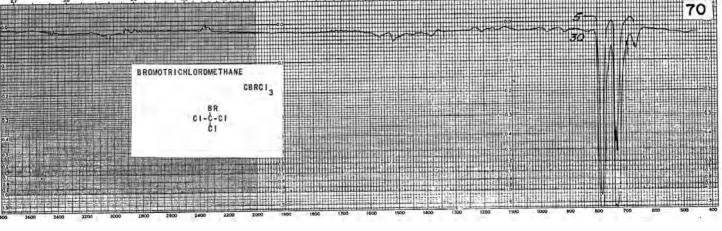


FIGURE 6.12* Bromotrichloromethane (5- and 30-mm Hg sample) (27).

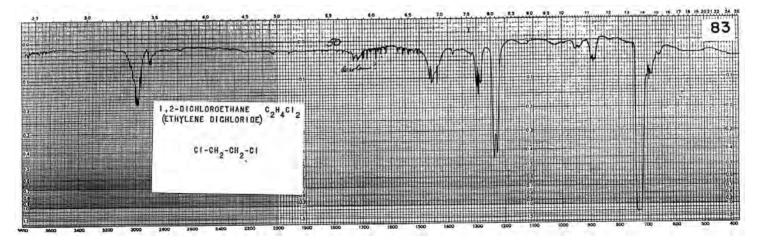


FIGURE 6.13* 1,2-Dichloroethane (ethylene dichloride) (50-mm Hg sample) (27).

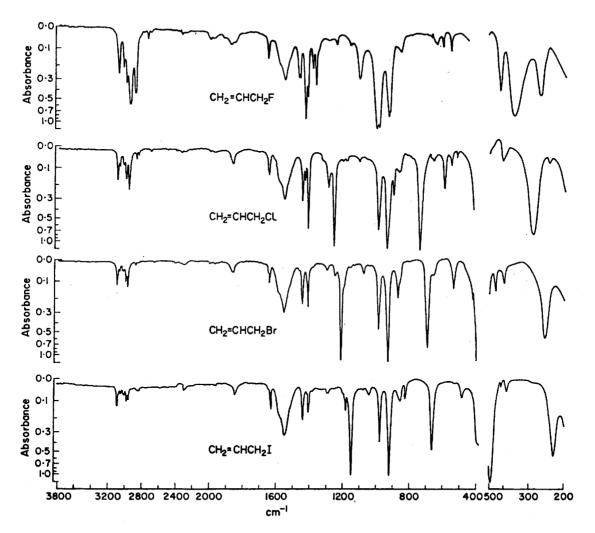


FIGURE 6.14* Infrared spectra of 3-halopropenes (allyl halides) in CCl₄ solution (3800–1333 cm⁻¹) (133–400 cm⁻¹) (12).

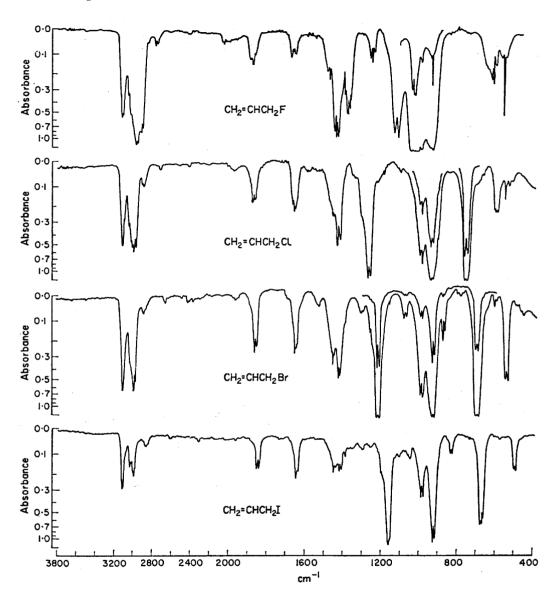


FIGURE 6.15 Vapor-phase infrared spectra of 3-halopropenes (allyl halides) (12).

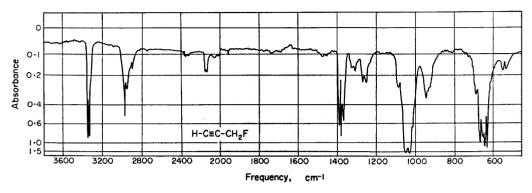


FIGURE 6.16a Vapor-phase IR spectrum of 3-fluoropropyne in a 5-cm KBr cell (50-mm Hg sample).

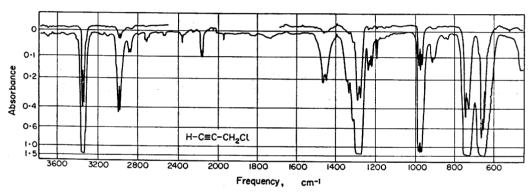


FIGURE 6.16b Vapor-phase IR spectrum of 3-chloropropyne in a 5-cm KBr cell (vapor pressure at -10 and 25° C samples).

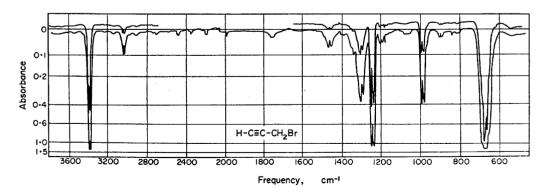
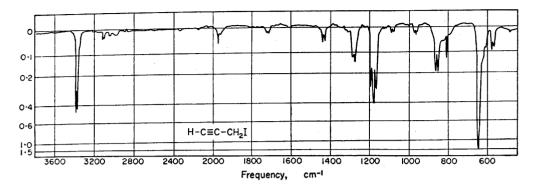



FIGURE 6.16c Vapor-phase IR spectrum of 3-bromopropyne in a 5-cm KBr cell (vapor pressure at 0 and $25\,^{\circ}$ C samples).

 $FIGURE~6.16d~~Vapor-phase~IR~spectrum~of~3-iodopropyne~in~a~15-cm~KBr~cell~(\sim 8-mm~Hg~sample).$

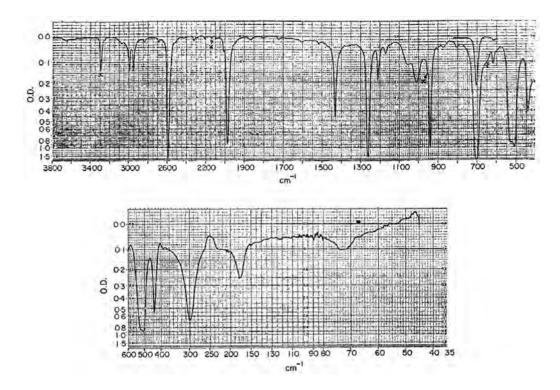


FIGURE 6.17a Top: Liquid-phase IR spectrum of 3-chloropropyne-1-d in a 0.023-mm KBr cell. Bottom: Liquid-phase IR spectrum of 3-chloropropyne-1-d in a 0.1-mm polyethylene cell.

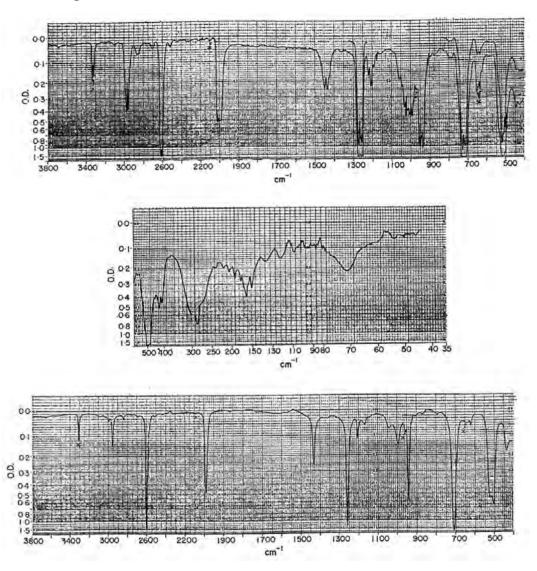


FIGURE 6.17b Top: Vapor-phase IR spectrum of 3-chloropropyne-1-d in a 10-cm KBr cell (33- and 100-mm Hg sample); Middle: 3-chloropropyne-1-d in a 10-cm polyethylene cell. Bottom: Solution-phase IR spectrum of 3-chloropropyne-1-d in $10\%\,\mathrm{wt./vol.}$ CCl₄ (3800–1333 cm⁻¹) and $10\%\,\mathrm{wt./vol.}$ in CS₂ (1333–400 cm⁻¹) using 0.1-mm KBr cells. Bands marked with X are due to 3-chloropropyne.

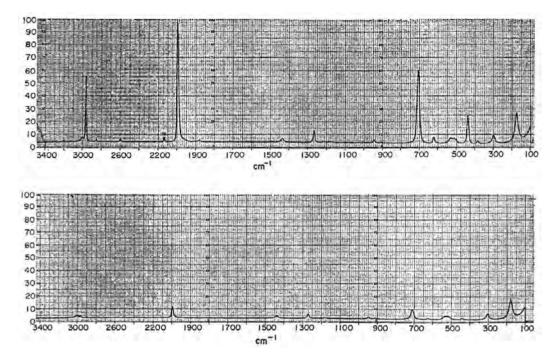


FIGURE 6.18 Top: A Raman liquid-phase spectrum of 3-chloropropyne-1-d. Bottom: A Raman polarized liquid-phase spectrum of 3-chloropropyne-1-d. Some 3-chloropropyne is present (15).

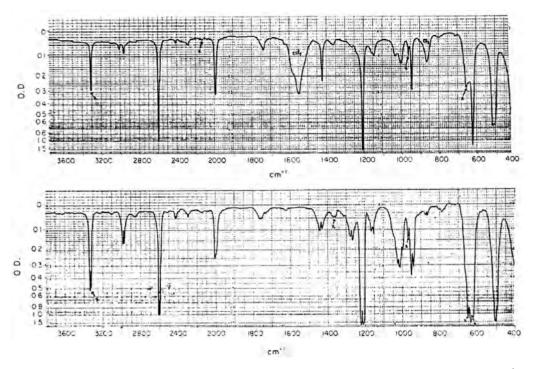


FIGURE 6.19 Top: Solution-phase IR spectrum of 3-bromopropyne-1-d in 10% wt./vol. in CCl₄ (3800-1333 cm⁻¹) and 10% wt./vol. in CS₂ (1333-450 cm⁻¹) using 0.1-mm KBr cells (16). Bottom: A vapor-phase IR spectrum of 3-bromopropyne-1-d in a 10-cm KBr cell (40-mm Hg sample). Infrared bands marked with X are due to the presence of 3-bromopropyne (16).

FIGURE 6.20 Top: Raman spectrum of 3-bromopropyne-1-d. Bottom: Polarized Raman spectrum of 3-bromopropyne-1-d. Infrared bands marked with X are due to the presence of 3-bromopropyne (16).

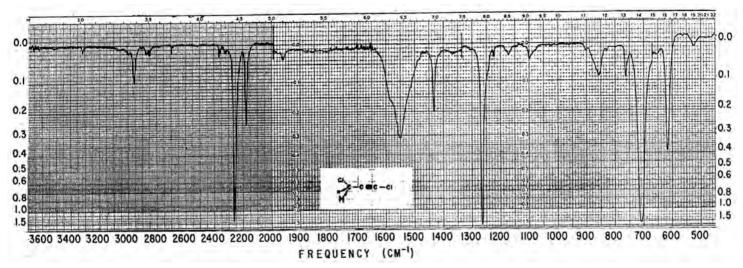


FIGURE 6.21 An IR spectrum of 1,3-dichloropropyne in 10% wt./vol. CCl_4 solution (3800-1333 cm $^{-1}$) and in CS_2 solution (1333-450 cm $^{-1}$) using 0.1-mm NaCl and KBr cells, respectively. Infrared bands at 1551 and 1580 cm $^{-1}$ are due to CCl_4 and the IR band at 858 cm $^{-1}$ is due to CS_2 (17).

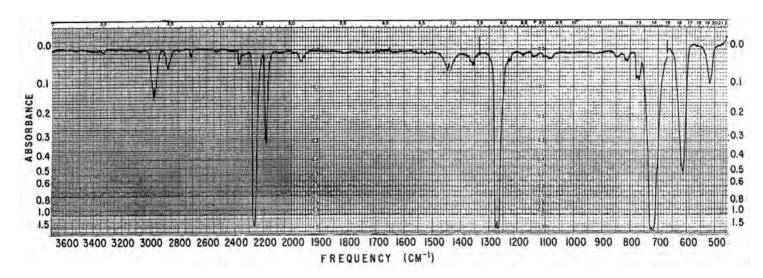


FIGURE 6.22 Vapor-phase IR spectrum of 1,3-dichloropropyne (ambient mm Hg sample at 25 °C in a 12.5-cm KBr cell) (17).

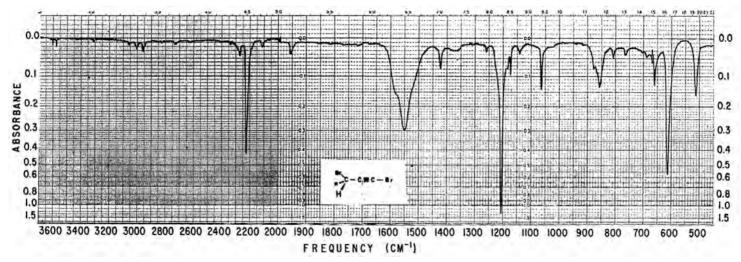


FIGURE 6.23 Solution-phase IR spectrum of 1,3-dibromopropyne in 10% wt./vol. in CCl_4 (3800-1333 cm $^{-1}$) and in CS_2 solution (1333-450 cm $^{-1}$) using 0.1-mm NaCl and KBr cells, respectively. Infrared bands at 1551 and 1580 cm $^{-1}$ are due to CCl_4 , and the IR band at 858 cm $^{-1}$ to CS_2 (17).

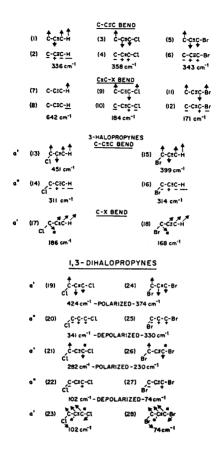


FIGURE 6.24 Approximate normal modes for propyne, 3-halopropynes, and 1,3-dihalopropynes.

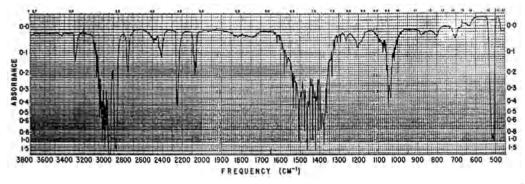


FIGURE 6.25 Vapor-phase IR spectrum for 1-bromopropyne in a 12.5-cm KBr cell. The weak IR band at 734 cm⁻¹ is due to an impurity. The 1-bromopropyne decomposes rapidly in the atmosphere (25).

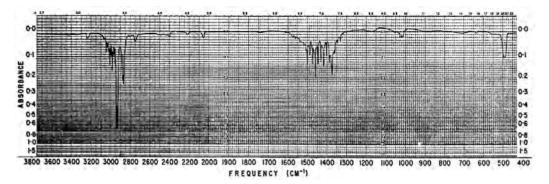
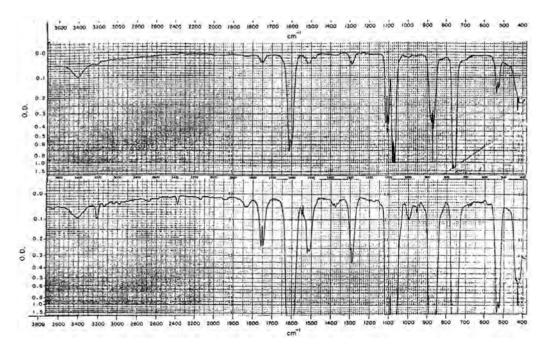



FIGURE 6.26 Infrared vapor spectrum for 1-iodopropyne in a 12.5-cm KBr cell (25).

FIGURE 6.27 Top: Vapor-phase IR spectrum of 1-bromo-1-chloroethylene using a 10-cm KBr cell (10-mm Hg sample). Bottom: Same as upper (100-mm Hg sample) (19).

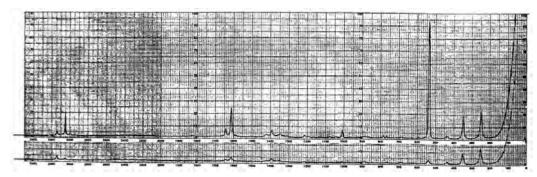


FIGURE 6.28 Raman liquid-phase spectrum of 1-homo-1-chloroethylene. top: Parallel polarization. bottom: Perpendicular polarization.

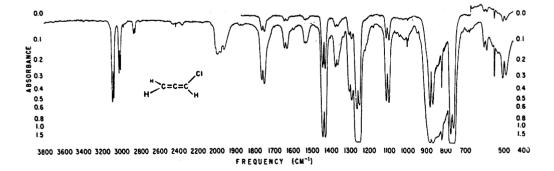


FIGURE 6.29 Vapor-phase IR spectrum of 1-chloropropadiene in a 12.5-cm KBr cell (50- and 100-mm Hg sample) (23).

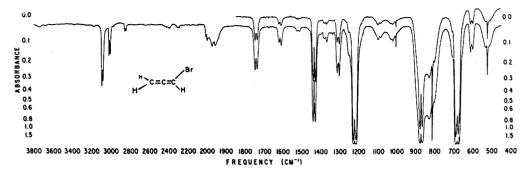


FIGURE 6.30 Vapor-phase IR spectrum of 1-bromopropadiene in a 12.5-cm KBr cell (50- and 100-mm Hg sample).

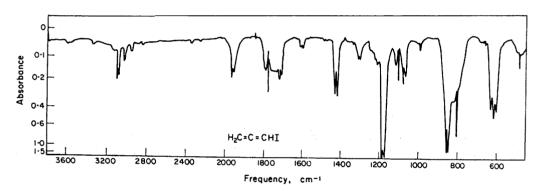


FIGURE 6.31 Vapor-phase IR spectrum of 1-iodopropadiene in a 5-cm KBr cell (vapor pressure at $25\,^{\circ}$ C). Bands at 1105 and $1775\,\text{cm}^{-1}$ are due to the presence of an impurity.

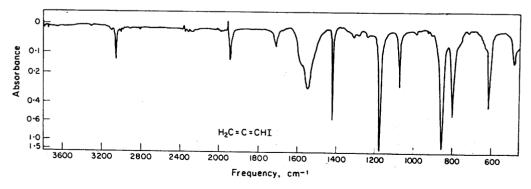


FIGURE 6.32 Infrared spectrum of 1-iodopropadiene in 10% wt./vol. CCl_4 solution (3800-1333 cm $^{-1}$) and 10% wt./vol. CS_2 solution (1333-450 cm $^{-1}$) using NaCl and KBr cells, respectively.

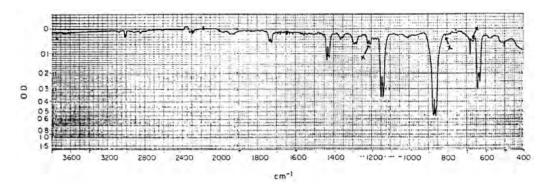


FIGURE 6.33 Vapor-phase IR spectrum of 1-bromopropadiene-1-d in a 12.5-cm KBr cell (50- and 100-mm Hg sample) (16).

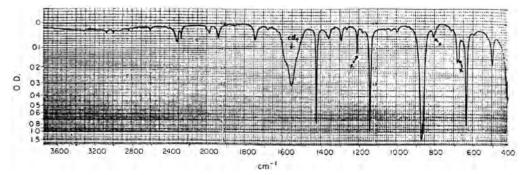


FIGURE 6.34 Solution-phase IR spectrum of 1-bromopropadiene-1-d 10% wt./vol. in CCl₄ (3800-1333 cm⁻¹) and in CS₂ solution using 0.1-mm KBr cells. Infrared bands marked with X are due to the presence of 1-bromopropadiene (16).

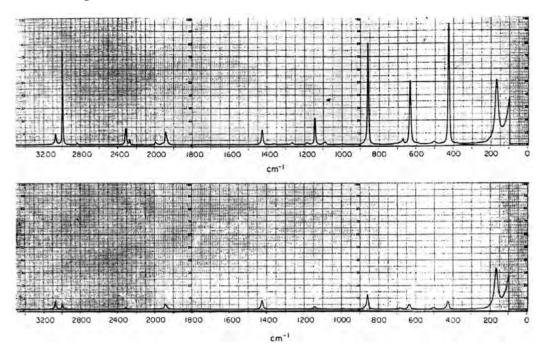


FIGURE 6.35 Top: Raman spectrum of 1-bromopropadiene-1-d using a capillary tube. Bottom: Polarized Raman spectrum of 1-bromopropadiene-1-d (16).

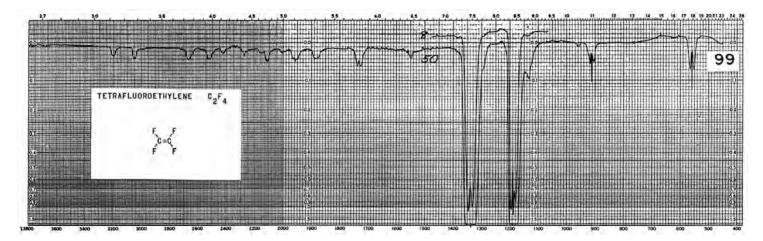


FIGURE 6.36* Vapor-phase IR spectrum of tetrafluoroethylene (8- and 50-mm Hg samples) (26).



FIGURE 6.37* Vapor-phase IR spectrum of tetrachloroethylene (13-mm Hg sample) (26).

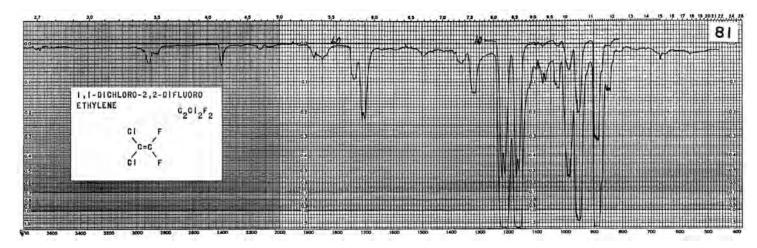


FIGURE 6.38* Vapor-phase IR spectrum of 1,1-dichloro-2,2-difluoroethylene (10- and 60-mm Hg samples) (26).

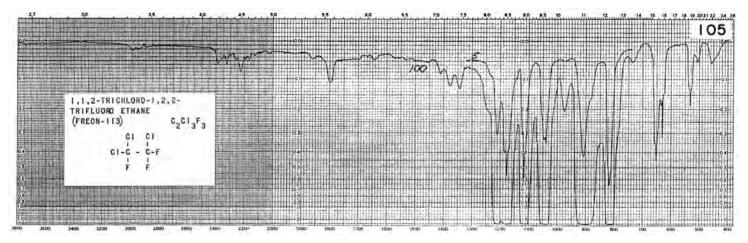


FIGURE 6.39* Vapor-phase IR spectrum of 1,1,2-trichloro-1,2,2-trifluoroethane (5 and 100 mm Hg samples) (26).

164 Halogenated Hydrocarbons

TABLE 6.1 Infrared and Raman data for the methylene halides

		•				
Compound	a.CH ₂ str. cm ⁻¹ (RI)	s.CH ₂ str. cm ⁻¹ (RI)	a.C $-X_2$ str. cm $^{-1}$ (RI)	s.C $-X_2$ str. cm $^{-1}$ (RI)	$[a.C-X_2 \text{ str.}]-$ $[s.C-X_2 \text{ str.}]$ cm^{-1}	[a.CH ₂ str.]- [s.CH ₂ str.] cm ⁻¹
Methylene fluoride (3) Methylene chloride (3) Methylene bromide (3) Methylene iodide (3)	3027 (23,p) 3058 (3,p) 3065 (4,p) 3048 (1,p)	2950 (41,p) 2989 (41,p) 2987 (22,p) 2967 (14,p)	1180 742 (4,p) 640 (8,p) 570 (11,p)	1110 (18,p) 704 (40,p) 577 (88,p) 480 (80,p)	70 38 63 90	77 69 78 81
	a.C-X ₂ str. [vapor] cm ⁻¹	a.C-X ₂ str. [liquid] cm ⁻¹	a.C-X ₂ str. [v-p] cm ⁻¹	s.C-X ₂ str. [v- p]	s.C $-X_2$ str. [vapor] cm $^{-1}$	s.C-X ₂ str. [liquid] cm ⁻¹
Methylene chloride Methylene bromide Methylene iodide	744 641 575	742 640 570	-2 -1 -5	9 -3 -30	695 580 510	704 577 480
	C–X str. cm ⁻¹	[C-F str.]- [C-X str.] cm ⁻¹	σр	[C-I str.]- [C-X str.] cm ⁻¹	Mass X atomic mass	C–X bond length angstroms
Methyl fluoride [IR vap.] (2) Methyl chloride [IR vap.] (2) Methyl bromide [IR vap.] (2) Methyl iodide [IR vap.] (2)	1044 732 608 530	0 312 436 514	0.52 0.47 0.45 0.39	-514 -436 -312 0	19 35.457 79.916 126.92	0.64 0.99 1.14 1.33

TABLE 6.2 Raman and infrared data for trihalomethane and tetrahalomethane

Compound	C-H str. cm ⁻¹ (RI)	a. CX_3 str. cm ⁻¹ (RI)	s.CX ₃ str. cm $^{-1}$ (RI)	CX ₃ bend cm ⁻¹ (RI)
Trifluoromethane Triiodomethane	3036 (8,p) 2975 (9,p)	1376 (0.05)	1165 (1,p) 572 (18,p)	697 (4,p)
	a.CX ₄ str. cm $^{-1}$ (RI)	s.CX ₄ str. cm ⁻¹ (RI)		
Tetrafluoromethane (3)	1283 (2,p)	908 (46,p)		
Tetrachloromethane (3)	797	790 (8,p)		
Tetrabromomethane (3)	671 (6,p)	662 (7,p)		
Tetraiodomethane (3)		560 (4,p)		
[IR vapor]	cm ⁻¹			
Tetrafluoromethane (2)	1282			
Tetrachloromethane (2)	790			

TABLE 6.2a A comparison of C-X, CX₂, CX₃, and CX₄ stretching frequencies

X	C-X str. cm ⁻¹	a.CX $_2$ str. cm $^{-1}$	s.CX ₂ str. cm ⁻¹	a.CX $_3$ str. cm $^{-1}$	s.CX ₃ str. cm ⁻¹	a.CX ₄ str. cm ⁻¹	s.CX ₄ str. cm ⁻¹	Range cm ⁻¹
F	1044	1180	1110	1376	1165	1283	908	908–1376
Cl	732	742	704	[755]	[667]	797	790	667-797
Br	608	640	577	[649]	541	671	662	541-662
I	530	570	480	571	572	[—]	560	480–572

TABLE 6.3 Vapor- and liquid-phase infrared data for 1-haloalkanes

1-Haloalkane F	PC [planar trans rotational conformer] vapor cm ⁻¹ (A)	PH [gauche skeletal rotational conformer] vapor cm ⁻¹ (A)	PC liquid cm ⁻¹ (A)	PH liquid cm ⁻¹ (A)	[PC-PH] vapor cm ⁻¹	[PC-PH] liquid cm ⁻¹	A[PC]/A[PH] vapor	A[PC]/A[PH] liquid	PC cm ⁻¹	PH cm ⁻¹
$C_{10}H_{21}$	1050 (0.212)	1032 (0.239)	1042 (0.289)	1005 (0.300)	18	37	0.89	0.96	-8	-27
Cl										
C ₃ H ₇	741 (0.150)	661 (0.120)	732 (0.262)	654 (0.320)	80	78	1.25	0.82	-9	- 7
C ₄ H ₉	750 (0.210)	661 (0.132)	735 (0.341)	659 (0.460)	79	76	1.59	0.74	-15	-2
C ₅ H ₁₁	740 (0.210)	661 (0.132)	743 (0.250)	665 (0.160)	79	79	1.59	1.56	3	4
C ₇ H ₁₅	740 (0.107)	661 (0.080)	758 (0.028)	652 (0.102)	79	106	1.34	0.27	18	-9
-7 13	(,	(11117)	725 (0.140)	(11)		73		1.37		
$C_{10}H_{21}$	740 (0.080)	662 (0.050)	749 (0.010)	650 (0.080)	78	99	1.6	0.13	9	-12
10 21	, ,	, ,	721 (0.089)	, ,		71		1.11		
$C_{11}H_{23}$	740 (0.100)	660 (0.071)	751 (0.070)	645 (0.159)	80	106	1.41	0.44		
11 23			711 (0.169)			66		1.06		
$C_{16}H_{33}$	738 (0.061)	660 (0.040)	758 (0.030)	659 (0.098)	78	99	1.53	0.31		
10 33			725 (0.135)			66		1.38		
$C_{18}H_{37}$	\sim 740 (0.029)	\sim 664 (0.020)	750 (0.034)	650 (0.080)	76	100	1.45	0.43		
			\sim 720 (0.129)			\sim 70		1.61		
Br										
C_4H_9	650 (0.090)	564 (0.074)	638 (0.200)	554 (0.155)	86	84	1.22	1.29	-12	-10
C ₅ H ₁₁	648 (0.118)	568 (0.090)	641 (0.280)	564 (0.241)	80	77	1.31	1.16	-7	-4
C_6H_{13}	652 (0.139)	569 (0.129)	642 (0.305)	565 (0.280)	83	77	1.08	1.09	-10	-4
C_7H_{15}	652 (0.071)	569 (0.090)	645 (0.070)	562 (0.070)	83	83	0.79	1	-7	-7
C_8H_{17}	652 (0.072)	569 (0.060)	640 (0.090)	559 (0.090)	83	81	0.9		-12	-10
$C_{11}H_{23}$	653 (0.060)	562 (0.050)	642 (0.060)	560 (0.043)	91	82	1.2	1.4	-11	-2
$C_{12}H_{25}$	650 (0.039)	561 (0.050)	640 (0.082)	560 (0.072)	89	80	0.78	1.14	-10	-1
$C_{14}H_{29}$	649 (0.050)	568 (0.036)	640 (0.079)	559 (0.066)	81	81	1.39	1.2	-9	-9
$C_{16}H_{33}$	651 (0.026)	572 (0.019)	646 (0.060)	565 (0.050)	79	81	1.37	1.2	-5	-7
$C_{19}H_{39}$	\sim 645 (0.019)	~568 (0.020)	650 (0.059)	574 (0.039)	\sim 77	76	0.95	1.51	5	6
I										
C ₃ H ₇	591 (0.080)	500 (0.052)	590 (0.131)	498 (0.110)	91	92	1.53	1.19	-1	-2
C ₄ H ₉	593 (0.090)	505 (0.040)	581 (0.121)	495 (0.061)	88	86	2.3	1.98	-12	-10^{2}
C ₉ H ₁₉	598 (0.039)	504 (0.010)	593 (0.071)	493 (0.040)	94	100	3.9	1.78	-12 -5	-11
$C_{16}H_{33}$	593 (0.030)	500 (0.010)	600 (0.046)	499 (0.031)	93	101	3.9	1.48	7	-11
C_{16}^{1133}	J9J (U.UJU)	500 (0.010)	000 (0.040)	199 (0.031)	90	101	,	1.70	1	-1

Factors	
2	
5	
ž	
·	
<u>ہ</u>	
Affecting	
2	
Ξ.	
P	
7	
5	
e	
2	
Ę	
Molecular	
Ħ.	
Ξ	
Vibrations :	
9	
2	
۵	
and	
Д.	
\bigcirc	
ᇎ	
Ħ	
<u>Ę</u> .	
23	
Chemical S	
S	

TABLE 6.4 Vapor- and liquid-phase infrared data for 2-halobutane and tert-butyl halide

Rotational conformer 2-Haloalkane X	S(CH) C-X str.[1] vapor cm ⁻¹ (A)	S(CH) C-X str.[1] liquid cm ⁻¹ (A)	S(HH') C-X str.[2] vapor cm ⁻¹ (A)	S(HH') C-X str.[2] liquid cm ⁻¹ (A)	S(HH) C-X str.[3] vapor cm ⁻¹ (A)	S(HH) C-X str.[3] liquid cm ⁻¹ (A)	A[1]/A[2] vapor	A[1]/A[2] liquid	A[1]/A[3] vapor	A[1]/A[3] liquid
2-Halobutane X										
Cl Br I	680 (0.130) 612 (0.069) 580 (0.041)	670 (0.392) 605 (0.055) 570 (0.050)	625 (0.200) 529 (0.070) 489 (0.041)	628 (0.341) 525 (0.090) 479 (0.072)	592 (0.045) 478 (0.020)	609 (0.460) 480 (0.030) 454 (0.040)	0.65 0.99 1	1.1 0.61 0.69	2.9 3.5	0.85 2.3 1.02
Rotational conformer tert-Butyl halide X	Т(ННН)	Т(ННН)	C—X str. [v-l] cm ⁻¹							
Cl Br I	580 521	570 520 492	-10 -1							
2-Halobutane X			C-X str.[1] [v-l]	C-X str.[2] [v-l]	C-X str.[3] [v-l]					
Cl Br I			-10 -7 -10	3 -4 -10	17 2					
	[1]–[2] [C–Cl str.]- [C–X str.] vapor cm ⁻¹	[1]–[2] [C–Cl str.]- [C–X str.] liquid cm ⁻¹	[1]–[3] [C–Cl str.]- [C–X str.] vapor cm ⁻¹	[1]–[3] [C–Cl str.]- [C–X str.] liquid cm ⁻¹						
Cl Br I	55 83 91	42 80 91	88 134	61 125 116						

TABLE 6.5 Vapor- and liquid-phase infrared and Raman liquid-phase data for 1-halocycloalkanes

Compound 1-X-cyclopentane	C-X str. vapor cm ⁻¹ (A)	C—X str. liquid cm ⁻¹ (A)	C-X str. [v- l] cm ⁻¹	A[equatorial]/ A[axial] vapor	A[equatorial]/ A[axial] liquid	[C-Cl str.]- [C-X str.] vapor cm ⁻¹	[C-Cl str.]- [C-X str.] liquid cm ⁻¹	C—X str. Raman liquid cm ⁻¹	RI	Ref.
X										
Cl [equatorial] Cl [axial]	620 (0.046)	595 (0.115)	-25					624 588	vw vw	2, 6, 7 8
Br [equatorial] Br [axial]	520 (0.060)	519 (0.110)	-1					516	s	2, 6
I [equatorial] I [axial] 1-X-cyclohexane	476 (0.041)	481 (0.140)	5					487	S	2, 8
X Cl [equatorial]	740 (0.125)	729 (1.110)	-11	5.3	2.4	0	0	733	s	2, 9, 10
Cl [axial] $\Delta [e-a]$	690 (0.048) [-50]	681 (0.470) [-48]		9.9	2.1	Ü	Ü	688	m	2, 9, 10
Br [equatorial]	692 (0.100)	686 (0.471)	-6	3.6	2	-48	-43	689	s	2, 9
Br [axial] Δ [e-a]	661 (0.028) [-31]	659 (0.250) [-27]	-2			-29	-22	660	m	2, 9
I [equatorial]	664 (0.160)	659 (0.510)	-5	5.3	2.7	-76	-70	654		2, 6
I [axial] Δ [e-a]	635 (0.030) [-29]	641 (0.190) [-18]	6			-55	-40			2

TABLE 6.6 Vapor- and liquid-phase infrared data for primary, primary dihaloalkanes

Compound 1,2-Dihaloethane X,X	C-X str.[1] vapor cm ⁻¹ (A)	C-X str.[1] liquid cm ⁻¹ (A)	C-X str.[2] vapor cm ⁻¹ (A)	C-X str.[2] liquid cm ⁻¹ (A)	C-X str.[3] vapor cm ⁻¹ (A)	C-X str.[3] liquid cm ⁻¹ (A)	C-X str.[1] [v-l] cm ⁻¹	C-X str.[2] [v-l] cm ⁻¹	C-X str.[3] [v-l] cm ⁻¹	A[1]/ A[3] vapor	A[1]/ A[3] liquid	A[1]/ A[2] vapor	A[1]/ A[2] liquid
Cl,Cl	720 (1.230)	710 (0.940)		662 (0.320)	660 (0.070)	655 (0.380)	-10		-5	17.6	2.5		
Br,Br	594 (1.210)	590 (0.440)				545 (0.100)	-4						
I,I		485 (0.785)											
1,3-Dihalopropane													
X,X													
Cl,Cl	740 (0.240)				660 (0.540)								
Br,Br	655 (0.163)	645 (0.210)	599 (0.142)	585 (0.265)	559 (0.230)	543 (0.370)	-10	-14	-16	0.71	0.57	1.1	0.81
I,I	602 (0.070)	590 (0.105)			526 (0.050)	512 (0.105)	-12		-14	1.4	1		
						483 (0.110)							
1,4-Dihalobutane													
X,X	770 (0.724)	700 (0.220)	742 (0.424)	727 (0.200)	((0, (0, 711)	(55 (0.415)	2	-	~	1.00	0.77	1 21	1.07
Cl,Cl	778 (0.524)	780 (0.320)	742 (0.434)	735 (0.300)	660 (0.511)	655 (0.415)	2	-7	-5	1.03	0.77	1.21	1.07
Br,Br	659 (0.178)	649 (0.160)			572 (0.311)	560 (0.260)	-10		-12	0.31	0.62		
I,I 1,5-Dihalopentane	599 (0.080)	591 (0.052)			505 (0.078)	502 (0.120)	-8		-3	1.02	0.43		
X,X													
Cl,Cl	748 (0.389)	740 (0.285)		720 (0.255)	662 (0.298)	651 (0.379)	-8		-11	1.3	0.75		
Br,Br	654 (0.299)	647 (0.525)		720 (0.233)	571 (0.309)	570 (0.580)	_7		-1	0.97	0.91		
I,I	03 , (0.233)	584 (0.140)		604 (0.109)	3,1 (0.30)	492 (0.140)	•		-	0.51	0.51		
1,6-Dihalohexane				00, (01207)		,, = (0,1,7,0)							
X,X													
cl,cl	740 (0.350)				660 (0.260)								
Br,Br	654 (0.169)				570 (0.157)								
I,I	600 (0.090)	590 (0.190)			509 (0.047)	498 (0.070)	-10		-11	1.9	2.7	2.7	

Halogenated Hydrocarbons

TABLE 6.7 Raman data for methyl halides and infrared and Raman data for tetrabromoalkanes

cm ⁻¹ (RI) 3052 (4)	cm ⁻¹ (RI) 2967 (41,p) 2968 (95,p) 2972 (43,p) 3042 (2,p) CH str.	cm ⁻¹ (RI) 2865 (26,p) 2879 (7,p) 2862 (4,p) 2946 (44,p) s.CH ₂ str.	cm ⁻¹ (RI) 1043 (5,p) 729 (36,p) 609 (42,p) 523 (96,p) a.CBr ₂ str.	a.CBr ₂ str.	s.CBr ₂ str.	CBr ₂ bend	CBr ₂ wag	_
3052 (4)	2968 (95,p) 2972 (43,p) 3042 (2,p) CH str.	2879 (7,p) 2862 (4,p) 2946 (44,p) s.CH ₂ str.	729 (36,p) 609 (42,p) 523 (96,p) a.CBr ₂ str.	_	_	CBr ₂ bend	- 0	-
3052 (4)	2972 (43,p) 3042 (2,p) CH str.	2862 (4,p) 2946 (44,p) s.CH ₂ str.	609 (42,p) 523 (96,p) a.CBr ₂ str.	_	_	CBr ₂ bend	- 0	_
	3042 (2,p) CH str.	2946 (44,p) s.CH ₂ str.	523 (96,p) a.CBr ₂ str.	_	_	CBr ₂ bend	- 0	-
	CH str.	s.CH ₂ str.	a.CBr ₂ str.	_	_	CBr ₂ bend	- 0	_
	_	_	-	_	_	CBr ₂ bend	- 0	CBr ₂ twist
	cm^{-1} (RI)	cm^{-1} (RI)	cm^{-1} (RI)	cm^{-1} (RI)	cm^{-1} (RI)	cm^{-1} (RI)	cm^{-1} (RI)	cm^{-1} (RI)
	(-1-)	()	()	(-1-)	()		(-1-)	(-1-)
			714 (2)	664 (1)	537 (2)	451 (0)	219 (9)	176 (2)
			C-Br str.	C-Br str.	C-Br str.	CCBr bend	CCBr torsion	
	2967 (1)	2935 (0)	702 (3)	567 (8)	532 (3)	305 (1)	191 (0)	
			cm ⁻¹ (A)	cm ⁻¹ (A)	cm ⁻¹ (A)			
			710 (1.240)		, ,			
		cm ⁻¹ (RI) 2967 (1)		714 (2) C—Br str. 2967 (1) 2935 (0) 702 (3) cm ⁻¹ (A)	714 (2) 664 (1) C—Br str. C—Br str. 2967 (1) 2935 (0) 702 (3) 567 (8) cm ⁻¹ (A) cm ⁻¹ (A) 710 (1.240) 642 (0.560)	714 (2) 664 (1) 537 (2) C—Br str. C—Br str. C—Br str. 2967 (1) 2935 (0) 702 (3) 567 (8) 532 (3) cm ⁻¹ (A) cm ⁻¹ (A) cm ⁻¹ (A)	714 (2) 664 (1) 537 (2) 451 (0) C—Br str. C—Br str. C—Br str. CCBr bend 2967 (1) 2935 (0) 702 (3) 567 (8) 532 (3) 305 (1) cm ⁻¹ (A) cm ⁻¹ (A) cm ⁻¹ (A) 710 (1.240) 642 (0.560) 538 (0.135)	714 (2) 664 (1) 537 (2) 451 (0) 219 (9) C—Br str. C—Br str. C—Br str. CCBr bend CCBr torsion 2967 (1) 2935 (0) 702 (3) 567 (8) 532 (3) 305 (1) 191 (0) cm ⁻¹ (A) cm ⁻¹ (A) cm ⁻¹ (A) 710 (1.240) 642 (0.560) 538 (0.135)

TABLE 6.8 Carbon halogen stretching frequencies for ethylene propyne, 1,2-epoxpropane, and propadiene derivatives

Compound	v C–F cm ⁻¹	v C−Cl cm ^{−1}	v C–Br cm ⁻¹	v C−l cm ^{−1}	Rotational conformer				Ref.
3-Halopropene	1005.8	739.4	690.6	669.1	gauche				11
	989.3				cis				11
3-Halo,1,2-epoxypropane	1018.5	695.8	654.9	604	RT				12
	992	727.5	643.5		R1				12
3-Halopropyne	1039	725	621	570					13
3-Chloropropyne-1d	[—]	723	[—]	[—]					14
3-Bromopropyne-1d	[—]	[—]	634	[—]					15
1,3-Dihalopropyne	[—]	709	613	[—]					16
1-Haloethylene	1157	719	[—]	[—]					17
	F,F	Cl,Cl	Cl,Br	Br,Br	F,F	Cl,Cl	Cl,Br	Br,Br	
	va.CF ₂	va.CCl ₂	va.CClBr	va.CBr ₂	vs.CF ₂	vs.CCl ₂	vs.CClBr	vs.CBr ₂	
	cm ⁻¹	cm^{-1}	cm ⁻¹	cm^{-1}	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	
1,1-Dihaloethylene	1301	788	765	698	922	601	531	474	18–22
	F ₄	F ₄	Cl ₄	Cl ₄	Br ₄	Br ₄			
Tetrahaloethylene	1340	1189	909	875	768	632	[see text]		17
Difluorodichloroethylene	1219	1179	956	890			[see text]		21
Trifluorochloroethylene	1330	1211	1032				[see text]		22
Trifluorobromoethylene	1329	1202	1025				[see text]		22
Trichlorofluoroethylene	1181	987	869				[see text]		22
Trichloroethylene	931	852	639				[see text]		22
	v C-F	v C-Cl	v C-Br	v C-l					
	cm^{-1}	cm^{-1}	cm^{-1}	$\rm cm^{-1}$					
1-Halopropadiene	est. [1050]	767	681	609					23
1-Bromopropadiene-1d	[—]	[—]	636	[—]					15
1-Halopropyne	<u>[</u> j	574	464	403					24
1,3-Dihalopropyne	[—]	617	512	[—]					16

Nitroalkanes, Nitrobenzenes, Alkyl Nitrates, Alkyl Nitrites, and Nitrosamines

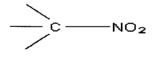

Nitroalkanes				174
	Vapor vs Liquid-Phase	Data		176
Tetranitrome		2		176
Nitrobenzene				177
	in Different Physical	Phases		177
4-Nitrobenza				178
3-X-Nitroben				179
2-Nitrobenze				180
	zenes in CCl4 and CH0	Cl ₂ Solutions		181
Alkyl Nitrate	•	,		182
,	vs Nitroalkanes and N	litrobenzene		183
Alkyl Nitrites				183
,	for Organonitro Compo	ounds		184
		sym. NO2 in Different Phy	sical Phases	184
Nitrosamines	•	, - 2		185
References				185
Figures				
Figure 7-1	186 (175)	Figure 7-12	196 (182)	
Figure 7-2	187 (175)	Figure 7-13	197 (182)	
Figure 7-3	188 (175)	Figure 7-14	198 (182)	
Figure 7-4	189 (175)	Figure 7-15	199 (182)	
Figure 7-5	190 (178)	Figure 7-16	200 (183)	
Figure 7-6	190 (178)	Figure 7-17	201 (183)	
Figure 7-7	191 (181)	Figure 7-18	202 (184)	
Figure 7-8	192 (182)	Figure 7-19	203 (184)	
Figure 7-9	193 (182)	Figure 7-20	204 (184)	
Figure 7-10	194 (182)	Figure 7-21	205 (184)	
Figure 7-11	195 (182)			
Tables				
Table 7-1	206 (175)	Table 7-2	208 (175)	
Table 7-1a	207 (175)	Table 7-3	209 (176)	

Table 7-4	209 (177)	Table 7-19	221 (181)
Table 7-5	210 (177)	Table 7-20	222 (181)
Table 7-6	211 (177)	Table 7-21	223 (181)
Table 7-7	212 (177)	Table 7-22	224 (182)
Table 7-8	213 (177)	Table 7-23	224 (182)
Table 7-9	214 (178)	Table 7-24	225 (183)
Table 7-10	215 (179)	Table 7-25	226 (183)
Table 7-11	216 (179)	Table 7-26	226 (183)
Table 7-12	216 (180)	Table 7-27	227 (184)
Table 7-13	217 (180)	Table 7-28	227 (184)
Table 7-14	218 (180)	Table 7-29	228 (184)
Table 7-15	218 (180)	Table 7-30	229 (184)
Table 7-16	219 (180)	Table 7-31	229 (184)
Table 7-17	220 (180)	Table 7-32	230 (184)
Table 7-18	221 (180)	Table 7-33	230 (185)

^{*}Numbers in parentheses indicate in-text page reference.

NITROALKANES

The variations in frequencies of antisymmetric NO_2 stretching, v asym. NO_2 , and symmetric NO_2 stretching, v sym. NO_2 have been attributed to inductive and/or resonance effects (1, 2). Empirical correlations have been developed for the calculation of v asym. NO_2 and v sym. NO_2 frequencies in unknown compounds containing this functional group. These correlations relate to the substituent groups joined to the α -carbon atom of nitroalkanes and the wavenumber values of v asym. NO_2 and v sym. NO_2 for nitromethane (1).

α

Vapor phase
$$\begin{cases} v \text{ asym. NO}_2 = 1582 + \Sigma(Y_1 + X_1) \\ v \text{ sym. NO}_2 = 1397 + \Sigma(Y_2 + X_2) \end{cases}$$
 (1)

 ν asym. NO₂ $\begin{bmatrix} Y_1 = -7 \text{ cm}^{-1} \text{ for each CH}_3 \text{ or } C_2H_5 \text{ group joined to the } \alpha\text{-carbon atom} \\ X_1 = 10 \text{ cm}^{-1} \text{ for each Cl atom joined to the } \alpha\text{-carbon atom} \end{bmatrix}$

$$\nu$$
 asym. NO₂
$$\begin{bmatrix} Y_2 = -17 \text{ cm}^{-1} \text{ for each CH}_3 \text{ or } C_2H_5 \text{ group joined to the } \alpha\text{-carbon atom} \\ X_2 = -29 \text{ cm}^{-1} \text{ for each Cl atom joined to the } \alpha\text{-carbon atom}$$

Application of Eqs. (1) and (2) allow one to estimate the observed frequencies to within $16\,\mathrm{cm}^{-1}$ in the vapor phase.

Equations 3 and 4 were developed to estimate v asym. NO₂ and v sym. NO₂ frequencies in the liquid phase (1). The 1558 cm⁻¹ and 1375 cm⁻¹ are for nitromethane in

$$v \text{ asym. NO}_2 = 1558 \text{ cm}^{-1} + \Sigma \Delta R$$
 (3)

$$v \text{ sym. NO}_2 = 1375 + \Sigma \Delta R$$
 (4)

the liquid phase (1). The ΔR values are for atoms or groups joined to the α - and β - carbon atoms, and their $\Delta \, \text{cm}^{-1}$ values are presented here in Table 7.1.

Figures 7.1 and 7.2 show plots of v asym. NO₂ (observed) vs v asym. NO₂ (calculated) and v sym. NO₂ (observed) vs v sym. NO₂ (calculated), respectively, and the agreement is essentially linear. These correlations do not distinguish between primary, secondary or tertiary nitroalkanes. Applying Eqs. 3 and 4 to determine the v NO₂ vibrations for CF₃NO₂ is shown here:

$$v$$
 asym. NO₂ = 1558 + 3(17) = 1609 cm⁻¹ vs 1607 cm⁻¹ observed v sym. NO₂ = 1375 + 3(-23) = 1306 cm⁻¹ vs 1311 cm⁻¹ observed

Figure 7.3 is a vapor-phase IR spectrum for nitromethane. The IR band at $919\,\mathrm{cm}^{-1}$ is assigned to C–N stretching, v C–N, and the IR band at $659\,\mathrm{cm}^{-1}$ is assigned to NO₂ bending, δ NO₂. The weak band at $605\,\mathrm{cm}^{-1}$ is assigned to NO₂ wagging, W NO₂, and an IR band at $472\,\mathrm{cm}^{-1}$ (liquid phase) is assigned to NO₂ rocking, ρ NO₂ (3). Figure 7.4 is a vapor-phase IR spectrum for 2-nitropropane. Presumably the IR band at \sim 625 cm⁻¹ results from δ NO₂, and the W NO₂ mode at $535\,\mathrm{cm}^{-1}$.

Table 7.1a lists the vapor-phase IR data for nitroalkanes. Most primary nitroalkanes exist as a mixture of trans and gauche conformers due to rotation of the $C-CNO_2$ moiety. The trans v C-N vibration has been assigned in the range 895–914 cm⁻¹ and the gauche v C-N vibration has been assigned in the range 868–894 cm⁻¹ (4). Figure 7.4 shows that the absorbance for the 901 cm⁻¹ trans v C-N vibration is much less than the absorbance for the 851 cm⁻¹ gauche v C-N vibration. The gauche v C-N vibration for 1-nitrobutane, 1-nitropentane, and 1-nitrohexane are assigned in the range 850–859 cm⁻¹.

The δ NO₂ vibration for these *n*-alkanes listed in Table 7.1a is assigned in the range 603–659 cm⁻¹.

The frequency separation between v asym. NO₂ and v sym. NO₂ for these nitroalkanes in the vapor phase varies between 185 and 205 cm⁻¹, and the absorbance ratio (A) v asym. NO₂/(A) v sym. NO₂ varies between 1.94 and 3.47.

Table 7.2 lists the vapor-phase IR data for nitroalkanes. The v asym. CH₃ vibrations occur in the range 2975–2995 cm⁻¹, the v asym. CH₂ vibrations occur in the range 2940–2950 cm⁻¹, and the v sym. CH₂ vibration in the range 2880–2910 cm⁻¹. In the case of 2-nitropropane it appears as though v sym. CH₃ is in Fermi resonance (FR) with 2δ asym. CH₃. The δ CH₂ and ρ CH₂ vibrations occur in the ranges 1446–1458 cm⁻¹ and 1113–1129 cm⁻¹, respectively.

If one calculates the absorbance ratios: (A) v sym. NO₂/(A) v sym. CH₂; (A) v sym. NO₂/(A) v asym. CH₂; and (A) v sym. NO₂/(A) v asym. CH₃, the calculated values decrease as the number of carbon atoms in the nitroalkanes increase. Absorbance ratios such as these aid in identifying specific nitroalkanes.

NITROALKANES: VAPOR VS LIQUID-PHASE DATA

Table 7.3 compares vapor- and liquid-phase IR data for the v NO $_2$ vibrations for 12 nitroalkanes. In both vapor and liquid phases, v asym. NO $_2$ occur in the ranges 1555–621 cm $^{-1}$ and 1535–1601 cm $^{-1}$, respectively. Thus, the v asym. NO $_2$ vibration for these nitroalkanes decreases in frequency by 17 to 32 cm $^{-1}$ in going from the vapor to the liquid phase. In the case of v sym. NO $_2$, this vibration occurs in the range 1310–1397 cm $^{-1}$ in the vapor and in the range 1310–1381 cm $^{-1}$ in the liquid phase. Thus, the v sym. NO $_2$ vibration remains constant in the case of trichloronitromethane or decreases in frequency by 1–22 cm $^{-1}$ in going from the vapor to the liquid phase. Thus, the v asym. NO $_2$ vibration decreases much more in frequency than does the v sym. NO $_2$ vibration in going from the vapor to the liquid phase.

TETRANITROMETHANE

Tetranitromethane has a maximum symmetry of Td. In the vapor phase, IR bands are noted at $1651\,\mathrm{cm^{-1}}$ (A = 0.180), $1623\,\mathrm{cm^{-1}}$ (A = 1.240), $1278\,\mathrm{cm^{-1}}$ (A = 0.220), $801\,\mathrm{cm^{-1}}$ (A = 0.330), and very weak bands at $\sim\!665\,\mathrm{cm^{-1}}$, and $604\,\mathrm{cm^{-1}}$ (1). In the liquid phase, IR bands are noted at $1642\,\mathrm{cm^{-1}}$ (A = 0.490), $1610\,\mathrm{cm^{-1}}$ (A = 0.840), $1268\,\mathrm{cm^{-1}}$ (A = 0.490), $799\,\mathrm{cm^{-1}}$ (A = 0.611), $662\,\mathrm{cm^{-1}}$ (A = 0.070), and $602\,\mathrm{cm^{-1}}$ (A = 0.113).

Nitroalkanes have been reported to exhibit v asym. NO_2 in the range 1555-1621 cm⁻¹ (1). The absorbance ratio of the 1623 cm⁻¹/1651 cm⁻¹ bands in the vapor phase is 6.89, and the absorbance ratio of the 1642 cm⁻¹/1610 cm⁻¹ bands in the liquid phase is 1.71. These two IR bands must result from v asym. $(NO_2)_4$ vibrations. It is possible that the 1623 cm⁻¹ (VP) and 1610 cm⁻¹ (LP) bands result from out-of-phase v asym. $(NO_2)_4$ and the 1651 cm⁻¹ (VP) and 1642 cm⁻¹ (LP) bands result from in-phase v asym. $(NO_2)_4$. The ratio of the out-of-phase v asym. $(NO_2)_4$ vibrations to the in-phase v asym. $(NO_2)_4$ vibrations is higher in the vapor phase at elevated temperature. There are no other spectral features to suggest that these two bands are the result of v asym. $(NO_2)_4$ being in FR with a combination tone.

Nitroalkanes in the vapor phase exhibit v sym. NO_2 in the range 1310-1397 cm⁻¹ (1). It is suggested that the 1278 cm⁻¹ (VP) and the 1268 cm⁻¹ (LP) bands result from out-of-phase v sym. $(NO_2)_4$. With Td symmetry, the in-phase v sym. $(NO_2)_4$ vibration would be IR inactive (Raman active). A weak IR bond occurs at 2885 cm⁻¹ in the vapor phase and this can be assigned to the combination tone (1623 + 1278 = 2901 cm⁻¹). In the liquid phase the combination tone is (1610 + 1268 = 2878 cm⁻¹ vs 2870 cm⁻¹ observed). This assignment is for the out-of-phase v asym. $(NO_2)_4$ + out-of-phase v sym. $(NO_2)_4$ combination tone. A weak IR band is observed at 2970 cm⁻¹ in the vapor phase. If we assume that the in-phase v asym. $(NO_2)_4$ and in-phase v sym. $(NO_2)_4$ also exhibit a combination tone (the 2970 cm⁻¹ IR band), the in-phase v sym. $(NO_2)_4$ vibration is calculated to occur at 1319 cm⁻¹. Raman data is required to determine if this assumption is correct.

Weak IR bands are observed at $2550 \,\mathrm{cm^{-1}}$ (VP) and $2532 \,\mathrm{cm^{-1}}$ (LP), and these can be assigned to the overtone of out-of-phase v asym. (NO₂)₄.

Infrared bands at 801 cm⁻¹ (VP), 799 cm^{-1} (A = 0.611) (LP), $\sim 665 \text{ cm}^{-1}$ (VP), 666 cm^{-1} (A = 0.070) (LP) and 604 (VP), and 602 cm^{-1} (A = 0.113) (LP) are tentatively assigned to the

 $\delta(\text{NO}_2)_4$, W(NO₂)₄, and $\rho(\text{NO}_2)_4$ vibrations. The decrease in frequency for out-of-phase v asym. (NO₂)₄ and out-of-phase v sym. (NO₂)₄ in going from the vapor phase to the liquid phase is $131\,\text{cm}^{-1}$ and $10\,\text{cm}^{-1}$, respectively. The data for tetranitromethane was read from Sadtler IR vapor spectra and standard condensed phase IR spectra (1).

It is suggested that the range for v asym. NO₂ for nitroalkanes extends over the range 1555–1651 cm⁻¹ and that v sym. NO₂ extends over the range 1278–1397 cm⁻¹.

NITROBENZENES

Study of 131 vapor-phase IR spectra of nitrobenzenes shows that v asym. NO_2 occurs in the range $1530-1580\,\mathrm{cm^{-1}}$ and v sym. NO_2 in the range $1325-1371\,\mathrm{cm^{-1}}$. Comparisons of these nitrobenzene data with those data for nitroalkanes show that both v asym. NO_2 and v sym. NO_2 vibrations overlap. Comparison of the v asym. NO_2 frequencies for nitrobenzene ($1540\,\mathrm{cm^{-1}}$), nitromethane ($1582\,\mathrm{cm^{-1}}$), and trimethylnitromethane ($1555\,\mathrm{cm^{-1}}$) show that this mode occurs at lower frequency in the case of nitrobenzene. This decrease in frequency for v asym. NO_2 is attributed to resonance effects of the phenyl group with the NO_2 group (5). Table 7.4 lists IR data for 4-X-nitrobenzenes in the vapor phase. The v asym. NO_2 mode occurs at $1530\,\mathrm{cm^{-1}}$ for 4-nitroanilines and at $1567\,\mathrm{cm^{-1}}$ for 1,4-dinitrobenzene and the σ_p values are -0.66 and +0.78, respectively. However, there is no apparent smooth correlation for v asym. NO_2 vs σ_p . Neither is there a smooth correlation for v sym. NO_2 vs σ_p .

Comparison of the v sym. NO_2 frequencies for nitrobenzene (1351 cm $^{-1}$), nitromethane (1397 cm $^{-1}$), and trimethylnitromethane (1349 cm $^{-1}$) show that these vibrations occur at similar frequencies. Thus, it would be helpful to have another parameter to help distinguish between nitrobenzenes and nitroalkanes. A distinguishing feature is the absorbance ratio (A) v asym. $NO_2/(A)$ v sym. NO_2 . The band intensity ratio for nitrobenzene is 0.9 compared to 1.9–5.9 for the nitroalkanes. The absorbance ratio for (A) v asym. $NO_2/(A)v$ sym. NO_2 varies between 0.9 and 1.9 for these 4-X-nitrobenzenes.

NITROBENZENE IN DIFFERENT PHYSICAL PHASES

Tables 7.5 through 7.8 list IR frequency data for nitrobenzenes in different physical phases. In all cases v asym. NO₂ occurs at lower frequency in CHCl₃ solution or in the neat liquid or solid phase than it occurs in the vapor phase. However, v sym. NO₂ usually occurs at lower frequency in CHCl₃ than in the vapor phase. In certain cases v sym. NO₂ occurs at higher frequency in the neat phase than in the vapor phase (4-chloronitrobenzene for example, 1360 cm⁻¹ vs 1349 cm⁻¹; see Table 7.5). In all cases, the frequency separation between v asym. NO₂ and v sym. NO₂ is larger in the vapor phase than it is in CHCl₃ solution or the neat phases.

Table 7.7 lists IR v NO₂ data for 4-X-nitrobenzenes and 3-X-nitrobenzenes in CCl₄ and CHCl₃ solution. In all cases the frequency separation between v asym. NO₂ and v sym. NO₂ is larger in CCl₄ solution than in CHCl₃ solution. In addition, the v asym. NO₂ frequency always decreases in going from CCl₄ solution to CHCl₃ solution, while v sym. NO₂ generally increases in frequency. The exceptions are for 4-nitroaniline, 4-nitroanisole, and 4-nitrodiphenyl oxide. The decrease in frequency for v asym. NO₂ in going from solution in CCl₄ to solution in CHCl₃

is attributed to intermolecular hydrogen bonding between the CHCl₃ proton and the oxygen atoms of the NO₂ group as shown here:

In the case of v sym. NO_2 it is more difficult for the oxygen atoms to vibrate in phase, compared to the v asym. NO_2 vibration which causes an increase in frequency due to intermolecular hydrogen bonding. In contrast there is a trade-off in energy during v asym. NO_2 because one NO_2 oxygen atom is pulling away from the CHCl $_3$ proton while the other oxygen atom is expanding toward the CHCl $_3$ proton. The overall effect is a decrease in the v asym. NO_2 frequency.

Table 7.8 shows that the frequency separation between v asym. NO_2 in the vapor and $CHCl_3$ solution phase is larger than it is between v asym. NO_2 in the vapor and the CCl_4 solution phase, and again this is the result of intermolecular hydrogen bonding in $CHCl_3$ solution. The reaction field of the solvent also affects v NO_2 frequencies, and part of the decrease in frequency in $CHCl_3$ solution is attributed to the $CHCl_3$ reaction field. In the case of CCl_4 , the decrease in frequency is attributed to the reaction field of CCl_4 .

4-NITROBENZALDEHYDE

Table 7.9 lists IR data for v asym. NO₂ and v sym. NO₂ frequencies of 4-nitrobenzaldehyde 1% wt./vol. in 0 to 100 mol % CHCl₃/CCl₄ solutions (6). The v asym. NO₂ decreases $4.8 \, \mathrm{cm}^{-1}$ while v sym. NO₂ increases $1.5 \, \mathrm{cm}^{-1}$ in going from solution in CCl₄ to solution in CHCl₃. Figure 7.5 show plots of v asym. NO₂ and v C=O frequencies for 4-nitrobenzaldehyde vs mole % CHCl₃/CCl₄ (6). Both v asym. NO₂ and v C=O decrease in frequency in a linear manner as the mole % CHCl₃/CCl₄ is increased from 0 to 100 mol %. Moreover, both modes decrease in frequency at approximately the same amount (viz. v asym. NO₂, $4.8 \, \mathrm{cm}^{-1}$ vs v C=O, $4.5 \, \mathrm{cm}^{-1}$). In contrast the v C=O decrease in frequency for 4-dimethylaminobenzaldehyde is $9.8 \, \mathrm{cm}^{-1}$ as the mole % is increased from 0 to $100 \, \mathrm{mol}$ % CHCl₃/CCl₄. These data indicate that the strength of the intermolecular hydrogen formed between the CCl₃H proton and the C=O···HCCl₃ or NO₂··· (HCCl₃)_{1 or 2} depends upon the basicity of the oxygen atoms. As these compounds are both 1,4-disubstituted benzenes, this is not a steric factor altering the distance between the site of the oxygen atom and the CCl₃H proton.

Figure 7.6 shows a plot of v sym. NO₂ for 4-nitrobenzaldehyde vs mole % CHCl₃/CCl₄ (6). The plot shows that v sym. NO₂ increases in frequency from 0 to 10.74 mol % CHCl₃/CCl₄, then decreases in frequency from 19.4 to 26.5 mol % CHCl₃/CCl₄, and then steadily increases in frequency to 100 mol % CHCl₃/CCl₄. This suggests that at mole % CHCl₃/CCl₄ < 10.74 the

intermolecular hydrogen bonding in the case of 4-nitrobenzaldehyde is as shown here. At higher concentrations of CHCl₃, the intermolecular hydrogen bonding is as shown here:

The steady increase in frequency is due to the increased energy required to expand and contract the NO_2 oxygen atoms away from the CCl_3H protons. This effect is larger than it appears in this plot, because the reaction field increases as the mole % $CHCl_3/CCl_4$ is increased, which has the effect of decreasing v asym. NO_2 and v C=O frequencies.

Table 7.10 is a comparison of IR v asym. NO_2 and v sym. NO_2 frequency data for nitromethane and nitrobenzene in a series of 13 different solvents (7). In both cases, the v asym. NO_2 frequency is highest when in solution with hexane (CH_3NO_2 , $1569 \, cm^{-1}$; $C_6H_5NO_2$, $1535.8 \, cm^{-1}$), and the frequency is lowest in dimethyl sulfoxide (CH_3NO_2 , $1552.8 \, cm^{-1}$; $C_6H_5NO_2$, $1524.7 \, cm^{-1}$). In this series of solvents, the frequency difference between v asym. NO_2 for nitromethane and nitrobenzene varies between $28.1 \, cm^{-1}$ and $34.3 \, cm^{-1}$.

In several cases the v sym. NO_2 vibration for nitromethane is masked by the solvent, and in two cases for nitrobenzene. The v sym. NO_2 mode for nitrobenzene occurs 26.2 to $28\,\mathrm{cm}^{-1}$ lower in frequency than v sym. NO_2 for nitromethane. Both v asym. NO_2 and v sym. NO_2 for nitrobenzene occur at lower frequency than the corresponding vibrations for nitromethane, and this is attributed to resonance of the phenyl group with the nitro group.

The frequency difference for v asym. NO_2 for nitromethane in hexane and each of the other solvents is more than the frequency difference for v asym. NO_2 for nitrobenzene in hexane and each of the other solvents, except for the solvents nethylene chloride and chloroform. These exceptions may be attributed to intermolecular hydrogen bonding between the NO_2 oxygen atoms and $CHCl_3$ or CH_2Cl_2 protons, which is apparently stronger in the case of nitrobenzene.

3-X-NITROBENZENES

The vapor-phase IR v asym. NO₂ and v sym. NO₂ frequencies for 3-X-nitrobenzenes occur in the ranges $1540-1553\,\mathrm{cm^{-1}}$ and $1349-1360\,\mathrm{cm^{-1}}$, respectively (see Table 7.11). In addition the frequency difference between v asym. NO₂ and v sym. NO₂ ranges between 187 and $204\,\mathrm{cm^{-1}}$, and the absorbance ratio (A)v asym. NO₂/(A)v sym. NO₂ varies between 1.07 and 2.16. The

frequency separation between vasym. NO₂ and vsym. NO₂ appears to decrease in the order vapor, CHCl₃, CHCl₃, and neat or solid phase (see Tables 7.12 and 7.13).

2-NITROBENZENES

Table 7.14 lists vapor-phase IR data for 2-nitrobenenes (1). Their v asym. NO₂ and v sym. NO₂ frequencies occur in the ranges 1540–1560 cm⁻¹ and 1350–1360 cm⁻¹, respectively. The compound 2-nitrophenol is an exception because v sym. NO₂ occurs at 1335 cm⁻¹. This relatively low v sym. NO₂ for 2-nitrophenol is attributed to intramolecular hydrogen bonding between the OH proton and the NO₂ oxygen atom as illustrated here:

Intramolecular hydrogen bonding alters the band intensity ratio (A)v asym. NO₂/(A) sym. NO₂ because this ratio is 0.52 for 2-nitrophenol and varies between 1.09 to 2.59 for the 13 other compounds included in this study. In addition the frequency separation between v asym. NO₂ and v sym. NO₂ is $210 \, \text{cm}^{-1}$ for 2-nitrophenol and varies between 186 and $200 \, \text{cm}^{-1}$ for the other 13 compounds included in this study.

Tables 7.15 and 7.16 compare the v asym. NO₂ and v sym. NO₂ frequency data for 2-X-nitrobenzenes in different physical phases. The frequency separation between v asym. NO₂ and v sym. NO₂ is larger in the vapor phase than in either CHCl₃ solution or the neat or solid phases. Moreover, the v asym. NO₂ vibration decreases more in frequency in going from the vapor phase to the CHCl₃ solution phase or to the neat or solid phase than does the v sym. NO₂ vibration.

Table 7.17 lists IR data for 1-X-, 3-X- and 4-X-nitrobenzenes in the solid phase, and there does not appear to be a consistent trend in v asym. NO_2 and v sym. NO_2 frequencies in the three sets of these substituted nitrobenzenes in the solid phase.

Table 7.18 lists vapor-phase IR data for the v asym. NO_2 and v sym. NO_2 frequencies of 2,5-and 2,6-X,Y-nitrobenzenes. The v asym. NO_2 and v sym. NO_2 frequencies occur in the ranges 1541–1560 cm $^{-1}$ and 1349–1361 cm $^{-1}$, respectively. The exceptions are for those 2,5-X,Y-nitrobenzenes with an OH or an NHCO CH $_3$ group in the 2-position. These v sym. NO_2 vibrations occur at 1325 cm $^{-1}$, 1330 cm $^{-1}$, and 1340 cm $^{-1}$, and occur at lower frequency as a result of intramolecular hydrogen bonding. It is also interesting to note that the absorbance ratio (A)v asym. $NO_2/(A)$ v sym. NO_2 is 1.07, 0.74, and 0.37 for these same compounds.

In the case of the 2,6-X-Y-nitrobenzenes, the compound 2-nitro-6-methylphenol exhibits v sym. NO_2 at 1349 cm⁻¹ and the absorbance ratio (A)v asym. $NO_2/(A)v$ sym. NO_2 is 0.88. These data indicate that the NO_2 group is intramolecularly hydrogen bonded with the phenolic OH group.

In the case of 2,6-dichloronitrobenzene the v asym. NO₂ frequency occurs at 1568 cm⁻¹ and the absorbance ratio (A) v asym. NO₂/(A)v sym. NO₂ is 3.60. These data are comparable to those

exhibited by the nitroalkanes. The reason for this is that the NO_2 group and the 2,6-dichlorophenyl group are not coplanar in the case of 2,6-dichloro-1-nitrobenzene. Therefore, the resonance effect upon the NO_2 is no longer possible.

Table 7.19 is a comparison of the frequency difference between v asym. NO₂ and v sym. NO₂ in the vapor, neat or solid phases for 2,5-X-Y-nitrobenzenes. These data show that the v asym. NO₂ decrease more in frequency than v sym. NO₂ in going from the vapor to the neat or solid phase.

Table 7.20 lists IR data for tri-, tetra- and pentasubstituted nitrobenzenes. The highest v asym. NO₂ frequencies are exhibited by 1,2-dinitro-3,6-dichlorobenzene, 1580 cm⁻¹, and 1,2-dinitro-3,6-dibromobenzene, 1578 cm⁻¹ (1). These two compounds also have the highest absorbance ratio (A)v asym. NO₂/(A)v sym. NO₂, 4.17 and 3.88 for the 3,6-Cl₂ and 3,6-Br₂ analogs, respectively. These data indicate that the NO₂ groups are not coplanar with the 3,6-dihalophenyl group.

In the case of nitrobenzenes where there is at least 2,6-dichloro atoms, the NO_2 group is not coplanar with the 2,6-dichloro phenyl group. Thus, compounds such as 2,4,6-trichloronitrobenzene, 2,3,5,6-tetrachloronitrobenzene, and pentachloronitrobenzene exhibit v asym. NO_2 at 1562, 1569, and 1568 cm⁻¹, respectively. In the same compound order, v sym. NO_2 is assigned at 1361, 1333, and 1332 cm⁻¹, respectively, and the absorbance ratio for (A)v asym. $NO_2/(A)v$ sym. NO_2 is 2.67, 1.25, and 1.48, respectively.

4-X-NITROBENZENES IN CCl₄ AND CHCl₃ SOLUTIONS

Table 7.21 lists the v asym. and v sym. NO_2 frequencies for 21 4-X-nitrobenzenes in 1% or less wt./vol. in CCl_4 and $CHCl_3$ solutions (8). Figure 7.7 is a plot of v asym. NO_2 frequencies in CCl_4 solution vs v asym. NO_2 frequencies in $CHCl_3$ solution. This linear plot increases from a low of 1513.9 cm $^{-1}$ vs 1505.3 cm $^{-1}$ for 4-nitroaniline to a high of 1556.1 cm $^{-1}$ vs 1554.4 cm $^{-1}$ for 1,4-dinitrobenzene. At all frequency points, the v asym. NO_2 vibration occurs at lower frequency in $CHCl_3$ solution than in CCl_4 solution. As stated previously, the shift to lower frequency in $CHCl_3$ solution is due to intermolecular hydrogen bonding $[NO_2(\cdots HCCl_3)_2]$ and an increased value for the reaction field.

It has been suggested that *v* sym. NO₂ couples with an in-plane ring mode as approximated here:

This is because v sym. NO_2 is not affected in the same manner as v asym. NO_2 .

In general, the frequency separation between v asym. NO_2 and v sym. NO_2 increases progressing in the series 1–21 in both solvents. This is attributed to the nature of the NO_2 bonds. Bellamy has pointed out that the v asym. NO_2 for 4-X-nitrobenzenes is directly related to

the electron donor or acceptor property of the 4-X substituent (9). For example, substituent groups with negative σ_p values would contribute to a structure such as presented here:

Substituent groups with positive $\sigma_{\rm p}$ values would contribute to a structure such as presented here:

Figures 7.8 and 7.9 are plots of v asym. NO_2 for 4-X-nitrobenzenes in CCl_4 solution and in $CHCl_3$ solution vs Hammett σ_p values for the 4-X substituent group, respectively (8). The Hammett σ_p values include both inductive and resonance contributions of the 4-substituent groups (10). Both of these plots show pseudolinear relationships. The most deviant point is 6 for 4-nitrophenol. In this case the OH group is intermolecularly hydrogen bonded to the Cl atom of each solvent (8).

Resonance parameters have been derived for substituted benzenes. When the ring is unperturbed, it is σ_R . When the ring is electron poor, it is σ_R +. When the ring is electron rich, it is σ_R -. When the ring is in resonance with a carboxylic acid group, it is σ_R (11).

Figures 7.10 and 7.11 are plots of v asym. NO₂ frequencies vs σ_R + for 4-X-nitrobenzenes in CCl₄ and CHCl₃ solutions, respectively (8). These pseudo-linear relationships show that as σ_R + becomes more positive, the v asym. NO₂ vibration increases in frequency.

Figures 7.12 and 7.13 are plots of v asym. NO₂ vs σ_R for 4-X-nitrobenzenes in CCl₄ and CHCl₃ solutions, respectively (8). These plots show the same trend as for Figs. 7.10 and 7.11.

Figures 7.14 and 7.15 are plots of v asym. NO₂ for 4-X-nitrobenzenes vs σ_I , a measure of the inductive power of the 4-X group (10, 11) in CCl₄ and CHCl₃ solutions, respectively (8). These figures show that v asym. NO₂ does not correlate well with the inductive parameter of the 4-X group. In conclusion, the v asym. NO₂ frequencies for 4-X-nitrobenzenes correlate best with σ_p values, which include both resonance and inductive parameters.

ALKYL NITRATES

Tables 7.22 and 7.23 list IR data and vibrational assignments for alkyl nitrates. Depending upon the physical phase, v asym. NO₂ and v sym. NO₂ for alkyl nitrates occur in the ranges 1617–1662 cm⁻¹ and 1256–1289 cm⁻¹, respectively. The absorbance for v asym. NO₂ is higher than the absorbance for v sym. NO₂. The v asym. NO₂ vibration decrease more in frequency then the v sym. NO₂ vibration in going from the vapor phase to CCl₄ solution or neat phase. Both v asym. NO₂ and v sym. NO₂ exhibit a first overtone, and 2v asym. NO₂ decreases more in frequency than 2v sym. NO₂ in going from the vapor phase to the neat or solution phase.

The v N-O vibration occurs in the range 854-865 cm $^{-1}$, and γ NO $_2$ and δ NO $_2$ are assigned near 760 cm $^{-1}$ and 700 cm $^{-1}$, respectively. A vapor-phase IR spectrum for ethyl nitrate is shown in Fig. 7.16.

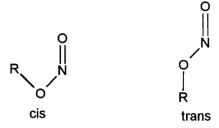

ETHYL NITRATE VS NITROALKANES AND NITROBENZENE

Table 7.24 lists IR data for ethyl nitrate, nitroalkanes, and nitrobenzene in CCl_4 and $CHCl_3$ solutions (7). In all cases, the v asym. NO_2 vibration decreases in frequency and the v sym. NO_2 vibration increases in frequency in going from CCl_4 solution to $CHCl_3$ solution. The decrease in the v asym. NO_2 frequency in going from solution in CCl_4 to solution in $CHCl_3$ is attributed to intermolecular hydrogen bonding $[NO_2(\cdots HCCl_3)_2]$ and an increased reaction field. In the case of v sym. NO_2 , the situation is reversed. The increased reaction is expected to lower the v sym. NO_2 frequency. This reversal is due to the fact that it requires more energy to expand both NO_2 oxygen atoms against the $HCCl_3$ protons $[NO_2(\cdots HCCl_3)_2]$ during a cycle of v sym. NO_2 . In the case of v asym. NO_2 , the energy required to expand one NO_2 oxygen atom toward the $HCCl_3$ proton is canceled by contraction of the other NO_2 oxygen atom away from the $HCCl_3$ proton.

Another correlation for these compounds is that as the v asym. NO₂ vibration decreases in frequency from 1637 through 1531 cm⁻¹, the v sym. NO₂ vibration tends to increase in frequency. The frequency separation between v asym. NO₂ and v sym. NO₂ decreases in the order ethyl nitrate through nitrobenzene in both CCl₄ and HCCl₃ solutions (355.8–183.3 cm⁻¹ CCl₄ and 348.8–177.6 cm⁻¹ in CHCCl₃) (7).

ALKYL NITRITES

Alkyl nitrites have the empirical structure R-O-N=O. However, these compounds exist in a cis and trans structure as depicted here:

Therefore, alkyl nitrites exhibit IR bands for cis v N=O and trans v N=O. Tables 7.25 and 7.26 list characteristic IR group frequency data for alkyl nitrites. The data in Table 7.26 are from Tarte (12). The v N=O frequency data reported by Tarte are higher than those reported by Nyquist (1). An IR spectrum for n-butyl nitrite is shown in Fig. 7.17. The trans v N=O vibration (1653–1681 cm⁻¹) occurs at higher frequency than the cis v N=O vibration (1610–1625 cm⁻¹), and the absorbance ratio (A) trans v N=O/(A) cis v N=O varies from 0.95 for methyl nitrite to \sim 50 for tert-butyl nitrite. As the steric factor of the R group becomes larger, the preferred structure is apparently the trans configuration.

The trans v N-O vibration occurs in the range 751–814 cm $^{-1}$, and the cis δ O-N=O and trans δ O-N=O vibrations are assigned in the ranges 617–689 cm $^{-1}$ and 564–625 cm $^{-1}$, respectively (12).

Figure 7.18 shows plots of cis v N=O and trans v N=O for alkyl nitrites vs σ^* (the inductive parameter of the alkyl group), and both plots show a pseudo-linear relationship (1).

Figure 7.19 shows a plot of trans v N-O vs σ^* and this plot also shows a pseudolinear relationship (1).

Figure 7.20 shows a plot of trans v N=O vs trans v N-O, and this plot also exhibits a pseudolinear relationship (1).

Figure 7.21 shows plots of the absorbance ratio (A) trans v = O/(A) cis v = O for 10 alkyl nitrites vs σ^* . These data show that the concentration of the trans conformer increases as the electron release of the alkyl group to the O-N=O group is increased (1).

RAMAN DATA FOR ORGANONITRO COMPOUNDS

Table 7.27 lists Raman data for some organonitro compounds (13). The eight compounds listed show that v sym. NO_2 is a medium to strong Raman band in the range $1312-1350\,\mathrm{cm}^{-1}$, and a weak to strong Raman band assigned to $\delta\,\mathrm{NO_2}$ in the range $831-882\,\mathrm{cm}^{-1}$. The frequency separation between these two Raman bands varies between 454 and $492\,\mathrm{cm}^{-1}$. The relative Raman band intensity for the absorbance ratio (RI) v sym. $NO_2/(RI)\,\delta\,\mathrm{NO_2}$ varies between 0.56 and 9.

Table 7.28 compares IR and Raman data for nitroalkanes in different physical phases. These data also show that *v* asym. NO₂ occurs at lower frequency in the neat phase than in the vapor phase, and it also decreases more in frequency than *v* sym. NO₂, which either decreases or in some cases increases in frequency.

Table 7.29 lists IR and Raman data for nitrobenzenes in different physical phases. Not listed in this Table but worth mentioning is that in the Raman spectrum the ν sym. NO₂ mode is always more intense than in the IR spectrum.

A SUMMATION OF *v* asym. NO₂ AND *v* sym. NO₂ IN DIFFERENT PHYSICAL PHASES

Tables 7.30–7.32 list IR and/or Raman data in various physical phases. In all cases v asym. NO₂ changes more in going from the vapor phase to the solution or neat phases than does the v sym. NO₂, which sometimes even increases in frequency. Intermolecular hydrogen bonding and the increased reaction field lowers v NO₂ frequencies. The increased energy required during expansions of the NO₂ oxygen atoms against the CHCl₃ protons offset the increase in the reaction field and hydrogen bonding effects.

NITROSAMINES

Nitrosamines have the empirical structure presented here:

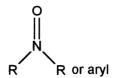


Table 7.33 lists IR data for nitrosamines in different physical phases. These compounds exhibit $v\,N=O$ in the region 1482–1492 cm⁻¹ in the vapor phase, and in the region 1438–1450 cm⁻¹ in the liquid phase. Thus, there is a decrease in frequency of between 32–54 cm⁻¹ in going from the vapor to the liquid phase. This frequency decrease is attributed to dipolar interaction between the N=O groups in the condensed phase. Another way to look at this $v\,N=O$ frequency decrease in going from the vapor to the neat phase is that there is an increase in the reaction field.

The compound illustrated here exhibits v N=O at 1534 cm⁻¹ in the vapor phase and at 1509 cm⁻¹ in the neat phase:

REFERENCES

- 1. Nyquist, R. A. (1984). *The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data*. Philadelphia: Sadtler Research Laboratories, pp. 550–608; see also Sadtler Standard vapor- and neat-phase IR collections.
- 2. Lunn, W. H. (1960). Spectrochim. Acta, 16: 1088.
- 3. Smith, D. C., Pan, C. Y., and Nielsen, J. R. (1950). J. Chem. Phys. 18: 706.
- 4. Geiseler, G. and Kesler, G. (1964). Ber. Bunsenges. Phys. Chem. 68: 571.
- 5. Bellamy, L. J. (1968). Advances In Infrared Group Frequencies, London: Methuen & Co. Ltd., p. 231.
- 6. Nyquist, R. A., Settineri, S. E., and Luoma, D. A. (1991). Appl. Spectrosc. 45: 1641.
- 7. Nyquist, R. A. (1990). Appl. Spectrosc. 44: 594.
- 8. Nyquist, R. A. and Settineri, S. E. (1990). Appl. Spectrosc. 44: 1552.
- 9. Bellamy, L. J. (1968). Advances in Infrared Group Frequencies. London: Methuen & Co., p. 228.
- 10. Taft, R. W. (1956). Steric Effects in Organic Chemistry. M. S. Newman, ed., New York: John Wiley.
- 11. Brownlee, R. T. C. and Topsom, R. D. (1975). Spectrochim. Acta 31A: 1677.
- 12. Tarte, P. (1952). J. Chem. Phys. 20: 1570.
- 13. Sadtler Laboratories Standard Collection of Raman Data for Organic Compounds. Philadelphia, PA.
- 14. Bellamy, L. J. (1968). Advances in Infrared Group Frequencies. London: Methuen & Co.

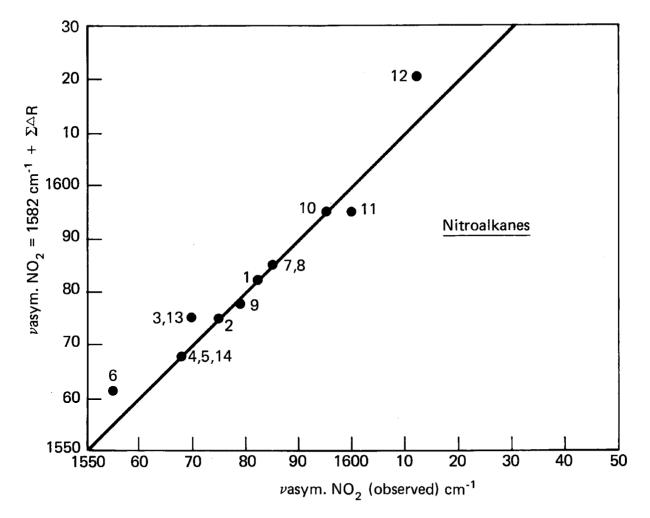


FIGURE 7.1 A plot of the observed vasym. NO₂ frequencies vs the calculated vasym. NO₂ frequencies for nitroalkanes using the equation vasym. NO₂ = $1582 \, \text{cm}^{-1} + \Sigma \Delta R$.

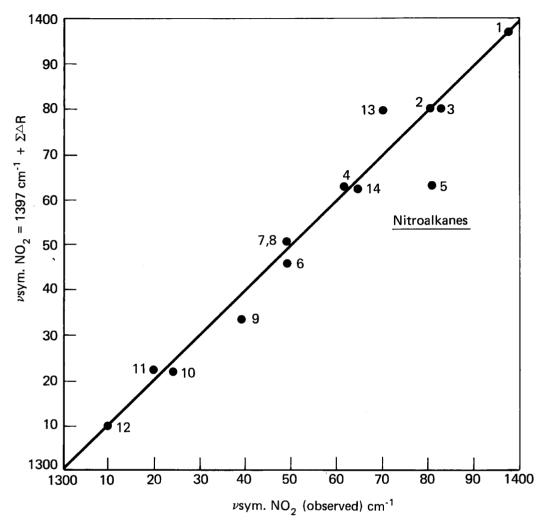


FIGURE 7.2 A plot of the observed ν sym. NO₂ frequencies vs the calculated ν sym. NO₂ frequencies using the equation ν sym. NO₂ = 1397 cm⁻¹ + $\Sigma\Delta$ R.

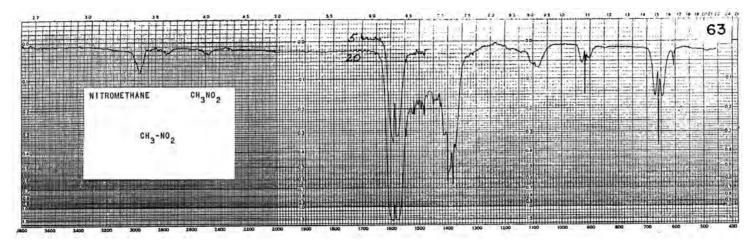


FIGURE 7.3 Vapor-phase IR spectrum for nitromethane in a 5-cm KBr cell (5 and 20 mm Hg sample to 600 mm Hg with N₂).

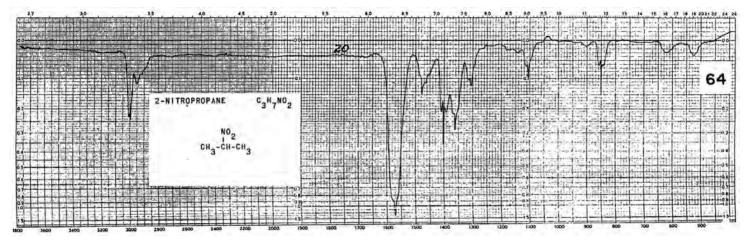


FIGURE 7.4 Vapor-phase IR spectrum for 2-nitropropane in a 5-cm KBr cell (20 mm Hg sample to 600 mm Hg with N₂).

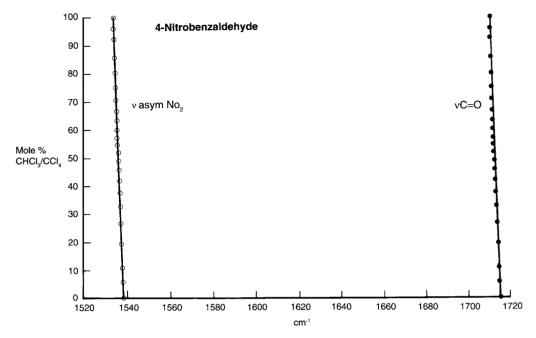


FIGURE 7.5 Plots of ν asym. NO₂ and ν C=O for 4-nitrobenzaldehyde vs mole % CHCl₃/CCl₄.

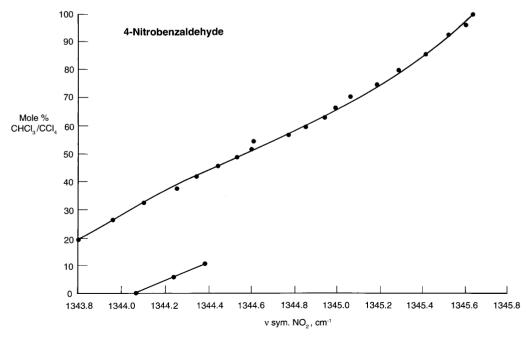


FIGURE 7.6 Plots of v sym. NO $_2$ for 4-nitrobenzaldehyde vs mole % CHCl $_3$ /CCl $_4$.

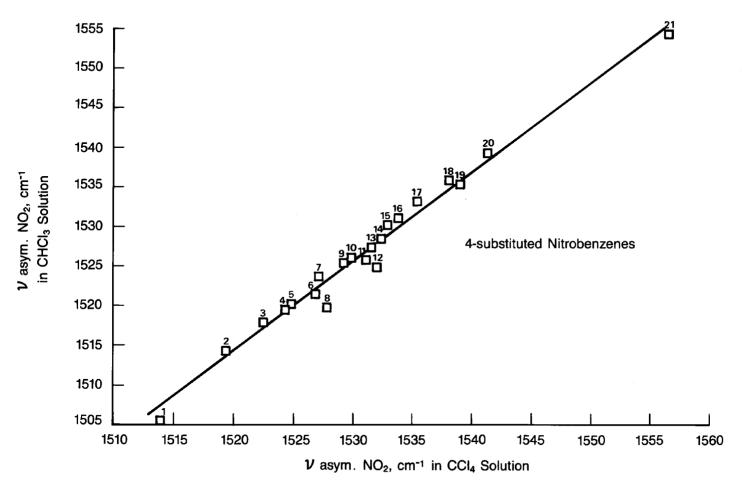


FIGURE 7.7 A plot of vasym. NO₂ for 4-X-nitrobenzenes in CCl₄ solution vs vasym. NO₂ in CHCl₃ solution.

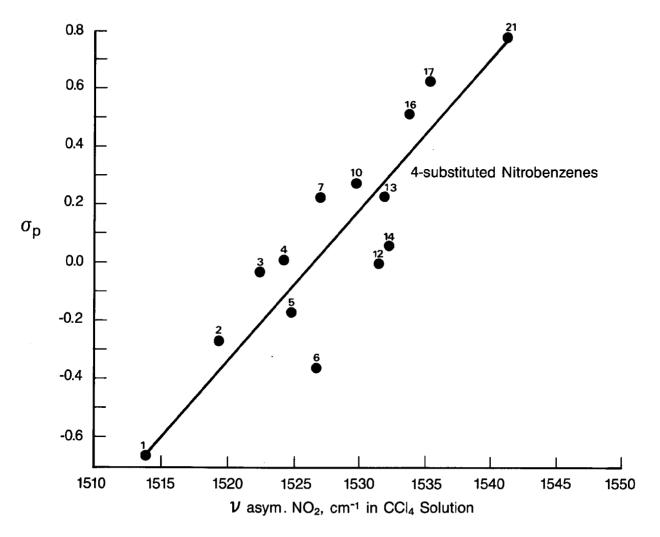


FIGURE 7.8 A plot of v asym. NO₂ for 4-X-nitrobenzenes in CCl₄ solution vs σ_p .

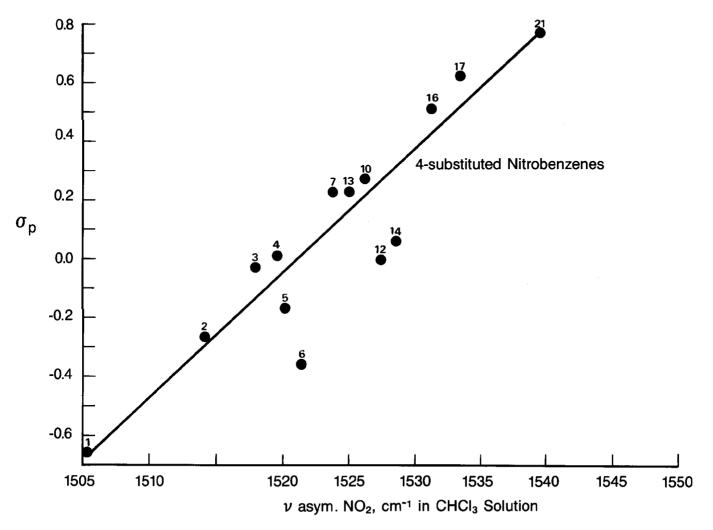


FIGURE 7.9 A plot of v asym. NO₂ for 4-X-nitrobenzenes in CHCl₃ solution vs σ_v .

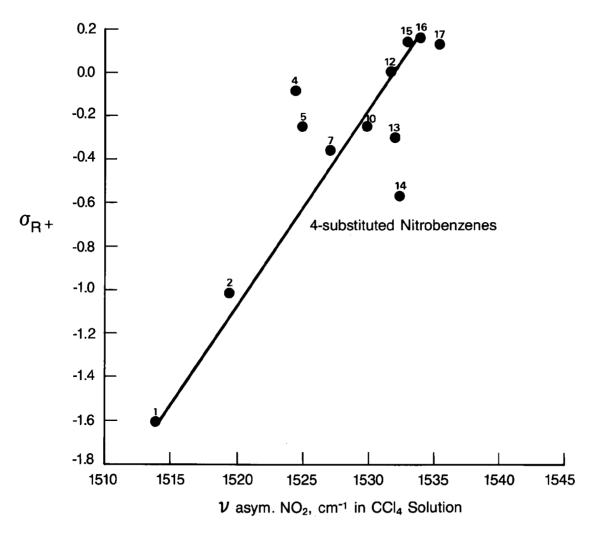


FIGURE 7.10 A plot of v asym. NO₂ for 4-X-nitrobenzenes in CCl₄ solution vs σ_{R^+} .

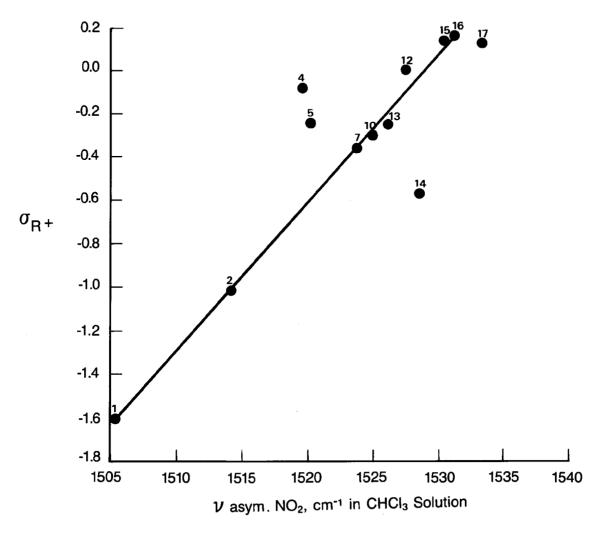


FIGURE 7.11 A plot of v asym. NO₂ for 4-X-nitrobenzenes in CHCl₃ solution vs σ_R +.

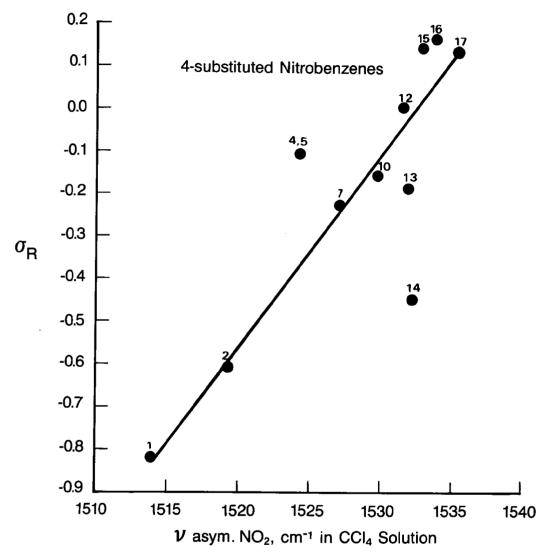


FIGURE 7.12 A plot of v asym. NO $_2$ for 4-X-nitrobenzenes in CCl $_4$ solution vs σ_R .

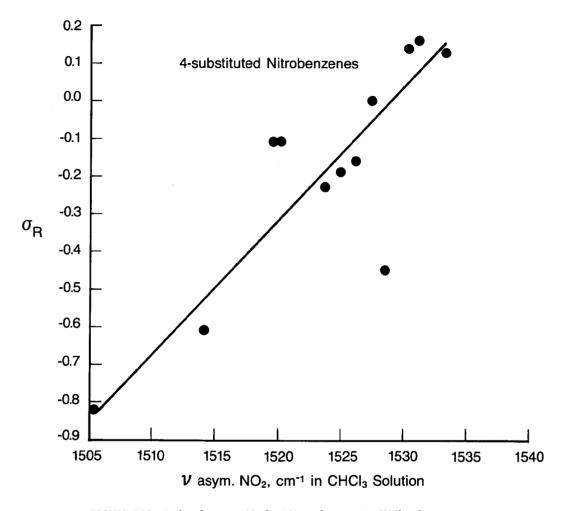


FIGURE 7.13 A plot of v asym. NO $_2$ for 4-X-nitrobenzenes in CHCl $_3$ solution vs σ_R .

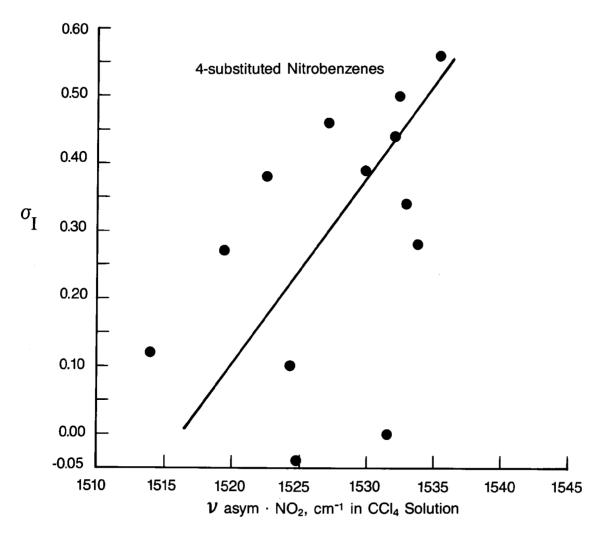


FIGURE 7.14 A plot of v asym. NO₂ for 4-X-nitrobenzenes in CCl₄ solution vs σ_I .

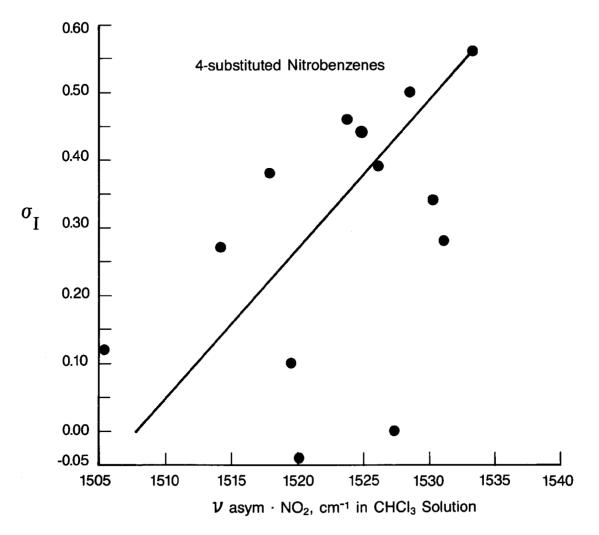


FIGURE 7.15 A plot of v asym. NO₂ for 4-X-nitrobenzenes in CHCl₃ solutions vs σ_1 .

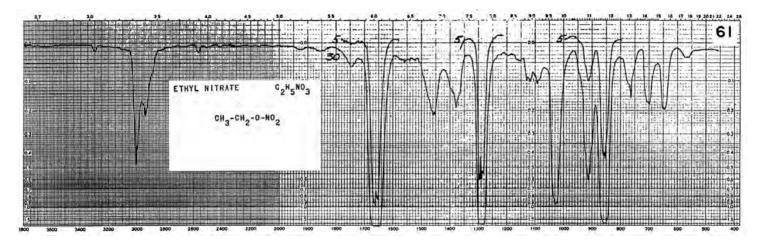
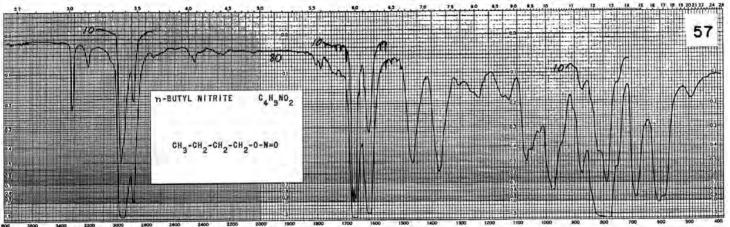
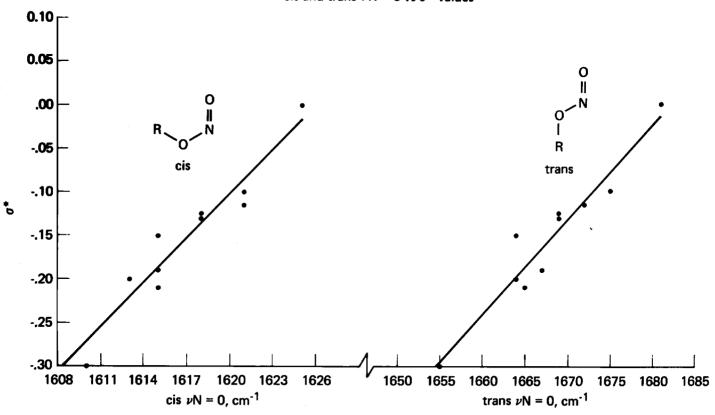
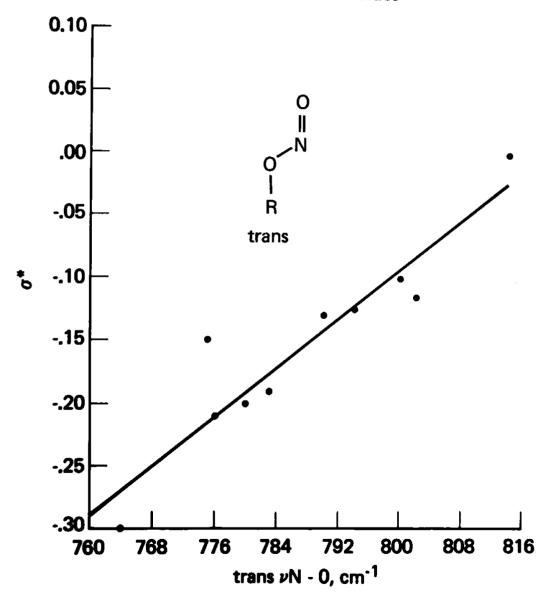


FIGURE 7.16 Vapor-phase IR spectrum for ethyl nitrate in a 5-cm KBr cell (5 and 30 mm Hg sample to $600 \, mm \, Hg$ with N_2).


FIGURE 7.17 Vapor-phase IR spectrum for *n*-butyl nitrite in a 5-cm KBr cell (10 and 80 mm Hg sample to 600 mm Hg with N₂).

cis and trans $\nu N = 0$ vs σ^* values

FIGURE 7.18 Plots of cis v N=O and trans v N=O for alkyl nitrites vs σ^* .

trans ν N - 0 vs σ^* values

FIGURE 7.19 A plot of trans v N-O for alkyl nitrites vs σ^* .

trans $\nu N = 0$ vs trans $\nu N - 0$

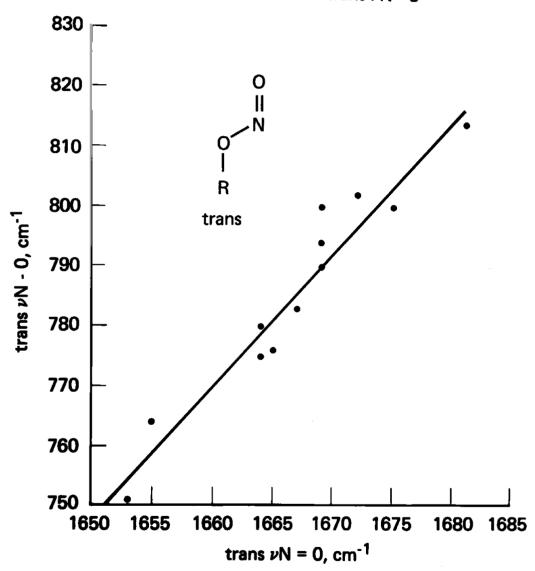
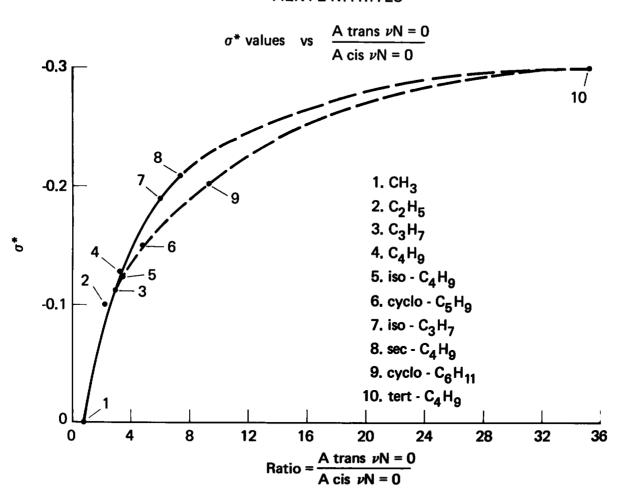



FIGURE 7.20 A plot of trans v N=O vs trans v N-O for alkyl nitrites.

FIGURE 7.21 Plots of the absorbance ratio (A) trans v = O/(A) cis v = O vs σ^* .

TABLE 7.1 The v asym. NO_2 and v sym. NO_2 frequency shifts of substituted nitro compounds from those for nitromethane in the liquid phase

CH ₃ NO ₂	v asym. NO ₂ : 1558 cm ⁻¹ v asym. NO ₂	v sym. NO ₂ : 1375 cm ⁻¹ v sym. NO ₂
α-substituent	ΔR	ΔR
Н	0	0
CH ₃	-5	-8
C_2H_5	-5	-8
C_6H_5	_	-8
C=O (ester)	10	-8
F	17	-23
Cl	17	-23
Br	17	-23
NO ₂	29	-29
β-substituent		
Н	0	0
OH	-4	-6
Cl	2	-4
Br	2	-4
NO_2	2	-15

TABLE 7.1a Vapor-phase IR data for nitroalkanes

Compound R-NO ₂ R	$C-N$ st. cm^{-1} (A)	NO ₂ wag cm ⁻¹ (A)	a.NO ₂ str. cm^{-1} (A)	s.NO ₂ str. cm^{-1} (A)	[a.NO ₂ str.]- [s.NO ₂ str.] cm^{-1}	Ratio (A) a.NO ₂ str./ s.NO ₂ str.	Ratio (A) s.NO ₂ str./ s.CH ₂ str.	Ratio (A) s.NO ₂ str./ a.CH ₂ str.	Ratio (A) s.NO ₂ str./ a.CH ₃ str.
Methane	918 (0.060)	659 (0.230)	1582 (1.049)	1397 (0.541)	185	1.94			13.53
Ethane	872 (0.152)	619 (0.080)	1575 (1.152)	1380 (0.442)	195	2.61	6.31	3.13	2.75
1-()Propane	891 (0.040)	603 (0.050)	1570 (1.250)	1382 (0.405)	188	3.09	3.38	1.69	1.23
1-()Butane	859 (0.049)	610 (0.050)	1576 (1.250)	1382 (0.360)	194	3.47	2.01	1.09	0.73
1-()Pentane	850 (0.060)	610 (0.040)	1575 (1.250)	1371 (0.390)	204	3.21	1.32	0.67	0.57
1-()Hexane	850 (0.049)	605 (0.040)	1571 (1.250)	1382 (0.380)	189	3.29	1.06	0.45	0.51
2-()Propane	851 (0.100)* ¹ 901 (0.030)* ²	618 (0.060)	1565 (1.250)	1360 (0.450)	205	2.78	4.09	2.25	1.09
Cyclohexane	1152 (0.032)		1567 (1.250)	1379 (0.429)	188	2.91	1.03	0.41	

^{*1} gauche. *2 trans.

TABLE 7.2 Vapor-phase IR data for nitroalkanes

Nitro	a.CH ₃ str.	a.CH ₂ str.	s.CH ₃ str.	s.CH ₂ str.	a.CH ₃ bend	CH ₂ bend	CH ₃ rock	C-N st.	NO ₂ wag	a.NO ₂ str.	s.NO ₂ str.	- ,	- ,	Ratio (A) s.NO ₂ str./ a.CH ₂ str.	s.NO ₂ str./
Methane	2990 (0.040)		2960 (0.070)					918 (0.060)	655 (0.230)	1582 (1.049)	1397 (0.541)	1.94			13.53
Ethane	3000 (0.161)	2960 (0.141)		2910 (0.070)		1458 (0.170)	1113 (0.100)	872 (0.152)	619 (0.080)	1575 (1.152)	1380 (0.442)	2.61	6.31	3.13	2.75
1-()Propane	2982 (0.330)	2950 (0.240)		2900 (0.120)		1450 (0.120)	1125 (0.040)	891 (0.040)	603 (0.050)	1570 (1.250)	1382 (0.405)	3.09	3.38	1.69	1.23
1-()Butane	2980 (0.490)	2950 (0.330)		2895 (0.180)	1469 (0.100)	1450 (0.170)	1129 (0.049)	859 (0.049)	610 (0.050)	1576 (1.250)	1382 (0.360)	3.47	2.01	1.09	0.73
1-()Pentane	2975 (0.685)	2945 (0.585)		2885 (0.295)	1465 (0.150)	1447 (0.210)	1125 (0.040)	850 (0.060)	610 (0.040)	1575 (1.250)	1371 (0.390)	3.21	1.32	0.67	0.57
1-()Hexane	2975 (0.740)	2940 (0.840)		2880 (0.360)	1465 (0.160)	1446 (0.200)	1126 (0.040)	850 (0.040)	605 (0.040)	1571 (1.250)	1382 (0.380)	3.29	1.06	0.45	0.51
			2(a.CH ₃ bend)												
2-()Propane	2995 (0.411)	2952 (0.200)*	2880 (0.110)*		1460 (0.209)			851 (0.100) 901 (0.030)	618 (0.060)	1565 (1.250)	1360 (0.450)	2.78	4.09	2.25	1.09
Cyclohexane		2950 (1.070)		2875 (0.418)		1460 (0.232)		1152 (0.032)		1567 (1.250)	1379 (0.429)	2.91	1.03	0.41	

^{*} In Fermi Resonance.

TABLE 7.3 Vapor- and liquid-phase IR data for nitroalkanes

Compound R-NO ₂ R	a.NO ₂ str. vapor cm ⁻¹	a. NO_2 str. liquid cm^{-1}	a.NO ₂ str. Δ [v-l] cm ⁻¹	s.NO ₂ str. Δ [v-l] cm ⁻¹	s.NO ₂ str. vapor cm ⁻¹	s.NO $_2$ str. liquid cm $^{-1}$	Taft σ^*
CH ₃	1582	1558	-24	-22	1397	1375	[0]
C_2H_5	1575	1555	-20	-17	1380	1363	[-0.100]
C_3H_7	1570	1549	-21	-1	1382	1380	[-0.115]
(CH ₃) ₂ CH	1568	1550	-18	-1	1360	1359	[-0.190]
C_6H_{11}	1567	1535	-32	-9	1379	1370	[-0.150]
$(CH_3)_3C$	1555	1535	-20	-3	1349	1346	[-0.300]
CH₃ClCH	1589	1565	-24	-2	1349	1347	[0.95]
C ₂ H ₅ ClCH	1585	1564	-21	10	1348	1358	[0.95]
(CH ₃) ₂ ClC	1579	1554	-25	-3	1339	1336	[0.86]
CH_3Cl_2C	1600	1581	-19	-2	1324	1322	[1.84]
$C_2H_5Cl_2C$	1595	1578	-17	-8	1320	1312	[1.82]
Cl ₃ C	1621	~1601	-20	0	1310	1310	[2.65]
Range:	[1555–1621]	[1535-1601]			[1310-1397]	[1310-1381]	
Δ Range:	66	66			87	71	

TABLE 7.4 Vapor-phase IR data for 4-X-nitrobenzenes

Compound 4-X-Nitrobenzene X	a.NO ₂ str. cm^{-1} (A)	s.NO ₂ str. cm $^{-1}$ (A)	[a.NO ₂ str.]- [s.NO ₂ str.] cm^{-1}	A[s.NO ₂ str.]/ A[a.NO ₂ str.]	$\sigma_{ m p}$
NH ₂	1530 (0.756)	1350 (1.273)	180	1.68	[-0.66]
OH	1539 (0.800)	1350 (1.222)	189	1.53	[-0.36]
OCH ₃	1535 (0.530)	1348 (0.749)	187	1.41	[-0.27]
OC ₆ H ₅	1538 (0.669)	1350 (0.521)	188	0.78	[-0.03]
Cl	1540 (1.230)	1349 (1.225)	191	1	[0.23]
CH ₃	1538 (1.152)	1355 (1.239)	183	1.08	[-0.17]
C_6H_5	1538 (0.669)	1352 (1.240)	186	1.85	[0.01]
Н	1540 (1.248)	1351 (1.141)	189	0.91	[0]
CN	1542 (1.145)	1349 (1.242)	193	1.08	[0.86]
NO ₂	1567 (1.275)	1340 (0.974)	227	0.76	[0.78]
CH ₃ CO	1541 (1.250)	1349 (1.250)	192	1	[0.52]
F	1542 (1.030)	1352 (1.240)	190	1.2	[0.06]
Range:	[1530-1567]	[1340-1355]			
Δ Range:	[37]	[15]			

TABLE 7.5 Infrared data for 4-X-nitrobenzenes in different phases

Compound 4-X-nitrobenzenes X	a.NO $_2$ str. vapor cm $^{-1}$	a.NO $_2$ str. CHCl $_3$ cm $^{-1}$	a.NO ₂ str. neat or solid cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] vapor cm ⁻¹	[a.NO $_2$ str.]- [s.NO $_2$ str.] CHCl $_3$ cm $^{-1}$	[a.NO ₂ str.]- [s.NO ₂ str.] neat or solid cm ⁻¹	s.NO ₂ str. vapor cm ⁻¹	s.NO ₂ str. CHCl ₃ cm ⁻¹	s.NO ₂ str. neat or solid cm ⁻¹
$N(CH_3)_2$		1487			169			1318	
OCH ₃	1535	1510		187	171		1348	1339	
ОН	1539	1517		189	179		1350	1338	
F	1542		1524	190		177	1352		1347
Cl	1540	1522	1522	191	179	162	1349	1343	1360
					180			1342	
Br		1527		172				1355	
				181				1346	
I			1510			160			1350
						175			1335
CH ₃	1538	1520	1510	183	174	159	1355	1346	1351
C_6H_5	1538		1520	186		169	1352		1351
CH ₂ Cl		1527			179		1348		
CN	1542	1536		193	188		1349	1348	
CO_2CH_3		1528			180			1348	
CHO		1535			192			1343	
CH ₃ CO	1541	1530		192	188		1349	1342	
NO ₂	1567	1555		229	217		1340	1338	

TABLE 7.6 A comparison of the frequency differences between asym. NO_2 str. and sym. NO_2 str. in the vapor and CHCl₃ solution and in the vapor and neat or solid phases

Compound 4-X-nitrobenzene X	a.NO ₂ str. vapor cm ⁻¹	a.NO ₂ str. CHCl ₃ cm ⁻¹	a.NO ₂ str. neat or solid cm ⁻¹	[a.NO ₂ str.] [v-CHCl ₃] cm ⁻¹	[s.NO ₂ str.] [v-CHCl ₃] cm ⁻¹	[a.NO ₂ str.] [v-n or -s] cm ⁻¹	[s.NO ₂ str.] [v-n or -s] cm ⁻¹	s.NO ₂ str. vapor cm ⁻¹	s.NO $_2$ str. CHCl $_3$ cm $^{-1}$	s.NO ₂ str. neat or solid cm ⁻¹
OCH ₃	1535	1510		-25	-9			1348	1339	
ОН	1539	1517		-27	-12			1350	1338	
F	1542		1524			-18	-5	1352		1347
Cl	1540	1522	1522	-18	-6	-18	11	1349	1343	1360
						-7			1342	
CH ₃	1538	1520	1510	-18	-28	-9	-4	1355	1346	1351
C_6H_5	1538		1520		-18	-1		1352		1351
CN	1542	1536		-6	-1			1349	1348	
CH ₃ CO	1541	1530		-11	-7			1349	1342	
NO_2	1567	1555		-12	-2			1340	1338	

4-X-Nitrobenzene [1 wt. % solutions [a.NO₂ str.]-[a.NO₂ str.]or saturated at 1 wt. %] a.NO2 str. s.NO2 str. [s.NO2 str.] [s.NO2 str.] a.NO2 str. s.NO2 str. [a,NO₂ str. (CCl₄)]-[s.NO₂ str. (CCl₄)]-[CCl₄] $[CCl_4]$ [CCl₄] [CHCl₃] [CHCl₃] [CHCl₃] [a.NO₂ str. (CHCl₃)] [s.NO₂ str. (CHCl₃)] NH₂ 1513.94 1338.08 175.86 170.19 1505.34 1335.15 8.6 2.93 CH₃O 1519.32 1343.07 176.25 171.36 1514.12 1342.76 5.2 0.31 1522.43 0.1 C₆H₅O 1344.98 177.45 172.97 1517.85 1344.88 4.58 C_6H_5 1347.74 4.79 -1.071524.26 1346.67 177.59 171.73 1519.47 CH₃ 1524.8 178.62 173.17 1520.1 1346.93 -0.751346.18 4.7 НО 1526 74 182.29 178.95 1521 41 5.33 1 99 1344 45 1342.46 C11527.01 1344.3 182.71 178.25 1523.64 1345.39 3.37 -1.09iso-C₃H₇ 1527.68 1347.11 180.57 171.72 1519.8 1348.08 7.8 -0.97CH₂Cl 1529.17 1348.01 181.16 175.35 1525.44 1350.09 3.73 -2.081529.78 1348.7 181.08 175.78 1526.08 1350.3 3.7 -1.61531.06 177.87 170.54 5.29 C_6H_5 -C=O 1353.19 1525.77 1355.23 -2.04Н 1531.53 1348.24 183.29 177.61 1527.37 1349.76 4.16 -1.52Br 1531.95 1350.1 179.68 173.42 1524.88 1351.46 7.07 -1.36F 1532.31 185.9 180.22 1528.48 1349.26 3.83 -1.851346.41 CH₃CO₂ 1532.87 1348 184.87 180.23 1530.26 1350.03 2.62 -2.03 $CH_3C=O$ 1533.76 1345.71 188.05 183.6 1531.06 1347.46 2.7 -1.75CN 1535.33 1345.37 189.96 185.65 1347.56 2.12 -2.191533.21 CH₃SO₂ 2.07 1537.97 1348.2 189.77 185.3 1535.9 1350.6 -2.4CF₃ 1538.91 1354.35 184.56 179.1 1535.44 1356.34 3.47 -1.99SO₂Cl 1541.25 1346.06 195.19 191.4 1539.26 1347.86 1.99 -1.8NO₂ 1556.41 1338.68 217.73 213.77 1554.37 1340.6 2.04 -1.92 Λ cm⁻¹ 42.47 16.27 41.87 43.58 49.03 20.08 3-X-Nitrobenzene X $N(CH_3)_2$ 1535.29 1349.47 185.82 181.83 1531.64 1349.81 3.65 -0.34 CH_3 181.9 1532.78 1350.88 177.12 1529.16 1352.04 3.62 -1.16Br 1536.44 1348.28 188.16 183.12 1533.09 1349.97 3.35 -1.69181.8 3.27 1533.69 1346.97 186.72 1530.42 1348.62 -1.65NO₂ 198.76 194.19 1347.44 2.42 -2.151544.05 1345.29 1541.63 $\Delta \text{ cm}^{-1}$ 11.27 5.59 16.86 17.07 12.47 4.6

TABLE 7.7 Infrared data for the asym. NO₂ and sym. NO₂ stretching frequencies for 3-X and 4-X-nitrobenzene in CCl₄ and CHCl₃ solutions

TABLE 7.8 Infrared data for the asym. NO₂ and sym. NO₂ stretching frequencies for 4-X-nitrobenzenes in the vapor, CCl₄ and CHCl₃ solution phases

4-X-Nitrobenzene X	$\sigma_{ m p}$	a.NO ₂ str. [vapor] cm ⁻¹	a.NO ₂ str. [CCl ₄ soln.] cm ⁻¹	a.NO ₂ str. [CHCl ₃ soln.] cm ⁻¹	a.NO ₂ str. [solid] cm ⁻¹	[vapor]- [CCl ₄ soln.] [-cm ⁻¹]	[vapor]- [CHCl ₃ soln.] [-cm ⁻¹]	[vapor]- [solid] [-cm ⁻¹]
NH ₂	-0.66	1530	1513.94	1505.34		16	25	
НО	-0.36	1539	1526.74	1521.41		12	18	
CH ₃ O	-0.27	1535	1519.32	1514.12		15	21	
CH ₃	-0.17	1538	1524.8	1520.1	1510	13	18	28
C ₆ H ₅ O	-0.03	1538	1522.43	1517.85		16	20	
Н	0	1540	1531.53	1527.37		9	13	
C_6H_5	0.01	1538	1524.26	1519.47	1520	14	19	18
F	0.06	1542	1532.31	1528.48	1524	10	14	18
Cl	0.23	1540	1527.01	1523.64	1522	13	16	18
$CH_3C=O$	0.52	1541	1532.87	1530.26		8	11	
NO_2	0.78	1567	1556.41	1554.37		11	13	
CN	0.86	1542	1535.33	1533.21		7	9	
X		s.NO ₂ str. [vapor]	s.NO ₂ str. [CCl ₄ soln.]	s.NO ₂ str. [CHCl ₃ soln.]	s.NO ₂ str. [solid]	[vapor]- [CCl ₄ soln.]	[vapor]- [CHCl ₃ soln.]	[vapor]- [solid]
NH ₂	-0.66	1350	1338.08	1335.15		11.9	14.9	
OH	-0.36	1350	1344.45	1342.46		5.6	7.5	
CH ₃ O	-0.27	1348	1343.07	1342.76		4.9	5.2	
CH ₃	-0.17	1355	1346.18	1346.93	1351	8.8	8.1	4
C_6H_5O	-0.03	1350	1344.98	1344.88		5	5.1	
H	0	1251	1348.2	1349.76		2.8	1.2	
C_6H_5	U	1351	1370.2	1317.10				
-0)	0.01	1351	1346.67	1347.74	1350	5.3	4.3	2
					1350 1347	5.3 5.6		5
F	0.01	1352	1346.67	1347.74			4.3	
F Cl	0.01 0.06	1352 1352	1346.67 1346.41	1347.74 1349.26	1347	5.6	4.3 2.7	5
F Cl CH ₃ C=O NO ₂	0.01 0.06 0.23	1352 1352 1349	1346.67 1346.41 1344.3	1347.74 1349.26 1345.39	1347	5.6 4.7	4.3 2.7 1.5	5

TABLE 7.9 Infrared data for the asym. NO_2 and sym. NO_2 stretching frequencies of 4-nitrobenzaldehyde 1 wt./ vol % in 0 to $100\,\text{mol}\,\%$ CHCl $_3$ /CCl $_4$ solutions

4-Nitrobenzaldehyde 1% (wt./vol.) mole % CHCl ₃ /CCl ₄	a.NO ₂ str. cm^{-1}	s.NO ₂ str. cm^{-1}
0	1538.4	1344.1
5.68	1538.1	1344.2
10.74	1537.8	1344.4
19.4	1537.4	1343.8
26.53	1537.1	1344.1
32.5	1537.1	1344.1
37.57	1536.9	1344.3
41.93	1536.6	1344.3
45.73	1536.4	1344.4
49.06	1536.2	1344.5
52	1536.1	1344.6
54.62	1535.4	1344.6
57.22	1535.4	1344.8
60.07	1535.3	1344.9
63.28	1535.1	1344.9
66.74	1535.2	1345.1
70.65	1535.1	1345.1
75.06	1534.9	1345.2
80.05	1534.6	1345.3
85.75	1534.3	1345.4
92.33	1534.1	1345.5
96.01	1533.8	1345.6
100	1533.6	1345.6
Δ C=O	-4.8	1.5

TABLE 7.10 A comparison of infrared data for nitromethane vs nitrobenzene in various solvents

Solvent	Nitromethane a.NO ₂ str. cm ⁻¹	Nitrobenzene a.NO ₂ str. cm ⁻¹	[CH3NO2]- $[C6H5NO2]$ $cm-1$	Nitromethane s.NO ₂ str. cm ⁻¹	Nitrobenzene s.NO ₂ str. cm ⁻¹	[CH3NO2]- $[C6H5NO2]$ $cm-1$	Nitromethane [Hexane]- [Solvent] a.NO ₂ str. cm ⁻¹	Nitrobenzene [Hexane]- [Solvent] a.NO ₂ str. cm ⁻¹	Nitrobenzene [Hexane]- [Solvent] s.NO ₂ str. cm ⁻¹
Hexane	1569	1535.8	33.2	masked	1348.2	[—]	0	0	0
Diethyl ether	1563.6	1532.6	31	masked	1349	[—]	5.4	3.2	0.8
Carbon tetrachloride	1564.5	1531.5	33	1374.4	1348.2	26.2	4.5	4.3	0
Benzene	1560.8	1528.5	32.3	1374.6	1348.3	26.3	8.2	7.3	-0.1
Acetonitrile	1561	1529.4	31.6	1374.2	1350.9	23.3	8	6.4	-2.7
Benzonitrile	1558.7	1526	32.7	1376.2	1348.5	27.7	10.3	9.8	-0.3
Methylene chloride	1562.2	1527.9	34.3	1376.7	1349.7	27	6.8	7.9*	-1.5
t-Butyl alcohol	1562.3	1531.9	30.4	1376.1	1349.5	26.6	6.7	3.9	-1.5
Chloroform	1562.4	1527.4	35	1376.2	1349.8	26.4	6.6	8.4*	-1.6
Isopropyl alcohol	1562.5	1531.6	30.9	1376.4	masked	[—]	6.5	4.2	[—]
Ethyl alcohol	1561.7	1530.7	31	masked	masked	[—]	7.3	5.1	[—]
Methyl alcohol	1561	1529.9	31.1	masked	1350.6	[—]	8	5.9	-2.4
Dimethyl sulfoxide	1552.8	1524.7	28.1	1376.1	1348.1	28	16.2	11.1	-0.1

^{* (}see text).

TABLE 7.11 Vapor-phase infrared data for 3-X-nitrobenzenes

Compound 3-X-Nitrobenzenes X	a.NO ₂ str. cm^{-1} (A)	s.NO ₂ str. cm ⁻¹ (A)	[a.NO ₂ str.]- [s.NO ₂ str.] cm ⁻¹	A[s.NO ₂ str.]/ A[a.NO ₂ str.]	A[a.NO ₂ str.]/ A[s.NO ₂ str.]
ОН	1547 (1.230)	1360 (0.870)	187	0.71	1.41
OCH ₃	1550 (1.235)	1353 (0.672)	197	0.54	1.84
OC ₆ H ₅	1550 (1.220)	1353 (0.566)	197	0.46	2.16
Cl	1551 (1.242)	1351 (0.758)	200	0.61	1.64
CH ₃	1545 (1.234)	1358 (1.139)	187	0.92	1.08
C_6H_5	1545 (1.245)	1357 (0.830)	188	0.67	1.5
H	1540 (1.248)	1351 (1.141)	189	0.91	1.09
CH ₂ Br	1550 (1.231)	1355 (0.923)	195	0.75	1.33
NO ₂	1553 (1.271)	1349 (0.904)	204	0.71	1.41
$CO_2C_2H_5$	1550 (0.672)	1351 (0.562)	199	0.84	1.2
CH ₃ CO	1549 (1.229)	1358 (1.148)	191	0.93	1.07
Range:	[1540-1553]	[1349-1360]			
Δ Range:	[13]	[11]			

TABLE 7.12 Infrared data for 3-X-nitrobenzenes in different phases

Compound 3-X-nitro- benzenes X	a.NO ₂ str. vapor cm ⁻¹	a.NO ₂ str. CHCl ₃ cm ⁻¹	a.NO ₂ str. neat or solid cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] vapor cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] CHCl ₃ cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] neat or solid cm ⁻¹	s.NO ₂ str. vapor cm ⁻¹	s.NO ₂ str. CHCl ₃ cm ⁻¹	s.NO ₂ str. neat or solid cm ⁻¹
OCH ₃	1550	1526	[—]	197	178	[—]	1353	1348	[—]
ОН	1547	1529	[—]	187	177	[—]	1360	1352	[—]
Cl	1551	1527	1520	200	177	176	1351	1350	1344
			1540			196			
Br	[—]	1532	[—]	[—]	152	[—]	[—]	1380	[—]
I	[—]		1521	[—]	[—]	181	[—]	1340	[—]
CH_3	1545	1531	1521	187	181	174	1358	1350	1347
C_6H_5	1545		1529	188	[—]	178	1357		1351
CH ₂ Cl	[—]	1532	[—]	[—]	179	[—]	[—]	1353	[—]
CN	[—]	1538	[—]	[—]	186	[—]	[—]	1352	[—]
NO_2	1553	1539	1522	204	193	174	1349	1346	1348

TABLE 7.13 A comparison of the frequency difference between asym. NO_2 str. and sym. NO_2 for 3-X-nitrobenzenes in the vapor and CHCl₃ solution and in the vapor and solid or neat phases

Compound 3-X-nitro- benzene X	a.NO ₂ str. vapor cm ⁻¹	a.NO ₂ str. CHCl ₃ cm ⁻¹	a.NO ₂ str. neat or solid cm ⁻¹	[a.NO ₂ str.] [v-CHCl ₃] cm ⁻¹	[s.NO ₂ str.] [v-CHCl ₃] cm ⁻¹	[a.NO ₂ str.] [v-n or -s] cm ⁻¹	[s.NO ₂ str.] [v-n or -s] cm ⁻¹	s.NO ₂ str. vapor cm ⁻¹	s.NO ₂ str. CHCl ₃ cm ⁻¹	s.NO ₂ str. neat or solid cm ⁻¹
OCH ₃	1550	1526		-24	- 5			1353	1348	
OH	1547	1529		-18	-8			1360	1352	
Cl	1551	1527	1540	-24	-11	-11	-7	1351	1350	1344
			1520			-31				
Br		1532							1380	
I			1521							1340
CH_3	1545	1531	1521	-14	-8	-24	-11	1358	1350	1347
C_6H_5	1545		1529			-16	-6	1357		1351
CH ₂ Cl		1532							1353	
CN		1538							1352	
NO_2	1553	1539	1522	-14	-3	-31	-1	1349	1346	1348

TABLE 7.14 Vapor-phase infrared data for 2-X-nitrobenzenes

Compound 2-X-Nitrobenzenes X	a.NO ₂ str. cm^{-1} (A)	s.NO ₂ str. cm $^{-1}$ (A)	[a.NO ₂ str.]- [s.NO ₂ str.] cm ⁻¹	$A[s.NO_2 str.]/$ $A[a.NO_2 str.]$	A[a.NO ₂ str.]/ A[s.NO ₂ str.]
OH	1545 (0.640)	1335 (1.239)	210	1.94	0.52
OCH ₃	1550 (1.190)	1360 (0.920)	190	0.77	1.29
OC_2H_5	1547 (1.230)	1360 (0.920)	187	0.75	1.34
OC ₄ H ₉	1545 (1.240)	1359 (0.479)	186	0.39	2.59
Cl	1551 (1.220)	1359 (0.700)	192	0.57	1.74
Br	1553 (1.240)	1359 (0.770)	194	0.62	1.61
CH ₃	1542 (1.242)	1350 (0.960)	192	0.77	1.29
I	1550 (1.241)	1353 (0.640)	197	0.52	1.94
C_6H_5	1545 (1.240)	1358 (0.638)	187	0.51	1.94
Н	1540 (1.248)	1351 (1.141)	189	0.91	1.09
CF ₃	1560 (1.141)	1360 (0.662)	200	0.58	1.72
CO ₂ CH ₃	1551 (1.240)	1357 (0.818)	194	0.66	1.52
$CO_2C_2H_5$	1551 (1.150)	1352 (0.720)	199	0.63	1.6
F	1549 (1.250)	1354 (1.131)	195	0.9	1.11
Range:	[1540-1560]	[1335-1360]			
Δ Range:	[20]	[25]			

TABLE 7.15 Infrared data for 2-X-nitrobenzenes in different phases

Compound 2-X-nitro- benzene X	a.NO ₂ str. vapor cm ⁻¹	a.NO ₂ CHCl ₃ cm ⁻¹	a.NO ₂ neat or solid cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] vapor cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] CHCl ₃ cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] neat or solid cm ⁻¹	s.NO ₂ str. vapor cm ⁻¹	s.NO $_2$ str. CHCl $_3$ cm $^{-1}$	s.NO ₂ str neat or solid cm ⁻¹
OCH ₃	1550	1530		190	173		1360	1357	
ОН	1545	1537		210	202		1335	1335	
F	1549		1520	195		180	1354		1340
Cl	1551	1537	1528	192	180	176	1359	1357	1352
Br	1553	1536	1520	194	179	175	1359	1356	1345
CH_3	1542	1527	1520	192	173	175	1350	1354	1345
C_6H_5	1545		1520	187		170	1358		1350
CO ₂ CH ₃	1551	1537		194	184		1357	1353	
CHO		1532			185			1347	
NO_2			1546			176			1370
			1529			175			1354

TABLE 7.16 A comparison of the frequency differences between asym. NO_2 and sym. NO_2 str. for 2-X-nitrobenzenes in the vapor, CHCl₃ solution, and in the vapor, neat or solid phases

Compound 2-X-nitro- benzene X	a.NO ₂ str. vapor cm ⁻¹	a.NO ₂ str. CHCl ₃ cm ⁻¹	a.NO ₂ str. neat or solid cm ⁻¹	[a.NO ₂ str.] [v-CHCl ₃] cm ⁻¹	[s.NO ₂ str.] [v-CHCl ₃] cm ⁻¹	[a.NO ₂ str.] [v-n or -s] cm ⁻¹	[s.NO ₂ str.] [v-n or -s] cm ⁻¹	s.NO ₂ str. vapor cm ⁻¹	s.NO $_2$ str. CHCl $_3$ cm $^{-1}$	s.NO ₂ str. neat or solid cm ⁻¹
OCH ₃	1550	1530		-20	-3			1360	1357	
ОН	1545	1537		-8	0			1335	1335	
F	1549		1520			-29	-14	1354		1340
Cl	1551	1537	1528	-14	-2	-23	-7	1359	1357	1352
Br	1553	1536	1520	-17	-3	-33	-14	1359	1356	1345
CH_3	1542	1527	1520	-15	4	-22	-5	1350	1354	1345
C_6H_5	1545		1520			-25	-8	1358		1350
CO ₂ CH ₃	1551	1537		-14	-4			1357	1353	
CHO		1532							1347	
NO_2			1546							1370
			1529							1354

TABLE 7.17 Infrared data for nitrobenzenes in the solid and CCl₄ solution phases

1-X-2-Nitro- benzene a.NO ₂ str. [solid] cm ⁻¹	1 -X-3-Nitrobenzene a.NO $_2$ str. [solid] cm $^{-1}$	1 -X-4-Nitrobenzene a.NO $_2$ str. [solid] cm $^{-1}$	X	1-X-2-Nitro- benzene s.NO ₂ str. [solid] cm ⁻¹	1-X-3-Nitro- benzene s.NO ₂ str. [solid] cm ⁻¹	1-X-4-Nitrobene- benzene s.NO ₂ str. [solid] cm ⁻¹	[a.NO2 str.]- $[s.NO2 str.]$ $1,2-$ $[solid]$ $cm-1$	[a.NO ₂ str.]- [s.NO ₂ str.] 1,3- [solid]; [CCl ₄ -solid] cm^{-1}	[a.NO ₂ str.]- [s.NO ₂ str.] 1,4- [solid]; [CCl ₄ -solid] cm^{-1}
1534* ¹ 1500	1512* ² 1522	1500* ³	OH NHC₂H₅	1330 1337	1351 1348	1324	204 163	170	176
1520 1524	1521	1510 1509	CH_3 C_2H_5	1344 1349	1347	1351 1334	176 175	174; 181.9	159; 178.6 175
1520 1520 1529	1529 1521	1520 1524 1522	C ₆ H ₅ F Cl	1350 1340 1351	1351 1345	1350 1347 1342	170 180 178	180; 182	170; 177.6 177; 185.9
1520 1548; 1530	1520 1522	1510	Br I NO ₂	1343 1366; 1355	1339 1348	1328	177 182; 165		182; 181* ¹
1-X-2,4-di- Nitrobenzene a.NO ₂ str. [solid] cm ⁻¹	4-X-2,4-di- Nitrobenzene a.NO ₂ str. [solid] cm ⁻¹	1-X-3,5-di- Nitrobenzene a.NO ₂ str. [solid] cm ⁻¹	X	1-X-2,4-di- Nitrobenzene s.NO ₂ str. [solid] cm ⁻¹	4-X-di-2,4- Nitrobenzene s.NO ₂ str. [solid] cm ⁻¹	1-X,3,5-di- Nitrobenzene s.NO ₂ str. [solid] cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] cm ⁻¹	2-OH,3-Cl- Nitrobenzene* ⁴ a.NO ₂ str.; s.NO ₂ str. [solid] cm ⁻¹	2-OH,3,5-di- Nitrobenzene* ⁵
1538 1540	1534	1544	F Br N(CH ₃) ₂ NO ₂ OH; Cl OH; NO ₂ ; NO ₂	1345 1341 188 240	1310	1348	193 199 224 196 180	1515; 1335 1528; 1340 1550; 1310	

^{*&}lt;sup>1</sup>OH; O₂N str. 3260. *²OH str. 3380. *³OH str. 3325.

^{*&}lt;sup>4</sup>OH; O₂N str. 3230. *⁵OH; NO₂ str. ~3230 (broad).

TABLE 7.18 Vapor-phase infrared data for 2,5- and 2,6-X,Y-nitrobenzenes

Compound 2,5- X,Y-nitrobenzenes X,Y	a.NO ₂ str. cm^{-1} (A)	s.NO ₂ str. cm^{-1} (A)	[a.NO ₂ str.]- [s.NO ₂ str.] cm ⁻¹	A[s.NO ₂ str.]/ A[a.NO ₂ str.]	A[a.NO ₂ str.]/ A[s.NO ₂ str.]
CH ₃ , NH ₂	1541 (1.250)	1360 (0.508)	181	0.4	2.46
OH, CH ₃	1545 (1.240)	1325 (1.155)	220	0.93	1.07
CH ₃ , CH ₃	1541 (1.241)	1359 (0.610)	182	0.49	2.03
CH ₃ , CH ₂ OH	1542 (1.240)	1355 (0.660)	187	0.53	1.88
CH ₃ , NO ₂	1550 (1.240)	1351 (1.225)	199	0.99	1.01
OH, NO ₂	1552 (0.671)	1345 (1.210)	207	1.8	0.55
		1330 (0.910)	222	1.36	0.74
Cl, CH ₃	1558 (1.230)	1361 (0.661)	197	0.54	1.86
Cl, Cl	1555 (1.250)	1352 (0.849)	203	0.7	1.47
Cl, NO ₂	1553 (1.348)	1349 (1.140)	204	0.85	1.18
Cl, CF ₃	1560 (0.341)	1357 (0.175)	203	0.51	1.9
F, CF ₃	1560 (0.417)	1352 (0.219)	208	0.53	1.9
F, NO ₂	1559 (1.230)	1349 (1.225)	210	1	1
NHCOCH ₃ , NO ₂	1541 (0.460)	1340 (1.230)	201	2.67	0.37
CH ₃ O, CH ₃ CO	1552 (0.668)	1360 (0.542)	192	0.81	1.23
F, CH ₃	1555 (1.240)	1351 (0.590)	204	0.48	2.1
2,6-X,Y-nitrobenzenes X,Y					
OH, CH ₃	1547 (0.590)	1349 (0.672)	198	1.14	0.88
CH ₃ , CH ₃	1545 (1.341)	1371 (0.590)	174	0.44	2.27
Cl, Cl	1568 (1.230)	1360 (0.342)	208	0.28	3.6

TABLE 7.19 A comparison of the frequency difference between asym. NO_2 str. and sym. NO_2 str. in the vapor, neat or solid phase

Compound 2,5-X,Y-nitrobenzene X,Y	a.NO ₂ str. vapor cm ⁻¹	a.NO $_2$ str. neat or solid cm $^{-1}$	[a.NO ₂ str.] [v-n or -s] cm ⁻¹	[s.NO ₂ str.] [v-n or -s] cm ⁻¹	s. NO_2 str. vapor cm^{-1}	s.NO ₂ str. neat or solid cm ⁻¹
CH ₃ , CH ₃	1541	1514	-27	-19	1359	1340
F, NO ₂	1559	1537	-22	-3	1349	1346

TABLE 7.20 Vapor-phase infrared data for tri-X,YZ-, W,X,Y,Z-tetra-, and V,W,X,Y,Z-penta-nitrobenzenes

Compound 2,3,4-X,Y,Z-nitrobenzenes X,Y,Z	a.NO ₂ str.	s.NO ₂ str.	[a.NO ₂ str.]- [s.NO ₂ str.]	A[s.NO ₂ str.]/ A[a.NO ₂ str.]	A[a.NO ₂ str.]/ A[s.NO ₂ str.]
		-			-
Cl, CH ₃ , Cl Cl, Cl, Cl	1552 (1.241) 1560 (1.050)	1359 (0.735) 1351 (1.232)	193 209	0.59 1.17	1.69 0.85
2,3,5-X,Y,Z-nitrobenzenes X,Y,Z					
OH, Br, Br	1545 (1.230)	1338 (0.678)	207	0.55	1.81
OH, Cl, Cl	1550 (1.240)	1335 (0.740)	215	0.6	1.68
OH - s- C ₄ H ₉ , NO ₂	1561 (0.680)	1348 (1.240)	213	1.82	0.55
OH, CH ₃ , NO ₂	1564 (0.750)	1347 (1.240)	217	1.65	0.6
Br, NO ₂ , Br	1561 (1.241)	1340 (0.541)	221	0.44	2.29
Cl, NO ₂ , Cl	1567 (1.220)	1350 (0.570)	217	0.47	2.14
2,3,6-X,Y,Z-nitrobenzenes X,Y,Z					
NH ₂ , Cl, Cl	1541 (1.250)	1359 (0.442)	182	0.35	2.83
NO ₂ , Br, Br	1578 (1.242)	1348 (0.320)	230	0.26	3.88
NO ₂ , Cl, Cl	1580 (1.250)	1350 (0.300)	230	0.24	4.17
2,4,5-X,Y,Z-nitrobenzenes X,Y,Z					
Br, NO ₂ , Br	1552 (1.250)	1339 (0.405)	213	0.32	3.09
NH ₂ , Cl, Cl	1561 (0.531)	1340 (0.585)	221	1.1	0.91
Cl, NO ₂ , Cl	1565 (1.230)	1340 (0.530)	225	0.43	2.32
Cl, Cl, Cl	1565 (1.240)	1335 (0.512)	230	0.41	2.42
2,4,6-X,Y,Z-nitrobenzenes X,Y,Z					
CH ₃ , OH, CH ₃	1538 (1.229)	1362 (0.404)	176	0.33	3.04
Cl, Cl, Cl	1562 (1.248)	1361 (0.488)	201	0.38	2.67
3,4,5-X,Y,Z-nitrobenzenes X,Y,Z					
CH ₃ , OH, CH ₃	1543 (0.660)	1357 (1.201)	186	1.82	0.55
CH ₃ , CH ₃ O, CH ₃	1540 (0.780)	1359 (1.210)	181	1.55	0.64
2,3,4,5-W,X,Y,Z-nitrobenzenes W,X,Y,Z					
Cl, Cl, Cl, Cl	1560 (0.922)	1332 (1.240)	228	1.34	0.74
F, F, F, F	1570 (1.330)	1360 (0.625)	210	0.47	2.13

(continues)

TABLE 7.20 (continued)

Compound 2,3,4-X,Y,Z-nitrobenzenes X,Y,Z	a.NO ₂ str.	s.NO ₂ str.	[a.NO ₂ str.]- [s.NO ₂ str.]	A[s.NO ₂ str.]/ A[a.NO ₂ str.]	A[a.NO ₂ str.]/ A[s.NO ₂ str.]
2,3,5,6-W,X,Y,Z- nitrobenzenes					
Cl, Cl, Cl, Cl	1569 (1.199)	1333 (0.961)	236	0.8	1.25
2,3,4,5,6-V,W,X,Y,Z-penta- nitrobenzenes V,W,X,Y,Z					
Cl, Cl, Cl, Cl, Cl	1568 (1.239)	1332 (0.838)	236	0.68	1.48

TABLE 7.21 Infrared data for 4-X-nitrobenzenes in CCl_4 and $CHCl_3$ solutions (1% wt./vol. or less)

4-X-Nitrobenzene	v asym.NO ₂ CCl ₄ soln. cm ⁻¹	v sym.NO ₂ CCl ₄ soln. cm ⁻¹	v asym.NO ₂ CHCl ₃ soln. cm ⁻¹	v sym.NO ₂ CHCl ₃ soln. cm ⁻¹
X				
1 NH ₂	1513.9	1338.1	1505.3	1335.2
2 OCH ₃	1519.3	1343.1	1514.1	1342.8
3 OC ₆ H ₅	1522.4	1345	1517.9	1344.9
4 C ₆ H ₅	1524.3	1346.7	1519.5	1347.7
5 CH ₃	1524.8	1346.2	1520.1	1346.9
6 OH	1526.7	1344.5	1521.4	1342.5
7 Cl	1527	1344.3	1523.6	1345.4
8 iso-C ₃ H ₇	1527.7	1347.1	1519.8	1348.1
9 CH ₂ Cl	1529.2	1348	1525.4	1350.1
10 I	1529.8	1348.7	1526.1	1350.3
$11 (C=O)C_6H_5$	1531.1	1353.2	1525.8	1355.2
12 H	1531.5	1348.2	1527.4	1349.8
13 Br	1532	1350.1	1524.9	1351.5
14 F	1532.3	1346.4	1528.5	1349.3
15 CO ₂ CH ₃	1532.9	1348	1530.3	1350
16 (C=O)CH ₃	1533.8	1345.7	1531.1	1347.5
17 CN	1535.3	1345.4	1533.2	1347.6
18 SO ₃ CH ₃	1538	1348.2	1535.9	1350.6
19 CF ₃	1538.9	1354.4	1535.4	1356.3
20 SO ₂ Cl	1541.3	1346.1	1539.3	1347.9
21 NO ₂	1556.4	1338.7	1554.4	1340.6
$\Delta \ \mathrm{cm}^{-1}$	42.5	16.3	49	20.1

TABLE 7.22 Infrared data and assignments for alkyl nitrates

Compound R-O-NO ₂ R	a.NO ₂ str. cm ⁻¹	s.NO ₂ str. cm ⁻¹	,	A[a.NO ₂ str.]/ A[s.NO ₂ str.]	NO str. cm ⁻¹	A[NO str.]/ A[a.NO ₂ str.]	$\gamma NO_2 \ cm^{-1}$	$\frac{\Delta \text{ NO}_2}{\text{cm}^{-1}}$
C_2H_5 [vapor] iso- C_3H_7 [vapor] C_3H_7 [liquid]		1289 (0.625) 1282 (0.619) 1268 (stg)	0.67 0.49	1.49 2.04	854 (0.455) 860 (0.525) 861 (stg)	0.49 0.42	764 760 760 (wm)	700 700 699 (wm)
C_5H_{11} [liquid]	1617 (stg)	1256 (stg)			865 (stg)		` '	700 (wm)

TABLE 7.23 Infrared data for alkyl nitrates in various phases

Compound R-O-NO ₂ R	a.NO ₂ str. vapor cm ⁻¹	a.NO ₂ str. CCl_4 or neat cm^{-1}	[a.NO ₂ str.]- [v-CCl ₄ or -neat]	[s.NO ₂ str.]- [v-CS ₂ or -neat]	s.NO ₂ str. vapor cm^{-1}	s.NO ₂ str. CS ₂ or neat
C ₂ H ₅ [CCl ₄ and CS ₂] Iso-C ₃ H ₇ [neat]	1662 1651	1637 1620	-25 -31	-9 -8	1289 1282	1280 1274
		[a.NO ₂ str.]- [s.NO ₂ str.] vapor cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] CCl ₄ ; CS ₂ or neat cm ⁻¹	[2(a.NO ₂ str.)]- [2(s.NO ₂ str.)] vapor cm ⁻¹	[2(a.NO ₂ str.)]- [2(s.NO ₂ str.)] CCl ₄ ; CS ₂ or neat cm ⁻¹	
C ₂ H ₅ [CCl ₄ and CS ₂] Iso-C ₃ H ₇ [neat]		373 369	357 346	731 730	691 672	
	2(a.NO ₂ str.) vapor cm ⁻¹	2(a.NO ₂ str.) CCl ₄ or neat cm ⁻¹	[2(a.NO ₂ str.)]- [v-CCl ₄ or neat] cm^{-1}	[2(s.NO ₂ str.)- [v-CS ₂ or neat] cm ⁻¹	2(s.NO ₂ str.) vapor cm ⁻¹	2(s.NO ₂ str.) CS ₂ or neat cm ⁻¹
C_2H_5 [CCl ₄ and neat] [calculated] [Δ obs. —calc.] Iso- C_3H_7 [neat] [calculated] [Δ obs. —calc.]	3299 [3334] [-35] 3290 [3302] [-12]	3250 [3274] [-24] ~3210 [3240] [-30]	-49 -60 -80 -62	-9 -12 -22 -16	2568 [2578] [-10] ~2560 [2564] [-4]	2559 [2560] [-1] 2538 [2548] [-10]

TABLE 7.24 Infrared data for ethyl nitrate, nitroalkanes, and nitrobenzene in CCl₄ and CHCl₃ solutions

Compound	a.NO $_2$ str. CCl_4 soln. cm^{-1} cm^{-1}	$a.NO_2$ str. $CHCl_3$ soln. cm^{-1} cm^{-1}	[CCl ₄ soln.]- [CHCl ₃ soln.] cm ⁻¹	s.NO ₂ str. CCl ₄ soln. cm ⁻¹	s.NO ₂ str. CHCl ₃ soln. cm ⁻¹	[CCl ₄ soln.]- [CHCl ₃ soln.] cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] CCl ₄ soln. cm ⁻¹	[a.NO ₂ str.]- [s.NO ₂ str.] CHCl ₃ soln. cm ⁻¹	[CCl ₄ soln.]- [CHCl ₃ soln.] cm ⁻¹
Ethyl nitrate	1637.3	1631.7	-5.6	1281.5	1282.9	1.4	355.8	348.8	- 7
Trichloronitromethane	1608.2	1606.5	-1.7	1307.5	1309.6	2.1	300.7	296.8	-3.8
Tribromonitromethane	1595.1	1593.3	-1.8	1305.9	1308.7	2.8	289.2	284.6	-4.6
Nitromethane	1564.5	1562.4	-2.1	1374.4	1376.2	1.8	190.1	182.2	-3.9
Nitrobenzene	1531.5	1527.4	-4.1	1348.2	1349.8	1.6	183.3	177.6	-5.7

TABLE 7.25 Vapor-phase infrared data for alkyl nitrites

Compound R-O-N=O R	cis N=O str. cm ⁻¹ (A)	trans N=O str. cm ⁻¹ (A)	[trans N=O str.]- [cis N=O str.] cm ⁻¹	cis N-O str. cm ⁻¹ (A)	trans N-O str. cm ⁻¹ (A)	cis C-O str. cm ⁻¹ (A)	trans C-O str. cm ⁻¹ (A)
CH ₃	1619 (0.726)	1676 (0.426)	57	835 (0.230)	795 (0.821)	1020 (w)	1055 (w)
C ₃ H ₇	1614 (0.300)	1669 (0.850)	55		794 (0.710)		
iso-C ₄ H ₉	1609 (0.170)	1668 (0.690)	59	849 (0.280)	781 (0.560)	982 (w)	1039 (w)
sec-C ₄ H ₉	1611 (0.211)	1660 (0.721)	49	850 (0.220)	766 (0.870)	?	1120 (w)
tert-C ₄ H ₉	~1610 (0.020)	1653 (1.148)	43		759 (1.240)		
tert-C ₄ H ₉ [liquid]	1554	1619	65		760 (stg)		1190 (m)
Δ [vap. – liq.]	[-56]	[-34]	[22]		[1]		

TABLE 7.26 Vapor-phase infrared data of the characteristic vibrations of alkyl nitrites*

Compound R-O-N=O R	N=O str. cis cm ⁻¹	N=O str. trans cm ⁻¹	N-O str. trans cm ⁻¹	Δ O-N=O cis cm ⁻¹	Δ O-N=O trans cm ⁻¹	σ^{\dagger}	A[trans N=O str.]/ A[cis N=O str. ~values
CH ₃	~1625	1681	814	617	565	[0.000]	0.95
C_2H_5	1621	1675	~800	691	581	[-0.100]	2.3
C_3H_7	1621	1672	802	687	602	[-0.115]	3
C_4H_9	1618	1669	790	689	610	[-0.130]	3.3
iso-C ₄ H ₉	1618	1669	794	680	625	[-0.125]	3.5
iso-C ₅ H ₁₁	1618	1669	800	687	617		305
iso-C ₃ H ₇	1615	1667	783	688	605	[-0.190]	6
sec-C ₄ H ₉	1615	1665	776	678	600	[-0.210]	7.2
sec-C ₅ H ₁₁	1618	1664	775	678	594		10
cyclo-C ₅ H ₉	1613	1664	780	682	604	[-0.150]	4.7
cyclo-C ₆ H ₁₁	1615	1664	775			[-0.200]	9.3
tert-C ₄ H ₉	1610	1655	764		621?	[-0.300]	~30
tert- C_5H_{11}	~1613	1653	751		613?		~50

^{*} See Tarte (12).

 $[\]dagger \sigma^*$ is a polar value for the alkyl group.

TABLE 7.27 Raman data for organonitro compounds

Compound	s.NO ₂ str. cm ⁻¹ (RI)	NO ₂ bend cm ⁻¹ (RI)	[s.NO2 str.]- [NO2 bend] cm-1	RI[s.NO ₂ str.]/ RI[NO ₂ bend]
2-Nitro-2-methyl propyl methacrylate	1350 (5)	858 (8)	492	0.63
4-Nitrostyrene	1343 (9)	859 (2)	484	4.5
Poly(4-nitrostyrene)	1347 (9)	859 (1)	488	9
3-Nitrostyrene	1349 (9)			
4- Nitrophenyl acrylate	1349 (9)	866 (3)	483	3
4-Nitrophenyl methacrylate	1351 (9)	866 (3)	485	3
4,4'-Diamino-3,3- dinitrophenyl ether	1336 (5)	882 (9)	454	0.56
1,3-Diamino-4,6- dinitrobenzene	1312 (9)	831 (4)	481	2.3

TABLE 7.28 Infrared and Raman data for nitroalkanes in different physical phases

Compound	asym.NO ₂ str. [vapor] cm ⁻¹	asym.NO ₂ str. [neat] cm ⁻¹	asym.NO ₂ str. [vapor]- [neat] cm ⁻¹	sym.NO ₂ str. [vapor]- [neat] cm ⁻¹	sym.NO ₂ str. [vapor] cm ⁻¹	$sym.NO_2 \\ str. \\ [neat] \\ cm^{-1}$	IR or Raman
CH ₃ NO ₂	1582	1558	24	22	1397	1375	IR
		1562	20	13		1384	R
$C_2H_5NO_2$	1575	1555	20	17	1380	1363	IR
		1559	16	5		1375	R
(CH3)2CHNO2	1568	1550	18	1	1360	1359	IR
		1552	16	[-2]		1362	R
(CH3)3CNO2	1555	1535	20	3	1349	1346	IR
(CH ₃) ₂ ClCNO ₂	[—]	1564	[—]	[—]	[—]	1346	R
CH ₃ ClHCNO ₂	1589	1565	24	2	1349	1347	IR
		1572	17	[-7]		1356	R
CH ₃ Cl ₂ CNO ₂	1600	1581	19	2	1324	1322	IR
		1587	13	[-6]		1330	R
C ₂ H ₅ ClHCNO ₂	1585	1564	21	[-10]	1348	1358	IR
		1570	15	[-14]		1362	R
C2H5Cl2CNO2	1595	1578	17	8	1320	1312	IR
		1585	10	[-3]		1323	R
Cl ₃ NO ₂	1621	~1601	20	0	1310	1310	IR

Nitroalkanes, Nitrobenzenes, Alkyl Nitrates, Alkyl Nitrites, and Nitrosamines

TABLE 7.29 Infrared and Raman data for nitrobenzenes in different physical phases

Group	4-Nitro- benzene [vapor] asym.NO ₂ str. cm ⁻¹	4-Nitro- benzene [CHCl ₃] asym.NO ₂ str. cm ⁻¹	4-Nitro- benzene [neat] asym.NO ₂ str. cm ⁻¹	3-Nitro- benzene [vapor] asym.NO ₂ str. cm ⁻¹	3-Nitro- benzene [CHCl ₃] asym.NO ₂ str. cm ⁻¹	3-Nitro- benzene [neat] asym.NO ₂ str. cm ⁻¹	2-Nitro- benzene [vapor] asym.NO ₂ str. cm ⁻¹	2-Nitro- benzene [CHCl ₃] asym.NO ₂ str. cm ⁻¹	2-Nitro- benzene [neat] asym.NO ₂ str. cm ⁻¹	IR or Raman IR
CH ₃ O	1535	1510	[—]	1550	1526	[—]	1550	1530	[—]	IR
НО	1539	1517	[—]	1547	1529	[—]	1545	1537	[—]	IR
Cl	1540	1522 1525	1522	1551 1530	1527	1530	1551	1537	1528	IR R [neat]
F	1542	1323		1330						IR
		1528								R
CH_3	1538	1520	1510	1545	1531	1522	1542	1527	1521	IR
		1520					1525	R		R [neat]
NO_2	1567	1555	[—]	1553	1539	1522	[—]	[—]	1530 [KBr]	IR
	sym.NO ₂	sym.NO ₂	sym.NO ₂	sym.NO ₂	sym.NO ₂	sym.NO ₂	sym.NO ₂	sym.NO ₂	sym.NO ₂	
	str.	str.	str.	str.	str.	str.	str.	str.	str.	
CH ₃ O	1348	1339	[—]	1353	1348	[—]	1360	1357	[—]	IR
НО	1350	1338	[—]	1360	1352	[—]	1335	1335	[—]	IR
					1350					
Cl	1350	1343	1342	1351	1350	1345	1359	1357	1352	IR
F	1352									IR
		1347								R [neat]
CH_3	1355	1346	1351	1358	1350	1350	1350	1354	1344	IR
		1350					1350			R [neat]
NO_2	1340	1338	[—]	1349	1346	1344	[—]	[—]	[—]	IR

TABLE 7.30 A comparison of the frequency separation between asym. NO₂ stretching and sym. NO₂ stretching [vapor-phase data minus CHCl₃ solution data] and [vapor-phase data minus neat-phase data] for nitrobenzenes

Group	4-Nitro- benzene asym.NO ₂ str. [vapor]- [CHCl ₃] cm ⁻¹	4-Nitrobenzene sym.NO ₂ str. [vapor]-[CHCl ₃] cm ⁻¹	3-Nitro- benzene asym.NO ₂ str. [vapor]- [CHCl ₃] cm ⁻¹	3-Nitro- benzene asym.NO ₂ str. [vapor]- [CHCl ₃] cm ⁻¹	2-Nitro- benzene asym.NO ₂ str. [vapor]- [CHCl ₃] cm ⁻¹	2-Nitro benzene asym.NO ₂ str. [vapor]- [CHCl ₃] cm ⁻¹	IR or Raman
CH ₃ O	25	9	24	5	20	3	IR
НО	22	12	18	8	8	0	IR
Cl	18	6	24	1	14	2	IR
CH_3	18	9	14	8	14	[-4]	IR
NO_2	12	2	14	3	[—]	[—]	IR
	[vapor]- [neat] cm ⁻¹	[vapor]- [neat] cm ⁻¹	[vapor]- [neat] cm ⁻¹	[vapor]- [neat] cm ⁻¹	[vapor]- [neat] cm ⁻¹	[vapor]- [neat] cm ⁻¹	
Cl	18 15	7 0	21	6	23	7	IR IR; R
F	14	5					IR; R
CH_3	28	4	23	12	21	6	IR
	18	5					IR; R
NO_2	[—]	[—]	14	0	[—]	[—]	IR

TABLE 7.31 Infrared data for organonitro compounds in different physical phases

Nitro- Compounds	a.NO ₂ str. cm ⁻¹ vapor	s.NO ₂ str. cm ⁻¹ vapor	Tempera- ture	a.NO ₂ str. cm ⁻¹ neat	s.NO ₂ str. cm ⁻¹ neat	a.NO ₂ str. cm ⁻¹ vapor-neat	s.NO ₂ str. cm ⁻¹ vapor-neat
Benzene							
Nitro	1540	1352	20℃	1520	1345	20	7
1,2-Dinitro	1563	1353	280℃	1529	1353	34	0
1,3-Dinitro	1555	1349	280℃	1532	1349	23	0
1,4-Dinitro	1565	1340	240 ℃	1562	1339	3	1
Phenol 2-Nitro	1545	1333	280℃	1530 Melt	1322	15	11
				CCl ₄	CCl ₄	Vapor-CCl ₄	Vapor-CCl ₄
Benzene							
1,2,4,5-Cl ₄ -3-NO ₂	1569	1333		1556	1337	13	[-4]
				neat			
				1559	1339	10	[-6]
Cl ₅ -NO ₂	1569	1335		1556	1338	13	[-3]
1,2,3,4-Cl ₄ -5-NO ₂	1562	1338		1532	1338	30	0
1-Cl-2-NO ₂	1551	1359		\sim 1535	1352	16	1
1-Cl-3-NO ₂	1551	1351		1542	1351	9	0
1-Cl-4-NO ₂	1540	1349		1527	1344	13	5

TABLE 7.32 Infrared and Raman data for organonitrates, organonitrites, and 1,4-dinitropiperazine in different physical phases

Nitrate	asym.NO ₂ str. [vapor] cm ⁻¹	$\begin{array}{c} \text{asym.NO}_2\\ \text{str.}\\ [\text{CCl}_4]\\ \text{cm}^{-1} \end{array}$	asym.NO ₂ [vapor]- [CCl ₄] cm ⁻¹	sym.NO ₂ [vapor]- [CCl ₄] cm ⁻¹	sym.NO ₂ str. [vapor] cm ⁻¹	sym.NO ₂ str. [CCl ₄] cm ⁻¹	IR or Raman
C_2H_5	1660	1637	23	9	1289	1280	IR
		[neat] cm ⁻¹	[vapor]- [neat] cm ⁻¹	[vapor]- [neat] cm ⁻¹		[neat] cm ⁻¹	IR
$(CH_3)_2CH$ C_3H_7 C_5H_{11}	1651 [—] [—]	1620 1625 1635 wk 1624	31 [—] [—]	8 [—] [—]	1282 1277 1282 stg 1275	1274 [—] [—]	IR IR R IR
	trans N=O str. [vapor] cm ⁻¹	trans N=O str. [CCl ₄] cm ⁻¹	trans N=O str. [vapor]- [CCl ₄] cm ⁻¹	cis N=O str. [vapor]- [CCl ₄] cm ⁻¹	cis N=O str. [vapor] cm ⁻¹	cis N=O str. [CCl ₄] cm ⁻¹	
CH ₃ C ₄ H ₉ iso-C ₅ H ₁₁ tert-(CH ₃) ₃ C	1681 1673 1669 1655	1685 [—] 1672 1661	[-4] [] [-3] [-6]	[-5] [—] [-2] 0	1625 1618 1618 1610	1630 [—] 1620 ~1610	IR IR IR
N-NO ₂		asym.NO ₂ str. [neat] cm ⁻¹			sym.NO ₂ str. [neat] cm ⁻¹		
1,4-Dinitropiperazine		1543			1234		IR

TABLE 7.33 The N=O stretching frquencies for nitrosamines in different physical phases

X,Y	XYNN=O vapor N=O str. cm ⁻¹	Temp. °C	XYNN=O N=O str. cm ⁻¹	State	$ \begin{array}{c} XYNN = O^* \\ CCl_4 \ soln. \\ N = O \ str. \\ cm^{-1} \end{array} $	Vapor- state Δ N=O str. cm ⁻¹	Vapor- CCl_4 soln. Δ N=O str. cm^{-1}
CH ₃ , CH ₃	1485	200 ℃	1438	neat	1460	47	25
C_2H_5, C_2H_5	1482	200 ℃	1450	neat	1454	32	28
C_3H_7 , C_3H_7	1482	200 ℃	1449	neat	[—]	33	[—]
C_4H_9, C_4H_9	1482	200 ℃	1448	neat	[—]	34	[—]
CH_3 , C_6H_5	1492	200 ℃	1438	neat	[—]	54	[—]
CH_3 , $O=C-OC_2H_5$	1534	200 ℃	1509	neat	[—]	25	[—]
iso-C ₃ H ₇ , iso-C ₃ H ₇	[—]	[—]	[—]	[—]	1438	[—]	[—]
sec-C ₄ H ₉ , sec-C ₄ H ₉	[—]	[—]	[—]	[—]	1437	[—]	[—]

^{*} See Reference 14.

Introduction	233
Phosphorus-Halogen	234
Phosphorus Halogen Stretching F or Organophosphorus Halides	235
O-Methyl Phosphorodichloridothioate	236
O-Ethyl Phosphorodichloridothioate, O-Ethyl-1,1-d ₂ Phosphorodichlorido-	
thioate, and O-Ethyl-2,2,2-d ₃ Phosphorodichloridothioate	236
O,O-Dimethyl Phosphorochloridothioate	236
P-Cl Stretching	237
CH ₃ , CD ₃ , C ₂ H ₅ , CH ₃ CD ₂ and CD ₃ CH ₂ Vibrational Assignments for	
(R-O)P=OCl ₂ and (RO)P(=S)Cl ₂ Analogs	237
P=O Stretching, ν P=O	237
O,O-Dimethyl O-(2-Chloro 4-X-Phenyl) Phosphate	238
Phenoxarsine Derivatives	238
ν P=O vs ν P=S	239
P=S Stretching, ν P=S	239
S-Methyl Phosphorodichloridiothioate	239
Skeletal Modes of the (C-O-) ₃ P Group of Trimethyl Phosphite and	
Trimethyl Phosphate	240
ν P=S, ν P-S, and ν S-H	240
Dialkyl Hydrogenphosphonate and Diphenyl Hydrogenphosphonate	240
The C-O-P Stretching Vibrations	241
C-P Stretching, v C-P	241
Compounds Containing P-NH-R Groups	242
O-Alkyl O-Aryl N-Methylphosphoramidate vs O-Alkyl O-Aryl N-Methyl-	
phosphoramidothioate	243
Primary Phosphoramidothioates, P(=S)NH ₂	244
$P(=S)NH_2$, $P(=S)NH$, $P(=S)ND_2$, $P(=S)NHCH_3$, and $P(=S)NDCH_3$	244
O-Methyl O-(2,4,5-trichlorophenyl) N-alkylphosphoramidates	245
Summary of PNHR and PNH ₂ Vibrations	245
Summary of Vibrational Assignments for N-Alkyl Phosphoramidodi-	
chloridothioate and Deuterated Analogs	245
O,O-Dimethyl O-(2,4,5-Trichlorophenyl) Phosphorothioate, and Its P=O	
and (CD ₃ O)2 Analogs	245
A Comparison of IR Data for O,O-Dialkyl Phosphorochlorothioate and	
O,O,O-Trialkyl Phosphorothioate in Different Physical Phases	246
A Comparison of IR Data for Organophosphates and Organohydrogenphos-	
phonates in Different Physical Phases	246
A Comparison of O-alkyl Phosphorodichloridothioate and S-alkyl Phosphor-	
odichloridothioate in Different Physical Phases	247

Infrared Data for O,O-diethyl <i>N</i> -alkylphosphoramidates in Different Physical Phases Vibrational Assignments for CH ₃ -PO ₃ ²⁻ , CD ₃ -PO ₃ ²⁻ , H-PO ₃ ²⁻ , and FVibrational Data for Sodium Dimethylphosphinate, Potassium Dimethylphosphinate, and Sodium Dialkylphosphinate Solvent Effects P=O Stretching, ν P=O PCl ₃ and PCl ₂ Vibrations Absorbance Ratios for ROP(=O)Cl ₂ Molecules Alkyl Group Vibrations The ν C-C Mode for the C ₂ H ₅ OP Group The ν COP Group ν C-D for CDCl ₃ in CCl ₄ Solutions Reference Spectra References	
Figures	
Figure 8.1 255 (236) Figure 8.32 281 ((243)
Figure 8.2 256 (236) Figure 8.33 282 ((243)
Figure 8.3 257 (236) Figure 8.34 283 ((243)
Figure 8.4 258 (236) Figure 8.35 283 (
Figure 8.5 259 (236) Figure 8.36 284 (
Figure 8.6 260 (236) Figure 8.37 284 ((243)
Figure 8.7 261 (236) Figure 8.38 285 ((243)
Figure 8.8 262 (236) Figure 8.39 285 ((244)
Figure 8.9 263 (236) Figure 8.40 286 ((244)
Figure 8.10 264 (236) Figure 8.41 287 ((244)
Figure 8.11 265 (236) Figure 8.42 288 ((244)
Figure 8.12 266 (236) Figure 8.43 289 ((244)
Figure 8.13 267 (237) Figure 8.44 290 ((244)
Figure 8.14 268 (239) Figure 8.45 291 ((246)
Figure 8.15 269 (239) Figure 8.46 292 ((246)
Figure 8.16 270 (239) Figure 8.47 293 ((248)
Figure 8.17 271 (240) Figure 8.48 294 ((247)
Figure 8.18 272 (240) Figure 8.49 295 ((247)
Figure 8.19 272 (240) Figure 8.50 296 ((247)
Figure 8.20 273 (240) Figure 8.51 297 ((248)
Figure 8.21 273 (240) Figure 8.52 298 ((248)
Figure 8.22 274 (241) Figure 8.53 299 ((248)
Figure 8.23 274 (241) Figure 8.53a 300 ((248)
Figure 8.24 275 (241) Figure 8.53b 300 ((249)
Figure 8.25 275 (241) Figure 8.54 301 (
Figure 8.26 276 (241) Figure 8.55 301 ((249)
Figure 8.27 277 (242) Figure 8.56 302 ((249)
Figure 8.28 278 (242) Figure 8.57 302 ((249)
Figure 8.29 279 (242) Figure 8.58 303 ((249)
Figure 8.30 279 (242) Figure 8.59 303 ((249)
Figure 8.31 280 (243, 244) Figure 8.60 304 ((250)

Figure 8.61	304 (250)	Figure 8.74	311 (251)
Figure 8.62	305 (250)	Figure 8.75	311 (251)
Figure 8.63	305 (250)	Figure 8.76	312 (251)
Figure 8.64	306 (250)	Figure 8.77	312 (251)
Figure 8.65	306 (250)	Figure 8.78	313 (251)
Figure 8.66	307 (250)	Figure 8.79	313 (251)
Figure 8.67	307 (250)	Figure 8.80	314 (251)
Figure 8.68	308 (250)	Figure 8.81	314 (252)
Figure 8.69	308 (250)	Figure 8.82	315 (252)
Figure 8.70	309 (251)	Figure 8.83	315 (252)
Figure 8.71	309 (251)	Figure 8.84	316 (252)
Figure 8.72	310 (251)	Figure 8.85	316 (252)
Figure 8.73	310 (251)	Figure 8.86	317 (252)
Tables			
Tables			
Table 8.1	318 (234)	Table 8.18	333 (240)
Table 8.2	319 (234)	Table 8.19	334 (240)
Table 8.3	320 (234)	Table 8.20	336 (241)
Table 8.4	321 (235)	Table 8.21	338 (241)
Table 8.5	322 (237)	Table 8.22	338 (241)
Table 8.5a	323 (237)	Table 8.23	339 (243)
Table 8.6	323 (237)	Table 8.24	340 (244)
Table 8.7	324 (237)	Table 8.25	341 (245)
Table 8.8	325 (237)	Table 8.26	342 (245)
Table 8.8a	326 (237)	Table 8.27	343 (245)
Table 8.9	326 (238)	Table 8.28	344 (245)
Table 8.10	327 (238)	Table 8.29	345 (246)
Table 8.11	327 (239)	Table 8.30	346 (246)
Table 8.12	328 (239)	Table 8.31	347 (246)
Table 8.13	329 (239)	Table 8.32	348 (247)
Table 8.14	331 (239)	Table 8.33	349 (247)
Table 8.15	331 (239)	Table 8.34	349 (247)
Table 8.16	332 (240)	Table 8.35	350 (248)
Table 8.17	332 (240)		

^{*}Numbers in parentheses indicate in-text page reference.

INTRODUCTION

There has been interest in phosphorus compounds for many years, because these compounds have been found to be useful as chlorinating agents, flame retardants, antioxidants, fertilizers, and pesticides. On the other hand certain phosphorus derivatives have been manufactured for poisonous war gases, and this application is not positive for mankind. Therefore, many articles covering IR and Raman spectral data and assignments for these materials have been published and reviewed (1–55).

PHOSPHORUS-HALOGEN

Tables 8.1 through 8.3 list vibrational data and assignments for compounds of forms PX_3 , $P(=S)X_3$, and $P(=O)X_3$. The v PX_3 , v PX_2 and v PX vibrations for these inorganic phosphorus compounds decrease in frequency in the X order: F, Cl, Br, and I. The overall frequency ranges for the v PX_n modes for PX_3 , $P(=S)X_3$ and $P(=O)X_3$ analogs are:

The v asym. PF₃ modes for P(=O)F₃, P(=S)F₃, and PF₃ decrease in the order $982 \,\mathrm{cm}^{-1}$, $981 \,\mathrm{cm}^{-1}$, and $840 \,\mathrm{cm}^{-1}$, and the v sym. PF₃ modes for P(=S)F₃, PF₃, and P(=O)F₃ decrease in the order $981 \,\mathrm{cm}^{-1}$, $890 \,\mathrm{cm}^{-1}$, and $875 \,\mathrm{cm}^{-1}$. Thus, the compound order for the v asym. PF₃ frequency decrease P(=O)F₃, P(=O)F₃, and PF₃ is not the same as the compound order P(=S)F₃, PF₃, and P(=O)F₃ for v sym. PF₃ (Table 8.1). In the case of the P=O analog, the v P=O vibration occurs at $1405 \,\mathrm{cm}^{-1}$ (see the Table 8.8 discussion on page 237), and v P=O and v sym. PF₃ belong to the A₁ species. Therefore, it is possible for v P=O and v sym. PF₃ to couple, causing v P=O to occur at higher frequency and v sym. PF₃ to occur at a lower frequency than v sym. PF₃ for both the P(=S)F₃ and PF₃ analogs. On the other hand, the v P=S vibration for P(=S)F₃ occurs at $695 \,\mathrm{cm}^{-1}$, and v P=S and v sym. PF₃ both belong to the A₁ species. Therefore, it also appears that these two modes are coupled, causing v sym. PF₃ to occur at a higher frequency and v P=S to occur at a lower frequency than otherwise expected. A similar argument has been given for the frequency behavior of v PCl₂ for the compound P(=S)Cl₂F (9).

The v asym. PCl₃ and v asym. PBr₃ vibrations and the v sym. PCl₃ and v sym. PBr₃ vibrations for the PX₃, P(=O)X₃, and P(=S)X₃ are compared here:

v asym. PX ₃ cm ⁻¹	Compound	$v \text{ sym. PX}_3, \text{cm}^{-1}$
484 547 581	PCl ₃ P(=S)Cl ₃ P(=O)Cl ₃	511 431 486
400 438 488	PBr_3 $P(=S)Br_3$ $P(=O)Br_3$	380 299 340
325	Pl_3	303

The v asym. PX₃ vibration increases in frequency in the order PX₃, P(=S)X₃, and P(=O)X₃ for both the PCl₃ and PBr₃ analogs. The v asym. PX₃ belongs to the e species and the v P=O and v P=S vibration belong to the a_1 species. Therefore, it is not possible for these two modes to couple. On the other hand, it is possible for v sym. PX₃ and v P=S to couple, because both modes

belong to the a_1 species. Coupling between v P=S and v sym. PX₃ causes v sym. PCl₃ and v sym. Br₃ to occur at lower frequency in the case of the P(=S)X₃ analogs than in the case of the P(=O)X₃ analogs.

Frequencies in parentheses in Tables 8.2 and 8.3 are estimated based upon spectra-structure correlations presented in Nyquist *et al.* (51).

PHOSPHORUS HALOGEN STRETCHING FOR ORGANOPHOSPHORUS HALIDES

Table 8.4 lists the v asym. PCl_2 and v sym. PCl_2 frequencies for compounds of form $XPCl_2$ $XP(=O)Cl_2$, and $XP(=S)Cl_2$. It is of interest to compare these vibrations for a series of analogs:

v asym. PCl_2 , cm^{-1}	Compound	$v \text{ sym. PCl}_2, \text{cm}^{-1}$
506	CH ₃ OPCl ₂	453
579/607	$CH_3OP(=O)Cl_2$	515/548
531/560	$CH_3OP(=S)Cl_2$	456/478
505	CD ₃ OPCl ₂	456
531/552	$CD_3OP(=S)Cl_2$	452/471
576/600	$C_2H_5OP(=O)Cl_2$	516/550
528/558	$C_2H_5OP(=S)Cl_2$	472-490
525/550	$CH_3CD_2OP(=S)Cl_2$	465/484
531/552	$CD_3CH_2OP(=S)Cl_2$	462–483
560	$CH_3NHP(=O)Cl_2$	517
512	$CH_3NHP(=S)Cl_2$	450/468
560	$(CH_3)_2NP(=O)Cl_2$	517
512	$(CH_3)_2NP(=S)Cl_2$	450

In all cases, the v asym. PCl_2 and v sym. PCl_2 vibrations occur at higher frequency for the P=O analog than for the P=S analog. It is suggested that v P=S and v sym. PCl_2 are coupled to some degree. It is interesting to note that both v asym. PCl_2 and v sym. PCl_2 are affected by substitution of CD_3O for CH_3O , and CH_3CD_2O and CH_3CH_2O for C_2H_5O in compounds of form $ROP(=S)Cl_2$. These data show that these vibrations involve more than just stretching of the PCl_2 bonds. In addition, two frequencies are listed for the v asym. PCl_2 and v sym. PCl_2 vibrations for many compounds, and these doublets are due to the existence of rotational conformers (22). The low-temperature rotational conformer is always listed first in each set.

O-METHYL PHOSPHORODICHLORIDOTHIOATE

Figure 8.1 illustrates how a model compound such as dichlorofluorophosphorothioate can be used to help assign the vibrational assignments for the nine $OP(=S)Cl_2$ skeletal vibrations for $CH_3OP(=S)Cl_2$. In addition, substitution of CD_3O for CH_3O aids in the vibrational assignments for the CH_3 and CD_3 groups. Variable temperature experiments aided in showing which bands resulted from each rotational conformer (21).

Figures 8.1 and 8.2 show the IR spectrum for $P(=S)Cl_2F$ in the vapor and solution phases and a complete vibrational assignment is presented in Reference 9.

Figure 8.3 shows the IR spectrum for phosphoryl chloride, $(P=O)Cl_3$. The vibrational assignment for $P(=S)Cl_2F$ was aided by comparison with the vibrational assignment for $P(=O)Cl_3$ (see Fig. 8.4). The a_1 modes for $P(=O)Cl_3$ correspond to a' modes for $P(=S)Cl_2F$, and the doubly degenerate e modes for $P(=O)Cl_3$ correspond to a' and a'' modes for $P(=S)Cl_2F(9)$.

Figure 8.5 shows IR spectra for $CH_3OP(=S)Cl_2$, $CD_3OP(=S)Cl_2$, and $CH_3OP(=O)Cl_2$ (21). Figure 8.6 shows an IR spectrum for $CH_3OP(=S)Cl_2$, and Figure 8.7 shows an IR spectrum for $CD_3OP(=S)Cl_2$ (25). Vibrational assignments for these compounds have been reported (21, 25).

Because these molecules exist as rotational conformers, several of the vibrational modes for $CH_3OP(=S)Cl_2$ and $CD_3OP(=S)Cl_2$ appear as doublets. Rotational conformer 1 is assigned to the sets of IR bands that increase in intensity (A) with decrease in temperature (T), and rotational conformer 2 is assigned to IR bands that decrease in intensity (A) with a decrease in temperature (T).

Figure 8.8 compares the vibrational assignments for $CH_3OP(=S)Cl_2$, $CD_3OP(=S)Cl_2$, $P(=S)Cl_2F$, $CH_3OP(=O)Cl_2$, and $P(=O)Cl_3$ (25).

O-ETHYL PHOSPHORODICHLORIDOTHIOATE, O-ETHYL-1,1-d₂ PHOSPHORODICHLORIDOTHIOATE, AND O-ETHYL-2,2,2-d₃ PHOSPHORODICHLORIDOTHIOATE

Complete vibrational assignments have been reported for $C_2H_5OP(=S)Cl_2$, $CH_3CD_2OP(=S)Cl_2$, and $CD_3CH_2OP(=S)Cl_2$. These compounds exist as rotational conformers and conformers 1 and 2 were determined experimentally in the sample manner as those reported for $CH_3OP(=S)Cl_2$ and $CD_3OP(=S)Cl_2$ (22, 25).

Figures 8.9, 8.10, and 8.11 show IR spectra for $C_2H_5OP(=S)Cl_2$, $CH_3CD_2OP(=S)Cl_2$, and $CD_3CH_2OP(=S)Cl_2$, respectively (22). Comparison of Figs. 8.9–8.11 with Figs. 8.5–8.7 should help the reader identify the $ROP(=S)Cl_2$ skeletal vibrations.

O,O-DIMETHYL PHOSPHOROCHLORIDOTHIOATE

The compound $P(=S)ClF_2$ was used as a model compound for the vibrational assignments for $(CH_3)_2P(=S)Cl$. Vibrational assignments for $P(=S)ClF_2$ used are presented by Durig and Clark (11). Figure 8.12 shows IR spectra for O,O-dimethyl phosphorochloridothioate in the solution

and liquid phases. Figure 8.13 shows IR spectra for O,O-dimethyl-d₆ phosphorochloridothioate in the solution and liquid phases. Figure 8.14 shows IR spectra of $(CH_3O)_2P(=S)Cl$ and $(CD_3O)_2P(=S)Cl$ in solution (27). Tables 8.5 and 8.5a list the vibrational assignments for these three compounds. Several of the vibrations for the $(CO)_2P(=S)Cl$ analogs appear as doublets due to the existence of rotational conformers (27).

P-Cl STRETCHING

Table 8.6 lists the v P—Cl frequencies for P=O and P=S derivatives. All but the $[(CH_3)2N]_2$ and $[(C_2H_5)_2N]_2$ derivatives exhibit v P—Cl as a doublet due to the existence of rotational conformers. The P=O analogs exhibit v P—Cl at higher frequency(ies) than corresponding P=S analogies $[e.g., (CH_3O)_2P(=O)Cl, 553/598 \text{ cm}^{-1} \text{ vs } (CH_3O)_2P(=S)Cl, 486/525 \text{ cm}^{-1}]$ (27). For the compounds studied, v P—Cl for the P=O series occur in the range 532–557 cm⁻¹ and for the P=S series in the range 470–543 cm⁻¹.

CH₃, CD₃, C₂H₅, CH₃CD₂ AND CD₃CH₂ VIBRATIONAL ASSIGNMENTS FOR (R-O)P=OCl₂ AND (RO)P(=S)Cl₂ ANALOGS

Table 8.7 lists vibrational assignments of the alkyl groups of O-methyl phosphorodichloridothioate, O-methyl-d₃ phosphorodichloridothioate, methyl phosphorodichloridate, O-ethyl phosphorodichloridothioate, O-ethyl-1,1-d₂ phosphorodichloridothioate, and O-ethyl-2,2,2-d₃ phosphorodichloridothioate (21, 22, 25, 27). The ratios $v \, \text{CH}_2/v \, \text{CD}_2$ and $v \, \text{CH}_3/v \, \text{CD}_3$ vary from 1.14 to 1.52 vs a theoretical value of 1.414.

P=O STRETCHING, v P=O

Table 8.8 lists the P=O stretching, v P=O, frequencies for a variety of compounds. For the compounds studied, v P=O occurs in the range 1243–1405 cm⁻¹. Many of the phosphate esters exhibit v P=O as a doublet due to the existence of rotational conformers, and the frequency separation for these doublets varies between 7 and 29 cm⁻¹.

Table 8.8a lists vP=O frequencies for organophosphorus compounds in different physical phases. In the liquid phase many of the organophosphorus esters exhibit only a single vP=O frequency; however, in CS_2 solution vP=O is observed as a doublet due to the existence of rotational conformers. The vP=O frequency difference between these rotational conformers varies between 7 and $22\,\mathrm{cm}^{-1}$.

In the liquid phase the structural configuration may be stabilized by the intermolecular association shown here:

$$(O-R)_3$$

$$O = P \oplus$$

$$O =$$

O,O-DIMETHYL O-(2-CHLORO 4-X-PHENYL) PHOSPHATE

Table 8.9 lists the v P-O frequencies for the rotational conformers for the X-analogs of O,O-dimethyl O-(2-chloro 4-X-phenyl) phosphate (20). The Hammett σ_p values for the 4-X group are also listed.

The frequency separation between the v P=O rotational conformers varies between 15.6 and 18.4 cm⁻¹. The high frequency v P=O conformer occurs in the range 1303.2–1308.5 cm⁻¹, and the low frequency P=O conformer occurs in the range 1285.8–1291.1 cm⁻¹. There is a trend that the v P=O vibration decreases in frequency as σ_p changes from positive to negative.

Thomas and Chittenden have developed an equation to predict vP=0 frequencies for a variety of organophosphorus compounds. Their equation is presented here (30):

$$v$$
 P=O(cm⁻¹)=930 + 40 Σ π

Table 8.10 lists π constants for group G for compounds of form G-P(=O)Cl₂. The calculated and observed frequencies vary between 2 and $28\,\mathrm{cm^{-1}}$ of the observed frequencies. In the case of organophosphorus compounds in the vapor phase, the $930\,\mathrm{cm^{-1}}$ constant should most likely be raised 10 to $20\,\mathrm{cm^{-1}}$ to account for the higher v P=O frequencies observed in the vapor phase. In general, the v P=O frequencies are lower in the neat phase, and this is attributed to the higher field effect in the neat phase as compared to the field effect in solution or the relative absence of the field effect in the vapor phase.

PHENOXARSINE DERIVATIVES

These compounds have the empirical structure presented here:

The v P=S vibration occurs in the range 645–648 cm⁻¹, and the v P=O vibration occurs in the range 1228–1235 cm⁻¹ (31). See Table 8.11 for more specific data.

v = O VS v = S

A normal coordinate analysis of phosphorus oxyhalides and their derivatives has shown that the v P=O frequencies exhibit an accidental relationship between mass and electronegativity for the halogen atoms. The good agreement obtained between the calculated and observed v P=O frequencies for all the phosphorus oxyhalides indicates that kinetic energy does have a significant effect on the v P=O frequency. The calculated potential energy distribution indicates that the P=O fundamental in each molecule results from over 85% v P=O, and mixes only slightly with other molecular vibrations of the same symmetry species (47). These calculations show that the force constant for v P=O for CH₃P(=O)Cl₂ is closer to that for P(=O)Cl₃ than the force constant for (CH₃)₃P(=O).

Table 8.12 lists IR data for v P=O and v P=S for P(=O)X₃ v and P(=S)X₃-type compounds. This table shows that v P=O decreases in frequency progressing in the series P(=O)F₃, 1415 cm⁻¹ to P(=O)Cl Br₂, 1275 cm⁻¹. The v P=S vibration does not show the same trend and, as stated before, v P=S couples with other fundamental vibrations.

P=S STRETCHING, vP=S

The v P=S vibration couples with other fundamentals as discussed previously. The characteristic v P=S vibration occurs in the range 565–742 cm⁻¹. These limits are set by $[(CH_3)_2N]_3$ P=S and $(HCCCH_2O)P(=S)Cl_2$ as listed in Table 8.13. Many of these P=S containing compounds exist as rotational conformers as shown in Table 8.13.

The frequency separation between these rotational conformers varies between 11 and $47\,\mathrm{cm}^{-1}$.

S-METHYL PHOSPHORODICHLORIDIOTHIOATE

This compound has the empirical structure $CH_3SP(=O)Cl_2$ (23). This compound also exists as rotational conformers. The v P=O frequencies are 1275/1266 cm⁻¹ and the vibrational assignments are presented in Table 8.14.

Figure 8.15 (top) is an IR spectrum of S-methyl phosphorodichloridiothioate in the range $3800-400\,\mathrm{cm^{-1}}$. Figure 8.15 (bottom) is a spectrum of S-methyl phosphorodichloridiothioate in the range $600-45\,\mathrm{cm^{-1}}$. Figure 8.16 (top) is a Raman spectrum of S-methyl phosphorodichloridiothioate, and Fig. 8.16 (bottom) is a polarized spectrum of S-methyl phosphorodichloridiothioate in the range $3000-100\,\mathrm{cm^{-1}}$. The skeletal vibrations for S-P(=O)Cl₂ are similar to those for P(=O)Cl₃ (23). Consequentially, the *v* sym. PCl₃, a_1 mode for P(=O)Cl₃ at $483\,\mathrm{cm^{-1}}$ corresponds to the rotational conformers at 450 and $471\,\mathrm{cm^{-1}}$ for the SP(=O)Cl₂ skeletal vibration. The doubly degenerate *v* asym. PCl₃, *e* mode for P(=O)Cl₃ corresponds to the $593/579\,\mathrm{cm^{-1}}$ *a*" rotational conformers (23).

SKELETAL MODES OF THE $(C-O-)_3P$ GROUP OF TRIMETHYL PHOSPHITE AND TRIMETHYL PHOSPHATE

Table 8.15 compares the $P(-O-C)_3$ vibrations for $(CH_3O)_3P$ and $(CH_3O)_3P=O$. These skeletal vibrations occur at similar frequencies. The vibrational assignments for the CH_3 vibrations for trimethyl phosphite are listed in Table 8.16. Infrared spectra of trimethyl phosphite in different physical phases are presented in Figs. 8.17–8.19.

ν P=S, ν P-S, AND ν S-H

The v P=S, v P-S and v S-H vibrations in compounds of form $(RO)_2P(=S)SH$ and $(ArO)_2P(=S)SH$ exist as a doublet due to the existence of rotational conformers (see Table 8.17). The v SH rotational conformers were discussed in Chapter 4 in the section on thiols. The lower frequency v S-H rotational conformer was assigned to the rotational conformer where the S-H group was intramolecularly hydrogen bonded to the free pair of electrons of the POR group (viz. SH····OR). The v P=S rotational conformers 1 and 2 are assigned 670/659 cm⁻¹ and v P-S rotational conformers are assigned 524–538 cm⁻¹/490–499 cm⁻¹, respectively (32).

Figure 8.20 compares the IR spectrum for O,O-dimethyl phosphorodithioic acid with the IR spectrum for O,O-dimethyl phosphorochloridothioate. Figure 8.21 compares the IR spectrum for O,O-diethyl phosphorodithioic acid with the IR spectrum for O,O-diethyl phosphorochloridothioate. The IR group frequencies just discussed are readily apparent in these spectra.

DIALKYL HYDROGENPHOSPHONATE AND DIPHENYL HYDROGENPHOSPHONATE

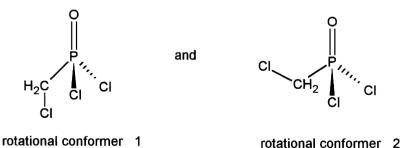
These compounds are often named phosphites, but the phosphorus atom is actually pentavalent in these cases and has the empirical structure $(RO)_2P(=O)H$.

In the neat phase vP-H occurs in the range $2\overline{4}10-2442\,\mathrm{cm}^{-1}$, $\delta P-H$ in the range 955–1028 cm⁻¹, and vP=O in the range $1241-1260\,\mathrm{cm}^{-1}$. In the vapor phase vPH occurs $19-25\,\mathrm{cm}^{-1}$ higher in frequency, $\delta P-H$ 8–20 cm⁻¹ higher in frequency, and vP=O 27–41 cm⁻¹ higher in frequency than they occur in the neat phase. These frequency changes going from the neat to vapor phase suggest that in the neat phase these compounds are intermolecularly hydrogen bonded, such as in the one illustrated here:

In other compounds *v* P=O does not shift as much to lower frequency in going from the vapor to the liquid phase as do these hydrogenphosphonates (see Table 8.18).

In CS₂ solution, compounds of form $(RO)_2P(=O)H$ exhibit vP=O in the range 1273–1283 cm⁻¹ and vP=O in the range 1257–1266 cm⁻¹. The higher frequency vP=O is often seen as a shoulder. It is possible that the higher frequency vP=O is due to unassociated $(RO)_2P(=O)H$ molecules.

Figures 8.22 and 8.23 show the IR spectra of dimethyl hydrogenphosphonate and dimethyl deuterophosphonate in solution. Figures 8.24 and 8.25 show the IR spectra of diethyl hydrogenphosphonate and diethyl deuterophosphonate in solution (32). Figure 8.26 shows Raman spectra of dimethyl hydrogenphosphonate in the liquid phase (32). These spectra aid the reader in recognizing the group frequencies discussed in this chapter.


THE C-O-P STRETCHING VIBRATIONS

The C-O-P group frequencies are complex, and are often described as "C-O stretching", v C-O, and "P-O stretching", v P-O. Tables 8.19 and 8.20 list IR group frequency assignments for v C-O, v P-O for C-O-P and v aryl-O and v P-O for aryl-O-P. The v C-O frequencies occur in the range 990–1065 cm⁻¹, and the v P-O frequencies occur in the range 739–861 cm⁻¹ for the P-O-C group. The v aryl-O frequencies occur in the range 1160–1261 cm⁻¹ and v P-O in the range 920–962 cm⁻¹ for the aryl-O-P group.

Table 8.21 lists the aryl-O stretching frequencies for the O-methyl O-(X-phenyl N-methyl-phosphoramidates, and v aryl-O occurs in the range 1207–1259 cm⁻¹ (39).

C−P STRETCHING, v C−P

Table 8.22 lists the v C—P frequencies for a variety of compounds containing this group, with v C—P occurring in the range 699–833 cm $^{-1}$. In compounds such as ClCH $_2$ P(=O)Cl $_2$ and ClCH $_2$ P(=S)Cl $_2$, v C—P exhibits a doublet (811/818 cm $^{-1}$ at 25 °C) for v C—P due to the presence of rotational conformers:

Totational comornier 2

In the case of a compound such as $(CH_3)_2PO_2Na$ the IR bands at 737 cm⁻¹ and 700 cm⁻¹ are assigned to v asym. PC_2 and v sym. PC_2 , respectively (41).

Figure 8.27 shows the IR spectrum of chloromethyl phosphonic dichloride in CS_2 solution at $O \,^{\circ}C$ and at $-75 \,^{\circ}C$. Note that several bands occur as doublets due to the presence of rotational conformers, and that one band in each set of doublets increases in intensity (A) with a decrease in temperature (T). The higher frequency band of the doublet in the range $800-820\,\mathrm{cm}^{-1}$ increases in (A) with a decrease in (T). The lower frequency band in the range $1270-1300\,\mathrm{cm}^{-1}$ increases in (A) with a decrease in (T). Thus, the lower frequency v P=O band near $1280\,\mathrm{cm}^{-1}$ and the band near $818\,\mathrm{cm}^{-1}$ for v C-P are assigned to rotational conformer 2. The IR bands near $1282\,\mathrm{cm}^{-1}$ and $810\,\mathrm{cm}^{-1}$ are assigned to v P=O and v C-P for rotational conformer 1. On this same basis, v asym. v PClv rotational conformers 1 and 2 are assigned near v PClv rotational conformers 1 and 2 are assigned near v PClv rotational conformers 1 and 2 are assigned near v PClv rotational conformers 1 and 2 are assigned near v PClv rotational conformers 1 and 2 are assigned near v PClv rotational conformers 1 and 2 are assigned near v PClv rotational conformers 1 and 2 are assigned near v PClv respectively.

Figures 8.28 and 8.29 are IR spectra for $ClCH_2P(=O)Cl_2$ and $ClCH_2P(=S)Cl_2$, respectively (17). Vibrational assignments have been reported for $ClCH_2PCl_2$, $CH_3P(=O)Cl_2$, $ClCH_2P(=S)Cl_2$, $CH_3P(=S)Cl_2$, and $BrCH_2P(=O)Br2$ (17). The vP=S frequency for $CH_3P(=S)Cl_2$ occurs at $696 \, \mathrm{cm}^{-1}$, and the vP=S rotational conformers 1 and 2 for $ClCH_2P(=S)Cl_2$ occur at 683 and $657 \, \mathrm{cm}^{-1}$ (17). The vP=O rotational conformers 1 and 2 occur at 1264 and $1275 \, \mathrm{cm}^{-1}$ for $BrCH_2P(=O)Br_2$, and v asym. PBr2 rotational conformers 1 and 2 occur at 463 and $481 \, \mathrm{cm}^{-1}$ (17) (see Fig. 8.30).

COMPOUNDS CONTAINING P-NH-R GROUPS

The compounds containing the R-NH-P(=O) group exist in a cis configuration in dilute solution as shown here:

This cis configuration is stabilized by the intramolecular bonding between the N-H proton and the free pair of electrons on the P=O group (viz. N-H \cdots O=P). In the case of compounds containing the R-NH-P(=S) group the N-H group in dilute solution exists in both a cis and trans configuration as shown here:

The cis v N-H frequencies occur in the range 3388–3461 cm⁻¹ and trans v N-H frequencies occur in the range 3380–3434 cm⁻¹ (see Table 8.23). The frequency separation between cis v N-H and trans v N-H varies between 18 and 44 cm⁻¹.

Figure 8.31 shows the solution-phase IR spectrum of N-methyl phosphoramidodichloridothioate. The cis vN-H frequency is assigned at 3408 cm⁻¹ and that shoulder 3300 cm⁻¹ is assigned to intermolecularly bonded v N-H. The bands at 1094 and 838 cm⁻¹ are assigned to "v C-N" and "P-N" for the P-N-C group. Infrared bands at 725 and 690 cm⁻¹ are assigned to v P=S rotational conformers 1 and 2, respectively (24). Figure 8.32 show an IR spectrum of N-methyl-d₃ phosphoramidodichloridothioate (24). The v N-H frequency is assigned at 3409 cm⁻¹ and intermolecularly hydrogen bonded v N-H at 3301 cm⁻¹. The "v C-N" and "v P-N" for the P-N-C group are assigned at 1117 cm⁻¹ and 785 cm⁻¹, respectively. The v P=S rotational conformers 1 and 2 are assigned at 711 cm⁻¹ and 683 cm⁻¹, respectively.

Figure 8.33 is an IR spectrum for the N–D analog of N-methyl phosphoramidodichloridothioate (a small amount of the N–H analog is present as an impurity). The v N–D mode is assigned at $2522\,\mathrm{cm}^{-1}$ and the intermolecular, v N–D mode is assigned at $2442\,\mathrm{cm}^{-1}$. The v NH/ND ratio $3408\,\mathrm{cm}^{-1}/2522\,\mathrm{cm}^{-1}$ is 1.35, and the intermolecularly bonded v NHv ND ratio $3300\,\mathrm{cm}^{-1}/2442\,\mathrm{cm}^{-1}$ is 1.35. In this case, "v C–N" and "v P–N" for the group C–N–P occur at $1107\,\mathrm{cm}^{-1}$ and $846\,\mathrm{cm}^{-1}/825\,\mathrm{cm}^{-1}$, respectively (24). The v P=S conformers 1 and 2 are $728\,\mathrm{cm}^{-1}/681\,\mathrm{cm}^{-1}$. Figure 8.34 is an IR spectrum for the N–D analog of N-methyl-d₃ phosphoramidodichloridothioate (a small amount of the N–H analog is also present). The "v P–N" mode is assigned at $780\,\mathrm{cm}^{-1}$ and "v C–N" at $1107\,\mathrm{cm}^{-1}$. The v P=S rotational conformers 1 and 2 are assigned at $701\,\mathrm{cm}^{-1}/673\,\mathrm{cm}^{-1}$ (24).

O-ALKYL O-ARYL N-METHYLPHOSPHORAMIDATE VS O-ALKYL O-ARYL N-METHYLPHOSPHORAMIDOTHIOATE

In Fig. 8.35 IR spectrum 1 is for a 10% CCl₄ solution spectrum of O-alkyl O-aryl N-methylphosphoramidate in a 0.1-mm NaCl cell and IR spectrum 2 is for a 10% CCl4 solution of O-alkyl O-aryl N-methyl-phosphoramidothioate. In Fig. 8.31, spectrum 1, the strong IR band at 3235 cm⁻¹ is assigned to intermolecularly hydrogen-bonded v N-H, and the IR band 3442 cm⁻¹ from cis v N-H (42). In Figure 8.35, spectrum 2, the IR bands at 3440 cm⁻¹, 3402 cm⁻¹, and 3320 cm⁻¹ are assigned to cis v N-H, trans v N-H, and intermolecularly hydrogen-bonded v N-H, respectively. Study of Fig. 8.35 shows that it is a rather simple task to distinguish between CH₃NH-P=O and CH₃NH-P=S groups (42).

Figure 8.36 is a plot of the v N—H frequencies of O-alkyl O-aryl N-alkylphosphoramidates vs an arbitrary assignment of one for each proton joined to the N- α -carbon atom. Figure 8.37 is a comparable plot for the O-alkyl O-aryl N-alkylphosphoramidothioates. However, in this case (with the exception of the N-tert-butyl analog) both cis v N—H and trans v N—H frequencies are observed (42). In the case of the N-tert-butyl analog, only the cis configuration is possible, because the N-tert-butyl group is sterically prevented from being in a cis position with the P=S group (42).

Figure 8.38 shows IR spectra in the range $3300-3500\,\mathrm{cm^{-1}}$ for O-alkyl O-aryl N-alkylphosphoramidothioates as obtained in ~ 0.01 molar or less CCl_4 solutions using a 14-mm NaCl cell. In spectrum A the N-R group is N-CH₃, B is N-C₂H₅, C is N-C₃H₇, D is N-iso-C₄H₉, E is

 $N_{-4}H_9$, F is $N_{-i}so-C_3H_7$, G is $N_{-sec}-C_4H_9$, and H is $N_{-tert}-C_4H_9$. Spectra I and J are O, O-dialkyl N-methyphosphoramidothioate and O,O-dialkyl N-isopropylphosphoramidothioate, respectively. These data show that the v NH vibrations decrease in frequency with increased branching on the $N_{-}\alpha$ -carbon atom. The electron release of the N-alkyl group to the nitrogen atom increases in the order methyl, ethyl, isopropyl, and tert-butyl. Thus, as the electron release to the nitrogen atom increases, the $N_{-}H$ bond weakens, causing it to vibrate at a lower frequency.

Figure 8.39 shows IR spectra of O-alkyl N, N'-dialkylphosphorodiamidothioate in the range $3300-3500\,\mathrm{cm^{-1}}$. Spectrum A is where N,N' is dimethyl, B is N,N'-diethyl, E is N,N'-dipropyl, D is N,N'-dibutyl, E is N,N'-diisopropyl, F is N,N'-di-sec-butyl, and G is the N,N'-dibenzyl analog. The H and I are for O-aryl N,N'-di-isopropylphosphorodiamidothioate and O-aryl N-isopropyl, N'-methyl phosphorodiamidothioate, respectively. These diamido compounds differ from the mono-amido compounds in that the intensity ratio is higher for the lower-frequency $v\,\mathrm{N-H}$ band to the higher frequency $v\,\mathrm{N-H}$ band. This indicates that there is a higher fraction of trans $v\,\mathrm{N-H}$ in the diamides, but the cis $v\,\mathrm{N-H}$ isomic is still prodominant. Spectra A through J are 0.01 molar or less solutions in 3-mm NaCl cells. Spectra D and J are for the N,N'-dibutyl analog; however, spectrum J is for a 10% CCl4 solution using a 0.1-mm NaCl cell. The broad band in J is due to intermolecularly hydrogen-bonded $v\,\mathrm{N-H}$ (42).

PRIMARY PHOSPHORAMIDOTHIOATES, P(=S)NH₂

Figure 8.40 shows an IR spectrum (coded R on the figure) of O-alkyl O-aryl phosphoramidothioate and an IR spectrum of O,O-dialkyl phosphoramidothioate (coded S) in the range $3300-3500\,\mathrm{cm}^{-1}$. Samples were prepared as 0.01 molar CCl₄ solutions, and the spectra were recorded utilizing a 3-mm NaCl cell. The IR band near $3490\,\mathrm{cm}^{-1}$ is assigned as v asym. NH₂ and the IR band near $3390\,\mathrm{cm}^{-1}$ is assigned as v sym. NH₂ (42).

$$P(=S)NH_2$$
, $P(=S)NH$, $P(=S)ND_2$, $P(=S)NHCH_3$, AND $R(=S)NDCH_3$

Figures 8.41, 8.42, and 8.43 are IR spectra of O,O-dimethyl phosphoramidothioate and its ND₂ analog, O,O-diethyl phosphoramidothioate and its D₂ analog, and O,O-diethyl N-methylphosphoramidothioate, and its N-D analog. The vibrational assignments for the NH₂, ND₂, NHD vibrations are presented in Table 8.24. The values for the v NH₂/v ND₂ and v NH/v ND are also presented in Table 8.24. The v asym. NH₂ and asym. ND₂ modes occur near 3480 cm⁻¹ and 2600–2611 cm⁻¹, respectively, and v sym. NH₂ and v sym. ND₂ occur near 3390 cm⁻¹ and 2490 cm⁻¹, respectively. Both cis and trans v NH and v ND modes are also assigned.

The δ NH₂ and δ ND₂ modes are assigned near 1542 cm⁻¹ and 1171 cm⁻¹, respectively (37). The IR spectrum for O,O-dimethyl N-methylphosphoramidothioate is given in Fig. 8.44. Compare Fig. 8.44 with Fig. 8.43. upper spectrum for O,O-dimethyl N-methylphosphoramidothioate. The IR band at 954 cm⁻¹ results from v C–C for the P–O– C_2 H₅ group in Fig. 8.43 (not from a v N–C mode.

O-METHYL O-(2,4,5-TRICHOROPHENYL) N-ALKYLPHOSPHORAMIDATES

Table 8.25 lists the N–H and N–D frequencies for O-methyl O-(2,4,5-trichlorophenyl) N-alkyl phosphoramidates in CCl_4 solution. The frequency separation between v N–H and v N–D is $\sim 200 \, \mathrm{cm}^{-1}$ while for the v N–H and v N–D intermolecularly bonded species it varies between 144 and 155 cm⁻¹. In the case of the O-methyl O-(2,4,5-trichlorophenyl) N-alkylphosphoramidothioates the frequency separation between the cis v N–H and trans v N–H is in the range of 31–34 cm⁻¹. The cis v N–H frequencies decrease in the order of N–CH₃, N-ethyl, N-isopropyl, and N-tert-butyl (3442, 3429, 3419, and 3402 cm⁻¹, respectively). The trans v N–H frequencies decrease in the same order, N–CH₃, N-ethyl, and N-isopropyl (3409, 3398, and 3385 cm⁻¹, respectively). The trans v N–H mode is not observed for the N-tert-butyl analog.

SUMMARY OF PNHR AND PNH₂ VIBRATIONS

Table 8.26 lists the cis and trans v NH frequencies for compound types containing the P(=O)NHR, P(=S)NHR groups, and P(=S)NH₂ groups (37). The N-H bending mode, v N-H, is assigned in the range 1372–1416 cm⁻¹. In all cases cis v N-H occurs at higher frequency than trans v NH by 16 through 36 cm⁻¹.

SUMMARY OF VIBRATIONAL ASSIGNMENTS FOR N-ALKYL PHOSPHORAMIDODICHLORIDOTHIOATE AND DEUTERATED ANALOGS

Table 8.27 lists a summary of the vibrational assignments for N-alkyl phosphoramidodichloridothioates (24). For a more detailed discussion of these vibrational frequency assignments, the reader is referred to Reference 24.

O,O-DIMETHYL O-(2,4,5-TRICHLOROPHENYL) PHOSPHOROTHIOATE, AND ITS P=O AND $(CD_3O)_2$ ANALOGS

Table 8.28 lists vibrational assignments for O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate, and its P=O and $(CD_3O)_2$ analogs (43). O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate has the empirical structure presented here:

This phosphorus compound has 66 fundamental vibrations. Eighteen fundamentals result from vibrations with the two methyl groups. Thirty fundamentals result from vibration within the 2,4,5-trichlorophenoxy group, and 18 fundamentals result from vibrations within the $(C-O)_2(\text{aryl-}O)P=S$ group.

Vibrational assignments for the 2,4,5-trichlorophenoxy group were aided by comparison with the vibrational assignments for 1-fluoro-2,4,5-trichlorobenzene (52). The assignments for these ring modes are compared in Table 8.29.

Figure 8.45 (top) is an IR spectrum for O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate, and Fig. 8.45 (bottom) is an IR spectrum for O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphate. Figure 8.46 (top) is an IR spectrum for O,O-dimethyl-d₆ O-(2,4,5-trichlorophenyl) phosphorothioate, and Fig. 8.46 (bottom) is an IR spectrum for O,O-dimethyl-d₆ O-(2,4,5-trichlorophenyl)phosphate. It is easy to distinguish between the P=S and P=O analogs in this case. The v P=O rotational conformers 1 and 2 are readily apparent by the doublet in the range 1275–1310 cm⁻¹. Note that these IR bands are not present in the P=S analogs. It should be noted that the v P=O rotational conformer vibrations occur at lower frequency $(1300/1285 \, \text{cm}^{-1})$ in the case of the $(CH_3-O-)_2$ analog than for the $(CD_3-O-)_2$ analog $(1306 \, \text{cm}^{-1}/1292 \, \text{cm}^{-1})$. Thus, this frequency difference shows that v P=O involves motion other than simple stretching of the P=O bond.

The strongest Raman band in the spectrum of O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate and its O,O-dimethyl- d_6 analog occur at $616\,\mathrm{cm^{-1}}$ and $617\,\mathrm{cm^{-1}}$ in the solid phase, respectively. This Raman band is assigned to v P=S. The out-of-plane ring mode (25 for the 2,4,5-trichlorophenoxy group occurs as a weak IR band in the range 627– $629\,\mathrm{cm^{-1}}$ (43). However, another weak IR band is noted at $615\,\mathrm{cm^{-1}}$ for O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate and at $607\,\mathrm{cm^{-1}}$ for the O,O-dimethyl- d_6 analog in CS₂ solution. These weak IR bands are assigned to v P=S.

A COMPARISON OF IR DATA FOR O,O-DIALKYL PHOSPHOROCHLOROTHIOATE AND O,O,O-TRIALKYL PHOSPHOROTHIOATE IN DIFFERENT PHYSICAL PHASES

Table 8.30 lists IR data for O,O-dialkyl phosphorochlorothioate and O,O,O-trialkyl phosphorothioate in different physical phases. It is interesting to note that the combination tone v C - O + v P - O occurs at higher frequency in the vapor phase than in the neat phase. In the vapor phase at 200 °C, O,O-dimethyl phosphorochloridothioate and O,O,O-trimethyl phosphorothioate each exist as one rotational conformer.

A COMPARISON OF IR DATA FOR ORGANOPHOSPHATES AND ORGANOHYDROGENPHOSPHONATES IN DIFFERENT PHYSICAL PHASES

The v P=O rotational conformers generally occur at higher frequency in the vapor phase than in CS_2 solution (see Table 8.31).

A COMPARISON OF O-alkyl PHOSPHORODICHLORIDOTHIOATE AND S-alkyl PHOSPHORODICHLORIDOTHIOATE IN DIFFERENT PHYSICAL PHASES

Table 8.32 compares IR data for O-alkyl phosphorodichloridothioates and S-alkyl phosphorodichloridothioates in different physical phases. These data show that some molecular vibrations increase in frequency while other molecular vibrations decrease in frequency with change of physical phase.

INFRARED DATA FOR O,O-diethyl N-ALKYLPHOSPHORAMIDATES IN DIFFERENT PHYSICAL PHASES

Table 8.33 lists IR data for O,O-diethyl N-alkylphosphoramidates in different physical phases. In the vapor phase v P=O occurs in the region 1274-1280 cm⁻¹ and in the neat phase v P=O:H occurs in the region 1210-1240 cm⁻¹. The decrease in the v P=O frequency in going from the vapor phase is attributed mainly to intermolecular hydrogen bonding between the free pair of electrons on the P=O oxygen atom and the N-H proton (viz. P=O···H – N). The v N-H mode occurs in the region 3420-3460 cm⁻¹ in the vapor phase, and occurs in the region 3198-3240 cm⁻¹ in the neat phase. Thus, intermolecular hydrogen bonding causes v N-H···O=P to occur 205-225 cm⁻¹ lower in frequency than it occurs in the vapor phase.

VIBRATIONAL ASSIGNMENTS FOR $CH_3-PO_3^{2-}$, $CD_3-PO_3^{2-}$, $H-PO_3^{2-}$, AND PO_4^{3-}

Table 8.34 lists vibrational assignments for $CH_3-PO_3Na_2$, $CD_3-PO_3Na_2$, HPO_3^{2-} , and PO_4^{3-} . Fig. 8.47 (top) is an IR spectrum of disodium methanephosphonate in the solid phase and Fig. 8.47 (bottom) is an IR spectrum of disodium methane- d_3 -phosphonate in the solid phase. Fig. 8.48 (top) is an IR spectrum of disodium methane- d_3 -phosphonate in water solution, and Fig. 8.48 (bottom) is an IR spectrum of disodium methane- d_3 -phosphonate in water solution (40). Figure 8.49 (top) is an IR spectrum of disodium methane- d_3 -phosphonate in the solid phase, Fig. 8.49 (middle) is an IR spectrum of disodium methane- d_3 -phosphonate in the solid phase, and Figure 8.49 (bottom) is an IR spectrum of dipotassium methanephosphonate in the solid phase (40). Figure 8.50 is a solid-phase IR spectrum for disodium n-octadecanephosphonate (40).

The model compounds containing the $H-PO_3^{2-}$ and PO_4^{3-} anions (44,45) aid in the vibrational assignments for the CPO_3^{2-} skeletal vibrations. Vibrational assignments for the CH_3 and CD_3 groups are presented in Table 8.34. It is apparent that the e fundamentals for the PO_3^{2-} groups are split in the case of the CPO_3^{2-} skeletal modes. Thus, v asym. PO_3^{2-} for $CH_3PO_3Na_2$ occurs near 1110 and 1080 cm⁻¹ and near 1100 and 1070 cm⁻¹ in the case of

 $CD_3PO_3Na_2$. The v sym. PO_3 vibration occurs at 993 cm⁻¹ for the CH_3 analog and at 972 cm⁻¹ for the CD_3 analog.

In $\rm H_2O$ solution v asym. $\rm PO_3^{2-}$ occurs at $1060~\rm cm^{-1}$ and v sym. $\rm PO_3^{2-}$ occurs at $975~\rm cm^{-1}$ for the $\rm CH_3$ analog, and at $1060~\rm cm^{-1}$ and $969~\rm cm^{-1}$ for the $\rm CD_3$ analog. Comparison of the IR band near $2330~\rm cm^{-1}$ for $\rm CH_3-PO_3Na_2$ with the IR band near $185~\rm cm^{-1}$ for $\rm CH_3-PO_3K_2$ indicates that these bands arise from a lattice vibration (see Figure 8.48 (top and bottom). In the case of $\rm n-C_{18}H_{37}-PO_3Na_2$, the IR bands in the region 1050-1130 are assigned to v sym. $\rm PO_3^{2-}$ vibrations, the IR band near $987~\rm cm^{-1}$ is assigned to (sym. $\rm PO_3^{2-}$, and the IR band near $771~\rm cm^{-1}$ is assigned as v $\rm C-P$.

VIBRATIONAL DATA FOR SODIUM DIMETHYLPHOSPHINATE, POTASSIUM DIMETHYLPHOSPHINATE, AND SODIUM DIALKYLPHOSPHINATE

Table 8.35 lists IR data and assignments for the $(CH_{3-})_2PO_2^{1-}$ anion (41). Figure 8.51 upper is an IR spectrum of sodium dimethylphosphinate, $(CH_{3-})_2PO_2Na$ in the solid phase and Fig. 8.51 (bottom) is an IR spectrum of the same compound in water solution. Figure 8.52 (top) is an IR spectrum for $(CH_{3-})_2$ PO₂Na and Fig. 8.52 (bottom) is an IR spectrum for $(CH_{3-})_2$ PO₂N. Both spectra were recorded in the solid phase. Figure 8.53 gives Raman spectra of $(CH_{3-})_2$ PO₂Na saturated in water solution.

Vibrational assignments for these dialkyl phosphinate salts were aided by vibrational assignments for H_2PO_2K (44), $(CH_{3-})_3P$ (53), and $(CH_{3-})_3P=O$ (54).

The IR bands for $(CH_{3-})_2PO_2Na$ at $1169\,\mathrm{cm}^{-1}$ and $1065\,\mathrm{cm}^{-1}$ in the solid phase and at $1128\,\mathrm{cm}^{-1}$ and $1040\,\mathrm{cm}^{-1}$ in water solution are assigned to $v\,\mathrm{asym}$. PO_2 and $v\,\mathrm{sym}$. PO_2 , respectively (41). The IR band for $(CH_{3-})_2PO_2Na$ in the solid phase at $725\,\mathrm{cm}^{-1}$ and $695\,\mathrm{cm}^{-1}$, and at $738\,\mathrm{cm}^{-1}$ (depolarized Raman band) and $700\,\mathrm{cm}^{-1}$ (polarized Raman band) in water solution are assigned as $v\,\mathrm{asym}$. PC_2 and $v\,\mathrm{sym}$. PC_2 , respectively. The $v\,\mathrm{asym}$. PO_2 and $v\,\mathrm{sym}$. PO_2 near $1150\,\mathrm{cm}^{-1}$ and $1050\,\mathrm{cm}^{-1}$ for sodium diheptyl phosphinate and sodium dioctylphosphinate are readily apparent in Fig. 8.53a.

The IR bands near $1300\,\mathrm{cm^{-1}}$, and in the region $840\text{--}920\,\mathrm{cm^{-1}}$ are assigned to $\delta\,\mathrm{sym}$. CH₃ modes and $\rho\,\mathrm{CH_3}$ modes, respectively. For more detailed vibrational assignments see Reference 41.

SOLVENT EFFECTS P=O STRETCHING, vP=O

Solvent effects aid the spectroscopist in interpreting the vibrational spectra of organophosphorus compounds. These studies also allow one to gain information upon solute solvent interactions. Intermolecular hydrogen bonding between a solvent and a basic site affects the vibrational spectrum. Field effects of a solvent system also alter the vibrational spectrum. Often both of

these effects operate simultaneously on the vibrational frequencies of chemical molecular vibrations (26, 55).

Figure 8.54 shows separate plots of v P=O frequencies for P(=O)Cl₃ vs the mole % CCl_4/C_6H_{14} , mole % $C_6H_{14}/CHCl_3$, and mole % $CHCl_3/CCl_4$ solvent systems. These are 1% wt./vol. solutions of P(=O)Cl₃, and at this concentration the field effect of P(=O)Cl₃ is minimal and constant in these solvent systems. In all three solvent systems v P=O decreases in frequency as the mole % solvent system increases. The $CCl_4/C6H_{14}$ solvent system has the least effect upon v P=O, and v P=O decreases as the mole % CCl_4/C_6H_{14} increases. Thus, the v P=O frequency decreases as the field effect of the solvent system increases. The same trend is noted for the $C_6H_{14}/CHCl_3$ and $CHCl_3/CCl_4$ solvent systems and the v P=O frequency decreases in the order of the increased field effect of the solvent system. However, there is a distinct difference in the solvent systems containing CCl_3H . The v P=O frequency is rapid with the first addition of $CHCl_3$ into the solvent system, and this is attributed to the formation of intermolecular hydrogen bonding between the CCl_3H proton and the free pair of electrons of the P=O oxygen atom (viz. $CCl_3H \cdots O=P$) (26).

Figure 8.55 show a plot of v P=O for methanephosphonic dichloride $CH_3P(=O)Cl_2$ vs mole % $CDCl_3$ and plots of v P=O for 1,1-dimethylethane-phosphonic dichloride vs mole % $CHCl_3/CCl_4$ and vs mole % $CDCl_3/CCl_4$. The v P=O vibration for $(CH_3)_3CP(=O)Cl_2$ occurs at lower frequency than v P=O for $CH_3P(=O)Cl_2$ at all mole % concentrations of $CDCl_3/CCl_4$. The P=O group is more basic in the case of the $(CH_3)_3C$ analog than for the CH_3 analog, because the electron release of the $(CH_3)_3C$ group to the P=O group is larger than that of the CH_3 group to the P=O group. With the first addition of $CHCl_3$ or $CDCl_3$ to the solvent system v P=O decreases in frequency due to intermolecular hydrogen bonding (viz. $CCl_3D\cdots O=P$) (26). In the case of $(CH_3)_3CP(=O)Cl_2$ there appears to be a second break in the plot after ~ 60 mol % $CDCl_3/CCl_4$. Perhaps this is the result of a second intermolecular hydrogen bond between the $CDCl_3$ or $CHCl_3$ and the P=O group (viz. $(CCl_3H)_2\cdots (O=P)$. The second intermolecular hydrogen bond may occur because the P=O group is more basic than the P=O group for $CH_3P(=O)Cl_2$. This is apparently unique because the steric factor of the $(CH_3)_3C$ group is significantly larger than the steric factor for the CH_3 group.

Figure 8.56 shows plots of the v P=O rotational conformers 1 and 2 for O-methyl phosphorodichloridate and O-ethyl phosphorodichloridate vs mole % CHCl₃/CCl4 (26). Both v P=O rotational conformers 1 and 2 decrease in frequency with the first addition of CHCl₃, and this is attributed to intermolecular hydrogen bonding (viz. $CCl_3H\cdots O=P)_2$. The v P=O frequency separation between rotational conformers 1 and 2 is larger in CCl_4 solution than in CHCl₃ solution, and this reflects the effect of hydrogen bonding. There appears to be a second intermolecular hydrogen bond formed in all but rotational conformer 2 for $C_2H_5OP(=O)Cl_2$. In all of these plots the general decrease in the v P=O frequencies is due to the increased field effect of the solvent system.

Figure 8.57 shows plots of v P=O rotational conformers 1 and 2 for trimethyl phosphate vs mole % CHCl₃/CCl₄. The IR band in the range 1273.4 cm⁻¹ through 1289.9 cm⁻¹ is assigned to v P=O rotational conformer 1, and the IR band in the range 1258 cm⁻¹ through 1270.9 cm⁻¹ is assigned to v P=O rotational conformer 2. Complexes such as $CCl_3H\cdots O=P$ and $(CCl_3H\cdots)_2O=P$ are apparently formed between solute and solvent.

Figures 8.58 and 8.59 show plots of v P=O conformers 1 and 2 for triethyl phosphate and tributyl phosphate, respectively. The apparent decrease in the v P=O frequencies for rotational

conformers 1 and 2 reflects the initial intermolecular hydrogen-bond formation. As the mole % $CHCl_3/CCl_4$ is increased v P=O for the rotational conformer increases in frequency for both $(C_2H_5-O)_3$ P=O and $(C_4H_9O)_3$ P=O while rotational conformer 1 for $(C_4H_9O)_3$ P=O remains relatively constant. These data suggest that as the alkyl group becomes larger it sterically shields the P=O group from the solvent field effect. Thus, the v P=O frequencies are not continually lowered in frequency due to the field effect of the solvent system.

PCl₃ AND PCl₂ VIBRATIONS

Figures 8.60 through 8.62 show plots of v asym. PCl_3 or v asym. PCl_2 vs mole % solvent system for $P(=O)Cl_3$, $CH_3P(=O)Cl_2$, $(CH_3)_3CP(=O)Cl_2$, and $(RO)P(=O)Cl_2$. In all cases, the v asym. PCl_3 or v sym. PCl_2 vibration increases in frequency as the mole % CCl_4/C_6H_{14} , mole % $CHCl_3/C_6H_{14}$, or $CHCl_3/CCl_4$ is increased. In the case of $(CH_3O)P(=O)Cl_2$ or $(C_2H_5O)P(=O)Cl_2$, the v asym. PCl_2 mode is a doublet due to the presence of rotational conformers 1 and 2.

Figures 8.63–8.66 show plots of v sym. PCl_3 or v sym. PCl_2 for $P(=O)Cl_3$, $CH_3P(=O)Cl_2$, $(CH_3)_3CP(=O)Cl_2$, and $(RO)P(=O)Cl_2$. With the exception of the solvent system CCl_4/C_6H_{14} , the v sym. PCl_3 or v sym. PCl_2 vibration increases in frequency as the mole % solvent system is increased. Therefore, both the v sym. $PCl_{3 \text{ or } 2}$ and v asym. $PCl_{3 \text{ or } 2}$ vibrations in mole % $CHCl_3/CCl_4$ solutions increase in frequency as the v P=O vibrations decrease in frequency. Thus, as the field effect of the solvent increases, it requires more energy to vibrate these PCl_3 or PCl_2 bonds.

Figure 8.66 shows plots of v asym. PCl_2 vs v sym. PCl_2 for $CH_3OP(=O)Cl_2$, $C_2H_5OP(=O)Cl_2$, $(CH_3)_3CP(=O)Cl_2$, and $CH_3P(=O)Cl_2$. These plots show that v asym. PCl_2 occurs within the range 545–615 cm⁻¹ and that v sym. PCl_2 occurs within the range 495–555 cm⁻¹.

ABSORBANCE RATIOS FOR ROP(=0)Cl₂ MOLECULES

Figures 8.67 and 8.68 show plots of the absorbance ratios A(conformer 1)/A(conformer 2) for the ν P=O, ν COP, ν asym. PCl₂ and ν sym. PCl₂ vibrations vs mole% CHCl₃/CCl₄ for (CH₃O)P(=O)Cl₂ and (C₂H₅O)P(=O)Cl₂, respectively. In all cases the ratio A(conformer 1)/A(conformer 2) increases as the mole% CHCl₃/CCl₄ increases. These data indicate that as the field effect of the solvent system increases, the concentration of rotational conformer 1 increases while the concentration of conformer 2 decreases.

ALKYL GROUP VIBRATIONS

Figure 8.69 shows a plot of v sym. CH_3 for $CH_3P(=O)Cl_2$ vs mole% $CHCl_3/CCl_4$. This symmetric CH_3 bending vibration increases in frequency in an essentially linear manner as the mole% $CHCl_3/CCl_4$ increases. The effect is small, as the frequency difference is only ≈ 0.5 cm⁻¹ (26).

Figure 8.70 is a plot of ρ CH₃ for CH₃P(=O)Cl₂ vs mole % CHCl₃/CCl₄. The CH₃ rocking vibration increases in frequency in a nonlinear manner as the mole % CHCl₃/CCl₄ increases. The effect is small, as the frequency difference is < 0.5 cm⁻¹.

Figure 8.71 shows plots of the in-phase δ sym. $(CH_3)_3$ and out-of-phase δ sym. $(CH_3)_3$ frequencies for $(CH_3)_3CP(=O)Cl_2$ vs mole% $CHCl_3/CCl_4$. The in-phase symmetric $(CH_3)_3$ deformation decreases in frequency while the out-of-phase symmetric $(CH_3)_3$ deformation increases in frequency as the mole% $CHCl_3/CCl_4$ increases. These solvent effects are small because the frequency differences are ≈ 1 cm⁻¹.

Figure 8.72 shows plots of the ρ CH₃ modes for $(C_2H_5O)P(=O)Cl_2$ vs mole % CHCl₃/CCl₄. The a' CH₃ rocking vibration (\sim 1103 cm⁻¹) decreases in frequency while the a'' CH₃ rocking vibration (\sim 1165 in) increases in frequency as the mole % CHCl₃/CCl₄ increases. Figure 8.73 shows plots of ρ CH₃ modes for $(C_2H_5O)_3P=O$ vs mole % CHCl₃/CCl₄. The a'' ρ (CH₃ mode decreases in frequency while the a'' ρ CH₃ mode decreases in frequency until \sim 16 mol % CHCl₃/CCl₄, and then the frequency remains relatively constant.

THE v C-C MODE FOR THE C_2H_5 OP GROUP

Figures 8.74 and 8.75 show a plot of v C-C for $(C_2H_5O)P(=O)Cl_2$ and for $(C_2H_5O)3P=O$ vs mole % CHCl₃/CCl₄, respectively. This plot shows that the C-C stretching vibration for the C_2H_5OP group increases in frequency as the mole % CHCl₃/CCl₄ is increased (26, 55).

THE v COP GROUP (26, 55)

Figure 8.76 shows plots of v C-O for the COP group of CH $_3$ OP(=O)Cl $_2$ and C $_2$ H $_5$ OP(=O)Cl $_2$ vs mole % CHCl $_3$ /CCl $_4$. The v CO frequency for rotational conformer 1 of the COP group decreases in frequency as the mole % CHCl $_3$ /CCl $_4$ is increased. In case of rotational conformer 2, v C-O for CH $_3$ OP(=O)Cl $_2$ increases in frequency while v C-O for C $_2$ H $_5$ OP(=O)Cl $_2$ decreases in frequency (26, 55).

Figure 8.77 shows plots of v P=O for rotational conformers 1 and 2 for (CH₃O)3 P=O vs mole % CHCl₃/CCl₄. The erratic behavior of these two plots shows the effect of intermolecular hydrogen bonding upon the v (C-O)₃ modes of the (CH₃O)₃ groups. These data suggest that the molecular configuration of the rotational conformers is changing. Figure 8.78 shows a plot of v P-O for the (C-O)₃P groups for (CH₃O)₃ P=O vs mole % CHCl₃/CCl₄. The v P(-O)₃ vibrations first decrease in frequency and then increase in frequency as the mole % CHCl₃/CCl₄ is increased. These data indicate that the rotational configuration of the rotational conformers is changing as the mole % CHCl₃/CCl₄ is increased.

Figures 8.79 and 8.80 show plots of $v\phi$ -O and vO-P for the ϕ -O-P groups of $(C_6H_5O)_3P$ =O vs mole % $CHCl_3/CCl_4$, respectively. These plots show that as $v\Phi$ -O decreases in frequency, vP-O increases in frequency to a point in the range near 50 mol % $CHCl_3/CCl_4$. At higher mole % $CHCl_3/CCl_4$ concentrations, $v\phi$ -O increases in frequency while vP-O decreases in frequency. These plots indicate that the rotational conformers are changing as the mole % $CHCl_3/CCl_4$ is increased.

Figure 8.81 shows plots of v P=O rotational conformers 1 and 2 for triphenyl phosphate. Both v P=O rotational conformers decrease in frequency as the mole % CHCl₃/CCl₄ is increased. Figure 8.82 show a plot of the absorbance ratio A (v P=O, conformer 1)/A(v P=O, conformer 2) for triphenyl phosphate vs mole % CHCl₃/CCl₄. A break is noted in the plot near 10 mol % CHCl₃/CCl₄ in Figure 8.8, which corresponds to the break in the plot of v P=O, conformer 1. This break is attributed to the formation of the intermolecular hydrogen bond for rotational conformer 1. The absorbance ratio decreases as the mole % CHCl₃/CCl₄ is increased, which shows that the concentration of conformer 2 increases while the concentration of conformer 1 decreases (see Figure 8.82).

Figure 8.83 shows a plot of the in-plane hydrogen deformation for the phenyl groups of triphenyl phosphate vs mole% $CHCl_3/CCl_4$. This vibration increases in frequency at a more rapid rate below 10 mol% $CHCl_3/CCl_4$ with the formation of the intermolecular hydrogen bonds, and then increases in a linear manner as the mol% $CHCl_3/CCl_4$ is increased.

Figure 8.84 shows a plot of the out-of-plane ring deformations for the phenyl groups of triphenyl phosphate vs mole% $CHCl_3/CCl_4$. This out-of-plane ring deformation increases in frequency as the field effect of the solvent system increases.

v C-D FOR CDCl₃ IN CCl₄ SOLUTIONS

Figure 8.85 shows a plot of v C-D for CDCl $_3$ vs mole % CDCl $_3$ /CCl $_4$. This plot shows that v C-D increases in frequency as the mole % CDCl $_3$ /CCl $_4$ is increased in essentially a linear manner (55). The v C-D frequency decreases as the concentration of CCl $_4$ is increased. The Cl atoms of CCl $_4$ are more basic than the Cl atoms of CDCl $_3$. Thus, v C-D of CDCl $_3$ decreases as the surrounding field of CCl $_4$ molecules is increased in the CCl $_3$ -D: CCl $_4$ equilibrium.

Figure 8.86 shows a plot of v C-D for CDCl $_3$ containing 1 % wt./vol. triethyl phosphate in CDCl $_3$ /CCl $_4$ solutions. In this case v C-D does not decrease in a linear manner as the mole % CDCl $_3$ /CCl $_4$ is increased. The more rapid decrease in the v C-D frequency at lower mole % CDCl $_3$ /CCl $_4$ concentrations is due to intermolecular hydrogen bonding with (CH $_3$ O) $_3$ P=O molecules in conjunction with competing intermolecular hydrogen bonding with CCl $_4$ molecules. Thus, in all cases of CHCl $_3$ /CCl $_4$ there is an equilibrium of (CCl $_3$ H) $_n$ ··· (ClCCl $_3$) $_m$ with intermolecular hydrogen bonding with solute molecules.

For further discussion of solvent effects on phosphorus compounds the reader is referred to References 26 and 55.

REFERENCE SPECTRA

Reference IR and Raman spectra are available for identification of unknown samples containing phosphorus. These spectra are available in references such as 48–51, or from the Sadtler Research Laboratories. The book *Analytical Chemistry of Phosphorus Compounds* is an excellent source for other techniques required for the solution of chemical problems involving phosphorus derivatives (50).

REFERENCES

- 1. Wilson, M. K. and Polo, S. R. (1952) J. Chem. Phys. 20: 16.
- 2. Delwaulle, M. L. and Francois, F. (1949) J. Chem. Phys. 46: 87.
- 3. Gutowwsky, H. S. and Liehr. A. D. (1952). J. Chem. Phys. 20: 1652.
- 4. Wilson, M. K. and Polo, S. R. (1953) J. Chem. Phys. 21: 1426.
- 5. Eucken, A., Hellwege, K. H. and Landolt-Bornstein, I. (1951). Band, Atomic Und Molekulorphsk. 2 Terl, Molekeln I. Berlin: Springer-Verlag, p. 247.
- 6. Stammereich, H., Foreris, R. and Tavares, Y. (1956). J. Chem. Phys. 25: 580.
- 7. Durig, J. R. and Clark, J. W. (1967) J. Chem. Phys. 46: 3057.
- 8. Delwaulle, M. L. and Francois, F. (1946) Comp. Rend. 22: 550.
- 9. Nyquist, R. A., (1967) Spectrochim. Acta. 23A: 845.
- 10. Gerding, H. and Westrick, R. (1942). Rec. Trav. Chem. 61: 842.
- 11. Durig, J. R. and Clark, J. W. (1967) J. Chem. Phys. 46: 3057.
- 12. Delwaulle, M. L. and Francois, F. (1948). Comp. Rend. 226: 894.
- 13. Delwaulle, M. L. and Francois, F. (1946). Comp. Rend. 22: 550.
- 14. Eucken, A., Hellewege, K. H. and Landolt-Bornstein, I. (1951). Band, Atomic Und Moleknlorphsk. 32 Terl. Molcheln I. Berlin: Springer-Verlage, p. 278.
- 15. Delwaulle, M. L. and Francois, F. (1945) Comp. Rend. 220: 817.
- 16. Nyquist, R. A. (1987). Appl. Spectrosc. 41: 272.
- 17. Nyquist, R. A. (1968). Appl. Spectrosc. 22: 452.
- 18. Durig, J. R., Black, F. and Levin, J. W. (1965). Spectrochim. Acta 21: 1105.
- 19. Durig, J. and Di Yorio, J. (1960) Chem. Phys. 48: 4154.
- 20. The Dow Chemical Company Data in CS2 solution.
- 21. Nyquist, R. A. and Muelder, W. W. (1966) Spectrochem. Acta. 22: 1563.
- 22. Nyquist, R. A., Muelder, W. W. and Wass, M. N. (1970). Spectrochim. Acta 26A: 769.
- 23. Nyquist, R. A. (1971). Spectrochim. Acta 27A: 697.
- 24. Nyquist, R. A., Wass, M. N. and Muelder, W. W. (1970). Spectrochim. Acta 26A: 611.
- 25. Nyquist, R. A. (1967). Spectrochim. Acta 23A: 1499.
- 26. Nyquisit, R. A. and Puehl, C. W. (1999). Appl. Spectrosc. 46: 1552; Mortimer, F. S. (1957). Spectrochim. Acta. 9: 270.
- 27. Nyquist, R. A. and Muelder, W. W. (1968) Spectrochim. Acta 24A: 187.
- 28. Dow Chemical Company data in CCl₄ solution.
- 29. Taft, R. W. (ed.). (1976). Progress in Physical Organic Chemistry, Vol. 12, New York: John Wiley & Sons, p. 74.
- 30. Thomas, L. C. and Chittenden, R. A. (1964). Spectrochim. Acta 20: 489.
- 31. Nyquist, R. A., Sloane, H. J., Dunbar, J. E. and Stycker, S. J. (1966). Appl. Spectrosc. 20: 90.
- 32. Nyquist, R. A. (1969). Spectrochim. Acta 25A: 47.
- 33. Durig, J. R. and Clark, J. W. (1967) J. Chem. Phys. 46: 3057.
- 34. Delwaulle, M. L. and Francois, F. (1946). Comp. Rend. 22: 550.
- 35. Nyquist, R. A. and Muelder, W. W. (1968). J. Mol. Structure 2: 465.
- 36. Nyquist, R. A. (1966) Spectrochim. Acta 22: 1315.
- 37. Nyquist, R. A., Blair, E. H. and Osborne, D. W. (1967) Spectrochim. Acta 23A: 2505.
- 38. Herrail, F. (1965). Comp. Rend. 261: 3375.
- 39. Neely, W. B., Unger, I., Blair, E. H. and Nyquist, R. A. (1964). Biochemistry 3: 1477.
- 40. Nyquist, R. A. (1968) J. Mol. Structure 2: 123.
- 41. Nyquist, R. A., (1968) J. Mol. Structure 2: 111.

- 42. Nyquist, R. A. (1963) Spectrochim. Acta 19: 713.
- 43. Nyquist, R. A. and Muelder, W. W. (1971). Appl. Spectrosc. 25: 449.
- 44. Tsubio, M. (1957). J. Amer. Chem. Soc. 79: 1351.
- 45. Herzberg, G. (1945). Infrared and Raman Spectra of Polyatomic Molecules. New York: Van Nostrand.
- 46. Corbridge, D. E.C. (1969). Topics in Phosphorus Chemistry, Vol. 6, M. Grayson and E. J. Griffiths, eds, The Infrared Spectra of Phosphorus Compounds. New York: Interscience, p. 235.
- 47. King, S. T. and Nyquist, R. A. (1970). Spectrochim. Acta 26A: 1481.
- 48. Nyquist, R. A. and Craver, C. D. (1977). In *The Coblentz Society Desk Book of Infrared Spectra*. (C. D. Craver, ed.), Kirkwood, MO: The Coblentz Society.
- 49. Lin-Vien, D., Cotthup, N. B., Fateley, W. C. and Grasselli, J. G. (1991). The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. San Diego, CA: Academic Press, Inc.
- 50. Nyquist, R. A. and Potts, Jr., W. J. (1972). Vibrational Spectroscopy of Phosphorus Compounds, Ch. 5, in *Analytical Chemistry of Phosphorus Compounds*. Vol. 37, M. Halmann, ed., New York: Wiley-Interscience.
- 51. Nyquist, R. A., Putzig, C. L., Leugers, M. A. and Kagel, R. O. (1997). Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts. Vols. 1–4, San Diego: Academic Press.
- 52. Nyquist, R. A. (1970) Spectrochim. Acta 26A: 849.
- 53. Bouquet, S. and Bigorne, M. (1967). Spectrochim. Acta 23A: 1231.
- 54. Daasch, L. W. and Smith, D. C. (1951). J. Chem. Phys. 19: 22.
- 55. Nyquist, R. A. and Puehl, C. W. (1992). Appl. Spectrosc. 46: 1564.

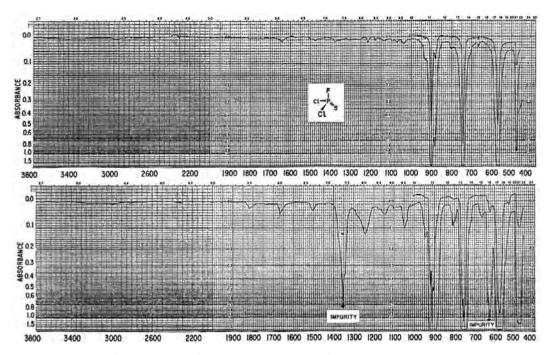


FIGURE 8.1 Top: Infrared spectrum of thiophosphoryl dichloride fluoride 10% wt./vol. in CCl_4 solution (3800–1333 cm $^{-1}$) and 10% wt./vol. in CS_2 solution. Bottom: Vapor-phase spectrum of thiophosphoryl dichloride fluoride in the region 3800–450 cm $^{-1}$ (9).

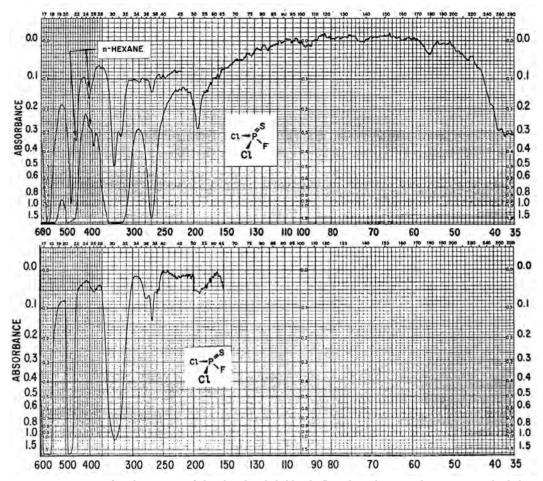


FIGURE 8.2 Top: Infrared spectrum of thiophosphoryl dichloride fluoride in hexane solution using polyethylene windows in the region $600-40\,\mathrm{cm}^{-1}$. Bottom: Vapor-phase IR spectrum of thiophosphoryl dichloride fluoride using polyethylene windows in the region $600-150\,\mathrm{cm}^{-1}$ (9).

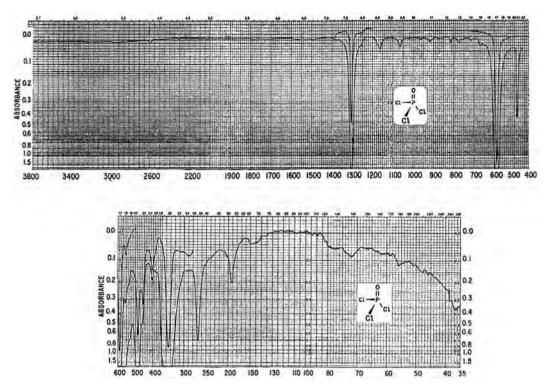


FIGURE 8.3 Top: Infrared spectrum of phosphoryl chloride in CCl_4 solution (3800–1333 cm $^{-1}$) and in CS_2 solution (1333–45 cm $^{-1}$). Bottom: Infrared spectrum of phosphoryl chloride in hexane solution (9).

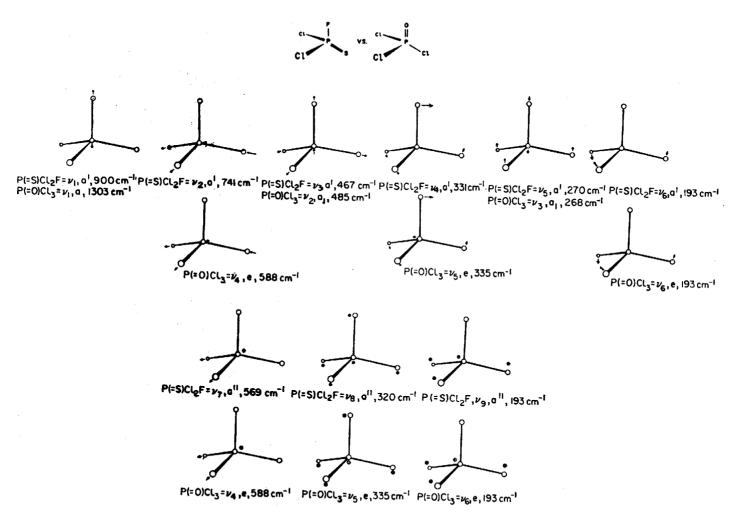
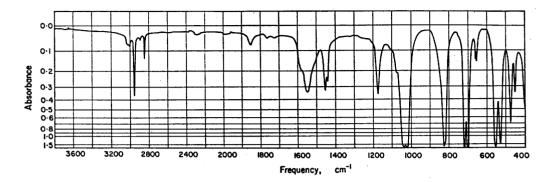
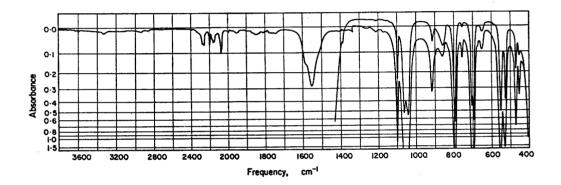




FIGURE 8.4 A comparison of the approximate normal vibrations of thiophosphoryl dichloride fluoride vs those for phosphoryl chloride (9).

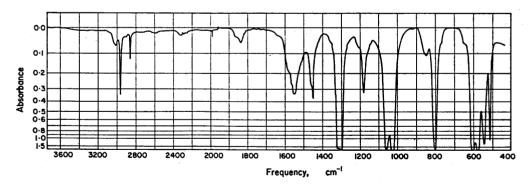


FIGURE 8.5 Top: Infrared spectrum of O-methyl phosphorodichloridothioate in $10\,\mathrm{wt./vol.}$ % in CCl_4 solution (3800–1333 cm $^{-1}$) and in $10\,\mathrm{wt./vol.}$ % in CS_2 solution (1333–400 cm $^{-1}$) using 0.1-mm KBr cells. The weak band at \sim 752 cm $^{-1}$ is due to the presence of a trace amount of $P(=S)Cl_3$. The band at 659 cm $^{-1}$ is due to the presence of \sim 4% O,O-dimethyl phosphorochloridothioate. Middle: Infrared spectrum of O-methyl-d₃ phosphorodichloride-thioate in $10\,\mathrm{wt./vol.}$ % in CCl_4 solution (3800–1333 cm $^{-1}$) and $10+2\,\mathrm{wt./vol.}$ % in CS_2 solution (1333–400 cm $^{-1}$) using 0.1-mm KBr cells. Bottom: Infared spectrum of O-methyl phosphorodichloridate in $10\,\mathrm{wt./vol.}$ % in CCl_4 solution (3800–1333 cm $^{-1}$) and $10\,\mathrm{wt./vol.}$ % in CS_2 solution (1333–450 cm $^{-1}$) using 0.1-mm KBr cells (21).

FIGURE 8.6 Top: Infrared spectrum of O-methyl phosphorodichloridothiate in 10 wt./vol. % in hexane solution in a 1-mm polyethylene cell. Bottom: Infrared spectrum of O-methyl phosphorodichloridothioate in 25 wt./vol. % in hexane solution in a 2-mm polyethylene cell (25).

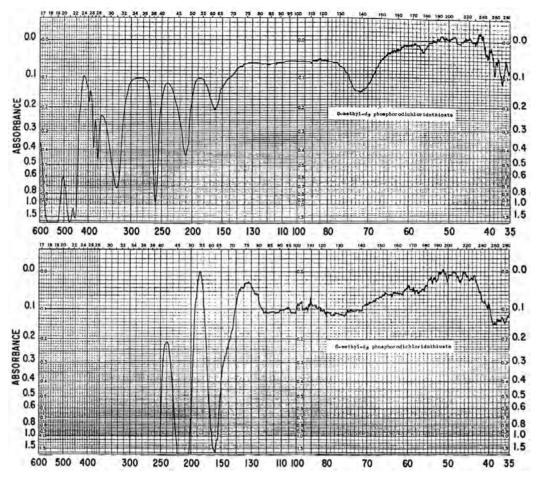


FIGURE 8.7 Top: Infrared spectrum of O-methyl- d_3 phosphorodichloridothioate in 10 wt./vol. % hexane solution in a 1-mm polyethylene cell. Bottom: Infrared spectrum of O-methyl- d_3 phosphorodichloridothioate in 25 wt./vol. % hexane solution in a 2-mm polyethylene cell and compensated with polyethylene (25).

FIGURE 8.8 Assumed normal vibrations of organophosphorus and inorganophosphorus compounds (25).

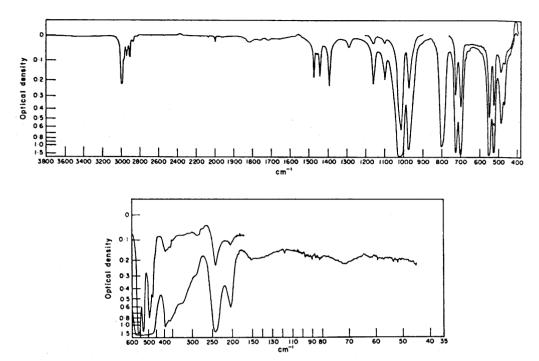


FIGURE 8.9 Top: Infrared spectrum of O-ethyl phosphorodichlorodiothioate $10\,\mathrm{wt./vol.}$ % in CCl_4 solution (3800–1333 cm $^{-1}$) and 10 and $2\,\mathrm{wt./vol.}$ % in CS_2 solution (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. The solvents were compensated. Bottom: Infrared spectrum of O-ethyl phosphorodichloridothioate in 25 and $2\,\mathrm{wt./vol.}$ % in hexane solution (600–45 cm $^{-1}$) in a 1-mm polyethylene cell (22).

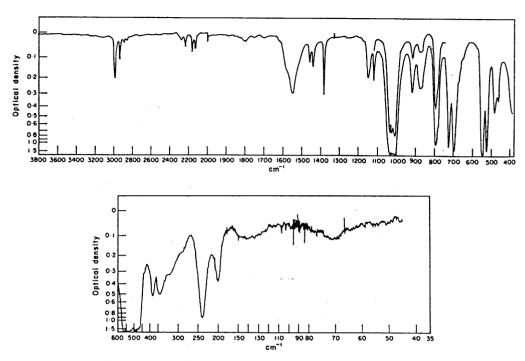


FIGURE 8.10 Top: Infrared spectrum of O-ethyl-1,1-d₂ phosphorodichloridothioate in $10\,\text{wt./vol.}$ % in CCl_4 solution (3800–1333 cm⁻¹) and 10 and 2.5 wt./vol. % in CS_2 solution (1333–400 cm⁻¹) in 0.1-mm KBr cells. The solvents are compensated. Bottom: Infrared spectrum of O-ethyl-1,1-d₂ phosphorodichloridothioate in $10\,\text{wt./vol.}$ hexane solution (600–45 cm⁻¹) in a 1-mm polyethylene cell (22).

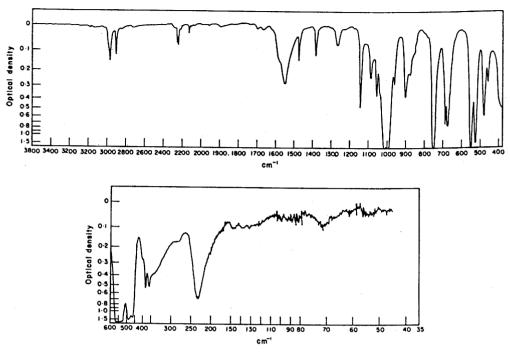


FIGURE 8.11 Top: Infrared spectrum of O-ethyl-2,2,2-d $_3$ phosphorodichloridothioate in 10 wt./vol. % CCl_4 solution (3800–1333 cm $^{-1}$) and 10 wt./vol. % CS_2 solution (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. The solvents are not compensated. Bottom: Infrared spectrum of O-ethyl-2,2,2-d $_3$ phosphorodichloridothioate in 10 wt./vol. hexane solution in a 1-mm polyethylene cell (22).

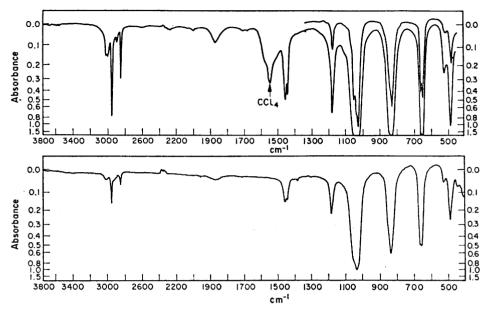


FIGURE 8.12 Top: Infrared spectrum of O,O-dimethyl phosphorochloridothioate in $10 \, \text{wt./vol.}$ % in CCl_4 solution $(3800-1333 \, \text{cm}^{-1})$ and $10 \, \text{and} \, 2 \, \text{wt./vol.}$ % in CS_2 solution $(1333-450 \, \text{cm}^{-1})$ in 0.1-mm KBr cells. The solvents have not been compensated. Bottom: Liquid-phase IR spectrum of O,O-dimethyl phosphorochloridothioate between KBr plates (27).

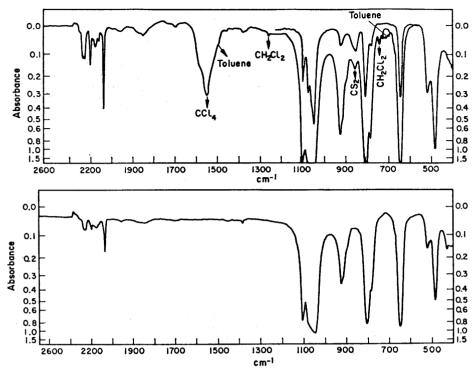


FIGURE 8.13 Top: Infrared spectrum of O,O-dimethyl-d $_6$ phosphorochloridothioate in 10 wt./vol. % in CCl $_4$ solution (3800–1333 cm $^{-1}$) and 10 and 1 wt./vol. % in CS $_2$ solution (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. Traces of toluene and methylene chloride are present. Bottom: Liquid-phase IR spectrum of O,O-dimethyl-d $_6$ phosphorochloridothioate between KBr plates (27).

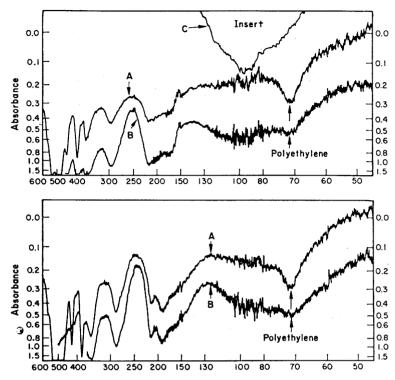


FIGURE 8.14 Top: Infrared spectrum of O,O-dimethyl phosphorochloridothioate in 2-mm polyethylene cells. The polyethylene has been compensated. Bottom: Infrared spectrum of O,O-dimethyl- d_6 phosphorochloridothioate in $10\,\mathrm{wt./vol.}$ % n-hexane in 1- and 2-mm polyethylene cells, respectively (27).

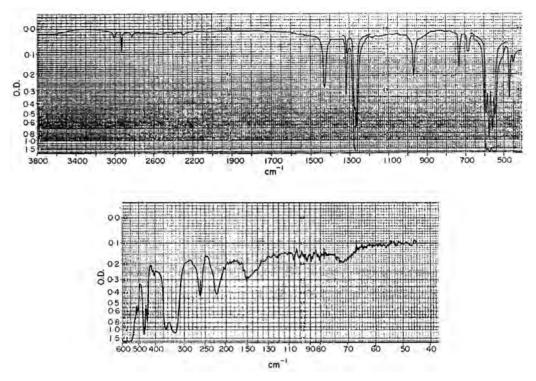
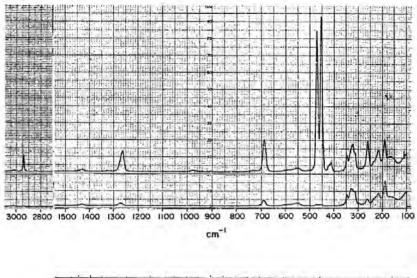



FIGURE 8.15 Top: Infrared spectrum of S-methyl phosphorodichloridothioate in $10\,\mathrm{wt./vol.}$ % in CCl₄ solution (3800–1333 cm⁻¹) and in $10\,\mathrm{and}\,2\,\mathrm{wt./vol.}$ % in CS₂ solution (1333–400 cm⁻¹) in 0.1-mm KBr cells. Bottom: Infrared liquid phase spectrum of S-methyl phosphorodichloridothioate in $10\,\mathrm{wt./vol.}$ % hexane solution (600–45 cm⁻¹) in a 1-mm polyethylene cell (23).

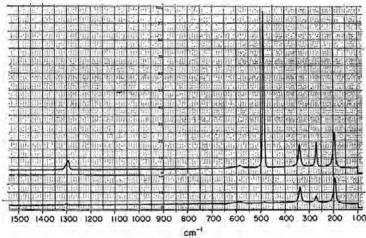



FIGURE 8.16 Top: upper: Raman liquid-phase spectrum of S-methyl phosphorodichloridothioate. Lower: Polarized Raman liquid-phase spectrum of S-methyl phosphorodichloridothioate (23). Bottom upper: Raman liquid-phase spectrum of phosphoryl chloride. Lower: Polarized Raman spectrum of phosphoryl chloride (23).

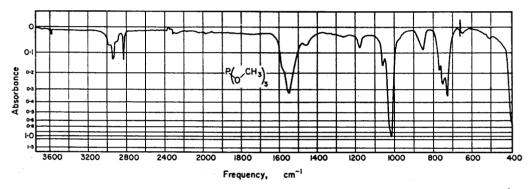


FIGURE 8.17 Top: Infrared spectrum of trimethyl phosphite $10\,\mathrm{wt./vol.}$ % in CCl_4 solution $(3800-1333\,\mathrm{cm^{-1}})$ and $10\,\mathrm{wt./vol.}$ % in CS_2 solution $(1333-400\,\mathrm{cm^{-1}})$ in 0.1-mm KBr cells. The solvents have not been compensated. Bottom: Infrared spectrum of trimethyl phosphite in $1\,\mathrm{wt./vol.}$ % CCl_4 solution $(3800-1333\,\mathrm{cm^{-1}})$ and in $1\,\mathrm{wt./vol.}$ % CS_2 solution $(1333-400\,\mathrm{cm^{-1}})$ using 0.1-mm KBr cells. The solvents have not been compensated (36).

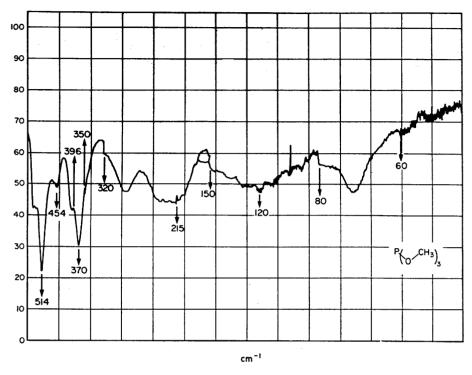


FIGURE 8.18 Infrared spectrum of trimethyl phosphite in $10\,\mathrm{wt./vol.}$ % hexane solution in a 0.1-mm polyethylene cell. The IR band at $\sim 70\,\mathrm{cm}^{-1}$ in a lattice mode for polyethylene (36).

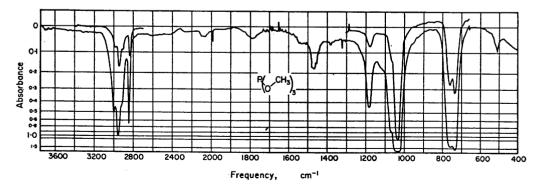


FIGURE 8.19 Vapor-phase IR spectrum of trimethyl phosphite in a 10-cm KBr cell (36).

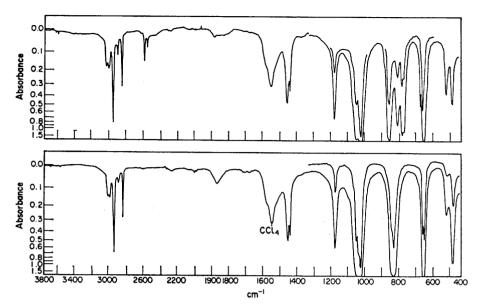


FIGURE 8.20 Top: Infrared spectrum of O,O-dimethyl phosphorodithioic acid in $10 \, \text{wt./vol.}$ % in CCl₄ solution (3800–1333 cm⁻¹) and 10 and $2 \, \text{wt./vol.}$ % in CS₂ solution (1333–450 cm⁻¹) in 0.1-mm KBr cells. Bottom: Infrared spectrum of O,O-dimethyl phosphorochloridothioate in CCl₄ solution (3800–1333 cm⁻¹ and 10 and $2 \, \text{wt./vol.}$ % in CS₂ solutions (1333–450 cm⁻¹) in 0.1-mm KBr cells (32).

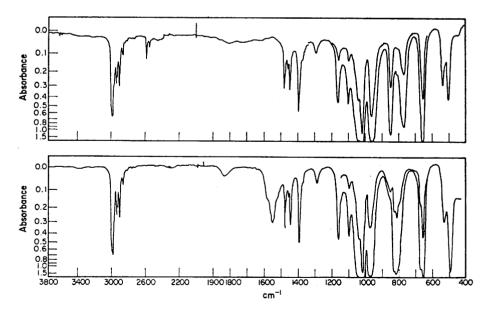


FIGURE 8.21 Top: Infrared spectrum of O,O-diethyl phosphorodithioic acid in 10 wt./vol. % in CCl₄ solution (3800–1333 cm⁻¹) and 10 and 2 wt./vol. % in CS₂ solutions (1333–400 cm⁻¹) in 0.1-mm KBr cells. The solvents have been compensated. Bottom: Infrared spectrum of O,O-diethyl phosphorochloridothioate in 10 wt./vol. % in CCl₄ solution and in 10 and 2 wt./vol. % CS₂ solutions (1333–450 cm⁻¹) in 0.1-mm KBr cells (32).

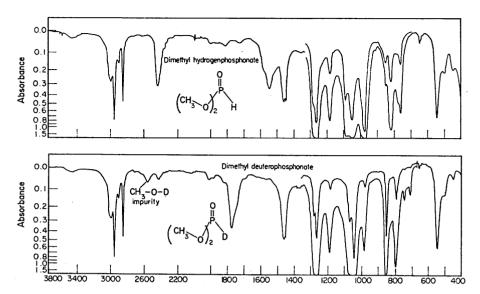


FIGURE 8.22 Top: Infrared spectrum of dimethyl hydrogenphosphonate in $10\,\text{wt./vol.}$ % in CCl_4 solution (3800–1333 cm $^{-1}$) and in 10 and $2\,\text{wt./vol.}$ % CS_2 solutions in 0.1-mm KBr cells. The solvents have not been compensated. Bottom: Infrared spectrum of dimethyl deuterophosphonate in 10% wt./vol. CCl_4 solution (3800–1333 cm $^{-1}$) and in 10 and $2\,\text{wt./vol.}$ % solutions in CS_2 solution (1333–400 cm $^{-1}$). The solvents have been compensated (32).

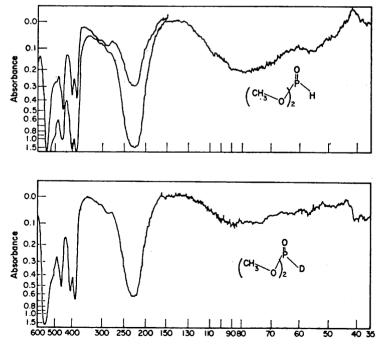


FIGURE 8.23 Top: Infrared spectrum of dimethyl hydrogenphosphonate saturated in hexane solution $(600-35\,\mathrm{cm}^{-1})$ in a 2-mm polyethylene cell. Bottom: Infrared spectrum of dimethyl deuterophosphonate saturated in hexane solution $(600-35\,\mathrm{cm}^{-1})$ in a 2-mm polyethylene cell (32).

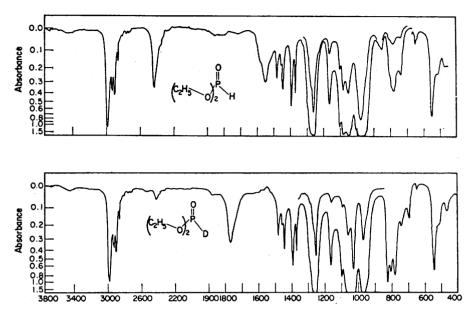


FIGURE 8.24 Top: Infrared spectrum of diethyl hydrogenphosphonate in $10\,\text{wt./vol.}$ % in CCl₄ solution (3800–1333 cm⁻¹) and in 10 and $2\,\text{wt./vol.}$ % in CS₂ solutions (1333–400 cm⁻¹) in 0.1-mm KBr cells. The solvents have not been compensated. Bottom: Infrared spectrum of diethyl deuterophosphonate in 10% wt./vol. % in CCl₄ solution (3800–1333 cm⁻¹) and 10 and $2\,\text{wt./vol.}$ % CS₂ solutions (1333–400 cm⁻¹) in 0.1-mm KBr cells. The solvents have been compensated (32).

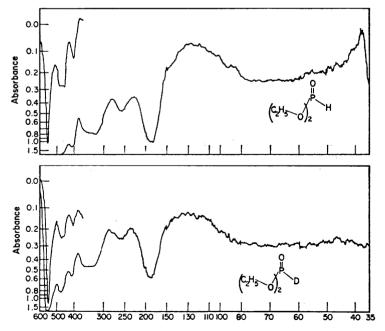


FIGURE 8.25 Top: Infrared spectrum for diethyl hydrogenphosphonate in 0.25 and 5 wt./vol. % hexane solutions $(600-35~{\rm cm}^{-1})$ in a 2-mm polyethylene cell. Bottom: Infrared spectrum for diethyl deuterophosphonate in $10~{\rm wt./vol.}$ % hexane solution $(600-35~{\rm cm}^{-1})$ in a 1-mm polyethylene cell.

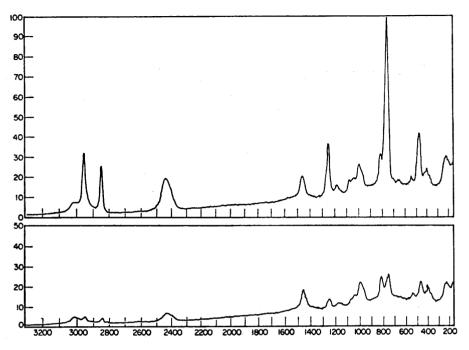


FIGURE 8.26 Top: Raman liquid-phase spectrum of dimethyl hydrogenphosphonate in a 2.5-ml multipass cell, gain 7, spectral slit-width $0.4\,\mathrm{cm}^{-1}$. Bottom: Same as top but with the plane of polarization of the incident beam rotated through 90° (32).

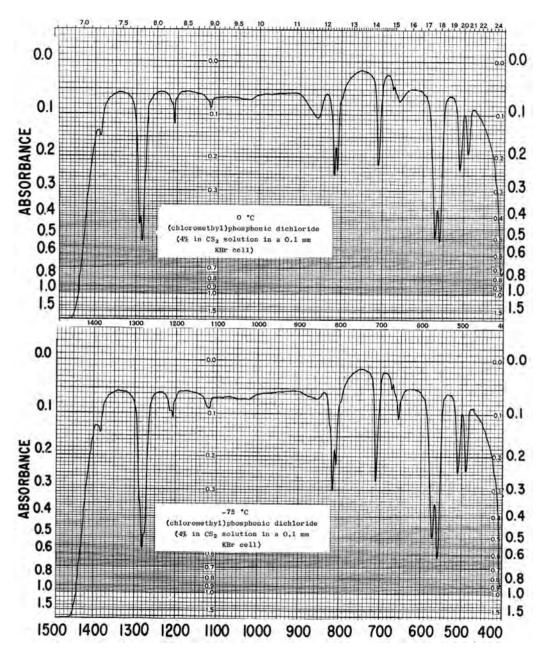


FIGURE 8.27 Top: Infrared spectrum of (chloromethyl) phosphonic dichloride in $4\,\text{wt./vol.}$ % CS_2 solution (1500– $400\,\text{cm}^{-1}$) at $0\,^{\circ}\text{C}$ in a 0.1-mm KBr cell. Bottom: Same as above except at $-75\,^{\circ}\text{C}$.

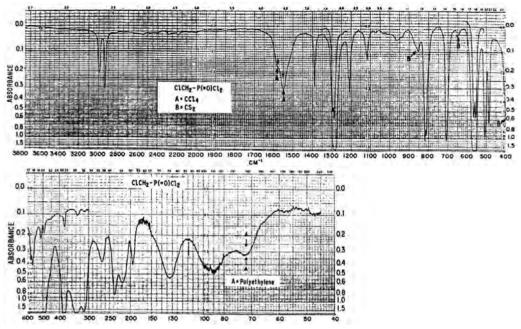


FIGURE 8.28 Top: Infrared spectrum of (chloromethyl) phosphonic dichloride in $10\,\text{wt./vol.}$ % in CCl_4 solution (3800–1333 cm $^{-1}$) and $10\,\text{wt./vol.}$ % in CS_2 solution (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. Bottom: Infrared spectrum of (chloromethyl) phosphonic dichloride in $20\,\text{wt./vol.}$ % hexane solution (600–45 cm $^{-1}$) in a 1-mm polyethylene cell (17).

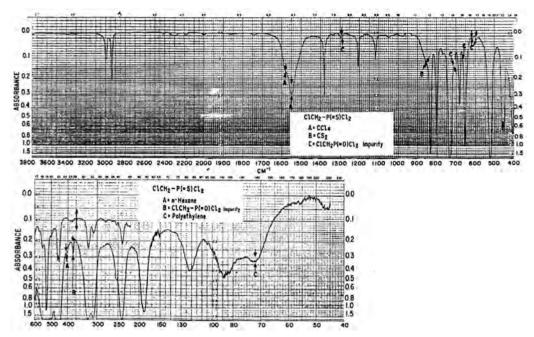
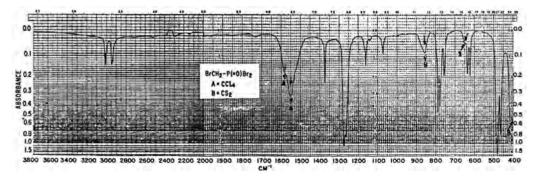



FIGURE 8.29 Top: Infrared spectrum of (chloromethyl) phosphonothioic dichloride in $10\,\text{wt./vol.}$ % CCl_4 solution (3800–1333 cm $^{-1}$) and in $10\,\text{wt./vol.}$ % CS_2 solution (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. Bottom: Infrared spectrum of (chloromethyl) phosphonothioic dichloride in $20\,\text{wt./vol.}$ % hexane solution (600–45 cm $^{-1}$) in a 1-mm polyethylene cell (17).

 $\label{eq:FIGURE 8.30} Infrared spectrum of (bromomethyl) phosphonic dibromide in 10 wt./vol. \% CCl_4 solution (3800–1333 cm^{-1}) and 10 wt./vol. \% in CS_2 solution (1333–400 cm^{-1}) in 0.1-mm KBr cells (17).$

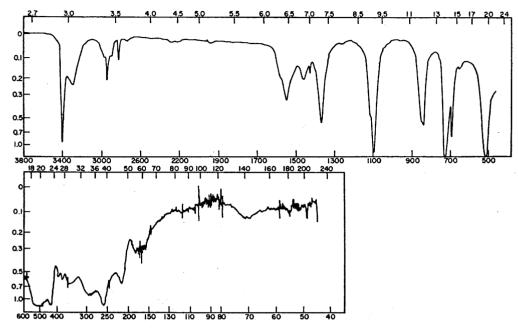


FIGURE 8.31 Top: Infrared spectrum of N-methyl phosphoramidodichloridothioate $10\,\text{wt./vol.}$ % in CCl₄ solution (3800–1333 cm⁻¹) and $10\,\text{wt./vol.}$ % in CS₂ solution (1333–45 cm⁻¹) in 0.1-mm KBr cells. The solvents have not been compensated. Bottom: Infrared spectrum of N-methyl phosphoramidodichloridothioate in $10\,\text{wt./vol.}$ hexane solution (600–45 cm⁻¹) in a 1-mm polyethylene cell (24).

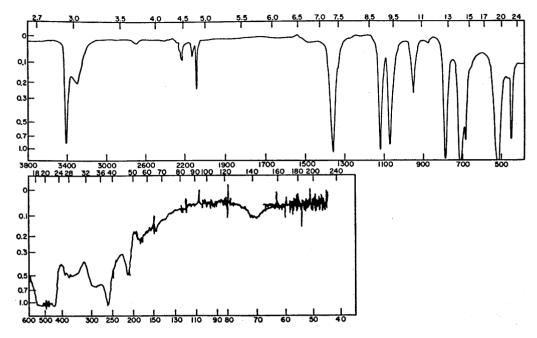


FIGURE 8.32 Top: Infrared spectrum of N-methyl-d $_3$ phosphoramidodichloridothioate in 10 wt./vol. % in CCl $_4$ (3800–1333 cm $^{-1}$) and 10 wt./vol. % in CS $_2$ solution (1333–45 cm $^{-1}$) in 0.1-mm KBr cells. Bottom:Infrared spectrum of N-methyl-d $_3$ phosphoramidodichloridothioate in 10 wt./vol. % in hexane solution (600–45 cm $^{-1}$) in a 1-mm polyethylene cell (24).

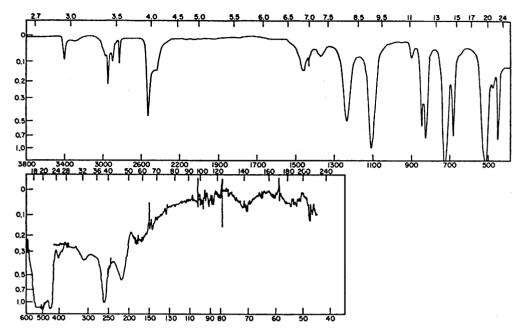


FIGURE 8.33 Top: Infrared spectrum of N–D, N-methyl phosphoramidodichloridothioate in $10\,\text{wt./vol.}$ % CCl₄ solution (3800–1333 cm⁻¹) and in $10\,\text{wt./vol.}$ % in CS₂ solution (1333–45 cm⁻¹) in 0.1-KBr cells. The solvents have been compensated. Bottom: Infrared spectrum of N–D, N-methyl phosphoramidodichloridothioate in $10\,\text{wt./vol.}$ % hexane solution in a 1-mm polyethylene cell. Both samples contain N-methyl phosphoramidodichloridothioate as an impurity (24).

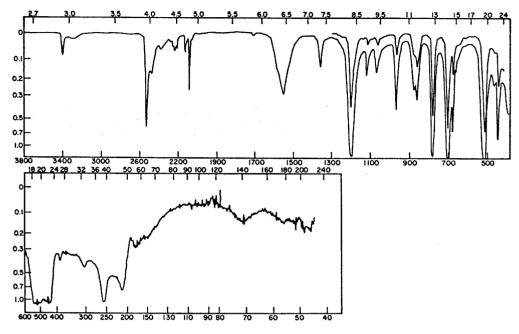


FIGURE 8.34 Top: Infrared spectrum for N–D, N-methyl-d $_3$ phosphoramidodichloridothioate in 10 wt./vol. % CCl $_4$ solution (3800–1333 cm $^{-1}$) and 10 and 2 wt./vol. % in CS $_2$ solutions (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. The solvent bands are compensated. Bottom: Infrared spectrum of N–D, N-methyl-d $_3$ phosphoramidodichloridothioate in 10 wt./vol. % hexane solution in a 1-mm polyethylene cell. This sample contains N-methyl-d $_3$ phosphoramidodichloridothioate as an impurity (24).

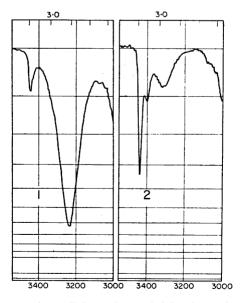


FIGURE 8.35 Infrared spectrum 1 is for O-alkyl O-aryl N-methylphosphoramidate in $10\,\text{wt./vol.}$ % CCl_4 solution (3500–3000 cm $^{-1}$) in a 0.1-mm NaCl cell. Infrared spectrum 2 is for O-alkyl O-aryl N-methylphosphoramidothioate in $10\,\text{wt./vol.}$ % in CCl_4 solution (3500–300 cm $^{-1}$) in a 0.1-mm NaCl cell (42).

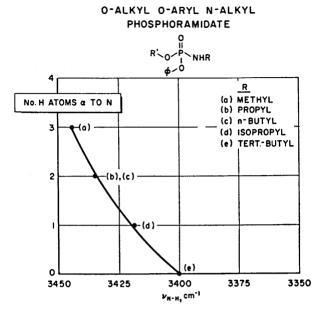


FIGURE 8.36 A plot of N–H stretching frequencies of O-alkyl O-aryl N-alkylphosphoramidates in the region 3450–3350 cm $^{-1}$ vs an arbitrary assignment of one for each proton joined to the N- α -carbon atom (42).

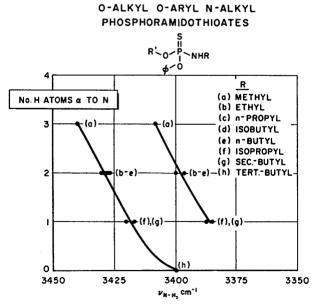


FIGURE 8.37 Plots of cis and trans N-H stretching frequencies of O-alkyl O-aryl N-alkylphosphoramidothioates in the region $3450-3350\,\mathrm{cm}^{-1}$ vs an arbitrary assignment of one for every proton joined to the N- α -carbon atom (42).

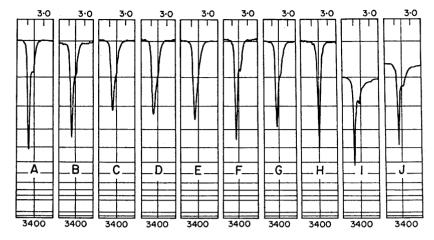


FIGURE 8.38 Infrared spectra of the cis and trans N–H stretching absorption bands of O-alkyl O-aryl N-alkylphosphoramidothioates in 0.01 molar or less in CCl_4 solutions (3450–3350 cm $^{-1}$) in a 14-mm NaCl cell. The N-alkyl group for A is methyl, B is ethyl, C is n-propyl, D is isobutyl, E is n-butyl, F is isopropyl, G is sec-butyl, and H is tert-butyl. Spectra I and J are O,O-dialkyl N-methylphosphoramidothioate and O,O-dialkyl N-propylphosphoramidothioate, respectively (42).

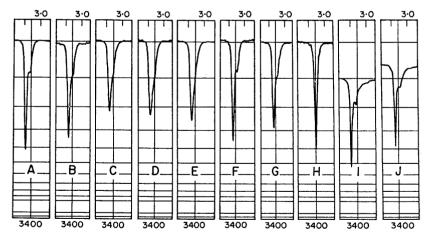


FIGURE 8.39 Infrared spectra of the N-H stretching absorption bands of O-alkyl N,N'-dialkyl phosphorodiamidothioates. The N,N'-dialkyl group for A is dimethyl, B is diethyl, C is dipropyl, D is dibutyl, E is diisopropyl, F is di-secbutyl, G is dibenzyl. The H and I are IR spectra for the N-H stretching bands of O-aryl N,N'-diisopropylphosphorodiamidothioate and O-aryl N-isopropyl, N-methylphosphorodiamidothioate, respectively. Spectra A through J were recorded for 0.01 molar or less in CCl_4 solutions using 3-mm KBr cells. Spectra D and J are for O-aryl N,N'-dibutylphosphorodiamidothioate in 0.01 molar CCl_4 solution in a 3-mm cell and 10 wt./vol. % in CCl_4 solution in a 0.1-mm KBr cell (42).

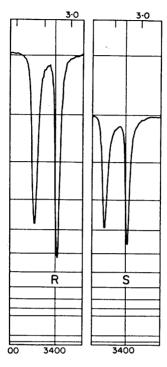


FIGURE 8.40 Infrared spectrum R gives the N-H stretching absorption bands for O-alkyl O-aryl phosphoramidothioate in 0.01 molar CCl₄ solution in a 3-mm NaCl cell. Infrared spectrum S gives O,O-dialkyl phosphoramidothioate in 0.01 molar CCl₄ solution in a 3-mm NaCl cell (42).

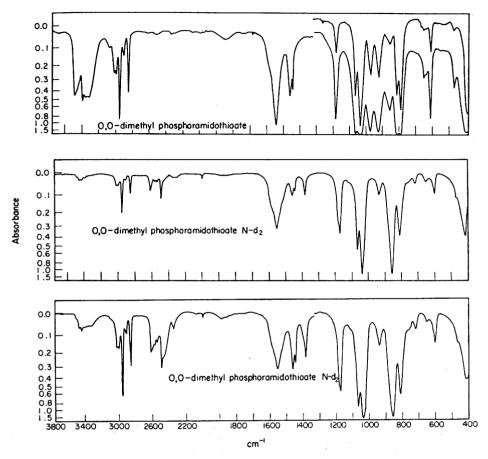


FIGURE 8.41 Top: Infrared spectrum of O,O-diethyl methylphosphoramidothioate in $10\,\text{wt./vol.}$ % CCl₄ solution (3800–1333 cm⁻¹) and 10 and $2\,\text{wt./vol.}$ % CS₂ solutions (1333–400 cm⁻¹) in 0.1-mm KBr cells. Middle: Infrared spectrum of O,O-diethyl N-methyl, N-D-phosphoramidothioate in $2\,\text{wt./vol.}$ % in CCl₄ solution (3800–1333 cm⁻¹) and in $2\,\text{wt./vol.}$ % in CS₂ solution (1333–400 cm⁻¹) in 0.1-mm KBr cells. Bottom: Infrared spectrum of O,O-diethyl N-methyl, N-D-phosphoramidothioate $10\,\text{wt./vol.}$ % in CCl₄ solution (3800–1333 cm⁻¹) and in $10\,\text{wt./vol.}$ % CS₂ solution (1333–400 cm⁻¹) in 0.1-mm KBr cells (37).

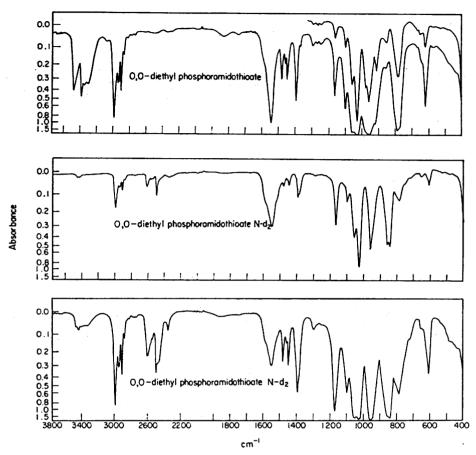


FIGURE 8.42 Top: Infrared spectrum of O,O-diethyl phosphoramidothioate in $10\,\text{wt./vol.}$ % in CCl₄ solution (3800–1333 cm⁻¹) and 2 and $10\,\text{wt./vol.}$ % in CS₂ solutions (1333–400 cm⁻¹) in 0.1-mm KBr cells. Middle: Infrared spectrum of O,O-diethyl phosphoramidothioate-N-D₂ in $2\,\text{wt./vol.}$ % in CCl₄ solution (3800–1333 cm⁻¹) and in $2\,\text{wt./vol.}$ % CS₂ solution (1333–400 cm⁻¹) in 0.1-mm KBr cells. Bottom: Infrared spectrum of O,O-diethyl phosphoramidothioate-N-D₂ $10\,\text{wt./vol.}$ % in CCl₄ solution (3800–1333 cm⁻¹) and $10\,\text{wt./vol.}$ % in CS₂ solution (1333–400 cm⁻¹) in 0.1-mm KBr cells (37).

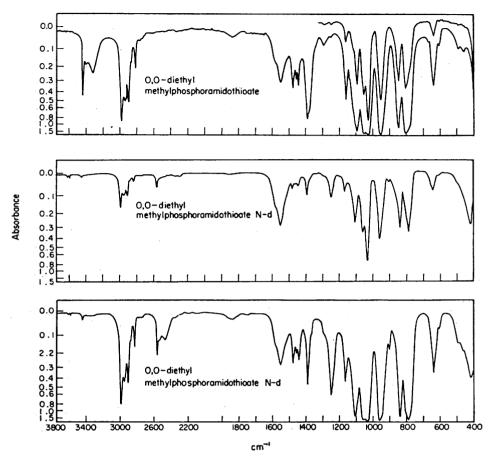
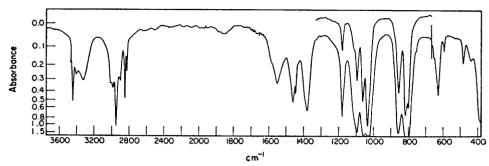



FIGURE 8.43 Top: Infrared spectrum of O,O-diethyl N-methylphosphoramidothioate $10\,\text{wt./vol.}$ % in CCl₄ solution (3800–1333 cm $^{-1}$) and 10 and $2\,\text{wt./vol.}$ % in CS₂ solutions (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. Middle: Infrared spectrum of O,O-diethyl N-methyl, N-D phosphoramidothioate in $2\,\text{wt./vol.}$ % CCl₄ solution (3800–1333 cm $^{-1}$) and $2\,\text{wt./vol.}$ % in CS₂ solution (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. Bottom: Infrared spectrum of O,O-diethyl N-methyl, N-D-phosphoramidothioate in $10\,\text{wt./vol.}$ % CCl₄ solution (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. The solvents are not compensated (37).

 $\label{eq:FIGURE 8.44} FIGURE~8.44~Infrared~spectrum~of~O,O-dimethyl~N-methyl~phosphoramidothioate~in~10~wt./vol.~\%~in~CCl_4~solution~(3800-1333~cm^{-1})~and~10~and~2~wt./vol.~\%~in~CS_2~solutions~(1333-400~cm^{-1})~in~0.1-mm~KBr~cells~(37).$

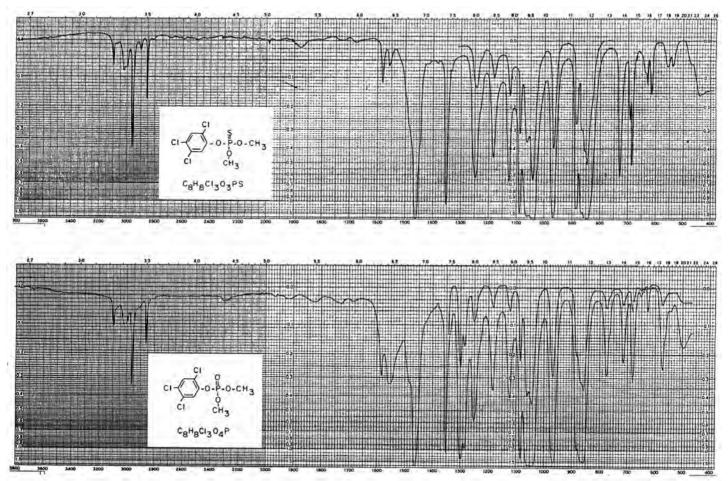


FIGURE 8.45 Top: Infrared spectrum of O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate $10\,\mathrm{wt./vol.}$ % in CCl₄ solution (3800–1333 cm $^{-1}$) and $10\,\mathrm{and}$ 2 wt./vol. % in CS₂ solutions (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. Bottom: Infrared spectrum of O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphate in $10\,\mathrm{wt./vol.}$ % in CCl₄ solution (3800–1333 cm $^{-1}$) in 0.1-mm KBr cells. The solvents are not compensated (43).

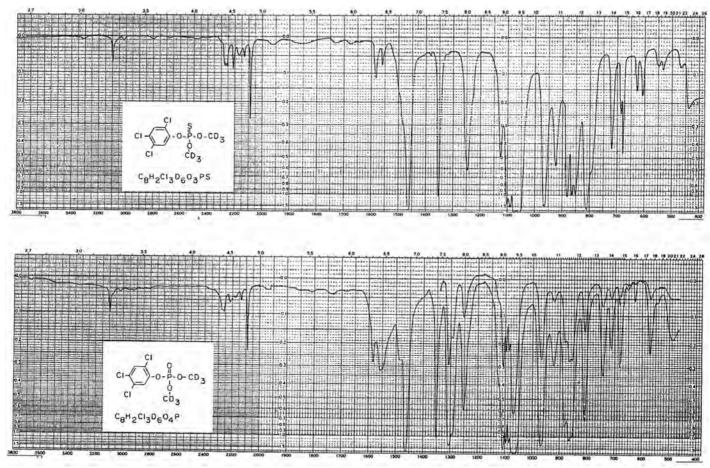


FIGURE 8.46 Top: Infrared spectrum for O,O-dimethyl-d $_6$ O-(2,4,5-trichlorophenyl) phosphorothioate in 10 wt./vol. % CCl_4 solution (3800–1333 cm $^{-1}$) and in 10 and 2 wt./vol. % CS_2 solution (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. Bottom: Infrared spectrum for O,O-dimethyl-d $_6$ O-(2,4,5-trichlorophenyl) phosphate in 10 wt./vol. % CS_2 solutions (1333–450 cm $^{-1}$) in 0.1-mm KBr cells. The solvents have not been compensated (37).

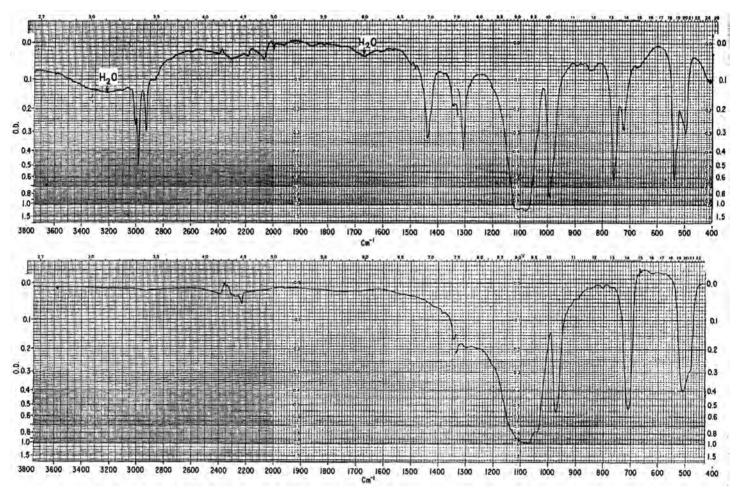


FIGURE 8.47 Top: Infrared spectrum of disodium methanephosphonate. Bottom: Infrared spectrum of disodium methane- d_3 -phosphonate. In fluorolube oil mull (3800–1333 cm $^{-1}$) and in Nujol oil mull (1333–400 cm $^{-1}$) (40). These mulls were placed between KBr plates.

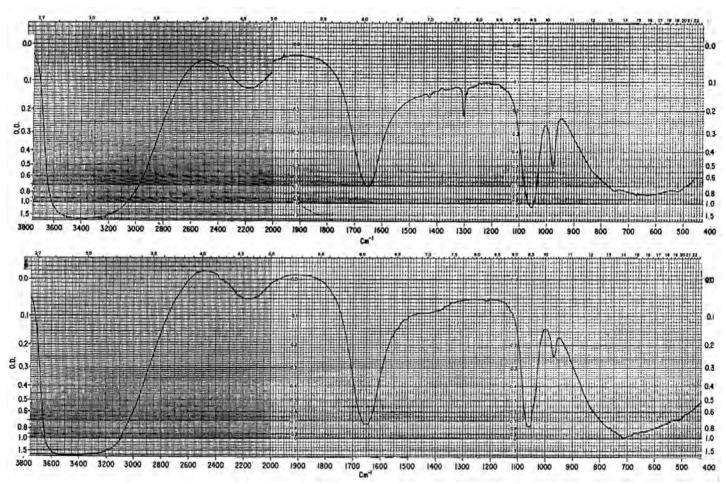
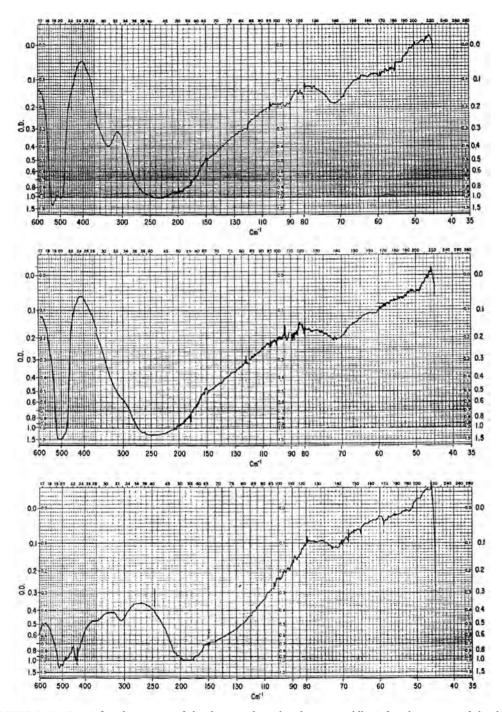



FIGURE 8.48 Top: Infrared spectrum of disodium methanephosphonate in water solution between AgCl plates. Bottom: Infrared spectrum of disodium methaned₃-phosphonate in water solution between AgCl plates (40).

 $FIGURE~8.49~{\rm Top:~Infrared~spectrum~of~disodium~methane phosphonate.~Middle:~Infrared~spectrum~of~disodium~methane-d_3-phosphonate.~Bottom:~Infrared~spectrum~of~dipotassium~methane phosphonate.~These spectra~were~recorded~from~samples~prepared~as~Nujol~mulls~between~polyethylene~film~(600–45~cm^{-1})~(40).}$

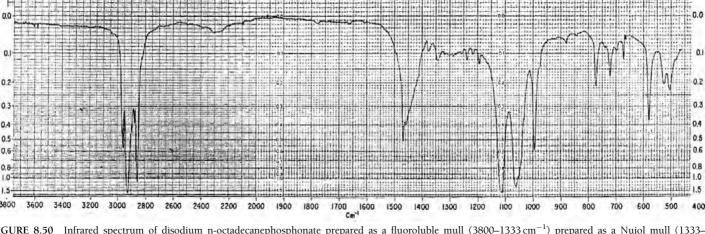


FIGURE 8.50 Infrared spectrum of disodium n-octadecanephosphonate prepared as a fluoroluble mull $(3800-1333\,\mathrm{cm}^{-1})$ prepared as a Nujol mull $(1333-450\,\mathrm{cm}^{-1})$ (40).

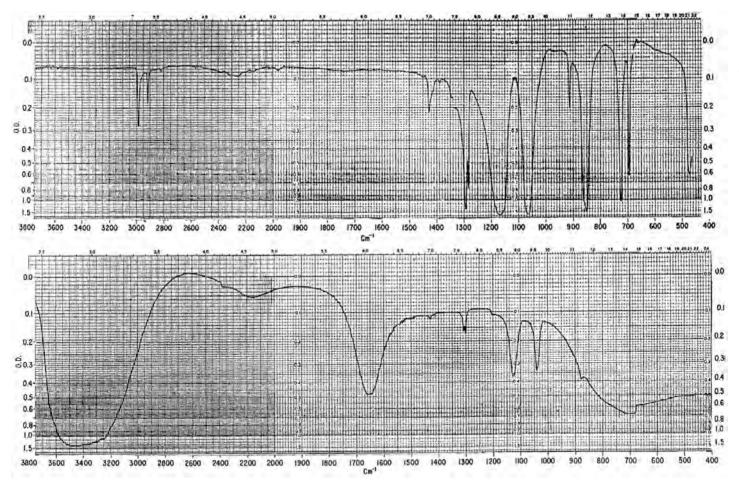


FIGURE 8.51 Top: Infrared spectrum of sodium dimethylphosphinate prepared as a fluoroluble mull (3800–1333 cm⁻¹) and prepared as a Nujol mull (1333–400 cm⁻¹) between KBr plates. Bottom: Infrared spectrum of sodium dimethylphosphinate saturated in water solution between AgCl plates (41).

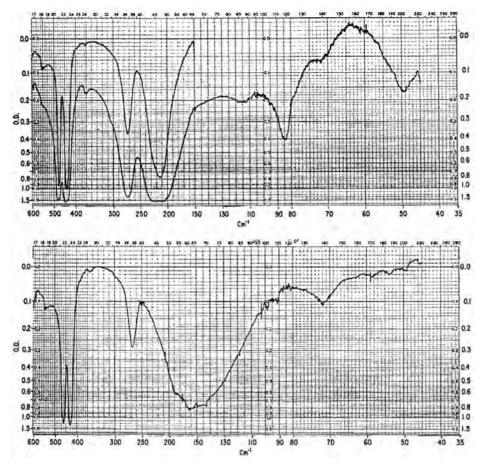
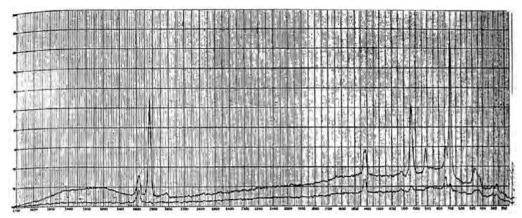



FIGURE 8.52 Top: Infrared spectrum of sodium dimethylphosphinate prepared as Nujol mull between polyethylene film $(600-45\,\mathrm{cm}^{-1})$. Bottom: Infrared spectrum of potassium dimethylphosphinate prepared as a Nujol mull between polyethylene film $(600-45\,\mathrm{cm}^{-1})$ (41).

FIGURE 8.53 Top: Raman saturated water solution of sodium dimethylphosphinate using a 0.25-ml multipass cell, gain 13.4, spectral slit $10 \, \text{cm}^{-1}$. Bottom: Same as above, except with the plane of polarization of the incident beam rotated 90° (41).

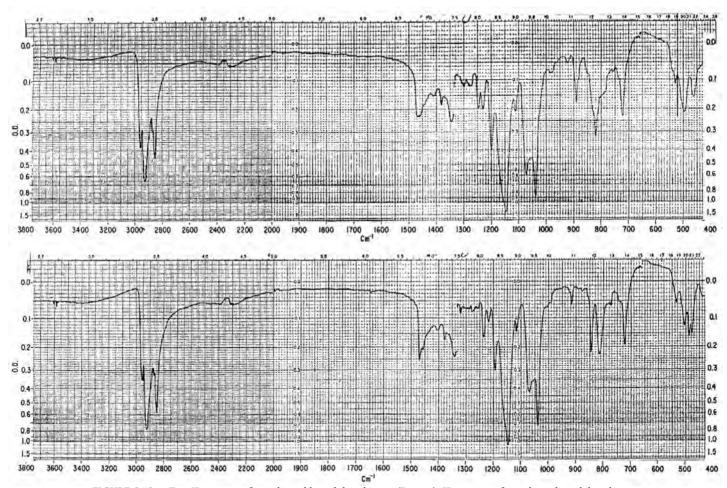


FIGURE 8.53a Top: IR spectrum for sodium diheptylphosphinate. (Bottom): IR spectrum for sodium dioctylphosphinate.

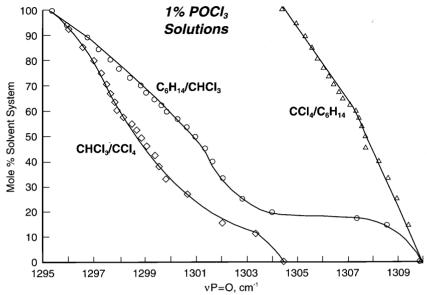


FIGURE 8.54 Plots of v P=O for P(=O)Cl₃ vs mole% solvent system. The open triangles represent CCl_4/C_6H_{14} as the solvent system. The open circles represent $CHCl_3/C_6H_{14}$ as the solvent system; and the open diamonds represent $CHCl_3/CCl_4$ as the solvent system (26).

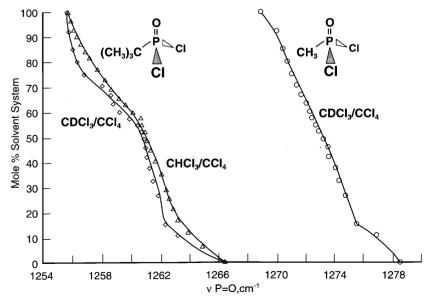


FIGURE 8.55 A plot of v P=O for CH₃P(=O)Cl₂ vs mole % CDCl₃/CCl₄ as represented by open circles, and plots of v P=O for (CH₃)₃C P(=O)Cl₂ vs mole % CHCl₃/CCl₄ (open triangles) and mole % (CDCl₃/CCl₄ (open diamonds) (26).

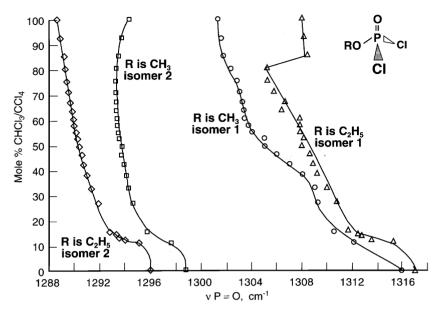


FIGURE 8.56 Plots of v P=O rotational conformers 1 and 2 for CH₃O P(=O)Cl₂ (conformer 1, open circles; conformer 2, open squares), and for $C_2H_5OP(=O)Cl_2$ (conformer 1, open triangles; conformer 2, open diamonds) vs mole % CHCl₃/CCl₄ (26).

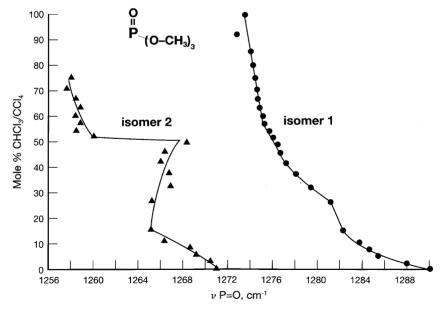


FIGURE 8.57 Plots of v P=O rotational conformers 1 and 2 for $(CH_3O)_3P=O$ vs mole % $CHCl_3/CCl_4$ (conformer 1, solid circles, and conformer 2, solid triangles) (55).

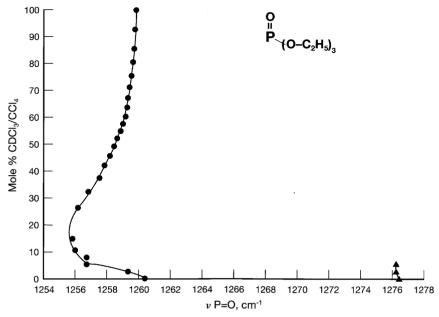


FIGURE 8.58 Plots of ν P=O rotational conformers 1 and 2 for $(C_2H_5O)_3P=O$ vs mole % CDCl₃/CCl₄ (conformer 1, solid triangles, conformer 2, closed circles) (55).

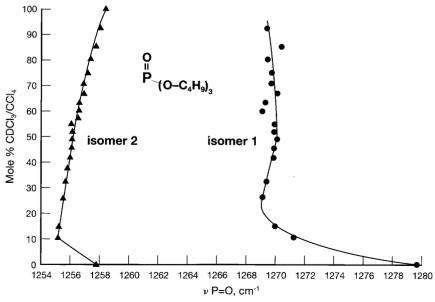


FIGURE 8.59 Plots of ν P=O rotational conformers 1 and 2 for $(C_4H_9O)_3P=O$ vs mole % CDCl₃/CCl₄ (conformer 1, solid circles, conformer 2, solid triangles) (55).

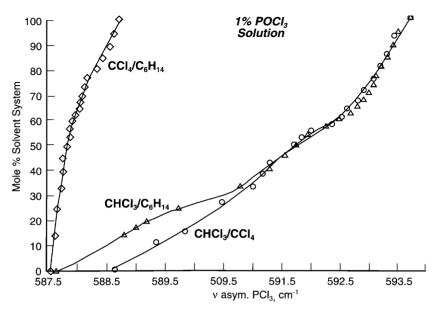


FIGURE 8.60 Plots of ν asym. PCl₃ for P(=O)Cl₃ vs mole % solvent system. The open circles represent the CHCl₃/CCl₄ solvent system; the open triangles represent the CHCl₃/C₆H₁₄ solvent system; and the open diamonds represent the CCl₄/C₆H₁₄ solvent system (26).

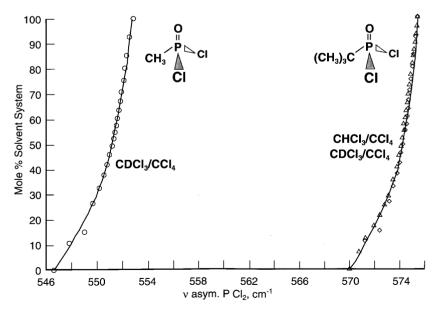


FIGURE 8.61 Plots of v asym. PCl₂ frequencies for CH₃P(=0)Cl₂ (open circles) and for (CH₃)₃CP(=0)Cl₂ (open triangle and open diamonds) vs mole% CDCl₃/CCl₄ and CHCl₃/CCl₄ (26).

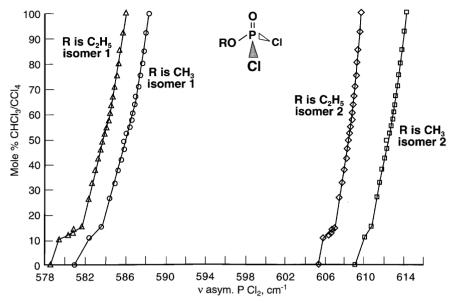


FIGURE 8.62 Plots of ν asym. PCl₂ rotational conformers 1 and 2 frequencies for CH₃OP(=O)Cl₂ (conformer 1, open circles; conformer 2, open squares) and for C₂H₅OP(-O)Cl₂ (conformer 1, open triangles, conformer 2, open diamonds) frequencies vs mole % CHCl₃/CCl₄ (26).

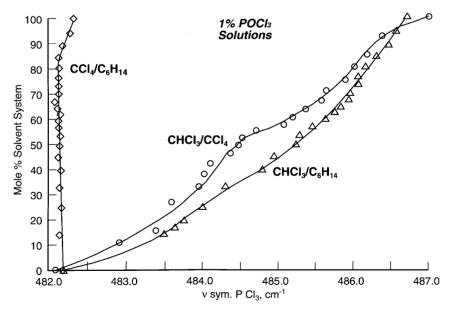


FIGURE 8.63 Plots of ν sym. PCl₃ frequencies for P(=O)Cl₃ vs mole% solvent system. The open circles represent CHCl₃/CCl₄ as the solvent system, the open triangles represent the CHCl₃/C₆H₁₄ solvent system, and the open diamonds represent the CCl₄/C₆H₁₄ solvent system.

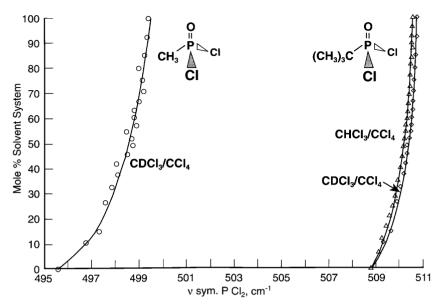


FIGURE 8.64 A plot of v sym. PCl_2 frequencies for $CH_3P(=O)Cl_2$ vs mole % $CDCl_3/CCl_4$ (open circles) and plots of v sym. PCl_2 frequencies for $(CH_3)_3CP(=O)Cl_2$ vs mole % $CHCl_3/CCl_4$ (open triangles) and mole % $CDCl_3/CCl_4$ (open diamonds) (26).

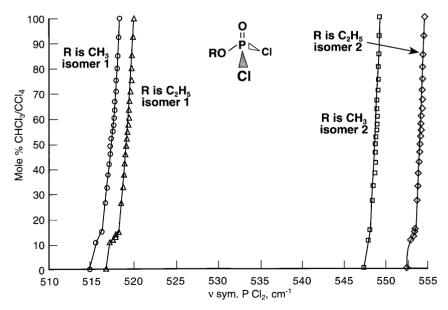


FIGURE 8.65 Plots of v sym. PCl_2 rotational conformers 1 and 2 vs mole % $CHCl_3/CCl_4$. The open circles and open squares are for $CH_3OP(=O)Cl_2$ conformers 1 and 2, respectively. The open triangles and open diamonds are for $C_2H_5OP(=O)Cl_2$ conformers 1 and 2, respectively (26).

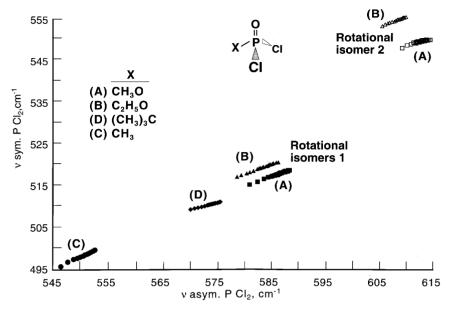


FIGURE 8.66 Plots of v asym. PCl₂ frequencies vs v sym. PCl₂ frequencies for CH₃OP(=O)Cl₂ (conformer 1, solid squares); CH₃OP(=O)Cl₂ (conformer 2, open squares); C₂H₅OP(=O)Cl₂ (conformer 1, solid triangles) C_2 H₅OP(=O)Cl₂ (conformer 2, open triangles); (CH₃)₃CP(=O)Cl₂ (solid diamonds); and CH₃P(=O)Cl₂ (solid circles) (26).

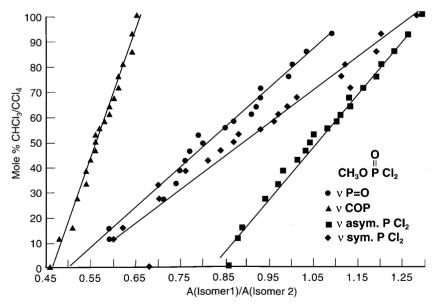
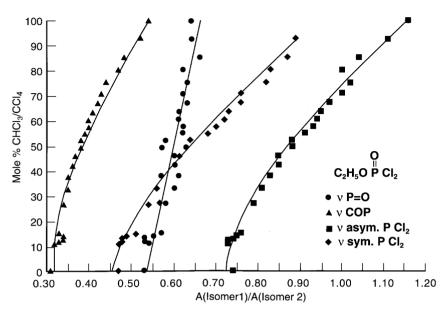
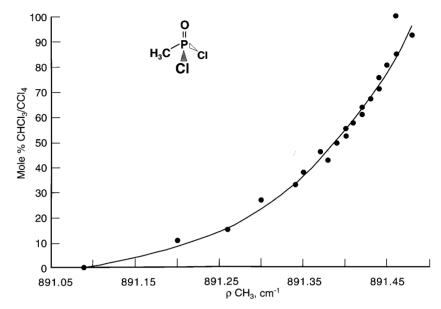


FIGURE 8.67 Plots of the absorbance (A) ratio of rotational conformer 1 and 2 band pairs for ν P=O (solid circles), ν COP (solid triangles), ν asym. PCl₂ (solid squares), and ν sym. PCl₂ (solid diamonds) for CH₃OP(=O)Cl₂ vs mole % CHCl₃/CCl₄ (26).

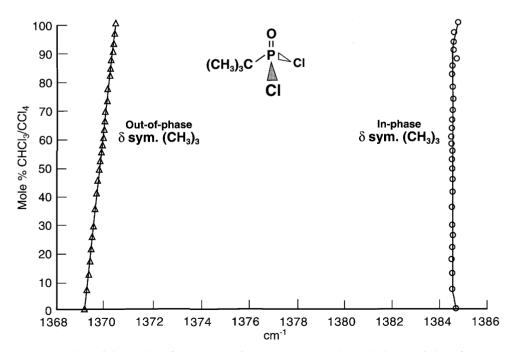

FIGURE 8.68 Plots of the absorbance (A) ratio rational conformer 1 and 2 band pairs for ν P=O (solid circles), ν COP (solid triangles), ν asym. PCl₂ (solid squares), and ν sym. PCl₂ (solid diamonds) for C₂H₅OP(=O)Cl₂ vs mole % CHCl₃/CCl₄ (26).

FIGURE 8.69 A plot of Δ sym. CH $_3$ frequencies for CH $_3$ P(=O)Cl $_2$ vs mole % CHCl $_3$ /CCl $_4$ (26).

FIGURE 8.70 A plot of ρ CH₃ frequencies for CH₃P(=O)Cl₂ vs mole % CHCl₃/CCl₄ (26).

FIGURE 8.71 Plots of the in-phase δ sym. (CH₃)₃ frequencies (open circles) and the out-of-phase δ sym. (CH₃)₃ frequencies (open triangles) vs mole % CHCl₃/CCl₄ (26).

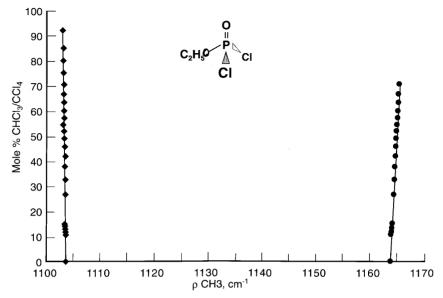


FIGURE 8.72 Plots of the a' and a'' ρ CH₃ frequencies for C₂H₅O P(=O)Cl₂ vs mole % CHCl₃/CCl₄ (26).

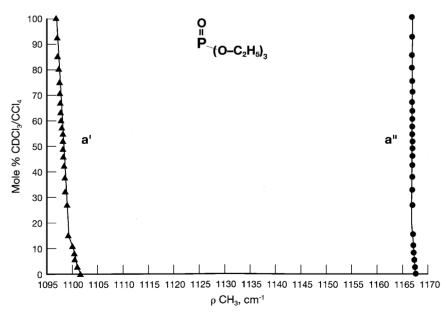


FIGURE 8.73 Plots of the a' and a" ρ CH $_3$ modes of (C $_2$ H $_5$ O) $_3$ P=O vs mole % CDCl $_3$ /CCl $_4$ (55).

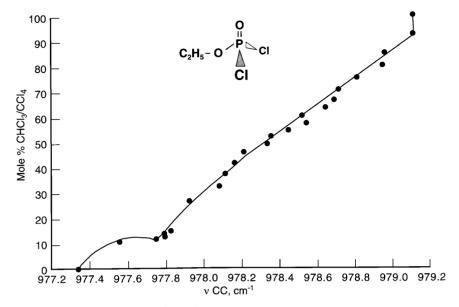


FIGURE 8.74 A plot of ν CC for $C_2H_5OP(=O)Cl_2$) vs mole% CHCl₃/CCl₄ (26).

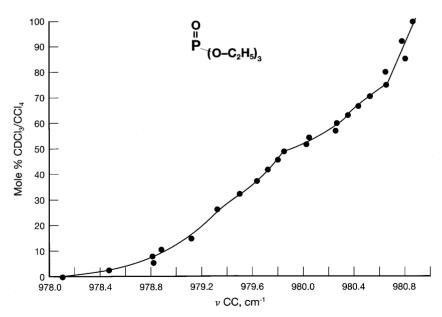


FIGURE 8.75 A plot of ν CC for $(C_2H_5O)_3$ P=O vs mole% CDCl₃/CCl₄ (55).

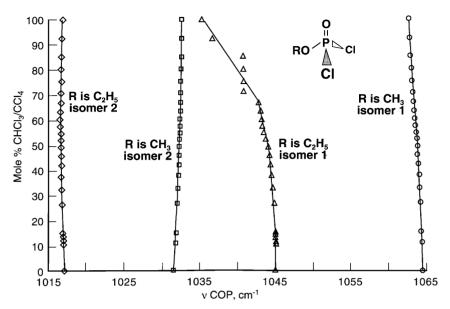


FIGURE 8.76 Plots of ν COP rotational conformers 1 and 2 for CH₃O P(=O)Cl₂ and C₂H₅OP(=O)Cl₂ vs mole % CDCl₃/CCl₄ (26).

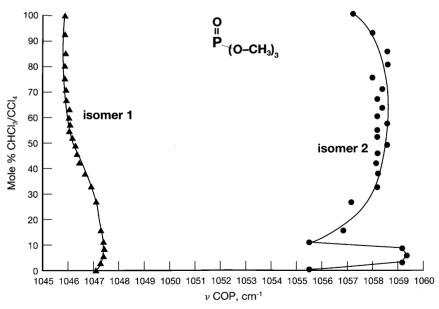


FIGURE 8.77 Plots of ν COP rotational conformers 1 and 2 frequencies for $(CH_3O)_3P=O$ vs mole % $CHCl_3/CCl_4$. The solid triangles represent conformer 1 and the solid circles represent conformer 2 (55).

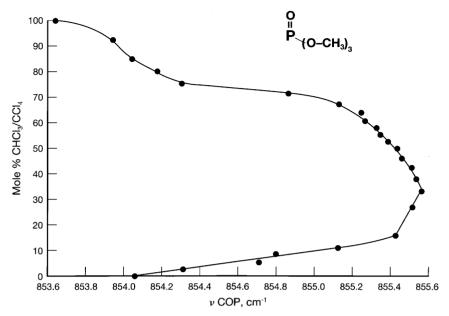
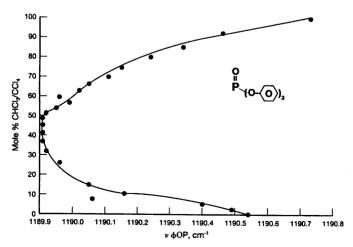



FIGURE 8.78 A plot of ν COP frequencies for $(CH_3O)_3P=O$ vs mole % $CHCl_3/CCl_4$ (55).

FIGURE 8.79 A plot of ν (ϕ OP), " ν Φ -O", frequencies for triphenyl phosphate vs mole % CHCl₃/CCl₄ (55).

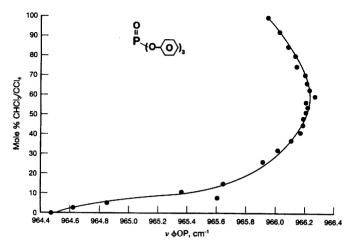


FIGURE 8.80 A plot of ν (Φ OP), " ν P-O", frequencies for triphenyl phosphate vs mole % CHCl₃/CCl₄ (55).

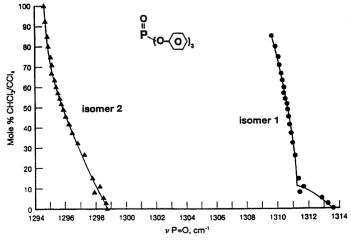
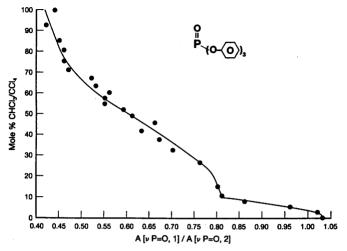



FIGURE 8.81 A plot of the in-plane hydrogen deformation frequencies for the phenyl groups of triphenyl phosphate vs $mole \% CHCl_3/CCl_4$ (55).

 $FIGURE~8.82~~A~plot~of~the~out-of-plane~ring~deformation~frequencies~for~the~phenyl~groups~of~triphenyl~phosphate~vs~mole~\%~CHCl_3/CCl_4~(55).$

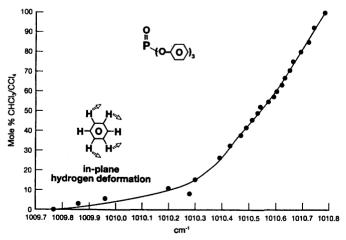


FIGURE 8.83 A plot of v CD frequencies (for the solvent system CDCl₃/CCl₄) vs mole % CDCl₃/CCl₄ (55).

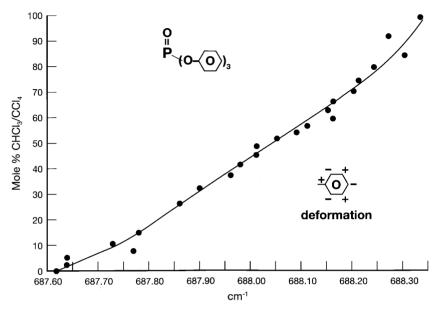


FIGURE 8.84 A plot of the vCD frequencies for CDCl₃ vs mole % CDCl₃/CCl₄ for the CDCl₃/CCl₄ solvent system containing 1 wt./vol. % triphenylphosphate (55).

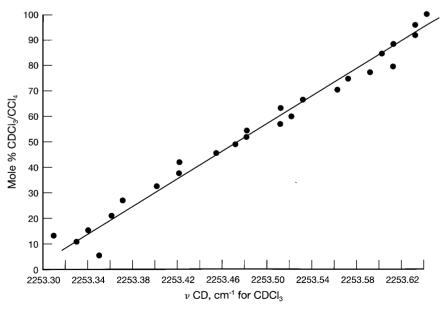


FIGURE 8.85 A plot of v CD for CDCl₃ vs mole % CDCl₃/CCl₄.

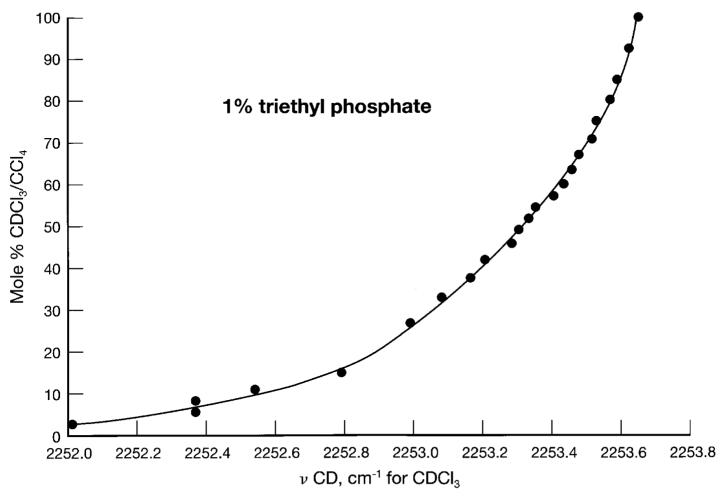


FIGURE 8.86 A plot of vCD for CDCl₃ vs mole% CDCl₃/CCl₄ containing 1% triethylphosphate.

TABLE 8.1 Phosphorus halogen stretching frequencies for inorganic compounds*

Compound	F	Cl	Br	I		
PX ₃	stretching	stretching	stretching	stretching		
X	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	Assignment	References
F_3	890(s.)840(a.)				v1,a1;v3,e	1,2,3,4
FCl ₂	827	524(s.);496(a.)			a'; a'; a"	5
FClBr	822	500	415		a;a;a	5
FBr ₂	817		421(s.);393(a.)		a'; a'; a"	5
Cl_3		511(s.);484(a.)			v1,a1;v3,e	6
Cl ₂ Br		510(s.);480(a.)	~ 400		a'; a"; a'	5
ClBr ₂		~ 480	400(s.);380(a.)		a'; a'; a"	5
Br ₃			380(s.);400(a.)		v1,a1;v3,e	5
I_3				303(s.);325(a.)	v1,a1;v3,e	6
$P(=S)X_3$						
X						
F_3	981(s.);945(a.)				v2,a1;v4,e	7
F ₂ Cl	946(s.);920(a.)	541			a'; a''; a'	7
F_2Br	930(s.);899(a.)		~ 468		a'; a"; a'	8
FCl ₂	900	476(s.);567(a.)			a'; a''; a'	9
Cl_3		431(s.);547(a.)			v2,a1;v4,e	10,11
Br ₃			299(s.);438(a.)		v2,a1;v4,e	12
$P(=O)X_3$						
X						
F_3	875(s.);982(a.)				v2,a1;v4,e	1
F ₂ Cl	895(s.);948(a.)	618			a'; a''; a'	13
F_2Br	888(s.);940(a.)		554		a'; a"; a'	13
FCl_2	894	547(s.);620(a.)			a';a';a''	14
FClBr	890	590	495		a;a;a	13
FBr_2	880		466(s.);538(a.)		a';a';a''	13
Cl_3		486(s.);581(a.)			v2,a1;v4,e	15
Cl ₂ Br		545(s.);580(a.)	432		a';a'';a'	13
ClBr ₂		552	391(s.);492(a.)		a';a';a''	13
Br ₃			340(s.);488(a.)		v2;a1;v4,e	8,15

^{*}See Reference 16.

TABLE 8.2 The PX $_3$ bending frequencies for compounds of form PX $_3$, PXY $_2$, and PXYZ $^{\star 1}$

Compounds & symmetry	Species & Assignment s. bending	Compound & symmetry	Species & Assignment	Compound & symmetry	Species & Assignment	Compound References
C3v	v2,a1	Cs	v3,a′	Ci	v4,a	see Table 8.1
	cm^{-1}		cm^{-1}		cm^{-1}	
PF ₃	486		_			
		PClF2	[390-400]* ²			
		PBF2	[367–375]			
		PF2l	[327–340]			
		PCl2F	327			
				PBrClF	302	
		PBr2F	257			
				PClFl	[250-275]	
PCl ₃	261					
,				[PBrFl]	[220-252]	
		PBrCl2	230			
		PFl2	[190-220]			
		PBr2Cl	197			
		PCl2l	[175-202]			
PBr ₃	165			PBrCll	[167–195]	
,		PBr2l	[135–157]	-		
		PCll2	[133–155]			
		Pbrl2	[120–135]			
Pl_3	113	- ~	[199]			

^{*1}See Reference 16.
*2All numbers in brackets are estimated frequencies.

TABLE 8.3 Vibrational data and assignments for PX₃, P(=O)X₃, and P(=S)X₃*¹

	Р	P=O	P=S	P	P=O	P=S	P	P=O	P=S	
PX(1-3)	C3v,e v4,cm ⁻¹	C3v,e v6,cm ⁻¹	C3v,e v6,cm ⁻¹	Cs,a' v6,cm ⁻¹	Cs,a' v6,cm ⁻¹	Cs,a' v6,cm ⁻¹	Ci,a v6,cm ⁻¹	Ci,a v9,cm ⁻¹	Ci,a v9,cm ⁻¹	Compound References
F3	347	345	276							See Table 8.1
ClF BrF_2 F_2 l Cl_2F $BrClF$ Br_2F $ClFl$				[245–262]** ² [166–178] [126–145] 200 126	[170-190]	209 175 [130–140] 191 [125–135]	161	173 [130–140]	[140–160]	
Cl ₃ BrFl	191	193	172					[125–135]		
$\begin{array}{c} \operatorname{BrCl_2} \\ \operatorname{Fl_2} \\ \operatorname{Br_2Cl} \\ \operatorname{Cl_2l} \\ \operatorname{Br_3} \\ \operatorname{BrCll} \\ \operatorname{Br_2l} \\ \operatorname{Cll_2} \\ \operatorname{Brl_2} \\ \operatorname{I_3} \end{array}$	116	118	115	149 [97–105] 123 [119–129] [94–101] [87–93]	130 [125–135]	[90–115] [90–115]	[105–116]	[110–125]	[100–120]	

^{*1}See Reference 16.
*2All numbers in brackets are estimated frequencies.

TABLE 8.4 The asym. and sym. PCl₂ stretching frequencies for XPCl₂, XP(=O)Cl₂, and XP(=S)Cl₂ groups

Compound X – PCl ₂	a.PCl ₂ str.	s.PCl ₂ str.		[a.PCl ₂ str.]— [s.PCl ₂ .str.]		a PCl. str	s.PCl ₂ str		[a.PCl ₂ str.]— [s.PCl ₂ str.]
X X	cm ⁻¹	cm ⁻¹	Ref.	cm ⁻¹	Compound	cm ⁻¹	cm ⁻¹	Ref.	cm ⁻¹
CH ₃	495	495	17,18	0					
ClCH ₂	490	490	17	0					
CH ₃ -O	506	453	19	53					
CH ₃ -O	505	456	19	49					
$X - P(=O)Cl_2$ X	[CCl ₄]/[CHCl ₃]	[CCl ₄]/[CHCl ₃]			$X-P(=S)Cl_2$				
	cm^{-1}	cm^{-1}							
CH ₃	552	497	17,18	55	CH ₃	520	464	17,18	56
CH ₃	[546.6* ¹]/[552.8* ²]	[495.6* ¹]/[499.4* ²]	26	$51*^{1}, 53.4*^{2}$					
$(CH_3)_3C$	[570.1* ¹]/[575.5* ²]	[508.8* ¹]/[510.6* ²]	26	61.3* ¹ ; 64.9* ²					
ClCH ₂	556/566	487/508	17	69;61	ClCH ₂	527	452/461	17	65; or 75
C_6H_5	565	542	20	23	C_6H_5	521	501	20	20
CH_3-O	579-607	515/548	21	64;59	CH ₃ -O	531/560	456/478	21,25	75;82
					CD_3-O	531/552	452/471	21,25	79;81
CH_2H_5-O	576/600	516/550	22	60;50	C_2H_5-O	528/558	472/490	22	56;68
					CH_3-CD_2-O	525/550	465/484	22	69;66
					CD_3-CH_2-O	531/552	462/483	22	69;69
					$iso-C_3H_7-O$	521/548	483/500	20	59;69
					$iso-C_4H_9-O$	528/553	473/493	20	55;60
					sC_4H_9-O	525/547	485/500	20	40;47
					$iso-C_5H_{11}-O$	528/552	455/465	20	73;87
					$H-CC-CH_2-O$	529/557	440/474	26	89;83
$4-Cl-C_6H_4-O$	585/600	?/555	20	[-; 45]	$4-Cl-C_6H_4-O$	560	?/471	20	89
					$2,4-Cl_2-C_6H_3-O$?/551	?	20	[-]
					$2,6-Cl_2-C_6H_3-O$	555	472	20	83
$2,4,5-Cl_3-C_6H_2-O$	587/602	?	20	[-; -]	$2, 4, 5-Cl_3-C_6H_2-O$?/565	?/448	20	117?
CH_3-S	547/560	449/471	23	98;89					
CH ₃ -NH	560	517	24	43	CH ₃ -NH	512	450/468	24	62; or 44
					CD_3 -NH	515	446/463	24	69; or 52
					CH_3 -ND	513	447/470	24	66; or 43
					CD_3 -ND	510	443/461	24	67; or 49
					C_2H_5-NH	512	?463	24	[-; 49]
					$iso-C_3H_7-NH$	514	?/481	24	[-; 33]
$(CH_3)_2 - N$	560	517	20	43	$(CH_3)_2 - N$	512	450	20	62
$(C_2H_5)_2-N$	560	523	20	37	$(C_2H_5)_2-N$	522	481	20	41

 $^{^{*1}}$ In CCl4 soln. *2 In CHCl $_3$ soln. Other data are in CS $_2$ soln.

 $TABLE\ 8.5 \quad Vibrational\ assignments\ for\ F_2P(=S)Cl,\ (CH_3-O-)_2P(=S)Cl,\ and\ (CD_3-O-)_2P(=S)Cl$

	[11]	[27]	[27]	$[(CH_3O)_2]$ -	-
		$Cl(CH_3-O-)_2P(=S)$		S) $[(CD_3O_2]$	
Assignment	cm ^{−1}	cm ⁻¹	cm ⁻¹	cm^{-1}	Assignment
s.PF ₂ str., a'	939	~ 845	783.2	61.8	$s.p(-O-)_2$ str.
a.PF ₂ str., a"	913	836.2	807.3	28.9	$a.P(-O-)_2$ str.
P=S str.,a'	727	666.1	649.1	17	P=S str.*1
		654.7	649.1	5.6	P=S str.*1
PCl str., a'	536	524.7	519.6	5.1	P-Cl str.*1
		485.7	482	3.7	P-Cl str.*1
PF ₂ wag, a'	394	396	376	2	$P(-O-)_2 wag^{*1}$
		375	348	27	$P(-O-)_2 wag^{*1}$
PF ₂ wag, a'	359	352	341	11	$P(-O-)_2$ bend
PF ₂ twist, a"	314	291	288	3	$p(-O-)_2$ twist*1
		276	272	4	$P(-O-)_2$ twist* ¹
Cl-P(=S)	251	233	215	18	Cl-P(=S)
out-of-plane bend, a"					out-of-plane bend
Cl-P(=S)	207	217	215	2	Cl-P(=S)
in-of-plane bend, a"					in-of-plane bend
		1055.9	1076.4	[-20.5]	$s.(C-O-)_2 P str.*^1$
		1042	1059	[-17.0]	$s.(C-O-)_2P \text{ str.*}^1$
		1031.1	1050	[-18.9]	$a(C-O-)_2P$ str.
		449	428	21	$(C-O-)_2P$ bend, a'
		426	405	21	$(C-O-)_2P$ bend, a''
		171	157	14	$(C-O-)_2P,a' \& a''$
				CH_3/CD_3	
		3025.7	2273	1.33	a.CH ₃ str. or a.CD ₃ str., a
		3002.2	2255.3	1.33	a.CH ₃ str. or a.CD ₃ str., a
		2952.3	2077.1	1.42	s.CH ₃ str. or CD ₃ str., a'
		[2922.3]* ²	[2109.3]* ¹	1.39	2(CH ₃ bend) or
					$2(CD_3 \text{ bend}). a'$
		2848	2203	1.29	
		[2878]* ¹	[2170.9]* ¹	1.33	
		1456.9	1099.4	1.33	a.CH ₃ or a.CD ₃ bend a' & a"
		1443.1	1099.4	1.31	s.CH ₃ or CD ₃ bend, a'
		1179.9	926.1	1.27	CH ₃ or CD ₃ rock,
		1117.7) <u>2</u> 0.1	1.41	a' (in-plane)
		1160	900	1.29	CH ₃ or CD ₃ rock, a" (out-of-plane)
		200	189	1.06	CH ₃ or CD ₃ torsion a' & a"

^{*1}Rotational conformers.

Mode	[A] CH ₃ -O-P(=O)Cl ₂ cm ⁻¹	[B] CH ₃ -O-P(=S)Cl ₂ cm ⁻¹	[A]-[B] cm ⁻¹	[C] CD ₃ -O-P(=S)Cl ₂ cm ⁻¹	[A]-[C] cm ⁻¹	[B]-[C] cm ⁻¹
a.PCl ₂ str.						
conformer 1	579	531	48	531	48	0
conformer 2	607	560	47	552	55	8
$delta[C_2-C_1]$	[28]	[29]	[1]	[21]	[7]	[8]
s.PCl ₂ str.						
conformer 1	515	456	59	452	63	4
conformer 2	548	478	70	471	77	7
$delta[C_2 - C_1]$	[33]	[22]	[11]	[19]	[14]	[3]

^{*}See Reference 21.

TABLE 8.6 P-Cl stretching frequencies

Compound	P-Cl str.	Ref.	Frequency separation between rotational conformers	Compound	P-Cl str.	Ref.	Frequency separation between rotational conformers
X-P(=O)Cl				X-P(=S)Cl			
X				X			
$(CH_3-O)_2$	553/598	27	45	$(CH_3 - O)_2$	486/525	27	39
, , ,2	,			$(CD_3 - O)_2$	482/519	27	37
$(C_2H_5-O)_2$	554/589	20	35	$(C_2H_5-O)_2$	502/539	32	37
$(n-C_3H_7-O)_2$	557/597	20	40	$(n-C_3H_7-O)_2$	505/538	20	33
$[(CH_3)_2N-]_2$	540	20		$[(CH_3)_2N-]^2$	493	20	
				$[(C_2H_5)_2N-]_2$	515	20	
$(CH_3-O)(CH_3-NH)$	532/583	20	51	$(CH_3-O)(CH_3-NH)$	479/530	20	51
				$(CH_3-O)[(CH_3)2N]$	470/528	20	58
				$(CH_3-O)(CH_3-NH)$	491/543	20	52
				(CH_3-O) (iso- C_3H_7-NH)	508/538	20	30
				$(C_2H_5-O)(CH_3-NH)$	479/532	20	53
				$(C_2H_5-O)(C_2H_5-NH)$	483/532	20	49
				(C_2H_5-O) (iso C_3H_7-NH)	501/536	20	35
				$(isoC_3H_7-O)(CH_3-NH)$	483/531	20	48
				$(isoC_3H_7-O)(C_2H_5-NH)$	485/532	20	47
				$(isoC_3H_7-O)(isoC_3H_7-NH)$	498/532	20	34

۲	d
	ŕ
Ċ)
Ú	ņ
ζ	3
Е	7
9	?
or us	3
č	-
-	_
ć	,)
6	,)
0	,
Comm	, Cama
ξ	James
Compos	Commo
ξ	Compour
ξ	Compound
ξ	Compounds

[A] Compound CH ₃ -O-P(=S)Cl ₂ cm ⁻¹	[B] Compound CD ₃ -O-P(=S)Cl ₂ cm ⁻¹	[C] Compound	$ \begin{array}{c} \text{[D]} \\ \text{Compound} \\ \text{CH}_3-\text{O}-\text{P}(=\text{O})\text{Cl}_2 \\ \text{cm}^{-1} \end{array} $	Assignment [22]	[A]/[B]
3030	2279		3030	a.CH ₃ str., a" or CD ₃ , a"	1.33
3004	2250		3008	a.CH ₃ str., a' or CD ₃ , a'	1.34
2959	2198		2960	s.CH ₃ str., a' [in Fermi res.] or CD ₃ , a'	1.35
2848	2071		2852	2(CH ₃ bend), a'[in Fermi res.] or CD ₃ , a'	1.38
1455	1100		1455	a.CH ₃ bend, a' and a" or CD ₃ , a'	1.32
1442	1095		1448	s.CH ₃ bendR, a' or CD ₃ , a'	1.32
1175* ¹	913		1178	CH ₃ rock, a' and a" or CD ₃ , a"	1.29
?	?		?	CH ₃ torsion, a" or CD ₃ , a"	[?]
$C_2H_5-O-P(=S)Cl_2$	$CH_3 - CD_2 - O - P(=S)Cl_2$	$CD_3 - CH_2 - O - P(=S)Cl_2$	$C_2H_5-O-P(=O)Cl_2$		[D]/[C]
cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}		
3000	2988	2258	3000	a.CH ₃ str., a" or CD ₃ , a"	1.33
2990	2988	2244	2991	a.CH ₃ str., a' or CD ₃ , a'	1.33
2945	2938	2129	2944	s.CH ₃ str., a' or CD ₃ , a'	1.38
1458	1458	1086	1457	a.CH ₃ bend, a" or CD ₃ , a"	1.34
1443	1441	1143	1445	a.CH ₃ bend, a' or CD ₃ , a'	1.26
1394	1383	1055	1374	s.CH ₃ bend, a' or CD ₃ , a'	1.3
1159	1148	876	1160	CH ₃ rock, a" or CD ₃ , a"	1.32
1100	1148	962	1100	CH ₃ rock, a' or CD ₃ , a'	1.14
		masked?			[D]/[B]
325?	320?	(200–300)		CH ₃ torsion, a" or CD ₃ , a"	[-]
2990	2275	2980	2991	a.CH ₂ str., a" or CD ₂ , a"	1.31
2972	2168	2970	2970	s.CH ₂ str., a' or CD ₂ , a'	1.37
1475	1119	1472	1479	CH ₂ bend, a' or CD ₂ , a'	1.32
1394	1034	1383	1394	CH ₂ wag, a' or CD ₂ , a'	1.35
1290	917	1268	1394	CH ₂ twist, a" or CD ₂ , a"	1.52
masked near 800 951/876	masked near 550	785	810	CH ₂ rock, a" or CD ₂ , a"	[?]

TABLE 8.7. Vibrational assignments for the CH₃, CD₃, C₂H₅, CH₃CD₂ and CD₃CH₃ groups of R-O-R(=O)Cl₃ and R-O-P(=S)Cl₃ analogs

TABLE 8.8 The P=O stretching frequencies for inorganic and organic phosphorus compounds

Compound P=O(X) ₃ X	References	P=O str. Rotational conformers/ cm ⁻¹	Frequency difference between rotational conformers cm ⁻¹	P=O str. for the other compounds minus P=O str. for P(=O)Cl ₃ at 1303 cm ⁻¹ cm ⁻¹
F_3	1	1405		102
Cl ₃	15	1303		0
Br ₂	13	1277		[-26]
Br ₂ (BrCH ₂)	17	1275/1264	11	[-28]/[-39]
$Cl_2(CH_3)$	17,18	1277	11	[-26]
Cl ₂ (CH ₃)	26	[1278.5* ¹ ;1268.9* ²]		$[-24.5^{*1}]/[-34.6^{*2}]$
$Cl_2(tert-C_4H_9)$	26	[1266.4* ¹ ;1255.6* ²]		$[-36.6^{*1}]/[-47.4^{*2}]$
$Cl_2(ClCH_2)$	17	1295/1288	7	[-8]/[-15]
$Cl_2(ClCH_2)$ $Cl_2(C_6H_5)$	20	1293/1288	1	[-23]
$cl_2(CH_3-O)$	21	1322/1300	22	[19]/[-3]
	22		21	
$Cl_2(C_2H_5-O)$		1317/1296	19	[14]/[-7]
$Cl_2(n-C_3H_7-O)$	20	1313/1294		[10]/[-9]
$Cl_2(n-C_4H_9-O)$	20	1313/1295	18	[10]/[-8]
$Cl_2(C_6H_5-O)$	20	1316/1305	11	[13]/[2]
$Cl_2(4-Cl-C_6H_4-O)$	20	1315/1306	9	[12]/[3]
$Cl_2(CH_3-NH)$	24	1292/1279*3	13	[-11]/[-24]
	20	1267* ⁴		[-36]
$Cl_2[(CH_3)_2N]$	20	1270		[-33]
$Cl_2[(C_2H_5)_2N]$	20	1280		[-23]
$Cl_2(CH_3-S)$	23	1279/1271	8	[-24]/[-32]
$Cl(CH_3-O)_2$	27	1308/1293	15	[5]/[-10]
$Cl(C_2H_5-O)_2$	20	1298/1285	13	[-5]/[-18]
$Cl(n-C_3H_7-O)_2$	20	1303/1285	18	[0]/[-18]
$Cl(O-CH_2CH_2-O)$	20	1315		[12]
$Cl(C_6H_5-O)_2$	20	1313/1301	12	[10]/[-2]
$CI[(CH_3)_2-N]$	20	1243		[-60]
$CI[(C_2H_5)_2-N]$	20	1258		[-45]
$Cl(CH_3)[(CH_3)_2-N]$	20	1248		[-55]
$Cl(CH_3-O)(CH_3-NH)$	20	1260* ⁴		[-43]
$(CH_3 - O)_3$	20,26(mortimer)	1291/1272	19	[-12]/[-31]
$(C_2H_5-O)_3$	20	1280/1263	17	[-23]/[-40]
$(n-C_3H_7-O)_3$	20	1279/1265	14	[-24]/[-38]
$(n-C_4H_9-O)_3$	20	1280/1265	15	[-23]/[-32]
$(isoC_3H_7-O)_3$	20	1272/1257	15	[-31]/[-46]
$CH_3 - O)_2(C_6H_5 - O)$	20	1305/1297(1281)	8;24	[3]/[-6]/[-22]
$(C_2H_5-O)_2(C_6H_5-O)$	20	1305/1292(1276)	13;29	[2]/[-11]/[-27]
$(CH_3-O)(C_6H_5-O)_2$	20	1307/1298(1286)	9;21	[4]/[-5]/[-17]
$(C_2H_5-O)(C_6H_5-O)_2$	20	1306/1292(1285)	14;21	[3]/[-11]/[-18]
$(C_6H_5-O)_3$	20	1312/1298	14	[9]/[-5]
$(CH_3 - O)_2(CH_3)$	20	1268/1252	16	[-35]/[-51]
$(C_1H_3 - O)_2(CH_3)$ $(C_2H_5 - O)(CH_3)$	20	1268/1248	20	[-35]/[-55]
$(C_2H_5-O)(CH_3)$ $(CH_3-O)_2(C_6H_5)$	20	1258	20	[-99]/[-99] [-45]
$(CH_3 - O)_2(C_6H_5)$ $(CH_3 - O)[(CH_3)_2 - N]$	20	1260		[-43]
$(CH_3 - O)(CH_3)_2 - N_1$ $[(CH_3)_2 - N]_3$	20	1209		[-43] [-94]
$[(n-C_3H_7-O)(C_2H_5-NH)P-O[_2(-O-)$		~ 1248* ⁴		[—94] [—55]
$[(CH_3)_2 - N]_3 P = O]_2 (-O - O)$	20	$\sim 1255*^4$		[-33] [-48]
[(3113/2 11]31 = 0]2(=0=)	20	1233		[10]

^{*&}lt;sup>1</sup>[CCl₄ soln.] *²[CHCl₃ soln.] *³[dilute soln.]

^{*4[}concentrated soln.]

TABLE 8.8a A comparison of P=O stretching frequencies in different physical phases

Compound	P=O str. liquid cm ⁻¹	P=O str. CS ₂ soln. rotational conformers cm ⁻¹	P=O str. vapor cm ⁻¹	Frequency difference between rotational conformers cm ⁻¹	(CS ₂) minus P=O str. (liquid)	(vapor) minus P=O str.	(vapor) minus
$CH_3-O-P(=O)Cl_2$ $C_2H_5-O-P(=O)Cl_2$ $C_6H_5-O-P(=O)Cl_2$ $(CH_3-O-)_3P=O$	1296 1303/1289 1304 1290 (solid) 1275	1322/1300 1317/1296 1316/1305 1291/1272	1324	22 21 11 19	26 14/7 14 18 16	20	8
$(C_2H_5-O)_3P=O$	1270 (solid) 1290/1270	1280/1263	1300/1280	17/20	20/17	[10/10]	20/17
$ \begin{split} &(C_3H_7-O-P)_3=O\\ &(C_4H_9-O-)_3P=O\\ &(C_6H_5CH_2-O-)_3P=O\\ &(CH_3-O-)2(CH_6H_5-O-)P=O\\ &(CH_3-O-)(C_6H_5-O-)_2P=O\\ &(C_6H_5-O-)_3P=O \end{split} $	1269 1270 1255 1285 1297sh/1291 1314/1298	1261(CDCl3) 1279/1265 1280/1265 1305/1297 1307/1298 1312/1298	1300/1282 1300/1282 1311/1300	16/18 20 [10/7]	10 10	31 20/17	21/17

TABLE 8.9 Infrared data for the rotational conformer P=O stretching frequencies for O,O-dimethyl O-(2-chloro-4-X-phenyl) phosphate

O,O-Dimethyl O-(2-chloro-4-X-phenyl) phosphate X	$\sigma_p(29)$	P=O str. rotational conformers (20) CS ₂ soln. cm ⁻¹	Frequency separation between rotational conformers ${\rm cm}^{-1}$
NO_2	0.78	1307.4/1291.1	16.3
CN	0.66	1308.5/1291.0	17
Cl	0.23	1304.5/1288.4	15.6
H	0	1303.6/1287.8	15.8
$C(CH_3)_3$	-0.27	1304.2/1285.8	18.4
CH ₃ -O	-0.27	1303.2/1286.7	16.5

TABLE 8.10	Infrarred	observed	and	calculated	P=O	stretching	frequencies
compared*1							

G – P(=O)Cl ₂ Substituent Group G	π	P=O str. Calc. by Eq. 1 cm ⁻¹	P=O str. observed cm ⁻¹	δ P=O str. cm ⁻¹	Average δ P=O str. cm ⁻¹
R	2	1262	1277	15	
R_2N	2.4	1278	1280	2	
C_6H_5	2.4	1278	1280	2	
C=C	2.4	1278			
Н	2.5	1282			
C=O	2.5	1282			
ClCH ₂	2.7	1290	1295/1288	5/-2	1.5
R-O	2.8	1294	1322/1300	28/6	17
Cl ₂ CH	2.9	1298			
CCl ₃	3	1302			
C_5H_6-O	3	1302	1316/1305	14/3	8.5
Br	3.1	1306	1295	-11	
C=C-O	3.1	1306			
CF ₃	3.3	1314			
R(C=O)-O	3.4	1318			
Cl*2	3.4	1318	1300	-18	
CN	3.5	1322			
F	3.9	1338	1340	2	

 $^{^{*1}}$ The calculated frequencies were obtained using the equation developed by Thomas and Chittenden (30).

TABLE 8.11 The P=O and P=S stretching frequencies for phenoxarsine derivatives

	[31] P=S str.
Phenoxarsine	[CS ₂] cm ⁻¹
$X=S-P=S(O-R)_2$	
R	
methyl	648
isopropyl	645
$X=OP=O(O-R)_2$	P=O str.
R	
ethyl	1235
isopropyl	1228

 $^{*^{2}[2(\}pi) \text{ for } {}_{2}Cl \text{ is 6.3 not 6.8}].$ $vP=O(cm^{-1}) = 930 + 40\sigma\pi.$

TABLE 8.12 The P=O and P=S stretching frequencies for P(=O)X3 and P(=S)X3 type compounds

X_3	$P(=O)X_3$ $P=O \text{ str.}$ cm^{-1}	$P(=S)X_3$ $[P=S str.]$ cm^{-1}	[P=O str.]- [P=S str.] cm ⁻¹	[P=O.]/ [P=S str.]	References
F ₃ F ₂ Cl	1415 1358	695	720	2.04	1,2,3,4 7
F_2Br	1350				7
FCl_2	1331	755	576	1.76	9
Cl_3	1326	771	555	1.72	8
FBr_2	1303				10,11
Cl_2Br	1285				5
Br_3	1277	730	547	1.75	5
ClBr ₂	1275				4 5

TABLE 8.13 The P=S stretching frequencies for inorganic and organic phosphorus compounds

Compound P=SX ₃ X	P=S str. rotational conformers cm ⁻¹	Ref.	Frequency separation between rotational conformers	Compound $P=SX_3$ X	P=S str. rotational conformers/ cm ⁻¹	Ref.	Frequency separation between rotational conformers
F ₃	696	33		CH ₃ -O) ₃	620/600	20	20
F ₂ Cl	727	33		$(C_2H_5-O)_3$	635/614	20	21
F_2Br	711	34		$(isoC_3H_7-O)_3$	672/650	20	22
FCl ₂	741	9,33		$(CH_3)(C_2H_5-O)_2$	~632	20	22
Cl ₃	752	33		$(C_6H_5)(CH_3-O)_2$	624	20	
Br ₃	730	5		$(CH_3-O)_2[(CH_3)_2-N]$	588	20	
$Cl_2(CH_3)$	670	7,18		$(C_1H_3 - O)_2[(C_1H_3)_2 - IV]$ $(C_2H_5 - O)_2[N_3)$	640/627	20	13
$Cl_2(ClCH_2)$	683/657	17	26	$(C_{2}^{11}_{3} - C)_{2}(C_{3}^{1})$ $(CH_{3} - C)_{2}(CH_{3} - NH)$	630/597	20	33
$Cl_2(ClGH_2)$ $Cl_2(C_6H_5)$	690	20	20	$(C_2H_5-O)_2(CH_3-NH)$	640/608	20	32
$Cl_2(CH_3-O)$	721/703	21,25	18	$(CH_3 - O)_2(SIG_3 + VH)$ $(CH_3 - O)_2(SIGC_3H_7 - NH)$	645/611	20	34
$Cl_2(CD_3-O)$	709/698	21,25	11	$(C_2H_5-O)_2(isoC_3H_7-NH)$	650/617	20	33
$Cl_2(CD_3 C)$ $Cl_2(C_2H_5-O)$	728/701	22	27	$(CH_3 - O)_2(NH_2)$	635/611	20	24
$Cl_2(CH_3-CD_2-O)$	727/699	22	28	$(C_2H_5-O)_2(NH_2)$	641/618	20	23
$Cl_2(CD_3-CH_2-O)$	695/675	22	30	$(isoC_3H_7-O)_2(NH_2)$	643/621	20	22
$Cl_2(isoC_4H_0-O)$	737/715	20	22	$(n-C_4H_0-O)_2(NH_2)$	653/628	20	25
$Cl_2(H-CC-CH_2-O)$	742/716	35	26	$(isoC_4H_9-O)(NH_2)$	665/641	20	24
$Cl_2(4-Cl-C_6H_4-O)$	721	20	-0	$[(CH_3)_2-N]_3$	565	20	-,
$Cl_2(CH_3-NH)$	725/690	22	35	$[(CH_3)_2 - N]_2(N_3)$	607	20	
$Cl_2(CD_3-NH)$	711/683	22	28	$[(CH_3)_2 - N]_2(NH_2)$	579	20	
$Cl_2(CH_3-ND)$	728/681	22	47	$(CH_3)[(CH_3)_2 - N]_2$	569	20	
$Cl_2(CD_3-ND)$	701/673	22	28	$(C_{13})_{1}(C_{13})_{2} - C_{12}$ $(C_{2}H_{5}-S)_{3}$	685	20	
$Cl_2(C_2H_5-NH)$	725/688	22	37	$(isoC_2H_7-S)_3$	685	20	
$Cl_2(isoC_3H_7-NH)$	727/690	22	37	$(C_2H_5-S)(CH_3-NH)$	693/663	20	30
$Cl_2[(CH_3)_2-N]$	673	20		$(CH_3)_2(P=S)(P=S)(CH_3)_2$	576	20	
$Cl_2[(C_2H_5)_2-N]$	667	20		$[(C_2H_5-O)_2(P=S)]_2(-O-)$	~636	20	
$Cl_2(C_2H_5-S)$	730			$[(CH_3-O)(CH_3-NH)P=S]_2(-O-)$	651/635	20	16
$Cl(CH_3-O)_2$	666/655	27	11	$[(CH_3-O)(C_2H_5-NH)P=S]_2(-O-)$	660/642	20	18
$Cl(CD_3-O)_2$	~650	27		$[(CH_3-O)(n-C_3H_7-NH)P=S]_2(-O-)$	660/642	20	18
$Cl(C_2H_5-O)_2$	673/660	32	13	$[(CH_3-O)(isoC_3H_7-NH)P=S]_2)-O-)$	666/647	20	19
$Cl(n-C_3H_7-O)_2$	675/661	20	14	$[(CH_3-O)(isoC_4H_0-NH)P=S]_2(-O-)$	660/645	20	15
$Cl[(CH_3)_2 - N]_2$	613	20		$(C_2H_5-O)(CH_3-NH)P=S]_2(-O-)$	654/641	20	13
E 3/2 32				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,		(continues)

TABLE 8.13 (continued)

Compound P=SX ₃ X	P=S str. rotational conformers cm ⁻¹	Ref.	Frequency separation between rotational conformers	Compound $P=SX_3$ X	P=S str. rotational conformers/ cm ⁻¹	Ref.	Frequency separation between rotational conformers
$Cl[(C_2H_5)_2-N]_2$	611	20		$[(n-C_3H_7-O)(CH_3-NH)P=S]_2(-O-)$	660/645	20	15
$CI[-N(CH_3)CH_2CH_2(CH_3)N-]$	603	20		$[(isoC_3H_7-O)(CH_3-NH)P=S]_2(-O-)$	~652/638	20	14
$Cl(CH_3-O)[(CH_3)_2-N]$	633	20		$[(isoC_3H_7-O)(C_2H_5-NH)P=S]_2(-O-)$	652/639	20	13
$Cl(CH_3-O)(CH_3-NH)$	660/639	20	21	$[(isoC_3H_7-O)(NH_2)P=S]_2(-O-)$	632	20	
$Cl(CH_3-O)(C_2H_5-NH)$	663/639	20	24	$[(CH_3)_2 - N)_2 P = S]_2 (-O-)$	598	20	
$Cl(CH_3-O)(isoC_3H_7-NH)$	673/643	20	30	$[(C_2H_5-O)_2P=S]_2(-S-)$	~645	20	
$Cl(C_2H_5-O)(CH_3-NH)$	666/643	20	23	$[(C_2H_5-O)_2P=S(-S-)]_2$	662	20	
$Cl(C_2H_5-O)(C_2H_5-NH)$	663/643	20	20				
$Cl(C_2H_5-O)(isoC_3H_7-NH)$	673/647	20	26				
$Cl(isoC_3H_7-O)(CH_3-NH)$	660/639	20	21				
$Cl(isoC_3H_7-O)(C_2H_5-NH)$	663/642	20	21				
$Cl(isoC_3H_7-O)(isoC_3H_7-NH)$	665/645	20	20				
$Cl(C_2H_5-S)_2$	705	20					
$Cl(isoC_3H_7-S)_2$	705	20					

TABLE 8.14 Vibrational assignments for the skeletal modes of S-methyl phosphorothiodichloridate and phosphoryl chloride

CH_3 -S-P(=O) Cl_2 cm^{-1}	Assignment(23)	$P(=O)Cl_3$ cm^{-1}	Species
1275	P=O str., a', rotational conformer 1	1303	al
1266	P=O str., a', rotational conformer 2	1505	aı
450	s.PCl ₂ S str.,a'	483	al
	£ '	COF	aı
471	s.PCl ₂ S str., a'	260	,
235	s.PCl ₂ S bend, a', rotational conformer 1	268	al
262	s.PCl ₂ S bend, a', rotational conformer 2		
593	a.PCl ₂ S str., a', rotational conformer 1	588	e
579	a.PCl ₂ S str., a', rotational conformer 2		
547	a.PCl ₂ S str., a", rotational confomer 1		
560	a.PCl ₂ S str., a", rotational confomer 2		
323	P=O rock, a'	335	e
344	P=O rock, a"		
190	PCl ₂ S bend, a' and a"	193	e
698	C-S str., rotational conformer 1		
732	C-S str., rotational conformer 2		
223	P-S-C bend, a'		
168 or 148	P-S-C torsion, a"		

TABLE 8.15 Vibrational assignments of the $P(-O-C)_3$ group of trimethyl phosphite and trimethyl phosphate

[36] (CH ₃ -O) ₃ P cm ⁻¹	[26-mortimer] $(CH_3-O)_3P=O$ cm^{-1}	Assignment	Number of modes
1059*1	1045	$s.P(-O-C)_3$ str.	1
1016	1080	$a.P(-O-C)_3$ str.	2
769* ¹	750	$s.P(-O-)_3$ str.	1
750	865	$a.P(-O-)_3$ str.	2
732	858	$a.P(-O-)_3$ str.	
513* ¹	533* ²	$s.P(-O-C)_3$ bending	1
534	510* ²	$a.P(-O-C)_3$ bending	2
370* ¹	$367(R)*^3$	$s.P(-O-)_3$ bending	1
280*1	239(R)	$a.P(-O-)_3$ bending	2
225		$a.P(-O-)_3$ bending	
190	184?(R)	s.P-O-C torsion	1
120(?)	(?)	a.P-O-C torsion	2

 $^{{}^{*1}}$ Raman polarized band. *2 Assignments were reversed by Mortimer (26a). *3 Abbreviations: R = Raman; s. = symmetric; and a. = antisymmetric.

TABLE 8.16 Vibrational assignments for the CH₃ groups of trimethyl phosphite

(CH ₃ -O) ₃ P cm ⁻¹	Number of normal modes	Assignment (36)
2990	6	a.CH ₃ str.
2949		
2939	3	s.CH ₃ str.
1459	6	a.CH ₃ bend
1436	3	s.CH ₃ bend
1179* ³	3	CH ₃ rock* ¹
1159(R)	3	CH ₃ rock* ²
* ⁴	3	CH ₃ torsion

^{*1} Out of P-O-C plane. *2In P-O-C plane. *3R = Raman.

TABLE 8.17 The P=S, P-S, and S-H stretching frequencies for O,O-dialkyl phosphorodithioate and O,O-diaryl phosphorodithioate

(CH ₃ -O-) ₂ P(=S)SH cm ⁻¹	$(C_2H_5-O-)_2P(=S)SH$ cm^{-1}	$(2,4,5-Cl_3-C_6H_4-O-)_2$ P(=S)SH cm ⁻¹	Assignment(32)
2588	2582	2575	S-H str., rotational conformer 1
2550	2550	2549	S-H str., rotational conformer 2
670sh	670sh		P=S str., rotational conformer 1
659	659		P=S str., rotational conformer 2
524	535		P-S str., rotational conformer 1
490	499		P-S str., rotational conformer 2

^{*4}Well below 300 cm⁻¹.

TABLE 8.18 The P=O, PH stretching and PH bending vibrations for O,O-dialkyl hydrogenphosphonates*

(R-O-) ₂ P(=O)H R	P-H str. [CCl ₄] cm ⁻¹	P=O str. [CS ₂] cm ⁻¹	P–H bend [CS ₂] cm ⁻¹	P-H str. neat cm ⁻¹	P=O str. neat cm ⁻¹	P-H bend neat cm ⁻¹	P-H str. cm ⁻¹	P–H bend cm ⁻¹	delta P=O str. cm ⁻¹
CH ₃	2438	1283sh 1266	979	2415	1255	968	23	11	28;11
C_2H_5	2439	1275sh 1262	~980	2419	1250	970	24	10	25;12
$n-C_3H_7$	2441	1273sh 1261	973						
$isoC_4H_9$	2435	\sim 1275 1257	~975						
$2-C_2H_5-C_6H1_3$	2431	1273 1257	~970	2410	1250	955	21	15	23;7
$\begin{array}{l} 2\text{-}(2-C_2H_5-C_6H_{12}-O-) \\ C_2H_4 \end{array}$	2445	1273 1261	968						

^{*}See Reference 32.

TABLE 8.19 The "C-O" and "P-O" stretching frequencies for the C-O group

_	"C-O stretching"	"P-O stretching"	_
Compound	cm ⁻¹	cm^{-1}	References
$(C-O)_3P$	1059(s.)	769(s.)	36
	1016(a.)	750,732(a.)	
$(C_2H_5-O-)_3P$	1060(s.)	765(s.)	20
. 2 3	1035[1025](a.)	736(a.)	
$(C_6H_5-O-)_3P$	[1200]1190,1162	878,862	20
$CH_3-O-P(=O)Cl_2$	1060/1027	809/802	26 (mortimer
$C_2H_5-O-P(=O)Cl_2$	1041/1013	779	22
$n-C_3H_7-O-P(=O)Cl_2$	1032,1013[995]	794	20
$n-C_4H_9-O-P(=O)Cl_2$	[1034,1032,1013,995]	794	20
$CH_3-O-P(=S)Cl_2$	1041/1023	828/821	20
$C_2H_5-O-P(=S)Cl_2$	1028/1014	790/804	20
$n-C_3H_7-O-P(=S)Cl_2$	1050,1036,1020[1000]	838	20
$H-CC-CH_2-OP(=S)Cl_2$	1015/984	857/822	20
$(CH_3-O=)(CH_3-NH-)P(=S)Cl$	~1043	~820	20
$(C_2H_5-O-)(CH_3-NH-)P(=S)Cl$	~1030	~808	20
$(isoC_3H_7-O-)(CH_3-NH-)P(=S)Cl$	~990	~780	20
$(CH_3 - O -)(C_2H_5 - NH -)P(=S)Cl$	~1041	~812	20
$(C_2H_5-O-)(C_2H_5-NH-)P=S)CI$	~1025	~799	20
$(isoC_3H_7-O-)(C_2H_5-NH-)P(=S)Cl$	~990	~781	20
$(CH_3-O-)(isoC_3H_7-NH-)P(=S)Cl$	~1040	~835(?)	20
$(C_2H_5-O-)(isoC_3H_7-NH-)P(=S)Cl$	~1030	~787(?)	20
$(isoC_3H_7-O-)(isoC_3H_7-NH-)P(=S)Cl$	~990	~778	20
CH_3-O)[$(CH_3)_2N-]P(=S)Cl$	~1042	~828	20
$[(isoC_3H_7-O-)(NH_2-)P(=S)]2(-O-)$	1050	816	20
$[(C_2H_5-O-)(CH_3NH-)P(=S]_2(-O-)$	~1045	811	20
$[(n-C_3H_7-O-)(CH_3-NH-)P(=S)]_2)-O-)$	1060[1007]	~855	20
$[(isoC_3H_7-O-)(CH_3-NH-)P(=S)]_2(-O-)$	~1005	~795	20
$[(CH_3-O-)(C_2H_5-NH-)P(=S)]_2)-O-)$	1050	815	20
$[(isoC_3H_7-O-)(C_2H_5-NH-)P(=S)]_2(-O-)$	~1000	~780	20
$[(CH_3-O)(n-C_3H_7-NH-)P(=S)]_2(-O-)$	1050	819	20
$[(CH_3-O-)(isoC_3H_7-NH-)P(=S)]_2()$	1040	805	20
$[(CH_3-O)(isoC_4H_9-NH-)P(=S)]_2(-O-)$	~1045	810	20
$(CH_3-O-)_2P(=O)Cl$	1068,1044[1036]	[845]779,769	27
$(C_2H_5-O-)_2P(=O)Cl$	1057,1030[1022]	800,763	27
$(n-C_3H_7-O-)_2P(=O)Cl$	1060,1050[1025]	853,827	20
$(-O-CH_2-CH_2-O-)P(=O)Cl$	1031	861,826	20
$(CH_3-O-)_2P(=O)H$	1051(s.)	820(a.)	32
(-3 - 1/2 (-1	1080(a.)	765(s.)	
$(CH_3 - O -)_2 P (= O)D$	1068(s.)	850(a.)	32
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1040(a.)	791(s.)	
$(C_2H_5-O-)_2P(=O)H$	1081(s.)	782(a.)	32
(-2 3 - 72 (-7	1052(a.)	741(s.)	
$(C_2H_5-O-)_2P(=O)D$	1061(s.)	8216(a.)	32
\-2 3 ~ 12-\ ~1-	1030(a.)	781(s.)	J -
$(C_2H_5-O-)_2(CH_3-)P(=O)$	1061[1032]	770,713	20
$(CH_3 - O -)_2(C_6H_5 -)P = O)$	1059[1029]	828,788	20
$(CH_3 - O)_2(CH_3 - NH -)P(=O)$	1063[1033]	[830]742	37
$(C_2H_5-O_2)(CH_3-NH-)P(=O)$	1059[1032]	793,740	37
(-2) 0 /2(01-) 1111 /1(-0)	1035[1032]		(continues

TABLE 8.19. (continued)

$(CH_3-O-)_2[(CH_3)_2N-]P(=O)$	1065[1030]	[825]808	20
$(CH_3-O-)_2P(=S)Cl$	1056/1042(s.)	845(s.)	18
, , ,	1040(s.)	831(s.)	20
$(C_2H_5-O-)_2P(=S)Cl$	1017(a.)	819(a.)	20
$(C_2H_5-O-)_2(CH_3-)P(=S)$	1054[1048]	762.755	20
$(CH_3-O-)_2(C_6H_5-)P(=S)$	1058[1030]	817,794	20
$(CH_3-O-)_2(NH_2-)P(=S)$	1065[1034]	790(?)	20
$(C_2H_5-O-)_2(NH_2-)P(=S)$	1058[1028]	781	20
$(isoC_3H_7-O-)_2(NH_2-)P(=S)$	1011[982]	803[771]	20
$(n-C_4H_9-O-)_2(NH_2-)P(=S)$	1065,1048[1022][979]	839,823[798]	20
$(isoC_4H_9-O-)_2(NH_2-)P=S)$	1050[1110]	[859]839,820	20
$(CH_3-O-)_2(CH_3-NH-)P(=S)$	1061[1033]	[816]799	20
$(C_2H_5-O-)_2(CH_3-NH-)P(=S)$	1055[1029]	809,775	20
$(CH_3-O-)_2(isoC_3H_7-NH-)P(=S)$	1060[1033]	805,784	20
$(C_2H_5-O-)_2(iso(C_3H_7-NH-)P(=S)$	1058[1035]	780	20
$(CH_3-O-)_2[(CH_3)_2N-]P(=S)$	1060[1030]	821,803	20
$(C_2H_5-O)_2(N_3-)P(=S)$	1044[1019]	820,800	20
$(CH_3-O-)_2(HS-)P(=S)$	1050/1037(s.)	801(s.)	32
$(C_2H_5-O-)_2(HS-)P(=S)$	1040(s.)	849	32
	1017(a.)	810(?)	
$[(C_2H_5-O-)_2P(=S)]_2(-O-)$	1059[1030]	755/739(s.)	20

TABLE 8.20. The "C-O" and "P-O" stretching frequencies for compounds containing C-O-P=O, C-O-P=S, and C-O-P=Se groups

Compound	Ref.	"C-O stretching" R-O-P cm ⁻¹	"P-O stretching" R-O-P cm ⁻¹	"Aryl-O stretching" Aryl-O-P cm ⁻¹	"P—O stretching" Aryl-O—P cm ⁻¹	
$(CH_3-O-)_3P=O$	26 (Mortimer)	1085(s.)	755/739(s.)			
\		1-55/1040(a.)	835/844(a.)			
$(C_2H_5-O-)_3P=O$	20	1073(s.)	744(s.)			
. 2 3 /3		1033(a.)	892/798(a.)			
$(n-C_3H_7-O-)_3P=O$	20	1053,1039[1008]	888,863,756			
$(isoC_3H_7-O-)_3P=O$	20	1028[1002]	[791]752			
$(n-C_4H_9-O-)_3P=O$	20	1058[1030]1003,987	862,850,770			
$(CH_3-O-)_3P=S$	20	1071(s.)	812(s.)			
		1043(a.)	832(a.)			
$(C_2H_5-O-)_3P=S$	20	1063(s.)	792(s.)			
		1031(a.)	825(a.)			
$(isoC4H_9-O-)_3P=S$	20	1058[1018]	[865]822			
$(CH_3 - O -)_3 P = Se$	38	1028(s.)	780(s.)			
		1028(a.)	826(a.)			
$Cl_2(C_6H_5-O-)P=O$	20			[1183]1160	957[942]	
$Cl_2(4-Cl-C_6H_4-O-)P=O$	20			[1185]1160	953,931	
$Cl_2(C_6H_5-O-)P=S$	20			[1180]1157	964[932]	
$Cl_2(_4-Cl-C_6H_4-O-)P=S$	20			[1187]1158	[937,920]	

Table 8.20 (continued)

$Cl(C_6H_5-O-)_2P=O$ $Cl(C_6H_5-O-)_3P=S$	20 20			1205[1180]1159 {1201,1182,1161}	[962]940 ~940
$(C_6H_5-O-)_3P=O$	20			[1190]1160	~960
$(CH_3-O-)_2(C_6H_5-O-)P=O$	20	1069[1047]	[854]796(?)	[1213]1165	[951]937
$(C_2H_5-O-)_2(C_6H_5-O-)P=O$	20	1063[1036]	820,802[780]	[1215]1165	[960]940
$(CH_3-O-)(C_6H_5-O-)_2P=O$	20	1050	823,812	1220[1192]1161	951
$(C_2H_5-O-)(C_6H_5-O-)_2P=O$	20	1041	792,770	1230[1192]1162	950
$(CH_3-O-)_2(C_6H_5-O-)P=S$	20	1066[1041]	[834]818	1207[1165]	938
$(C_2H_5-O-)_2(C_6H_5-O-)P=S$	20	1062[1035]	[828]822	1212[1165]	948
$(C_2H_5-O-)(C_6H_5-O-)_2P=S$	20	1048	[837]816	1211[1187]1161	938
$(CH_3-O-)_2(2-Cl_6H_4-O-)P=O$	20	1073[1056]	859	[1234]	950,938
$(CH_3-O-)_2(2-Cl-4-NO_2-C_6H_3-O-)P=O$	20	1071[1050	861	[1261]	941
$(CH_3-O-)_2(2-Cl_4-CN-C_6H_3-O-)P=O$	20	1075[1056]	862	[1256]	941
$(CH_3-O-)_2(2,4-Cl_2-C_6H_3-O-)P=O$	20	1073[1075]	859	{1260,1238}	949,937
$(CH_3-O-)_2(2-Cl_4-t-C_4H_9-C_6H_3-O-)P=O$	20	1075p1053]	858	{1263,1243}	954,944
$(CH_3-O-)_2(2-Cl_{,4}-CH_3-O-C_6H_3-O-)P=O$	20	1071[1048]	857	{1263,1214}	951,941
$(CH_3-O-)_2(2-Cl-C_6H_4-O-)P=S$	20	1067,1052[1038]	838	1232	938,928
$(CH_3-O-)_2(2-Cl_4-NO_2-C_6H_3-O)P=S$	20	1061[1040]	844	1260	928
$(CH_3-O-)_2(2-Cl_4-CN-C_6H_3-O-)P=S$	20	1065,1049[1035]	840	1248	922
$(CH_3-O-)_2(2,4-Cl_2-C_6H_3-O-)P=S$	20	1065,1052[1038]	845	{1259,1238}	952,940
$(CH_3-O-)_2(2-Cl,4-t-C_4H_9-C_6H_3-O-)P=S$	20	1066,1051[1040]	841	{1261,1239}	948,937

TABLE 8.21 The aryl-O stretching frequencies for O-methyl O-(X-phenyl) N-methylphosphoramidate

Compound	Aryl-O stretching
O-methyl O-(x-Phenyl) N-methylphosphoramidate X	[39] cm ⁻¹
4-nitro 2,4,5-trichloro 2,4-dichloro 2-chloro 4-chloro hydrogen 4-methoxy 3-tert-butyl 4-tert-butyl 2-chloro-4-tert-butyl	1237 1259 1245 1235 1228 1213 1207 1209 1225

TABLE 8.22. The C-P stretching for organophosphorus compounds

Compound	Ref.	C-P str.	Assignment	Frequency separation between rotational conformers
$Cl_2(CH_3-)P$	17	699		
$Cl_2(CH_3-)P(=O)$	17	757		
$Cl_2(CH_3-)P(=S)$	17	810		
$Cl_2(ClCH_2-)P$	17	812	[not split by rotational conformers]	0
$Cl_2(ClCH_2-)P(=O)$	17	811,818	[rotational conformers]	7
$Cl_2(ClCH_2-)P(=S)$	17	801,833	[rotational conformers]	32
$Cl_2(BrCH_2-)P(=O)$	17	778,788	[rotational conformers]	10
CH ₃ -PO ₃ Na ₂	40	753		
$(CH_3-)_2PO_2Na$.	41	737	a.PC2 str.	
	41	700	s.PC2 str.	
$(CH_3-O-)_2(CH_3-)P(=O)$	20	711		
$(CH_3-O-)_2(CH_3-)P(=S)$	20	793		
Range		699–833		

TABLE 8.23 The trans and/or cis N-H stretching frequencies for compounds containing the P-NH-R group

		NH str.	NH str.	Frequency
		cis	trans	separation
		CCl ₄ soln.	CCl ₄ soln.	[cis]-[trans
Compound	Ref.	cm ⁻¹	cm ⁻¹	cm ⁻¹
$Cl_2(CH_3-NH-)P(=O)$	24	3408		
$Cl_2(CH_3-NH-)P(=S)$	24,42	3408		
$Cl_2(CD_3-NH-)P(=S)$	24,42	3409		
$Cl_2(C_2H_5-NH-)P(=S)$	24,42	3397		
$Cl_2(isoC_3H_7-NH-)P(=S)$	24,42	3388		
$Cl(CH_3-O-)(CH_3-NH-)P(=S)$	28	3425		
$Cl(CH_3-O-)(C_2H_5NH-)P(=S)$	28	3411		
$Cl(CH_3-O-)(isoC_3H_7-NH-)P(=S)$	28	3403	3385sh	18
$Cl(C_2H_5-O-)(CH_3-NH-)P(=S)$	28	3430	~3400sh	30
$Cl(C_2H_5-O-)(C_2H_5-NH-)P(=S)$	28	3402		
$Cl(C_2H_5-O-)(isoC_3H_7-NH-(P(=S)$	28	3408	3390sh	18
$Cl(isoC_3H_7-O-)(CH_3-NH-)P(=S)$	28	3422		
$Cl(isoC_3H_7-O-)(C_2H_5-NH-)P(=S)$	28	3409		
$Cl(isoC_3H_7-O-)(isoC_3H_7-NH-)P(=S)$	28	3405	3390sh	15
$(CH_3-O-)_2(CH_3-NH-)P(=O)$	28	3444		
$(CH_3-O-)_2(CH_3-NH-)P(=S)$	28	3447	3403	44
$(C_2H_5-O-)_2(CH_3-NH-)P(=O)$	28	3439		
$(C_22H_5-O-)_2(CH_3-NH-)P(=S)$	28	3442	3404	38
$(CH_3-O-)_2(isoC_3H_7-NH-)P(=S)$	28	3429	3387	42
$(C_2H^5-O-)2(isoC_3H_7-NH-)P(=S)$	28	3419	3380	39
$(CH_3-O-)(2,4,5-Cl_3-C_6H_2-O-)(CH_3-NH-)P(=O)$	28	3429*		
$(CH_3-O-)(2,4,5-Cl_3-C_6H_2-O-)(CH_3-NH-)P(=S)$	28	3442	3409	31
$(cH_3-O=)(2,4,5-Cl_3-C_6H_2-O-)(C_2H_5-NH-)P(=O)$	28	3425		
$(CH_3-O-)(2,4,5-Cl_3-C_6H_2-O-)(C_2H_5-NH-)P(=S)$	28	3429	3398	31
$(CH_3-O-)(2,4,5-Cl_3-C_6H_2-O-)(iso-C_4H_9-NH-)P(=O)$	28	3428		
$(CH_3-O-)(2,4,5-Cl_3-C_6H_2-O-)(iso-C_4H_9-NH-)P(=S)$	28	3431	3400	31
$(CH_3-O-)(2,4,5-Cl;_3-C_6H_2-O-)(isoC_3H_7-NH-)P(=O)$	28	3413		
$(CH_3-O-)(2,4,5-Cl_3-C_6H_2-O-)(isoC_3H_7-NH-)PP=S)$	28	3419	3385	34
$(CH_3-O-)(2,4,5-Cl_3-C_6H_2-O-)(t-C_4H_9-NH-)P(=O)$	28	3401		
$(CH_3-O-)(2,4,5-Cl_3-C_6H_2-O-)(t-C_4H_9-NH-)P)(=S)$	37	3402		
(CH3-O-)2(HDN-)P(=S)	37	3461	3434	27
$(C_2H_5-O-)_2(HDN-)P(=S)$	37	3452	3427	25

^{*}In CH₂Cl₂ solution.

TABLE 8.24 The NH₂, NHD, NH₂, NH and ND frequencies for O₂O-dimethyl phosphoramidothioate, O₂O-diethyl phosphoramidothioate, and N-methyl O₂O-dimethyl phosphoramidothioate, and N-methyl O₃O-dimethyl phosphoramidothioate, and N-methyl D₃O-dimethyl phosphoramidothioate, and N-methyl phosphoramidothioate, and N-methyl phosphoramidothioate, and N-methyl phosphoramidothioate, and N-me dimethylphosphoramidothhioate

O,O-dimethyl phosphoramidothioate NH ₂ : ND ₂ cm ⁻¹	[NH ₂], [ND ₂]	O,O-diethyl phosphoramidothioate $\mathrm{NH_2:ND_2}$ $\mathrm{cm^{-1}}$	[NH ₂]/[NH ₂]	O,O-diethyl N-methyl- phosphoramidothioate NH : ND cm ⁻¹	[NH]/[ND]	Assignment(37)
			[1112]/[1112]		[: :::]/[: :::]	Tiongilline (31)
3480:2611	1.33	3481 : 2600	1.34			$a.NH_2$ or $a.ND_2$ str.
3390:2490	1.36	3389 : 2491	1.36			s.NH ₂ or s.ND ₂ str.
3450:(2515)* ¹	1.37	~3450				NH ₂ or ND ₂ str. bonded
3350:(2410)* ¹	1.39	~3352:~2460	1.36			
3310:~2450	1.35	~3305				
NHD: NHD		NHD: NHD				
3461:2561	1.35	3452:2553	1.35	3442:2562	1.34	cis NH or ND str.
3434:2535	1.34	3427 : 2530	1.35	3404: 2539	1.34	trans NH or ND str.
JTJT. 2JJJ	1.57	3427.2330	1.55	3320:2470	1.34	NH or ND
				3320.2170	1.51	str. bonded
~3070		2342		~3070:2345	1.31	2(NH or ND bend)
1542:1171	1.32	1542:1170 (1179)* ¹	1.32			NH ₂ or ND ₂ bend
				1380:1250	1.1	NH or ND bend
NHD		NHD				
~1382		~1385				NHD bend
971:760	30:43:12	977 : 785	1.24			NH ₂ or ND ₂ wag* ²
922:718	1.28	913:721	1.27			NH ₂ or ND ₂ twist* ²
: 938		: masked* ²				NHD twist

^{*&}lt;sup>1</sup>Liquid. *²See text.

TABLE 8.25 The N-H and N-D stretching and bending frequencies for O-alkyl O-(2,4,5-trichlorophenyl) N-alkylphosphoramidate and O-methyl O-(2,4,5-trichlorophenyl) trichlorophenyl) N-alkylphosphoramidothioate

	NH str.	ND str.		NH str.	ND str.			NH str.	NH str.	
O-methyl	$[CCl_4]$	[CCl ₄]	δ	$[CH_2Cl_2]$	[CH ₂ Cl ₂]	δ	O-methyl	cis	trans	[NH str. cis]-
O-(2,4,5-trichlorophenyl)		*3	$[CCl_4]$	*2	*3	[CH ₂ Cl ₂]	O-(2,4,5-trichlorophenyl)	$[CCl_4]$	$[CCl_4]$	[NH str. trans]
N-alkylphosphoramidate	cm^{-1}	cm ⁻¹	cm^{-1}	cm ⁻¹	cm^{-1}	cm^{-1}	N-alkylphosphoramidothioate	cm^{-1}	cm^{-1}	cm ⁻¹
N-alkyl							N-alkyl			
methyl	insol.	insol.		3429	3256	173	•	3442	3409	33
•				$[2550]*^{1}$	[2432]	118				
(NH/ND)				(~1.34)	(~1.34)					
ethyl	3425	3224	201	3415	3245	170		3429	3398	31
,	[~2545	[~2394]								
(NH/ND)	(~1.34)	(~1.35)	151							
isobutyl	3428	3228	200	3417	3249	168		3431	3400	31
	[2545]	[2412]	154							
(NH/ND)	(~1.34)	(~1.34)								
isopropyl	3413	3213	200	3405	3230	175		3419	3385	34
	[2538]	[2384]	154							
(NH/ND)	-1.34	-1.35								
t-butyl	3401	3201	200	3395	3214	181		3402		
	[2528]	[2384]	144							
[NH/ND]	1.34	(~1.34)								
	δ	δ	δ	δ						
	NH	ND	NH	ND						
	$[CCl_4]^{*2}$	$[CCl_4]^{*3}$	$[CH_2Cl_2]^{*2}$	$[CH_2Cl_2]^{*3}$						
methyl			1397	1426				1397		
ethyl	1415	~1442	1415	1442				1403		
		[1214]								
(NH/ND)		(~ 1.19)								
isobutyl	\sim 1418	~1440	1421					1406		
		~1442								
isopropyl	\sim 1417	1440	1417					1404		
		[~1211]								
(NH/ND)		(~1.19)								
t-butyl	1396	1440:1408	1393	1425				1382		
		[1222?]		1410						
(NH/ND)		$(\sim 1.18 \text{ or } \sim 1.15)$								

^{*&}lt;sup>1</sup>N-D frequencies.
*²Monomer.

^{*&}lt;sup>3</sup>Bonded.

TABLE 8.26. The cis and trans NH stretching frequencies for compoundsk containing O=P-NH-R or S=P-NH=R groups* 1

		N-H str.	N-H str.	[NH str. cis]-	N-H
		cis	trans	[N-H str. Trans.]	
Compound	N-Alkyl	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹
O-alkyl kO-aryl					
N-alkylphosphoramidate	CH ₃	3444			1393
7 F F	C_2H_5	3428			1413
	$n-C_3H_7$	3430			1415
	$n-C_4H_9$	3430			1416
	isoC ₃ H ₇	3418			1415
	t-C ₄ H ₉	3400			1396
O-aryl N,N'-dialkyl	- 4 9				
phosphorodiamidate	CH ₃ , CH ₃	3436			1390
O-alkyl O-aryl	01-5, 01-5				
N-alkylphosphoramido-					
thioate	CH ₃	3440	3408	32	1381
	C_2H_5	3430	3399	31	1400
	$n-C_3H_7$	3428	3401	27	1403
	$iso-C_4H_9$	3431	3410	21	1404
	nC_4H_9	3427	3402	25	1402
	$iso-C_3H_7$	3419	3385	34	1408
	s-C ₄ H ₉	3417	3387	30	1406
	t-C ₄ H ₉	3400	330.	30	1383
O,O-dialkyl N-alkyl	t C4119	3100			1303
phosphoramidothioate	CH ₃	3443	3408	35	1377
phosphoramidotmoute	isoC ₃ H ₇	3421	3385	36	1402
N-alkylphosphoramidodichloridothioate	CH ₃	3414	3303	30	1372
1 vancy i piio spiio i aim dodiemo i dodino ate	C_2H_5	3397			1393
	$isoC_3H_7$	3388			1403
O-alkyl N,N'-dialkylphos-	130 C 3117	3300			1103
phorodiamidothioate	CH_3	3448	3414	34	1378
phorodiamidotinoate	C_2H_5	3433	3404	29	1400
	C_2H_5 n- C_3H_7	3430	3405	25	1400
	$n-C_3H_9$ $n-C_4H_9$	3429	3401	28	1401
	$isoC_3H_7$	3419	3397	22	1402
	s-C ₄ H ₉	3414	3398	16	1402
	$C_6H_5CH_2$	3421	3395	26	1399
O-aryl N,N'-dialkylphos-	C ₆ 11 ₅ C11 ₂	3721	3393	20	1399
phorodiamido-thioate	isoC ₃ H ₇	3415	3396	19	1403
phorodiamido-tinoate	CH_3 , iso C_3H_7	3438;3415	3415;3395		1387;1403
N-alkylphosphoramidodi-chloridate	CH ₃ , ISOC ₃ 11 ₇	3408	JT1J,JJ9J		1390
iv-aikyipiiospiiorainidodi-emoridate		3195(H-bonded)		1418(H-bonded)
	-		s.NH ₂ str.		
O-alkyl O-aryl phosphor-		a.NH ₂ str.	5.1N11 ₂ Stl.		NH ₂ bending
amidothioate	Н	*2			1579* ³
O,O-dialkylphosphoramido-	11				13/9
thioate	Н	3490	3390		1539* ³
O-alkyl O-arylphosphor-	11	ンプタリ	2290		1559
amidothioate	Н	3490	3390		1538* ³
annaounoace	11	ンプダし	2390		1,730

^{*}¹See Reference 37.
*²Not studied in dilute solution.
*³Solid phase.

TABLE 8.27. Vibrational assignments for N-alkyl phosphoramidodichloridothioate and the CD₃NH, CD₃ND and CH₃ND analogs

	CD_3 -NH- P (=S) Cl_2		$isoC_3H_7-NH-P(=S)Cl_2$			
cm ⁻¹	cm ⁻¹	cm ⁻¹	cm^{-1}	cm ⁻¹	cm ⁻¹	Assignment(24)
1094	1117	1112	1129	1107	1197 or 965	C-N str. or a.P-N-C str., a'
838	785	780	812	825	780	P-N str. or s.P-N-C str., a'
725	711	725	727	728	701	P=S str., rotational conformer 1, a'
690	683	681	690	681	673	P=S str., rotational conformer 2, a'
512	515	512	514	513	510	a.PCl ₂ str., a"
468	463			470	461	s.PCl ₂ str., rotational conformer 2, a'
450	446			447	443	s.PCl2 str. rotational conformer 1, a'
395	384			404	386	C-N-P bend, rotational conformer 2,
370	360			382	362	C-N-P bend, rotational conformer 1,
masked	masked			310	305	P-N rock,a' and a"
261	251			260	258	s.PSCl ₂ bend, a'
216	213			218	213	a.PSCl2 def., a' and a"
180	183			180	180	P-N-C torsion,a"
3408	3409			2532	2532	NH or ND str., monomer, a'
3300	3301			2242	2477	NH or ND str., bonded
2745	2892			near 2442	2384	2(NH or ND bend), A'
1370	1359			1234	1197	NH or ND bend, a'
340	350			near 260	near 258	γ NH or ND, bonded
295	292			near 218	near 213	γ NH or ND, monomer, a"

TABLE 2.28 Vibrational assignments for O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate and its P=O and (CD₃-O-)₂ analogs

$(CH_3-O-)_2P=S$	$(CD_3-O-)_2P=S$	$(CH_3-O-)_2P=O$	$(CD_3-O-)_2P=O$	Assignment(43)
$(2,4,5-Cl_3-C_6H_2-O-)$	$(2,4,5-Cl_3-C_6H_2-O-)$	$(2,4,5-Cl_3-C_6H_2-O-)$	$(2,4,5-Cl_3-C_6H_2-O-)$	
cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}	
1062	1076	1061	1107	s. $(C-O-)_2P$ str.
1041	1061	1043	1070	a. $(C-O-)P$ str.
847	793	776	742	s. $P(-O-)_2$ str.
830	811	859	810	a. $P(-O-)_2$ str.
1248	1247	1251	1252	($P-O-)P$ str.
968	965	968	968	($P-O-)C_6H_2$ str.
616	617	1284	1292	$P=S$ str. or $P=O^{*1}$
3022 3001 2960 2857 masked 1447 1183 1183	2272 2258 2088 2211 1101 1101 923 masked	1300 3021 3001 2961 2861 masked masked 1184 1184	1306 2275 2260 2089 2219 1097 1097 922 masked	P=O* ¹ a.CH ₃ or a.CD ₃ str., a" a.CH ₃ or a.CD ₃ str., a' s.CH ₃ or s.CD ₃ str., a'* 2(CH ₃ or CD ₃ bend)* ² a.CH ₃ or CD ₃ bend, a' and a" s.CH ₃ or s.CD ₃ bend, a' CH ₃ or CD ₃ rock, a' (P-O-C plane) CH ₃ or CD ₃ rock, a"(P-O-C plane) CH ₃ or CD ₃ torsion, a' and a"

^{*}¹Rotational conformers.
*²In Fermi Resonance.

TABLE 8.29 Vibrational assignments for 1-fluoro-2,4,5-trichlorobenzene and the ring modes for O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate and its P=O and $(CD_3-O-)_2$ analogs

a' species 3099 3098 3085 3098 3098 v1 3075 3070 3075 3075 3061 v2 1582 1583 1583 1587 1589 v3 1557 1560 1559 1562 1571 v4 1463 1463 1465 1461 v5 1352 1353 1352 1352 1357 v6 1260 1258 1257 1258 1263 v7 1248 1247 1251 1251 1251 v8 1230 1228 1239 or 1220 1228 1239 v9 1127 1125 1122 1122 1128 v10	[43] $(CH_3-O-)_2P=S$ $(2,4,5-Cl_3-C_6H_2-O-)$ cm^{-1}	[43] $(CD_3-O-)_2P=S$ $(2,4,5-Cl_3-C_6H_2-O-)$ cm^{-1}	[43] $(CH_3-O-)_2P=O$ $(2,4,5-Cl_3-C_6H_2-O-)$ cm^{-1}	[43] $(CD_3-O-)_2P=O$ $(2,4,5-Cl_3-C_6H_2-O-)$ cm^{-1}	[9] $1-F,2,4,5Cl_3 C_6H_2$ cm^{-1}	Assignment
3075 3070 3075 3075 3061 v2 1582 1583 1583 1587 1589 v3 1557 1560 1559 1562 1571 v4 1463 1463 1465 1461 v5 1352 1353 1352 1352 1357 v6 1260 1258 1257 1258 1263 v7 1248 1247 1251 1251 1251 v8 1230 1228 1239 or 1220 1228 1239 v9 1127 1125 1122 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 ? ? 911 911 934 v12 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572						
1582 1583 1583 1587 1589 v3 1557 1560 1559 1562 1571 v4 1463 1463 1463 1465 1461 v5 1352 1353 1352 1352 1357 v6 1260 1258 1257 1258 1263 v7 1248 1247 1251 1251 1251 v8 1230 1228 1239 or 1220 1228 1239 v9 1127 1125 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 ? 911 911 911 934 v12 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19	3099	3098	3085	3098	3098	vl
1557 1560 1559 1562 1571 v4 1463 1463 1463 1465 1461 v5 1352 1353 1352 1352 1357 v6 1260 1258 1257 1258 1263 v7 1248 1247 1251 1251 1251 v8 1230 1228 1239 or 1220 1228 1239 v9 1127 1125 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 108 1 1076 1087 1084 1086 v11 112 112 112 112 1128 v10 108 1 1076 1087 1084 1086 v11 129 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 <td>3075</td> <td>3070</td> <td>3075</td> <td>3075</td> <td>3061</td> <td>v2</td>	3075	3070	3075	3075	3061	v2
1463 1463 1463 1465 1461 v5 1352 1353 1352 1352 1357 v6 1260 1258 1257 1258 1263 v7 1248 1247 1251 1251 1251 v8 1230 1228 1239 or 1220 1228 1239 v9 1127 1125 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 ? 911 911 934 v12 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210	1582	1583	1583	1587	1589	v3
1352 1353 1352 1352 1357 v6 1260 1258 1257 1258 1263 v7 1248 1247 1251 1251 1251 v8 1230 1228 1239 or 1220 1228 1239 v9 1127 1125 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 ? 911 911 911 934 v12 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v	1557	1560	1559	1562	1571	v4
1260 1258 1257 1258 1263 v7 1248 1247 1251 1251 1251 v8 1230 1228 1239 or 1220 1228 1239 or 99 1127 1125 1122 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 ? 911 911 934 v12 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20	1463	1463	1463	1465	1461	v5
1260 1258 1257 1258 1263 v7 1248 1247 1251 1251 1251 v8 1230 1228 1239 or 1220 1228 1239 or 99 1127 1125 1122 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196	1352	1353	1352	1352	1357	v6
1230 1228 1239 or 1220 1228 1239 v9 1127 1125 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 ? 911 911 934 v12 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 887 882 882 882 882 v2	1260	1258	1257	1258	1263	
1230 1228 1239 or 1220 1228 1239 v9 1127 1125 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 ? 911 911 934 v12 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 887 882 882 882 882 v2	1248	1247	1251	1251	1251	
1127 1125 1122 1122 1128 v10 1088 1076 1087 1084 1086 v11 ? 911 911 911 934 v12 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 887 882 882 882 882 v2 887 882 886 869 863 v2 <tr< td=""><td>1230</td><td>1228</td><td>1239 or 1220</td><td>1228</td><td>1239</td><td></td></tr<>	1230	1228	1239 or 1220	1228	1239	
1088 1076 1087 1084 1086 v11 ? ? 911 911 934 v12 729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 887 882 882 882 882 v22 887 852 866 869 863 v23 689 686 680 or 688 687 669 v24 <	1127	1125	1122	1122	1128	
729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 a" species 887 882 882 882 882 v2 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460	1088	1076	1087	1084	1086	
729 720 712 715 725 v13 686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 a" species 887 882 882 882 882 v2 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460	?	?	911	911	934	v12
686 679 688 681 677 v14 556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 887 882 882 882 882 v22 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 <t< td=""><td>729</td><td>720</td><td>712</td><td>715</td><td>725</td><td></td></t<>	729	720	712	715	725	
556 548 570 572 572 v15 537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 887 882 882 882 882 v22 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 350 355 347 354 373 v27 231 225 225 230 249 v28 <t< td=""><td>686</td><td>679</td><td></td><td>681</td><td>677</td><td></td></t<>	686	679		681	677	
537 532 544 545 528 v16 383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 a" species 887 882 882 882 882 v22 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 230 249 v28 157 153 152 152	556	548	570		572	v15
383 375 364 365 390 v17 330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 a" species 887 882 882 882 882 v22 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 230 249 v28 157 153 152 152 154 v29	537		544	545		
330 322 335 335 373 v18 257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 a" species 887 882 882 882 882 v22 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 230 249 v28 157 153 152 152 154 v29			364		390	
257 250 247 246 275 v19 210 200 203 202 211 v20 170 180? 172 170 196 v21 a" species 887 882 882 882 882 v22 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 225 230 249 v28 157 153 152 152 154 v29	330				373	
210 200 203 202 211 v20 170 196 v21 a" species 887 882 882 882 882 v22 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 225 230 249 v28 157 153 152 152 154 v29	257	250				
170 180? 172 170 196 v21 a" species 887 882 882 882 882 v22 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 230 249 v28 157 153 152 152 154 v29	210	200	203	202		
887 882 882 882 882 v22 872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 230 249 v28 157 153 152 152 154 v29	170	180?	172	170	196	
872 852 866 869 863 v23 689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 230 249 v28 157 153 152 152 154 v29						a" species
689 686 680 or 688 687 669 v24 629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 230 249 v28 157 153 152 152 154 v29	887	882	882	882	882	v22
629 627 627 629 622 v25 440 439 452 460 447 v26 360 355 347 354 373 v27 231 225 225 230 249 v28 157 153 152 152 154 v29	872	852	866	869	863	v23
440439452460447v26360355347354373v27231225225230249v28157153152152154v29	689	686	680 or 688	687	669	v24
360 355 347 354 373 v27 231 225 225 230 249 v28 157 153 152 152 154 v29	629	627	627	629	622	v25
231 225 225 230 249 v28 157 153 152 152 154 v29	440	439	452	460	447	v26
157 153 152 152 154 v29	360	355	347		373	v27
	231	225	225	230	249	v28
95? ~90? ~80? 88? 93? v30	157	153	152	152	154	v29
	95?	~90?	~80?	88?	93?	v30

TABLE 8.30 Infrared data for O,O-dialkyl phosphorochloridothioate and O,O,O-trialkyl phosphorothioate in different physical phases

O,O-Dialkyl phosphorochlorido- thioate	C-O str. +P-O str. cm ⁻¹	C-O str. cm ⁻¹	P-O str. cm ⁻¹	P=S str. cm ⁻¹	P-Cl str. cm ⁻¹	C-C str. cm ⁻¹	Physical state
Dimethyl Dimethyl Dimethyl Diethyl Diethyl	1888 1878.7bd 1868.9bd 1845 ~1820 25	1045 [1055.9,1042sh] [1050.1035.4] 1030 1010 20	845 [836.2,845sh] [835.4,850sh] 821 809 12	665 [666.1,654.9] [665,656.4] 662 668,652 6,10	490 [485.7,524.7] [486.8,526.9] 499 ~490,529 9,30	966 969	vp, 200 °C solution liquid vp, 200 °C neat
Dipropyl Dipropyl O,O,O-trialkyl	~1870 ~1855 15	[1005,1055] [1005,1055] [0,0]	853 858 -5	664 664 0	504 509 -5		vp, 200 °C neat
phosphorothioate							
trimethyl trimethyl	1885 ~1863 22	1054 ~1025 29	834 820 14	605 616,595 [-11,10]			vp, 200 °C neat
triethyl triethyl	~1850	~1040 ~1018 22	828 ~815 13	614 631,604 [-17,10]		960 960	vp, 200 °C neat

TABLE 8.31 Infrared data for organophosphates and organohydrogenphosphonates in different physical phases

	P=O	P=O				PO ₃ sym	
	str.	str.	PH bend		POC str.	str.	Physical
Compound	cm ⁻¹	cm ^{−1}	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	state
Phosphate							
Triethyl	1300	*1280		1045	810	748	Vapor, 216 °C
Triethyl	1277	1262		1033	821;797	744	CS ₂ soln.
•	23	18		12	[-11];[13]	4	vapor-CS ₂ soln.
Propyl	1299	*1282		[1050],*[1009]	820	750	Vapor, 280 °C
Propyl	1270	1270		[1055],*[1004]	860	751	neat
*,	19	12		[-5],[5]	-40	-1	vapor-neat
Butyl	1300	*1280		[1060],*[1030]	815	736	Vapor, 289 °C
Butyl	1280	1280		[1055],[1021]	802	731	neat
	20	0		[5],[9]	13	5	vapor-neat
Phenyl	*1311	1300		1191	955	770	Vapor, 280 °C
Phenyl	1300	*1288		1171	950	765	neat
	11	12		20	5	5	vapor-neat
Diphenyl methyl	1316	1316		1198	[821],[952]	765	Vapor, 280 °C
Diphenyl methyl	1305	*1290		1182	[815],[950]	762	neat
	11	26		16	[6],[2]	3	vapor-neat
Phosphonate		PH str.					
•		CCl ₄ soln.	PH bend				
		cm^{-1}	cm^{-1}				
Dimethyl hydrogen	1290	~2439	985	1065	815	770	Vapor, 200 °C
Dimethyl hydrogen	[1282],*[1264]	2435	988	1055	821	766	CS ₂ soln.
	[8],[26]		-3	10	-6	4	vapor-CS ₂ soln.
		4					vapor-CCl ₄ soln.
Diethyl hydrogen	1281	~2435	~983	1061	780	749	Vapor.200 °C
Diethyl hydrogen	[1280],*[1262]	~2438	\sim 978	[1084],*[1054]	784	741	CS ₂ soln.
	[1],[19]	~ -3	5	[-23],[7]	-4	8	vapor-CS ₂ soln.

^{*}Strongest band in the doublet.

Phosphorus Compounds

TABLE 8.32 Infrared data for O-alkyl phosphorodichloridothioates and S-alkyl phosphorodichloridothioates in different physical phases

O-alkyl Phosphorodichloridothioate	C-O str. isomer 1 cm ⁻¹	C-O str. isomer 2 cm ⁻¹	P-O str. isomer 1 cm ⁻¹	P-O str. isomer 2 cm ⁻¹	$\begin{array}{c} \text{a.PCl}_2 \text{ str.} \\ \text{isomer 1} \\ \text{cm}^{-1} \end{array}$	a.PCl ₂ str. isomer 2 cm ⁻¹	s.PCl ₂ str. isomer 1 cm ⁻¹	s.PCl ₂ str. isomer 2 cm ⁻¹	P=S str. isomer 1	P=S str. isomer 2	Physical phase
O-ethyl	1026	1014	804	790	528	552	472	490	728	701	CS ₂ soln.
,	$\sim \! 1027$	977	789bd	798bd	533	555	473	490	728	701	liquid
	-1	37	15	-8	-5	-3	-1	0	0	0	CS ₂ -liquid
O-ethyl-1,1-d ₂	1025	1008	783	796	525	550	465	484	727	699	CS ₂ soln.
	1025	1010	782	797	529	551	466	474	726	700	liquid
	0	-2	1	-1	-4	-1	-1	-10	1	-1	CS ₂ -liquid
O-ethyl-2,2,3d ₃	1013	995	750	750	526	551	460	481	688	691	CS ₂ -soln.
	1010	998	750	750	531	552	462	?	675	677	liquid
	3	-3	0	0	-5	-1	-2	?	13	14	CS2-liquid
O-(2-Propynyl) [32]	1015	984	857	822	529	557	440	474	742	716	CS ₂ -soln.
	1014	982	853	821	533	556	440	473	739	714	liquid
	1	2	4	1	-4	1	0	1	3	2	CS ₂ -liquid
	C-S str.	C-S str.			a.PSCl ₂ str.	a.PSCl ₂ str.	s.PSCl ₂ str.	s.PSCl ₂ str.	P=O str.	P=O str.	
	$\begin{array}{c} \text{isomer 1} \\ \text{cm}^{-1} \end{array}$	$\begin{array}{c} isomer \ 2 \\ cm^{-1} \end{array}$	$\begin{array}{c} \text{a.PSCl}_2 \text{ str.} \\ \text{isomer } 1 \end{array}$	a.PSCl ₂ str. isomer 2	isomer 1 cm ⁻¹	isomer 2 cm ⁻¹	isomer 1 cm ⁻¹	isomer 2 cm ⁻¹	$\begin{array}{c} \text{isomer 1} \\ \text{cm}^{-1} \end{array}$	$\begin{array}{c} isomer \ 2 \\ cm^{-1} \end{array}$	
S-methyl	689	732	547a″	560a"	593a′	579a′	450	471	1275	1266	CS ₂ soln.
Phosphorodichloridothioate	685	729	547a"	555a"	598a′	582a′	451	470	1261		liquid
-	4	3	0	5	-5	-3	-1	1	14		CS ₂ -liquid

TABLE 8.33 Infrared data for O,O-diethyl N-alkylphosphoramidates in different physical phases

Alkylphosphoramidic acid, diethyl ester N-alkyl	P=O str. cm ⁻¹ vapor phase	P=O:H str. cm ⁻¹ neat phase	POC str. cm ⁻¹ vapor phase	POC str. cm ⁻¹ vapor phase	PO ₂ N str. cm ⁻¹ vapor phase	NH str. cm ⁻¹ vapor phase	NH:O=P str. cm ⁻¹ neat phase	Physical phase vapor phase
Methyl Ethyl Hexyl Phenethyl Isopropyl Cyclohexyl	1275 1275 1275 1280 1274 1275	1225 1230 1230 1229 1230 1240	1041 1044 1044 1045 1037 1040	842 795 798 803 794 795	749 750 750 749 755 755	3460 3440 3450 3440 3430 3422	3240 ~3235 ~3230 ~3230 3220 3198	240 °C 240 °C 240 °C 280 °C 240 °C 280 °C
Tert-butyl Phenyl	1275 1275	1237 1210	1045 1039	796 796	760 749	3420 3435	3208 3210	240 °C 280 °C
	P=O str P=O:H str. cm ⁻¹	NH str NH:O=P str. cm ⁻¹	cm ⁻¹ neat phase	cm ⁻¹ neat phase	cm ⁻¹ neat phase			
Methyl Ethyl Hexyl Phenethyl Isopropyl Cyclohexyl Tert-butyl Phenyl	50 45 45 51 34 35 38 65	220 205 220 210 210 224 212 225	1024 1030 1030 1020 1030 1053 1024 1010	860 790 792 791 790 793 789 791	791 740 755 745 745 752 760 745			

 $TABLE \ 8.34 \quad Vibrational \ assignments \ for \ [CH_{3}-PO_{3}]^{2-}, \ [CD_{3}-PO_{3}]^{2-}, \ [H-PO_{3}]^{2-}, \ and \ [PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{3}-PO_{4}]_{4}-$

				-		
[40] [CH ₃ -PO ₃] ²⁻ cm ⁻¹	[40] [CD ₃ -PO ₃] ²⁻ cm ⁻¹	C ₃ v symmetry	[44] [H–PO ₃] ^{2–} cm ^{–1}	C ₃ v symmtry	[45] [PO ₄] ₃ - cm ⁻¹	Td symmetry
1057	1060	a.PO ₃ str.,e	1085	a.PO ₃ str.,e	1082	a.PO ₄ str., f2
753	720	C-P str.,al	1003	u.i 03 5ti.,c	1002	u.i 04 3ti., 12
977	972	s.PO ₃ str.,a1	979	s.PO ₃ str.,a1	980	s.PO ₄ str., a1
510	510	e	465	a.PO ₃ bend,e	515	a.PO ₄ bend, f2
485	495	s.PO ₃ bend,a1	567	s.PO ₃ bend,a1		
335	~320	e			363	PO ₄ def., e
		$CH_3(cm^{-1}/CD_3)$ (cm^{-1})	Assignment			
2983	~2225	1.34	a.CH ₃ str. or a.CD ₃ str.			
2921	2142	1.36	s.CH ₃ str. or s.CD ₃ str.			
1425	?	?	a.CH ₃ bend or a.CD ₃ bend			
842	~622	1.35	s.CH ₃ rock or s.CD ₃ rock			
?	?	?	CH ₃ torsion or CD ₃ torsion			

TABLE 8.35 Infrared data and assignments for the $(CH_3)_2PO_2-$ anion

(CH ₃) ₂ P(O) ₂ Na	Assignment for C ₂ v	H ₂ P(O) ₂ K	Assignment for C ₂ v
cm^{-1}	symmetry	cm^{-1}	symmetry
1120	a.PO ₂ str., b1	1180	a.PO ₂ str., b2
1040	s.PO ₂ str., a1	1042	s.PO ₂ str., al
479	PO ₂ bend,a1	469	PO ₂ bend,a1
		[PO_4]3-	for Td
			symmetry
1120	a.PO ₂ str., b1		
738	$a.P(C)_2$ str., b2	1082	a.PO ₄ str., f2
700	$s.P(C)_2$ str., al		
1040	s.PO ₂ str., a1	980	s.PO ₄ str., a1
479	$s.(C)_2P(O)_2$ bend,al		
440	$a.(C)_2P(O)_2$ bend,		
	b1 and b2	515	a.PO ₄ bend,f2
352			
315	$(C)_2 P(O)_2$ twist,a2	363	PO ₄ defor., e
272	$(C)_2 P(O)_2$ defor., al		
		$(CH_3)_3P$	for C ₃ v
			symmetry
738	$a.P(C)_2$ str., b2	708	$a.P(C)_3$ str., e
700	$s.P(C)_2$ str., al	653	$s.P(C)_3$ str., al
		305	a.P(C) ₃ bend,a1
		263	s.P(C) ₃ bend,a1
		$(CH_3)_3PO$	for C ₃ v
			symmetry
735	$a.P(C)_3$ str., b2	756	$a.P(C)_3$ str., e
700	$s.P(C)_3$ str., al	671	$s.P(C)_3$ str., al
	*	311	$P(C)_3$ bend, e
		256	$P(C)_3$ bend, al

Introduction	353
Polychlorobiphenyls	353
An A ₁ Fundamental for Toluene and Related Analogs	355
Styrene-4-Methylstyrene Copolymers	355
Styrene-Acrylic Acid Coplymer	358
Styrene Acrylamide Copolymer	359
Styrene/2-Isopropenyl-2-Oxazoline Copolymer (SIPO Copolymer)	359
Ethynylbenzene and Ethynylbenzene-d	359
Bromodichlorobenzenes	360
Raman Data for 1,2-Disubstituted Benzenes	360
Vibrational Data for 1,3-Dichlorobenzene and Raman Data for	
1,3-Disubstituted Benzenes	361
Raman Data and Assignments for Some In-Plane Ring Modes	
1,4-Distributed Benzenes	361
Raman Data for Decabromobiphenyl and Bis (Pentabromophenyl) Ether	361
Infrared Data and Assignments for Benzene, Benzene-d6, Benzyl Alcohol,	
and Benzyl -2, 3, 4, 5, 6 - d5 Alcohol	361
Out-of-Plane Deformations and Their Combination and Overtones for	
Substituted Benzenes	362
Polystyrene and Styrene Copolymers	362
Ethynylbenzene	363
1,2-Disubstituted Benzenes	363
1,3-Dibsubstituted Benfizenes	364
1,4-Disubstituted Benzenes	364
1,3,5-Trisubstituted Benzenes	364
1,2,3-Trisubstituted Benzenes	364
1,2,4-Trisubstituted Benzenes	365
1,2,3,4-Tetrasubstituted Benzenes	365
1,2,3,5-Tetrasubstituted Benzenes	365
1,2,4,5-Tetrasubstituted Benzenes	365
1,2,3,4,5-Pentasubstituted Benzenes	366
Summary of the Out-of-Plane Hydrogen Deformations for Substituted	
Benzenes and the Out-of-Plane Ring Deformation for Mono-substituted	
Benzenes, and Their Combination and Overtones	366
Correlation Chart	366
2,3,4,5,6-Pentachlorobiphenyl	366
References	367

gu	165
O	

8			
Figure 9-1	368 (354)	Figure 9-25	383 (357)
Figure 9-2	368 (354)	Figure 9-26	384 (358)
Figure 9-3	369 (554)	Figure 9-27	385 (358, 362)
Figure 9-4	369 (354)	Figure 9-28	386 (358)
Figure 9-5	370 (354)	Figure 9-29	387 (359, 362)
Figure 9-6	370 (354)	Figure 9-30	388 (359, 362)
Figure 9-7	371 (354)	Figure 9-31	388 (359)
Figure 9-8	371 (354)	Figure 9-32	389 (359, 363)
Figure 9-9	372 (354)	Figure 9-33	390 (359)
Figure 9-10	372 (354)	Figure 9-34	391 (359)
Figure 9-11	373 (354)	Figure 9-35	392 (359)
Figure 9-12	373 (354)	Figure 9-36	393 (362)
Figure 9-13	374 (354)	Figure 9-37	394 (363)
Figure 9-14	374 (354)	Figure 9-38	395 (363)
Figure 9-15	375 (354)	Figure 9-39	396 (364)
Figure 9-16	375 (354)	Figure 9-40	397 (364)
Figure 9-17	376 (355)	Figure 9-41	398 (364)
Figure 9-18	377 (355)	Figure 9-42	399 (364)
Figure 9-19	378 (355, 362)	Figure 9-43	399 (365)
Figure 9-20	378 (355, 362)	Figure 9-44	400 (365)
Figure 9-21	379 (355, 362)	Figure 9-45	400 (365)
Figure 9-22	380 (355, 362)	Figure 9-46	401 (365)
Figure 9-23	381 (355, 362)	Figure 9-47	401 (366)
Figure 9-24	382 (356, 362)	Figure 9-48	402 (366)
Tables			
Table 9-1	403 (357)	Table 9-13	417 (354)
Table 9-2	404 (354)	Table 9-14	418 (355)
Table 9-3	405 (354)	Table 9-15	418 (360)
Table 9-4	406 (354)	Table 9-16	419 (360)
Table 9-5	407 (354)	Table 9-17	419 (361)
Table 9-6	408 (354)	Table 9-18	420 (361)
Table 9-7	409 (354)	Table 9-19	420 (361)
Table 9-8	411 (354)	Table 9-20	421 (361)
Table 9-9	413 (354)	Table 9-21	422 (362)
Table 9-10	414 (354)	Table 9-22	422 (362)
Table 9-11	415 (354)	Table 9-23	423 (362)
Table 9-12	416 (354)	Table 9-24	423 (366)

^{*}Numbers in parentheses indicate in-text page reference.

INTRODUCTION

Benzene has 30 fundamental vibrations, and benzene substituted with atoms such as halogen also has 30 fundamental vibrations. Twenty-one fundamentals are in-plane vibrations, and nine fundamentals are out-of-plane vibrations. Moreover, there are 30 fundamental benzene ring vibrations for all of its derivatives. Thus, for a compound such as toluene, which has 39 fundamental vibrations, 30 fundamentals result from C_6H_5C vibrations, and 9 fundamentals result from CH_3 vibrations.

Benzene and derivatives of benzene, which have a center of symmetry, have IR vibrations that are IR active (allowed in the IR) and vibrations that are Raman active (allowed in the Raman). Therefore, it is most helpful in the spectra-structure identification of benzene and its derivatives to obtain both IR and Raman data. Of course, a standard IR or Raman spectrum, if available for comparison, is sufficient to identify a chemical compound when the spectrum of the sample and standard reference are identical.

In the case of IR, it is helpful to obtain a spectrum in the vapor phase. This is because the IR band shapes help in determining which vibrations are in-plane vibrations and which vibrations are out-of-plane vibrations. In the case of Raman, it is helpful to obtain polarized and depolarized data to help distinguish between in-plane and out-of-plane vibrations. In certain cases, a fundamental is both IR and Raman inactive. Moreover, compounds with no molecular symmetry, but with only its identity, have molecular vibrations that are both IR and Raman active. Another helpful feature in interpreting IR and Raman data is that normal vibrations with strong IR band intensity have weak Raman band intensity and vice-versa.

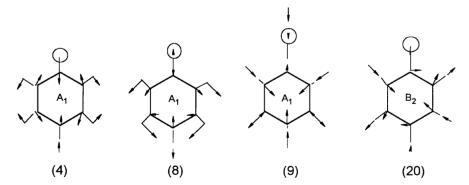
Several publications are available to assist one in the spectra-structure identification of benzene and its derivatives (1–6). Reference 6 discusses in detail both in-plane and out-of-plane normal vibrations for substituted benzenes together with schematics of their approximated normal vibrations. This reference is recommended for those who are unfamiliar with this topic.

Some of the topics covered in this section are the result of chemical problems submitted to us for spectra-structure identification by The Dow Chemical Company.

POLYCHLOROBIPHENYLS

Polychlorobiphenyls have been utilized in the electrical power industry. These chemicals are alleged to be carcinogenic materials, and their possible presence in the environment requires methods for their detection and identification.

There are 66 possible pentachlorobiphenyl isomers, and 16 of these isomers are included here. These spectra were recorded utilizing the DRIFT technique (diffuse reflectance infrared Fourier transform), because it is especially useful in obtaining IR spectra of liquid chromatograph (LC) fractions where the amount of sample available is limited (7). All 16 spectra were recorded by using $1-5\,\mu g$ of sample deposited from hexane solution via a syringe on approximately 100 mg of KBr powder placed in the sample cup. The solvent was evaporated using an IR heat lamp.


Biphenyl and each polychlorobiphenyl isomer have 60 fundamental vibrations; therefore, it is twice as difficult to determine ring substitution for the polychlorobiphenyl isomers as it is, for

example, benzene and any of the chlorinated benzenes. Moreover, there is no indication which ring modes belong to one substituted phenyl group from the other substituted phenyl group in the case of polychlorobiphenyl isomers. In order to be able to predict which bands belong to each substituted phenyl group, it is necessary to know the potential energy distribution for each of the normal modes for both 1,2,4-trichlorobenzene and 1,2,4,5-tetrachlorobenzene to determine whether the structure of a pentachlorobiphenyl isomer is 2,2',4,4',5-pentachlorobiphenyl or 2,3',4,4',5-pentachlorobiphenyl, for example. This is because normal vibrations, including a significant potential energy contribution from carbon-chlorine stretching, are expected to be affected significantly by substitution of a 2,4-dichlorophenyl group or a 3,4-dichlorophenyl group from 1,2,4-trichlorophenyl for a chlorine atom of 1,2,4,5-tetrachlorobenzene. Scherer (3) has performed normal coordinate calculations for chlorobenzenes and deuterated chlorobenzenes, and the resulting potential energy distribution data were used to enable the development of IR group frequency verification of these 16 polychlorobiphenyl isomers. The IR spectra and assignments are reported in the literature (7).

The diffuse reflectance FT-IR spectra are presented in Figs. 9.1 through 9.16, and vibrational assignments for the 16 polychlorobiphenyl isomers are presented in Tables 9.1 through 9.12 (7); these assignments are compared to those for correspondingly substituted chlorobenzenes.

Out-of-plane ring hydrogen deformations are also useful in characterizing substituted benzenes, and these spectra-structure correlations for polychlorobiphenyls are discussed later in this chapter.

Table 9.13 lists Raman data for a variety of compounds containing the phenyl group (8). It has been reported that two planar polarized Raman bands and one planar depolarized Raman band yield characteristic frequencies and intensities regardless of the nature of the substituent group (9). These three planar ring vibrations together with a fourth planar ring mode are shown here:

Ring mode 9 is essentially a ring breathing vibration, and its Raman band occurs in the region $994-1010~\text{cm}^{-1}$. This Raman band is usually the most intense band in the spectrum, and it is polarized. Notable exceptions are exhibited by cinnamic acid, glycidyl cinnamate, and 1,6-diphenyl-1,3,5-hexatriene.

Ring mode 8 occurs in the region 1010–1032cm⁻¹, and this polarized Raman band is relatively weak. Ring mode 20 occurs in the region 603–625 cm⁻¹, and the Raman band is depolarized and has weak intensity. Ring mode 4 occurs in the region 1585–1610 cm⁻¹, and the Raman band has variable intensity.

The relative Raman band intensity ratio for Ring 4/Ring 9 varies between 0.11 and 1.14, for Ring 8/Ring 9 it varies between 0.06 and 0.33, and for Ring 20/Ring 9 it varies between 0.06 and 0.25. All of these Raman data help in the spectra-structure identification of the phenyl group in organic materials.

AN A_1 FUNDAMENTAL FOR TOLUENE AND RELATED ANALOGS

Lau and Snyder performed a normal coordinate analysis for toluene and related compounds (10). They determined that the potential energy distribution of the $790\,\mathrm{cm^{-1}}$ planar A_1 fundamental for toluene is 32% ring CCC bend, 31% C–C ring stretch, 30% C–C stretch for methyl-to-ring bond. The $790\,\mathrm{cm^{-1}}$ Raman band for toluene is strong, and it is also polarized. Strong Raman bands that are also polarized are observed near 760, 740, and $705\,\mathrm{cm^{-1}}$ for ethylbenzene, isopropylbenzene, and tert-butylbenzene, respectively (8).

Figure 9.17 shows a plot of the planar A1 fundamental for toluene, ethylbenzene, isopropylbenzene, and tert-butylbenzene in the region 700–790 cm⁻¹ vs the number of protons on the ring α -carbon atom (11), and Fig. 9.18 shows a plot of the planar A1 fundamental for toluene, ethylbenzene, isopropylbenzene, and tert-butylbenzene in the region 700–790 cm⁻¹ vs Tafts σ^* values of 0, -0.01, -0.19, and -0.30 for methyl, ethyl, isopropyl, and tert-butyl groups, respectively (11, 12). Both plots are essentially linear.

Table 9.14 lists IR and Raman data for this A_1 fundamental. These Raman band correlations for this A_1 fundamental were used to assign the comparable Raman band at 773.4 cm⁻¹ for α -syndiotactic polystrene and at 785 cm⁻¹ for isotactic polystyrene (13). Copies of the syndiotactic polystyrene uniaxially stretched film (perpendicular) and (parallel) polarized IR spectra are presented in Figs. 9.19 and 9.20, respectively (13).

Variable temperature studies of isotactic polystyrene have shown that most of the IR bands shift to lower frequency by 1 to $5\,\mathrm{cm^{-1}}$ as the temperature is raised from 30 °C to 180 °C (14). A variable-temperature study of syndiotactic polystyrene film cast from a solution of 1,2-dichlorobenzene shows that it changes crystalline form at temperatures of 190 °C and above (14). Figure 9.21 shows the IR spectra of syndiotactic polystyrene of the cast film from boiling 1,2-dichlorobenzene, and Fig. 9.22 is an ambient temperature IR spectrum of the same syndiotactic polystyrene film used to record Fig. 9.21 except that the film was heated to 290 °C and then allowed to cool to ambient temperature (15).

Spectral differences between Figs. 9.21 and 9.22 will be discussed under the section for the out-of-plane vibrations for the phenyl group.

STYRENE-4-METHYLSTYRENE COPOLYMERS

Figure 9.23 is an IR spectrum of a syndiotactic styrene (98%) -4-methylstyrene (2%) copolymer. This film was cast on a cesuim iodide plate from boiling 1,2-dichlorobenzene (16). A comparison of Fig. 9.23 with Fig. 9.21 shows that the syndiotactic copolymer has the same crystal structure as the syndiotactic polystyrene. The IR band at 1511 cm⁻¹ is due to an in-

plane ring mode and the 816 cm⁻¹ band is due to the out-of-plane hydrogen deformation for the 4-methylphenyl group in the copolymer (16). Figure 9.24 is an IR spectrum of syndiotactic styrene (93%) —4-methylstyrene (7%) copolymer. This film was cast on a cesuim iodide plate from boiling 1,2-dichlorobenzene. A comparison of Fig. 9.24 with Fig. 9.22 shows that the syndiotactic copolymer has the same crystal structure as syndiotactic polystyrene. The IR band near 1511 cm⁻¹ is due to an in-plane ring deformation, and the band near 816 cm⁻¹ is due to an out-of-plane hydrogen deformation for the 4-methylphenyl group in the copolymer (16).

It is possible to utilize IR spectroscopy in the quantitative analyses of copolymer films where the film thickness is unknown. This method requires measurement of an absorbance band for each of the components in the copolymer. This analysis can be performed using one of the following methods.

A sample containing known concentrations of the monomer units is required in all cases. A film of the copolymer is then cast on a suitable IR plate such as preheated potassium bromide (KBr) placed under an IR heat lamp in a nitrogen (N_2) atmosphere.

The absorbance (A) is proportional to the concentration of each component in the copolymer. Thus,

$$C_{a} = kA_{a}; C_{b} = kA_{b}$$

$$\frac{C_{a}}{C_{b}} = K\frac{A_{a}}{A_{b}} \qquad K = \frac{C_{a}}{C_{b}} \cdot \frac{A_{b}}{A_{a}}$$
(1)

As an example, component (a) of the copolymer is 70% and component (b) of the copolymer is 30%. The absorbance of a band at 1730 cm⁻¹ is 0.753 for component (a) and the absorbance of a band at 1001 cm-01- for component (b) is 0.542. These numbers are used to determine the value of K.

$$K = \frac{70}{30} \cdot \frac{0.542}{0.753} = 1.680$$

The copolymer containing components (a) and (b) of unknown concentrations is submitted for analysis. The absorbance (A) for component (a) is measured at $1730 \, \text{cm}^{-1}$ and for component (b) is measured at $1001 \, \text{cm}^{-1}$. The A for (a) is found to be 0.664 and for (b) A is 0.557.

Equation 1 is then utilized using the value for K of 1.680

$$\frac{C_a}{C_b}$$
 = 1.680 $\frac{(0.664)}{(0.557)}$ = 2. - 3; C_a = 2.003 C_b

Then $C_a + C_b = 100\%$.

$$2.003 C_2 + C_b = 100\%$$

 $C_b = 100\% = 33.3\%$
 3.003

Then $C_a = 66.7\%$.

Quantitation of a copolymer consisting of three different components can also be analyzed by application of IR spectroscopy. A copolymer of known composition is required. The measured values of the IR spectrum for the known concentration of the copolymer are:

$$C_a$$
 is 42%; A_a (at 2230 cm⁻¹) is 0.452
 C_b is 26%; A_b (at 1730 cm⁻¹) is 0.847
 C_c is 32%; A_c (at 700 cm⁻¹) is 0.269
 $K_1 = \frac{C_a}{C_b} \cdot \frac{A_b}{A_a}$ $K_1 = \frac{42}{26} \cdot \frac{0.847}{0.542} = 2.524$
 $K_1 = \frac{C_c}{C_b} \cdot \frac{A_b}{A_c}$ $K_2 = \frac{32}{26} \cdot \frac{0.847}{0.269} = 3.875$

The spectrum of the unknown copolymer containing components (a), (b), and (c) is obtained, and the following absorbance bands are measured:

The IR band at 2230 cm⁻¹ has an absorbance of 0.757

The IR band at 1730 cm⁻¹ has an absorbance of 0.798

The IR band at 700 cm⁻¹ has an absorbance of 0.345.

Then

$$\begin{split} &\frac{C_{(a)}}{C_{(b)}} = K_1 \frac{A_{(a)}}{A_{(b)}}; \frac{C_{(a)}}{C_{(b)}} = 2.524 \times \frac{0.757}{0.798} = 2.394; C_{(a)} = 2.394 \ C_{(b)} \\ &\frac{C_{(c)}}{C_{(b)}} = K_2 \frac{A_{(c)}}{C_{(b)}}; \frac{C_{(c)}}{C_{(b)}} = 3.875 \times \frac{0.345}{0.798} = 1.675 \quad C_{(c)} = 1.675 \ C_{(b)} \end{split}$$

Then

$$C_{(a)} + C_{(b)} + C_{(c)} = 100$$

 $2.394 C_{(b)} + C_{(b)} + 1.675 C_{(b)} = 100\%$
 $C_{(b)} = 100/5.069 = 19.73\%$
 $C_{(a)} = 2.394 C_{(b)} = 2.394 (19.73\%) = 47.23\%$
 $C_{(c)} = 1.675 C_{(b)} = 1.675 (19.73\%) = 33.05\%$
 $C_{(a)} = 47.23 + C_{(b)} = 19.73\%$; $C_{(b)} = 33.05\% = 100.01\%$

Another way to set up a quantitative method for the analysis of a copolymer is to record IR spectra of known quantitative composition over a range of concentrations that are to be manufactured. The IR spectra of a series of styrene-p-methylstyrene copolymers were prepared and the % p-methylstyrene in the copolymer is: 1,2,3,5 and 7%. Absorbance (A) for styrene was measured near $900\,\mathrm{cm^{-1}}$, and the absorbance (A) also was measured for p-methylstyrene at $1511\,\mathrm{cm^{-1}}$ and near $816\,\mathrm{cm^{-1}}$. Figure 9.25 shows a plot of the absorbance ratio $A(1511\,\mathrm{cm^{-1}})/A(901-904\,\mathrm{cm^{-1}})$ vs % p-methylstyrene in the styrene-p-methylstyrene copoly-

mer; Fig. 9.26 shows the plot of the absorbance ratio $A(815–817\,\mathrm{cm}^{-1})/A(900–904\,\mathrm{cm}^{-1})$ vs % p-methylstyrene in the styrene-p-methylstyrene copolymer. Both plots are linear in this concentration range, and either method is suitable for a routine analytical method for this copolymer.

A matrix method for the quantitative IR multicomponent analysis for films with indeterminate path-length has been reported (17).

STYRENE-ACRYLIC ACID COPLYMER

Figure 9.27 (top) is an IR spectrum of styrene (92%)—acrylic acid (8%) copolymer recorded at 35 $^{\circ}$ C, and Fig. 9.27 (bottom) is an IR spectrum of the same copolymer at 300 $^{\circ}$ C (18). There are significant differences between these two IR spectra of the same copolymer. The ratio of the IR band intensities at 1742 to 1700 cm⁻¹ is low in the upper spectrum and is high in the lower spectrum. The 1700 cm⁻¹ IR band results from acrylic acid intermolecular hydrogen bonded dimers, and it is actually an out-of-phase (CO₂H)₂ vibration as depicted here:

out-of-phase v(CO₂H)₂

The broad IR band in the region $3500\text{--}2000\,\mathrm{cm}^{-1}$ with subsidiary maxima results for $(OH)_2$ stretching of the $(CO_2H)_2$ groups in Fermi resonance with combinations and overtones. Note how there is less absorption in this region at high temperature than there is at $35\,^{\circ}C$. The three bands in the region $3000\text{--}3100\,\mathrm{cm}^{-1}$ result from phenyl hydrogen stretching vibrations, and the two bands in the region $2950\text{--}2800\,\mathrm{cm}^{-1}$ result from CH_2 stretching vibrations. The IR bands near $3520\,\mathrm{and}\,1125\,\mathrm{cm}^{-1}$ in the lower spectrum result from v OH and v C—O for the CO_2H group not existing in the $(CO_2H)_2$ dimer form. The IR band near $3470\,\mathrm{cm}^{-1}$ is assigned to v O—H intermolecularly hydrogen bonded to the π system of the phenyl groups in the copolymer (18).

It is interesting to study Fig. 9.28, which shows five plots of absorbance ratios vs $^{\circ}$ C from 30 to $^{\circ}$ 310 $^{\circ}$ C. The plots are all parallel below $^{\circ}$ 150 $^{\circ}$ C, and then they increase or decrease essentially in a linear manner. These changes do not take place until the copolymer becomes molten, and the $(CO_2H)_2$ groups are free to form two CO_2H groups. The 1600 cm⁻¹ IR band results from a phenyl ring bend-stretching vibration, and the 752 cm⁻¹ IR band results from the five hydrogen atoms vibrating in-phase out-of-the plane of the phenyl groups. The 1742 cm⁻¹ and 1700 cm⁻¹ IR bands have been assigned previously; R_1 is the ratio of $(A)CO_2H/A(CO_2H)_2$, and it increases as the sample temperature is increased; R_2 is the ratio of $A(CO_2H)_2/A(\phi)$, and it decreases as the sample temperature is increased; R_4 is the ratio $A(CO_2H)_2/A(\phi)$, and it increases as the sample temperature is increased; R_4 is the ratio $A(CO_2H)_2/A(\phi)$, and it decreases as the sample temperature is increased; and R_5 is the ratio $A(CO_2H)_2/A(\phi)$, and it decreases as

the sample temperature is increased. All of these absorbance ratios show that after $\sim 150~^{\circ}\text{C}$ the $(\text{CO}_2\text{H})_2$ groups split into two CO_2H groups. Upon cooling to ambient temperature the CO_2H groups reform $(\text{CO}_2\text{H})_2$ groups (18).

STYRENE ACRYLAMIDE COPOLYMER

Figure 9.29 (top) is an IR spectrum of styrene acrylamide recorded at 27 °C, and Fig. 9.29 (bottom) is an IR spectrum of the same copolymer recorded at 275 °C. The v C=O vibration for acrylamide in the copolymer occurs at $1682\,\mathrm{cm^{-1}}$ at $27\,^{\circ}\mathrm{C}$ and at $1690\,\mathrm{cm^{-1}}$ at $275\,^{\circ}\mathrm{C}$. Moreover, this change in the v C=O frequency occurs between 125 to $167\,^{\circ}\mathrm{C}$. In addition, v asym. NH $_2$ occurs at $3480\,\mathrm{cm^{-1}}$ and v sym. NH $_2$ occurs at $380\,\mathrm{cm^{-1}}$ at temperature below $125\,^{\circ}\mathrm{C}$, and v asym. NH $_2$ occurs at $3499\,\mathrm{cm^{-1}}$ and v sym. NH $_2$ occurs near $3380\,\mathrm{cm^{-1}}$ in the temperature range 27 to $275\,^{\circ}\mathrm{C}$. In addition, bands in the region $3200-3370\,\mathrm{cm^{-1}}$ in the $27\,^{\circ}\mathrm{C}$ spectrum are not present in the $275\,^{\circ}\mathrm{C}$ spectrum. These data show that the NH $_2$ groups are not hydrogen bonded to C=O groups in temperature above $167\,^{\circ}\mathrm{C}$. Upon cooling the intermolecular hydrogen, bonds reform (18).

STYRENE/2-ISOPROPENYL-2-OXAZOLINE COPOLYMER (SIPO COPOLYMER)

Figure 9.30 is an IR spectrum of a styrene (93.8%)/2-isopropenyl-2-oxazoline (6.2%) copolymer film cast from methylene chloride onto a KBr plate (19). The IR band at $1656\,\mathrm{cm^{-1}}$ is assigned to v C=N of the oxazoline ring. The IR band at $1600\,\mathrm{cm^{-1}}$ results from and in-plane bend-stretching vibration of the phenyl ring. Figure 9.31 is a plot of the wt % IPO in the SIPO copolymer vs the absorbance ratio $A(1656\,\mathrm{cm^{-1}})/A(1600\,\mathrm{cm^{-1}})$ for 10 SIPO copolymers. This plot is linear over the % SIPO copolymers studied, and the calculated and % IPO values agree within 0.15% (19).

ETHYNYLBENZENE AND ETHYNYLBENZENE-D

Figure 9.32 (top) is a vapor-phase IR spectrum of ethynylbenzene (phenylacetyline) in a 4-m cell with the vapor pressure of the liquid sample at $25\,^{\circ}$ C. Figure 9.32 (bottom) is a vapor-phase IR spectrum of ethynylbenzene-d run under the same conditions as the top spectrum (20).

Figure 9.33 (top) is a solution-phase IR spectrum of ethynylbenzene, and Fig. 9.33 (bottom) is a solution-phase IR spectrum of ethynylbenzene-d (20).

Figure 9.34 (top) is an IR spectrum of ethynylbenzene in the liquid phase, and Fig. 9.34 (bottom) is an IR spectrum of ethynylbenzene-d in the liquid phase (20).

Figure 9.35 (top) is a Raman spectrum of ethynylbenzene, and Fig. 9.35 (bottom) is a Raman spectrum of ethynylbenzene-d (20).

The v = C - H mode occurs at 3340; 3320 sh cm⁻¹ in the vapor, at 3315; 3305 sh cm⁻¹ in CCl_4 solution, and at 3291; 3310 sh cm⁻¹ in the liquid phase. The v = C - D mode occurs at 2608 cm⁻¹

in the vapor, at 2596 cm⁻¹; 2560 sh cm⁻¹ in CCl_4 solution, and at 2550 cm⁻¹ in the liquid phase (20). Both $v \equiv C - H$ and $v \equiv C - D$ shift to lower frequency in the order: vapor, CCl_4 solution, and liquid phase. The $v C \equiv C$ mode for the $C \equiv C - H$ group occurs at 2122 cm⁻¹ in the vapor, at 2119 cm⁻¹ in CCl_4 solution, and at 2118 cm⁻¹ in the liquid phase while the $v C \equiv C$ mode for the $C \equiv C - D$ group occurs at 1989 cm⁻¹ in CCl_4 solution and at 1983 cm⁻¹ in the liquid phase. The in-plane E - H deformation occurs at 648 cm⁻¹ in the vapor, at 648 cm⁻¹ in CS_2 solution, and at 653 cm⁻¹ in the vapor phase. By contrast, the out-of-plane deformation occurs at CS_2 solution, and at CS_3 solution appears to be coincident with the in-plane CS_3 deformation in the case due to coupling with a CS_3 bending mode (20). As discussed in Volume 1, CS_3 solution 5, CS_4 and CS_5 care coupled.

BROMODICHLOROBENZENES

There are six isomers of bromodichlorobenzene, and these are: 1-bromo,3,5-dichlorobenzene; 1-bromo, 2,6-dichlorobenzene; 1-bromo,2,3-dichlorobenzene; 1-bromo,2,4-dichlorobenzene; 1-bromo,2,5-dichlorobenzene; and 1-bromo,3,4-dichlorobenzene. There is no problem in distinguishing between the 1,3,5-; 1,2,3-; and 1,2,4-positions by application of IR spectroscopy; however, the problem arises in the unambiguous identity of 1-Br,2,6-Cl₂ ϕ from 1-Br,2,3-Cl₂ ϕ 3-Cl₂ ϕ 4, and between 1-Br, 2,4-Cl₂ ϕ 4, 1-Br,2,5-Cl₂ ϕ 4, and 1-Br,3,4-Cl₂ ϕ 5. Both IR and Raman spectroscopy were used to correctly identify each of the six bromodichlorobenzenes (21). These assignments were made possible by knowing the potential energy distributions for the corresponding trichlorobenzene isomers for planar vibrations involving carbon-halogen stretching (3). Table 9.15 lists the vibrational assignments for the six bromodichlorobenzene isomers as well as the molecular symmetry of each isomer (21).

RAMAN DATA FOR 1,2-DISUBSTITUTED BENZENES

Raman spectra for 1,2-disubstituted benzenes exhibit characteristic group frequencies (see Table 9.16). A strong Raman band occurs in the region $1020-1044\,\mathrm{cm^{-1}}$, and a weaker Raman band occurs in the region $642-668\,\mathrm{cm^{-1}}$. Raman bands also occur in the region $1595-1610\,\mathrm{cm^{-1}}$ and in the region $1577-1586\,\mathrm{cm^{-1}}$, and the higher frequency band is more intense than the lower frequency band (8). The approximate normal vibrations for ring modes 3, 14, 18, and 9 are presented here.

VIBRATIONAL DATA FOR 1,3-DICHLOROBENZENE AND RAMAN DATA FOR 1,3-DISUBSTITUTED BENZENES

Vibrational assignments for the in-plane modes of 1,3-dichlorobenzene have been reported (3). Table 9.17 lists Raman data for 1,3-disubstituted benzenes (8). A strong Raman band occurs in the region $995-1005 \, \text{cm}^{-1}$, and a weak to medium Raman band occurs in the region $1574-1618 \, \text{cm}^{-1}$.

RAMAN DATA AND ASSIGNMENTS FOR SOME IN-PLANE RING MODES FOR 1,4-DISUBSTITUTED BENZENES

Table 9.18 lists Raman data and assignments for some in-plane ring modes for 1,4-disubstituted benzenes (8). Weak to strong Raman bands occur in the regions $1591-1615 \, \mathrm{cm}^{-1}$; $1268-1308 \, \mathrm{cm}^{-1}$; $819-881 \, \mathrm{cm}^{-1}$; $801-866 \, \mathrm{cm}^{-1}$, and $625-644 \, \mathrm{cm}^{-1}$.

RAMAN DATA FOR DECABROMOBIPHENYL AND BIS (PENTABROMOPHENYL) ETHER

Raman data for decabromobiphenyl and bis-(pentabromophenyl) ether are listed in Table 9.19 (8). Ring mode assignments are also listed for the pentabromophenyl group.

INFRARED DATA AND ASSIGNMENTS FOR BENZENE, BENZENE-d6, BENZYL ALCOHOL, AND BENZYL -2.3.4.5.6-d5

The task of assigning the infrared and Raman data of a molecule is aided by obtaining deuterium analogs. In Table 9.20, vapor-phase infrared data for benzene and benzyl alcohol are compared to the vapor-phase infrared data for benzene-d6 and benzyl-2,3,4,5,6-d5 alcohol, respectively. Benzene has a center of symmetry, and overtones are not allowed in the infrared spectrum. Molecular vibrations involving primarily motion of the H atoms joined to the benzene carbon atoms are expected to decrease in frequency by a factor of the square root of 2 or approximately 1.41. Thus, for benzene and benzene-d6 the assignments where corresponding vibrations decrease in frequency by a factor of over 1.3 involve primarily motion of 6H or 6D atoms. For example, benzene exhibits a type-C band whose strong Q-branch occurs at 670 cm⁻¹ (with P- and R- branches and 688 cm⁻¹, respectively). Benzene-d6 exhibits the corresponding type-C band at 505 cm⁻¹, 491 cm⁻¹, and 470 cm⁻¹. The frequency ratio of 670/491 is 1.365. These bands are due to a vibration where either the 6 H atoms or the 6 D atoms bend in-phase out of the plane of the benzene ring.

Benzyl alcohol and benzyl-2,3,4,5,6-d5 alcohol exhibit a vapor-phase infrared band at $738 \, \mathrm{cm}^{-1}$ and 534 respectively. The frequency ratio 738/534 is 1.382. This molecular vibration is where the 5 H atoms or 5 C atoms based in-phase out of the plane of the phenyl group.

OUT-OF-PLANE DEFORMATIONS AND THEIR COMBINATION AND OVERTONES FOR SUBSTITUTED BENZENES

Young et al. have shown the substitution pattern for mono-through hexa-substituted benzenes, in the region 5– 6μ 2000– $1666.7\,\mathrm{cm}^{-1}$), and their correlation presentation is shown in Fig. 9.36 (2). The substitution patterns are less complex with increased benzene substitution or with fewer protons joined directly to the benzene ring. In fact, hexa-substituted benzenes do not contain protons directly joined to the benzene ring. However, extensive studies of benzene derivatives have shown that most of the IR bands in this region of the spectrum result from combination and overtones of the out-of-plane hydrogen deformations (see Reference 6).

Table 9.21 lists a number of mono-substituted benzenes in the order of increasing σ_{ρ} values (6,22). These vibrational modes are listed I through V for the five out-of-plane hydrogen deformations for a mono-substituted benzene in the order of decreasing frequency. The number VI normal vibration is the out-of-plane ring deformation.

A study of Table 9.21 shows that modes I through III generally increase in frequency as the σ_{ρ} value is increased. These out-of-plane hydrogen deformations are also dependent upon the physical phase. This phase dependence is the result of the reaction field between the monosubstituted benzene molecules. This reaction field could also affect these spectra-structure conditions. However, a linear correlation is not obtained for data recorded in the vapor phase vs σ_{ρ} values (6).

POLYSTYRENE AND STYRENE COPOLYMERS

Tables 9.22 and 9.23 summarize the out-of-plane hydrogen deformation and the out-of-plane ring deformation for substituted benzenes and their combination and overtones, respectively (6).

Figures 9.19–9.24, 9.27, 9.29 and 9.30 are IR spectra for either polystyrene or a copolymer containing styrene units. Compare Figs. 9.19–9.30 with the mono-pattern shown in Fig. 9.36. The pattern for the styrene units is the same as that shown in Fig. 9.36.

In the IR spectra of α - and β -syndiotactic polystyrene the IR bands in the region 2000–1666.7 cm⁻¹ are assigned as presented here (13):

α-Syndiotactic Polystyrene			
Parallel Polarization cm ⁻¹	Perpendicular Polarization cm ⁻¹	Assignment (13)	
1955	_	2 (977.5) = 1955; 2 I	
_	1960	2(980) = 1960; 2I	
1941.7	_	977.5 + 964.4 = 1941.9; I + II	
_	1943.6	980 + 964 = 1944; I + II	
1869.1	_	964.4 + 903 = 1867.4; II + III	
_	1871.3	964 + 904.8 = 1869; II + III	
1800.9	_	964.4 + 841 = 1805.4; II + IV	

α-Syndiotactic Polystyrene

_	1802.8	964 + 840.7 = 1805; II + IV
1744.2	_	903 + 841 = 1744; III + IV
_	1746.3	904.8 + 840.7 = 1745.5; III + IV
1704	_	2(852.75) = 1705.5; 2 IV
1673.3	_	977.5 + 695.3 = 1672.8; I + VI
_	1675.2	980 + 695.9 = 1676

ETHYNYLBENZENE

In the case of ethynylbenzene (Fig. 9.33 in CCl₄ solution) the combination and overtone assignments are as presented here:

Ethynylbenzene	Assignment
1964	$2v_{29}(A_1)$; $2(983) = 1966$; 2 I
1947	$v_{29} + v_{26}(B_1) = 983 + 967 = 1950; I + II$
1895	$v_{29} + v_{30}(A_1) = 983 + 917 = 1900; I + III$
1871	$v_{26} + v_{30}(B_1) = 967 + 917 = 1884$; II + III
1820	$v_{29} + v_{27}(B_1) = 983 + 842 = 1825; I + IV$
1802	$v_{26} + v_{27} (A_1) = 967 + 842 + 1809; II + IV$
1751	$v_{30} + v_{27}$ (B ₁) = 917 + 842 = 1759; II + IV

These assignments are in good agreement with the summary for out-of-plane hydrogen deformation and their combination and overtones for monosubstituted benzenes (see Fig. 9.37).

In the case of mono-substituted benzenes, modes I, II, and V belong to the B_1 symmetry species for molecules with C_{2v} symmetry, and modes I, II and V belong to the A'' symmetry species for molecules with C_{5v} symmetry. Moreover, modes II and IV belong to the A_2 symmetry species for molecules with C_{2v} symmetry, and modes II and IV for molecules that belong to the A'' species for molecules with C_{5v} symmetry. Thus, the author finds it most convenient to term these vibrations I through V in the order of their decreasing frequency.

It is only possible for vibrations belonging to the same symmetry species to couple. Thus, there is more probability of coupling between the A" vibrations in the case of mono-substituted benzenes with C_s symmetry than there is between the B_1 fundamentals and between the A_2 fundamentals for mono-substituted benzenes with C_{2v} symmetry. This may be one of the reasons that modes I through V do not correlate on a one-to-one basis with σ_ρ . Another factor is that not all spectra were recorded in the same physical phase.

1,2-DISUBSTITUTED BENZENES

Figure 9.38 is a summary of the out-of-hydrogen deformations and their combination and overtones for 1,2-disubstituted benzenes (6). For 1,2-disubstituted benzenes with C_{2v} symmetry modes I and II belong to the A_2 species and modes II and IV belong to the B_1 species. For 1,2-disubstituted benzenes with C_s symmetry, modes I through IV belong to the A" species. Modes I through IV occur in the regions 956–989 cm⁻¹; 915–970 cm⁻¹, 833–886 cm⁻¹, and 725–

 $791 \, \mathrm{cm}^{-1}$, respectively. The two overtone and five combination tones of modes I through IV are presented on Fig. 9.38.

1,3-DIBSUBSTITUTED BENZENES

Figure 9.39 is a summary of the out-of-plane hydrogen deformations and their combination and overtones for 1,3-disubstituted benzenes (6). For 1,3-disubstituted benzenes with C_{2v} symmetry, modes I, III and IV belong to the B_1 symmetry species and mode II belongs to the A2 symmetry species. For 1,3-disubstituted benzenes with C_s symmetry, modes I through IV belong to the A″ species. Modes I through IV occur in the regions 947–999 cm⁻¹, 863–941 cm⁻¹, 831–910 cm⁻¹, and 761–815 cm⁻¹, respectively. The three overtones and four combination tones of modes I through IV are presented in Fig. 9.39.

1,4-DISUBSTITUTED BENZENES

Figure 9.40 is a summary of the out-of-plane hydrogen deformations and their combination and overtones for 1,4-disubstituted benzenes (6). For 1,4-disubstituted benzenes with V_h symmetry, modes I through IV belong to the A_u , B_{2g} , B_{1g} , and B_{3u} species, respectively. For molecules with C_{2v} symmetry, modes I and III belong to the A_2 species and modes II and IV belong to the B_1 species. For molecules with C_s symmetry, modes I through IV belong to the A'' species. For molecules with a center of symmetry such as 1,4-disubstituted benzenes with V_h symmetry, overtones of fundamentals are not allowed in the IR. A study of Fig. 9.40 shows that overtones are not present in the region 2000–1600 cm $^{-1}$ for any of the 1,4-disubstituted benzenes. Modes I through IV occur in the regions 1852–1957 cm $^{-1}$, 916–971 cm $^{-1}$, 790–852 cm $^{-1}$, and 794–870 cm $^{-1}$, respectively. Four combinations tones of modes I through IV are listed in Fig. 9.40.

1,3,5-TRISUBSTITUTED BENZENES

Figure 9.41 is a summary of the out-of-plane deformations and their combination and overtones for 1,3,5-trisubstituted benzenes (6). For 1,3,5-trisubstituted benzenes with D_{3h} symmetry modes, the Ia and Ib modes are degenerate. For molecules with C_{2v} symmetry, the degeneracy is split into two B_1 modes and the $A_2^{\prime\prime}$ mode for molecules with D_{3h} symmetry becomes an A_2 fundamental. In the case of 1,3,5-trisubstituted benzenes with C_s symmetry, all three modes belong to the $A^{\prime\prime}$ species. The Ia and Ib modes occur in the region 819–920 cm $^{-1}$ and mode II occurs in the region 786–910 cm $^{-1}$. The 2I overtone occurs in the regions 1635–1840 cm $^{-1}$, and the mode I + II combination occurs in the region 1605–1840 cm $^{-1}$.

1,2,3-TRISUBSTITUTED BENZENES

Figure 9.42 is a summary of the out-of-plane hydrogen deformations and their combination and overtones for 1,2,3-trisubstituted benzenes (6). For molecules with C_{2v} symmetry, modes I and

III belong to the B_1 species and mode II belongs to the A_2 species. For molecules with C_s symmetry, modes I through III belong to the A" species. Modes I through III occur in the ranges 930–989 cm⁻¹, 848–930 cm⁻¹, and 731–810 cm⁻¹, respectively; 2I and 2II occur in the regions 1860–1975 and 1700–1860 cm⁻¹, respectively. The combination I + II occurs in the region 1848–1930 cm⁻¹.

1,2,4-TRISUBSTITUTED BENZENES

Figure 9.43 is a summary of the out-of-plane hydrogen deformations and their combination and overtones for 1,2,4-trisubstituted benzenes (6). As long as these molecules have a plane of symmetry their molecular symmetry is C_s . Modes I through III belong to the A" species and occur in the regions 926–982 cm⁻¹, 841–923 cm⁻¹, and 790–852 cm⁻¹, respectively. Their three overtones and two combinations are shown in Fig. 9.43.

1,2,3,4-TETRASUBSTITUTED BENZENES

Figure 9.44 is a summary of the out-of-plane hydrogen deformations and their combination and overtones for 1,2,3,4-tetrasubstituted benzenes (6). For molecules with C_{2v} symmetry, mode I and mode II belong to the A_2 and B_1 species, and for molecules with C_s symmetry, modes I and II belong to the A'' species. Modes I and II occur in the regions 919–949 cm⁻¹ and 770–821 cm⁻¹, respectively. Their two overtones and one combination are shown in Fig. 9.44.

1,2,3,5-TETRASUBSTITUTED BENZENES

Figure 9.45 is a summary of the out-of-plane hydrogen deformations and their combination and overtones for 1,2,3,5-tetrasubstituted benzenes (6). For molecules with C_{2v} symmetry, modes I and II belong to the A_2 and B_1 species, and occur in the regions 821–942 cm⁻¹ and 839–920 cm⁻¹, respectively. The overtones I and II occur in the regions 1635–1860 cm⁻¹ and 1638–1841 cm⁻¹, respectively. The combination I + II occurs in the region 1659–1862 cm⁻¹.

1,2,4,5-TETRASUBSTITUTED BENZENES

Figure 9.46 is a summary of the out-of-plane hydrogen deformations and their combination and overtones for 1,2,4,5-tetrasubstituted benzenes (6). For molecules with v_h symmetry, modes I and II belong to the B_{3u} and B_{2g} species, respectively. For molecules with C_{2v} symmetry, modes I and II belong to the B_1 and A_2 species, respectively, and for molecules with C_s symmetry both modes belong to the A'' species. Modes I and II occur in the regions $861-911 \, \mathrm{cm}^{-1}$ and $828-980 \, \mathrm{cm}^{-1}$, respectively. These two overtones, if allowed, occur in the regions $1725-1830 \, \mathrm{cm}^{-1}$ and $1651-1770 \, \mathrm{cm}^{-1}$, respectively, and the combination occurs in the region $1695-1799 \, \mathrm{cm}^{-1}$.

1,2,3,4,5-PENTASUBSTITUTED BENZENES

Figure 9.47 is a summary of the out-of-plane hydrogen deformation and its first overtone for pentasubstituted benzenes (6). For molecules with C_{2v} symmetry, mode I belongs to the B_1 species, and for molecules with C_s symmetry mode I belongs to the A'' species. Its first overtone occurs in the region $1655-1848\,\mathrm{cm}^{-1}$.

SUMMARY OF THE OUT-OF-PLANE HYDROGEN DEFORMATIONS FOR SUBSTITUTED BENZENES AND THE OUT-OF-PLANE RING DEFORMATION FOR MONO-SUBSTITUTED BENZENES, AND THEIR COMBINATION AND OVERTONES

Table 9.22 is a summary of the frequency ranges for 11 types of substituted benzenes (6). The number of ranges for each class of substituted benzenes decreases as the number of protons joined to the ring decreases.

Table 9.23 is a summary of the frequency ranges for the combination and overtones of the out-of-plane hydrogen deforms for the 11 types of substitute benzenes (6). The number of ranges within each class of substituted benzenes decreases as the number of protons joined to the ring decreases.

CORRELATION CHART

Figure 9.48 is a correlation chart for the out-of-plane hydrogen deformations and their combination and overtones for substituted benzenes. The thickness of each bar graph for modes I through V and their combination and overtones indicates the relative band intensities exhibited within each class of substituted benzenes for most of the compounds within each class. The band intensities for the combination and overtones are generally 10 to 100 times less intense than the most intense IR band for the fundamental out-of-plane hydrogen deformations exhibited by each class of substituted benzenes.

It should be remembered that other overtones such as those for vinyl wag and vinylidene CH_2 wag also occur in the region 2000–1666 cm⁻¹ (see Volume 1, Chapter 4). Of course, the vast majority of compounds containing a carbonyl group exhibit ν C=O in the region 2000–1666 cm⁻¹, and these ν C=O modes have strong IR band intensity that mask many of the combination and overtone bands (see Volume 1, Chapters 10–16).

2,3,4,5,6-PENTACHLOROBIPHENYL

Table 9.24 compares vibrational data for hexachlorobenzene vs 2,3,4,5,6-pentachlorobiphenyl. Eight fundamentals of the pentachlorophenyl group are assigned (7).

REFERENCES

- 1. Varsanyi, G. (1969). Vibrational Spectra of Benzene Derivatives. New York/London: Academic Press.
- 2. Young, C. W., Du Vall, R. B., and Wright, N. (1951). Anal. Chem. 23: 709.
- 3. Scherer, J. R. (1964). Planar Vibrations of Chlorinated Benzenes. Midland, MI: The Dow Chemical Company.
- 4. Scherer, J. R., and Evans, J. C. (1963). Spectrochim Acta 19: 1763.
- 5. Scherer, J. R., Evans, J. C., Muelder, W. W., and Overend, J. (1962). Spectrochim. Acta 18: 57.
- 6. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data. Philadelphia: Sadtler.
- 7. Nyquist, R. A., Putzig, C. L., and Peterson, D. P. Appl. Spectros. 37: 140.
- 8. Sadtler Standard Raman Spectral Collection. Philadelphia: Sadtler Research Laboratories.
- 9. Nyquist, R.A., and Kagel, R. O. (1977). Organic Materials. Chapter 6, in *Infrared and Raman Spectroscopy*, Part B, E. G. Frame, Jr. and J. G. Grassellie, eds., New York: Marcel Dekker, Inc., p. 476.
- 10. Lau, C. L., and Snyder, R. G. (1971) Spectrochim. Acta 27A: 2073.
- 11. Nyquist, R. A. (1988). Appl. Spectrosc. 1314.
- 12. Taft, Jr., R. W. (1956) Steric Effects in Organic Chemistry. M. S. Newman, ed., New York: Wiley & Sons, p. 592.
- 13. Nyquist, R. A., Putzig, C. L., Leugers, M. A., McLachlan, R. D., and Thill, B. (1992). Appl. Spectrosc. 46: 981.
- 14. Nyquist, R. A. (1984). Appl. Spectrosc. 38: 264.
- 15. Nyquist, R. A. (1989). Appl. Spectrosc. 43: 440.
- 16. Nyquist, R. A., and Malanga, M. (1989) Appl. Spectrosc. 43: 442.
- 17. Loy, B. R., Chrisman, R. W., Nyquist, R. A., and Putzig, C. L. (1979). Appl. Spectrosc. 33: 638.
- 18. Nyquist, R. A., Platt, A. E., and Priddy, D. B. (1982). Appl. Spectrosc. 36: 417.
- 19. Nyquist, R. A., and Schuetz, J. E. (1985). Appl. Spectrosc. 39: 595.
- 20. Evans, J. C., and Nyquist, R. A. (1960). Spectrochim. Acta 16: 918.
- 21. Nyquist, R. A., Loy, B. R., and Chrisman, R. W. (1981). Spectrochim. Acta 37A: 319.
- 22. Taft, R. W. (1976) Progress in Physical Organic Chemistry. vol. 12, New York: Interscience Publication, J. Wiley, p. 74.

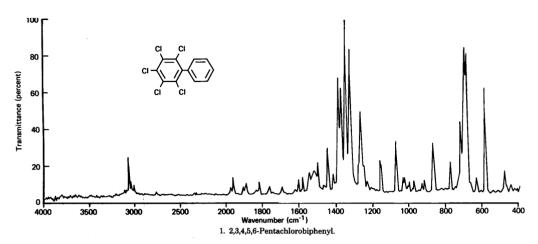
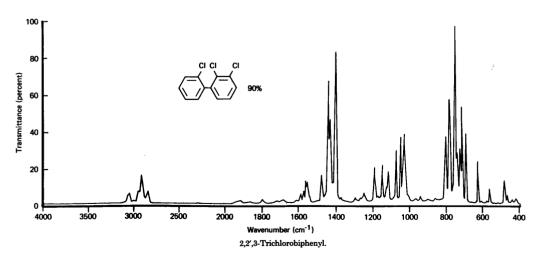
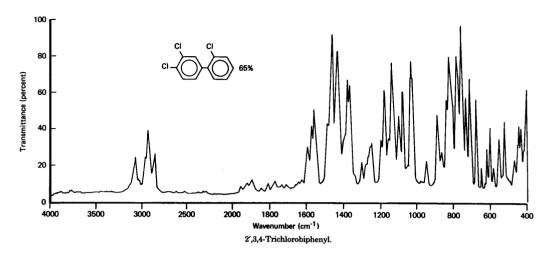




FIGURE 9.1 Infrared spectrum for 2,3,4,5,6-pentachlorobiphenyl.

FIGURE~9.2~~Infrared~spectrum~for~2,2',3-trichlorobiphenyl.

 $FIGURE\ 9.3\quad Infrared\ spectrum\ for\ 2', 3, 4-trichlorobiphenyl.$

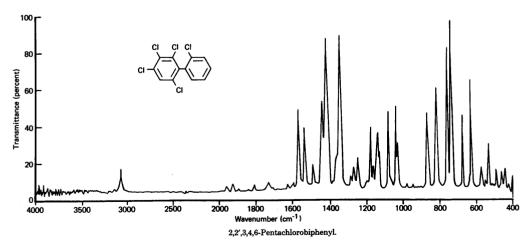


FIGURE 9.4 Infrared spectrum for 2,2',3,4,6-pentachlorobiphenyl.

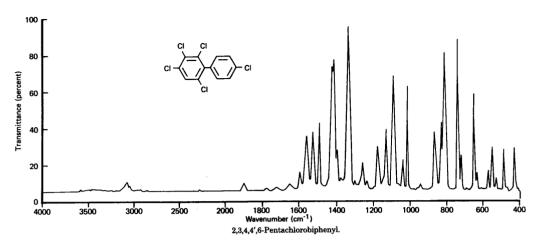


FIGURE 9.5 Infrared spectrum for 2,3,4,4',6-pentachlorobiphenyl.

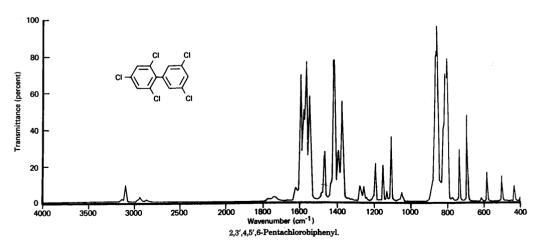


FIGURE 9.6 Infrared spectrum for 2,3',4,5',6-pentachlorobiphenyl.

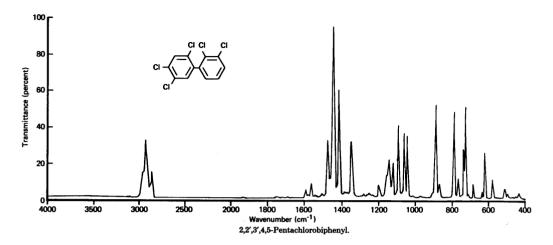
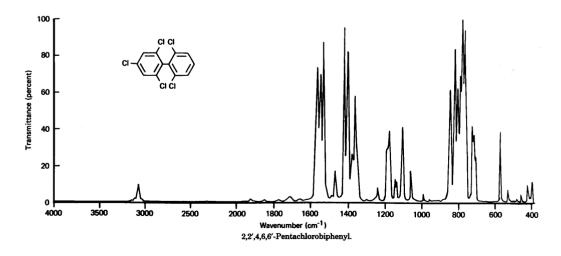



FIGURE 9.7 Infrared spectrum for 2,2',3',4,5-pentachlorobiphenyl.

 $FIGURE~9.8~~Infrared~spectrum~for~2,2^{\prime},4,6,6^{\prime}\text{-pentachlorobiphenyl}.$

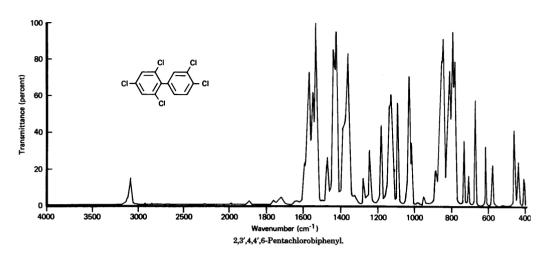


FIGURE 9.9 Infrared spectrum for 2,3',4,4',6-pentachlorobiphenyl.

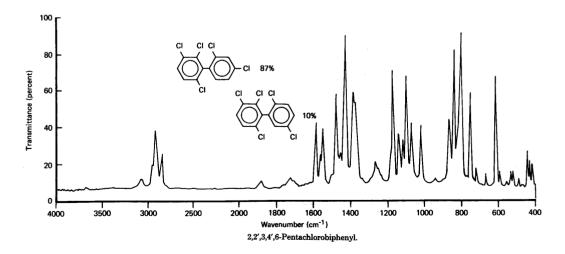
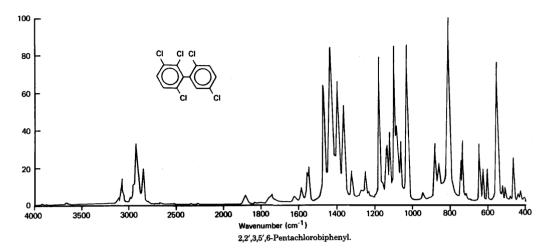



FIGURE 9.10 Infrared spectrum for 2,2',3,4',6-pentachlorobiphenyl.

 $FIGURE~9.11~~Infrared~spectrum~for~2,2^{\prime},3,5^{\prime},6\text{-pentachlorobiphenyl}.$

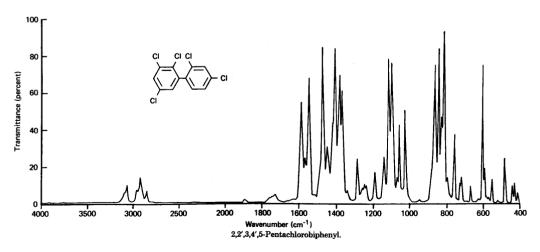
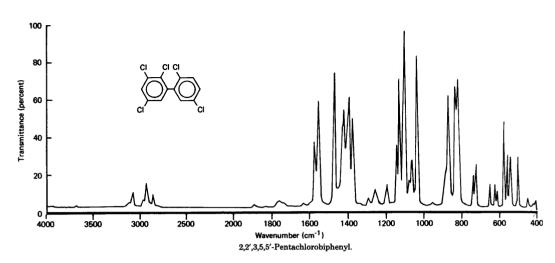
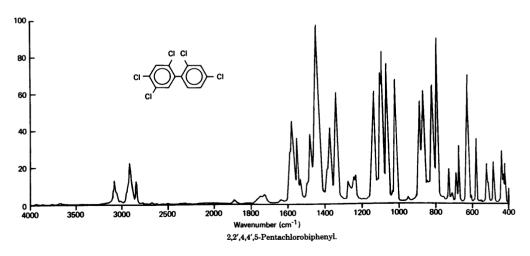




FIGURE 9.12 Infrared spectrum for 2,2',3,4',5-pentachlorobiphenyl.

 $FIGURE~9.13~~Infrared~spectrum~for~2,2^{\prime},3,5,5^{\prime}-pentachlorobiphenyl.$

 $FIGURE~9.14~~Infrared~spectrum~for~2,2^{\prime},4,4^{\prime},5\text{-pentachlorobiphenyl}.$

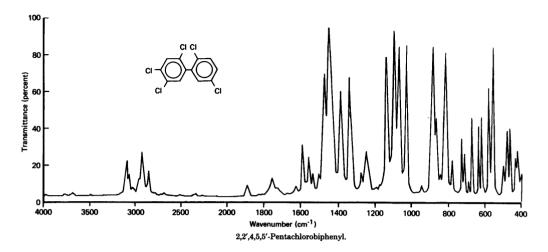


FIGURE 9.15 Infrared spectrum for 2,2',4,5,5'-pentachlorobiphenyl.

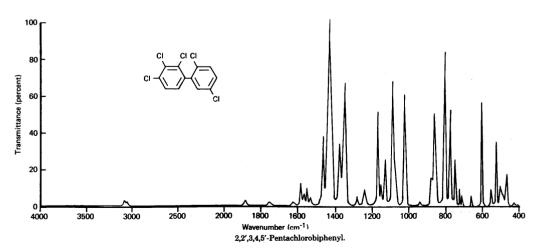


FIGURE 9.16 Infrared spectrum for 2,2',3,4,5'-pentachlorobiphenyl.

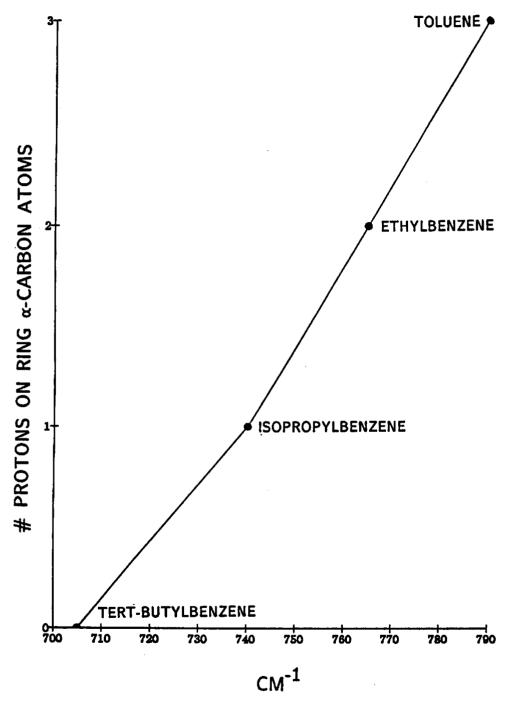


FIGURE 9.17 A plot of an A_1 fundamental for mono-substituted benzenes vs the number of protons on the ring α -carbon atom.

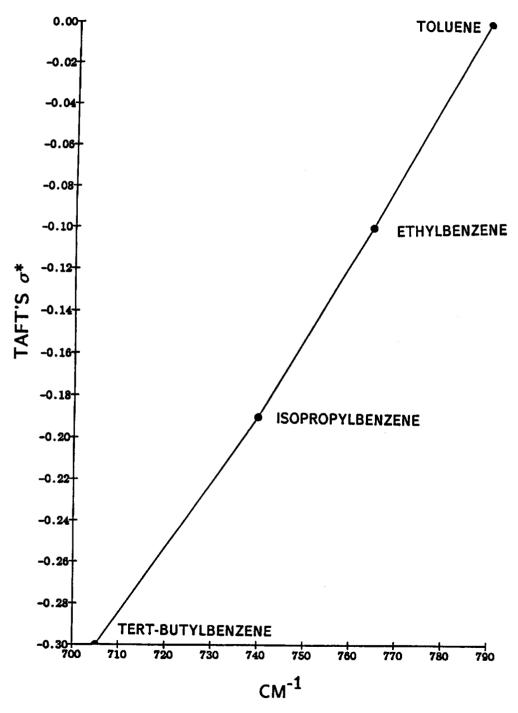


FIGURE 9.18 A plot of an A_1 fundamental for mono-substituted benzenes vs Tafts σ^* .

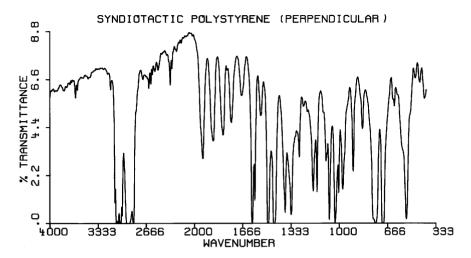


FIGURE 9.19 An IR spectrum for a uniaxially stretched syndiotactic polystyrene film (perpendicular polarization).

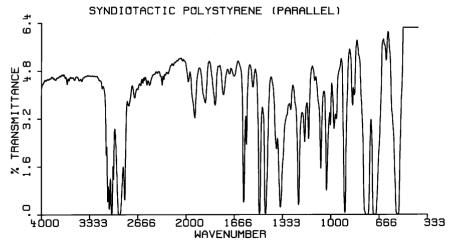


FIGURE 9.20 An IR spectrum for a uniaxially stretched syndiotactic polystyrene film (parallel polarization).

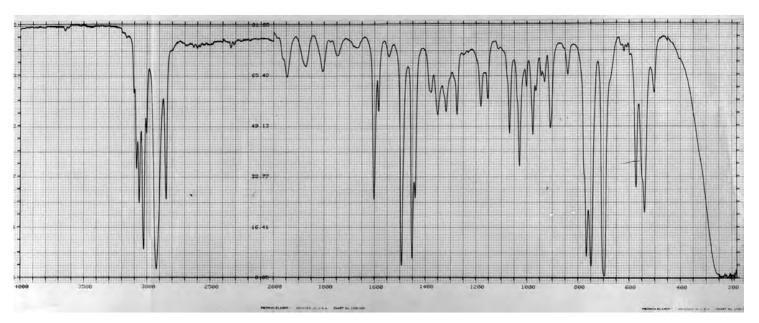


FIGURE 9.21 An IR spectrum of syndiotactic polystyrene film cast from boiling 1,2-dichlorobenzene onto a KBr plate.

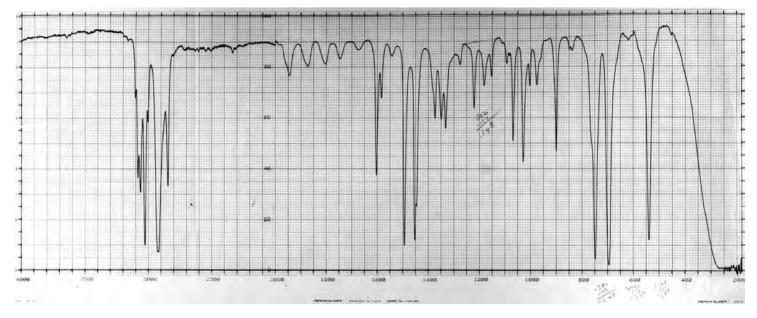


FIGURE 9.22 An IR spectrum of the same film used to record the IR spectrum shown in Fig. 9.21 except that the film was heated to 290 °C then allowed to cool to ambient temperature before recording the IR spectrum of syndiotactic polystyrene.

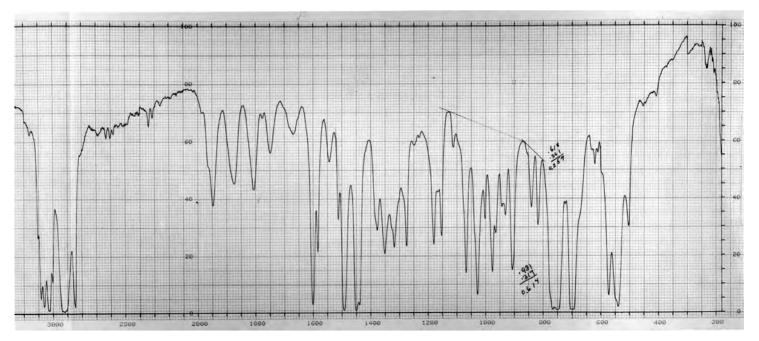


FIGURE 9.23 An IR spectrum syndiotactic styrene (98%)-4-methyl-styrene (2%) copolymer cast from boiling 1,2-dichlorobenzene onto a C_sI plate.

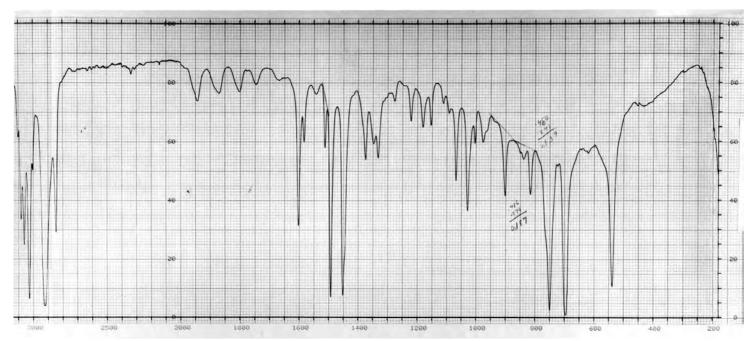


FIGURE 9.24 An IR spectrum of a styrene (93%)-4-methylstyrene (7%) copolymer cast from boiling 1,2-dichlorobenzene onto a C_sI plate.

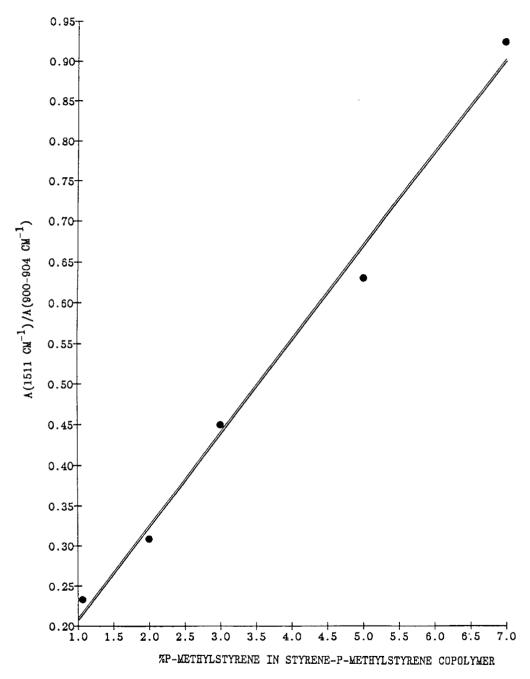


FIGURE 9.25 A plot of the IR band intensity ratio $A(1511\,\mathrm{cm}^{-1})/A~(900-904\,\mathrm{cm}^{-1})$ vs the weight % 4-methylstyrene in styrene –4-methylstyrene copolymers.

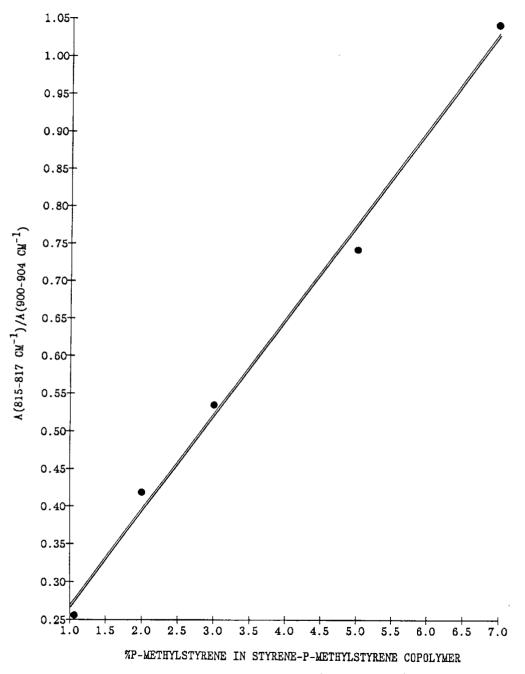


FIGURE 9.26 A plot of the IR band intensity ratio $A(815-817\,\mathrm{cm}^{-1})/A(900-904\,\mathrm{cm}^{-1})$ vs the weight % 4-methyl-styrene in styrene –4-methylstyrene copolymers.

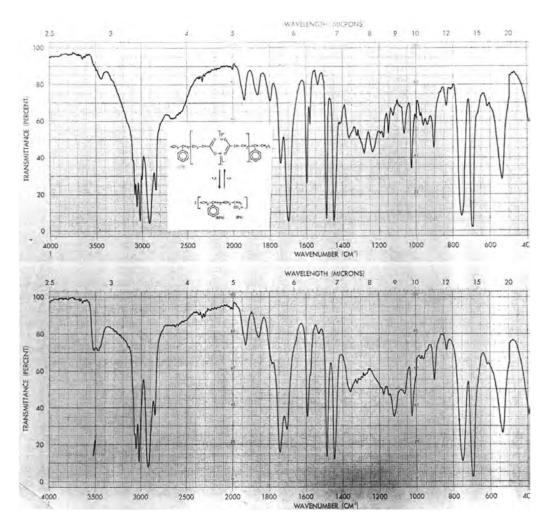


FIGURE 9.27 Top: Infrared spectrum of styrene (92%) -acrylic acid (8%) copolymer recorded at 35 °C. Bottom: Infrared spectrum of styrene (92%) -acrylic acid (8%) copolymer recorded at 300 °C.

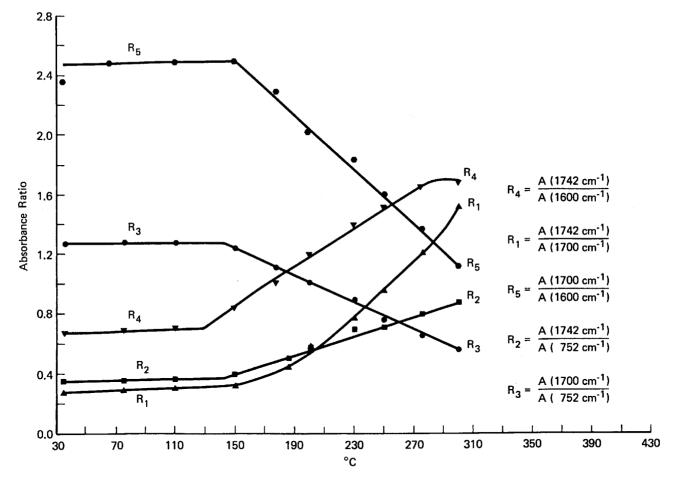


FIGURE 9.28 Styrene (92%) – acrylic acid (8%) copolymer absorbance ratios at the indicated frequencies vs copolymer film temperatures in $^{\circ}$ C; R_1 , R_2 , and R_4 indicate an increase in CO_2H concentrations at temperatures >150 $^{\circ}$ C; R_3 and R_5 indicate a decrease in $(CO_2H)_2$ concentrations at >150 $^{\circ}$ C. Base line tangents were drawn from 1630–1780 cm⁻¹, 1560–1630 cm⁻¹ and 720–800 cm⁻¹ in order to measure the absorbance values at 1746 cm⁻¹ and 1700 cm⁻¹, 1600 cm⁻¹ and 752 cm⁻¹, respectively.

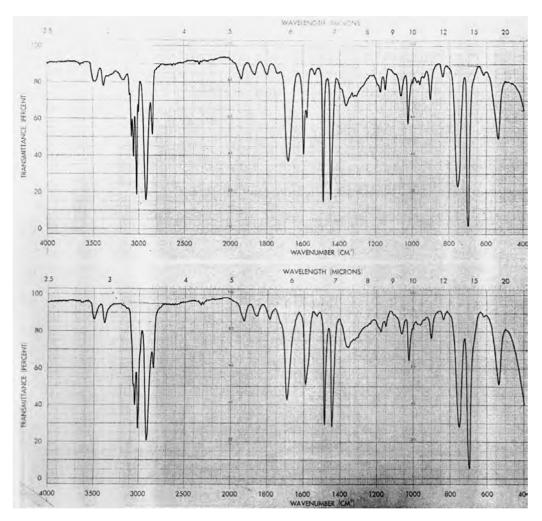
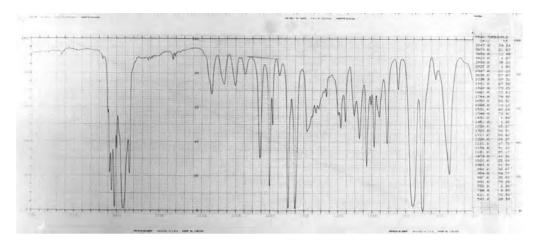



FIGURE 9.29 Top: Infrared spectrum of styrene–acrylamide copolymer recorded at $27\,^{\circ}$ C. Bottom: Infrared spectrum of styrene–acrylamide copolymer recorded at $275\,^{\circ}$ C.

FIGURE~9.30~~An~IR~spectrum~for~a~styrene-2-isopropenyl-2-oxazoline~copolymer~(SIPO)~cast~from~methylene~chloride~onto~a~KBr~plate.

STYRENE-2-ISOPROPENYL-2-OXAZOLINE COPOLYMER

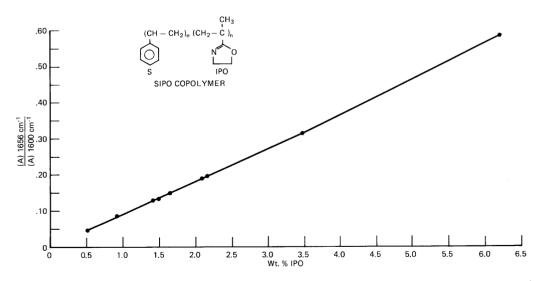


FIGURE 9.31 A plot of the weight % IPO in the SIPO copolymer vs the absorbance ratio $(A)(1656\,\mathrm{cm}^{-1})/(A)(1600\,\mathrm{cm}^{-1})$.

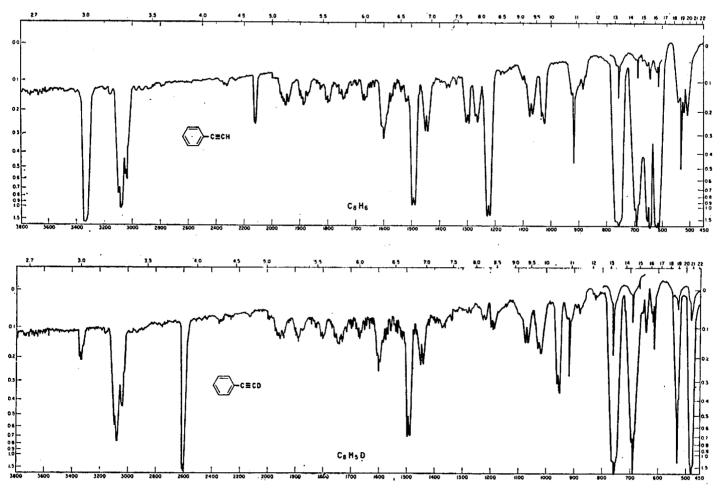
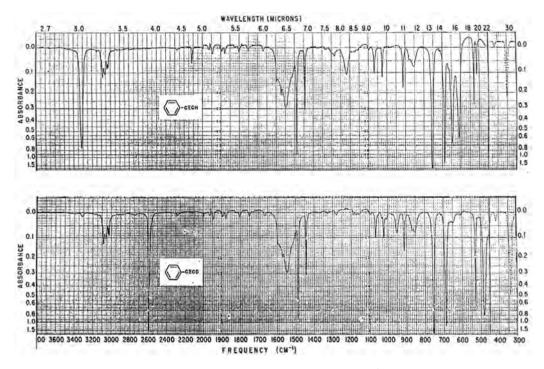



FIGURE 9.32 Top: Vapor-phase IR spectrum of ethynylbenzene in a 4-m cell (vapor pressure is in an equilibrium with the liquid at 25° C). Bottom: Vapor-phase IR spectrum of ethynylbenzene-d in a 4-m cell (vapor pressure is in an equilibrium with the liquid at 25° C).

FIGURE 9.33 Top: An IR solution spectrum for ethynylbenzene (3800–1333 cm $^{-1}$ in CCl₄ (0.5 M) solution in a 0.1 mm NaCl cell), (1333–450 cm $^{-1}$ in CS₂ (0.5 M) solution in a 0.1 mm KBr cell), and in hexane (0.5 M) solution using a 2 mm cis I cell. The IR band at 1546 and 853 cm $^{-1}$ is due to the solvents. Bottom: An IR solution spectrum for ethynylbenzened recorded under the same conditions used to record the top spectrum.

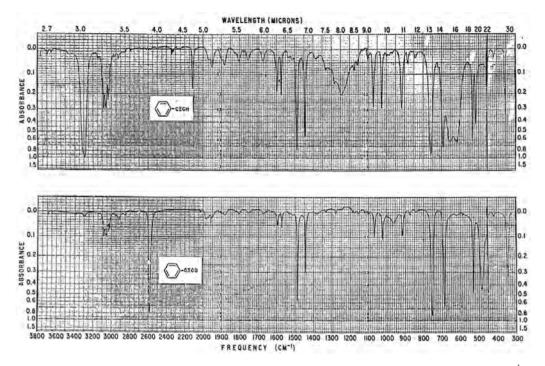


FIGURE 9.34 Top: Liquid-phase IR spectrum ethynylbenzene between KBr plates in the region 3800– $450\,\mathrm{cm}^{-1}$, and between C_SI plates in the region 450– $300\,\mathrm{cm}^{-1}$. Bottom: Liquid-phase IR spectrum of ethynylbenzene-d recorded under the same conditions as the top spectrum.

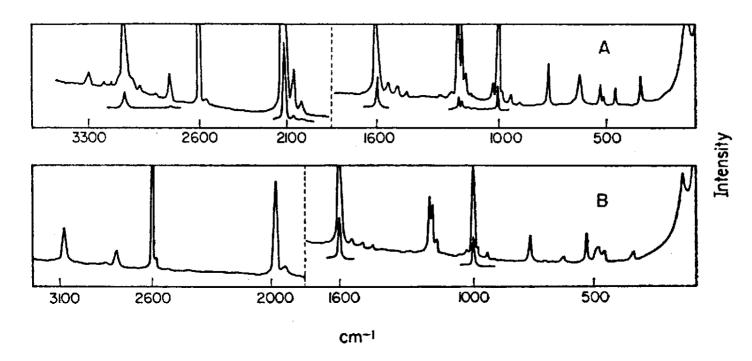
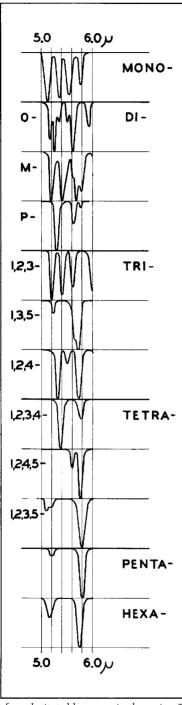



FIGURE 9.35 Top: Raman spectra for ethynylbenzene in the liquid phase. Bottom: Raman spectra for ethynylbenzene-d in the liquid phase.

 $FIGURE~9.36~A~correlation~chart~for~substituted~benzenes~in~the~region~5-6\,\mu~(after~Young,~DuVall,~and~Wright).$

 $III + V = A^{II} \times A^{II} = A^{I}$ C_c planar C_e perpendicular plane $III + V = A^I \times A^I = A^I$ 1611-1748 cm⁻¹ range

FIGURE 9.37 Summary of out-of-plane hydrogen deformations and their combination and overtones for mono-substituted benzenes.

	+H +H +H -	-H + H + H + H + H + H + H + H + H + H +	+H +H +H -H	+H +
Symmetry C _{2v} C _s range	A ₂	B _I	A ₂	B _I
	A ^{II}	A ^{II}	A ^{II}	A ^{II}
	956–989 cm ^{-I}	915–970 cm ^{-I}	833–886 cm ^{-I}	725–791 cm ^{-I}
$\frac{Symmetry}{C_{2v}}$ C_{s} range	$2 \times I = 2 \times A_2 = A_1$	$I + II = A_2 \times B_1 = B_2$	$2 \times II = 2 \times B_{I} = A_{I}$	$I + III = A_2 \times A_2 = A_1$
	$2 \times I = 2A^{II} = A^{I}$	$I + II = A^{II} \times A^{II} = A^{I}$	$2 \times II = 2 \times A^{II} = A^{I}$	$I + III = A^{II} \times A^{II} = A^{I}$
	$1912-1979 \text{ cm}^{-1}$	$1869-1952 \text{ cm}^{-1}$	$1828-1932 \text{ cm}^{-1}$	$1789-1875 \text{ cm}^{-1}$
Symmetry C _{2v} C _s range	$II + III = B_1 \times A_2 = B_2$ $II + III = A^{II} \times A^{II} = A^{I}$ $1748-1849 \text{ cm}^{-1}$	$2 \times III = 2 \times A_2 = A_1$ $2 \times III = 2 \times A^{II} = A^{I}$ $1666-1772 \text{ cm}^{-1}$	$II + IV = B_1 \times B_1 = A_1$ $II + IV = A^{II} \times A^{II} = A^{I}$ $1658-1758 \text{ cm}^{-1}$	

FIGURE 9.38 Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2-disubstituted benzenes.

FIGURE 9.39 Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,3-disubstituted benzenes.

IV

 $B_{3\mu}$

794-870 cm⁻¹

FIGURE 9.40 Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,4-disubstituted benzenes.

819-920 cm⁻¹

range

Symmetry

 D_{3h}

 C_{2v}

D _{3h}	$2 \times I = 2 \times E^{II} = A_{I}^{I}, E^{I}$	$1 + 11 = E^{ } \times A^{ }_{2} = E^{ }$
C _{2v}	2 x I = 2 x B _I = A _I	$I + II = B_1 \times A_2 = B_2$
C _s	$2 \times I = 2 \times A^{II} = A^{I}$	$I + II = A^{II} \times A^{II} = A^{I}$
range	1635—1840 cm ^{-l}	1605—1840 cm ^{-l}

FIGURE 9.41 Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,3,5-trisubstituted benzenes.

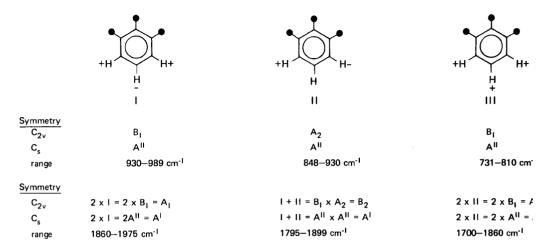


FIGURE 9.42 Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2,3-trisubstituted benzenes.

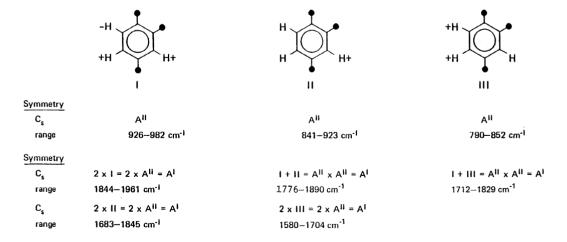


FIGURE 9.43 Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2,4-trisubstituted benzenes.

FIGURE 9.44 Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2,3,4-tetrasubstituted benzenes.

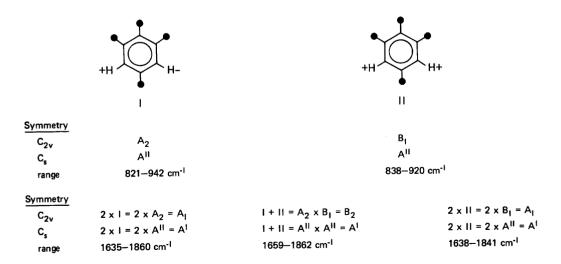


FIGURE 9.45 Summary for out-of-plane hydrogen deformations and their combination and overtones for 1,2,3,5-tetrasubstituted benzenes.

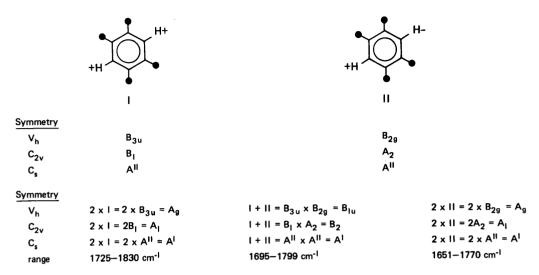


FIGURE 9.46 Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2,4,5-tetrasubstituted benzenes.

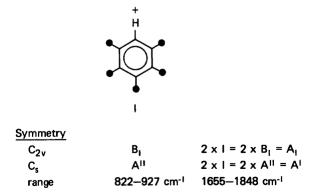


FIGURE 9.47 Summary of out-of-plane hydrogen deformation and its first overtone for 1,2,3,4,5-pentasubstituted benzenes.

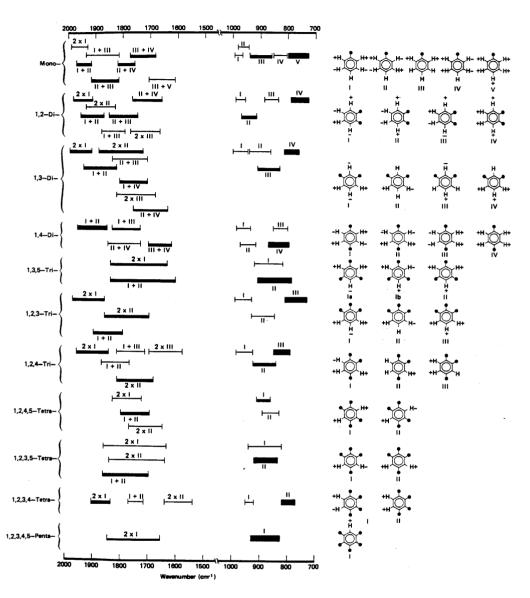


FIGURE 9.48 Infrared correlation chart for out-of-plane hydrogen deformations and their combination and overtones for substituted benzenes.

TABLE 9.1 Vibrational data for chlorobenzene vs chlorinated biphenyls

Chlorobenzene vs phenyl In plane modes	Chlorobenzene cm ⁻¹	$2,3,4,5,6$ -Pentachlorobiphenyl cm $^{-1}$
A1		
	3087	3068
	3072	3030
	3067	3000
	1584	1602
	1480	1497
	1174	1155
	1084	1151?
	1023	1023
	1002	1000
	703	719
	418	449
B2		
	3087	3058
	3059	3030
	1584	1580
	1447	1442
	1325	?
	1272	1262
	1157	1157
	1068	1070
	613	610
	297	?
A2		
	957	974
	825	[845]
		414?
B1		
	976	982
	897	918
	734	773
	679	686
	?	472
	?	?

[?] tentative assignment or not assigned.

TABLE 9.2 Vibrational data for 1,2-dichlorobenzene vs chlorinated biphenyls

$1,2$ -Dichlorobenzene cm^{-1}	2,2′,3-Trichlorobiphenyl cm ⁻¹	$2.3'4'$ -Trichlorobiphenyl cm $^{-1}$	2,2′,3,4,6-Pentachlorophenyl cm ⁻¹
Al species			
3070	3068	3060	3062
3070	3068	3060	3062
1575	1592	1589	1592
1458	1479	1481	1481
1276	1278	1274	1279
1162	1178	1175	1175 or 1182
1130	1135	1151?	1125 or 1132
1041	1029	1021	1032 or 1025
660	715	710	?
480	627	648	628
203	?	?	?
B2 species			
3072	3068	3060	3062
3072	3068	3060	3062
1575	1578	1570	1562
1438	1421	1429	1417
1252	1250	1242	1040
1130	1129	1131	1132
1038	1029	1029	1025
740	735	730?	748sh
429	422	430	423
334	?	?	?
Out-of-plane modes			
A2 species			
975	977	978	974
850	[861]	[863]	[862.5]
695	725	730?	728sh
564	580	581	570
154	?	?	?
B1 species			
940	941	944	941
749	751	751	754
435	434	431	438

? not assigned.

TABLE 9.3 Vibrational data for 1,3-dichlorobenzene vs 2,3,3′,5,6-pentachlorobiphenyl

1,3-Dichlorobenzene In-plane modes	Assignment cm ⁻¹	2,3,3′,5,6-Cl5 biphenyl cm ⁻¹
Al		
	3093.8	
	3085.8	
	3064.6	
	1574.6	1575.8
	1392.6	1390.4
	1126.2	
	1075.2	1083.9
	995.6	
	662.6	658
	401.4	
	201.4	
B2		
	3083.6	
	1586.2	
	1474.5	1475.4
	1326.7	
	1238.9	1247.4
	1169	1165.1
	1069.2	1063.6
	786.3	792.1
	422	
	370.6	

TABLE 9.4 Vibrational data for 1,4-dichlorobenzene vs chlorinated biphenyls

	1,4-Dichlorobenzene	2,3,4,4',6-Pentachlorobiphenyl
Species	cm ⁻¹	cm ⁻¹
In-plane modes		
Ag[R]		
	3087	3078
	1574	1599
	1169	1176
	1096	1131
	747	?
D2	328	?
B3g	2065	3042
	3065 1574	[1560]
	1290	1300
	626	638
	350	?
Blu		
	0	3078
	390	
	1477	1492
	1090	1091
	1015	1013
	550	550
B2u	2000	2070
	3090	3078
	1394 1221	1397 1234
	1107	1102sh
	226	?
Out-of-plane modes		
Out-or-plane modes		
Blg(R)		
	815	[817]
B2g(R)		
	934	941
	687	721
A	298	?
Au	951	959
	407	410?
B3u	101	710:
	819	815
	485	488
	125	?

[?] not assigned.

TABLE 9.5 Vibrational data for 1,3,5-trichlorobenzene vs chlorinated biphenyls

	1,3,5-Trichlorobenzene	2,3',4,5',6-Pentachlorobipheny
Species	cm ⁻¹	cm ⁻¹
In-plane modes		
A1'		
	3084	3080
	1149	1131
	997	997
	379	?
A2'		
	1379	1386
	1249	1233
	471	449
E'		
	3089	3080
	1570	1590 & 1575
	1420	1459
	1098	1099
	816	805
	429	[430]
	191	?
Out-of-plane modes		
A2"		
	853	849
	662	689
	148.5	?
E"		
	868.5	[870]
	530	[525]
	215	?

[?] not assigned.

TABLE 9.6 Vibrational data for 1,2,3-trichlorobenzene vs 2,2',3-trichlorobiphenyl, 2,2',3',4,5-pentachlorobiphenyl, and 2,2',4,6,6'-pentachlorobiphenyl

Species	$1,2,3$ -Trichlorobenzene ${ m cm}^{-1}$	$2,2',3$ -Trichlorobiphenyl cm^{-1}	2,2′,3′,4,5-Pentachloro- biphenyl cm ⁻¹	2,2′,4,6,6′-Pentachloro biphenyl cm ⁻¹
A1				
	3090			
	1566	1591	1590	1559 or masked
	1416	1401	1411	1411
	1161	1150	1139	1146
	1087	1072	1088	1113
	1049	1050	1040	1069
	737	740	731	733
	513	562	575	580
	352[R]	?	?	?
	212[R]	?	?	?
B2				
	3060			
	1566	1557	1560	1559
	1436	1431	1440	1430
	1260	1250	1249	1248
	1196	1190	1195	1195sh or 1184
	1156[R]	1174?	1150?	1151?
	791	803	762	787
	486	483	484	491
	398	?	?	?
Out-of-plane modes				
A2				
	896	900	masked	892
	524	527?	510?	490?
	212[R]	?	?	?
B1				
	963	967	969	968
	773	782	784	772
	697	692	680 or 721	680 or 721
	500	?	?	?
	242[R]	?	?	?
	90[R]	?	?	?

[?] not assigned.

TABLE 9.7 Vibrational data for 1,2,4-trichlorobenzene vs chlorinated biphenyls

Species	$1,2,4$ -Trichlorobenzene cm^{-1}	2',3,4-Trichlorobiphenyl cm ⁻¹	2,3′,4,4′,6-Pentachlorobiphenyl cm ⁻¹	2,2,3′,4′,6-Pentachlorobiphenyl cm ⁻¹	$2,2',3,5',6$ -Pentachlorobiphenyl cm^{-1}
In-plane modes					
A'					
	3094	3060	3079	?	?
	3072	3060	3079	?	?
	1571	1570	1573	1589	?
	1562	1557	1552	1565	?
	1461	1466	1472	1479	?
	1377	1372	1347sh	1382	?
	1267	1272	1278	1280	?
	1245	1249	1244	1250	?
	1156	1151	1152sh		?
	1132	1131	1130	1119	1119
	1096	1094	1093	1100	1091
	1036	1035	1031	1021	1026
	817	885	884	?	?
	697	710	708	?	?
	576	615	615	612	?
	456	469	459	471	463
	396	?	405	?	?
	328	?	?	?	?
	211	?	?	?	?
	1578	1590	1586	1572	1571
	1551	1556	1568	1550	?
	1469	1472	1472	1469	1471
	1270	1272	1285	1285	1288
	1244	1245	1246	1249	1248

(continues)

Benzene and Its Derivatives

TABLE 9.7 (continued)

Species	$1,2,4$ -Trichlorobenzene ${\rm cm}^{-1}$	2′,3,4-Trichlorobiphenyl cm ⁻¹	2,3′,4,4′,6-Pentachlorobiphenyl cm ⁻¹	2,2,3′,4′,6-Pentachlorobiphenyl cm ⁻¹	2,2′,3,5′,6-Pentachlorobiphenyl cm ⁻¹
	1163	1162sh	?	?	?
	1098	?	?	?	1135sh
	1089	1093	1100	1094	1096
	1020	1028	1024	1029	1031
	621	552?	602	?	612
	481	461	480	?	474
Out-of-plane modes					
A'					
	942	944	951	943	943
	869	863	855	863	859
	811	820	812	809	
	688	672	672	668	695
	551	550	[572]	534	551
	305	?	?	?	?
	183	?	?	?	?
	117	?	?	?	?
	947	946	947	946	[947]
	862	863	860	863	866
	818	812	811	813	812
	670	674	?	644?	668
	575	577	549	551	557
	?	?	439	442	435

? not assigned.

TABLE 9.8 Vibrational data for 1,2,4,5-tetrachlorobenzene vs chlorinated biphenyls

Species	$1,2,3,4,5$ -Tetrachlorobenzene cm^{-1}	2,2′,4,4′,5-Pentachlorobiphenyl cm ⁻¹	2,2′,4,5,5′-Pentachlorobiphenyl cm ⁻¹	2,2′,3′,4,5-Pentachlorobiphenyl cm ⁻¹
In-plane modes				
Ag				
_	3070			
	1549	1550	1557	1560
	1165	1167	masked	1150?
	684	723	723	731
	352			
	190			
B3g				
	1566	1533	1536	1540
	1240	1245	1244	1248
	868			
	511	481	495	494
	312			
Blu				
	3094			
	1327	1337	1334	1342
	1063	1063	1067	1057
	510	510 or 518	510 or 524	510
	218			
B2u				
	1473 in FR	1479 in FR	1472 in FR	1472 in FR
	[860 + 600]	[862 + 603]	[605 + 863]	[865 + ?]
	1448 in FR	1443 in FR	1446 in FR	1440 in FR

(continues)

Benzene and Its Derivatives

TABLE 9.8 (continued)

Consider	$1,2,3,4,5$ -Tetrachlorobenzene cm^{-1}	2,2′,4,4′,5-Pentachlorobiphenyl cm ⁻¹	2,2′,4,5,5′-Pentachlorobiphenyl cm ⁻¹	2,2′,3′,4,5-Pentachlorobipheny cm ⁻¹
Species	CIII	CIII	CIII	CIII
	1226	1233	∼1235sh	1229
	1118	1133	1138	1139
	645	670	668	679
	209			
Out-of-plane modes				
Blg				
O	348			
B2g				
	860	862 or masked	863	865
	681	684	679	680
	225			
Au				
	600	603?	605?	618 or masked
	80			
B3u	878	882	880	882
	442	429	430	432
	140			

[?] tentative assignment.

TABLE 9.9 Vibrational data for 1,2,3,5-tetrachlorobenzene vs chlorinated biphenyls

	1,2,3,5-Tetra- chloro- benzene	2,3′,4,4′,6-Penta- chloro- biphenyl	2,3′,4,5′,6-Penta- chloro- biphenyl	2,2',4,6,6'-Penta- chloro- biphenyl	2,2′,3,4′,5-Penta- chloro- biphenyl	2,2′,3,5,5′-Pent chloro- biphenyl
Species	cm ⁻¹	cm ⁻¹	cm^{-1}	cm ⁻¹	cm^{-1}	cm^{-1}
In-plane modes						
A1						
	3078	3079	3080		3065	3065
	1566	1573	1560	1573	1568	1571
	1412	1425	1411	1411	1407	1417
	1170	1182	1183	1184	1188	1190
	1120	1138 or 1130	1142	1115	1119	1121
	1049	1032	1040	1069	1056	1056
	836	812 masked	815sh	830	841	827
	598 stg	580sh	610?wk	580	601 stg	601 stg
	326					Ü
	206					
B2						
	3078		3080		3065	3065
	1550	1539	1542	1542	1549	1550
	1378	1362	1368	1371	1369	1371
	1254	1260	1269	1248	1246	1250
	1191	1182	1182	1183	1188	1190
	810[FR]	797	797	800	819	829
	521	[572]	579	580	550	551
	431	[435]	[430]	431	439	442
	215					
	192					
Out-of-plane modes						
A2						
	871	884	[870]	[870]	[869]	[867]
	520	521?	[525?]	525?	520	520
	215					
31						
	859	855	855	855	861	863
	692	732	729	733	716	719
	560	572	579	580	569	570
	316					
	147					
	80					

TABLE 9.10 Infrared data for 1,2,3,4-tetrachlorobenzene vs chlorinated biphenyls

Species	1,2,3,4-Tetra- chlorobenzene cm ⁻¹	2,2′,3,4′,6-Penta- chlorophenyl cm ⁻¹	2,2′,3,5,6-Penta- chlorobiphenyl cm ⁻¹	2,2′,3′,4,5′-Penta- chlorobiphenyl cm ⁻¹
In-plane modes				
A1	2271			
	3074	1565	1 ~~~	
	1560	1565	1557	1000
	1364	1372?	1362?	1358
	1248	1250	1249	1248
	1178	1173	1175	1176
	1132	1140	1132	1135
	836	865	870	882
	515	590	602	612
B2				
	3074			
	1560	1551	1550	1559
	1428	1431	1433	1438
	1168			
	1077	1100	1091	1096
	775	808sh	806(masked)?	781
	609	[612]	602	[612]
	482	490	463	473
	356			
	202			
Out-of-plane modes				
A2				
	940			[947]
	756[R]			ţ ,
	307[R]			
B1	1			
==	808	800	806	813
	557	557	[549]	532
	240[R]	551	[212]	332
	116[R]			

TABLE 9.11 Vibrational data for pentachlorobenzene vs 2,2'3,4,6-pentachlorobiphenyl and 2,3,4,4',6-pentachlorobiphenyl

Species	Pentachlorobenzene ${\rm cm}^{-1}$	$2,2',3,4,6$ -Pentachlorobiphenyl cm $^{-1}$	2,3,4,4′,6-Pentachlorobiphenyl cm ⁻¹
In-plane modes			
Al			
	3069	3064	3078
	1528	1529	1529
	1338	1338	1337
	1198[R]	1191	masked
	1087	1076	masked
	823	811	820
	563	570	573
B2			
	1559	1562	[1560]
	1398	1417	1421
	1235[R]	1230	1235
	1169	1171	1177
	[863]calc.	[862.5]calc.	[862.5]calc.
	683	671	650
	556	548	549
Out-of-plane modes			
A2			
	597		
B1			
	863	862	863
	701	735sh?	741?
	526	529	529
	4-4	1725 = 2[862.5]	¥

[?] tentative assignment.

TABLE 9.12 Vibrational data for 1,2,3,4,5,6-hexachlorobenzene vs 1,2,3,4,5-pentachlorobiphenyl

Species	Hexachlorobenzene ${\rm cm}^{-1}$	2,3,4,5,6-Pentachlorobiphenyl cm ⁻¹
Alg		
0	1210[R]	1206
	372[R]	
Blu		
	1108	
	369	
A2g		632
	630 est.	
B2u		
	1224 Comb.	1230
	230 est.	
E2g		
	1512	1516 & 1497
	870[R]	868
	323[R]	
	219[R]	
Elu		
	1350	1344 & 1320
	699	685
	218	
A2u	222	
D2	209	
B2g	704.6	7502
	704 Comb.	750?
F1	97 Comb.	
Elg	240[D]	
E2u	340[R]	
EZU	594	506
	80 Comb.	586
	ou Comb.	

TABLE 9.13 Raman data for mono-substituted benzenes

Compound	Ring 4	Ring 8	Ring 9	Ring 20	R.I.[Ring 4]/ R.I.[Ring 9]	R.I.[Ring 8]/ R.I.[Ring 9]	R.I.[Ring 20]/ R.I.[Ring 9]
Allylbenzene	1604(1)	1031(2)	1004(9)	621(0)	0.11	0.22	0.06
N-Benzyl acrylamide		1031(1)	1004(9)	622(1)		0.11	0.11
Benzyl acrylate	1609(1)	1031(2)	1004(9)	622(1)	0.11	0.22	0.11
N-Benzyl methacrylamide	1604(2)	1030(2)	1003(9)	621(1)	0.22	0.22	0.11
Cinnamyl acrylate		1031(2)	1002(9)	620(1)		0.22	0.11
Cinnamic acid	1600(8)	1027(2)	1001(7)	620(0)	1.14	0.29	0.07
Benzil	1595(4)	1020(2)	1000(9)	616(1)	0.44	0.22	0.11
Benzoin ethyl ether	1599(7)	1033(3)	1005(9)	617(2)	0.77	0.33	0.22
Diphenyl divinyl silane	1590(2)	1030(2)	999(9)	620(0)	0.22	0.22	0.06
1,6-Diphenyl-1,3,5-hexatriene	1592(9)		1000(1)		0.11		
Glycidyl cinnamate	1601(6)	1030(1)	1001(5)		1.2	0.2	
2-Hydroxy-4-acryoxyethoxy benzophenone	1602(5)	1027(3)	1001(9)	618(1)	0.56	0.33	0.11
Hydroxy-4-dodecyloxy benzophenone	1601(9)	1030(2)	1001(8)	618(2)	1.13	0.25	0.25
2Hydroxy-4-methoxy-5-sulfonic acid	1598(7)	1029(3)	1003(9)	617(1)	0.77	0.33	0.11
4-Methacryloxy-2-hydroxy benzophenone	1600(7)	1030(3)	1002(9)	621(1)	0.77	0.33	0.11
α-Methylstyrene	1602(4)	1029(2)	1001(9)		0.44	0.22	
Phenyl acrylate	1594(2)	1025(3)	1007(9)	615(1)	0.22	0.33	0.11
2-Phenylethyl acrylate	1606(2)	1032(3)	1004(9)	622(1)	0.22	0.33	0.11
2-Phenylethyl methacrylate	1606(2)	1032(3)	1004(9)	622(1)	0.22	0.33	0.11
Phenyl glycidyl ether	1601(1)	1026(2)	997(9)	615(1)	0.11	0.22	0.11
N-Phenyl methacrylamide	1598(4)	1031(1)	1002(9)	616(1)	0.44	0.11	0.11
Phenyl methacrylate	1594(2)	1026(3)	1002(9)	615(2)	0.22	0.33	0.22
Phenyl vinyl sulfone	1585(4)	1025(1)	1002(9)	616(1)	0.44	0.11	0.11
Vinyl benzoate	1603(3)	1028(1)	1004(9)	618(1)	0.33	0.11	0.11
Diphenyl terephthalate	1610(3)	1026(1)	1001(9)	614(0)	0.33	0.11	0.06
Diphenyl isophthalate	1607(1)	1022(0)	1004(9)	615(1)	0.11	0.06	0.11

TABLE 9.14 Infrared and Raman data for an A₁ fundamental for mono-X-benzenes

Compound	Raman(liquid) ${ m A_1}$ Fundamental ${ m cm^{-1}}$ strong	IR(liquid) A ₁ Fundamental cm ⁻¹ weak	# Protons on α carbon	Taft σ*	Es
Toluene	790	781	3	0	0
Ethylbenzene	760	770	2	-0.1	-0.07
Isopropylbenzene	740	741	1	-0.19	-0.47
s-Butylbenzene		731	1	-0.21	
t-Butylbenzene	705	masked	0	-0.3	-1.54
α-Syndiotactic polystyrene Isotactic polystyrene	773.4[solid] 785[solid]				

TABLE 9.15 Vibrational assignments for the bromodichlorobenzene

	1-Br,3,5-Cl ₂ benzene C ₂ v symmetry	1-Br,2,6-Cl ₂ benzene C ₂ v symmetry	1-Br,2,3-Cl ₂ benzene C ₂ v symmetry	1-Br,2,4-Cl ₂ benzene C ₂ v symmetry	1-Br,2,5-Cl ₂ benzene C ₂ v symmetry	1-Br,3,4-Cl ₂ benzene C ₂ v symmetry
In-plane	3090	3060	3059	3087	3088	3089
vibrations	3090	3060	3059	3075	3070	3065
	3090	3060	3059	3075	3070	3065
	1570	1578	1580	1562	1569	1561
	1559	1561	1558	1553	1555	1554
	1417	1431	1431	1450	1454	1452
	1417	1403	1411	1368	1369	1369
	1365	1261	1252	1258	1259	1260
	1230	1189	1190	1240	1241	1244
	1142	1150	1155	1141	1115	1137
	1097	1144	1144	1135	1124	1119
	1097	1080	1078	1088	1097	1075
	999	1032	1040	1019	1927	1031
	801	791	749	811	792	791
	766	710	728	678	661	684
	470	460	500	518	570	547
	435	470	461	449	429	449
	419	401	382	402	349	381
	311	305	287	270	329	266
	187	199	209	202	200	207
	160	171	170	171	161	170
Out-of-plane	867.5	965	963	942	943	941
vibrations	867.5	884	891.5	865	870	869
	850	774	770	805	811	809
	660	691	693	667	681	675
	527.5	522	512	544	540	541
	527.5	480	492	430	431	432
	218	249	250	300	313	304
	218	213	215	189	171	182
	140	91	91	108	118	110

TABLE 9.16 Raman data and assignments for some in-plane ring modes of 1,2-disubstituted benzenes

Compound	3 cm ⁻¹ (R.I.)	14 cm ⁻¹ (R.I.)	18 cm ⁻¹ (R.I.)	9 cm ⁻¹ (R.I.)
Bis(1-acryloxy-2-hydroxypropyl) phthalate	1600(6)	1581(2)	1042(9)	653(3)
Mono(2-methacryloxy-ethyl) phthalate	1602(6)	1582(4)	1042(9)	646(1)
Isooctadecyl 2-sulfobenzoate NA salt	1595(4)	1577(1)	1044(7)	642(2)
Poly(vinyl hydrogen phthalate)	1601(8)	1582(3)	1042(9)	645(3)
Diallyl phthalate	1602(6)		1041(9)	
Poly (diallyl phthalate)	1601(8)	1580(3)	1041(9)	657(2)
2-Ethylhexyl salicylate	1615(3)	1586(2)	1034(9)	668(4)
N-vinylphthalimide	1610(2)		1020(2)	666(0)
Poly(hexamethylene terephthalamide)	1614(9)	1566(1)		634(1)

TABLE 9.17 Raman data and assignments for some in-plane ring modes for 1,3-disubstituted benzenes

Compound	4 cm ⁻¹ (R.I.)	13 cm ⁻¹ (R.I.)	8 cm ⁻¹ (R.I.)	9 cm ⁻¹ (R.I.)
1,3-Dichlorobenzene	1574	1586	995	662
N,N'-(m-phenylene) Bis-maleimide	1608(2)	1588(3)	1005(5)	683(9)
Bis-maleimide Diallyl phthalate	1609(4)		1004(9)	658(2)
Poly(diallyl isophthalate)	1608(4)	1590(2)	1004(9)	657(2)
1,3-Diisopropenyl benzene	1599(4)	1577(2)	1000(9)	692(4)
3-Fluorostyrene	1603(4)		1002(9)	
3-Chlorostyrene	1596(3)		999(9)	
3-Nitrostyrene	1618(1)		1001(7)	

TABLE 9.18 Raman data and assignments for some in-plane ring modes for 1,4-disubstituted benzenes

_					
Compound	2 cm ⁻¹ (R.I.)	9 cm ⁻¹ (R.I.)	5? cm ⁻¹ (R.I.)	cm ⁻¹ (R.I.)	10 cm ⁻¹ (R.I.)
Diethyl terephthalate	1615(9)	1276(3)	853(3)	836(2)	634(2)
Bis(2-hydroxyethyl) terephthalate	1615(9)	1284(4)	850(3)		634(2)
4-Ethylstyrene	1612(5)	1308(1)	819(1)	805(2)	641(1)
4-Fluorostyrene	1603(4)	1295(1)	842(4)		637(1)
4-Nitrophenyl acrylate	1591(4)		866(3)	848(1)	625(1)
4-Nitrophenyl methacrylate	1591(4)		866(3)	866(3)	632(1)
4-Nitrostyrene	1599(5)		859(2)	859(2)	
4-Nonylphenyl methacrylate	1606(4)	1296(1)	881(2)	812(4)	639(2)
4-Phenoxystyrene	1609(4)	1296(0)		801(2)	
1,4-Phenylene diacrylate	1597(3)	1285(3)	859(5)	803(0)	636(3)
α,α-Dihydroxy	1615(2)				639(2)
Poly(4-methylstyrene)	1614(9)		830(9)	809(9)	644(8)
Poly(4-vinylphenol)	1612(6)		843(9)	826(7)	644(5)
Poly(4-tert-butylstyrene)	1612(9)		845(1)		643(4)
Poly(ethylene terephthalate)	1615(9)	1288(2)	857(2)		633(3)
Poly(1,4-butylene terephthalate)	1614(9)	1277(9)	857(3)		633(3)
1,4-Bis(hydroxymethyl) benzene	1616(2)		839(9)		639(4)
1,4-Dimethoxybenzene	1615(1)	1268(3)		821(9)	638(3)
4-Vinylbenzoic acid	1609(8)	1288(2)		826(3)	638(1)
4-Na vinylbenzenesulfonate	1600(8)	1300(1)		808(1)	637(1)
Bisphenol A/epichlorohydrin liquid epoxy	1610(8)	1298(3)		823(9)	639(8)
4-Vinylphenyl acetonitrile	1607(4)	1302(1)		825(1)	

TABLE 9.19 Raman data and tentative assignments for decabromobiphenyl and bis-(pentabromophenyl) ether

Decabromobiphenyl cm ⁻¹ (R.I.)	Assignment Ring modes	Bis(pentabromophenyl) ether cm^{-1} (R.I.)	Assignment Ring modes	
1559(1)	3	1524(1)	3	
1521(1)	9	1514(1)	9	
1256(2)	1			
392(3)	16,20?	431(0)	16,20?	
359(9)	2	322(1)	8	
345(4)	16,20?	237(7)	5,11	
327(4)	8	226(9)	6,12,&14?	
250(4)	5,11	208(3)	17,21	
217(4)	6,12,&14?			

TABLE 9.20 Vibrational assignments for benzene, benzene d₆, benzyl alcohol and benzyl-2,3,4,5,6-d₅ alcohol

Benzene- $d_{\hat{\theta}}$ ((3099 (0.510) 2380 (0.039)	3050 (0.600) 2282 (0.600)		1964 (0.065) 1960 (0.067) 1948 (0.070)		1829 (0.080) 1810 (0.080) 1801 (0.100) 1628 (0.025) 1619		1520 (0.040) 1164 (0.019)	1498 (0.190) 1485 (0.240) 1472 (0.185) 1345 (0.025)	1385 (0.029)	1051 (0.082) 1038 (0.180) 1022 (0.100) 825(0.070)	686 (0.950) 670 (1.250) 651 (0.860) 505 (0.360)	
$\label{eq:Benzene-d_6} \text{Benzene-d_6} $	(0.510) 2380 (0.039)	(0.600) 2282 (0.600)		1960 (0.067) 1948 (0.070)		1810 (0.080) 1801 (0.100) 1628 (0.025)		(0.040)	1485 (0.240) 1472 (0.185) 1345 (0.025)		1038 (0.180) 1022 (0.100)	670 (1.250) 651 (0.860) 505	
$\label{eq:Benzene-d_6} \text{Benzene-d_6} $	(0.510) 2380 (0.039)	(0.600) 2282 (0.600)		(0.067) 1948 (0.070)		(0.080) 1801 (0.100) 1628 (0.025)		(0.040)	(0.240) 1472 (0.185) 1345 (0.025)		(0.180) 1022 (0.100)	(1.250) 651 (0.860) 505	
Benzene- d_6 ((2380 (0.039)	2282 (0.600)		1948 (0.070)		1801 (0.100) 1628 (0.025)		1164	1472 (0.185) 1345 (0.025)	(0.029)	1022 (0.100)	651 (0.860) 505	
(((0.039)	(0.600)		(0.070) 1675		(0.100) 1628 (0.025)			(0.185) 1345 (0.025)		(0.100)	(0.860) 505	
(((0.039)	(0.600)		1675		1628 (0.025)			1345 (0.025)			505	
(((0.039)	(0.600)				(0.025)			(0.025)		825(0.070)		
(((0.039)	(0.600)						(0.019)				(0.360)	
(((0.039)	(0.600)				1610							
				(0.020)				1154	1330		811	491	
	1.302					(0.023)		(0.015)	(0.040)		(0.120)	(1.250)	
	1.302					1610		1146	1315		800	470	
	1.302					(0.026)		(0.020)	(0.025)		(0.080)	(0.439)	
Benzene/Benzene-d ₆		1.337		1.169		1.118		1.317	1.117		1.279	1.365	
1	vC-H	vC-H	4,14	5	7	8							
	3082	3048	1605	1499	[1080 CP]	[1035 CP]	905					738	697
,	(0.351)	(0.380)	(0.020)	(0.089)			(0.055)					(0.600)	(0.630)
	vC-D	vC-D	4,14	5	7	8							
	2395	2282	1228	1145	782	735	634					534	
(((0.010)	(0.320)	(0.120)	(0.200	(0.0156))	(0.030)	(0.030)					(0.529)	
Benzyl alcohol/Benzyl-2,3,4,5,6-d ₅ alcohol	1,287	1.336	1,309	1.309	1.381	1.408	1.427					1.382	
C	OH str.	a.CH ₂ str.	s.CH ₂ str.	CH ₂ bend 1462 (0.139)	COH bend	CH ₂ wag	CH ₂ twist	C-O str.	CH ₂ rock				
Benzyl alcohol	3658	2935	2895	1460	1385	1204	masked	1020	800				
(((0.161)	(0.240)	(0.318)	(0.110) 1451 (0.141)	(0.375)	(0.195)		(1.220)	(0.030)				
P 2 2 4 5 6 d	2645	2021	2842	1467	1378	1104	masked	1010	824 (0.080) 820				
	3645 (0.165)	2921 (0.219)	(0.300)	1467 (0.025)	(0.310)	1184 (0.129)	таѕкец	1018 (1.250)	(0.058) 812 (0.062)				
	2(I)	I + II	I + III	II + III	III + IV				(0.002)				
	1958	1945	1882	1808	1750								
	(0.039)	(0.020)	(0.020)	(0.025)	(0.010)								
	1740	1605	1565	1555	1505								
	(0.020)	(0.0250)	(0.011)	(0.011)	(0.011)								
	1.125	1.212	1.203	1.162	1.162								

TABLE 9.21 Infrared data for the out-of-plane deformations for mono-x-benzenes

	I	II	III	IV	V	VI	
Group	cm ⁻¹	cm^{-1}	cm^{-1}	cm ⁻¹	cm ⁻¹	cm^{-1}	σ p
$N(CH_3)_2$	966	945	862	823	749	689	[—]
NHCH ₃	966	947	867	812	749	691	<u>[</u> —j
NH ₂	968	957	874	823	747	689	-0.66
OH	971	952	882	825	750	688	-0.37
OCH ₃	970	953	881	814	753	691	-0.27
$C(CH_3)_3$	979	964	905	841	763	698	-0.2
CH ₃	973	963	895	789	730	697	-0.17
C_2H_5	978	963	903	841	748	699	-0.15
C ₃ H ₇ -iso	979	961	905	840	762	701	-0.15
F	972	952	890	827	750	682	0.06
I	986	959	901	825	730	685	0.18
Cl	976	957	897	825	734	679	0.23
Br	980	960	902	830	738	685	0.23
CHO	989	970	919	809	753	689	0.42
CO ₂ H	995	973	940	852	810	707	0.45
$S(=O)CH_3$	988	969	913	843	744	690	0.49
CF ₃	984	965	920	830;847	769	693	0.54
CN	987	967	920	843	756	685	0.66
SO ₂ CH ₃	994	972	928	849	741	690	0.72
NO ₂	990	969	932	840	793	705	0.78

TABLE 9.22 Summary of the out-of-plane hydrogen deformations for substituted benzenes, and the out-of-plane ring deformation for mono-substituted benzenes

Benzenes	$_{\mathrm{cm}^{-1}}^{\mathrm{I}}$	${ m II} { m cm}^{-1}$	${ m III} \ { m cm}^{-1}$	$_{\rm cm^{-1}}^{\rm IV}$	${ m V} { m cm}^{-1}$	$_{ m cm^{-1}}^{ m VI}$
Mono-substituted 1,2-Disubstituted 1,3-Disubstituted 1,4-Disubstituted 1,3,5-Trisubstituted 1,2,3-Trisubstituted 1,2,4-Trisubstituted 1,2,4,5-Tetrasubstituted 1,2,3,5-Tetrasubstituted	965.5–996 956–989 947–999 933–985 819–927 930–989 926–982 861–911 821–942	945–981 915–970 863–949 916–971 786–910 848–930 841–923 828–890 838–920	862–940 833–886 831–910 790–852 642–739 731–810 790–852	789–852 715–791 761–815 794–870 684–744 652–750	725–810 683–729 639–698 641–735	679–720
1,2,3,4-Tetrasubstituted Pentasubstituted	919–949 822–927	770–821				

TABLE 9.23 Combination and overtones of the out-of-plane hydrogen deformations for substituted benzenes

Benzenes	$\begin{array}{c} 2xI\\cm^{-1}\end{array}$	$I + II$ cm^{-1}	$\begin{array}{c} I + III \\ cm^{-1} \end{array}$	$\begin{array}{c} II + III \\ cm^{-1} \end{array}$	$\begin{array}{c} II + IV \\ cm^{-1} \end{array}$	$\begin{array}{c} III + IV \\ cm^{-1} \end{array}$	$\begin{array}{c} III+V\\cm^{-1} \end{array}$
Mono-substituted	1931–1992	1915–1976	1815–1936	1815–1914	1737–1829	1680–1787 2xII cm ⁻¹	1611–1748 2xIII cm ⁻¹
1,2-Disubstituted	1912–1997	1869–1952	$1789-1875$ $I + IV$ cm^{-1}	1748–1849	1655–1758	1828–1932	1666–1772
1,3-Disubstituted 1,4-Disubstituted 1,3,5-Trisubstituted	1910–1991 1635–1849	1820–1940 1852–1957 1605–1840	1709–1820 1729–1835	1709–1852	1637–1760 1727–1850	1724–1890 1619–1702	1680–1820
1,2,3-Trisubstituted	1860–1975	1792–1914				1700–1860	
1,2,4-Trisubstituted 1,2,4,5-Tetrasubstituted 1,2,3,5-Tetrasubstituted 1,2,3,4-Tetrasubstituted Pentasubstituted	1844–1961 1725–1830 1635–1876 1838–1902 1655–1848	1776–1890 1695–1799 1659–1862 1715–1770	1712–1829			1683–1845 1651–1770 1675–1841 1610–1650	1580–1704

TABLE 9.24 Hexachlorobenzene vs Pentachlorobiphenyl

Species	Hexachloro- benzene cm ⁻¹	2,3,4,5,6-Cl5 biphenyl cm ⁻¹
Alg	1210(R)	1205
1116	372(R)	[—]
Blu	1108	i—i
	369	[—]
A2g	630(est)	632
B2u	1224Comb.	1230
	230(est)	[—]
E2g	1512	1516&1497
	870(R)	868
	323(R)	[—]
	219(R)	[—]
Elu	1350	685
	699	[—]
	218	[—]
A2u	209	[—]
B2g	704Comb.	750?
	340(R)	[—]
E2u	594	586
	80Comb.	[—]

The Nyquist Vibrational Group Frequency Rule

Aliphatic Hydrocarbons — The Nyquist Vibrational Group Frequency Rule										
Anilines — The Nyquist Vibrational Group Frequency Rule										
Anhydrides, Imides and 1,4-Benzoquinones—The Nyquist Vibrational Group Frequency Rule Substituted Hydantoins—The Nyquist Vibrational Group Frequency Rule										
								1,4-Diphenylbut	adiyne and 1-Halopropadiene — The Nyquist Vibrational	l
								Group Freque	ency Rule	429
3-Nitrobenzenes	and 4-Nitrobenzenes — The Nyquist Vibrational Group									
Frequency Ru	ule	430								
Organic Sulfates	s, Sulfonate, Sulfonyl Chloride and Sulfones — The Nyqu	uist								
Vibrational G	Group Frequency Rule	430								
References		431								
Tables										
Table 10-1	423 (426)									
Table 10-2	433 (427)									
Table 10-3	434 (428)									
Table 10-4	435 (428)									
Table 10-5	435 (429)									
Table 10-6	436 (430)									

Table 10-7

The Nyquist Vibrational Group Frequency Rule is distinctly different from the Nyquist Frequency. The sampling rate, called the Nyquist Frequency, is defined here. A signal is made up of various frequency components. If the signal is sampled at regular intervals, then there will be no information lost if the rate at which it is sampled is twice the frequency of the highest frequency component of the signal. The author of this text has been asked many times if he developed the Nyquist Frequency. The answer is NO! This answer always causes a look of disappointment. When this question arises, I respond with this reply, "No, but I developed the Nyquist Vibrational Group Frequency Rule."

The Nyquist Vibrational Group Frequency Rule is defined here. With change in the physical phase or environment of a chemical compound, the group frequency shift for the antisymmetric stretching vibration is larger than it is for the symmetric vibration (or out-of-phase vs in-phase stretching vibrations) for a chemical group within the molecular structure of a chemical

^{437 (430)} *Numbers in parentheses indicate in-text page reference.

compound. This relative change between the group frequency shifts is caused by the difference in energy required in order for the particular chemical group to vibrate in the antisymmetric and symmetric (or out-of-phase and in-phase) modes in two physical phases. The Nyquist Vibrational Group Frequency Rule was developed from studies of alkanes, anhydrides, anilines, imides, nitro-containing compounds, and SO₂-containing compounds in different solutions (CCl₄ and CHCl₃), in the vapor phase vs solution or neat phase. This energy differential is believed to result from the difference in the dipolar interaction of the chemical group within the solute and the surrounding change in its reaction field. This change can also result from intermolecular hydrogen bonding between solvent molecules and the chemical group within the solute, or from intermolecular hydrogen bonding between molecules in the vapor phase compared to the molecules in the vapor phase that are not intermolecularly hydrogen-bonded (1).

ALIPHATIC HYDROCARBONS — THE NYQUIST VIBRATIONAL GROUP FREQUENCY RULE

Table 10.1 lists IR data for the v asym. CH₃, v sym. CH₂ and v sym. CH₂ vibrations for n-alkanes in CCl₄ and CDCl₃ solutions, and the frequency difference between each of these vibrations in CCl₄ and CDCl₃ solutions (2). In all cases, the v asym. CH₃ and v asym. CH₂ vibrations occur at higher frequency in CDCl₃ solution than in CCl₄ solution. In all cases, the v sym. CH₃ and v sym. CH₂ vibrations occur at lower frequency in CDCl₃ solution than in CCl₄ solution.

The Cl atoms in CCl_4 are more basic in the case of CCl_4 than they are in $CDCl_3$ or $CHCl_3$. If there is intermolecular hydrogen bonding between aliphatic hydrocarbon protons and the Cl atoms in CCl_4 and $CDCl_3$, one would expect the strongest intermolecular association to be formed between the protons of the aliphatic hydrocarbon and the Cl atoms of CCl_4 .

This appears to be the case, because both v asym. CH_3 and v asym. CH_2 occur at lower frequency by 0.08 to 0.22 cm $^{-1}$ in CCl_4 solution than in $CDCl_3$ solution. If so, another factor must be considered in the case of v sym. CH_3 and v sym. CH_2 , because these vibrations occur at higher frequency in $CDCl_3$ solution than in CCl_4 solution. During the v asym. CH_3 and v asym. CH_2 vibration there is a trade-off in energy arising from simultaneous expansion and contraction of the $CH_3\cdots Cl-C$ and $CH_2\cdots Cl-C$ bonds while it requires more energy to expand and contract these same $CH_3\cdots Cl-C$ and $CH_2\cdots Cl-C$ bonds in phase. These factors more than offset the expected decrease in v sym. CH_3 and v sym. CH_2 frequencies due to the strength of the intermolecular hydrogen bond formed between the solute and solvent. Thus, the v CH_3 and v CH_2 vibrations conform to the Nyquist Vibrational Group Frequency Rule.

Progressing in the series pentane through octadecane, the v asym. CH₃ vibration decreases in frequency by a factor of 2 to 3 times that exhibited by v sym. CH₃. In the case of the CH₂ vibrations, v asym. CH₂ decreases in frequency by a factor of $\sim 1/6$ of that exhibited by v sym. CH₂. Progressing in the series pentane through octadecane, the frequency separation between v asym. CH₃ and v asym. CH₂ decreases progressively from $31.82 \, \text{cm}^{-1}$ to $30.65 \, \text{cm}^{-1}$ in CCl₄ solution and from $31.52 \, \text{cm}^{-1}$ to $30.56 \, \text{cm}^{-1}$ in CDCl₃ solution. Progressing in the series pentane through octadecane, the frequency separation between v sym. CH₃ and v sym. CH₂

increases progressively from $11.30 \,\mathrm{cm^{-1}}$ to $17.76 \,\mathrm{cm^{-1}}$ in CDCl₃ solution. These data indicate that as *n* increases in the series $\mathrm{CH_3}(\mathrm{CH_2})_n$ CH₃ there is less coupling between *v* asym. CH₃ and *v* asym. CH₂ and there is more coupling between *v* sym. CH₃ and *v* sym. CH₂.

ANILINES — THE NYQUIST VIBRATIONAL GROUP FREQUENCY RULE

Table 10.2 list IR data for the v asym. NH₂ and v sym. NH₂ frequencies for 4-X and 3-X anilines in both CCl₄ and CHCl₃ solutions and the frequency separation between v asym. NH₂ in CCl₄ and CHCl₃ solutions and the frequency separation between v sym. NH₂ in CCl₄ and CHCl₃ solutions (3). The v asym. NH₂ and v sym. NH₂ frequencies for these anilines in CCl₄ solution are suggested to result from complexes such as A:

Two sets of v asym. NH_2 and v sym. NH_2 are noted for these anilines in $CHCl_3$ solution. The higher frequency set is suggested to result from a complex such as \underline{B} , and the lower frequency set is suggested to result from a complex such as C (3).

The intermolecular hydrogen-bonded complexes formed for \underline{A} are stronger than those complexes for \underline{B} , because v asym. NH₂ in CCl₄ solution occurs at lower frequency by 1.16 to 9.19 cm⁻¹ than those for the corresponding aniline in CHCl₃ solution.

However, in the case of complex \underline{C} , v asym. NH_2 occurs at lower frequency than in complex \underline{A} by 17.4 to 29.7 cm $^{-1}$. The CCl_3H proton intermolecularly hydrogen bonded to the free pair of electrons on the nitrogen atom in complex \underline{B} weakens the NH_2 bonds, causing their v asym. NH_2 vibration to occur at even lower frequency than in the case of complex \underline{B} . The v sym. NH_2 vibrations shift to lower frequency by a factor of 2 to 8.5 times more than the v asym. NH_2 vibrations for the correspond 3-X and 4-X-aniline. This frequency difference between the v asym. NH_2 and v sym. NH_2 vibrational in complexes \underline{B} and \underline{C} is attributed to the Nyquist Vibrational Group Frequency Rule. During the v sym. NH_2 vibration in complexes \underline{B} and \underline{C} , the NH_2 vibrations expand and contract in phase from the chlorine atoms of the CCl_3H molecules. The amount of energy required during the compression of the $NH_2(\cdots ClCCl_2H)_2$ intermolecular hydrogen bonds is larger in the case of v sym. NH_2 than the amount of energy required for v asym. NH_2 where the compression of one $NH\cdots ClCCl_2H$ intermolecular hydrogen bond is

offset by the expansion of the other intermolecular $NH\cdots ClCCl_2H$ hydrogen bond in complexes such as \underline{B} and \underline{C} .

ANHYDRIDES, IMIDES AND 1,4-BENZOQUINONES—THE NYQUIST VIBRATIONAL GROUP FREQUENCY RULE

Table 10.3 lists IR data for anhydrides, imides, and 1,4-benzoquinones (4–8). The out-of-phase and in-phase (C=O)₂ stretching frequencies for these compounds in CCl₄ and CHCl₃ solution are listed as well as the frequency difference between $v_{\rm op}(C=O)_2$ in CCl₄ solution and $v_{\rm op}(C=O)_2$ in CHCl₃ solution, and the frequency difference between $v_{\rm ip}(C=O)_2$ in CCl₄ solution and $v_{\rm ip}(C=O)_2$ in CHCl₃ solution.

In all cases of anhydrides and imides $v_{\rm op}(C=O)_2$ and $v_{\rm ip}(C=O)_2$ occur at lower frequency in CHCl₃ solution than in CCl₄ solution. These lower v (C=O)₂ frequencies in CCl₃H solution are attributed to complexes such as (C=O···HCCl₃)₂. In the 1,4-benzoquinone series the $v_{\rm op}(C=O)_2$ mode occurs at lower frequency in CCl₃H solution than in CCl₄ solution while $v_{\rm ip}(C=O)_2$ (with one exception) increases in frequency in CHCl₃ solution compared to the corresponding compounds in CCl₄ solution.

The carbonyl-containing compounds differ from those for the aliphatic hydrocarbons and aniline in that the former compounds involve stretching of the $(C=O)_2$ bond while the latter compounds involve stretching of CH₃, CH₂ and NH₂ bonds. Intermolecular hydrogen bonding of two CCl₃H protons with two oxygen atoms $(C=O\cdots HCCl_3)_2$ lowers $v_{op}(C=O)_2$ from 1.7 to $5.2\,\mathrm{cm}^{-1}$ for the anhydrides, by 5.7 to $10.6\,\mathrm{cm}^{-1}$ for the imide type compounds, and by 0.9 to $2.9\,\mathrm{cm}^{-1}$ for the 1,4-benzoquinones. Intermolecular hydrogen bonding in the case of $v_{ip}(C=O)_2$ does not lower this vibrational mode as much in frequency as the $v_{op}(C=O)_2$ vibration, because it requires more energy to compress two $C=O\cdots HCCl_3$ intermolecular hydrogen bonds in the case of $v_{ip}(C=O)_2$ than it requires to expand one $C=O\cdots HCCl_3$ bond while the other $C=O\cdots HCCl_3$ contracts during the $v_{op}(C=O)_2$ vibration. Thus, the $v_{op}(C=O)_2$ frequency behavior for these compounds conforms to the Nyquist Vibrational Group Frequency Rule.

SUBSTITUTED HYDANTOINS — THE NYQUIST VIBRATIONAL GROUP FREQUENCY RULE

Table 10.4 lists IR data for the $v_{\rm op}(C=O)_2$ and $v_{\rm ip}(C=O)_2$ vibrations for substituted hydantoins in the vapor- and solid phases (7). The in-phase mode occurs in the region 1809-1825 cm⁻¹ in the vapor phase and in the region 1761–1783 cm⁻¹ in the solid phase. These $v_{\rm ip}(C=O)_2$ vibrations occur at lower frequency by 29–48 cm⁻¹ in the solid phase than they occur in the vapor phase. The out-of-phase (C=O)₂ mode occurs in the region 1774–1785 cm⁻¹ in the vapor phase, and in the region 1707–1718 cm⁻¹ in the solid phase. These $v_{\rm op}(C=O)_2$ vibrations occur at lower frequency by 56–68 cm⁻¹ in the solid phase than in the vapor phase.

The hydantoins listed in Table 10.4 exists as intermolecular hydrogen bonded dimers in the solid phase as depicted here:

$$(R)_{2}$$

$$H$$

$$(R)_{2}$$

$$H$$

$$(R)_{2}$$

$$H$$

$$(R)_{2}$$

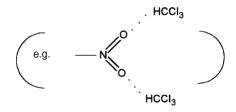
However, in the vapor phase these 5,5-dialkyl hydantoins are not intermolecularly hydrogen bonded. The $v_{\rm ip}(C=O)_2$ modes shift to lower frequency in the solid phase because of the intermolecular hydrogen-bond formation between the N–H ··· O=C groups, but the $v_{\rm ip}(C=O)_2$ mode does not shift as much to lower frequency due to the fact that it requires more energy to compress two intermolecular N–H ··· O=C bonds than is required to compress one intermolecular N–H ··· O=C bond and expand one N–H ··· O=C intermolecular bond in the case of $v_{\rm op}(C=O)_2$. Thus, these group frequencies fulfill the requirement of the Nyquist Vibrational Group Frequency Rule.

1,4-DIPHENYLBUTADIYNE AND 1-HALOPROPADIENE — THE NYQUIST VIBRATIONAL GROUP FREQUENCY RULE

Table 10.5 lists the $v_{\rm op}(CC)_2$, $v_{\rm ip}(CC)_2$, $v_{\rm op}C=C=C$, and $v_{\rm ip}C=C=C$ vibrations for 1,4-diphenylbutadiyne and the 1-halopropadiene in CCl_4 solution and in $CHCl_3$ solution, and their frequency differences between each of these vibrations in CCl_4 and $CHCl_3$ solutions (9 11). In the case of 1,4-diphenylbutadiyne, both $v_{\rm op}(CC)_2$ and $v_{\rm ip}(CC)_2$ occur at lower frequency in

In the case of 1,4-diphenylbutadiyne, both $v_{op}(CC)_2$ and $v_{ip}(CC)_2$ occur at lower frequency in CCl_3H solution than in CCl_4 solution. These frequency decreases are attributed to intermolecular hydrogen bonding between the π systems of the $(C \equiv C)_2$ groups and CCl_3H protons (eg. $-C \equiv C - C \equiv C - C$). Most likely the CCl_3 protons also intermolecularly hydrogen \vdots \vdots $HCCl_3HCCl_3$

bond to the π system of the two phenyl groups. The $C \equiv C - C \equiv C$ group is a linear rod and the CCl_3H molecules would be surrounding and intermolecularly hydrogen bonding with the two $C \equiv C$ groups. The $v_{ip}(CC)_2$ vibration takes relatively more energy to vibrate due to the compression and expansion of the intermolecularly hydrogen-bonded CCl_3H molecules than the energy required during $v_{op}(CC)_2$ where one intermolecularly hydrogen-bonded $C \equiv C$ is

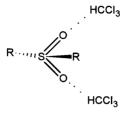

. HCCl₃ compressed while the other $C \equiv C$ group is expanded. In the $v_{op}(CC)_2$ case there is less \vdots HCCl₂

interaction between the CCl₃H molecules than in the case of $v_{ip}(CC)$ interactions with CCl₃H molecules. Thus, $v_{op}(CC)_2$ decreases twice as much as $v_{ip}(CC)_2$ in going from solution in CCl₄ to solution in CHCl₃.

The v asym. C=C=C vibration decreases in frequency in going from the vapor phase to the liquid phase while under the same physical conditions v sym. C=C=C does not decrease as much in frequency as the v asym. C=C=C vibration or else actually increases in frequency (9–11). These data fulfill the Nyquist Vibrational Group Frequency Rule.

3-NITROBENZENES AND 4-NITROBENZENES — THE NYQUIST VIBRATIONAL GROUP FREQUENCY RULE

Table 10.6 lists IR data for v asym. NO_2 and v sym. NO_2 in both CCl_4 and CCl_3H solutions and their frequency difference in CCl_4 and CCl_3H solutions (5,12). The v asym. NO_2 mode decreases in frequency by 1.7 to 8.6 cm⁻¹ in going from CCl_4 to CCl_3H solution while the v sym. NO_2 mode for the same compound decreases less in frequency or in many cases actually increases in frequency. In CCl_3H solution the NO_2 group is intermolecularly hydrogen-bonded to the oxygen atoms of the NO_2 group.



It takes more energy to compress and expand the intermolecular hydrogen-bonded NO₂ groups during the ν sym. NO₂ vibration than it does to expand one N=O···HCl₃ intermolecular hydrogen bond and compress one N=O···HCl₃ during $\nu_{\rm op}$ NO₂. Thus, the ν NO₂ most conform to the Nyquist Vibrational Group Frequency Rule.

ORGANIC SULFATES, SULFONATE, SULFONYL CHLORIDE AND SULFONES—THE NYQUIST VIBRATIONAL GROUP FREQUENCY RULE

Table 10.7 lists v asym. SO_2 and v sym. SO_2 frequencies in both CCl_4 and CCl_3H solutions and their frequency differences in each solvent. In all cases the v SO_2 vibrations decrease in frequency in going from solution in CCl_4 to solution in CCl_3H , and this decrease in frequency is larger for

v asym. SO₂ than for v sym. SO₂ by a factor of ~2 to 10. In CCl₃H solution, the SO₂ oxygen atoms are intermolecularly hydrogen bonded as presented here:

The energy to expand and contract the $(S=O\cdots HCCl_3)_2$ intermolecular hydrogen bonds during v sym. SO_2 is greater than that needed to compress one $S=O\cdots HCCl_3$ intermolecular hydrogen bond and expand one $S=O\cdots HCCl_3$ intermolecular hydrogen bond during v asym. SO_2 .

REFERENCES

- 1. Nyquist, R. A. (1994). Structural Information From Infrared Studies on Solute-Solvent Interactions. Ph. D. Thesis, Utrecht University, The Netherlands, ISBN 90-393-0743-1, p. 260.
- 2. Nyquist, R. A. and Fiedler, S. L. (1993). Appl. Spectrosc. 47: 1670.
- 3. Nyquist, R. A., Luoma, D. A., and Puehl, C. W. (1992). Appl. Spectrosc. 46: 1273.
- 4. Nyquist, R. A. (1990). Appl. Spectrosc. 44: 438.
- 5. Nyquist, R. A. (1990). Appl. Spectrosc. 44: 594.
- 6. Nyquist, R. A. (1990). Appl. Spectrosco. 44: 783.
- 7. Nyquist, R. A. and Fielder, S. L. (1995). Vib Spectrosc. 8: 365.
- 8. Nyquist, R. A., Luoma, D. A., and Putzig, C. L. (1992). Vib. Spectrosc. 3: 181.
- 9. Nyquist, R. A. and Putzig, C. L. (1992). Vib. Spectrosc. 3: 35.
- 10. Nyquist, R. A., Lo, Y-S., and Evans, J. C. (1964). Spectroschim. Acta 20: 619.
- 11. Nyquist, R. A., Reder, T. L., Stec, F. F., and Kallos, G. J., (1971). Spectrochem. Acta 27A: 897.
- 12. Nyquist, R. A. and Settineri, S. E. (1990). Appl. Spectrosc. 44: 1552.

TABLE 10.1 Aliphatic hydrocarbons—the Nyquist Rule

	a.CH ₃ str. CCl ₄ soln.	a.CH ₃ str. CDCl ₃ soln.	s.CH ₃ str. CCl ₄ soln.	s.CH ₃ str. CDCl ₃ soln.	a.CH ₃ str. $[CCl_4]$ – $[CDCl_3]$	s.CH ₃ str. $[CCl_4]-[CDCl_3]$
Compound	cm^{-1}	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹
Pentane	2959.55	2959.66	2873.12	2872.67	-0.11	0.45
Hexane	2958.69	2958.8	2872.92	2872.34	-0.11	0.58
Hexane	2959.23	2959.31	2873.05	2872.54	-0.08	0.51
Heptane	2958.86	2958.98	2872.81	2872.23	-0.12	0.58
Octane	2958.62	2958.73	2872.82	2872.2	-0.11	0.62
Nonane	2958.46	2958.58	2872.79	2872.17	-0.12	0.62
Decane	2958.35	2958.49	2872.78	2872.14	-0.14	0.64
Undecane	2958.14	2859.33	2872.7	2872.05	-0.19	0.65
Dodecane	2958.03	2958.23	2872.66	2871.96	-0.2	0.7
Tridecane	2957.94	2958.1	2872.65	2871.91	-0.16	0.74
Tetradecane	2957.79	2957.99	2872.6	2871.81	-0.2	0.79
Octadecane	2957.26	2957.48	2872.35	2871.5	-0.22	0.85
$\Delta\mathrm{cm}^{-1}$	2.29	2.18	0.77	1.17		
	a.CH ₂ str.	a.CH ₂ str.	s.CH ₂ str.	s.CH ₂ str.	a.CH ₂ str.	s.CH ₂ str.
	CCl ₄ soln.	CDCl ₃ soln.	CCl ₄ soln.	CDCl ₃ soln.	[CCl ₄]-[CDCl ₃]	[CCl ₄]-[CDCl ₃]
	cm^{-1}	cm^{-1}	cm ⁻¹	cm^{-1}	cm^{-1}	cm^{-1}
Pentane	2927.73	2928.14	2861.82	2861.21	-0.41	0.61
Hexane	2928	2928.25	2859.4	2859.14	-0.25	0.26
Hexane	2927.89	2928.12	2859.12	2858.74	-0.23	0.38
Heptane	2927.29	2927.58	2857.81	2857.37	-0.29	0.44
Octane	2926.95	2927.26	2856.55	2856.22	-0.31	0.33
Nonane	2926.79	2927.07	2855.68	2855.58	-0.28	0.1
Decane	2926.83	2927.13	2855.31	2855.25	-0.3	0.06
Undecane	2926.76	2927.03	2855.09	2855.05	-0.27	0.04
Dodecane	2926.72	2927.01	2854.92	2854.88	-0.29	0.04
Tridecane	2926.7	2926.98	2854.83	2854.79	-0.28	0.04
Tetradecane	2926.66	2926.96	2854.77	2854.71	-0.3	0.06
Octadecane	2926.61	2926.92	2854.59	2854.55	-0.31	0.06
$\Delta \mathrm{cm}^{-1}$	1.12	1.22	7.23	6.66		
	a.CH ₃ str.–	a.CH ₂ str.	a.CH ₃ str.–a.CH ₂ s	tr. s.CH	I ₃ str.–s.CH ₂ str.	s.CH ₃ str.–s.CH ₂ str
	CCl ₄ s	soln.	CDCl ₃ soln.		CCl ₄ soln.	$CDCl_3$
	cm	-1	cm^{-1}		cm ⁻¹	cm^{-1}
Pentane	31.8	32	31.52		11.3	11.46
Hexane	30.0	59	30.55		13.52	13.2
Hexane	31.3	34	31.19		13.93	13.8
Heptane	31.5	57	31.4		15	14.86
Octane	31.6		31.15		16.27	15.98
Nonane	31.6	67	31.51		17.11	16.59
Decane	31.5		31.36		17.47	16.89
Undecane	31.3	38	32.3		17.61	17
Dodecane	31.3		31.22		17.82	17.08
Tridecane	31.2		31.12		17.82	17.12
Tetradecane	31.		31.03		17.83	17.1
Octadecane	30.0		30.56		17.76	16.95
$\Delta\mathrm{cm}^{-1}$	0.0	59	0.96		6.46	5.49

TABLE 10.2 Anilines—the Nuquist Rule

4-X-Aniline	a.NH $_2$ str. CCl_4 soln. cm^{-1}	a.NH $_2$ str. CHCl $_3$ soln. cm $^{-1}$	a.NH $_2$ str. CHCl $_3$ soln. cm $^{-1}$	s.NH ₂ str. CCl ₄ soln. cm ⁻¹	s.NH $_2$ str. CHCl $_3$ soln. cm $^{-1}$	s.NH $_2$ str. CHCl $_3$ soln. cm $^{-1}$	a.NH ₂ str. $[CCl_4]-[CHCl_3]$ cm^{-1}	s.NH ₂ str. $[CCl_4]$ – $[CHCl_3]$ cm ⁻¹	$\begin{array}{c} \text{a.NH}_2 \text{ str.} \\ [\text{CCl}_4] - [\text{CHCl}_3] \\ \text{cm}^{-1} \end{array}$	s.NH $_2$ str. $[CCl_4]$ – $[CHCl_3]$ cm^{-1}
4-X										
ОН	[-]	3468.9	3440.31	[-]	3386.8	3367.89	[-]	[-]	[–]	[-]
OCH ₃	3459.71	3468.9	3441.09	3381.41	3388.75	3366.62	-9.19	-7.34	18.62	14.79
$N(CH_3)_2$	3454.12	3459.13	3435.4	3377.35	3377.02	3362.02	-5.01	0.33	18.72	15.33
NH ₂	3453.81	[-]	3436.41	3376.79	3388.75	3362.43	[-]	-11.96	17.4	14.63
OC_6H_5	3468.78	3474.77	3445.62	3387.3	3389.28	3373.49	-5.99	-1.98	23.16	13.81
F	3472.02	3476.72	3449.2	3390.56	3390.71	3374.57	-4.7	-0.15	22.82	15.99
Cl	3484.52	3486.89	3457.74	3398.35	3400.11	3380.93	-2.37	-1.76	26.78	17.42
Br	3486.23	3488.96	3459.32	3399.48	3401.15	3380.93	-2.73	-1.67	26.91	18.55
Н	3480.29	3481.75	3453.95	3394.77	3396.43	3378.03	-1.46	-1.66	26.34	16.74
H	3480.53	3481.57	3453.78	3394.88	3396.75	3377.76	-1.04	-1.87	26.75	17.12
C_2H_5	3471.32	3478.68	3446.47	3389.44	3390.77	3377.91	-7.63	-1.33	24.85	11.53
$C(CH_3)_3$	3472.72	3480.63	3447.29	3390.13	3391.79	3373.96	-7.91	-1.66	25.43	16.17
C_6H_5	3483.8	3486.75	3454.79	3396.84	3399.33	3378.79	-2.95	-2.49	29.01	18.05
$C(=O)OC_2H_5$	3500.08	3504.25	3478.68	3408.59	3411.06	[–]	-4.17	-2.47	21.4	[-]
CN	3504.31	3507.43		3412.05	3413.73	[–]	-3.12	-1.68	[–]	[-]
CF ₃	3498.73	3501.31	3476.72	3408.35	3409.82	3386.8	-2.59	-1.47	22.01	21.55
$C(=O)CH_3$	3501.51	3505.77	[-]	3409.6	3412.09	[-]	-4.26	-2.49	[-]	[-]
NO ₂	3508.61	3510.27	[-]	3414.96	3416.69	[-]	-1.66	-1.73	[–]	[-]
3-X										
OCH ₃	3483.54	3485.08	3457.05	3397.02	3399.07	3380.93	-1.54	-2.05	26.49	16.09
F	3491.35	3492.65	3464.99	3402.99	3404.16	3380.93	-1.3	-1.17	26.36	22.06
Cl	3490.49	3492.02	3464.99	3401.94	3403.23	3380.93	-1.53	-1.29	25.5	21.01
Br	3490.31	3491.94	3463.79	3401.31	3403.05	3378.98	-1.63	-1.74	26.52	22.33
CH ₃	3479.05	3482.59	3453.48	3393.8	3395.42	3377.62	-3.54	-1.62	25.57	16.18
$C(=O)OC_2H_5$	3486.72	3488.89	3459.56	3399.26	3401.39	3380.93	-2.17	-2.13	27.16	18.33
CN	3494.7	3496.96	3474.77	3405.49	3406.75	3382.89	-2.26	-1.26	19.93	22.6
CF ₃	3492.74	3493.9	3463.04	3403.81	3404.53	3378.98	-1.16	-0.73	29.7	24.83

TABLE 10.3 Andydrides imides, and 1,4-benzoquinones—the Nyquist Rule

Anhydride	op. $(C=O)_2$ str. CCl_4 soln. cm^{-1}	op(C=O) ₂ str. $CHCl_3$ soln. cm^{-1}	$ip(C=O)_2$ str. CCl_4 soln. cm^{-1}	$ip(C=O)_2$ str. $CHCl_3$ soln. cm^{-1}	$op(C=O)_2$ str. $[CCl_4]-[CHCl_3]$ cm^{-1}	$ip(C=O)_2 str.$ $[CCl_4]-[CHCl_3$ cm^{-1}
	1792.7	1787.5	1861.4	1859.1	# 2	
Hexahydrophthalic Phthalic	1792.7 1784.6	1787.5 1779.4	1861.4 1856	1859.1 1853	5.2 5.2	2.3 3
	1784.6	1779.4			3.9	
Tetrachlorophthalic	1790.7 1795.6	1790.3	1845.9 1867.2	1845.5 1863.4	5.9 5.3	0.4 3.8
Tetrabromophthalic						
Maleic Dichloromaleic	1787.1 1799	1785.4 1796.4	1851.74 1876.7	1851.68 1876.2	1.7 2.6	0.06 0.5
Phthalimide						
N-(4-bromobutyl)	1718.7	1713	1773.8	1772.2	5.7	1.6
Caffeine	1667.5	1658.4	1710.6	1707.9	9.1	2.7
Isocaffeine*1	1673.2	1664	1716.7	1711.3	9.2	5.4
1,3,5-Trimethyluracil	1663.4* ²	1652.4* ²	1706.6	1700	11	6.6
1,3,6-Trimethyluracil	1668.8* ²	1658.2* ²	1710.8	1702	10.6	8.8
1,3-Dimethyl-2,4-(1H,3H)-quinazolinedione	1667* ²	1657.4* ²	1711.6	1703.7	9.6	7.9
1,4-Benzoquinone						
Tetrafluoro-	1702.71	1701.42	1696.8	1697.7	1.29	-0.9
Tetrachloro-	1694.68	1693.37			1.31	
Trichloro-	[1694]* ³		[1657]* ³			
Tetrabromo-	1687.48	1685.37			2.11	
2,5-Dichloro-	1682.18	1681.25	1672.5	1673.6	0.9	-1.1
Chloro-	1681.89	1680.95	1659.3	1659.3	0.94	0
Unsubstituted	1663.51* ²	1662	1661.4	1661.8	1.51	-0.4
Methyl-	1662.47	1659.57	1665.7	1665.9	2.9	-0.2
2,6-Dimethyl-	1657					

^{*&}lt;sup>1</sup> 10.74 mol % CHCl₃/CCl₄.
*² corrected for Fermi resonance.
*³ In CS₂ solution.

TABLE 10.4 Substituted hydantoins—the Nyquist Rule

Hydantion 1,3,5,5-	$op(C=O)_2$ str. vapor cm^{-1}	$ \begin{array}{c} \text{op(C=O)}_2 \text{ str.} \\ \text{solid} \\ \text{cm}^{-1} \end{array} $	$ \begin{array}{c} \mathrm{ip(C=O)_2 \ str.} \\ \mathrm{vapor} \\ \mathrm{cm}^{-1} \end{array} $	$ip(C=O)_2$ str. solid cm^{-1}	$op(C=O)_2$ str. [vapor]-[solid] cm^{-1}	$ip(C=O)_2$ str. [vapor]-[solid] cm^{-1}
H,H,CH_3,C_3H_7	1774	1707	1809	1761	67	48
H,H,CH ₃ ,isoC ₃ H ₇	1774	1712	1808	1770	62	38
Н,Н,Н,Н	1785	1717	1825	1783	68	42
H,H,CH ₃ ,isoC ₄ H ₉	1774	1718	1809	1780	56	29

TABLE 10.5 1,4-Diphenylbutadiyne and 1-halopropadiene — the Nyquist Rule

Compound	$ \begin{array}{c} \text{op(CC)}_2 \text{ str.} \\ \text{CCl}_4 \\ \text{cm}^{-1} \end{array} $	$ \begin{array}{c} \text{op(CC)}_2 \text{ str.} \\ \text{CHCl}_3 \\ \text{cm}^{-1} \end{array} $	$ \begin{array}{c} \mathrm{ip(CC)_2\ str.} \\ \mathrm{CCl_4} \\ \mathrm{cm^{-1}} \end{array} $	$\begin{array}{c} \text{ip(CC)}_2 \text{ str.} \\ \text{CHCl}_3 \\ \text{cm}^{-1} \end{array}$	$ \begin{array}{c} \text{op(CC)}_2 \text{ str.} \\ \text{[CCl}_4\text{]-[CHCl}_3\text{]} \\ \text{cm}^{-1} \end{array} $	$ \begin{array}{c} ip(CC)_2 \ str. \\ [CCl_4]-[CHCl_3] \\ cm^{-1} \end{array} $
1,4-Diphenylbutadiyne	2152.23	2150.22	2220.51	2219.45	2.01	1.06
Propadiene	a.C=C=C str. CCl ₄ cm ⁻¹	a.C=C=C str. liquid cm ⁻¹	s.C=C=C str. CS_2 cm^{-1}	s.C=C=C str. liquid cm ⁻¹	a.C=C=C str. [CCl ₄]-[liquid] cm ⁻¹	s.C=C=C str. $[CS_2]-[liquid]$ cm^{-1}
1-Chloro- 1-Bromo- 1-Bromo,1-d- 1-Iodo-	1958 1957 1940 1947	1951 1954 1943 1947	1101 1082 857 1076	1095 1086 861 1076	7 3 -3 0	6 -4 -4 0
Propadiene	a.C=C=C str. vapor cm ⁻¹	a.C=C=C str. CCl ₄ cm ⁻¹	s.C=C=C str. vapor cm ⁻¹	s.C=C=C str. CCl ₄ cm ⁻¹	a.C=C=C str. [vapor]-[CCl ₄] cm ⁻¹	s.C=C=C str. [vapor]-[CCl ₄] cm ⁻¹
1-Chloro-	1971 1956	1958	1108 1094	1101	13 -2	7 -7
1Bromo-	1969 1954	1957	1081 1076	1082	12 -3	$-1 \\ -6$
1-Bromo,1-d-	1943 1929	1940	861	857	3 -11	-4
1-Iodo-	1958 1947	1947	1081 1071	1076	11 0	5 -5
Propadiene	a.C=C=C str. vapor cm ⁻¹	a.C=C=C str. liquid cm ⁻¹	s.C=C=C str. vapor cm ⁻¹	s.C=C=C liquid cm ⁻¹	a.C=C=C str. [vapor]-[liquid] cm ⁻¹	s.C=C=C str. [vapor]-[liquid] cm ⁻¹
1-Chloro-	1971 1956	1951	1108 1094	1095	20 -1	13 -1
1-Bromo-	1969 1954	1954	1081 1076	1086	15 0	-5 -1
1-Bromo,1-d-	1943 1929	1940	861	861	3 -11	0
1-Iodo-	1958 1947	1947	1081 1071	1076	11 0	5 -5

TABLE 10.6 3=Nitrobenzenes and 4-nitrobenzenes—the Nyquist Rule

4-Nitrobenzene [1wt./vol. % or less]	a.NO $_2$ str. CCl $_4$ soln.CHCl $_3$ soln. cm $^{-1}$	a.NO ₂ str. $HCCl_4$ soln. cm^{-1}	s.NO ₂ str. CHCl ₃ soln. cm^{-1}	s.NO ₂ str. $[CCl4]-[CHCl3]$ $cm-1$	a.NO ₂ str. $[CCl_4]-[CHCl_3]$ cm^{-1}	s.NO ₂ str. $[CCl4]-[CHCl3$ $cm-1$
4-X						
NH ₂	1513.94	1505.34	1338.08	1335.15	8.6	2.93
CH ₃ O	1519.32	1514.12	1343.07	1342.76	5.2	0.31
C_6H_5O	1522.43	1517.85	1344.98	1344.88	4.58	0.1
C_6H_5	1524.26	1519.47	1346.67	1347.74	4.79	-1.07
CH ₃	1524.8	1520.1	1346.18	1346.93	4.7	-0.75
НО	1526.74	1521.41	1344.45	1342.46	5.33	1.99
Cl	1527.01	1523.64	1344.3	1345.39	3.37	-1.09
isoC ₃ H ₇	1527.68	1519.8	1347.11	1348.08	7.8	-0.97
CH ₂ Cl	1529.17	1525.44	1348.01	1350.09	3.73	-2.08
I	1529.78	1526.08	1348.7	1350.3	3.7	-1.6
$C_6H_5-C=O$	1531.06	1525.77	1353.19	1355.23	5.29	-2.04
Н	1531.53	1527.37	1348.24	1349.76	4.16	-1.52
Br	1531.95	1524.88	1350.1	1351.46	7.07	-1.36
F	1532.31	1528.48	1346.41	1349.26	3.83	-1.85
CH ₃ CO ₂	1532.87	1530.26	1348	1350.03	2.62	-2.03
CH ₃ C=O	1533.76	1531.06	1345.71	1347.46	2.7	-1.75
CN	1535.33	1533.21	1345.37	1347.56	2.12	-2.19
CH ₃ SO ₂	1537.97	1535.9	1348.2	1350.6	2.07	-2.4
CF ₃	1538.91	1535.44	1354.35	1356.34	3.47	-1.99
SO ₂ Cl	1541.25	1539.26	1346.06	147.86	1.99	-1.8
NO ₂	1556.41	1554.37	1338.68	1340.6	2.04	-1.92
$\Delta \mathrm{cm}^{-1}$	42.47	49.03	16.27	20.08		
3-X-Nitrobenzene						
3–X						
N(CH ₃) ₂	1535.29	1531.64	1349.47	1349.81	3.65	-0.34
CH ₃	1532.78	1529.16	1350.88	1352.04	3.62	-1.16
Br	1536.44	1533.09	1348.28	1349.97	3.35	-1.69
I	1533.69	1530.42	1346.97	1348.62	3.27	-1.65
NO ₂	1544.05	1541.63	1345.29	1347.44	2.42	-2.15
$\Delta\mathrm{cm}^{-1}$	11.27	12.47	5.59	4.6		
Nitromethane	1564.5	1562.4	1374.4	1376.2	2.1	-1.8
Trichloronitromethane	1608.2	1606.5	1307.5	1309.6	1.7	-2.1
Tribromonitromethane	1595.1	1593.3	1305.9	1308.7	1.8	-2.8
Ethyl nitrate	1637.3	1631.7	1281.5	1282.9	5.6	-1.4

TABLE 10.7 Organic sulfate, sulfonate, sulfonyl chloride, and sulfones—the Nyquist Rule

Compound	a.SO $_2$ str. CCl_4 soln. cm^{-1}	a.SO $_2$ str. CHCl $_3$ soln. cm $^{-1}$	$s.SO_2$ str. CCl_4 soln. cm^{-1}	s.SO $_2$ str. CHCl $_3$ soln. cm $^{-1}$	a.SO ₂ str. $[CCl_4]-[CHCl_3]$ cm^{-1}	$\begin{array}{c} \text{s.SO}_2 \text{ str.} \\ [\text{CCl}_4] - [\text{CHCl}_3] \\ \text{cm}^{-1} \end{array}$
Dimethyl sulfate	1405.7	1395.7	1203.8	1201.8	-10	-2
4'-Chlorophenyl 4-chlorophenyl benzenesulfonate	1392.4	1382.9	1178.9	1176.8	-9.5	-2.1
Benzenesulfonyl chloride	1387.4	1380.3	1177.8	1177.1	-7.1	-0.7
Diphenyl sulfone	1326.8	1319.1	1161.4	1157.6	-7.7	-3.8
Methyl phenyl sulfone	1325.7	1317.7	1157.4	1153.2	-8	-4.2

Infrared, Raman, and Nuclear Magnetic Resonance Spectra-Structure Correlations for Organic Compounds

	441
	441
	442
	442
	443
	443
	444
	444
	444
	445
Solutions	445
	446
	446
	446
	447
	447
	448
	448
Nitrogen Compounds	449
	450
phorus Compounds	452
•	453
	454
utions	454
	454
	455
	456
	456
	457
Figure 11-3	461 (441)
Figure 11-4	462 (441)
	Solutions Witrogen Compounds phorus Compounds utions Figure 11-3

Figure 11-5	463 (442)	Figure 11-52	509 (448)
Figure 11-6	464 (442)	Figure 11-53	510 (448)
Figure 11-7	465 (443)	Figure 11-54	511 (448)
Figure 11-8	466 (442)	Figure 11-55	512 (449)
Figure 11-9	467 (442)	Figure 11-56	513 (449)
Figure 11-10	468 (442)	Figure 11-57	514 (449)
Figure 11-11	469 (472)	Figure 11-58	515 (450)
Figure 11-12	470 (442)	Figure 11-59	516 (450)
Figure 11-13	471 (442)	Figure 11-60	517 (450)
Figure 11-14	472 (442)	Figure 11-61	518 (450)
Figure 11-15	473 (442)	Figure 11-62	519 (450)
Figure 11-16	474 (442)	Figure 11-63	520 (450)
Figure 11-17	475 (442)	Figure 11-64	521 (450)
Figure 11-18	476 (443)	Figure 11-65	522 (450)
Figure 11-19	477 (443)	Figure 11-66	523 (450)
Figure 11-20	478 (443)	Figure 11-67	524 (450)
Figure 11-21	479 (448)	Figure 11-68	525 (450)
Figure 11-22	480 (443)	Figure 11-69	526 (451)
Figure 11-23	481 (443)	Figure 11-70	527 (451)
Figure 11-24	482 (443)	Figure 11-71	528 (451)
Figure 11-25	483 (444)	Figure 11-72	529 (451)
Figure 11-26	484 (444)	Figure 11-73	530 (451)
Figure 11-27	485 (444)	Figure 11-74	531 (451)
Figure 11-28	486 (444)	Figure 11-75	532 (451)
Figure 11-29	487 (444)	Figure 11-76	533 (452)
Figure 11-30	488 (444)	Figure 11-77	534 (452)
Figure 11-31	489 (444)	Figure 11-78	535 (452)
Figure 11-32	490 (444)	Figure 11-79	536 (452)
Figure 11-33	491 (445)	Figure 11-80	537 (452)
Figure 11-34	492 (445)	Figure 11-81	538 (452)
Figure 11-35	493 (445)	Figure 11-82	539 (452)
Figure 11-35a	493 (445)	Figure 11-83	540 (452)
Figure 11-35b	494 (446)	Figure 11-84	541 (452)
Figure 11-35c	494 (446)	Figure 11-85	542 (453)
Figure 11-36	495 (446)	Figure 11-86	543 (453)
Figure 11-37	496 (446)	Figure 11-87	544 (453)
Figure 11-38	497 (446)	Figure 11-88	544 (453)
Figure 11-39	498 (446)	Figure 11-89	545 (453)
Figure 11-40	498 (447)	Figure 11-90	545 (454)
Figure 11-41	499 (447)	Figure 11-91	546 (454)
Figure 11-42	500 (447)	Figure 11-92	547 (454)
Figure 11-43	501 (447)	Figure 11-93	548 (457)
Figure 11-44	502 (447)	Figure 11-94	549 (454)
Figure 11-45	503 (447)	Figure 11-95	550 (454)
Figure 11-46	504 (448)	Figure 11-96	551 (454)
Figure 11-47	505 (448)	Figure 11-97	552 (454)
Figure 11-48	506 (448)	Figure 11-98	552 (454)
Figure 11-49	507 (448)	Figure 11-99	553 (454)
Figure 11-50	508 (448)	Figure 11-100	554 (454)
Figure 11-51	509 (448)	Figure 11-101	555 (455)
S		S	

Figure 11-102 Figure 11-103	556 (455) 557 (455)	Figure 11-104 Figure 11-105	558 (456) 559 (456)
Tables			
Table 11-1	560 (441)	Table 11-14	571 (448)
Table 11-2	561 (442)	Table 11-15	571 (450)
Table 11-3	562 (443)	Table 11-16	572 (450)
Table 11-4	563 (443)	Table 11-17	574 (453)
Table 11-5	564 (444)	Table 11-17a	575 (453)
Table 11-6	565 (444)	Table 11-18	576 (454)
Table 11-7	566 (444)	Table 11-19	577 (454)
Table 11-8	567 (444)	Table 11-20	577 (454)
Table 11-9	567 (445)	Table 11-21	578 (455)
Table 11-10	568 (445)	Table 11-22	578 (455)
Table 11-11	569 (446)	Table 11-23	579 (456)
Table 11-12	570 (446)	Table 11-24	579 (456)
Table 11-13	570 (446)		

^{*}Numbers in parentheses indicate in-text page reference.

INTRODUCTION

Spectra-structure correlations exist for IR, Raman and nuclear magnetic resonance (NMR) data. Spectra-structure correlations have been developed for the carbonyl stretching frequencies and the carbon-13 NMR chemical shift data for over 600 compounds (1), and this work has aided us in the solution of many complex chemical problems. Development of other spectra-structure cross correlations between IR, Raman and NMR data would be most helpful in the solution of many complex problems arising in both academia and industry.

4-x-ANILINES

Table 11.1 lists NMR 13 C chemical shift data for anilines in CCl_3 H solution (2,3). Figure 11.1 is a plot of the δ C-1 chemical shift for 4-x-anilines in CHCl $_3$ solution vs Hammett σ_p values for the 4-x atom or group, and Fig. 11.2 is a plot of the NMR δ 13 C-1 chemical shift data for 4-x-anilines in CHCl $_3$ solution vs Taft σ_{R° values for the 4-x atom or group. Both plots show a pseudolinear relationship (2).

Figure 11.3 is a plot of v asym. NH₂ frequencies for 4-x-anilines in the vapor phase (4) vs the δ ¹³C-1 chemical shift data for 4-x-anilines in CHCl₃ solution (2,3).

Compound 24 (4-aminoacetophenone) does not correlate well with the other aniline derivatives, and this most likely results from the intermolecular hydrogen bond formed between the C=O group and the CCl_3H proton ($C=O\cdots HCCl_3$). Otherwise, this IR-NMR spectrastructure correlation shows a pseudolinear relationship.

Figure 11.4 is a plot of v asym. NH₂ frequencies for 3-x- and 4-x-anilines in hexane solution vs the δ ¹³C-1 chemical shift data of 3-x- and 4-x-aniline in CHCl₃ solution (2,3). This IR-NMR spectra-structure correlation shows a pseudolinear relationship.

Figure 11.5 is a plot of v asym. NH₂ frequencies for 3-x- and 4-x-anilines in CCl_4 solution vs the δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in $CHCl_3$ solution. Compounds 17 (4-amino-acetophenone) and 18 (4-nitroaniline) do not fit as well to this pseudolinear correlation between IR and NMR data, and this may be due to the fact that both the oxygen atoms of the C=O and NO₂ groups are intermolecularly hydrogen bonded in CCl_3H solution [C=O···HCCl₃ and NO₂ (···HCCl₃)₂] (2,3).

Figure 11.6 is a plot of the v asym. NH₂ frequencies for 3-x- and 4-x-anilines in CHCl₃ solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution. Both plots show a pseudolinear relationship between IR and NMR data (2,3).

Figure 11.7 is a plot of the v sym. NH₂ frequencies for 4-x-anilines in the vapor phase vs δ 13 C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution. This plot shows a pseudolinear relationship between IR and NMR data.

Figure 11.8 is a plot of v sym. NH₂ frequencies for 3-x- and 4-x-anilines in hexane solution vs the δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution. This plot shows a pseudolinear relationship between IR and NMR data (2,3).

Figure 11.9 is a plot of the v sym. NH₂ frequencies for 3-x- and 4-x-anilines in CCl₄ solution vs the δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution. This plot shows a pseudolinear relationship between IR and NMR data (2,3).

Figure 11.10 is a plot of the vsym. NH_2 frequencies for 3-x- and 4-x-anilines in $CHCl_3$ solution vs the δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in $CHCl_3$ solution. Both plots show a pseudolinear relationship between IR and NMR data (2,3).

Figure 11.11 is a plot of the frequency difference between v asym. NH₂ and v sym. NH₂ for 3-x- and 4-x-anilines in hexane solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution. This plot shows a pseudolinear relationship between IR and NMR data (2,3).

Figure 11.12 is a plot of the frequency difference between v asym. NH₂ and v sym. NH₂ for 3-x- and 4-x-anilines is CCl_4 solution vs the δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution. This plot shows a pseudolinear relationship between IR and NMR data (2,3).

Figure 11.13 is a plot of the frequency difference between ν asym. NH₂ and ν sym. NH₂ for 3-x- and 4-x-anilines in CHCl₃ solution vs the δ ¹³C-1 chemical shift data of 3-x- and 4-x-anilines in CHCl₃ solution (2,3).

Figure 11.14 is a plot of the absorbance ratio $A(v \text{ asym. NH}_2)/A(v \text{ sym. NH}_2)$ for 3-x- and 4-x-anilines in CCl_4 solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in $CHCl_3$ solution (2,3). This plot shows that a pseudolinear relation exists between IR and NMR data.

Figure 11.15 is a plot of δ^{13} C-1 chemical shift data for 4-x-anilines in CHCl₃ solution vs Tafts (σ_{R° values for the 4-x atom or group. This plot shows that there is a pseudolinear relationship between δ^{13} C-1 and the resonance parameter of the 4-x group.

3-X AND 4-X BENZOIC ACIDS

Table 11.2 lists IR and NMR data for 3-x- and 4-x-benzoic acids (1,3,4). Figure 11.16 is a plot of δ ¹³C-1 for 3-x- and 4-x-benzoic acids vs Hammett σ values for the x group. The Hammett σ values are from Kalinowski *et al.* (5). This plot shows that δ ¹³C-1 generally increases as the σ_m and σ_p values increase (4).

Figure 11.17 show plots of v C=O vs Hammett σ values for 3-x- and 4-x-benzoic acids. The solid circles are for IR data in the vapor phase. The open circles are for IR dilute CCl₄ solution

data for unassociated benzoic acids (4). Both sets of data are for unassociated benzoic acids (3-x-and 4-x-C₆H₄CO₂H). Both plots increase in frequency as the value of σ_p and σ_m values increases. Figure 11.18 show plots of ν C=O vs δ ¹³C-1 for 3-x- and 4-x-benzoic acids. The NMR data are for CDCl₃ solutions. The open circles are for IR CCl₄ solution data, and the closed circles include vapor-phase IR data (4). This cross correlation shows that in general ν C=O increases in frequency as δ ¹³C-1 increases in frequency.

4-X-ACETANILIDES

Table 11.3 lists NMR data in CHCl₃ solution and IR data in CCl₄ and CHCl₃ solution for 4-x-acetanilides (3,6). Figure 11.19 is a plot of δ^{13} C-1 vs Hammett σ_p for 4-x-acetanilides. This plot shows a pseudolinear relationship between Hammett σ_p values and δ^{13} C-1 for 4-x-acetanilides. Figure 11.20 is a plot of v C=O vs Hammett σ_p for 4-x-acetanilides (4). The solid circles represent IR CCl₄ solution data and the solid squares represent IR CHCl₃ solution data. The IR solution data are for dilute solutions of the 4-x-acetanilides where the acetanilide molecules are not intermolecularly hydrogen bonded via C=O···H-N. In this case v C=O occurs at lower frequency in CHCl₃ solution as the result of C=O···HCCl₃ intermolecular hydrogen bonding plus the difference in the refraction field between CHCl₃ and CCl₄.

4-X-BENZALDEHYDES

Table 11.4 lists IR and NMR data for 4-x-benzaldehydes in CHCl₃ and/or CCl₄ solution (3,4,7). Figure 11.21 is a plot of δ^{13} C-1 vs Taft σ_{R° for 4-x-benzaldehydes, and there is a pseudolinear correlation between these two parameters. This correlation shows that as σ_{R° increases in value the δ^{13} C-1 value increases in frequency. The chemical significance of increasingly more negative values is that there is an increasing amount of π electron contribution to the C-1 atom. Thus, with an increasing contribution of π electrons to the C-1 atom from the atom or group joined to the C-4 atom there is more π overlap with the π system of the C=O group. Consequently, the ν C=O mode should decrease in frequency as the σ_{R° value decreases. Figure 11.22 is a plot of ν C=O for 4-x-benzaldehydes vs Taft σ_{R° . The solid circles represent ν C=O frequencies in CCl₄ solution and the solid triangles represent ν C=O frequencies in CHCl₃ solution. In general, the pseudolinear relationships noted for the two sets of solution data support the preceding hypothesis. The ν C=O frequencies are lower in CHCl₃ solution than they are in CCl₄ solution, and this is due in part to intermolecular hydrogen bonding (e.g., C=O···HCCl₃) together with an increased field effect in going from solution in CCl₄ to solution in CHCl₃.

Figure 11.23 is a plot of v C=O for 4-x-benzaldehydes vs Hammett σ_p . The solid circles represent v C=O frequencies in CCl₄ solution and the solid triangles represent v C=O frequencies in CHCl₃ solution. The σ_p values include both resonance and inductive effects. These plots also exhibit pseudolinear relationships, which indicates that there must be some contribution from the σ electrons to the shift of v C=O with change in the 4-x atom or group.

Figure 11.24 gives plots of v C=O vs δ 13 C-1 for 4-x-benzaldehydes in CCl₄ solution and in CHCl₃ solution (4). The filled-in circles represent v C=O frequencies in CCl₄ solution and the filled-in triangles represent v C=O frequencies in CHCl₃ solution. The δ 13 C-1 data are for CDCl₃ solutions. Both plots show a pseudolinear relationship.

4-X-ACETOPHENONES

Table 11.5 lists IR and NMR data for 4-x-acetophenones. Figure 11.25 is a plot of δ 13 C-1 chemical shifts data in CDCl₃ solution vs Taft $\sigma_{R^{\circ}}$ for 4-x-acetophenones (4). This plot shows a pseudolinear relationship. Figure 11.26 is a plot of v C=O frequencies for 4-x-acetophenones in CHCl₃ solution vs Taft $\sigma_{R^{\circ}}$, and this plot shows a pseudolinear relationship. Figure 11.27 is a plot of v C=O frequencies for 4-x-acetophenones in CHCl₃ solution vs δ 13 C-1 chemical shifts for 4-x-acetophenones in CDCl₃ solution. This plot shows that, in general, v C=O increases in frequency as δ 13 C-1 increases in frequency.

4-X AND 4,4'-X,X-BENZOPHENONES

Table 11.6 lists vapor-phase IR and NMR CHCl₃ solution-phase data for 4-x- and 4,4'-x,x-benzophenones (4,8). Figure 11.28 is a plot of δ ¹³C-1 vs Taft σ_{R° for the 4-x and 4,x,x atoms or groups for 4-x- and 4,4'-x,x-benzophenones in CHCl₃ solution (4). The first group in parentheses is plotted vs its σ_{R° value. This relationship between δ ¹³C-1 and σ_{R° appears to be pseudolinear (4). Figure 11.29 is a plot of the ν C=O frequencies vs δ ¹³C-1 chemical shift frequencies for 4-x-benzophenone and vs δ ¹³C-1 for 4,4'-x,x-benzophenones. Figure 11.30 is a plot of ν C=O frequencies vs Hammett σ_p for 4-x-benzophenones and the sum of σ_p , σ_p for 4,4'-x,x-benzophenones. With the exception of the 4-methoxy analog, the 4-x and 4,4'-x,x-benzophenones yield separate relationships where ν C=O increases in frequency as the sum of the σ_p values increases.

ALKYL 3-X AND 4-X-BENZOATES

Table 11.7 lists IR and NMR data for methyl and/or ethyl 3-x or 4-x-benzoates (4,8). Figure 11.31 shows plots of δ ¹³C-1 vs Hammett σ values for methyl and ethyl 3-x- and/or 4-x-benzoates (4). These plots show that, in general, δ 13 C-1 increases in frequency as the Hammett σ value increases, and that the δ ¹³C-1 chemical shift for the ethyl analogs generally occurs at higher frequency than for the methyl analogs.

$$v$$
 C=O VS δ ¹³C=O

Table 11.8 is a summary of some of the IR and NMR data for C=O containing compounds (4). Figure 11.32 shows plots of the range of v C=O frequencies for the compounds studied in different physical phases vs the range of δ^{13} C=O for the compounds studied in CDCl₃ solutions. The IR data for plots 1,4,6, and 7 have been recorded in CCl₄ solution, and plots 1,4,6, and 7 are for 4-x-acetophenones, 4-x-benzaldehydes, 4-x-acetonilides, and 3-x and 4-x-benzoic acids, respectively. Infrared plots for 3 and 5 have been recorded in CHCl₃ solution, and these plots are for 4-x-benzaldehydes and 4-x-acetanilides, respectively. The IR data for 2,8,9, and 10 have been recorded in the vapor phase. Plots 2, 8, 9, and 10 are for 4-x and 4,4'-x,x-

benzophenones, ethyl 3-x and 4-x-benzoates, methyl 3-x and 4-x-benzoates, and 3-x and 4-x-benzoic acids, respectively. These data show that $v \in O$ is affected by change of phase.

ACETONE IN CHCl₃/CCl₄ SOLUTIONS

Table 11.9 lists IR data for v C=O and δ 13 C=O for acetone in mol % CHCl $_3$ /CCl $_4$ solutions. Figure 11.33 is a plot of δ 13 C=O in ppm for acetone vs mol % CHCl $_3$ /CCl $_4$, and δ 13 C=O increases in frequency as the mol % CHCl $_3$ /CCl $_4$ is increased.

Figure 11.34 shows a plot of v C=O vs δ 13 C=O for acetone, and this plot is essentially a linear relationship. In Volume I the deviation from linearity at low mol % CHCl₃/CCl₄ was attributed to intermolecular hydrogen bonding between solute and solvent (viz. (CH₃)₂ C=O··HCCl₃). The steady decrease in the v C=O frequency and the steady decrease in δ 13 C=O with increase in the mol % CHCl₃CCl₄ is attributed to the field effect of the solvent system (9).

N,N'-DIMETHYLACETAMIDE IN CHCl₃/CCl₄ SOLUTIONS

Table 11.10 lists IR and NMR data for N,N'-dimethylacetamide in CHCl₃/CCl₄ solutions (10). Figure 11.35 is a plot of v C=O for N,N'-dimethylacetamide vs mol % CHCl₃/CCl₄ (10). The plot shows that v C=O decreases in frequency by 26.27 cm⁻¹ in going from 1650.50 cm⁻¹ in CCl₄ solution to 1634.23 cm⁻¹ in CHCl₃ solution. At 5.68 mol % CHCl₃/CCl₄ v C=O has decreased 9.20 cm⁻¹ or 35% of the entire v C=O decrease in going from solution in CCl₄ to solution in CHCl₃. The principal cause for this 35% v C=O frequency decrease is attributed to intermolecular hydrogen bonding (viz. C=O···HCCl₃). Between 5.68 and 41.93 mol % CHCl₃/CCl₄ there is a linear relationship in the v C=O frequency decrease, and this is attributed to the increase of the field effect of the solvent system. The second break suggests that a second intermolecular hydrogen bond is formed,

and the continued *v* C=O frequency decrease is attributed to a further continued increase of the solvent field effect.

Figure 11.35a is a plot of δ ¹³C=O for dimethylacetamide vs mol % CHCl₃/CCl₄. The δ ¹³C=O frequency increases as the mol % CHCl₃/CCl₄ is increased.

The data in Table 11.10 show that as the mol % $CHCl_3/CCl_4$ is increased from 0 to 100 the δ ¹³C=O increases in frequency from 168.4 to 170.8 ppm while ν C=O decreases in frequency from 1660.5 to 1634.2 cm⁻¹.

MALEIC ANHYDRIDE (MA) IN CHCl₃/CCl₄ SOLUTIONS

Table 11.11 lists IR and NMR data for maleic anhydride (MA) in $CHCl_3/CCl_4$ solutions (11,12). The out-of-phase ν (C=O)₂ mode is in FR with a combination tone (560 cm⁻¹, A and B₁ fundamental at 1235 cm⁻¹, and an A₁ fundamental yielding at 1795 cm⁻¹, B₁ combination tone). The out-of-phase ν (C=O)₂ mode for maleic anhydride listed in Table 11.11 has been corrected for FR. The δ ¹³C=O chemical shift increases from 163.2 ppm in CCl_4 solution to 164.1 ppm in $CHCl_3$ solution while ν out-of-phase (C=O)₂ corrected for FR decreases in frequency from 1787.1 cm⁻¹ in CCl_4 solution to 1785.4 cm⁻¹ in $CHCl_3$. The ν in-phase (C=O)₂ mode decreases 0.06 cm⁻¹ in going from solution in CCl_4 to solution in $CHCl_3$.

Figure 11.35b is a plot of $\delta^{13}\text{C=O}$ for maleic anhydride vs mol % $\text{CHCl}_3/\text{CCl}_4$. This plot shows two linear segments with a break point near 37 mol % $\text{CHCl}_3/\text{CCl}_4$. The $\delta^{13}\text{C=O}$ chemical shift increases in frequency as the mol % $\text{CHCl}_3/\text{CCl}_4$ is increased. These data suggest that at <37 mol % $\text{CHCl}_3/\text{CCl}_4$, the $\text{CHCl}_3/\text{CCl}_4$ complex with (MA) is most likely forming $\text{C=O}\cdots(\text{HCCl}_3)_x(\text{CCl}_4)_x$ type complexes and > ~37 mol % $\text{HCCl}_3/\text{CCl}_4$ solution $\text{CHCl}_3/\text{CCl}_4$ is forming $(\text{C=O})_2\cdots(\text{HCCl}_3)_x(\text{CCl}_4)$ type complexes. Complexes with the C=C π system are also likely (see in what follows).

Figure 11.35c is a plot of δ ¹³C=O vs δ ¹³C=C for maleic anhydrides. This plot shows a linear relationship between these two parameters, and both chemical shifts increase in frequency as the mol % CHCl₃/CCl₄ increases from 0 to 100.

3-X AND 4-X-BENZONITRILES

Table 11.12 lists IR and NMR data for 3-x- and 4-x-benzonitriles (4). Figure 11.36 is a plot of δ 13 C-1 vs Taft $\sigma_{R^{\circ}}$ values for 3-x- and 4-x-benzonitriles, and Fig. 11.37 is a plot of δ 13 C-1 vs Hammett σ values for x for 3-x and 4-x-benzonitriles. Both plots show that δ 13 C-1 increases in frequency as σ_p , σ_m and $\sigma_{R^{\circ}}$ increase in value. However, the plot of δ 13 C-1 vs $\sigma_{R^{\circ}}$ has a better pseudolinear relationship than the plot of δ 13 C-1 vs σ_p and σ_m .

Figure 11.38 is a plot of δ ¹³CN vs Hammett σ values for 3-x and 4-x-benzonitriles. The δ ¹³CN values are in the range 116.3 ppm and 120.6 ppm. The literature assignments for δ ¹³CN and δ ¹³C-1 for 4-cyanoacetophenone are 118.0 ppm and 116.3 ppm, respectively (3). However, Fig. 11.38 suggests that the δ ¹³CN chemical shift should be 116.3 ppm rather than 118.0 ppm (3). The δ ¹³CN decreases in frequency as the σ_p and σ_m values increase. It has been shown that ν CN frequencies and intensities correlate with Hammett σ_p and σ_m values (13–16). Electron-donating groups such as OCH₃ and NH₂ increase the IR intensity and decrease the ν CN frequency, while electron-withdrawing groups such as NO₂ and CH₃–C=O have the opposite effect (increase the ν CN frequency and decrease its IR band intensity). The ν CN mode for benzonitriles occurs in the range 2220–2241 cm⁻¹.

ORGANONITRILES

Table 11.13 lists IR, Raman and NMR data for some organonitriles (17). Figure 11.39 is a plot of v CN vs δ 13 CN for some organonitriles. In the series CH₃CN through (CH₃)₃ CCN, v CN

decreases in frequency while the δ ¹³CN frequency increases in essentially a linear manner with increased branching on the α -carbon atom. Substitution of an α -Cl atom raises the ν CN frequency and lowers the δ ¹³CN frequency. In addition, conjugation lowers both ν CN frequencies.

Figure 11.40 is a plot of δ^{13} CN vs the number of protons on the α -carbon atom (17). This plot shows that δ^{13} CN increases in frequency with increased branching on the α -carbon atom. The σ electron donation to the CN group also increases with increased branching on the α -carbon atom. Therefore, δ^{13} CN increases in frequency with increased electron donation to the nitrile group, and ν CN decreases in frequency with increased electron donation to the nitrile group.

ALKYL ISONITRILES

The ν NC frequencies for methyl isonitrile (2183 cm⁻¹), ethyl isonitrile (2160 cm⁻¹), isopropyl isonitrile (2140 cm⁻¹), and tert-butyl isonitrile (2134 cm⁻¹) decrease in frequency in the order of increased branching on the alkyl α -carbon atom (18). The δ ¹⁵N chemical shift for methyl isonitrile (–219.6 ppm), ethyl isonitrile (–205.1 ppm), isopropyl isonitrile (–193.4 ppm), and tert-butyl isonitrile (–184.9 ppm) increases in frequency with increased branching in the alkyl α -carbon atom. The δ ¹⁵N frequencies reported for these isonitriles are based upon nitromethane as the δ ¹⁵N reference point (19).

Figure 11.41 is a plot of $\delta^{15}N$ vs Taft σ^* for alkyl isonitriles (18). With increased electron contribution to the isonitrile group, the $\delta^{15}N$ chemical shift increases in frequency. Figure 11.42 is a plot of v NC vs $\delta^{15}N$ for alkyl isonitriles. This plot shows that as the v NC vibration decreases in frequency the $\delta^{15}N$ increases in frequency. With increased electron contribution to the isonitrile group the v NC vibration decreases in frequency while the δ^{15} N chemical shift increases in frequency.

NITROALKANES

In the vapor phase both v asym. NO₂ and v sym. NO₂ decrease in frequency with increased branching on the alkyl α -carbon atom. For example, the v asym. NO₂ and v sym. NO₂ frequencies for the alkyl group are CH₃ (1582 cm⁻¹, 1397 cm⁻¹), C₂H₅ (1575 cm⁻¹, 1380 cm⁻¹), iso-C₃H₇ (1568 cm⁻¹, 1360 cm⁻¹), and tert-butyl (1555 cm⁻¹, 1349 cm⁻¹) (8). On the other hand, the δ ¹³C (20) and δ ¹⁵N (21) chemical shifts for the alkyl α -carbon atom and the NO₂ nitrogen atom both increase in frequency with increased branching on the alkyl α -carbon atom. For example δ ¹³C and δ ¹⁵N are, respectively, CH₃(63.0 ppm, -0.77 ppm), C₂H₅(70.9 ppm, 9.37 ppm), iso-C₃H₇(79.2 ppm, 19.40 ppm), and tert-butyl (84.3 ppm, 25.95 ppm). [The δ ¹³C values in CDCl₃ solution referred to TMS (20), and the δ ¹⁵N values in neat nitromethane; samples in 0.3 M in acetone (21)].

Figure 11.43 shows plots of v asym. NO₂ and v sym. NO₂ vs the number of protons on the α -carbon atom of the nitroalkanes. Figure 11.44 shows plots of v asym. NO₂ and v sym. NO₂ vs δ ¹³C for the nitroalkanes, and Fig. 11.45 shows plots of v asym. NO₂ and v sym. NO₂ vs δ ¹⁵N for the nitroalkanes (18).

These plots show that with increased electron donation of the alkyl group to the NO₂ group, both v NO₂ vibrations decrease in frequency while the δ ¹³C and δ ¹⁵N chemical shifts increase in frequency.

Figures 11.46, 11.47, and 11.48 are plots of δ^{13} C vs Taft σ^* , δ^{15} N vs Taft σ^* , and δ^{13} C vs δ^{15} N for the nitroalkanes (18), respectively. Both δ^{13} C and δ^{15} N vs σ^* show a linear relationship for the methyl through isopropyl analogs. However, the plot of δ^{13} C vs δ^{15} N shows a linear relationship for methyl through the tert-butyl analogs.

ALKYL ISOCYANATES

The ν asym. N=C=O vibrations for alkyl isocyanates decrease in frequency with an increase in branching on the alkyl α -carbon atom. The ν asym. N=C=O frequencies for the alkyl isocyanates are CH₃ (2288 cm⁻¹), C₂H₅ (2280 cm⁻¹), (CH₃)₂CH (2270 cm⁻¹), and (CH₃)₃C (2252 cm⁻¹) (22). The δ ¹⁵N (neat liquid, referred to neat nitromethane) values are CH₃ (-365.4 ppm), C₂H₅ (-348.6 ppm), (CH₃)₂CH (-335.5 ppm), and (CH₃)₃C (-326.0 ppm) (19).

Figure 11.49 is a plot of v asym. N=C=O for alkyl isocyanates vs the δ ¹⁵N for the N=C=O group. The v asym. N=C=O vibrations decrease in frequency as the δ ¹⁵N chemical shifts increase in frequency (18).

Figure 11.50 shows a plot of $\delta^{15}N$ vs Taft's σ^* for both alkyl isocyanates and alkyl isothiocyanates. The $\delta^{15}N$ chemical shifts decrease in frequency as the Taft σ^* values increase in value. [Taft σ^* values are CH₃(O), C₂H₅(-0.10), (CH₃)₂CH(-0.19), and (CH₃)₃C -0.30] (23). The CH₃ and C₂H₅ analogs of alkyl isothiocyanate exhibit $\delta^{15}N$ for alkyl isothiocyanates at higher frequency by 75.6 ppm and 71.6 ppm for the CH₃ and C₂H₅ analogs than for the corresponding methyl and ethyl analogs of alkyl isocyanates (18).

Figure 11.51 shows plots of δ ¹³C for the N=C=O group of alkyl isocyanates or diisocyanates vs the number of protons on the alkyl α -carbon atom (24). These plots show that, in general, the chemical shift δ ¹³C for the isocyanate group increases as the number of protons on the alkyl α -carbon atom decreases. Therefore, the δ ¹³C for the isocyanate group increases in frequency as the electron donation of the alkyl group to the isocyanate group is increased.

Figure 11.52 shows plots of v asym. N=C=O vs δ^{-13} C for the N=C=O group for alkyl isocyanates or diisocyanates. These data show that as the v asym. N=C=O vibration decreases in frequency the δ^{-13} C chemical shift increases in frequency. Thus, as the electron contribution of the alkyl group to the isocyanate group is increased, v asym. N=C=O decreases in frequency while δ^{-13} C increases in frequency (24).

ALKYLAMINES

Table 11.14 compares δ^{15} N data for primary, secondary and tertiary amines (25). Figure 11.53 is a plot of δ^{15} N vs ν C–N for four primary alkylamines. This plot shows that both ν C–N and δ^{15} N increase in frequency with increased branching on the alkyl α -carbon atom (8,18,25).

Figure 11.54 is a plot of δ ¹⁵N vs ω NH for dialkylamines (8,18,25). This plot shows that as δ ¹⁵N decreases in frequency the ω NH vibration for dialkylamines increases in frequency.

The ω NH vibration decreases in frequency as more electrons are donated to the NH group by the two alkyl groups while the δ ¹⁵N chemical shift increases in frequency.

Figures 11.55 and 11.56 are plots of v C-N and δ ¹⁵N for primary alkylamines vs Taft's σ^* values, respectively (18). Both plots increase in frequency as the σ^* values decrease. Thus, the v C-N and δ ¹⁵N increase in frequency as the electron contribution of the alkyl group to the nitrogen atom increases.

Figure 11.57 shows plots of δ ¹⁵N vs the number of protons on the alkyl group(s) α -carbon atom(s) for alkylamines (18). These plots show a series of relationships. With methyl and ethyl groups, the correlations are more nearly linear. Deviation from linearity is apparent for the isopropyl and tert-butyl groups. These deviations suggest that steric factors are also important in determining the δ ¹⁵N values, because a steric factor would alter the C–N–C bond angles (18).

A SUMMARY OF THE CORRELATIONS FOR THE NITROGEN COMPOUNDS

- 1. The cis and trans v N=O frequencies for alkyl nitrites decrease with increased branching on the alkyl α -carbon atom. A plot of v N=O cis v N=O trans is linear for the alkyl nitrites with the exception of tert-butyl nitrite. This exception may be due to a steric factor of the C(CH₃)₃ group, which causes a change in the R-O-N=O bond angle.
- 2. Both v sym. NO₂ and v asym. NO₂ decrease in frequency with increased branching on the α -C-NO₂ carbon atom. A plot of v sym. NO₂ vs v asym. NO₂ is linear for nitroalkanes, with the exception of 1,1-dimethylnitroethane. This exception is attributed to a steric factor of the C(CH₃)₃ group.
- 3. Both v sym. NO₂ and v asym. NO₂ correlate with the number of protons on the α -C-NO₂ carbon atom, with δ ¹³C of α -C-NO₂, with δ ¹⁵N of C-NO₂, and with Taft σ * values. Thus, v sym. NO₂ and v asym. NO₂ decrease in frequency with increased branching on the α -C-NO₂ carbon atom, and this frequency decrease is in the order of electron release to the alkyl group to the NO₂ group.
- 4. A nearly linear correlation exists between $\delta^{13}C$ for the α -C-NO₂ carbon atom and both the ν sym. NO₂ and ν asym. NO₂ vibrations for nitroalkanes.
- 5. A nearly linear correlation exists between δ ¹⁵N and ν sym. NO₂ and ν asym. NO₂ for nitroalkanes.
- 6. A linear correlation exists between the chemical shifts δ ¹⁵N and δ ¹³C for the α -C-NO₂ carbon atom for nitroalkanes.
- 7. The δ ¹⁵N chemical shift increases in frequency while the v asym. N=C=O decreases in frequency with increased branching on the alkyl group α -C-N carbon atom for alkyl isocyanates.
- 8. The v asym. N=C=O mode decreases in frequency and δ ¹⁵N increases in frequency with increasing electron release of the alkyl group in alkyl isocyanates. The chemical shift δ ¹⁵N for alkyl isothiocyanates occurs at higher frequency than does δ ¹⁵N for the corresponding alkyl isocyanate analogs.
- 9. The v NC mode decreases in frequency and the δ ¹⁵N chemical shift increases in frequency with increased branching on the α -C-NC carbon atom for alkyl isonitriles R-NC. With the exception of the tert-butyl analog a linear correlation exists between δ

- 15 N and ν NC for alkyl isonitriles. Comparable linear correlations exist between the electron release of the alkyl group and ν NC, and between electron release of the alkyl group and δ 15 N for alkyl isonitriles.
- 10. The chemical shift δ ¹⁵N increases in frequency with increased branching on the α -C-N atom(s), progressing in and within the series, alkylamines, dialkylamines, and trialkyl amines.
- 11. A linear correlation exists between δ ¹⁵N for alkylamines and the corresponding alkyl analogs of dialkylamines.
- 12. A correlation exists between v C-N and δ ¹⁵N for alkylamines. Both δ ¹⁵N and v C-N increase in frequency with increased electron release of the alkyl group to the N atom.
- 13. A correlation between ω NH and δ ¹⁵N exists for dialkylamines. In this case ω NH decreases in frequency as δ ¹⁵N increases in frequency.

ORGANOPHOSPHORUS COMPOUNDS

Table 11.15 lists NMR data for organophosphorus and organonitrogen compounds. Figure 11.58 is a plot of δ ³¹P for trialkylphosphines vs the sum of the protons on the α -C-P carbon atoms. Figure 11.59 is a plot of δ ³¹P for trialkylphosphines vs the sum of Taft σ^* values for the three alkyl groups. Both plots exhibit a linear relationship, and the δ ³¹P chemical shift increases in frequency with increased branching on the α -carbon atom and with increased electron contribution to the phosphorus atom (26).

Figure 11.60 shows plots of δ^{31} P vs δ^{15} N for R-PH₂ vs R-NH₂, (R-)₂PH vs (R-)NH, and (R-)₃P vs (R-)₃N. These plots show that both δ^{31} P and δ^{15} N increase in frequency with increased alkyl substitution on the P or N atoms and with increased electron contribution from the number of alkyl groups to the P and N atoms (26).

Figure 11.61 shows plots of the number of protons on the α -C-P atom(s) vs δ ³¹P for PH₃, RPH₂, and (R-)₂PH (26). The plots show that δ ³¹P increases in frequency in the order PH₃, R-PH₂, and (R-)₂PH and in the order of increased branching on the α -C-P atom(s).

Table 11.16 lists IR and NMR data for organophosphorus compounds (26). Figure 11.62 is a plot of the sum of Taft σ^* values for the alkyl groups of trialkylphosphine oxides vs δ^{31} P. This plot shows that δ^{31} P increases in frequency with increased electron contribution to the P atom. Figure 11.63 is a plot of the sum of the number of protons on the α -C-P carbon atom(s) vs δ^{31} P for trialkylphosphine oxides. The δ^{31} P chemical shift increases in frequency with increased branching on the α -C-P carbon atom (26).

Figure 11.64 shows plots of v P=O rotational conformers vs the sum of the protons on the α -C-O-P carbon atoms for trialkyl phosphates (26). Both plots show that v P=O decreases in frequency as the branching is increased on the α -C-O-P carbon atom. Figure 11.65 shows plots of v P=O rotational conformers vs δ ³¹P for trialkyl phosphates. Both v P=O and v ³¹P decrease in frequency with increased branching on the α -C-O-P carbon atom. Trialkyl phosphates exist as rotational conformers and exhibit v P=O rotational conformers I and II at different frequencies; therefore, the P=O frequencies are affected by the molecular geometric configuration of the molecule because the electronic contribution of the O-alkyl groups to the P=O group is independent of the rotational molecular configuration of the trialkyl phosphate molecules.

Figures 11.66, 11.67, and 11.68 show plots of $\delta^{31}P$ vs the sum of the number of protons on the α -C-O-P carbon atoms for trialkyl phosphates, O,O,O-trialkyl phosphorothioates, and

O,O,O-trialkyl phosphoroselenates (26). In all cases $\delta^{31}P$ decreases in frequency with increased branching on the α -C-O-P carbon atom. In Fig. 11.66 the plot is essentially linear, but the plots in Figs. 11.67 and 11.68 show that the tert-butyl analogs deviate considerably from linearity. The electronegativity of oxygen, sulfur, and selenium decreases in the order 3.5; 2.5; and 2.4, respectively (32). The tetrahedral covalent radii of oxygen, sulfur, and selenium increases in the order 0.66; 1.04, and 1.14 Å, respectively (32). The $\delta^{-31}P$ frequency difference between the isopropyl and tert-butyl analogs of the P=O, P=S and P=Se analogs are 7.3 ppm, 21.3 ppm, and 36.6 ppm, respectively. The difference in the electronegativity of S and Se is only 0.1, and the difference in the tetrahedral covalent radii between S and Se is 0.1 Å. These differences do affect the $\delta^{-31}P$ chemical shifts of the tert-butyl analogs for O,O,O-tri-tert-butyl phosphoroselenate. It is suggested that this difference in the $\delta^{-31}P$ chemical shifts is caused by a steric effect of the tert-butyl groups. The steric effect most likely changes the PO₃ bond angles in both the P=S and P=Se tri-tert-butyl analogs.

Figure 11.69 shows plots of $\delta^{31}P$ vs the sum of the number of protons on the α -C-P carbon atoms and the α -C-O-P carbon atoms for RP(=O)(OC₂H₅)₂ and (R)₂P=O(OR). These plots show that $\delta^{31}P$ decreases in frequency with increased branching on the α -C-O-P carbon atoms, and increases in frequency with increased branching in the α C-P carbon atom and by substitution of (CH₃)₂P for (CH₃)₁P.

Figure 11.70 shows plots of $\delta^{31}P$ for $RP(=O)(OC_2H_5)_2$ vs $\delta^{13}C=O$ for $RC=(O)(OCH_3)$ and $\delta^{31}P$ for $CH_3P(=O)(OR)_2$ vs $\delta^{13}C=O$ for $CH_3C(=O)(OR)$. Both $\delta^{13}C=O$ and $\delta^{31}P$ decrease in frequency with decreased branching on the α -C-P carbon atom or α -C-C=O carbon atom and with increased branching on the α -C-O-P carbon atom or the O=C-O-C α -carbon atom.

Figure 11.71 shows plots of $\delta^{31}P$ vs the sum of the protons on the α -C-O-P carbon atoms. These plots show that $\delta^{31}P$ for $(RO)_2P(=S)H$ analogs occurs at higher frequency (\approx 60 ppm) than it does for the corresponding analogs. Moreover, $\delta^{31}P$ decrease in frequency with increased branching in the α -C-O-P carbon atom (26).

The sulfur atom is less electronegative than the oxygen atom (2.5 vs 3.5), and, consequently, the P=O analogs occur at lower frequency than the P=S analogs.

Figure 11.72 is a plot of δ ³¹P for $(RO)_2P(=O)H$ analogs vs δ ³¹P for the corresponding $(RO)_2P(=S)H$ alkyl analogs. The two plots are for different δ ³¹P literature values (27,28). This plot shows that the δ ³¹P chemical shift values decrease in frequency with increased branching on the α -C-O-P carbon atom (26).

Figure 11.73 shows plots of the number of protons on the α -C-P carbon atoms vs δ ³¹P for RP(=O)Cl₂ and RP(=S)Cl₂ (26). The δ ³¹P chemical shift increases in frequency with increased branching on the α -C-P carbon atom. The δ ³¹P chemical shifts for the RP(=S)Cl₂ analogs are larger than they are for the corresponding RP(=O)Cl₂ analogs (26). Changes in the bond angles caused by steric factors of the alkyl group could be the cause of the increased $\Delta\delta$ ³¹P values with increased branching on the α -C-P carbon atom (P=O vs P=S analogs: CH₃, 34.9 ppm; C₂H₅, 42.4 ppm; and iso C₃H₇, 46.6 ppm).

Figure 11.74 is a plot of $\delta^{31}P$ for RP(=S)Cl₂ vs $\delta^{31}P$ for RP(=O)Cl₂, and the plot shows an essentially linear relationship (26). Both $\delta^{31}P$ chemical shifts increase in frequency with increased branching on the α -C-P carbon atom.

Figure 11.75 is a plot of $\delta^{31}P$ for $RP(=O)F_2$ vs the number of protons on the α -C-P carbon atom. The $\delta^{31}P$ chemical shift increases in frequency with increased branching on the α -C-P carbon atom.

Figure 11.76 is a plot of α ³¹P for RP(=S)Br(OC₃H_{7-iso}) vs the number of protons on the α -C-P carbon atom and the number of protons on the α -C-O-P carbon atom. The δ ³¹P increases in frequency with increased branching on the α -carbon atoms.

Figure 11.77 shows plots of $\delta^{31}P$ vs the number of chlorine atoms joined to phosphorus for $PCl_{3-x}(OR)_x$ (26). These plots show that $\delta^{31}P$ decreases in frequency with a decrease in the number of atoms joining to the phosphorus atom, and that the ethyl analogs occur at lower frequency than the corresponding methyl analogs (26).

Figure 11.78 shows plots of $\delta^{31}P$ for PX_{3-n} R_n vs the number of protons on the α -C-P carbon atom(s) (26). These plots show that $\delta^{31}P$ decreases in frequency with decreased branching on the α -C-P carbon atom(s), and that $\delta^{31}P$ for the Br analog occurs at lower frequency than the corresponding $\delta^{31}P$ chemical shift for the corresponding Cl analog.

Figure 11.79 is a plot of $\delta^{31}P$ vs the number of protons on the α -C-O-P carbon atoms for $(RO)_2P(=O)Cl_2$ (26). This plot shows that $\delta^{-31}P$ decreases in frequency with increased branching on the δ -C-O-P carbon atom.

Figure 11.80 shows plots of the number of Cl atoms joined to the P atom vs P=O frequencies for $P(=O)Cl_3$ through $P(=O)Cl_{3-x}(OR)_x$ where R is CH₃ or C_2H_5 (26). In all cases v P=O for rotational conformer I occurs at higher frequency than v P=O for rotational conformer II. The v P=O frequencies decrease in frequency as the number of Cl atoms joined to P are decreased. The v P=O frequencies for the CH₃O analogs occur at higher frequency than those exhibited by the C_2H_5O analogs.

Figure 11.81 is a plot of the number of Cl atoms joined to P vs ν P=O for $P(=O)Cl_{3-x}[N(CH_3)_2]_x$. The ν P=O frequency decreases with the decrease in the number of Cl atoms joined to the P atom.

Figure 11.82 is a plot of $\delta^{31}P$ for $P(=S)(OR)_3$ vs $\delta^{31}P$ for the corresponding alkyl analogs of $P(=O)(OR)_3$ (26). The $\delta^{31}P$ chemical shifts decrease in frequency with increased branching on the α -C-O-P carbon atoms. The deviation from linearity for the tert-butyl analogs suggests that this results from a steric factor causing a change in the PO_3 bond angles.

Figure 11.83 is a plot of $\delta^{31}P$ for $P(=Se)(OR)_3$ vs $\delta^{31}P$ for the corresponding alkyl analogs of $P(=O)(OR)_3$ (26). The $\delta^{31}P$ chemical shifts decrease in frequency with increased branching on the α -C-O-P carbon atoms. Deviation from linearity for the tert-butyl analogs supports the analysis that this is the result of a steric factor causing a change in the PO₃ bond angles.

Figure 11.84 shows plots of δ ³¹P for RP(=O)Cl₂ vs δ ³¹P for RP(=O)Cl₂ vs δ ³¹P for corresponding alkyl analogs of RP(=O)F₂. The double plot presents the δ ³¹P range given in the references for the RP(=O)Cl₂ analogs. The δ ³¹P chemical shift decreases in frequency with decreased branching on the α -C-O-P carbon atom (26).

A SUMMARY OF CORRELATIONS FOR THE PHOSPHORUS COMPOUNDS

1. Increased branching on the α -C-P carbon atom causes $\delta^{31}P$ to occur at increasingly higher frequency in a systematic manner. The $\delta^{31}P$ chemical shift increases in frequency with increased electron release of the alkyl groups.

- 2. Correlations exist between $\delta^{31}P$ and $\delta^{15}N$ for corresponding alkyl analogs of RPH₂ vs RNH₂, (R)₂PH vs (R)₂NH, and (R)₃P vs (R)₃N.
- 3. The v P=O frequency and δ ³¹P frequency decrease with increased branching on the α -C-O-P carbon atoms for P(=O)(OR) analogs, and a correlation exists between v P=O and δ ³¹P.
- 4. The chemical shift $\delta^{31}P$ decreases in frequency with increased branching on the α -C-O-P carbon atoms for P(=S)(OR)₃ and P(=Se)(OR)₃.
- 5. The chemical shift $\delta^{31}P$ increases in the order P=O, P=S, and P=Se for trialkyl esters, with the exception of the tert-butyl analog. It is suggested that the tert-butyl analogs sterically cause the (RO)₃P=S and (RO)₃P=Se bond angles to change so that $\delta^{31}P$ does not change in a linear manner, as in the case of the lesser branched alkyl groups.
- 6. Correlations exist between $\delta^{31}P$ for comparable $(RO)_3P=O$, $(RO)_3P=S$ and $(RO)_3P=S$ e alkyl analogs.
- 7. The chemical shift value for $\delta^{31}P$ is higher for R-P than for R-O-P.
- 8. The v P=O frequency decreases with increased substitution of RO for Cl in the series $P(=O)Cl_{3-x}(OR)_x$. The decrease in v P=O frequency is in the order of decreasing electronegativity of the sum of the Cl atoms and RO groups.
- 9. For RPX₂ analogs, δ ³¹P decreases in frequency in the order Cl, Br, and I, which is in the order of decreasing electronegativity. However, δ ³¹P for RP(=O)Cl₂ occurs at higher frequency than δ ³¹P for corresponding RP(=O)F₂ analogs.
- 10. Correlations exist between δ ³¹P for RP(=O)(OC₂H₅)₂ vs δ ¹³C=O for RC(=O)(OCH₃) and CH₃P(=O)(OR)₂ vs δ ¹³C=O for CH₃C(=O)(OR).

ANISOLES

Goldman *et al.* have reported that v asym. ϕ -O-C for p-substituted anisoles increases in frequency with the electron withdrawing power of the p-substituent (30). Brown and Okamoto have reported a linear relationship between v asym. ϕ -O-C and σ + values (33).

Tables 11.17 and 11.17a list NMR and IR data for substituted anisoles, respectively (29). Figure 11.85 is a plot of v asym. ϕ -O-C vs δ 13 C-1 for 4-x-anisoles. This plot shows that, in general, both v asym. ϕ -O-C and δ 13 C-1 increase in frequency, progressing in the series 4-methoxy anisole through 4-nitroanisole (29).

Figure 11.86 is a plot of σ_{R° values vs δ^{13} C-1 for 3-x- and 4-x-anisoles (29). With the exception of point 22 (4-phenoxyanisole), there is a pseudolinear relationship between δ^{13} C-1 and Taft σ_{R° . The plot in Fig. 11.86 using δ^{13} C-1 of 150.4 ppm indicates that δ^{13} C-1 is misassigned. Assignment of δ^{13} C-1 at 156.0 ppm is indicated, and thus, we then assign the δ^{13} C-4 at 150.4 ppm for 4-phenoxyanisole.

Figure 11.87 is a plot of δ^{13} C-1 vs Hammett σ values for 3-x and 4-x-anisoles. The point 22 is for 4-phenoxyanisole, and it appears that the correct assignment for δ^{13} C-1 for this compound is 156.0 ppm rather than 150.4 ppm. The 150.4 ppm apparently results from δ^{13} C-4 (29).

Figure 11.88 is a plot of Taft $\sigma_{R^{\circ}}$ values vs δ^{13} C-1 for 4-x-anisoles (29), and this plot exhibits a pseudolinear relationship between these two parameters. Figure 11.89 is a plot of Taft $\sigma_{R^{\circ}}$ values vs ν asym. ϕ -O-C for 4-x-anisoles (26), and this plot shows that in general ν asym ϕ -O-C increases in frequency as the Taft $\sigma_{R^{\circ}}$ increases in value.

Figure 11.90 is a plot of δ ¹³C-1 vs Hammett σ_p values for 4-x-anisoles, and this plot exhibits a pseudolinear relationship between these two parameters. The δ ¹³C-1 chemical shift increases in frequency as Hammett σ_p values increase.

Figure 11.91 is a plot of δ 13 C-1 vs δ 13 C-5 for 2-x-anisoles (29), and this plot shows a pseudolinear relationship between these two values. This plot includes 2-nitroanisole, the literature assignment for δ 13 C-5 was given as 134.4 ppm, and δ 13 C-3 was given as 125.3 ppm. The plot in Fig. 11.91 indicates that the δ 13 C-3 and δ 13 C-5 assignments should be reversed, and we have done so in the plot shown here.

MONO-SUBSTITUTED BENZENES

Table 11.18 lists IR and NMR data for mono-x-benzenes (4,34,35). Figure 11.92 is a plot of δ ¹³C-4 for mono-substituted benzenes vs Taft $\sigma_{R^{\circ}}$ values, and these parameters correlate in a pseudolinear manner. The significance of Taft $\sigma_{R^{\circ}}$ is that there is a significant contribution of π electrons to the C-4 atom from the atom or group joined to the C-1 atom (4).

Figure 11.93 is a plot of the out-of-plane hydrogen deformation mode I vs Taft $\sigma_{R^{\circ}}$ values, and these parameters correlate in a pseudolinear manner (4).

Figure 11.94 is a plot of the out-of-plane hydrogen deformation mode III vs Taft $\sigma_{R^{\circ}}$ values, and these parameters correlate in a pseudolinear manner (4).

Figures 11.95 and 11.96 plot the out-of-plane hydrogen deformation modes I and III vs δ ¹³C-4, respectively, and these parameters show that modes I and III increase in frequency as δ ¹³C-4 increases in frequency (4).

4-X AND 4,4'-X,X'-BIPHENYLS IN CHCL₃ SOLUTIONS

Table 11.19 lists NMR data for 4-x and 4,4'-x,x-biphenyls in CHCl₃ solution (3). Figure 11.97 is a plot of δ ¹³C-1 vs Taft $\sigma_{R^{\circ}}$ for 4-x, and 4,4'-x,x-biphenyls and, in general, δ ¹³C-1 increases in frequency as the Taft $\sigma_{R^{\circ}}$ values increase (4).

TETRAMETHYLUREA (TMU)

Table 11.20 lists NMR data for 1 wt./vol. % tetramethylurea (TMU) in mol % CHCl $_3$ /CCl $_4$ solutions. Figure 11.98 is a plot of δ 13 C=O for TMU vs mol % CHCl $_3$ CCl $_4$ (36). Figure 11.98 is a plot of δ 13 C=O for TMU vs mol % CHCl $_3$ /CCl $_4$. This plot shows that δ 13 C=O increases in frequency (shifts down field) in a nonlinear manner as the mol % is increased from 0 to 100. These data indicate that there is changing solute-solvent interaction between TMU and CHCl $_3$ /CCl $_4$ as the mol % CHCl $_3$ /CCl $_4$ is increased from 0 to 100.

Figure 11.99 is a plot of v C=O (37) vs δ 13 C=O for TMU in 0–100 mol % CHCl₃/CCl₄ solutions. This plot shows that v C=O decreases in frequency while δ 13 C=O increases in frequency as the mol % CHCl₃/CCl₄ goes from 0–100 mol % CHCl₃/CCl₄ (36).

Figure 11.100 is a plot of δ $^{13}C=O$ for TMU vs δ $^{13}CH_3$ in 0–100 mol % CHCl₃/CCl₄ solutions. This plot shows that δ $^{13}C=O$ increases in frequency (shifts down-field) while

 δ 13 CH $_3$ decreases in frequency (shifts up-field) as the mol % CHCl $_3$ /CCl $_4$ is increased from 0 to 100 (34). Because the δ 13 C=O chemical shift increases in frequency in going from CCl $_4$ solution to CHCl $_3$ solution, the CCl $_4$ deshields the carbonyl carbon atom more than CHCl $_3$ does. Simultaneously, CHCl $_3$ shields the CH $_3$ carbon atoms of atoms of TMU more than CCl $_4$ does, because δ 13 CH $_3$ decreases in frequency as the mol % CHCl $_3$ /CCl $_4$ is increased.

Table 11.21 lists NMR data for 1 wt./vol. % TMU in various solvents (36). Figure 11.101 is a plot of δ 13 C=O for TMU vs the solvent acceptor number (AN) for each of the 21 solvents. The solvents are presented in order, 1 through 21, in Table 11.21. This plot shows that in general there is a pseudolinear relationship between δ 13 C=O and AN, but the scatter of data points shows that this is not a precise indicator of the δ 13 C=O chemical shifts. If the AN values were a precise indicator of δ 13 C=O frequencies, the δ 13 C=O chemical shift for TMU in hexane would be expected to occur at lower frequency by approximately 0.8 ppm by extrapolation from the pseudolinear relationship exhibited by most of the solvents, AN values, and the corresponding δ 13 C=O frequencies.

These results indicate that the AN values do not take into account the steric effect of the solute and solvent, which alters the distance between the sites of solute-solvent interaction. Thus, there is not a comparable solute-solvent interaction between different but similar carbonyl compounds in the same solvent due to steric differences of the solute and solvent.

Figure 11.102 is a plot of δ ¹³C=O for TMU in each of the solvents vs the difference between δ ¹³C=O for TMU in acetic acid solution and each of the other solvents (see Table 11.21). There is no chemical significance in this linear plot, because this type of mathematical treatment of any data set always produces a linear relationship. It does help show that the AN values are not a precise indicator of δ ¹³C=O chemical shifts. As examples: (A) The AN values for solvent 7 (tertbutyl alcohol) and solvent 14 (acetone) are 29.1 and 12.5, respectively; (B) The AN values for solvent 6 (isopropyl alcohol) and solvent 11 (acetonitrile) are 33.5 and 18.9, respectively; and (C) The AN values for solvent 13 (nitrobenzene), solvent 17 (benzene), and solvent 18 (methyl tert-butyl ether) are 14.8, 8.2, and 5.0, respectively. The δ ¹³C=O frequencies for (A), (B), and (C) are 166.0, 166.1, and 165.1 ppm, respectively, yet the AN values for the solvents vary considerably. These data clearly show that the AN values are not a precise indicator of solute-solvent interactions (36).

DIALKYLKETONES

Table 11.22 lists NMR data for dialkylketones in various solvents at 1 wt./vol. % concentrations (36). Figure 11.103 is a plot of $\delta^{13}C$ =O for dialkylketones at 1 wt./vol. % in different solvents vs the AN value for each of the solvents. Plots 1–6 show a pseudolinear relationship for each of the dialkylketones and $\delta^{13}C$ =O increases in frequency with increased branching on the α -carbon atoms. In addition, plots 1–6 and 1′–6′ yield separate relationships. Plots 1′–6′ are $\delta^{13}C$ =O frequencies for these dialkylketones in each of the four alcohols included in this study, and these plots are distinctly different from plots 1–6. An IR study of these same dialkylketones in solution with each of these four alcohols has shown that these ketones exist in alcoholic solution in two forms. These are: an intermolecularly hydrogen-bonded form [(R) $_2$ C=O···HOR′], and a form in which (R) $_2$ C=O is not intermolecularly hydrogen bonded, but surrounded by intermolecularly

hydrogen-bonded alcohol molecules (38). This is why dialkylketones in alkyl alcohols differ from those in nonalcoholic solution.

Plots 1–6 also show that δ 13 C=O for these dialkylketones increases in frequency as the electron contribution of the alkyl groups increases, progressing in the series dimethyl ketone through di-tert-butyl ketone.

Figure 11.104 shows plots of δ^{13} C=O (solvent) vs the δ^{13} C=O chemical shift difference between each dialkylketone in methanol and the same ketone in each of the other solvents (36). It is noted that the δ^{13} C=O chemical shifts for these dialkylketones increase in the order dimethyl ketone through ethyl isopropyl ketone, di-tert-butyl ketone, and di-isopropyl ketone. The inductive donation of electrons to the carbonyl group increases in the order dimethyl ketone through di-tert-butyl ketone. The di-tert-butyl ketone is out of order in this sequence because the steric effects of the tert-butyl group prevent a closer solute-solvent interaction with the carbonyl group as in the case of di-isopropyl ketone. Further support for this supposition is gained by study of these ketones in the four alcohols. One would expect the strongest intermolecular hydrogen bond (C=O···HO) to be formed between methanol and di-tert-butyl ketone. However, as methanol is the reference point in each plot, it does not provide support for the steric factor supposition. Comparison of the points on the plots for alcohols 2, 3, and 6 show that change for δ^{13} C=O (methanol) minus δ^{13} C=O (ethyl alcohol) is the least for di-tert-butyl ketone in going from solution in methanol to solution in ethanol, and the change is more in going from solution in isopropyl alcohol and tert-butyl alcohol. With the exception of diethyl ketone in benzonitrile, in going from solution in methanol to solution in any one of the other solvents, the δ^{13} C=O frequency changes least in the case of di-tert-butyl ketone. These δ ¹³C=O frequency shifts are what is expected when steric factors of the solute and solvent affect the distance between the sites of the solute-solvent interaction. The larger the steric factor, the less solute-solvent interaction regardless of the electrophilicity of the solvent and/or the acidity of the OH protons (36).

ACETATES

Table 11.23 lists NMR data for alkyl acetates and phenyl acetate 1 wt./vol. % in various solvents (36). Figure 11.105 is a plot of δ 13 C=O for alkyl acetates and phenyl acetate vs the difference of δ 13 C=O in methanol and δ 13 C=O in each of the other solvents (36). The numbers in each plot correspond to a particular solvent, and it can be seen that with the exception of methyl alcohol, the difference values for δ 13 C=O are not the same for each of the alkyl acetates and phenyl acetate. If the AN value for a solvent is constant, some other factor must be causing the change in the difference values for δ 13 C=O for each of the other acetates. This other factor is a steric factor, which causes the distance in space between sites of solute and solvent interaction to vary in the acetates studied.

ACRYLATES AND METHACRYLATES

Table 11.24 lists IR and NMR data for alkyl acrylates and alkyl methacrylates in CCl_4 and $CHCl_3$ solution (39). The ν C=O for alkyl acrylates in mol % $CHCl_3/CCl_4$ solutions continuously

decreases, from $1722.9-1734.1\,\mathrm{cm^{-1}}$ in CCl_4 to $1713.8-1724.5\,\mathrm{cm^{-1}}$ in $CHCl_3$ solution while δ $^{13}C=O$ continually increases in frequency from 164.2–165.2 ppm in CCl_4 solution to 165.7–166.7 ppm in CHCl₃ solution (39). The v C=O frequency for alkyl methacrylates is lower than the frequencies for the corresponding alkyl acrylates. This decrease in v C=O frequency is the result of the electron contribution of the CH₃ group to the C=O group, which weakens the C=O bond via C-O and thus causes the V C=O mode to vibrate at a lower frequency. The v C=O for alkyl methacrylates in mol % CHCl₃/CCl₄ solutions continuously decrease in frequency from 1719.5-1726.0 cm⁻¹ in CCl₄ solution to 1709.5-1718.0 cm⁻¹ in CHCl₃ solution, while δ ¹³C=O continuously increase in frequency from 165.6–166.7 ppm in CCl_4 solution to 167.1–167.8 ppm in CHCl₃ solution. Moreover, the δ ¹³C=O frequencies for the alkyl methacrylates are higher than those for the corresponding alkyl acrylate analog. Methyl acrylate exhibits the highest v C=O frequency and highest δ ¹³C=O chemical shift, while tertbutyl acrylate exhibits the lowest δ^{13} C=O chemical shift for the seven alkyl acrylates included in the study. This difference is caused by the larger inductive-mesomeric contribution of the tertbutyl group to the carbonyl group relative to the contribution of the methyl group to the carbonyl group:

Both v C=O and δ ¹³C=O for alkyl methacrylates shift in a manner comparable to that shown for comparable alkyl acrylates. The behavior of v C=O and δ ¹³C=O is a function of the electron density on the carbonyl carbon atom. As the electron density on the carbonyl carbon atom increases, both v C=O and δ ¹³C=O decrease in frequency.

The C=O group in CHCl₃ solution is intermolecularly hydrogen bonded (C=O···HCCl₃) and surrounded by other CHCl₃ molecules and the C=O groups are less shielded by Cl atoms when in CCl₄ solutions. Consequently, the δ ¹³C=O chemical shift occurs at higher frequency in CHCl₃ than in CCl₄ solution. Intermolecular hydrogen bonding (C=O···HCCl₃) causes the C=O mode to vibrate at lower frequency in CHCl₃ solution than in CCl₄ solution. Other factors that affect both ν C=O and δ ¹³C=O are attributed to the reaction field of the solvent system and steric factors of the solute. As the reaction field is increased in going from 0 to 100 mol % CHCl₃/CCl₄, the ν C=O frequency is steadily decreased and δ ¹³C=O is steadily increased (39).

REFERENCES

- 1. Nyquist, R. A. (1986). IR and NMR Spectral Data-Structure Correlations for the Carbonyl Group. Philadelphia: Sadtler.
- 2. Nyquist, R. A. (1993). Appl. Spectrosc. 47: 411.
- 3. The Sadtler Standard Collection of NMR Carbon-13 NMR Spectra. Philadelphia: Sadtler Research Laboratories,
- 4. Nyquist, R. A. and Hasha, D. L. (1991). Appl. Spectrosc. 45: 849.
- 5. Kalinowski, H. O., Berger, S., and Braun, S. (1988). Carbon-13 NMR Spectroscopy. New York: John Wiley & Sons, p. 313.
- 6. Nyquist, R. A. (1963). Spectrochim. Acta 19: 1595.
- 7. Nyquist, R. A., Settineri, S. E., and Luoma, D. A. (1991). Appl. Spectrosc. 45: 1641.

- 8. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data. Vol. 1, Philadelphia: Sadtler Res. Labs.
- 9. Nyquist, R. A., Putzig, C. L., and Hasha, D. L. (1989). Appl. Spectrosc. 43: 1049.
- 10. Nyquist, R. A. and Luoma, D. A. (1991). Appl. Spectrosc. 45: 1501.
- 11. Nyquist, R. A. (1990). Appl. Spectrosc. 44: 438.
- 12. Nyquist, R. A., Streck, R., and Jeschek, G. (1996). J. Mol. Struct. 377: 113.
- 13. Bellamy, L. J. (1975). The Infrared Spectra of Complex Molecules. New York: John Wiley & Sons; p. 295.
- 14. Rao, C. N. R. and Venkataraghavan, R. (1961). Can. J. Chem. 39: 1757.
- 15. Deady, L., Katritzky, A. R., Shanks, R. A., and Topsom, R. D. (1973). Spectrochim. Acta 29A: 115.
- 16. Saito, T., Yamakawa, M., and Takasuka, M. (1981). J. Mol. Spectrosc. 90: 359.
- 17. Nyquist, R. A. (1987). Appl. Spectrosc. 41: 904.
- 18. Nyquist, R. A. (1988). Appl. Spectrosc. 42: 624.
- 19. Witanowski, M., Steaniak, L., and Webb, G. A. (1981). *Annual Reports on NMR Spectroscopy.* Vol. 11B, Nitrogen NMR Spectroscopy. New York: Academic Press, p. 301.
- 20. Sadtler Research Laboratories Standard Carbon-13 NMR Spectra.
- 21. Witanowski, M., Steaniak, L., and Webb, G. A. (1981). Annual Reports on NMR Spectroscopy. Vol. 11b, Nitrogen NMR Spectroscopy. New York: Academic Press, p. 385.
- 22. Hirschmann, R. P., Kniseley, R. N., and Fassel, V. A. (1965). Spectrochim. Acta 21: 2125.
- 23. Taft, Jr., R. W. (1956). in Steric Effects in Organic Chemistry. M. S. Neuman, ed., New York: J. Wiley & Sons, Inc., p. 590.
- 24. Nyquist, R. A. and Jewett, G. L. (1992). Appl. Spectrosc. 46: 841.
- 25. Witanowski, M., Steaniak, L., and Webb, G. A. (1981). Annual Reports on NMR Spectroscopy, Volume 11B, Nitrogen NMR Spectroscopy. New York: Academic Press, p. 305.
- 26. Nyquist, R. A. (1988). Appl. Spectrosc. 42: 854.
- 27. Mavel, G. (1973). Annual Reports on NMR Spectroscopy, NMR Studies of Phosphorus Compounds (1965–1969), Vol. 5B, E. F. Mooney, ed., London/New York: Academic Press, pp. 103–288.
- 28. Mark, V., Dungan, C. H., Crutchfield, M. M., and Van Wazer, J. R. (1967). Compilation of ³¹P NMR Data. in *Topics in Phosphorus Chemistry*, Vol. 5, Chap. 4, M. Grayson and E. J. Griffiths, eds., New York: Wiley Interscience, pp. 227–447.
- 29. Nyquist, R. A. (1991). Appl. Spectrosc. 45: 1649.
- 30. Goldman, G. K., Lehman, H., and Rao, C. N. R. (1960). Can. J. Chem. 38: 171.
- 31. Nyquist, R. A. and Potts, W. J. (1972). Vibrational Spectroscopy of Phosphorus Compounds. in *Chemical Analysis Series, Analytical Chemistry of Phosphorus Compounds*. M. Holman, ed., New York: John Wiley Interscience, pp. 189–293.
- 32. L. Pauling (1948). The Nature of the Chemical Bond. Ithaca, NY: Cornell University Press, pp. 60, 179.
- 33. Brown, H. C. and Okamoto, Y. J. (1958). J. Am. Chem. Soc. 80: 4979.
- 34. Nyquist, R. A. (1984). The Interpretation of Vapor-Phase Infrared Spectra: Group Frequency Data. Vol. 1, Philadelphia: Sadtler Res. Labs., p. A-17.
- 35. Breitmaier, E. and Voelter, W. (1987). *Carbon-13 NMR Spectroscopy*. Federal Republic of Germany: VCH, Weinheim, p. 256.
- 36. Nyquist, R. A., Steck, R., and Jeschek, G. (1996). J. Mol. Struct. 377: 113.
- 37. Nyquist, R. A. and Luoma, D. A. (1991). Appl. Spectrosc. 45: 1491.
- 38. Nyquist, R. A. (1994). Vib. Spectrosc. 7: 1.
- 39. Nyquist, R. A. and Streck, R. (1995). Spectrochim. Acta 51A: 475.

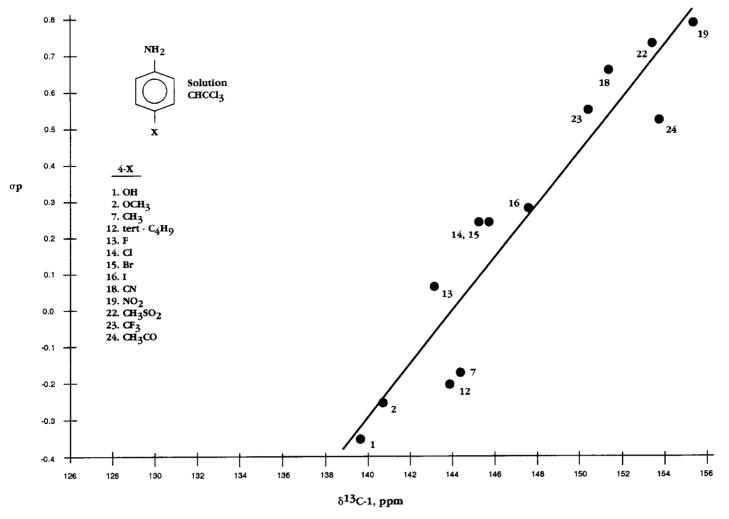


FIGURE 11.1 A plot of the NMR δ^{-13} C-1 chemical shift data for 4-x-anilines in CHCl₃ solution vs Hammett σ_p values for the 4-x atom or group.

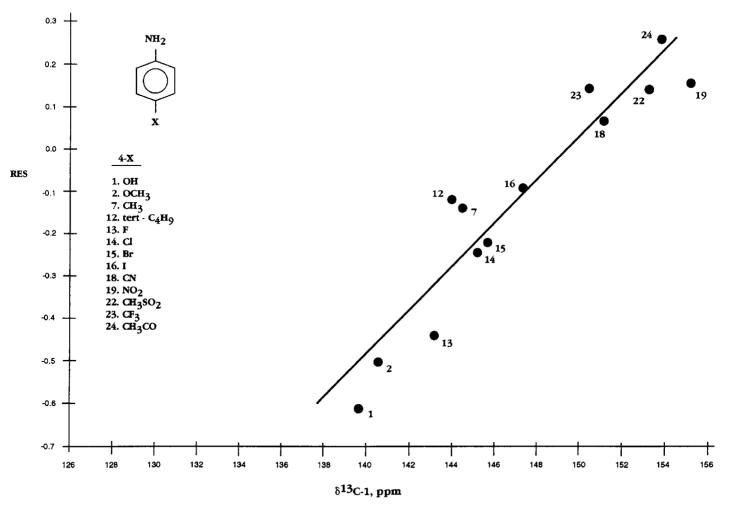


FIGURE 11.2 A plot of the NMR δ^{13} C-1 chemical shift data for 4-x-anilines in CHCl₃ solution vs Taft $\sigma_{\mathbb{R}^{\circ}}$ values for the 4-x atom or group.

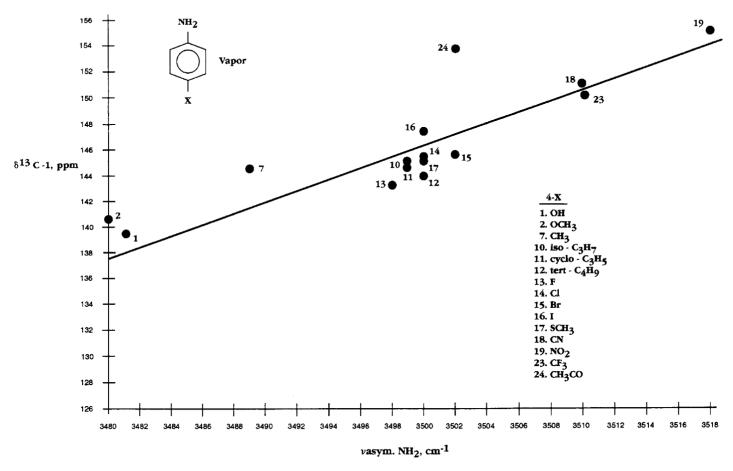


FIGURE 11.3 A plot of v asym. NH₂ frequencies for 4-x-anilines in the vapor phase vs δ^{13} C-1 chemical shift data for 4-x-anilines in CHCl₃ solution.

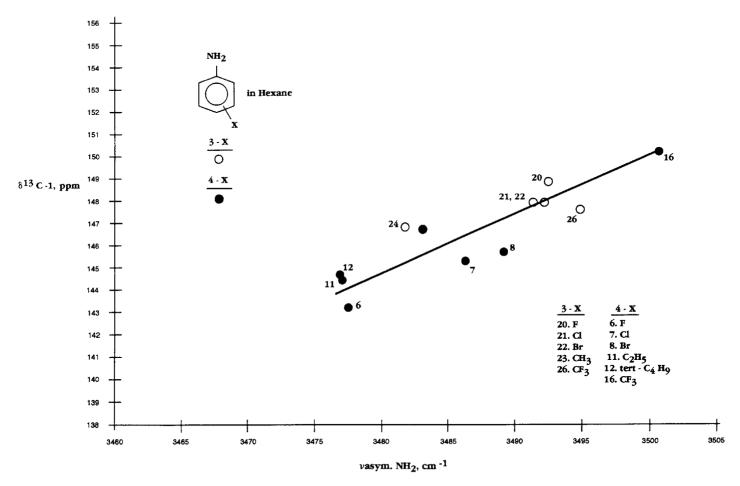


FIGURE 11.4 A plot of v asym. NH $_2$ frequencies for 3-x- and 4-x-anilines in hexane solution vs δ 13 C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl $_3$ solution.

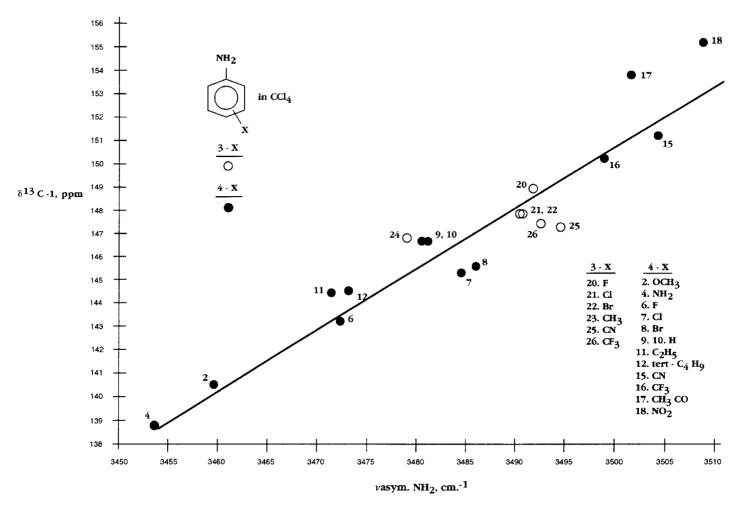


FIGURE 11.5 A plot of ν asym. NH₂ frequencies for 3-x- and 4-x-anilines in CCl₄ solution vs δ ¹³ C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution.

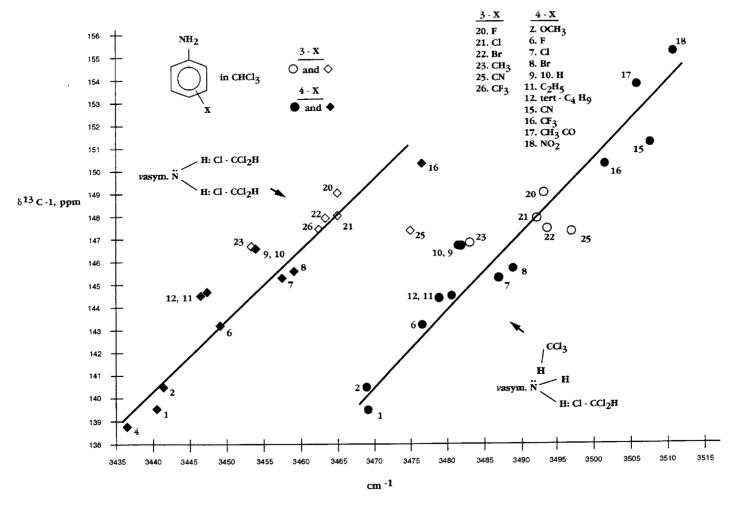


FIGURE 11.6 A plot of the v asym. NH $_2$ frequencies for 3-x- and 4-x-anilines in CHCl $_3$ solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl $_3$ solution.

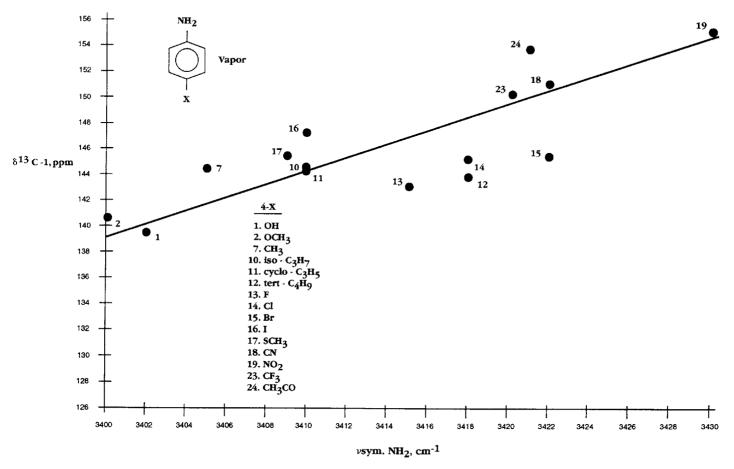


FIGURE 11.7 A plot of the v sym. NH₂ frequencies for 4-x-anilines in the vapor phase vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines.

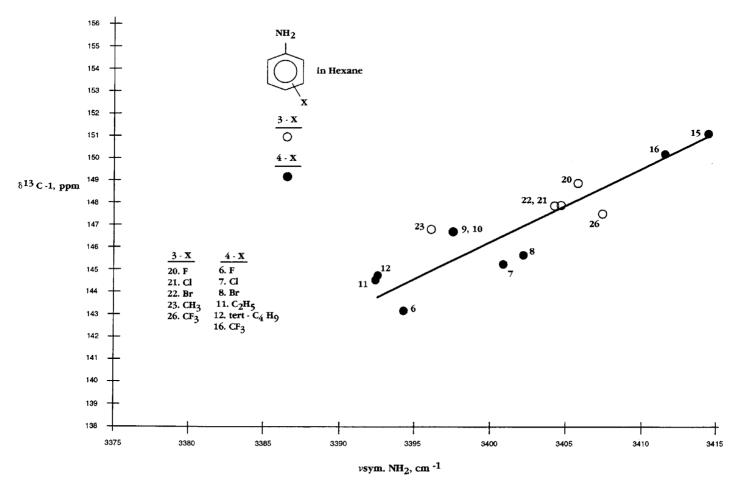


FIGURE 11.8 A plot of v sym. NH₂ frequencies for 3-x- and 4-x-anilines in hexane solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution.

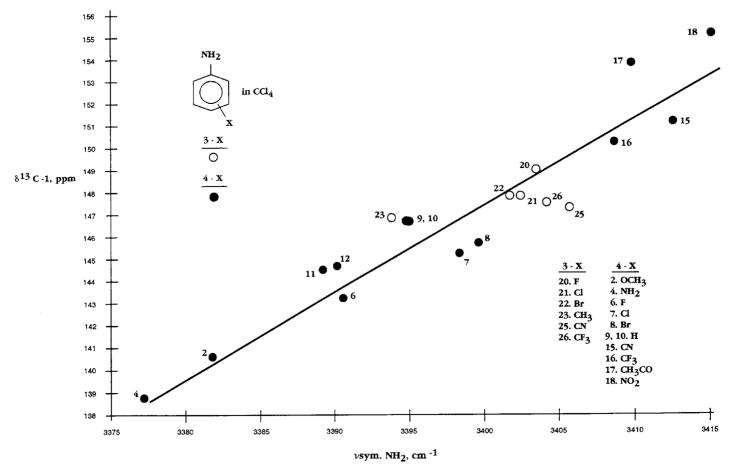


FIGURE 11.9 A plot of ν sym. NH₂ frequencies for 3-x- and 4-x-anilines in CCl₄ solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines vs the δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution.

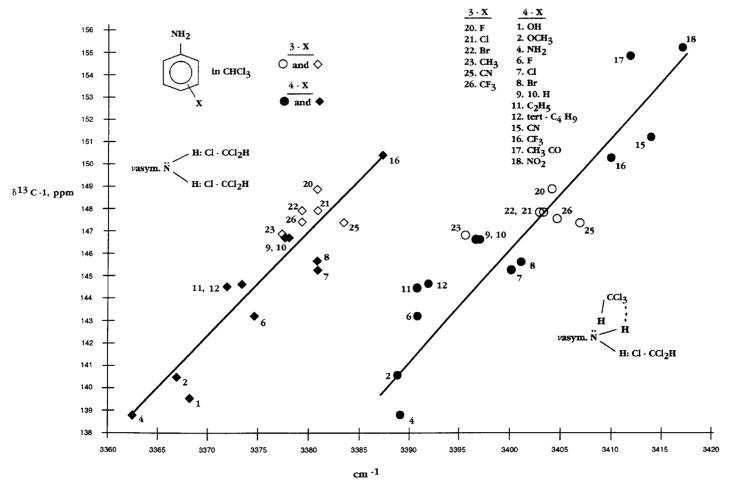


FIGURE 11.10 A plot of the v sym. NH $_2$ frequencies for 3-x- and 4-x-anilines in CHCl $_3$ solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl $_3$ solution.

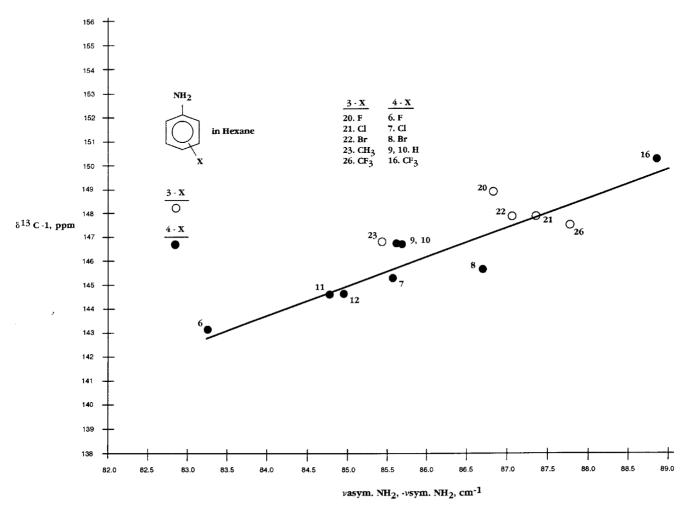


FIGURE 11.11 A plot of the frequency difference between v asym. NH₂ and v sym. NH₂ for 3-x- and 4-x-anilines in hexane solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution.

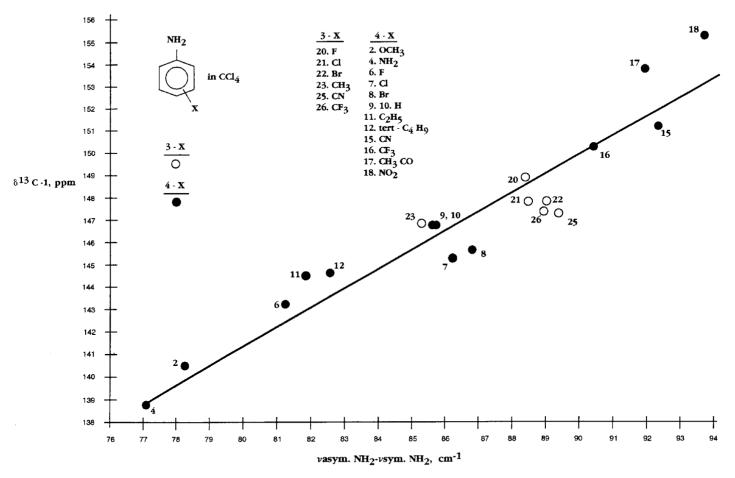


FIGURE 11.12 A plot of the frequency difference between ν asym. NH₂ and ν sym. NH₂ for 3-x- and 4-x-anilines in CCl₄ solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution.

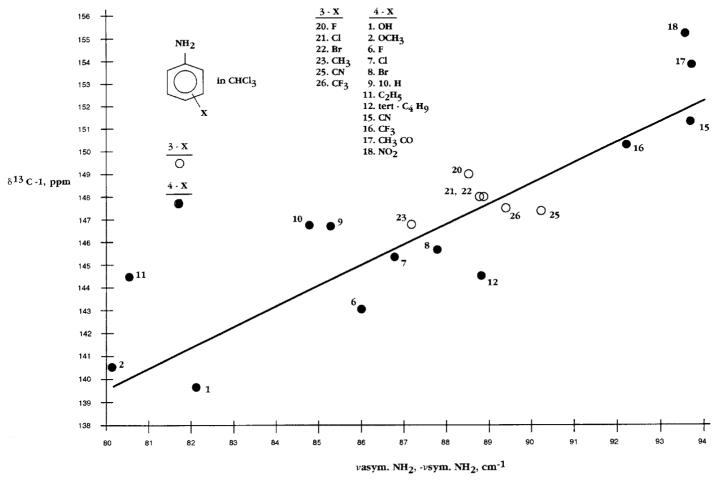


FIGURE 11.13 A plot of the frequency difference between v asym. NH₂ and v sym. NH₂ for 3-x- and 4-x-anilines in CHCl₄ solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution.

FIGURE 11.14 A plot of the absorbance ratio A(ν asym. NH₂)/A(ν sym. NH₂) for 3-x- and 4-x-anilines in CCl₄ solution vs δ ¹³C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl₃ solution.

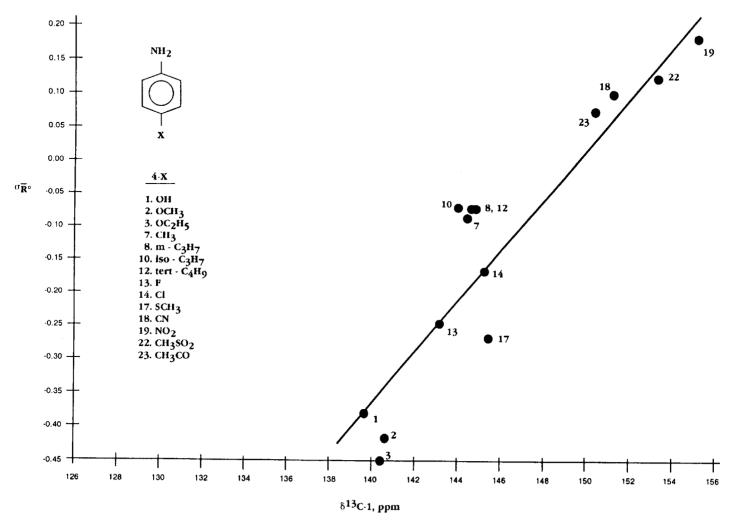


FIGURE 11.15 A plot of δ^{13} C-1 chemical shift data for 4-x-anilines in CHCl₃ solution vs Taft $\sigma_{\mathbb{R}^{\circ}}$ values for the 4-x atom or group.

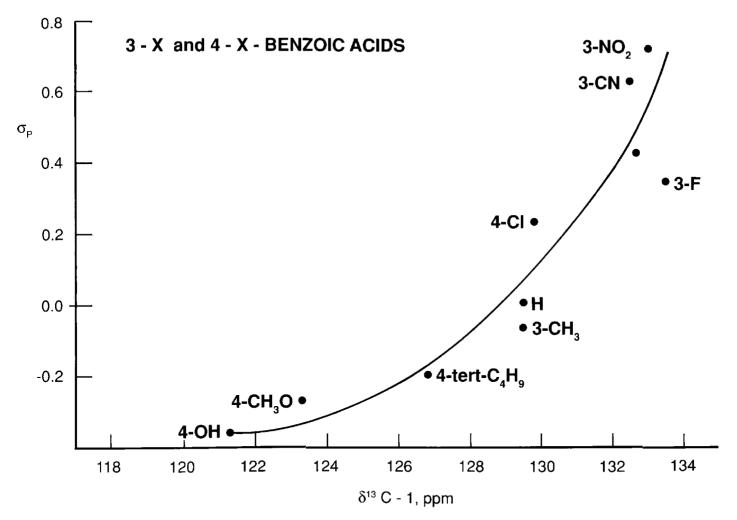


FIGURE 11.16 A plot of δ ¹³C-1 for 3-x- and 4-x-benzoic acids vs Hammett σ values for the x atom or group.

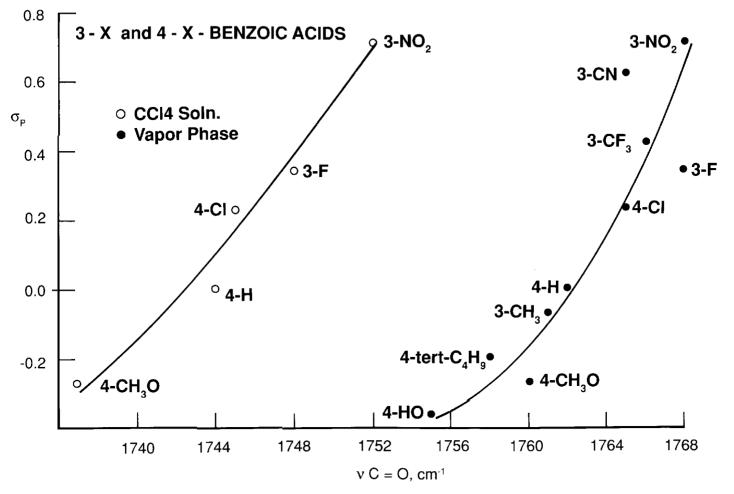


FIGURE 11.17 Plots of v C=O vs Hammett σ values of 3-x- and 4-x-benzoic acids. The solid circles are for IR data in the vapor phase. The open circles are for IR dilute solution data for unassociated 3-x- and 4-x-benzoic acids.

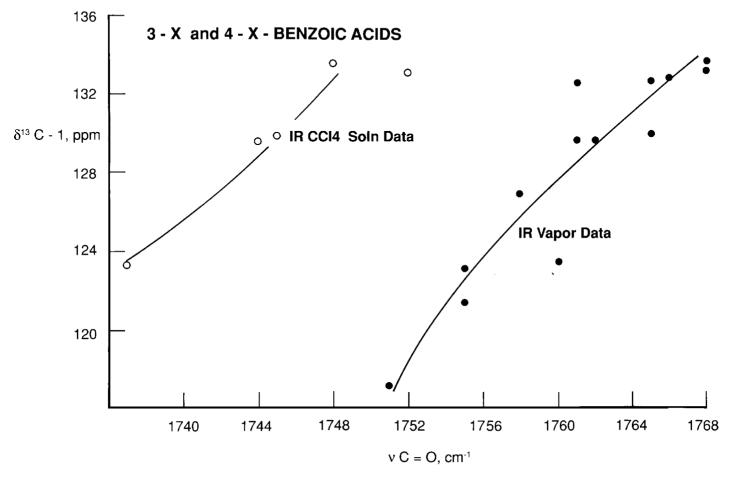


FIGURE 11.18 Plots of v C=O vs δ^{13} C-1 for 3-x- and 4-x-benzoic acids. The NMR data are for CDCl₃ solutions. The plot with closed circles includes vapor-phase IR data. The plot with open circles includes IR CCl₄-solution data.

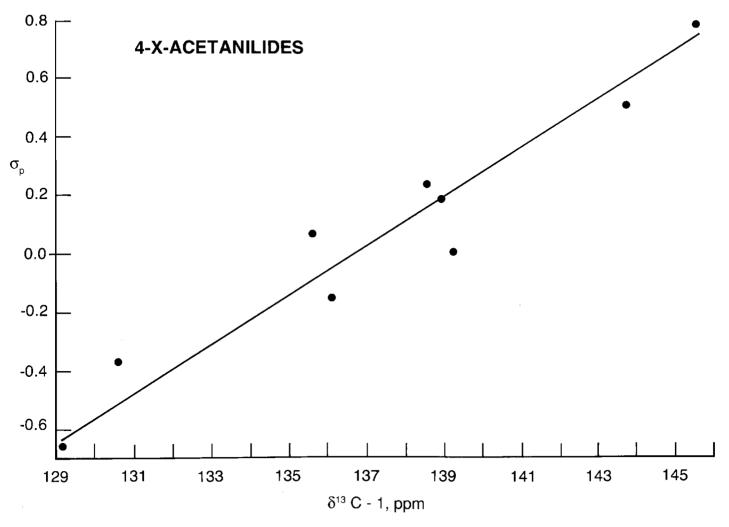


FIGURE 11.19 A plot of δ ¹³C-1 for 4-x-acetanilides in CDCl₃ solution vs Hammett σ_p values for the x-atom or group.

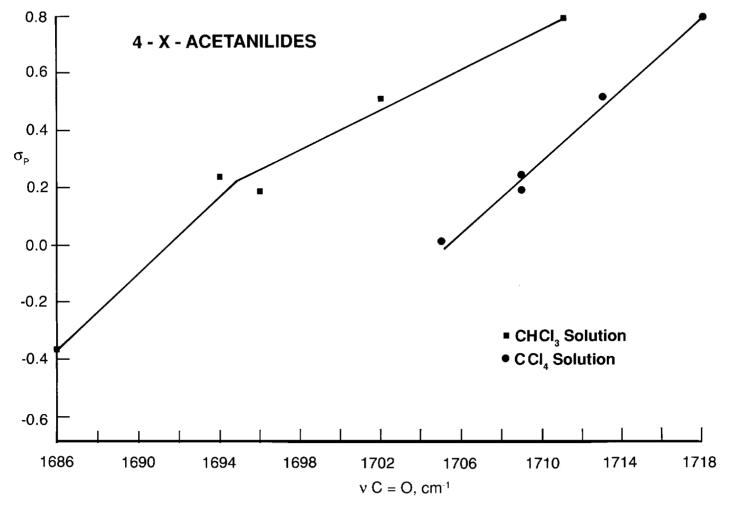


FIGURE 11.20 A plot of v C=O for 4-x-acetanilides vs Hammett σ_p values. The solid circles represent IR CCl₄ solution data and the solid squares represent IR CHCl₃ solution data.

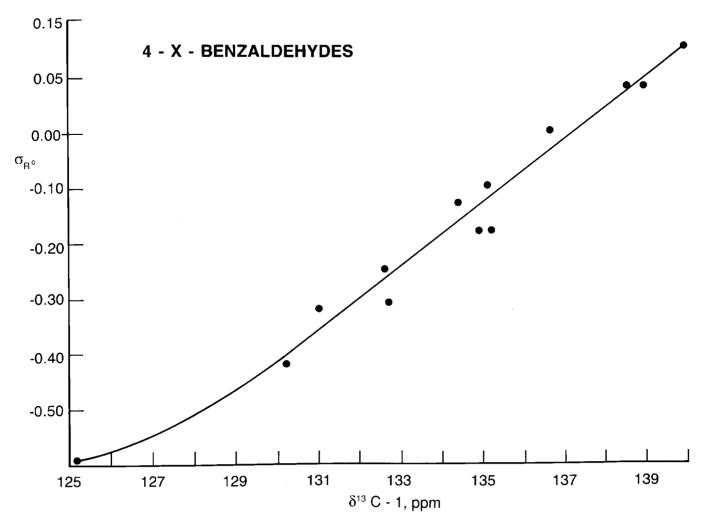


FIGURE 11.21 A plot of δ 13 C-1 for 4-x-benzaldehydes vs Taft σ_{R° values for the 4-x atom or group.

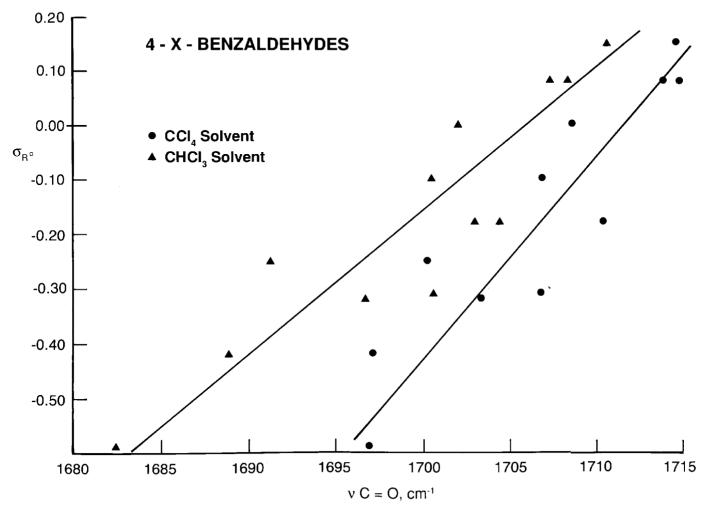


FIGURE 11.22 A plot of v C=O for 4-x-benzaldehydes vs Taft σ_{R° values for the 4-x atom or group. The solid circles represent IR data in CCl₄ solutions and the solid triangles represent IR data in CHCl₃ solutions.

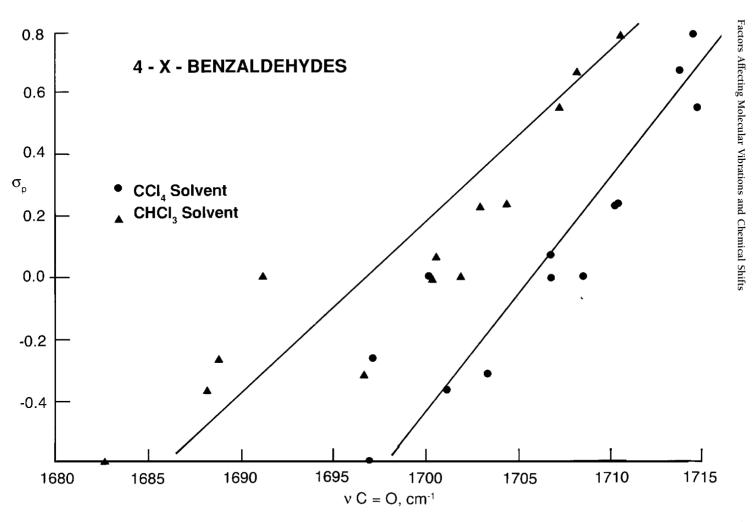


FIGURE 11.23 A plot of v C=O for 4-x-benzaldehydes vs Hammett σ_p values for the 4-x atom or group. The solid circles represent IR data in CCl₄ solution and the solid triangles represent IR data in CHCl₃ solutions.

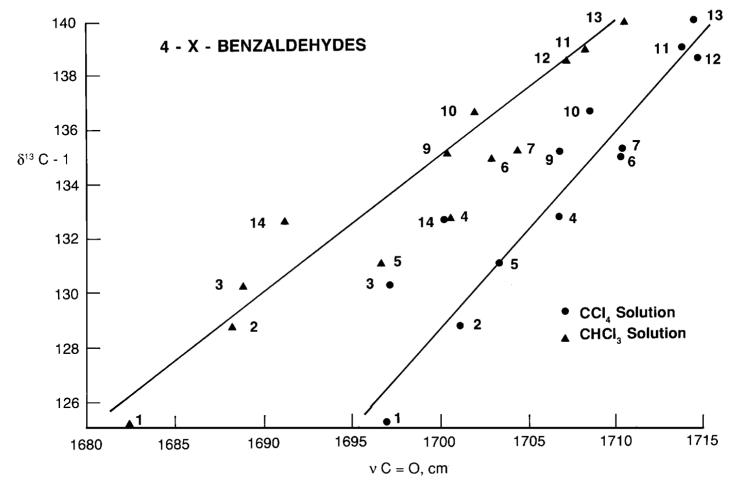


FIGURE 11.24 Plots of v C=O vs δ^{13} C-1 for 4-x-benzaldehydes. The δ^{13} C-1 data are for CDCl₃ solutions. The plot with filled-in circles includes IR CCl₄ solution data and the plot with the filled-in triangles includes IR CHCl₃ solution data.

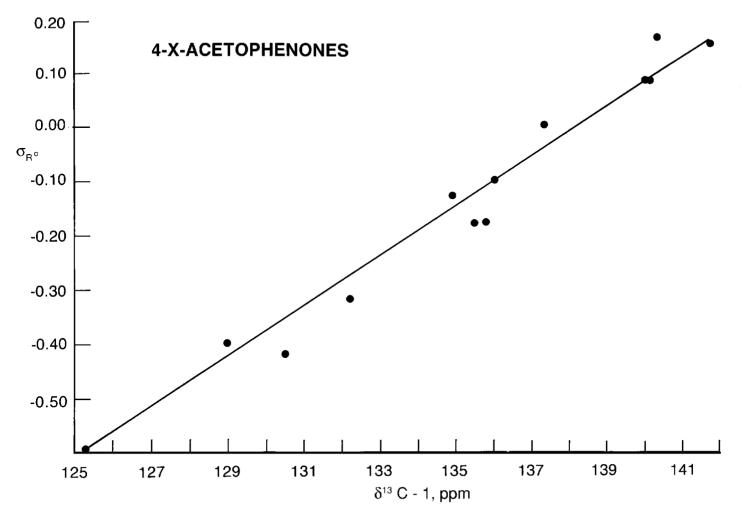


FIGURE 11.25 A plot of δ^{13} C-1 for 4-x-acetophenones in CDCl₃ solutions vs Taft $\sigma_{\mathbb{R}^{\circ}}$ values for the 4-x atom or groups.

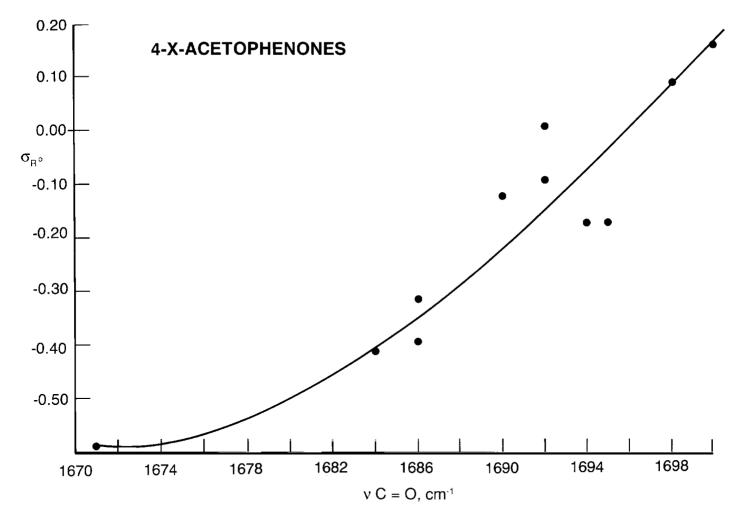


FIGURE 11.26 A plot of v C=O for 4-x-acetophenones vs Taft $\sigma_{R^{\circ}}$ values for the 4-x atom or group. The IR data is that for the 4-x-acetophenones in CHCl₃ solution.

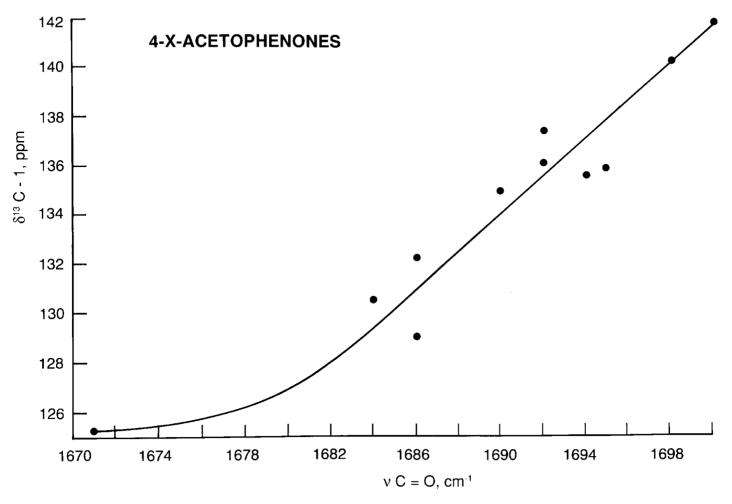
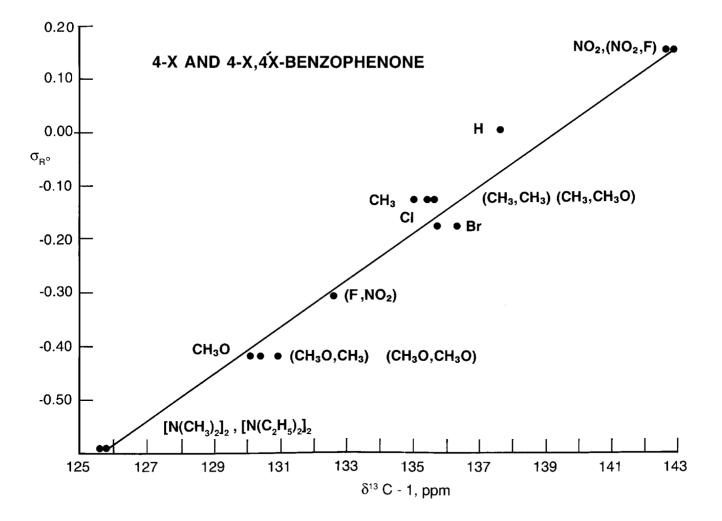



FIGURE 11.27 A plot of v C=O (CHCl₃ solution) vs δ ¹³C-1 (CDCl₃ solution) for 4-x-acetophenones.

FIGURE 11.28 A plot of δ^{13} C-1 vs Taft σ_{R° values for the 4-x and 4,4'-x,x atoms or groups for 4-x and 4,4'-x,x-benophenones. These data are for CHCl₃ solutions.

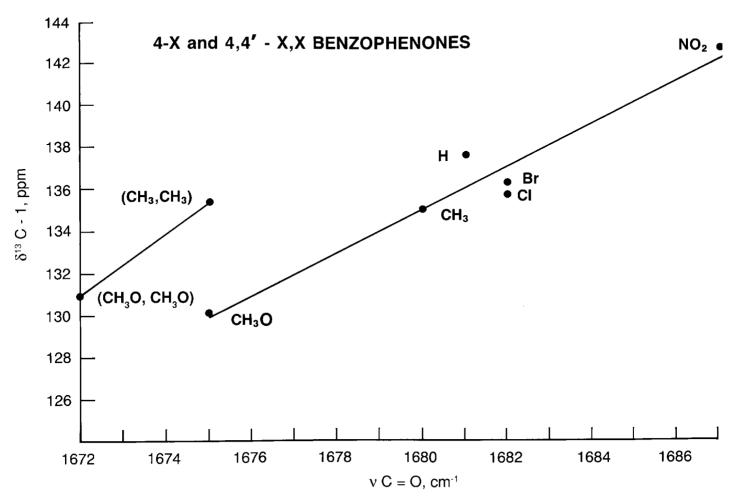


FIGURE 11.29 A plot of v C=O in the vapor phase vs δ^{13} C-1 in CCl₃ solution for 4-x and 4,4'-x,x-benzophenones.

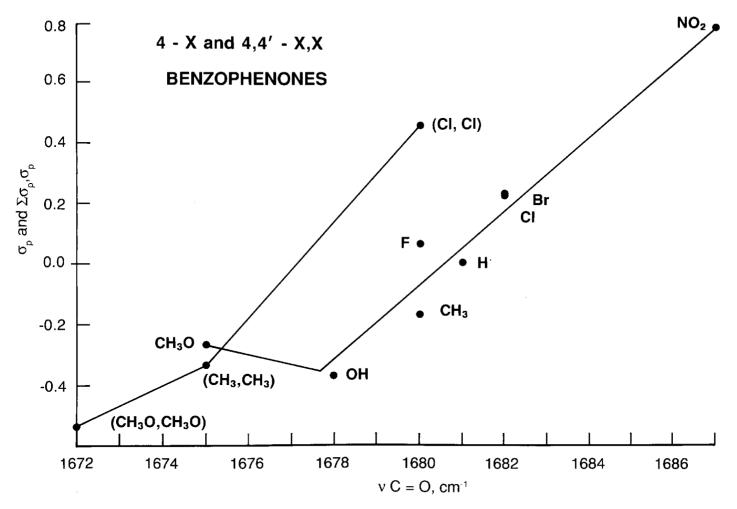


FIGURE 11.30 A plot of v C=O in the vapor phase vs the sum of Hammett σ_p for the x-atom or group for 4-x- and 4,4'-x,x-benzophenones.

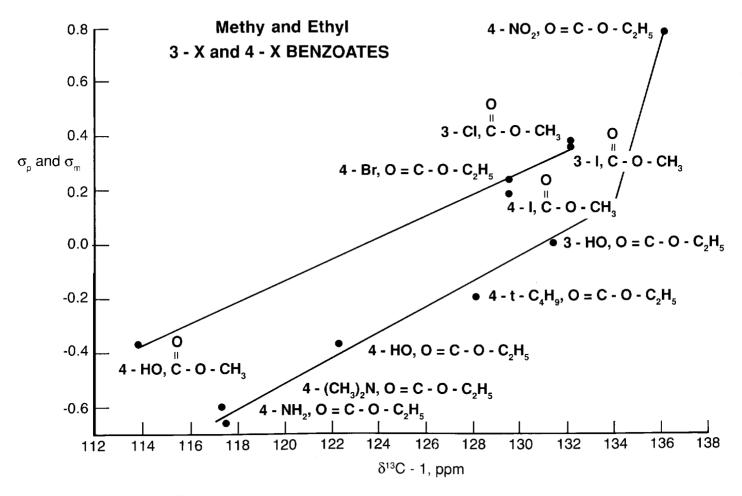


FIGURE 11.31 A plot of δ^{13} C-1 in CHCl₃ solution vs Hammett σ values for the x atom or group for methyl and ethyl 3-x- and 4-x-benzoates.

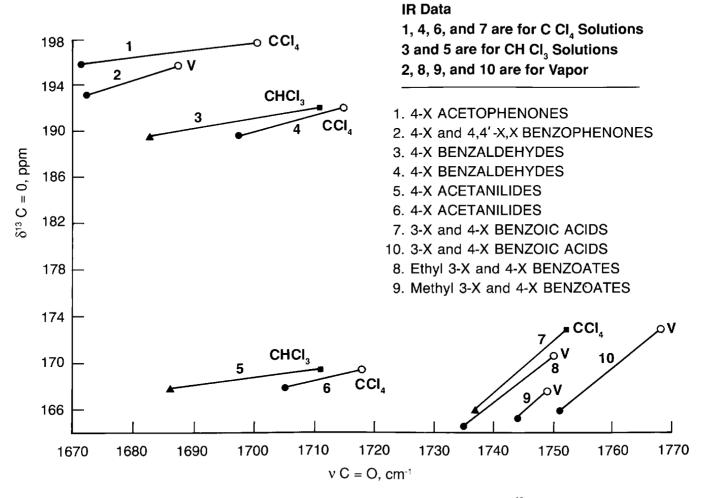


FIGURE 11.32 Plots of the range of v C=O for the compounds studied in different physical phases vs the range of δ^{13} C=O for the compounds studied in CHCl₃ solutions.

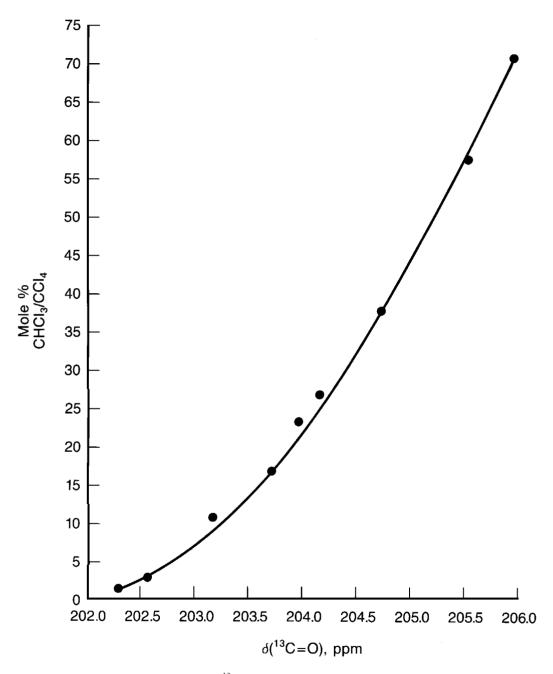


FIGURE 11.33 A plot of δ 13 C=O for acetone vs mole % CHCl₃/CCl₄ solutions.

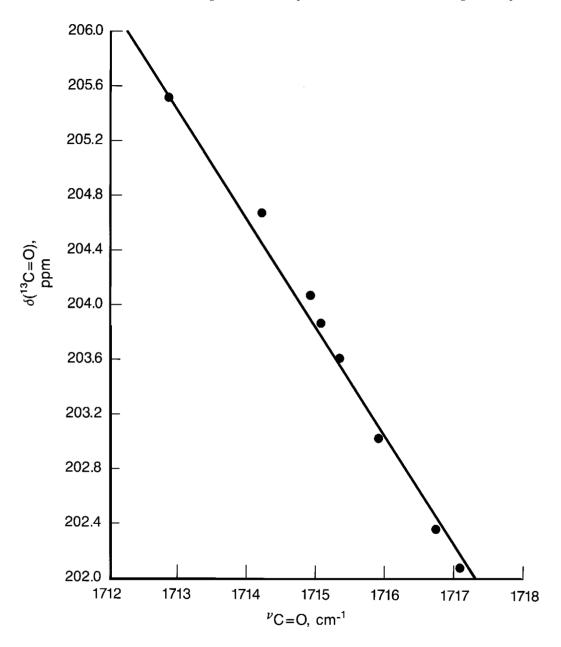


FIGURE 11.34 A plot of v C=O vs δ 13 C=O for acetone in mole % CHCl₃/CCl₄ solutions.

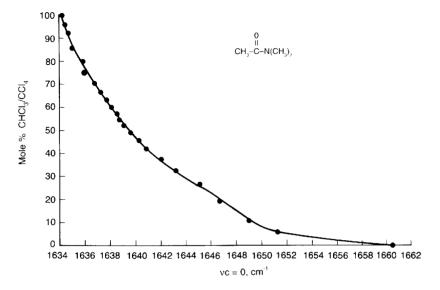


FIGURE 11.35 A plot of v C=O for dimethylacetamide in CCl₄ and/or CHCl₃ solution vs mole % CHCl₃/CCl₄.

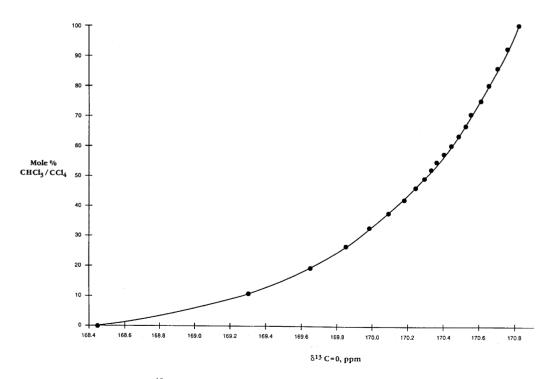


FIGURE 11.35a A plot of δ 13 C=O for dimethylacetamide in CCl₄ and/or CHCl₃ solution vs mole % CHCl₃/CCl₄.

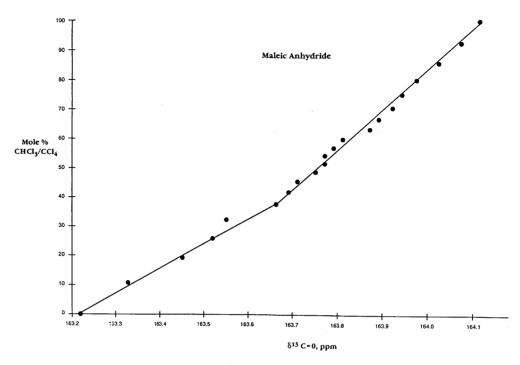


FIGURE 11.35b A plot of δ 13 C=O for maleic anhydride vs mole % CHCl₃/CCl₄.

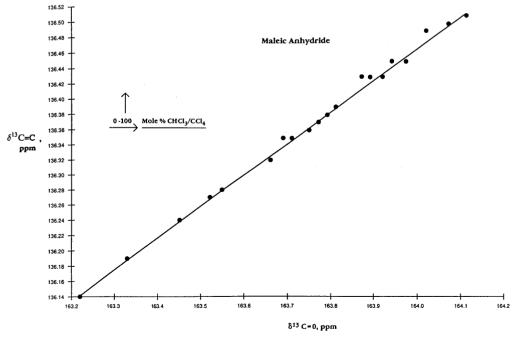


FIGURE 11.35c A plot of δ ¹³C=O vs δ ¹³C=C for maleic anhydride in 0 to 100 mol% CHCl₃/CCl₄ solutions.

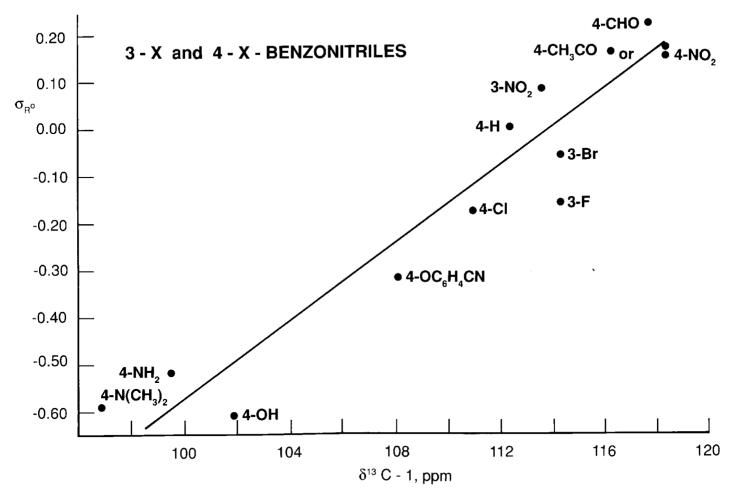


FIGURE 11.36 A plot of δ^{13} C-1 vs Taft $\sigma_{R^{\circ}}$ values for the 3-x and 4-x atom or group for 3-x- and 4-x-benzonitriles in CDCl₃ solution.

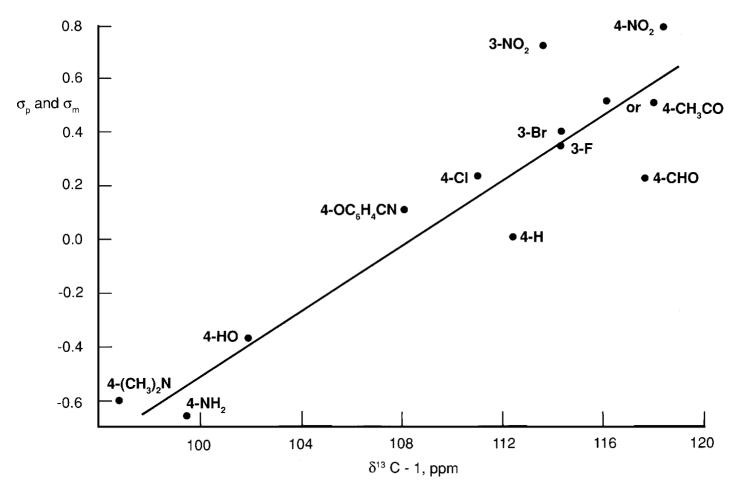


FIGURE 11.37 A plot of δ^{13} C-1 vs Hammett σ values for the 3-x or 4-x atom or group for 3-x- and 4-x-benzonitriles in CHCl₃ solution.

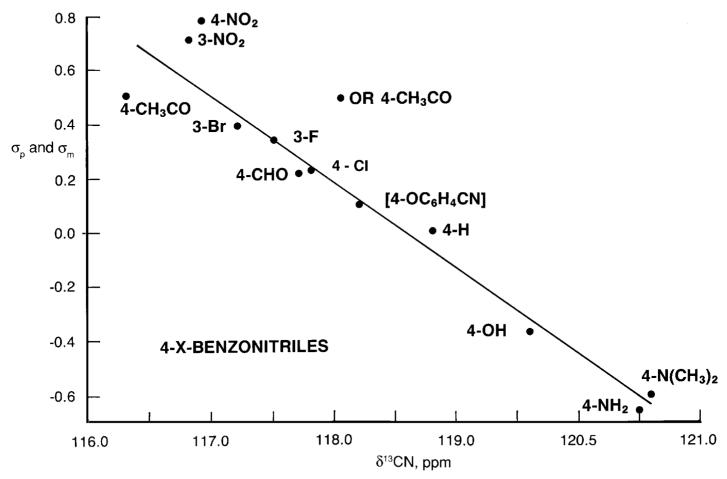


FIGURE 11.38 A plot of δ^{13} CN vs Hammett σ values for the 3-x or 4-x atom or group for 3-x- and 4-x-benzonitriles in CHCl₃ solution.

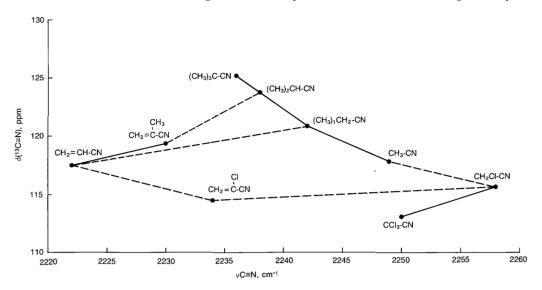


FIGURE 11.39 A plot of v CN vs δ 13 CN for organonitriles.

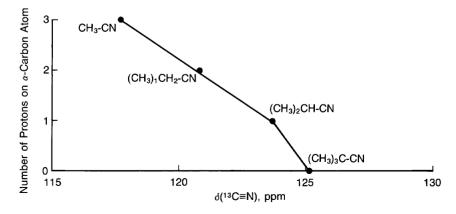


FIGURE 11.40 A plot of δ ¹³CN vs the number of protons on the α -carbon atom of alkyl nitriles.

ISONITRILE

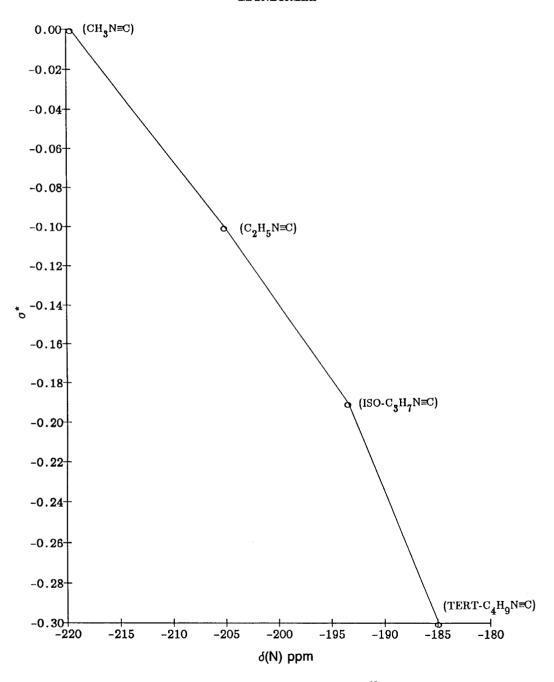
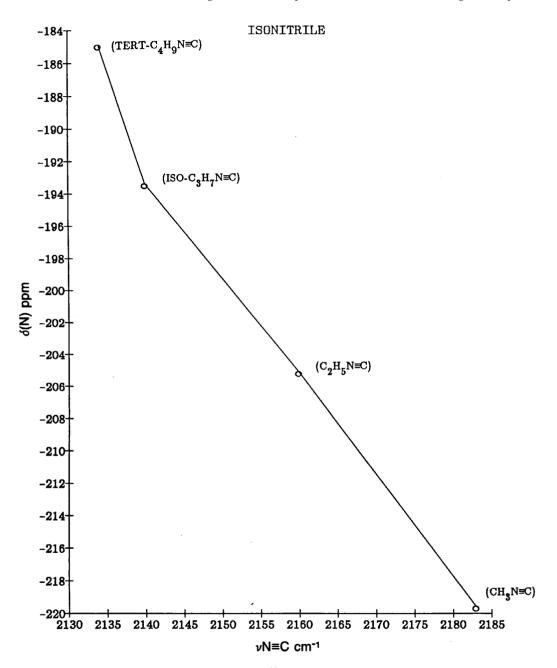



FIGURE 11.41 A plot of Taft σ^* values for the alkyl group vs δ^{15} N for alkyl isonitriles.

FIGURE 11.42 A plot of δ ¹⁵N vs ν NC for alkyl isonitriles.

R-NO2

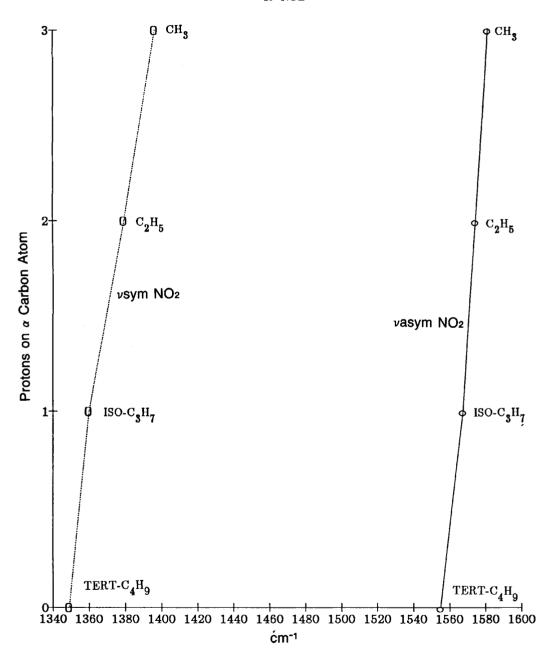


FIGURE 11.43 Plots of the number of protons in the alkyl α -carbon atom vs ν sym. NO₂ and ν asym. NO₂ for nitroalkanes in the vapor phase.

R-N02

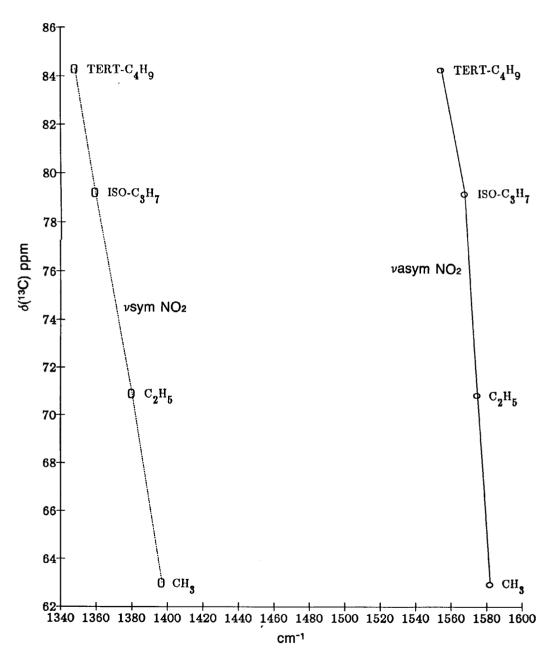


FIGURE 11.44 Plots of $\delta^{13}C$ (CHCl₃ solution) for the alkyl α -carbon atom vs ν sym. NO₂ and ν asym. NO₂ (vapor phase) for nitroalkanes.

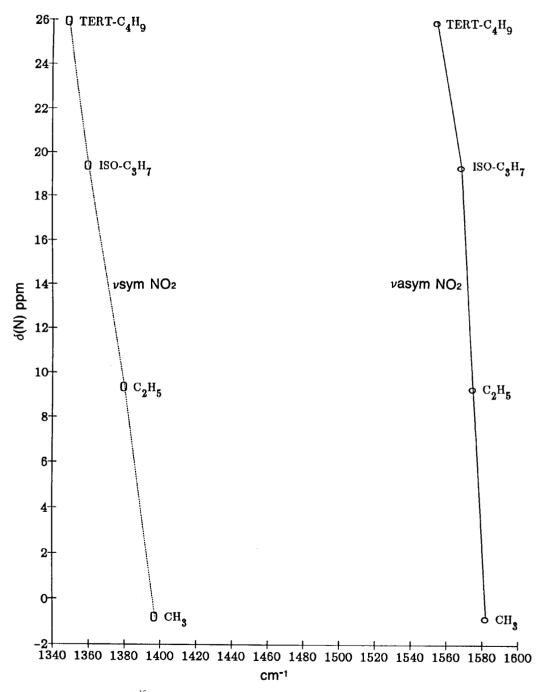


FIGURE 11.45 Plots of δ^{15} N (in 0.3 M acetone) vs v sym. NO₂ and v asym. NO₂ (vapor phase) for nitroalkanes.

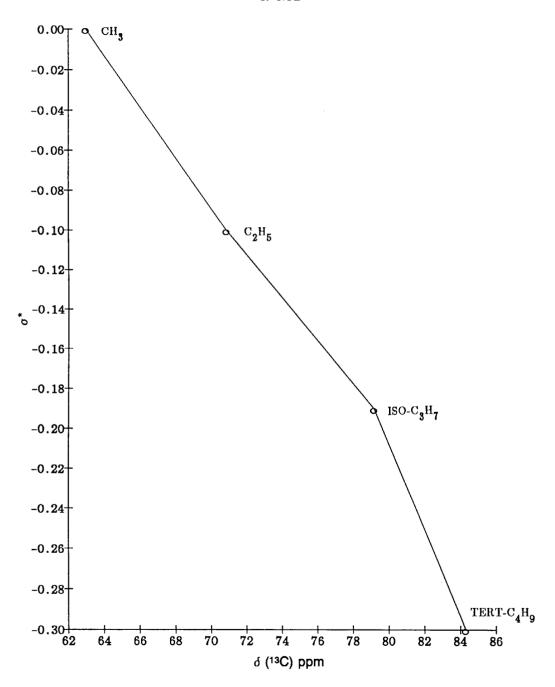


FIGURE 11.46 A plot of Taft σ^* values for the alkyl α -carbon atom group vs $\delta^{-13}C$ for nitroalkanes.

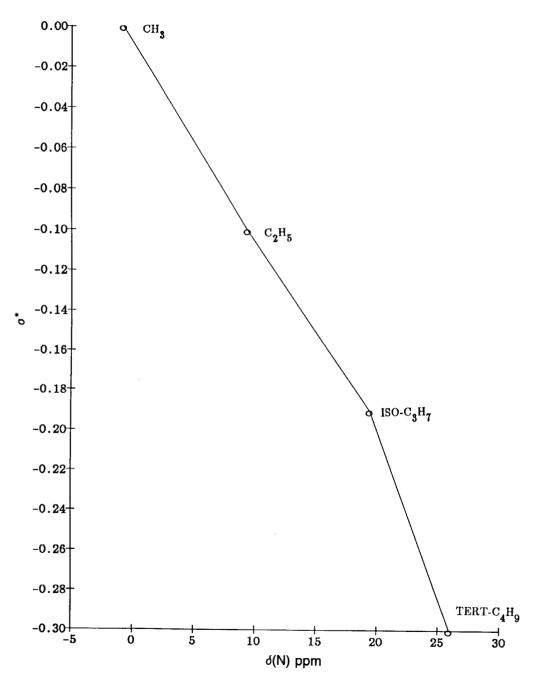


FIGURE 11.47 A plot of Taft σ^* values for the alkyl α -carbon atom vs $\delta^{-15}N$ for nitroalkanes.

NITROGEN 15 VERSUS CARBON 13 SHIFTS

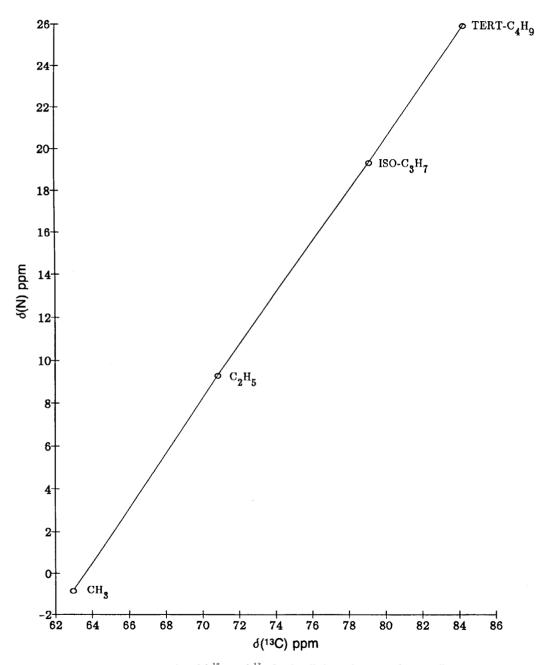


FIGURE 11.48 A plot of δ ^{15}N vs δ ^{13}C for the alkyl α -carbon atom for nitroalkanes.

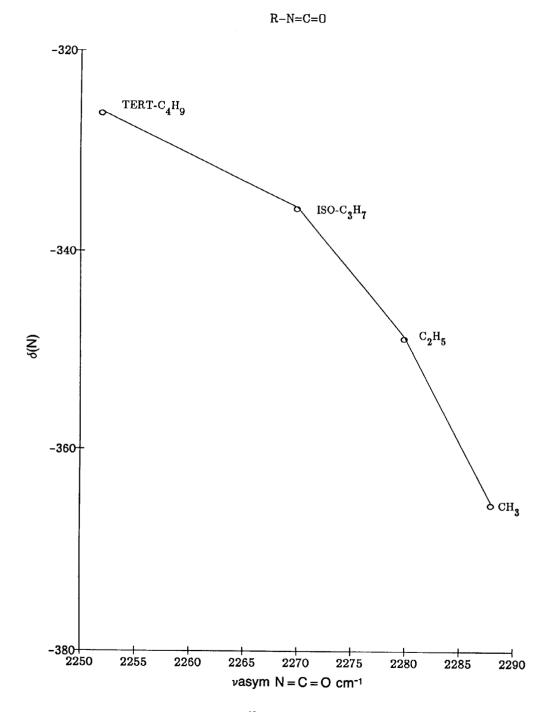


FIGURE 11.49 A plot of δ ¹⁵N vs ν asym. N=C=O for alkyl isocyanates.

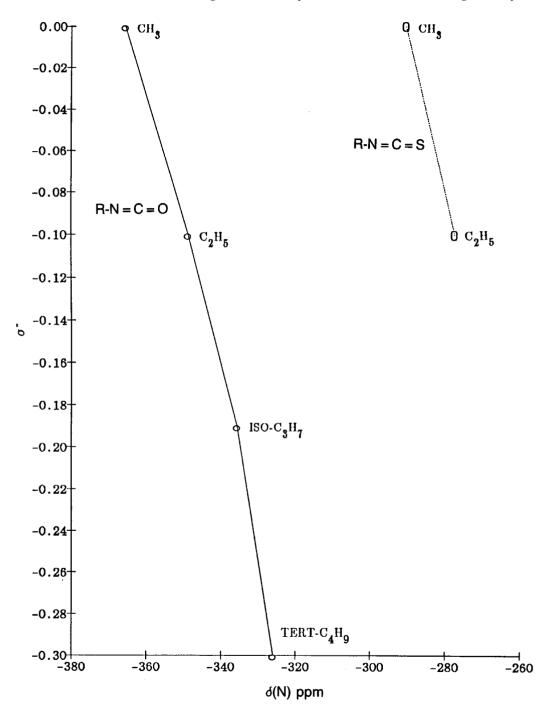


FIGURE 11.50 Plots of Taft σ^* values for the alkyl groups for alkyl isocyanates and alkyl isothiocyanates.

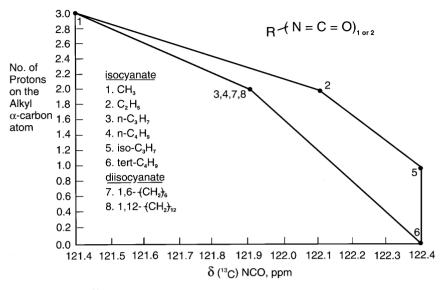


FIGURE 11.51 Plots of $\delta^{13}C$ for the N=C=O group vs the number of protons on the alkyl α -carbon atom for alkyl isocyanates and alkyl diisocyanates.

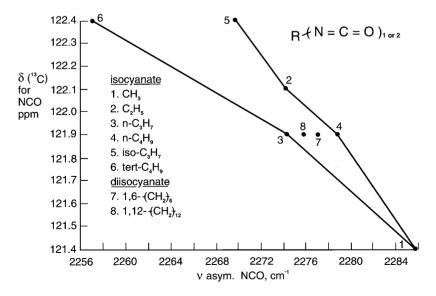


FIGURE 11.52 Plots of v asym. N=C=O vs δ ¹³C for the N=C=O group of alkyl isocyanates and alkyl diisocyanates.

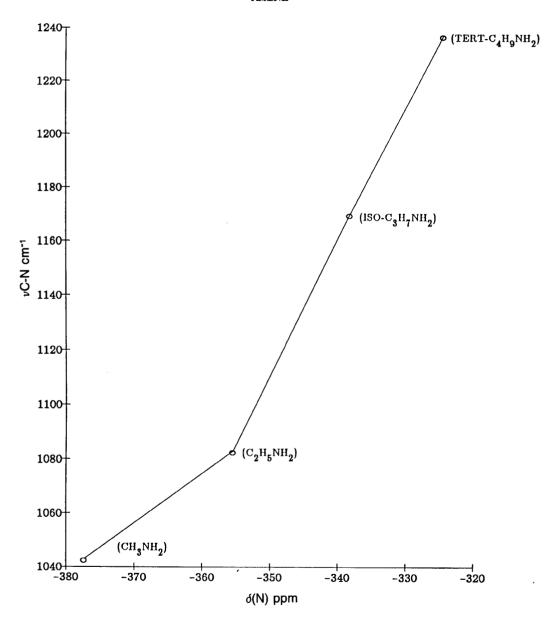


FIGURE 11.53 A plot of δ ¹⁵N vs ν C–N for primary alkylamines.

AMINE

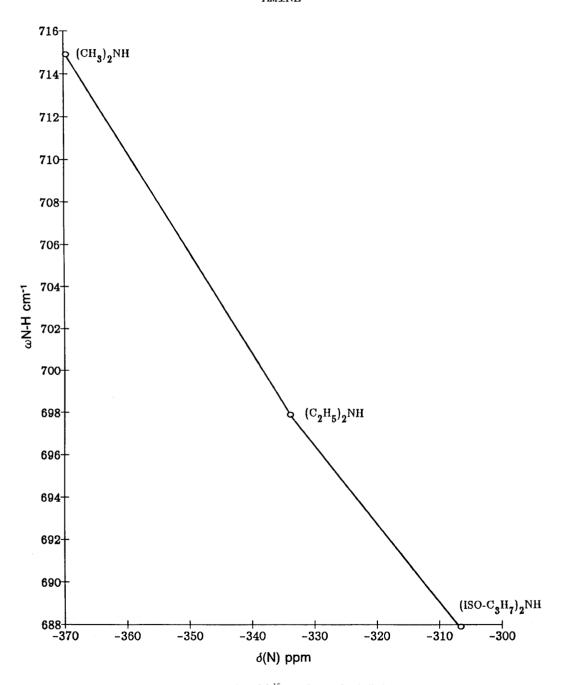
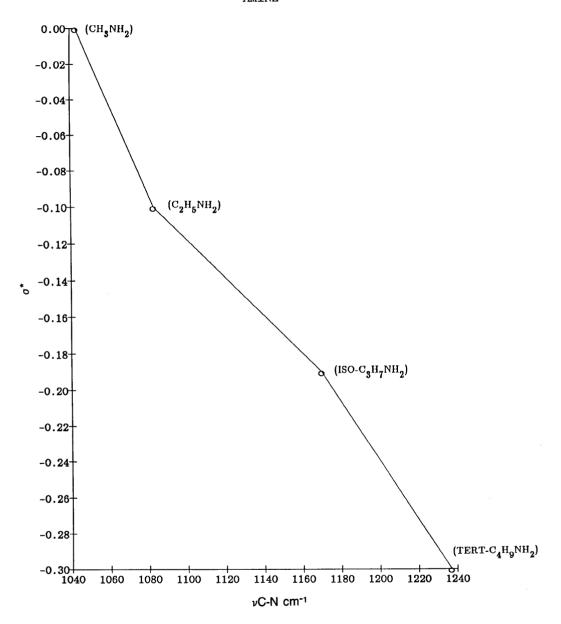



FIGURE 11.54 A plot of δ ¹⁵N vs Ω N—H for dialkylamines.

AMINE

FIGURE 11.55 A plot of v C-N vs Taft σ^* for the alkyl group of primary alkylamines.

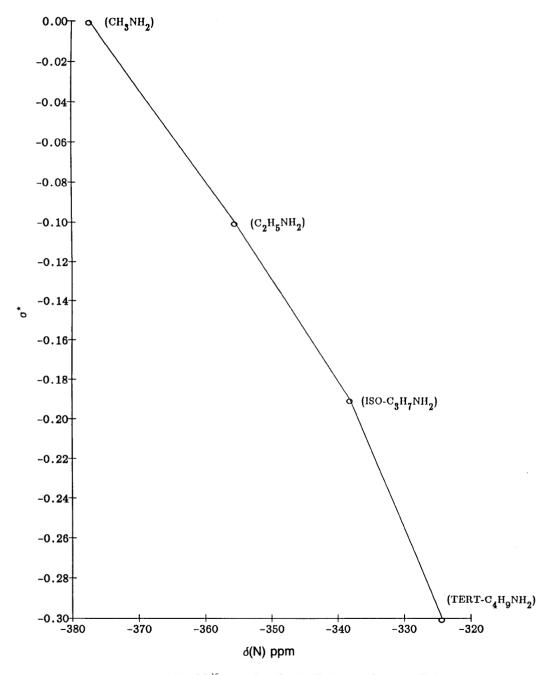


FIGURE 11.56 A plot of δ ¹⁵N vs Taft σ^* for the alkyl group of primary alkylamines.

AMINE

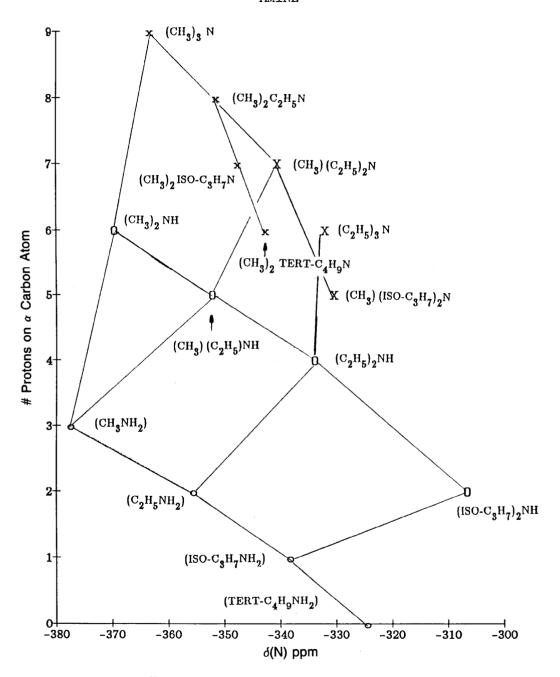


FIGURE 11.57 Plots of $\delta^{-15}N$ vs the number of protons on the alkyl α -carbon atom(s) for mono-, di-, and trialkylamines.

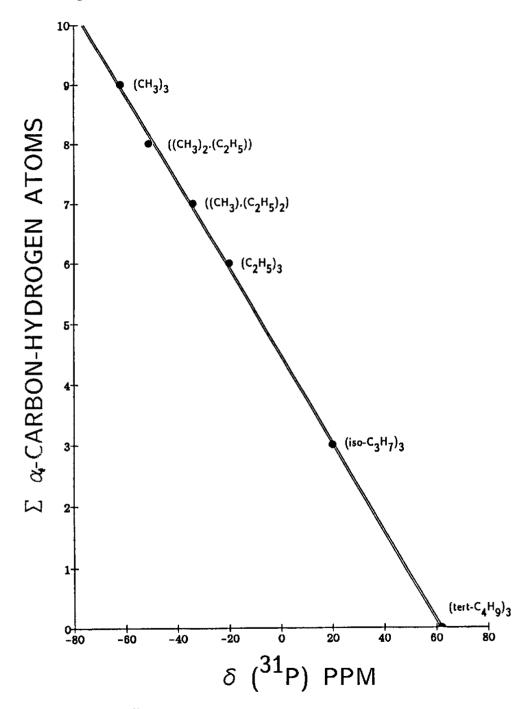


FIGURE 11.58 A plot of $\delta^{31}P$ for trialkylphosphines vs the sum of the number of protons on the alkyl α -C-P carbon atoms.

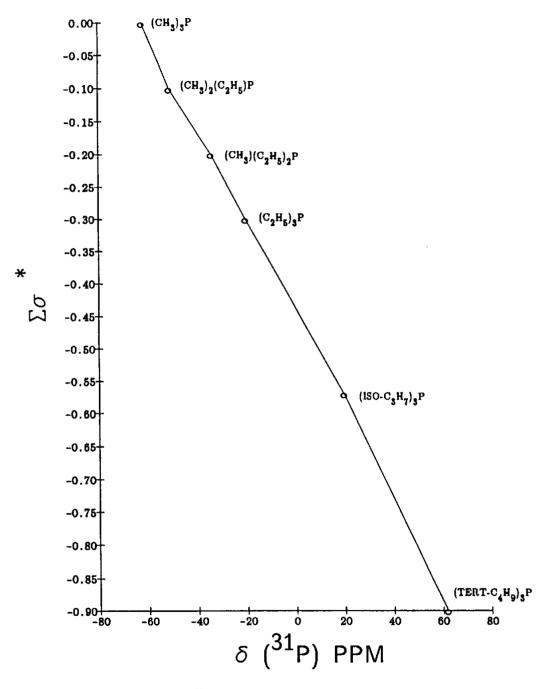
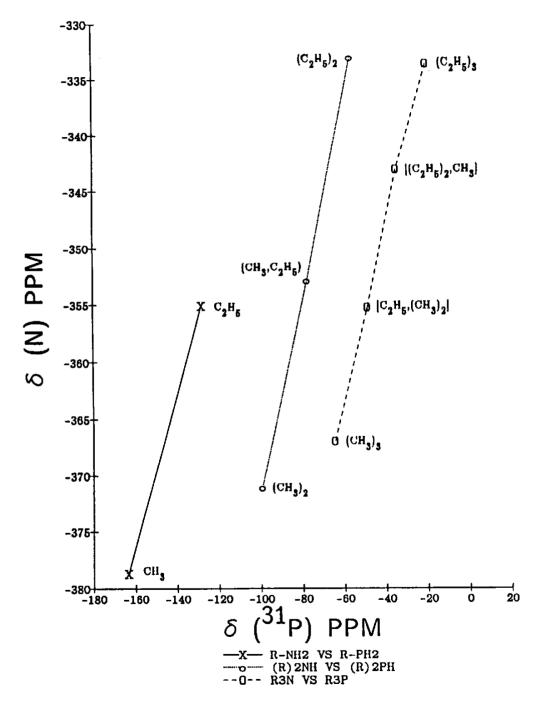



FIGURE 11.59 A plot of δ ³¹P for trialkylphosphines vs Taft σ^* values for the alkyl groups.

FIGURE 11.60 Plots of δ ³¹P for R-PH₂ vs δ ¹⁵N for R-NH₂, δ ³¹P for (R-)₂PH vs δ ¹⁵N for (R-)₂NH, and δ ³¹P for (R-)₃P vs δ ¹⁵N for (R-)₃N.

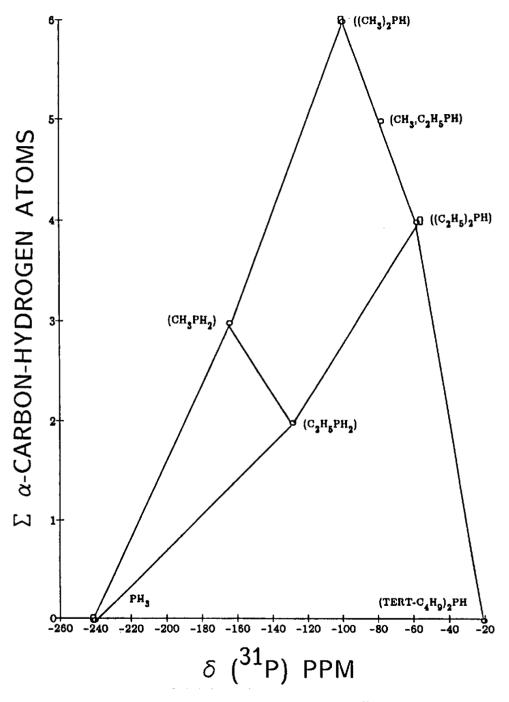


FIGURE 11.61 Plots of the number of protons on the α -C-P atom(s) vs δ ³¹P for PH₃, R-PH₂, (R-)₂PH.

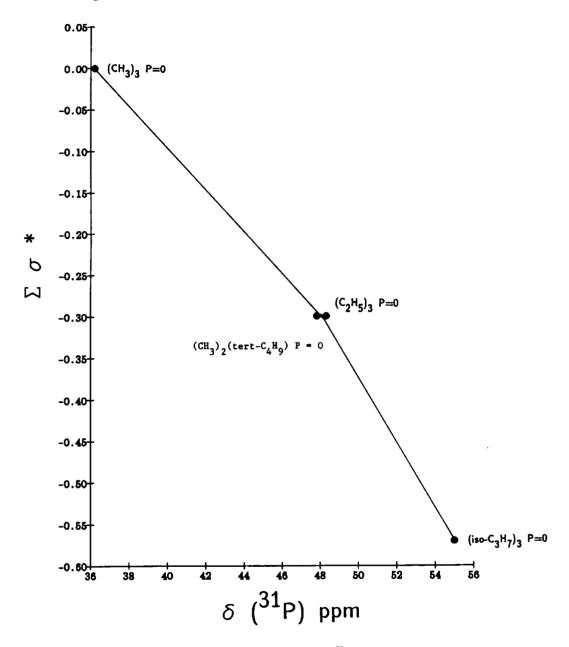


FIGURE 11.62 A plot of the sum of Taft σ^* values $\delta^{-31}P$ for trialkylphosphine oxides.

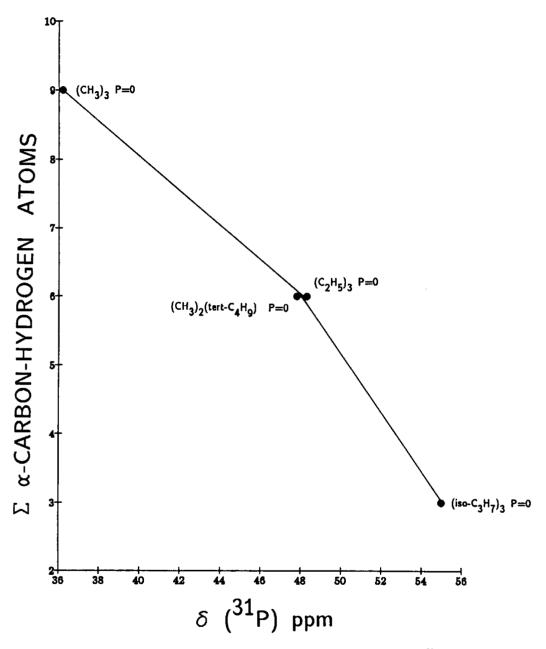


FIGURE 11.63 A plot of the sum of the number of protons on the α -C-P carbon atoms vs δ^{-31} P for trialkylphosphine oxides.

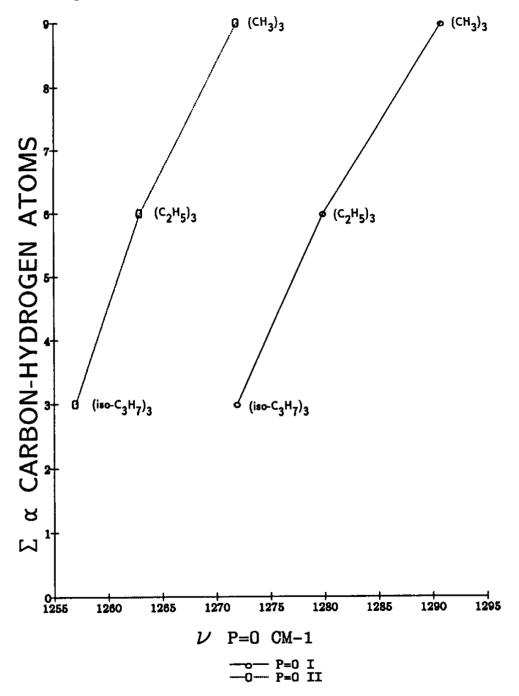


FIGURE 11.64 Plots of ν P=O rotational conformers vs the sum of the number of protons on the α -C-O-P carbon atoms for trialkyl phosphates.

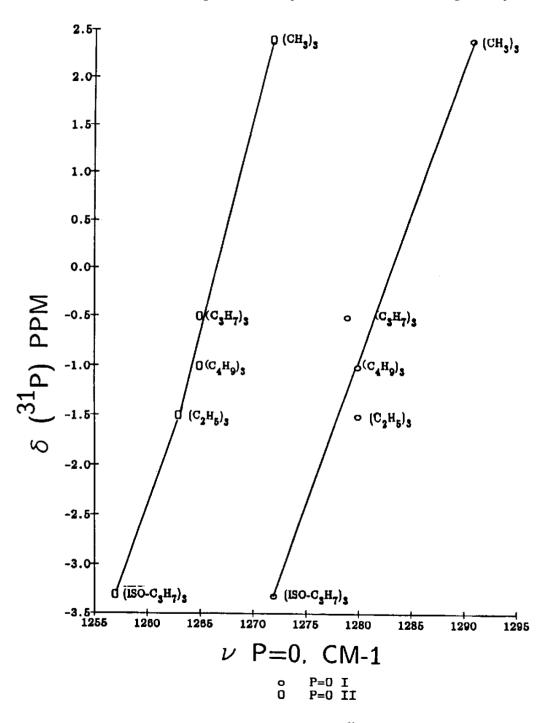


FIGURE 11.65 Plots of v P=O rotational conformers vs δ^{31} P for trialkyl phosphates.

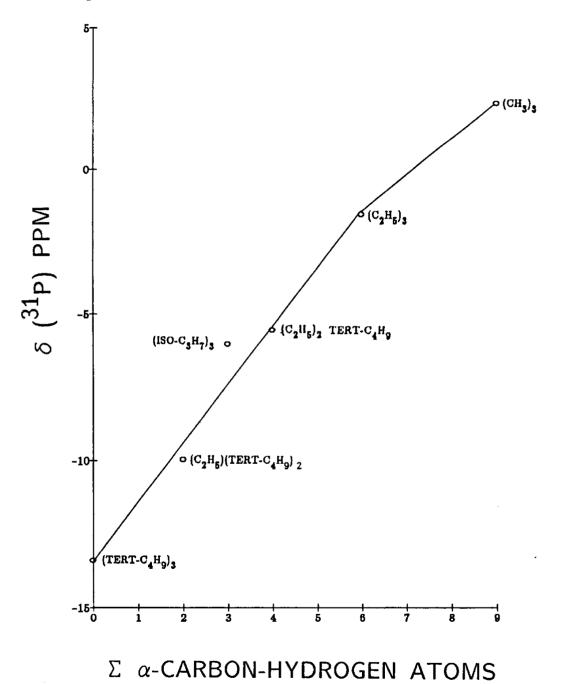


FIGURE 11.66 A plot of δ ³¹P vs the sum of the number of protons on the α -C-O-P carbon atoms for trialkyl phosphates.

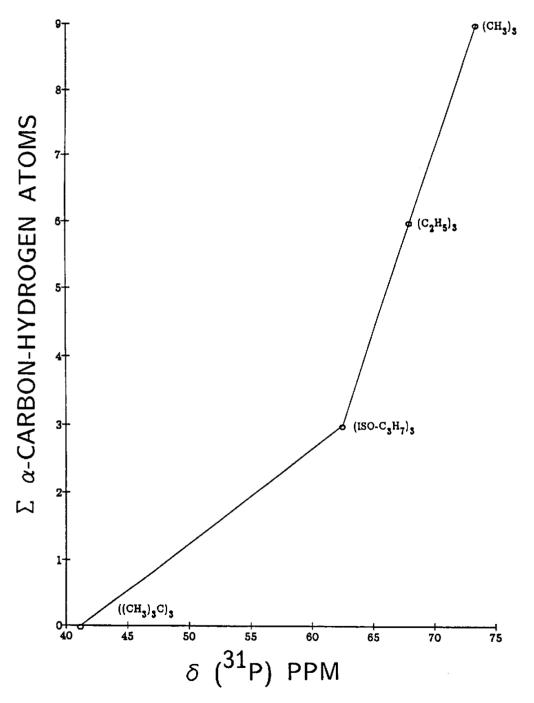


FIGURE 11.67 A plot of the sum of the protons on the α -C-O-P carbon atoms vs δ ³¹P for O,O,O-trialkyl phosphorothioates.

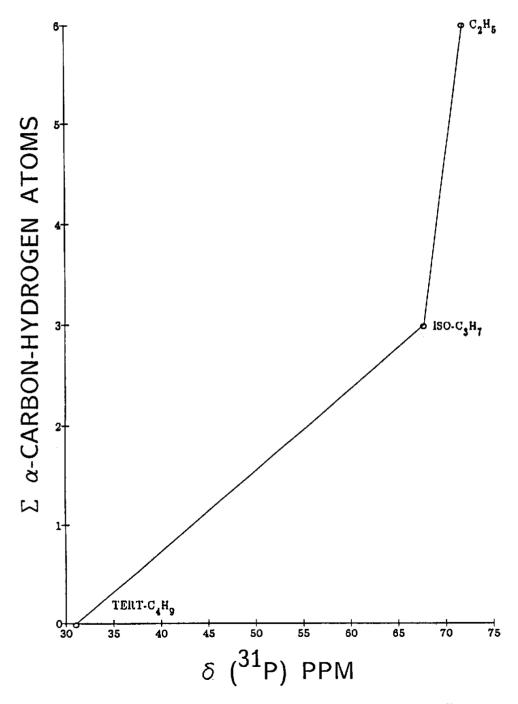


FIGURE 11.68 A plot of the sum of the number of protons on the α -C-O-P carbon atoms vs δ^{-31} P for O,O,O-trialkyl phosphoroselenates.

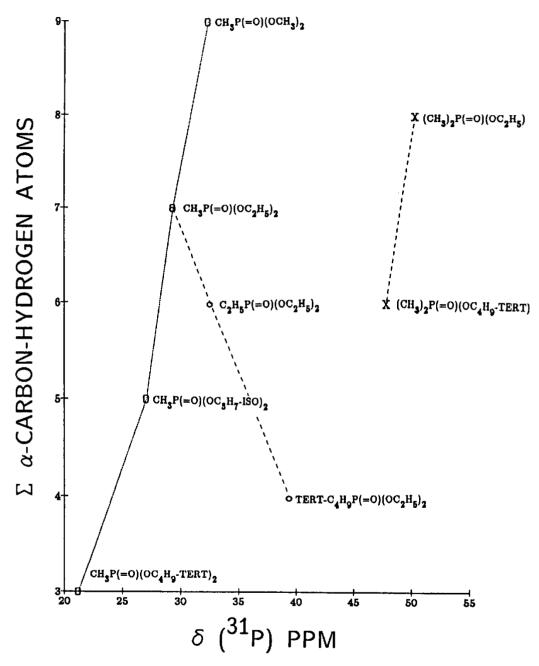
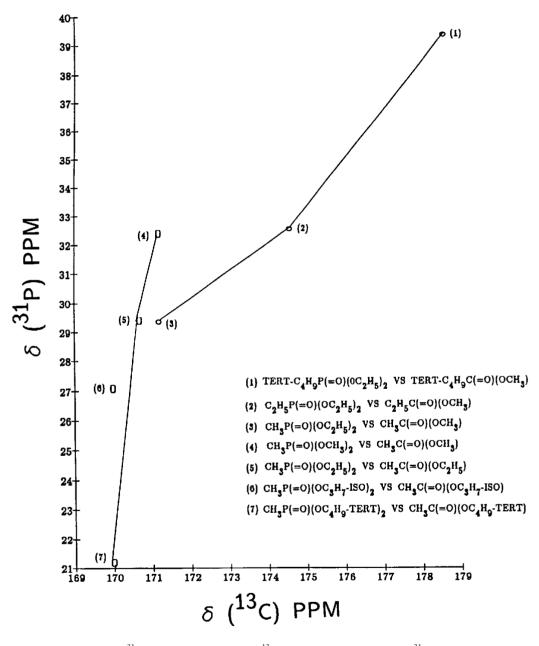



FIGURE 11.69 Plots of $\delta^{31}P$ vs the sum of the number of protons on the α -C-P carbon atoms and the α -C-O-P carbon atoms for $RP(=O)(OC_2H_5)_2$ and $(R)_2P(=O)(OR)$.

FIGURE 11.70 Plots of δ ³¹P for RP(=O)(OC₂H₅)₂ vs δ ¹³C=O for RC(=O)(OCH₃) and δ ³¹P for CH₃P(=O)(OR)₂ vs δ ¹³C=O for CH₃C(=O)(OR).

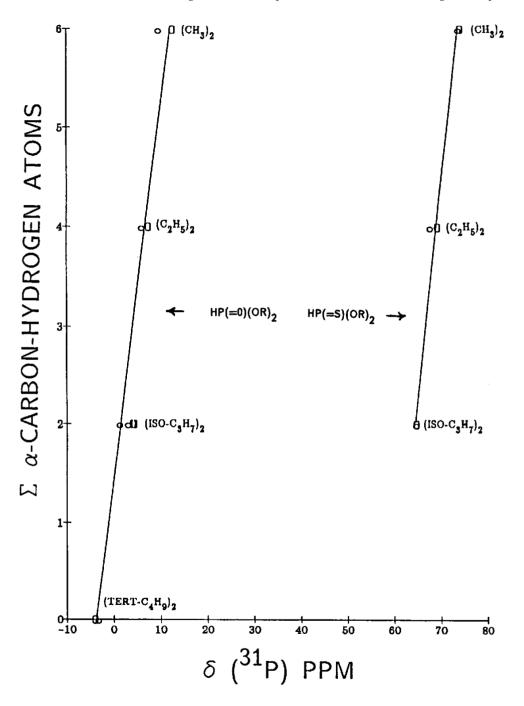


FIGURE 11.71 Plots of $\delta^{31}P$ for $(RO)_2P(=O)H$ and for $(RO)_2P(=S)H$ vs the sum of the protons on the α -C-O-P carbon atoms.

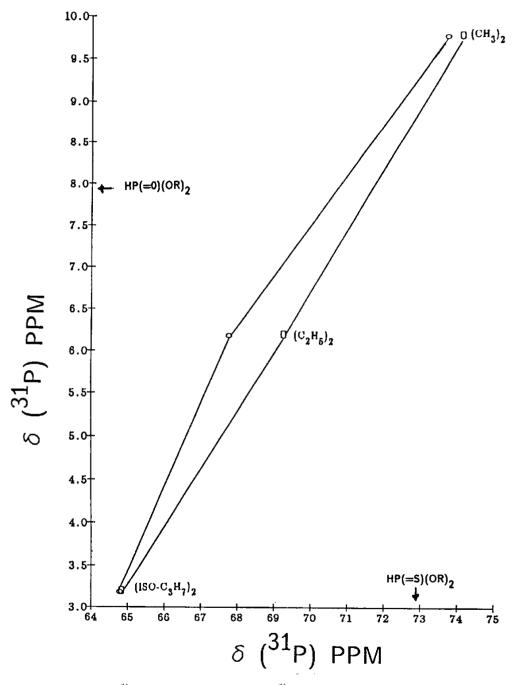


FIGURE 11.72 A plot of $\delta^{31}P$ for $(RO)_2P(=O)H$ analogs vs $\delta^{31}P$ for the corresponding $(RO)_2P(=S)H$ alkyl analogs.

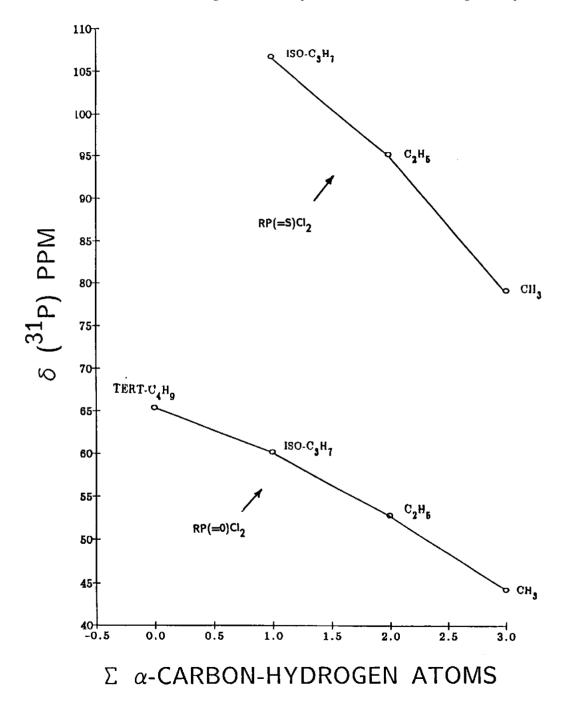


FIGURE 11.73 Plots of the number of protons on the α -CP carbon atoms vs δ ³¹P for RP(=0)Cl₂ and RP(=S)Cl₂.

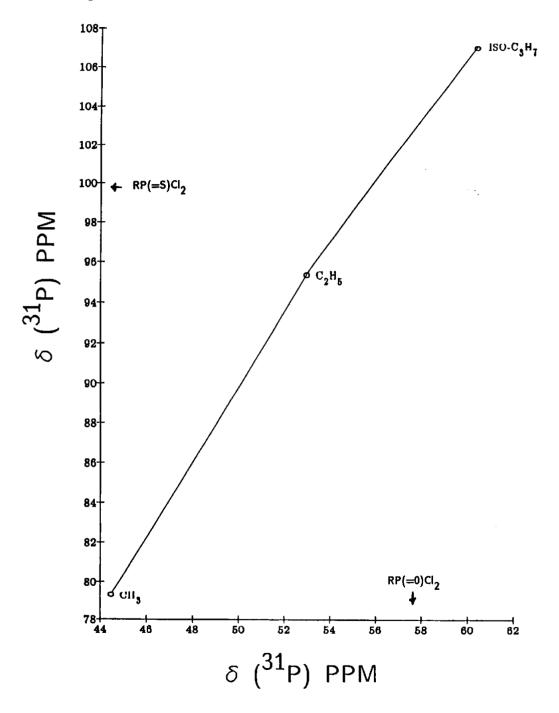


FIGURE 11.74 A plot of δ 31 P for RP(=S)Cl₂ vs δ 31 P for RP(=O)Cl₂.

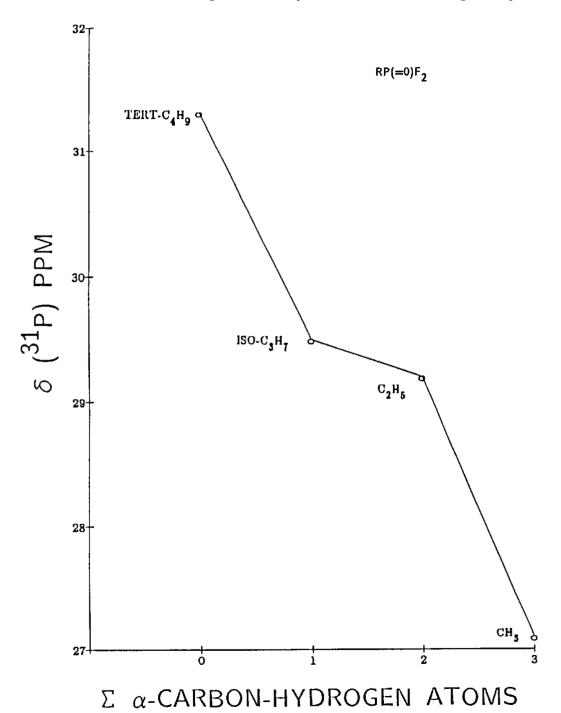


FIGURE 11.75 A plot of $\delta^{31}P$ vs the number of protons on the α -C-P carbon atom for RP(=0)F₂.

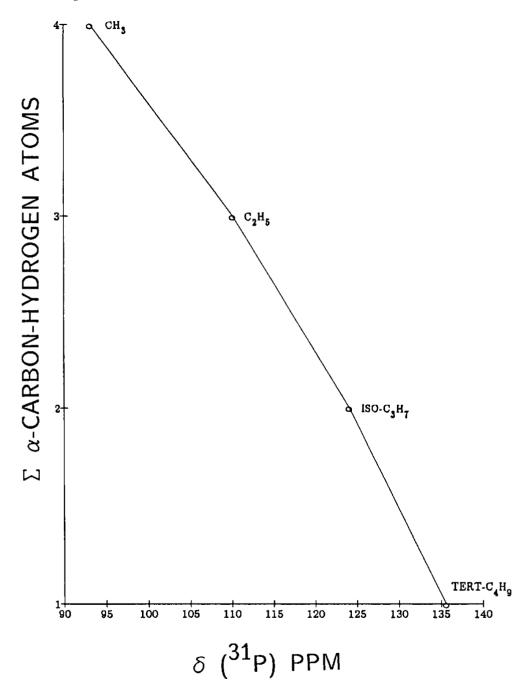


FIGURE 11.76 A plot of $\delta^{31}P$ vs the sum of the number of protons on the α -C-P carbon atom and the number of protons on the α -C-O-P carbon atom for RP(=S)Br(OC₃H_{7-iso}).

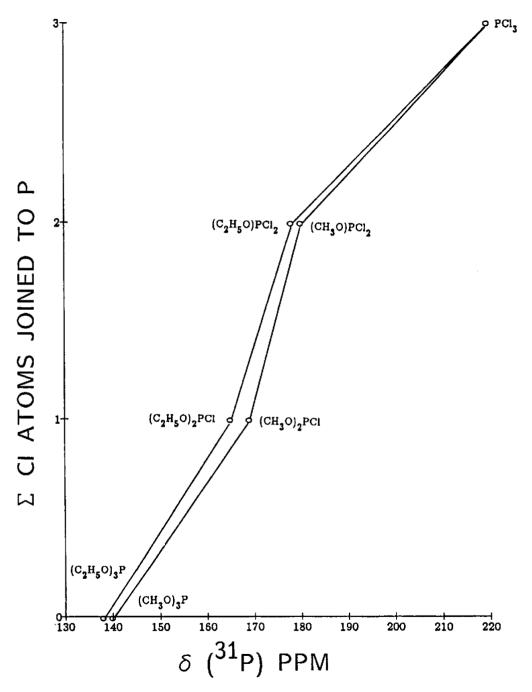


FIGURE 11.77 Plots of δ^{31} P vs the number of chlorine atoms joined to phosphorus for $PCl_{3-x}(OR)_x$.

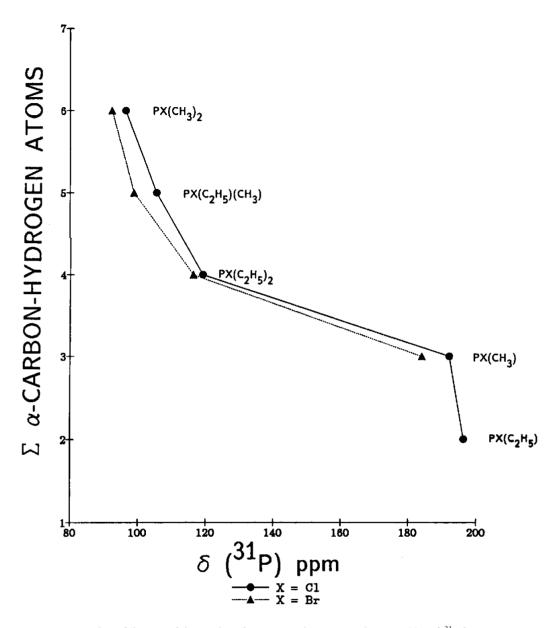
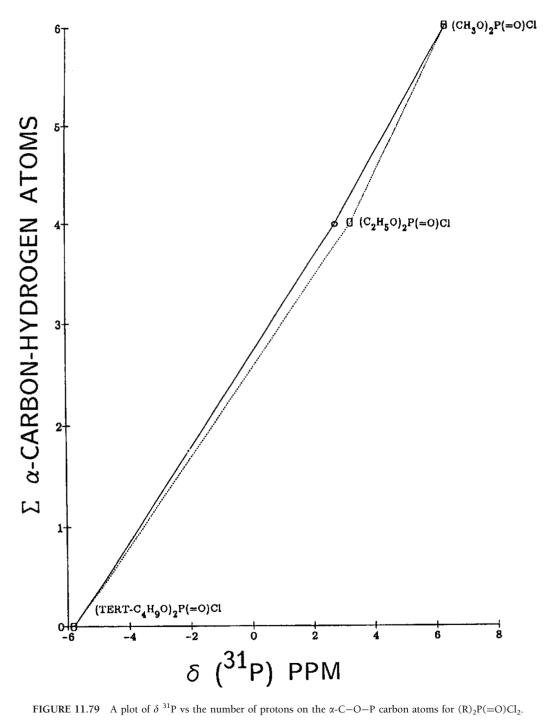



FIGURE 11.78 Plots of the sum of the number of protons on the α -C-P carbon atom(s) vs δ^{31} P for $PX_{3-n}R_n$.

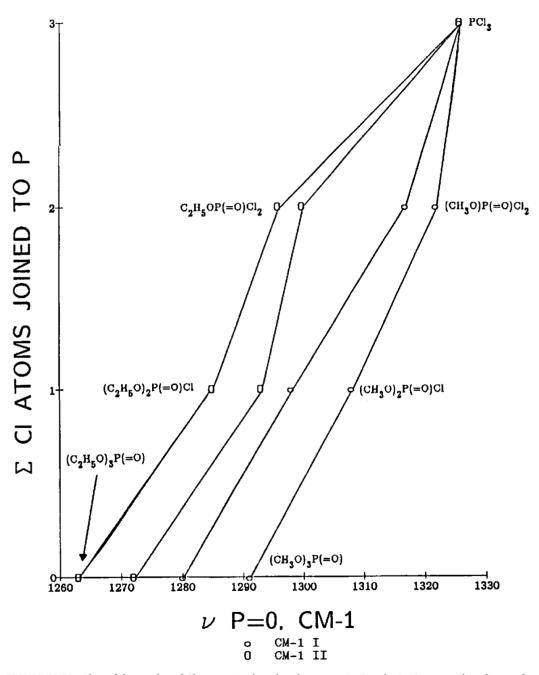
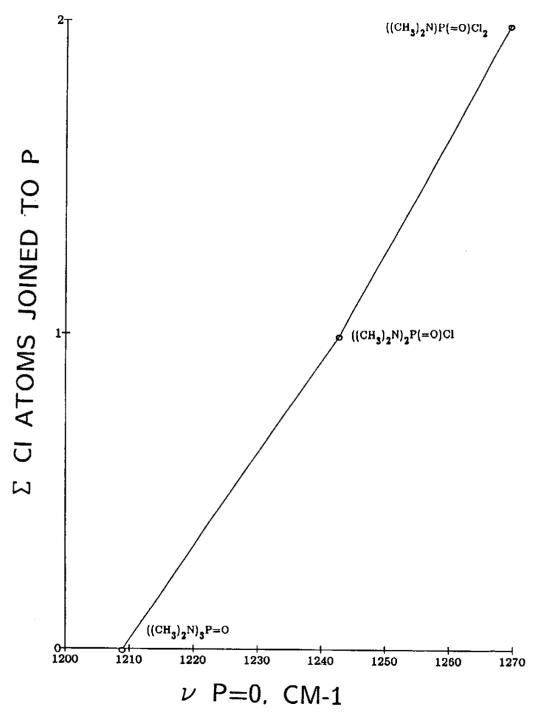
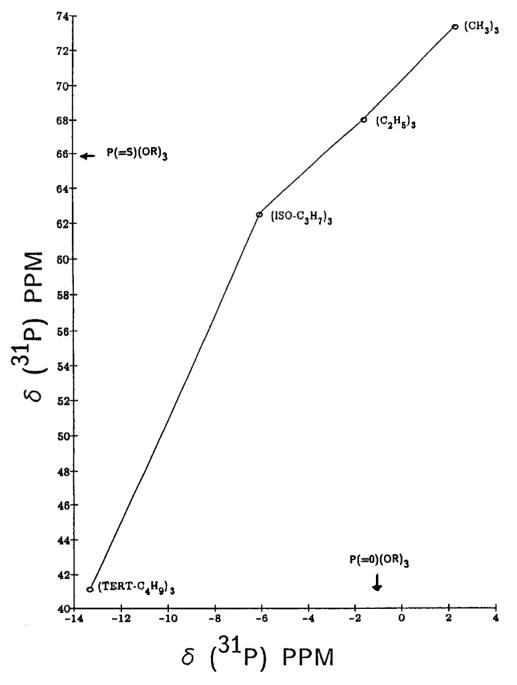
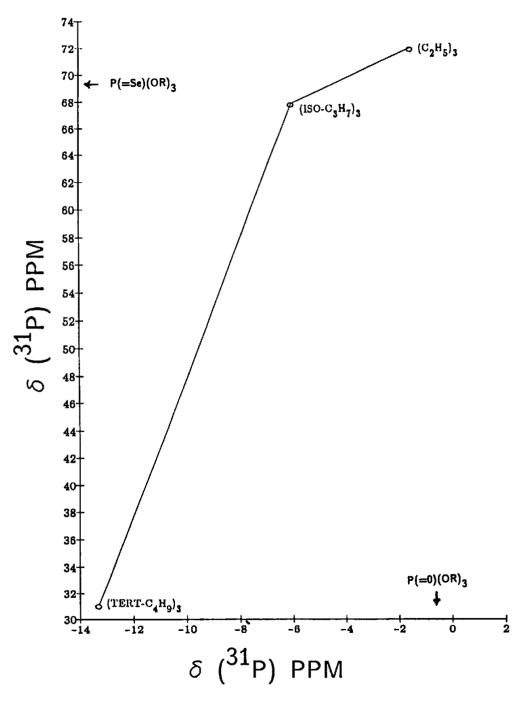
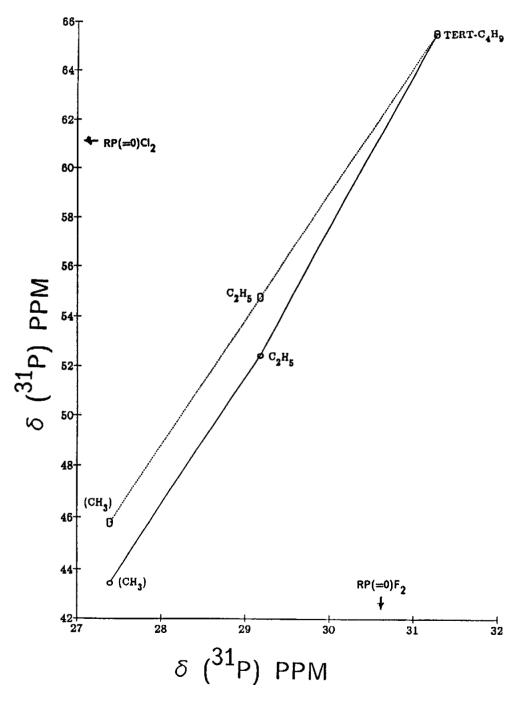


FIGURE 11.80 Plots of the number of Cl atoms joined to phosphorus vs ν P=O and ν P=O rotational conformers for P(=O)Cl₃ through P(=O)Cl_{3-x}(OR)_x where R is CH₃ or C₂H₅.


FIGURE 11.81 A plot of the number of Cl atoms joined to phosphorus vs v = 0 for $P(=0)Cl_{3-x}[N(CH_3)_2]_x$.

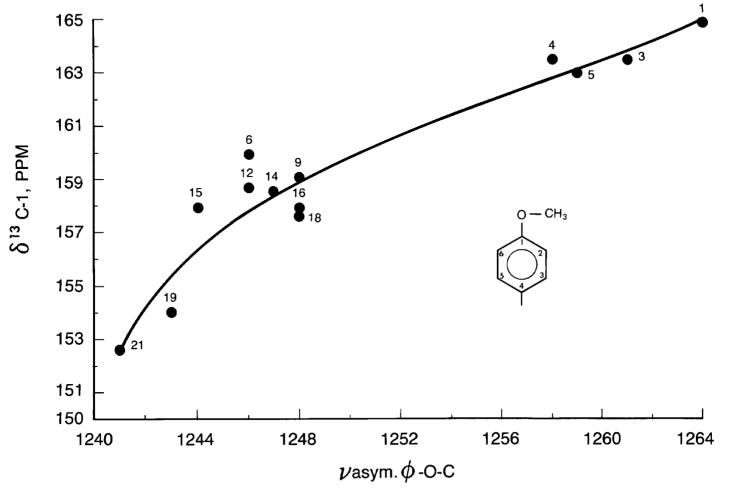

FIGURE 11.82 A plot of $\delta^{31}P$ for $P(=S)(OR)_3$ vs $\delta^{31}P$ for the corresponding alkyl analogs of $P(=O)(OR)_3$.

FIGURE 11.83 A plot of δ ³¹P for P(=Se)(OR)₃ vs δ ³¹P for corresponding alkyl analogs of P(=O)(OR)₃.

FIGURE 11.84 Plots of $\delta^{31}P$ for $RP(=O)Cl_2$ vs $\delta^{31}P$ for corresponding alkyl analogs of $RP(O)F_2$). The double plot is the $\delta^{31}P$ range given in the literature for the $RP(=O)Cl_2$ analogs.

FIGURE 11.85 A plot of *v* asym. ϕ -O-C vs δ ¹³C-1 for 4-x-anisoles.

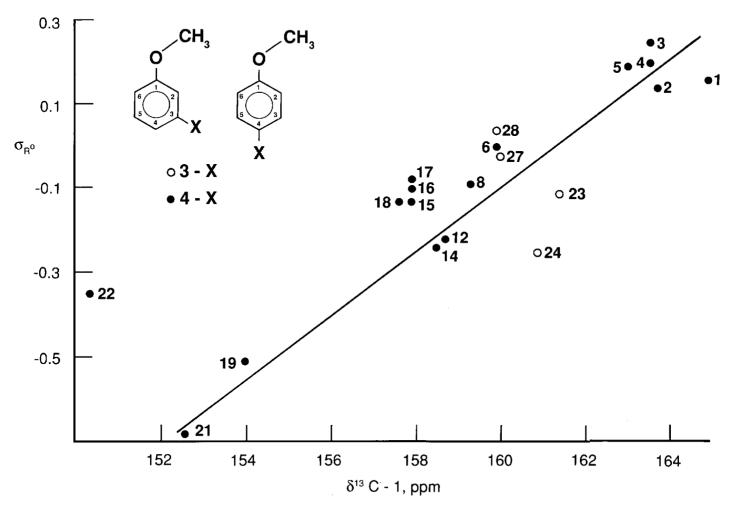


FIGURE 11.86 A plot of δ $^{13}\text{C-1}$ vs Taft σ_{R° for 3-x- and 4-x-anisoles.



FIGURE 11.87 A plot of δ 13 C-1 vs Hammett σ values for 3-x v - and 4-x-anisoles.

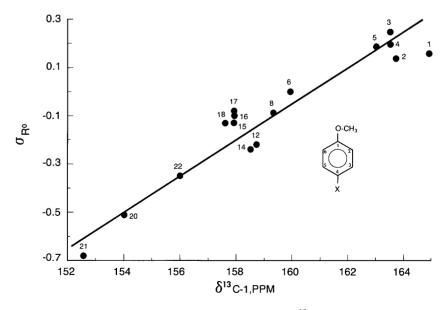


FIGURE 11.88 A plot of Taft $\sigma_{R^{\circ}}$ values vs σ^{-13} C-1 for 4-x-anisoles.

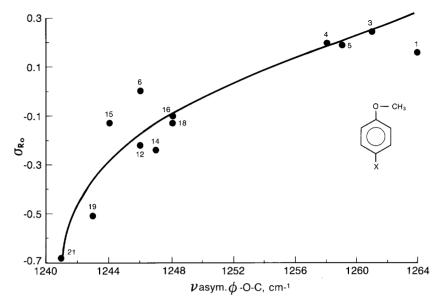


FIGURE 11.89 A plot of Taft $\sigma_{R^{\circ}}$ values vs v asym. ϕ -O-C for 4-x-anisoles.

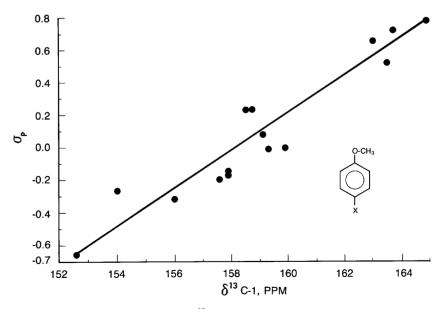


FIGURE 11.90 $\,$ A plot of δ $^{13}\text{C-1}$ vs Hammett σ_p values for 4-x-anisoles.

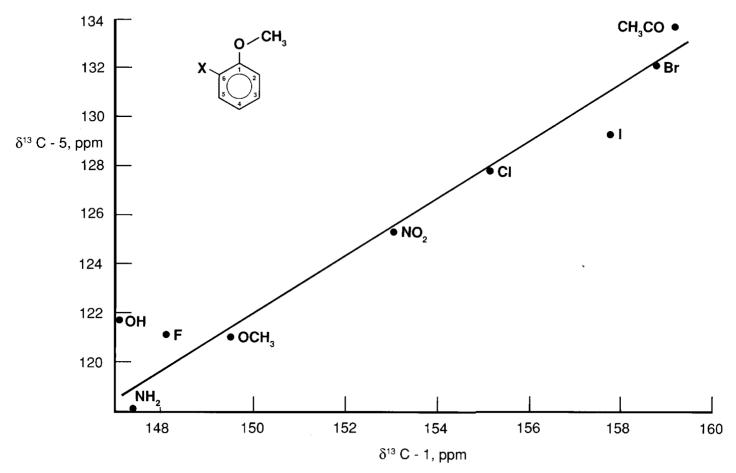


FIGURE 11.91 A plot of δ ¹³C-1 vs δ ¹³C-5 for 2-x-anisoles.

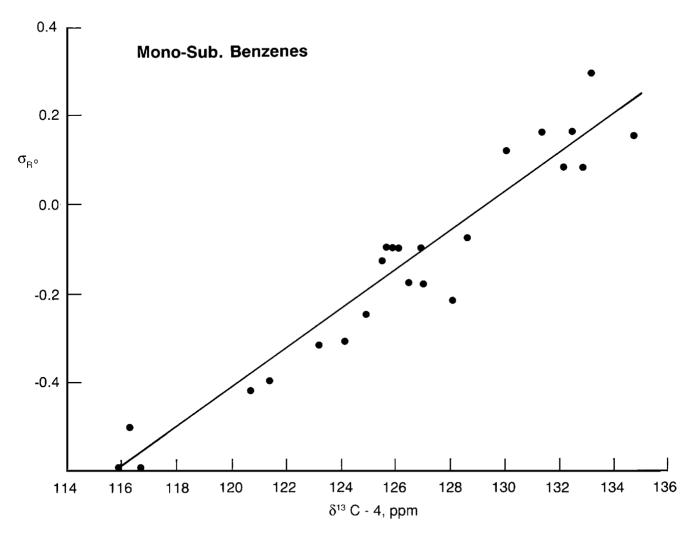


FIGURE 11.92 A plot of δ 13 C-4 for mono-substituted benzenes vs Taft $\sigma_{R^{\circ}}$ values.

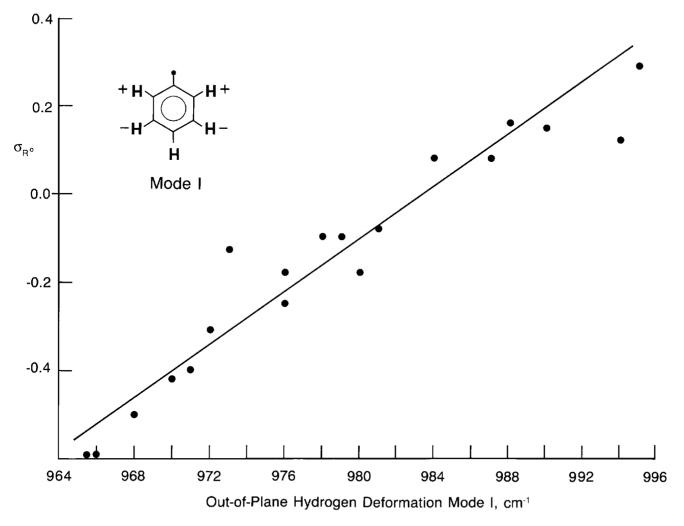


FIGURE 11.93 A plot of the out-of-plane hydrogen deformation mode I for mono-substituted benzenes vs Taft $\sigma_{\mathbb{R}^{\circ}}$ values.

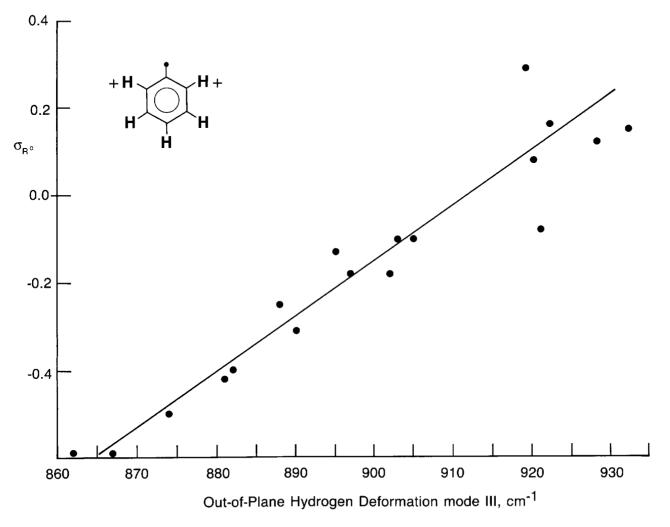


FIGURE 11.94 A plot of the out-of-plane hydrogen deformation mode III for mono-substituted benzenes vs Taft $\sigma_{R^{\circ}}$ values.

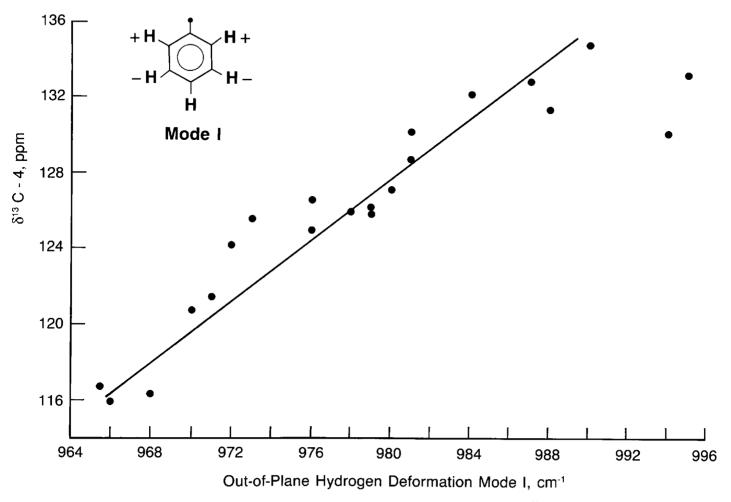


FIGURE 11.95 A plot of the out-of-plane hydrogen deformation mode I for mono-substituted benzenes vs δ ¹³C-4 for mono-substituted benzenes.

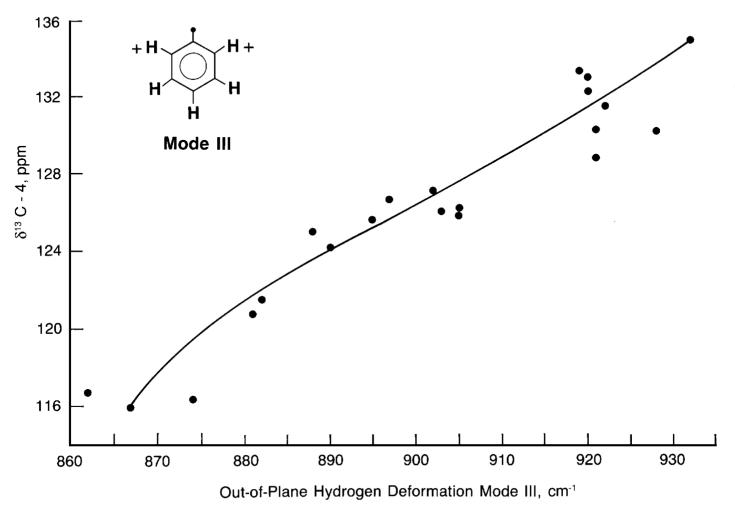


FIGURE 11.96 A plot of the out-of-plane hydrogen deformation mode III vs δ 13 C-4 for mono-substituted benzenes.

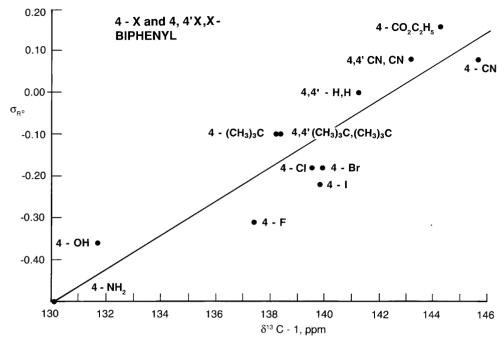


FIGURE 11.97 A plot of δ 13 C-1 vs Taft $\sigma_{R^{\circ}}$ values for 4-x and 4,4'-x,x-biphenyls.

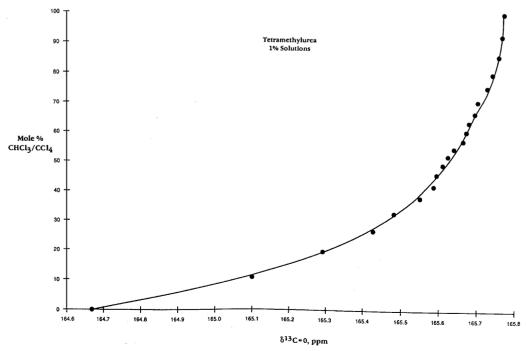


FIGURE 11.98 A plot of δ ¹³C=O for tetramethylurea (TMU) 1 wt./vol. % solutions vs mole % CHCl₃/CCl₄.

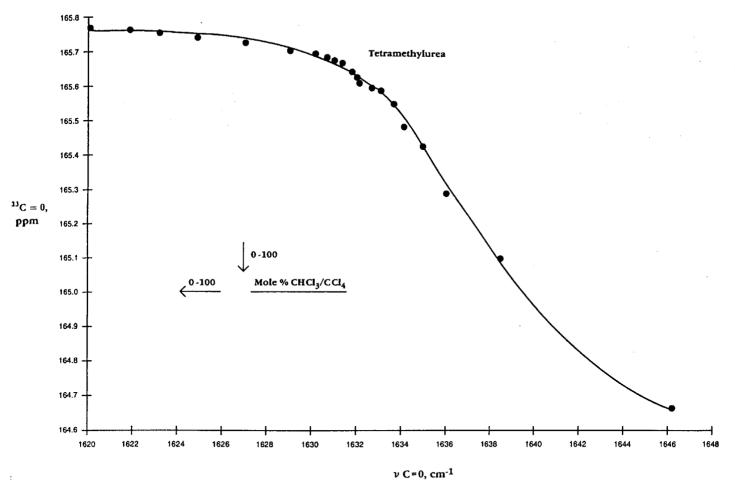


FIGURE 11.99 A plot of v C=O vs δ ¹³C=O for TMU 0-100 mol % CHCl₃/CCl₄ solutions.

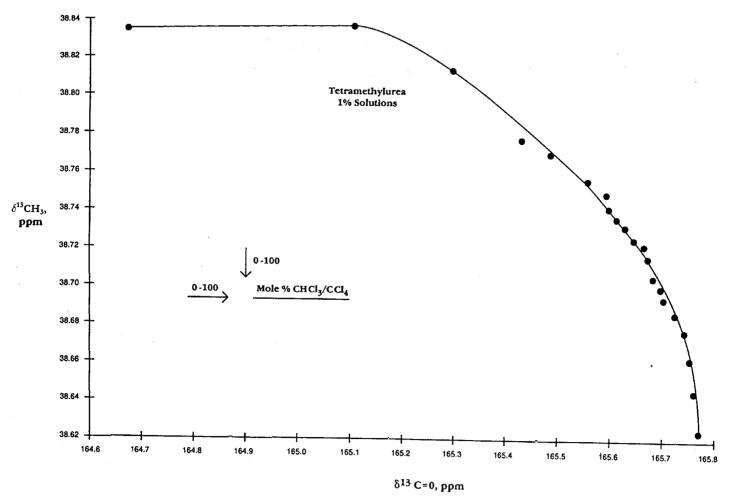


FIGURE 11.100 A plot of δ ¹³C=O vs δ ¹³CH₃ for TMU in 0–100 mol % CHCl₃/CCl₄ solutions.

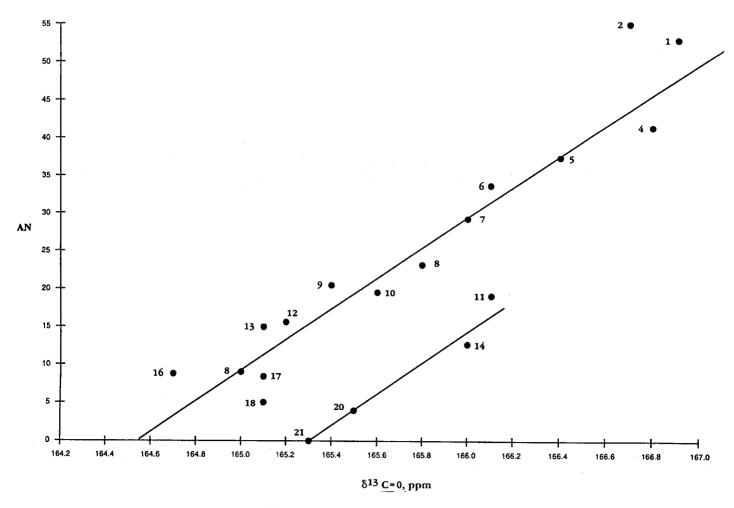


FIGURE 11.101 A plot of δ ¹³C=O for TMU vs the solvent acceptor number (AN) for different solvents.

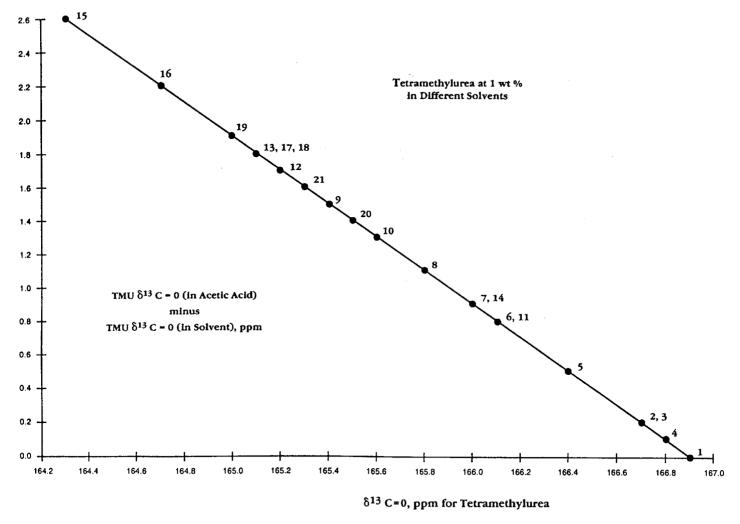


FIGURE 11.102 A plot of the δ^{13} C=O chemical shift difference between TMU in solution with acetic acid and in solution with each of the other solvents.

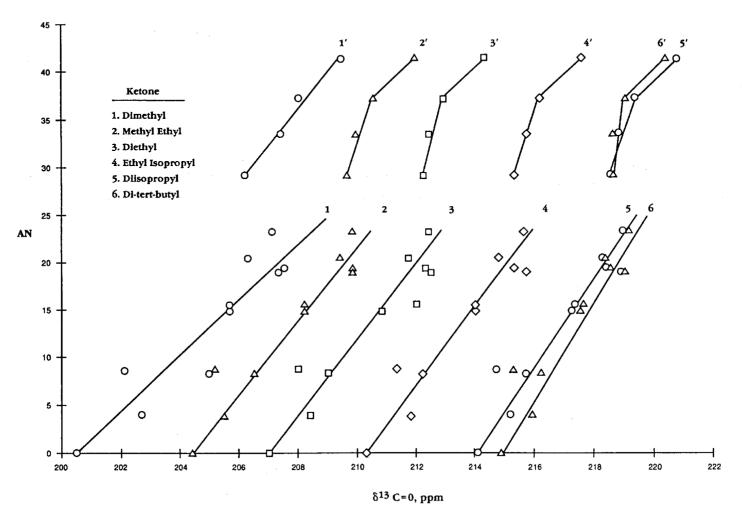


FIGURE 11.103 Plots of δ^{13} C=O for dialkylketones at 1 wt./vol. % in different solvents vs the AN for each solvent.

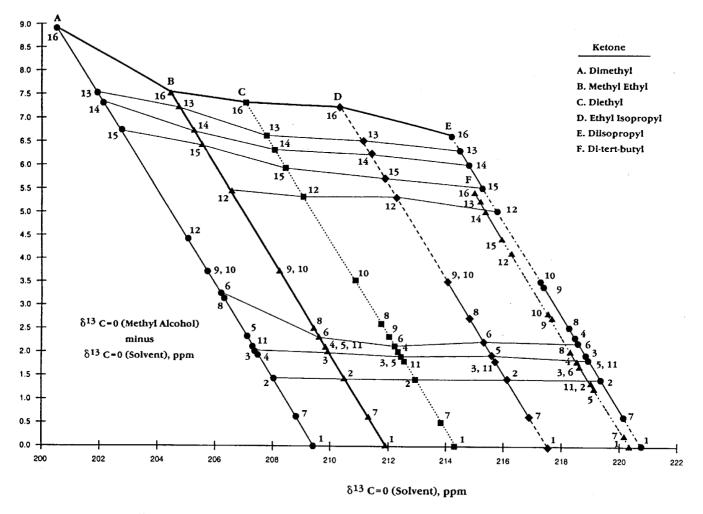


FIGURE 11.104 Plots of the δ^{13} C=O chemical shift difference between each dialkyl-ketone in methanol and the same dialkylketone in solution with each of the other solvents.

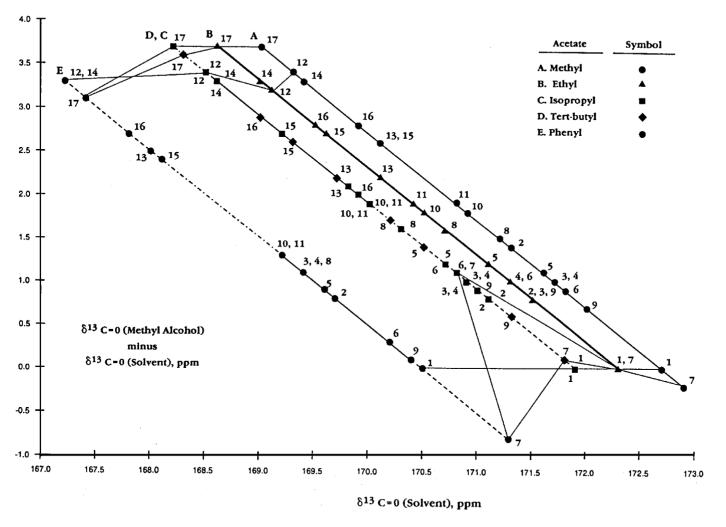


FIGURE 11.105 A plot of δ^{13} C=O for alkyl acetates and phenyl acetate vs the difference of δ^{13} C=O in methanol and δ^{13} C=O in each of the other solvents.

TABLE 11.1 The NMR ¹³C solution-phase chemical shift data for 4-X-anilines

4-X-Aniline	Chemical shift $\delta^{-13}C$ -1	Chemical shift δ^{13} C-2	Chemical shift δ^{13} C-3	Chemical shift $\delta^{13}C-4$
4-X	ppm	ppm	ppm	ppm
NH ₂	138.8	116.1	116.1	138.8
OH	139.6	115.7	115.9	149.1
OCH ₃	140.5	116.3	114.9	152.6
OC_2H_5	140.4	116.4	115.8	152
OC_3H_7	140.5	116.4	115.8	152.1
OC_4H_9	140.5	116.4	115.7	152.2
OC_6H_{13}	140.3	116.3	115.7	152.2
CH ₃	144.3	115.2	129.7	127.2
$n-C_3H_7$	144.5	115.3	129.2	132.4
$n-C_4H_9$	144.4	115.3	129.1	132.7
iso-C ₃ H ₇	144.6	115.3	127	138.7
cyclo-C ₃ H ₅	144.3	115.3	126.8	133.4
$t-C_4H_9$	143.9	114.9	125.8	140.9
F	143.1	116.1	115.7	156.4
Cl	145.2	116.3	129	122.8
Br	145.6	116.7	131.9	109.8
I	147.4	116.7	137.1	76.8
SCH ₃	145.4	115.6	130.8	125
CN	151.1	114.5	133.8	120.5
NO_2	155.1	112.8	126.3	136.9
NO ₂ ,HCl	145.4	119.6	125.4	142.4
SO ₃ H	150.6	116.1	128	133.2
CH ₃ SO ₂	153.2	113.2	128.9	126.2
CF ₃	150.2	114.5	127	120.1
CH ₃ CO	153.8	113.9	131.4	168.8

3-x or 4-x benzoic acid	σm	Chemical shift ¹³ C=O ppm	Chemical shift ¹³ C-1 ppm	Chemical shift ¹³ CC-2 ppm	Chemical shift ¹³ C-3 ppm	Chemical shift ¹³ C-4 ppm	Chemical shift ¹³ C-5 ppm	Chemical shift ¹³ C-6 ppm	C=O str. vapor cm ⁻¹	C=O str. CCl_4 soln. cm^{-1}	C=O str. [v-CCl ₄ soln.] cm ⁻¹
3-x											
F	0.34	167.3	133.5	116.5	162.6	119.8	130.3	125.7	1768	1748	20
CH_3	-0.07	172.9	129.5	128.4	138.3	134.5	130.8	127.5	1761		
NH_2		169.2	132.4	115.9	149.3	119.5	130	118.6	1761		
SO_2F		165.5	133.4	130.5	133.1	131.8	129.2	136.7			
CF ₃	0.42	166.9	132.7	126.6	130.8	129.2	129.6	133.4	1766		
NO_2	0.71	166.1	133	127.1	148.2	127.1	129.9	135.5	1768	1752	16
CN	0.62	165.9	132.5	133	112.4	135.8	129.7	133.8	1765		
4-x	σр										
OCH ₃	-0.27	167.4	123.3	131.5	113.5	162.9			1760	1737	23
ОН	-0.36	169.1	121.3	132.1	115.4	161.8			1755		
C_4H_9NH		168.1	117.1	131.2	110.7	152.7			1751		
OC_2H_5		167.4	123	131.4	113.9	162.4			1755		
$t-C_4H_9$	-0.2	172.7	126.8	130.2	125.4	157.6			1758		
OC_4H_9		167.5	123.1	131.5	114	162.7					
Cl	0.23	168.8	129.8	131.1	128.5	138.3			1765	1745	20
Н	0	172.7	129.5	130.3	128.5	133.8			1762	1744	18
CO ₂ H		166.9	134.6	129.3							

 $165.9 - 172.9 \quad 117.1 - 134.6 \quad 116.5 - 133 \quad 110.7 - 162.6 \quad 119.8 - 162.9 \quad 129.2 - 130.8 \quad 118.6 - 136.7 \quad 1751 - 1768 \quad 1737 - 1752 \quad 129.2 - 130.8 \quad 118.6 - 136.7 \quad 1751 - 1768 \quad 1737 - 1752 \quad 1751 - 1768

TABLE 11.2 Infrared and NMR data for 3-x- and 4-x-benzoic acids

Range

16-23

TABLE 11.3 Infrared and NMR data for 4-x-acetanilides in solution*

4-x-Acetanilides	Chemical shift ¹³ C=O ppm	Chemical shift ¹³ C=1 ppm	Chemical shift ¹³ C=2 ppm	Chemical shift ¹³ C=3 ppm	Chemical shift ¹³ C=4 ppm	C=O str. [CHCl ₄] cm ⁻¹	C=O str. [CHCl ₃] cm ⁻¹	C=O str. $[CCl_4\text{-}CHCl_3]$ cm^{-1}
NH ₂	167.8	129.2	121.5	114.4	144.1			
OH	168.6	130.6	121.8	115.2	153.6		1686	
Н	168.7	139.2	119.7	128.5	123.3	1705		
F	168.5	135.6	121.2	115	158.4			
Br	168.4	138.5	121	114.8	131.2	1709	1694	15
I	168.9	138.9	137.3	137.3	86.2	1709	1696	13
iso-C ₃ H ₇	169.4	136.1	120.8	126.6	144.8			
CH ₃ C=O	168.9	143.7	118.4	129.2	131.6	1713	1702	11
NO_2	169.3	145.5	118.6	124.6	142.3	1718	1711	7

^{*}See References 3 and 6.

TABLE 11.4 Infrared and NMR data for 4-X-benzaldehydes in CCl₄ and/or CHCl₃ solutions

4-x-Benzaldehyde X	Chemical shift ¹³ CH ppm	Chemical shift ¹³ C=O ppm	Chemical shift C-1 ppm	C=O str. CCl_4 soln. cm^{-1}	C=O str. $CHCl_3$ soln. cm^{-1}	C=O str. $[CCl_4-CHCl_3]$ cm^{-1}	σр	σl	σ_{R°
$(CH_3)_2N$	9.66	189.5	125.2	1696.9	1682.5	14.4	-0.6	0.06	-0.59
OH	9.89	190.8	128.7	1701.1	1688.2	12.9	-0.37		-0.4
CH ₃ O	9.8	190.5	130.2	1697.1	1688.8	8.3	-0.268	0.27	-0.42
F	10	190.2	132.7	1706.7	1700.6	6.1	0.062	0.5	-0.31
C_6H_5O	9.92	190.3	131	1703.3	1696.6	6.7	-0.32	0.38	-0.32
Cl	9.91	190.5	134.9	1710.3	1702.9	7.4	0.226	0.46	-0.18
Br	9.97	190.6	135.2	1710.4	1704.3	6.1	0.232	0.44	-0.18
CH ₃	9.97	191.4	134.4	~1711			-0.17	-0.1	-0.13
C_6H_5	10	191.9	135.1	1706.7	1700.3	6.4	-0.01	0.12	-0.1
Н	9.94	192	136.6	1708.5	1701.9	6.6	0	0	0
CN	10.13	190.7	138.9	1713.7	1708.1	5.6	0.66	0.56	0.08
CF ₃	10.12	191	138.5	1714.6	1707.1	7.5	0.54	0.421	0.08
NO ₂	10.18	190.3	139.9	1714.4	1710.4	4.4	0.778	0.65	0.15
CH ₃ S		190.8	132.6	1700.2	1691.1	9.1	0		-0.25
Range	9.66-10.18	189.5-192	125.2-139.9	1699.9-1714.6	1682.5-1710.4	4.4-14.4			

TABLE 11.5 Infrared and NMR data for 4-x-acetophenones in CCl₄ and/or CHCl₃ solutions

4-x-Acetophenone X	Chemical shift ¹³ C=O ppm	Chemical shift ¹³ CH ₃ ppm	Chemical shift ¹³ C-1 ppm	Chemical shift ¹³ C-4 ppm	C=O str. CCl_4 soln. cm^{-1}	C=O str. $CHCl_3$ soln. cm^{-1}	C=O str. $[CCl_4-CHCl_3]$ cm^{-1}
Cl	196.1	26.3	135.5	139.2	1705	1694	11
CH ₃	196.9	26.2	134.9	143.5	1701	1690	11
Н	197.4	26.3	137.3	133	1709	1692	17
CH ₃ O	196	26	130.5	163.5		1684	
NO ₂	196.3	26.9	141.7	150.4	1710	1700	10
C_6H_5O	195.8	26.1	132.2	161.7		1686	
Br	196.3	26.3	135.8	128	1705	1695	10
CH ₃ CO	197.3	26.7	140.3	140.3			
C_6H_5	197.5	26.5	136	145.7		1692	
CN	196.6	26.8	140	116.3		1697.5	
OH	196.6	26	129	162.2	1700	1686	14
CF ₃	97	26.8	140.1	134.6		1698	
$N(CH_3)_2$	196.4	26	125.3	153.3		1671	
Range	195.8-197.5	26.0-26.9	125.3-140.3	116.3-163.5		1671-1700	10–17

TABLE 11.6 Vapor-phase IR and NMR CHCl₃ solution-phase data for 4-x and 4,4'-x,x-benzophenones

Senzophenone Shift \(^{13}C=O\) Shift \(^{13}C-1\) Shift \(^{13}C-1\) Shift \(^{13}C-2\) Shift \(^{13}C-3\) Shift \(^{13}C-3\) Shift \(^{13}C-1\) Shift \(^{13}C-2\) Shift \(^{13}	•	•	-	•			•				
H	, ,	shift ¹³ C=O	shift ¹³ C-1	shift ¹³ C-2	shift ¹³ C-3	shift ¹³ C-4	shift ¹³ C'-1	shift $^{13}C'$ -2	shift $^{13}C'$ -3	shift 13C'-4	C=O str. vapor cm ⁻¹
OCH ₃ 194.6 130.1 132.4 113.6 163.3 138.4 129.6 128.2 131.8 Cl 194.5 135.7 131.5 128.5 138.1 129.6 129.6 128.5 138.1 Br 195.2 136.3 131.5 131.5 127.4 137.2 129.9 128.3 132.6 CH ₃ 195.6 135 128.9 130.1 142.9 138 129.7 1282.1 131.9 NO ₂ 194.3 142.6 130.5 123.4 136.1 136.1 129.8 128.9 133.3 N(C ₂ H ₅) ₂ ,N(C ₂ H ₅) ₂ 193.1 125.8 132.4 110 150.3 N(CH ₃) ₂ ,N(CH ₃) ₂ 192.4 125.6 131.5 110.5 152.5 OCH ₃ ,OCH ₃ 194.3 130.9 132.2 113.5 162.9 CH ₃ ,OCH ₃ 194.6 130.4 129.8 113.5 163 CH ₃ ,CH ₃ 195.4 135.4 130.1 128.9 142.6 Cl,Cl F	X										
Cl 194.5 135.7 131.5 128.5 138.1 129.6 129.6 128.5 138.1 Br 195.2 136.3 131.5 131.5 127.4 137.2 129.9 128.3 132.6 CH ₃ 195.6 135 128.9 130.1 142.9 138 129.7 1282.1 131.9 NO ₂ 194.3 142.6 130.5 123.4 136.1 136.1 129.8 128.9 133.3 N(C ₂ H ₅) ₂ ,N(C ₂ H ₅) ₂ 193.1 125.8 132.4 110 150.3 N(CH ₃) ₂ ,N(CH ₃) ₂ 192.4 125.6 131.5 110.5 152.5 OCH ₃ ,OCH ₃ 194.3 130.9 132.2 113.5 162.9 CH ₃ ,OCH ₃ 194.6 130.4 129.8 113.5 163 CH ₃ ,CH ₃ 195.4 135.4 130.1 128.9 142.6 Cl,Cl	Н	196.1	137.6	129.8	128.2	132.2					1681
Br 195.2 136.3 131.5 131.5 127.4 137.2 129.9 128.3 132.6 CH ₃ 195.6 135 128.9 130.1 142.9 138 129.7 1282.1 131.9 NO ₂ 194.3 142.6 130.5 123.4 136.1 136.1 129.8 128.9 133.3 N(C ₂ H ₅) ₂ ,N(C ₂ H ₅) ₂ 193.1 125.8 132.4 110 150.3 N(CH ₃) ₂ ,N(CH ₃) ₂ 192.4 125.6 131.5 110.5 152.5 OCH ₃ ,OCH ₃ 194.3 130.9 132.2 113.5 162.9 CH ₃ ,OCH ₃ 194.6 130.4 129.8 113.5 163 CH ₃ ,CH ₃ 195.4 135.4 130.1 128.9 142.6 Cl,Cl	OCH ₃	194.6	130.1	132.4	113.6	163.3	138.4	129.6	128.2	131.8	1675
CH ₃ 195.6 135 128.9 130.1 142.9 138 129.7 1282.1 131.9 NO ₂ 194.3 142.6 130.5 123.4 136.1 136.1 129.8 128.9 133.3 N(C ₂ H ₅) ₂ ,N(C ₂ H ₅) ₂ 193.1 125.8 132.4 110 150.3 N(CH ₃) ₂ ,N(CH ₃) ₂ 192.4 125.6 131.5 110.5 152.5 OCH ₃ ,OCH ₃ 194.3 130.9 132.2 113.5 162.9 CH ₃ ,OCH ₃ 194.6 130.4 129.8 113.5 163 CH ₃ ,CH ₃ 195.4 135.4 130.1 128.9 142.6 Cl,Cl	Cl	194.5	135.7	131.5	128.5	138.1	129.6	129.6	128.5	138.1	1682
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br	195.2	136.3	131.5	131.5	127.4	137.2	129.9	128.3	132.6	1682
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃	195.6	135	128.9	130.1	142.9	138	129.7	1282.1	131.9	1680
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO ₂	194.3	142.6	130.5	123.4	136.1	136.1	129.8	128.9	133.3	1687
OCH ₃ ,OCH ₃ 194.3 130.9 132.2 113.5 162.9 CH ₃ ,OCH ₃ 194.6 130.4 129.8 113.5 163 CH ₃ ,CH ₃ 195.4 135.4 130.1 128.9 142.6 Cl,Cl F OH	$N(C_2H_5)_2, N(C_2H_5)_2$	193.1	125.8	132.4	110	150.3					
CH ₃ ,OCH ₃ 194.6 130.4 129.8 113.5 163 CH ₃ ,CH ₃ 195.4 135.4 130.1 128.9 142.6 Cl,Cl F OH	$N(CH_3)_2, N(CH_3)_2$	192.4	125.6	131.5	110.5	152.5					
CH ₃ ,CH ₃ 195.4 135.4 130.1 128.9 142.6 Cl,Cl F OH	OCH ₃ ,OCH ₃	194.3	130.9	132.2	113.5	162.9					
Cl,Cl F OH	CH ₃ ,OCH ₃	194.6	130.4	129.8	113.5	163					1672
F OH	CH ₃ ,CH ₃	195.4	135.4	130.1	128.9	142.6					1675
ОН	Cl,Cl										1680
	F										1680
Range 193.1–195.6 125.6–142.8 128.8–132.9 110–132.3 127.4–163.3 129.6–138.4 129.6–129.9 128.1–128.9 131.8–138.1 167	ОН										1678
	Range	193.1–195.6	125.6–142.8	128.8–132.9	110-132.3	127.4–163.3	129.6–138.4	129.6–129.9	128.1–128.9	131.8–138.1	1672–1687

TABLE 11.7 Infrared and NMR data for alkyl 3-x- and 4-x-benzoates

Alkyl 3-x or 4-x Benzoate	Chemical shift ¹³ C=O ppm	Chemical shift ¹³ C-1 ppm	Chemical shift ¹³ c-2 ppm	Chemical shift ¹³ C-3 ppm	Chemical shift ¹³ C-4 ppm	Chemical shift ¹³ C-5 ppm	Chemical shit ¹³ C-6 ppm	Chemical shift ¹³ CH ₃ O ppm	Chemical shift ¹³ CH ₂ ppm	Chemical shift ¹³ CH ₃ ppm	C=O str. vapor cm ⁻¹
Methyl 3-x											
NH ₂	167.4	131	115.7	147.1	119.3	129.3	119.3	51.9			1748
Cl	165.5	132.1	129.7	134.5	132.9	129.7	127.7	52.2			
I	165.2	132.1	138.4	93.8	141.6	129.9	128.7	52.2			1750
NO ₂											
4-x											
ОН	170.6	113.8	131.3	117.2	167			50.9			1744
I	166	129.5	130.9	137.6	100.6			52			
Ethyl											
3-x											
ОН	167.6	131.4	116.5	156.5	120.6	129.6	121.6		61.6	14.1	1741
NH ₂	167.2	131.6	115.7	147.5	119.2	129.2	119.2		61	14.3	
4-x											
ОН	167.5	122.3	132	115.4	160.7				61.1	14.3	1738
NH ₂	166.6	117.5	131.5	113.3	153.3				60	14.4	1735
$N(CH_3)_2$	166.9	117.3	131.2	110.7	153.3				60	14.5	
$t-C_4H_9$	166.2	128.1	129.6	125.2	156.2				60.5	14.4	1740
Br	165.4	129.5	131.1	131.6	127.8				61.1	14.4	1741
NO_2	165.5	135.1	130.7	123.5	150.6				62	14.3	1749

TABLE 11.8 Summary of IR and NMR data for the C=O group

Compound type	Chemical shift ¹³ C-1 CHCl ₃ soln. ppm	Chemical shift ¹³ C=O CHCl ₃ soln. ppm	C=O str. cm ⁻¹	Solvent or vapor	Solvent CHCl ₃
4-x-Benzaldehyde	125.2–139.9	189.9–192.0	1696.9–1714.6	CCl₄	1682.5–1710.4
4-x-Acetophenone	125.3-140.3	195.8-197.5	1671-1700	CCl ₄	
4-x-Acetanilide	129.2-145.5	167.8-169.4	1705-1718	CCl ₄	1686-1711
4-x- and 4,4'-x,x'-Benzophenone	125.6-142.8	193.1-195.6	1672-1687	vapor	
3-x and 4-x-Benzoic acid	117.1-133.4	165.9-172.9	1751-1768	vapor	1737-1752
3-x- and 4-x-Methyl benzoate	113.8-132.1	165.2-170.6	1744-1750	vapor	
3-x- and 4-x-Ethyl benzoate	117.3–136.1	164.5–167.6	1735–1749	vapor	

TABLE 11.9 IR and NMR data for the C=O group of acetone in $CHCl_3/CCl_4$ solutions

	IR C=O str.	NMR $\delta(^{13}C=O)$
CHCl ₃ /CCl ₄	cm ⁻¹	(ppm)
0	1717.5	
1.49	1717.1	202.29
3	1716.7	302.56
10.8	1716.1	
15.4	1715.9	203.27
16.9	1715.3	203.72
23.2	1715.1	203.97
26.7	1714.9	204.16
37.7	1714.2	204.74
42.1	1713.9	
45.9	1713.7	
49.2	1713.4	
52.2	1713.2	
55.7	1713.1	205.55
57.4	1712.9	
57.6	1712.8	
60.2	1712.7	
63.4	1712.6	
66.9	1712.3	
70.8	1712.1	205.96
75.2	1711.9	
80.2	1711.6	
85.8	1711.3	
92.4	1710.9	
100	1710.5	

TABLE 11.10 Infrared and NMR data for N,N'-dimethylacetamide in CHCl₃/CCl₄ solutions

Dimethylacetamide [1 wt./vol. %]	NMR ¹³ C=O ppm	NMR ¹³ CH ₃ , anti ppm	NMR ¹³ CH ₃ , syn ppm	NMR ¹³ CH ₃ ppm	IR C=O str. cm ⁻¹
Mole % CHCl ₃ /CCl ₄					
0	168.4	37.8	35.1	21.3	1660.5
10.74	169.3	37.9	35.2	21.4	1649
19.4	169.6	38	35.2	21.5	1646.7
26.54	169.9	38	35.2	21.5	1645.1
32.5	170	38	35.3	21.5	1645.2
37.58	170.1	38	35.3	21.5	1642
41.94	170.2	38.1	35.3	21.5	1640.8
45.73	170.2	38.1	35.3	21.5	1640.3
49.06	170.3	38.1	35.3	21.5	1639.6
52	170.3	38.1	35.3	21.6	1639.1
54.62	170.4	38.1	35.3	21.6	1638.7
57.21	170.4	38.1	35.3	21.6	1638.5
60.07	170.4	38.1	35.3	21.6	1638.1
63.23	170.5	38.1	35.3	21.6	1637.8
66.74	170.5	38.1	35.3	21.6	1637.3
70.65	170.6	38.1	35.3	21.6	1336.8
75.05	170.6	38.1	35.3	21.6	1636
80.05	170.6	38.1	35.3	21.6	1635.9
85.75	170.7	38.1	35.3	21.6	1635
92.33	170.8	38.1	35.3	21.6	1634.7
100	170.8	38.1	35.3	21.6	1634.2

TABLE 11.11 The NMR and IR data for maleic anhydride 1 wt./vol. % in CHCl3/CCl4 solutions

Maleic anhydride [1 wt./vol. %]	Chemical shift ¹³ C=O, ppm	Chemical shift ¹³ C=C, ppm	Out-of-phase (C=O) ₂ str. corrected for Fermi Res.(FR) cm ⁻¹	In-phase C=O) ₂ str. cm ⁻¹	B1 Combination tone corrected for FR cm ⁻¹
Mole % CHCl ₃ /CCl ₄					
0	163.2	136.1	1787.1	1851.7	1786.8
10.74	163.3	136.2	1786.8	1852	1787.6
19.4	163.4	136.2	1786.6	1852	1787
26.54	163.5	136.3	1786.5	1851.97	1788
32.5	163.6	136.3	1786.4	1851.97	1788.2
37.58	163.7	136.3	1786.35	1851.92	1788.3
41.94	163.7	136.3	1786.29	1851.93	1788.4
45.73	163.7	136.4	1786.26	1851.95	1788.5
49.06	163.8	136.4	1786.2	1851.96	1788.53
52	163.8	136.4	1786.16	1851.93	1788.58
54.62	163.8	136.4	1786.16	1851.9	1788.58
57.21	163.8	136.4	1786.14	1851.9	1788.59
60.07	163.8	136.4	1786.11	1851.87	1788.65
63.23	163.9	136.4	1786.09	1851.91	1788.68
66.74	163.9	136.4	1786.04	1851.88	1788.72
70.65	163.9	136.4	1785.64	1851.87	1788.64
75.05	163.9	136.4	1785.81	1851.85	1788.69
80.05	164	136.4	1785.72	1851.78	1788.77
85.75	164	136.5	1785.64	1851.75	1788.86
92.33	164.1	136.5	1785.4	1851.66	1789.09
100	164.1	136.5	1785.36	1851.68	1789.14
δ	0.9 ppm	0.4 ppm	$[-1.75\mathrm{cm}^{-1}]$	$[0.06\mathrm{cm}^{-1}]$	$[2.38\mathrm{cm}^{-1}]$

TABLE 11.12 Infrared and NMR data for 3-x- and 4-x-benzonitriles

3-x or 4-x Benzonitrile	NMR Chemical shift ¹³ CN ppm	NMR Chemical shift ¹³ C-1 ppm	NMR Chemical shift ¹³ C-2 ppm	NMR Chemical shift ¹³ C-3 ppm	NMR Chemical shift ¹³ C-4 ppm	IR CN str. vapor cm ⁻¹	IR CN str. neat cm ⁻¹		
3-x								σ m	$\sigma_{R^{\circ}}$
NH ₂ F Br	119.3 117.5 117.2 116.8	112.7 114.3 114.3 113.6			120.6 136.1 127.1	2241	2212 2215	0.34 0.39 0.71	-0.16 -0.06 0.08
4-x								σр	
N(CH ₃) ₂ NH ₂ OH OC ₆ H ₄ CN Cl H CH ₃ CO NO ₂ Range	120.6 120.5 119.6 118.2 117.8 118.8 117.7 116.3 116.9	96.9 99.5 101.9 108.1 111 112.4 117.7 117.9 118.4	132.2 133.8 134 134.5 133.4 132.1 132.9 132.6 133.5	111.4 114.5 116.5 119.7 129.6 129.2 130 128.8 124.3	152.5 151.1 161.4 159.3 139.3 132.8 138.9 140 150.2	2238 2236 2240	2220 2211	-0.6 -0.66 -0.37 [0.100]* 0.226 0 0.216 0.502 0.778	-0.59 -0.52 -0.61 -0.32 -0.18 0 0.22 0.16 0.15

^{*} Estimated.

TABLE 11.13 Infrared, Raman and NMR data for organonitriles

Compound	Empirical structure	Raman data CN str., cm ⁻¹	$\delta(^{13}{ m CN})$ ppm	IR data[vapor] CN str., cm ⁻¹	CN str. [v-neat] cm ⁻¹
Acetonitrile	CH ₃ CN	2249	117.7	2280	31
Propionitrile	CH ₃ CH ₂ CN	2242	120.8		
Isobutyronitrile	(CH ₃) ₂ CHCN	2238	123.7	2255	17
Pivalonitrile	(CH ₃) ₃ CCN	2236	125.1		
Chloroacetonitrile	ClCH ₂ CN	2258	115.5		
Trichloroacetonitrile	Cl ₃ CCN	2250	113		
Acrylonitrile	CH_2 = $CHCN$	2222	117.5		
Methacrylonitrile	$CH_2 = C(CH_3)CN$	2230	119.3		
Benzonitrile	COH ₅ CN	2230	118.7		
2-Chloroacrylonitrile	CH ₂ -CClCN	2234	114.5		

TABLE 11.14 A comparison of $\delta(N)$ chemical shift data for primary, secondary and tertiary amines

Amine	$\delta({ m N})$ ppm	No. protons on the α -carbon atom	C-N str. cm ⁻¹	Sum Taft σ*
Methyl	-377.3	3	1043	0
Ethyl	-355.4	2	1083	-0.1
Isopropyl	-338.1	1	1170	-0.19
Tert-butyl	-324.3	0	1237	-0.3
			wN-H cm ⁻¹	
Dimethyl	-369.5	6	715	0
Ethyl methyl	-352	5	[—]	-0.1
Diethyl	-333.7	4	698	-0.2
Diisopropyl	-306.5	2	688	n-0.38
Trimethyl	363.1	9		0
Dimethyl ethyl	-351.3	8		-0.1
Dimethyl isopropyl	-340.5	7		-0.19
Dimethyl tert-butyl	-342.5	6		-0.3

TABLE 11.15 The NMR data for organophosphorus and organonitrogen compounds

Compound	[27,28] Chemical shift ³¹ P ppm	[23] Sum σ*	[18,25] Chemical shift ¹⁵ N	Compound
$P(CH_3)_3$	-64	0	-366.9	$N(CH_3)_3$
$P(CH_3)_2(C_2H_5)$	-48	-0.1	-355.2	$N(CH_3)_2(C_2H_5)$
$P(CH_3)(C_2H_5)_2$	-34	-0.2	-343.1	$N(CH_3)(C_2H_5)_2$
$P(C_2H_5)_3$	-19.5	-0.3	-333.6	$N(C_2H_5)_3$
$P(iso-C_3H_7)_3$	19.4	-0.57		
$P(\text{tert-}C_4H_9)_3$	63	-0.9		
$PH_2(CH_3)$	-163.5		-378.7	$NH_2(CH_3)$
$PH_2(C_2H_5)$	-128		-355.1	$NH_2(C_2H_5)$
$PH(CH_3)_2$	-99		-371	$NH(CH_3)_2$
$PH(CH_3)(C_2H_5)$	-77		-352.8	$NH(CH_3)(C_2H_5)$
$PH(C_2H_5)_2$	-55		-333	$NH(C_2H_5)_2$

TABLE 11.16 Infrared and NMR data for organophosphorus compounds

Compound	[28] Chemical shift ³¹ P ppm	[31] P=O str. cm ⁻¹	Compound	[28] Chemical shift ³¹ P ppm	[31] P=O str. cm^{-1} [CCl ₄]/[CHCl ₃]	Compound	[28] Chemical shift ³¹ P ppm	[31] P=O str cm ⁻¹
(CH ₃) ₃ P=O	36.2		(CH ₃)(Cl) ₂)P=O	44.5	1278.5/1268.9	(Cl) ₃ P	219.5	
$(C_2H_5)_3P=0$	48.3		$(C_2H_5)(Cl)_2P=0$	53	1270.5/1200.5	(CH ₃ O)(Cl) ₂ P	180	
$(CH_3)_2(\text{tert-}C_4H_0)P=0$	47.8		$(iso-C_3H_7)(Cl)_2P=O$	60.4		(CH ₃ O) ₂ (Cl)P	169	
$(\text{iso-C}_3\text{H}_7)_3\text{P=O}$	55		$(\text{tert-C}_4H_0)(\text{Cl})_2P=0$	65.6	1266.4/1255.7	$(C_2H_5O)(Cl)_2P$	178	
.50 0311//31 =0			(CH3)(Cl)2P=S	79.4	1200.1/1233.1	$(C_2H_5O)_2(Cl)P$	165	
$(CH_3O)_3P=O$	2.4	1291/1272*1	$(C_2H_5)(Cl)_2P=S$	95.4		(CH ₃ O) ₃ P	140	
$C_2H_5O)_3P=O$	-1.5	1280/1263* ¹	(iso-C3H7)(Cl)2P=S	107		$(C_2H_5O)_3P$	138	
$C_3H_7O)_3P=O$	-0.8	1279/1265*1	(150 0311/)(01/21 = 5	107		(021150/31	150	
$C_4H_9O)_3P=O$	-1	1280/1265*1	$(CH_3)(F)_2P=O$	27.1		$(C_2H_5)(Cl)_2P$	196.3	
$(50-C_3H_7O)_3P=O$	-6	1272/1257* ¹	$(C_2H_5)(F)_2P=O$	29.2		(CH ₃)(Cl) ₂ P	192	
tert- $C_4H_9O)_3P=O$	-13.3	12.2/123.	$(iso-C_3H_7)(F)_2P=O$	29.5		$(C_2H_5)_2(Cl)P$	119	
$C_2H_5O)_2$	-5.5		$(\text{tert-C}_4H_0(F)_2P=O)$	31.3		$(CH_3)(C_2H_5)$	105.2	
$(\text{tert-C}_4\text{H}_9\text{O})\text{P=O}$	3.5		(tere e411g(1) <u>7</u> 1=0	31.3		(Cl)P	103.2	
(C_2H_5O)	-9.9					(CH ₃) ₂ (Cl)P	96	
$(\text{tert-C}_4H_0O)_2P=O$	2.2					(0113)2(01)1	,,,	
(49-72-		[P=S str.]						
			$(iso-C_3H_7O)(Br)$	93.2		$(CH_3)(Br)_2P$	184	
			$(CH_3)P=S$			· 3/ /2		
$(CH_3O)_3P=S$	73.4	~605 VP	$(iso-C_3H_7O)(Br)$	110.2		$(C_2H_5)_2(Br)P$	116.2	
3 - /3 -			$(C_2H_5)P=S$			V-2 3/2V /		
$(C_2H_5O)_3P=S$	68	613 vp	$(iso-C_3H_7O)(Br)$	124.1		$(CH_3)(C_2H_5)$	98.5	
		· · · · · · · · · ·	$(iso-C_3H_7)P=S$			(Br)P		
$(iso-C_3H_7O)_3P=S$	62.5		(iso-C3H7O)(Br)	135.6		(CH ₃) ₂ (Br)P	92 or 87	
3 1 -3			$(\text{tert-C}_4H_9)P=S$. 3.2.		
$tert-C_4H_9O)_3P=S$	41.2		. 1 2					
. , , .,						(CH ₃ O) ₃ P	140	
CH ₃ O) ₃ P=Se		[P=Se]				$(C_2H_5O)_3P$	[137-139]	
$C_2H_5O)_3P=Se$	72.1					(iso-C ₃ H ₇ O) ₃ P	137	
$iso-C_3H_7O)_3P=Se$	67.9					(tert-C ₄ H ₉ O) ₃ P	138.2	
$tert-C_4H_9O)_3P=Se$	31.3					1 9 73		

(continued)

Table 11.16 (continued)							
				Chemical shift ¹³ C=O ppm	$(CH_3O)_2$ (Cl)P=O $(C_2H_5O)_2$ (Cl)P=O	6.4 2.8–3.3	1308/1293* ¹ 1298/1285* ¹
					$(\text{tert-C}_4\text{H}_9\text{O})_2$ (Cl)P=O	-5.8	
$(C_2H_5O)_2(CH_3)P=O$	29.4		(CH_3O) $(CH_3C=O$	171.2			
$(C_2H_5O)_2(C_2H_5)P=O$	32.6	1265	(CH3O) $(C2H5)C=O$	174.6			
$(C_2H_5O)_2(tert-C_4H_9)P=O$	39.4		(CH_3O) $(tert-C_4H_9(C=O)$	178.6			
(iso-C3H7O)2(CH3)P=O	27.1		(iso-C3H7O) $(CH3C=O$	170			
$(\text{tert-}C_4H_9O)_2(CH_3)P=O$	21.2		$(\text{tert-C}_4\text{H}_9\text{O})$ $(\text{CH}_3)\text{C=O}$	170			
		P=O str. cm ⁻¹	ν- 3.				
$(CH_3O)_2(H)P=O$	9.8 to 12.8	[1290 cm ⁻¹ vp ²] 1283sh/1266* ¹					
$(C_2H_5O)_2(H)P=O$	6.2 to 7.6	$[1281 \text{cm}^{-1} \text{vp}^2]$					
$(iso-C_3H_7O)_2(H)P=O$	3.2 to 4.2	1275sh/1262*1					
$(C_2H_5O)(\text{tert-}C_4H_9O)(H)P=O$	1.4 to 4.5						
$(\text{tert-C}_4\text{H}_9\text{O})_2(\text{H})\text{P=O}$	[-3.2 to -3.9]						
(CH3O)2(H)P=S	73.8 to 74.2						
$(C_2H_5O)_2(H)P=S$	67.8 to 69.3						
$(iso-C_3H_7O)_2(H)P=S$	64.8 to 644.85						

^{*}¹ Rotational conformers.
*² vp is the abbreviation for vapor phase here.

Infrared Raman and Nuclear Magnetic Resonance Spectra-Structure Correlations for Organic Compounds

TABLE 11.17 NMR data for 2-x-, 3-x- and 4-x-anisoles in CHCl₃ solutions

	¹³ C-1	¹³ C-2	¹³ C-3	¹³ C-4	¹³ C-5	¹³ C-6	¹³ CH ₃ O	
Anisole	ppm	ES						
4-x								
NO ₂	164.9	114.2	125.8	141.7			56.1	
CH ₃ SO ₂	163.7	114.6	129.5	132.4			55.8	
CH ₃ CO	163.5	113.8	130.5	130.5			55.3	
$CO_2C_2H_5$	163.5	113.7	131.6	123.2			55.3	
CN CN	163.5	114.9	133.9	103.9			55.5	
Н	159.9	114.1	129.5	120.7			54.8	
$CH=CH_2$	159.7	114	127.4	130.5			54.9	
C_6H_5	159.7	114.2	127.1	133.6			55 55	
0 3	159.5	114.2	128.5	133.6			55.2	
CH ₂ OH	158.9	114	128.5	131.2			54.9	
iso-C ₃ H ₇							55.1	
2-ClC ₂ H ₄	158.8	114.1	129.8	130.3				
Br	158.7	115.7	132.1	112.7			55.1	
2-BrC ₂ H ₄	158.6	113.9	129.5	130.9			54.9 55.3	
Cl	158.5	115.3	129.3	125.5			55.3	
CH ₃	157.9	113.9	129.9	129.9			54.9	
C_2H_5	157.9	113.9	128.8	136.4			55.1	
$n-C_3H_7$	157.9	113.8	129.3	134.7			55	
t-C ₄ H ₉	157.6	113.5	126.1	143.1			54.8	
CH ₃ O	154	114.8	114.8	154			55.6	
C ₆ H ₅ CH ₂ O	154.1	114.7	115.9	153.1			55.5	
NH_2	152.6	114.9	116.3	140.5			55.6	
C ₆ H ₅ O	156	115	120.7	150.4			55.4	
3-x								
CH ₃ O	161.4	100.8	161.4	106.4	130	106.4	55.1	
OH	160.9	102	157	108.5	130.5	106.9	55.3	
NH_2	160.8	100.9	148.4	107.9	130.1	103.6	54.8	
Cl	160.6	114.6	135	120.9	130.3	112.6	55.3	
CH ₃	160	115	139.4	121.6	129.3	111.1	54.8	
CH ₃ CO	159.9	112.7	138.7	121	129.6	119.3	55.2	
$3-BrC_3H_6$	159.8	114.3	142.1	120.8	129.4	111.4	55	
2-x								
CH ₃ CO	159.1	128.3	130.2	120.5	133.7	111.8	55.4	
Br	158.7	115.7	132.1	112.7	132	115.7	55.1	0
I	157.7	86	139.1	122.7	129.3	110.9	56.1	-0.2
Cl	157.7	122.4	130.2	121.2	129.3	110.9	55.8	0.18
NO ₂	153.1	140	134.4	121.2	127.8	112.2	56.5	-0.75
-	155 149.5	140	134.4	120.4	125.3 121	114	55.7	-0.75 0.99
CH ₃ O								
F	148.1	152.9	116.1	124.5	121.1	113.9	56	0.49
NH ₂	147.4	136.7	114.9	121.2	118.1	110.8	55.3	
ОН	147.1	146.1	115	120.3	121.7	114.4	55.9	

TABLE 11.17A Infrared data for 3-x- and 4-x-substituted anisoles

	Phenyl-O-C	Phenyl-O-C	Phenyl-O-C
	asym. str.	sym. Str.	asym. str.
	neat	neat	CS_2 soln.
Anisole	cm ^{−1}	cm ^{−1}	cm^{-1}
4-x			
NO ₂	1262	1022	1264
CH_3SO_2	1260	1021	[–]
CH ₃ CO	1249	1021	1261
$CO_2C_2H_5$	1252	1028	1258
CN	1240	1024	1259
Н	1248	1042	1246
CHCH ₂	1248	1040	[-]
C_6H_5	1249	1032	[-]
CH ₂ OH	1245	1030	1248
CH ₃ CHCH ₂	1249	1037	[-]
2-ClC ₂ H ₄	1240	1031	[-]
Br	1240	1029	1246
$2-C_2H_4$	1245	1031	[-]
Cl	1242	1032	1247
CH ₃	1242	1028	1244
C_2H_5	1238	1035	1248
$tert-C_4H_9$	1244	1038	[-]
CH ₃ O	1246	1029	1243
$C_6H_5CH_2O$	1230	1033	[-]
NH_2	1238	1034	1241
C_6H_5O	1230	1039	[-]
3-x			
CH ₃ O	1211	1052	[-]
OH	1200	1043	[-]
NH_2	1198	1029	[–]
Cl	1237	1029	[-]
CH ₃	1259	1042	[–]
CH ₃ CO	1270	1040	[-]
$3-BrC_3H_6$	1250	1034	[-]

576 Infrared Raman and Nuclear Magnetic Resonance Spectra-Structure Correlations for Organic Compounds

TABLE 11.18 Infrared and NMR data for mono-x-benzenes*

x-Benzene	Chemical shift ¹³ C-1	Chemical shift ¹³ C-2	Chemical shift ¹³ C-3	Chemical shift ¹³ C-4			Mode I	Mode III
X	ppm	ppm	ppm	ppm	σр	σ_{R°	cm ^{−1}	cm ⁻¹
Н	128.5				0	0		
CH_3	137.8	129.2	128.4	125.5	-0.17	-0.13	973	895
C_2H_5	144.3	128.1	128.6	125.9	-0.15	-0.1	978	903
iso-C ₃ H ₇	148.8	126.6	128.6	126.1	-0.15	-0.1	979	905
tert-C ₄ H ₉	150.9	125.4	128.3	125.7	-0.2	-0.1	979	905
$n-C_4H_9$	143.3	129	128.2	125.7	-0.15	-0.1		
$s-C_4H_9$	148.4	127.9	129.3	126.8	-0.15			
iso-C ₄ H ₉	148.8	126.6	128.6	126.1	-0.15			
F	163.6	114.2	129.4	124.1	0.06	-0.31	972	890
Cl	134.9	128.7	129.5	126.5	0.23	-0.18	976	897
Br	122.6	131.5	130	127	0.23	-0.18	980	92
I	96.6	138.4	131.1	128.1	0.18	-0.22		
OH	155.1	115.7	130	121.4	-0.27	-0.4	971	882
OCH_3	159.9	114.1	129.5	120.7	-0.66	-0.42	970	881
NH_2	148.7	114.4	129.1	116.3		-0.5	968	874
$NHCH_3$	150.4	112.1	129.1	115.9		-0.59	966	867
$N(CH_3)_2$	150.7	112.7	129	116.7		-0.59		
C_6H_5	140.6	126.7	128.4	126.9	-0.01	-0.1		
C_6H_5O	157.7	119.1	129.9	123.2	0.32	-0.32		
CH ₂ Cl	137.9	128.9	128.8	128.6	0.18	-0.08	981	921
CN	112.8	132.1	129.2	132.8	0.66	0.08	987	920
CF_3	131.5	125.5	129	132.1	0.54	0.08	984	920
CCl_3	144.1	125.3	128.1	130.1	0.44		981	921
CO_2H	131.4	129.8	128.9	133.1	0.45	0.29	995	919
$CO_2O_2H_5$	131	129.5	128	132.4	0.52	0.16		
$COCH_3$	136.3	128.1	128.1	131.3	0.52	0.16	988	922
NO_2	149.1	124.2	129.8	134.7	0.78	0.15	990	932
CH_3SO_2	145.1	122.6	129.6	130	0.72	0.12	994	928
CH_3S	138.6	126.7	128.7	124.9	0	-0.25	976	888
Range	128.5–163.6	112.1–138.4	128.1–131.1	115.9–134.7			965–995	862–932

^{*} See References 4 and 31.

TABLE 11.19 The NMR data for 4-x- and 4,4'-x,x-biphenyls in CHCl₃ solutions

Biphenyl 4-x or 4,4'-x,x	Chemical shift ¹³ C-1 ppm	Chemical shift ¹³ C-2 ppm	Chemical shift ¹³ C-3 ppm	Chemical shift ¹³ C-4 ppm	Chemical shift ¹³ C-1' ppm	Chemical shift ¹³ C-2' ppm	Chemical shift ¹³ C-3' ppm	Chemical shift ¹³ C-4' ppm
F	137.4	127	128.6	162.5	140.2	127	128.8	127.3
OH	131.7	127.8	115.9	157.2	140.7	126.2	128.6	126.2
$t-C_4H_9$	138.3	125.6	126.9	150.1	150.1	126.9	138.3	126.9
$t-C_4H_9, t-C_4H_9$	138.2	126.6	125.5	149.7				
NH_2, NH_2	130.1	126.4	114.9	146				
C_6H_5				135.1				
Cl	139.5	128.8	133.3	128.3	139.9	126.8	128.8	127.6
$CO_2C_2H_5$, $CO_2C_2H_5$	144.2	127.1	130.1	130.1				
H,H	141.2	127.1	128.7	127.1				
Br	139.9	128.5	131.7	121.5	139.9	126.7	128.7	127.5
CN,CN	143.1	127.9	132.7	111.8				
CN	145.6	129.1	132.5	111	139.1	127.7	128.7	127.2
I	139.8	128.8	137.7	93	140.5	126.7	128.8	127.5

TABLE 11.20 The NMR data for tetramethylurea in $CHCl_3/CCl_4$ solutions

Tetramethylurea	Chemical shift ¹³ C=O,	Chemical shift ¹³ CH ₃ ,
[1 wt./vol. % solns.	ppm	ppm
Mole % CHCl ₃ /CCl ₄		
0	164.7	38.8
10.74	165.1	38.8
19.4	165.3	38.8
26.53	165.4	3838
30.5	165.5	3838
37.57	165.5	38.8
41.93	165.6	38.7
45.73	165.6	38.7
49.06	165.6	38.7
52	165.6	38.7
54.62	165.6	38.7
57.22	165.7	38.7
60.07	165.7	38.7
63.28	165.7	38.7
66.74	165.7	38.7
70.65	165.7	38.7
75.06	165.7	38.7
80.05	165.7	38.7
85.85	165.8	38.7
92.33	165.8	38.6
100	165.8	38.6
δ ppm	1.1	-0.2

TABLE 11.21 The NMR data for tetramethylurea 1 wt./vol. % in various solvents

Tetraamethylurea [1 wt./vol. %]	Chemical shift 13C=O ppm	Chemical shift 13 CH ₃ ppm	[13 C=O in acetic acid]– [13 C=O in solvent] δ ppm	AN
Solvents				
Acetic acid	166.9	38.5	0	52.9
Water	166.7	38.1	0.2	54.8
Nitromethane	166.7	38.8	0.2	
Methyl alcohol	166.8	38.2	0.1	41.3
Ethyl alcohol	166.4	38.4	0.5	37.1
Isopropyl alcohol	166.1	38.7	0.8	33.5
t-Butyl alcohol	166	38.5	0.9	29.1
Chloroform	165.8	38.6	1.1	23.1
Methylene chloride	165.4	38.3	1.5	20.4
Dimethyl sulfoxide	165.6	38.3	1.3	19.3
Acetonitrile	166.1	38.7	0.8	18.9
Benzonitrile	165.2	38.4	1.7	15.5
Nitrobenzene	165.1	38.2	1.8	14.8
Acetone	166	38.9	0.9	12.5
Carbon disulfide	164.3	39	2.6	
Carbon tetrachloride	164.7	38.8	2.2	8.6
Benzene	165.1	38.1	1.8	8.2
Methyl t-butyl ether	165.1	38.5	1.8	5
Tetrahydrofuran	165	38.1	1.9	8.8
Diethyl ether	165.5	38.5	1.4	3.9
Hexane	165.3	38.5	1.6	0

TABLE 11.22 The NMR data for dialkylketones in various solvents at 1 wt./vol. % concentration

Solvent	DMK ¹³ C=O	MEK ¹³ C=O	DEK ¹³ C=O	EIK ¹³ C=O	DIK ¹³ C=O	DTBK 13 C=O	
[1 wt./vol. %]	ppm	ppm	ppm	ppm	ppm	ppm	AN
Methyl alcohol	209.4	211.9	214.3	217.5	220.7	220.3	41.3
Ethyl alcohol	208	210.5	212.9	216.1	219.3	219	37.1
Isopropyl alcohol	207.4	209.9	212.4	215.7	218.8	218.6	33.5
Dimethyl sulfoxide	207.5	209.8	212.3	215.3	218.4	218.5	19.3
Chloroform	207.1	209.8	212.4	215.6	218.9	219.1	23.1
t-Butyl alcohol	206.2	209.6	212.2	215.3	218.5	218.6	29.1
Nitromethane	208.8	211.3	213.8	216.9	220.1	220.1	
Methylene chloride	206.3	209.4	211.7	214.8	218.2	218.3	20.4
Benzonitrile	205.7	208.2	212	214	217.3	217.6	15.5
Nitrobenzene	205.3	208.2	210.8	214	217.2	217.5	14.8
Acetonitrile	207.1	209.8	212.5	215.7	218.9	219	18.9
benzene	205	206.5	209	212.2	215.7	216.2	8.2
Carbon disulfide	201.9	204.7	207.7	211	214.4	215.1	
Carbon tetrachloride	202.1	205.2	208	211.3	214.7	215.3	8.6
Diethyl ether	202.7	205.5	208.4	211.8	215.2	215.9	3.9
Hexane	200.5	204.4	207	210.3	214.1	214.9	0

TABLE 11.23 The NMR data for alkyl acetatews and phenyl acetate 1 wt./vol. % in various solvents

	Methyl acetate	Ethyl acetate	Isopropyl acetate	t-Butyl acetate	Phenyl acetate
Solvent	¹³ C=O	¹³ C=O	¹³ C=O	¹³ C=O	¹³ C=O
[1 wt./vol. %]	ppm	ppm	ppm	ppm	ppm
Methyl alcohol	172.7	172.3	171.9	171.9	170.5
Ethyl alcohol	171.3	171.5	171.1	171.1	169.7
Isopropyl alcohol	171.7	171.5	170.9	170.9	169.4
t-Butyl alcohol	171.7	171.3	170.9	170.9	169.4
Chloroform	171.6	171.1	170.7	170.5	169.6
Dimethyl sulfoxide	171.8	171.3	170.8	170.7	170.2
Nitromethane	172.9	172.3	170.8	171.8	171.3
Methylene chloride	171.2	170.7	170.3	170.2	169.4
Acetonitrile	172	171.5	171	171.3	170.4
Nitrobenzene	170.9	170.5	170	170	169.2
Benzonitrile	170.8	170.4	170	170	169.2
Carbon disulfide	169.3	169.1	168.5	168.5	167.2
Benzene	170.1	170.1	169.8	169.7	168
Carbon tetrachloride	169.4	169	168.6	168.6	167.2
Diethyl ether	170.1	169.6	169.2	169.3	168.1
Methyl t-butyl ether	169.9	169.5	169.9	169	167.8
Hexane	169	168.6	168.2	168.3	167.4

TABLE 11.24 Infrared and NMR data for alkyl acrylates and alkyl methacrylates

Chemical shift	Alkyl acrylates CCl ₄ soln.	Alkyl acrylates CHCl ₃ soln.	Alkyl methacrylate CCl ₄ soln.	Alkyl methacrylate CHCl ₃ soln.
δ ¹³ C=O,ppm δ ¹³ CH=,ppm	164.2–165.2 128.8–130.1	165.7–166.7 128.1–130.8	165.6–166.7	167.1–167.8
δ ¹³ CCH ₂ =,ppm δ ¹³ CC=,ppm δ ¹³ CCH ₃ =,ppm	129.6–130.7	130.4–131.4	136.2–136.9 123.5–125.5 18.6–18.7	135.9–136.8 125.2–126.3 18.3–18.3
Group frequency				
C=O str., cm ⁻¹ C=C str.,s-trans,cm ⁻¹ C=C str.,s-cis,cm ⁻¹	1722.9–1734.1 1635.3–1637.0 1619.2–1620.4	1713.8–1724.5 1635.3–1637.9 1618.5–1619.9	1719.5–1726.0	1709–1718.0
C=C str., cm ⁻¹			1637.3–1638.0	1635.7–1637.3

CHAPTER 1

1.1	Vibrational assignments for ethylene oxide	15
1.2	Characteristic epoxy ring modes	16
1.2a	Vibrational assignments for 1-halo-1,2- epoxypropanes (or epihalohydrins)	17
1.2b	A comparison of IR data for epoxy ring modes and CH ₃ , (CH ₃) ₂ and (CH ₃) ₃	
	bending modes	18
1.3	Vibrational assignments for the CH ₂ X groups for 3-halo-1,2-epoxypropanes,	
	3-halopropynes, 3-halopropenes, and PCH ₂ X-containing compounds	19
1.4	Vapor-phase IR data for the oxirane ring vibrations of 1,2-epoxyalkenes	20
1.5	Correlations for the ring stretching vibrations for cyclic ethers	21
1.6	Infrared data for ethers	22
1.7	Infrared data for the a and s Aryl-O-R stretching vibrations for 3-X- and	
	4-X-anisoles in CS ₂ solution, vapor, and in the neat phase	23
1.8	Raman data and assignments for vinyl ethers	24
1.9	Vapor-phase IR data and assignments for the alkyl group of vinyl alkyl ethers	25
CH	APTER 2	
2.1	Infrared data for nitriles and cyanogen halides in the vapor, neat or CCl ₄	
	solution phase	39
2.2	Infrared data for acetonitrile in various solvents	40
2.3	A comparison of the IR v CN stretching frequencies for acetonitrile (corrected	
	for Fermi resonance) with those for benzonitrile	40
2.4	The CN stretching frequency for 4-cyanobenzaldehyde in 0 to 100 mol %	
	CHCl ₃ /CCl ₄ solutions (1% wt./vol. solutions)	41
2.5	Raman data for the C=N and C=C groups for some organonitriles in the	
	neat phase	42
2.6	A comparison of infrared data for organonitriles vs organoisonitriles	42

2.7	A comparison of the infrared data for organothiocyanates in the vapor and neat phases	43
CHA	APTER 3	
3.1	Infrared and Raman data and assignments for the (C=N-) ₂ antisymmetric and symmetric stretching vibrations for azines	57
3.2	The symmetric and/or asymmetric N=C=O stretching frequencies for alkyl and	
3.3	aryl isocyanates in various physical phases Infrared data for alkyl isocyanates in 0 to 100 mol % CHCl ₃ /CCl ₄ in 0.5%	58
3.4	wt./vol. solutions Infrared data for the antisymmetrical N=C=O stretching frequency and two	59
3.5	combination tones for alkyl isocyanates in CHCl ₃ and CCl ₄ solutions Infrared and Raman data for alkyl isocyanates	60 60
3.6	Infrared data for 1% wt./vol. alkyl isothiocyanates in 0 to 100 mol % CHCl ₃ / CCl ₄ solutions [the ν asym. N=C=S and the first overtone of ν C-N frequencies	
3.6a	are in Fermi resonance] Vibrational data for organoisothiocyanates	61 62
3.7	Infrared vapor- and neat-phase data for dialkyl and diaryl carbodiimides	63
CHA	APTER 4	
4.1	Infrared and Raman data for alkanethiols and benzenethiols	74 75
4.1a 4.2	Raman data for organic thiols Vapor-phase infrared data for alkanethiols, alkane sulfides, and alkane disulfides	75 76
4.3	Infrared and Raman data for organic sulfides and disulfides	78
4.4 4.5	Vibrational assignments for 4-benzenethiol and 1,4- dichlorobenzene The P=S, P-S, and S-H stretching frequencies for O,O-dialkyl	79
	phosphorodithioate and O,O-bis-(aryl) phosphorodithioate	80
4.6	A comparison of alkyl group joined to sulfur, oxygen, or halogen	81
CHA	APTER 5	
5.1a 5.1b	A comparison of the S=O stretching frequency for S=O containing compounds A comparison of asym. SO ₂ and sym. SO ₂ stretching frequencies in different physical phases, and asym. N=S=O and sym. N=S=O frequencies in CS ₂	104
	solution	105
5.1c	Vapor-phase infrared data for dimethyl sulfoxide and dialkyl sulfones	107
5.1d 5.2	Vapor- and solid-phase infrared data for dimethyl sulfoxide and dialkyl sulfones Vapor- and solid-phase infrared data for diaryl sulfones Infrared data for phonographic derivatives containing the Accidental data for phonographic data for phon	108 109
5.3	Infrared data for phenoxarsine derivatives containing the AsS(SO ₂)R and AsO(SO ₂)R groups in CS ₂ solution	109

)	8	3

Factors Affecting Molecular Vibrations and Chemical Shifts 5.4 Infrared data for the SO ₂ stretching vibrations for compounds in CHCl ₃ and	583 110
5.4 Infrared data for the SO ₂ stretching vibrations for compounds in CHCl ₃ and	110
	110
CCl ₄ solutions	
5.5 Infrared data for dialkyl sulfites	111
5.6 Infrared data for primary sulfonamides in the vapor phase	111
5.6a Infrared data for some NH and NH ₂ vibrations for compounds containing SO ₂ NH	
and SO ₂ NH ₂ groups in different physical phases	112
5.7 Infrared data for secondary and tertiary sulfonamides	112
5.8 Infrared data for organic sulfonates	113
5.9 Infrared data for organosulfonyl chlorides	114
5.9a Infrared data for organosulfonyl fluorides	115
5.10 Infrared data for organosulfur compounds containing SO ₄ , SO ₃ , SO ₂ N, and SO ₂ X	
groups in different physical phases	116
5.11 Infrared data for sulfones and sulfoxides in different physical phases	117
5.12 Infrared data for N-sulfinyl-4-X-anilines and N,N'-disulfinyl-p-phenylenediamine	117
CHAPTER 6	
6.1 Infrared and Raman data for the methylene halides	164
6.2 Raman and infrared data for trihalomethane and tetrahalomethane	164
6.2a A comparison of CX, CX ₂ , CX ₃ and CX ₄ stretching frequencies	165
6.3 Vapor- and liquid-phase infrared data for l- haloalkanes	166
6.4 Vapor- and liquid-phase infrared data for 2- halobutane and tert-butyl halide	167
6.5 Vapor and liquid-phase infrared and Raman liquid- phase data for 1-cyclohexanes	168
6.6 Vapor- and liquid-phase infrared data for primary, primary dialkanes	169
6.7 Raman data for methyl halides and IR and Raman data for tetrabromoalkanes	170
6.8 Carbon halogen stretching frequencies for ethylene propyne, 1,2-epoxypropane,	
and propadiene derivatives	171
CHAPTER 7	
7.1 The v asym. NO ₂ and v sym. NO ₂ frequency shifts of substituted nitro compounds from those for nitromethane in the liquid phase	206
7.1a Vapor-phase infrared data for nitroalkanes	207
7.2 Vapor-phase infrared data for nitroalkanes	208
7.3 Vapor- and liquid-phase infrared data for nitroalkanes	209
7.4 Vapor-phase infrared data for 4-X- nitrobenzenes	209
7.5 Infrared data for 4-X-nitrobenzenes in different phases	210
7.6 A comparison of the frequency differences between v asym. NO ₂ and v sym. NO ₂	210
in the vapor and CHCl ₃ solution and in the vapor and neat or solid phases	211
7.7 Infrared data for the <i>v</i> asym. NO ₂ and <i>v</i> sym. NO ₂ frequencies for 3-X and	211
4-X-nitrobenzenes in CCl ₄ and CHCl ₃ solutions	212
7.8 Infrared data for the <i>v</i> asym. NO ₂ and <i>v</i> sym. NO ₂ frequencies for	
4-X-nitrobenzenes in the vapor, CCl ₄ , and CHCl ₃ solution phases	213

7.9	Infrared data for v asym. NO_2 and v sym. NO_2 frequencies of	
7.10	4-nitrobenzaldehyde 1% wt./vol. in 0 to 100 mol % CHCl ₃ /CCl ₄ solutions A comparison of infrared data for nitromethane vs nitrobenzene in various	214
	solvents	215
7.11	Vapor-phase infrared data for 3-X-nitrobenzenes	216
7.12	Infrared data for 3-X-nitrobenzenes in different phases	216
7.13	A comparison of the frequency difference between v asym. NO ₂ and v sym. NO ₂ for 3-X-nitrobenzenes in the vapor and CHCl ₃ solution and in the vapor,	
	and solid or neat phases	217
7.14	Vapor-phase infrared data for 2-X-nitrobenzenes	218
7.15	Infrared data for 2-X-nitrobenzenes in different phases	218
7.16	A comparison of the frequency differences between v asym. NO ₂ and v sym. NO ₂ 2-X-nitrobenzenes in the vapor and CHCl ₃ solution and in the vapor,	
	neat or solid phases	219
7.17	Infrared data for nitrobenzenes in the solid and CCl ₄ solution phases	220
7.18	Vapor-phase infrared data for 2,5- and 2,6-X,Y-nitrobenzenes	221
7.19	A comparison of the frequency difference between v asym. NO ₂ and v sym.	
	NO ₂ in the vapor, neat or solid phases	221
7.20	Vapor-phase infrared data for tri-X,Y,Z, WXWZ-tetra, and VWXYZ-penta-	
	substituted nitrobenzenes	222
7.21	Infrared data for 4-X-nitrobenzenes in CCl ₄ and CHCl ₃ solutions (1% wt./vol.	
	or less)	223
7.22	Infrared data and assignments for alkyl nitrates	224
7.23	Infrared data for alkyl nitrates in various phases	224
7.24	Infrared data for ethyl nitrate, nitroalkanes, and nitrobenzenes in CCl ₄ and	
	CHCl ₃ solutions	225
7.25	Vapor-phase infrared data for alkyl nitrites	226
7.26	Vapor-phase infrared data of the characteristic vibrations of alkyl nitrites*	226
7.27	Raman data for organonitro compounds	227
7.28	Infrared and Raman data for nitroalkanes in different physical phases	227
7.29	Infrared and Raman data for nitrobenzenes in different physical phases	228
7.30	A comparison of the frequency separation between v asym. NO ₂ and v sym.	
	NO ₂ [vapor-phase data minus CHCl ₃ solution data] and [vapor-phase data	
	minus neat-phase data] for nitrobenzenes	229
7.31	Infrared data for organonitro compounds in different physical phases	229
7.32	Infrared and Raman data for organonitrates, organonitrites, and	
	organonitrosamines in different physical phases	230
7.33	The v N=O frequency for nitrosamines in different physical phases	230
CHA	APTER 8	
8.1	Phosphorus halogen stretching frequencies for inorganic compounds	318
8.2	The PX ₃ bending frequencies for compounds of forms PX ₃ , PXY ₂ , and XYZ	319
8.3	Vibrational data and assignments for PX_3 , $P(=O)X_3$, and $P(=S)X_3$	320

8.4	The asym. and sym. PCl_2 stretching frequencies for $XPCl_2$, $XP(=O)Cl_2$, and $XP(=S)Cl_2$ groups	321
8.5	Vibrational assignments for $F_2P(=S)Cl$, $(CH_3-O-)_2P(=S)Cl$, and	
	$(CD_3-O-)_2P(=S)Cl$	322
8.5a	The PCl ₂ stretching frequencies for methyl phosphorodichloridate and	
0.6	O-methyl phosphorodichloridothioate	323
8.6	P-Cl stretching frequencies	323
8.7	Vibrational assignments for the CH ₃ , CD ₃ , C ₂ H ₅ , CH ₃ CD ₂ and CD ₃ CH ₂	224
0.0	groups of $R-O-R(=O)Cl_2$ and $R-O-P(=S)Cl_2$ analogs	324
8.8	The P=O stretching frequencies for inorganic and organic phosphorus	225
0 0 0	compounds	325
8.8a 8.9	A comparison of P=O stretching frequencies in different physical phases	326
0.9	Infrared data for the rotational conformer PO stretching frequencies of O,O-dimethyl O-(2-chloro-4-X-phenyl) phosphate	326
8.10	IR observed and calculated PO stretching compared*	327
8.11	The PO and PS stretching frequencies for phenoxarsine derivatives	327
8.12	The PO and PS stretching frequencies for P(O)X ₃ - and P(S)X ₃ -type compounds	328
8.13	The PS stretching frequencies for inorganic and organic phosphorus compounds	329
8.14	Vibrational assignments for the skeletal modes of S-methyl phosphorothiodi-	323
0.11	chloridate, and P(O)Cl ₃	331
8.15	Assignments of the $P(C-O-)_3$ skeletal vibrations for trimethyl phosphite and	<i>JJ</i> 1
0.13	trimethyl phosphate	331
8.16	Vibrational assignments for the CH ₃ groups of trimethyl phosphite	332
8.17	The PS, P—S and S—H stretching frequencies for O,O-dialkyl phosphorodithioate	332
0.11	and O,O-diaryl phosphorodithioate	332
8.18	The PO, PH stretching, and PH bending vibrations for O,O-dialkyl hydrogen-	33 2
	phosphonates*	333
8.19	The "C-O" and "P-O" stretching frequencies for the C-O-P group	334
8.20	The "C-O" and "P-O" stretching frequencies for compounds containing	
	C-O-PO, C-O-PS, and C-O-PSe groups	336
8.21	The aryl-O stretching frequencies for O-methyl O-(X-phenyl) N-methylphosphor-	
	amidate	338
8.22	The C–P stretching frequencies for organophosphorus compounds	338
8.23	The trans and/or cis N-H stretching frequencies for compounds containing the	
	P-NH-R group	339
8.24	The NH ₂ , NHD, ND ₂ , NH, and ND frequencies for O,O-dimethyl phosphor-	
	amidothioate and O,O-diethyl phosphoramidothioate, and N-methyl	
	O, O-phosphoramidothioate.	340
8.25	The N-H and N-D stretching frequencies for O-methyl O-(2,4,5-	
	trichlorophenyl) N-alkylphosphoramidate and the N-alkyl phosphoramidothioate	
	analogs	341
8.26	The cis and trans NH stretching frequencies for compounds containing	
	OP-NH-R or SP-NH-R groups*	342
8.27	Vibrational assignments for N-alkyl phosphoramidodichloridothioate and the	
	CD ₃ NH, CD ₃ ND and CH ₃ ND analogs	343

8.28 8.29	Vibrational assignments for O,O- dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate and its PO and $(CD_3-O)_2$ analogs Vibrational assignments for 1- fluoro-2,4,5-trichlorobenzene and the ring modes for O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphorothioate and its PO and	344
0.20	$(CD_3-O-)_2$ analogs	345
8.30	Infrared data for O,O-dialkyl phosphorochloridothioate and O,O,O-trialkyl phosphorothioate in different physical phases	346
8.31	Infrared data for organophosphates and organohydrogenphosphorates in different physical phases	347
8.32	Infrared data for O-alkyl phosphorodichloridothioates and S-alkyl phosphorodichloridothioates in different physical phases	348
8.33	Infrared data for O,O-diethyl N- alkylphosphoramidates in different physical phases	349
8.34	Vibrational assignments for $[CH_3-PO_3]^{2-}$, $[CD_3-PO_3]^{2-}$, $[HPO_3]^{2-}$, and $[PO_4]^{3-}$	349
8.35	Infrared data and assignments for the (CH ₃) ₂ PO ₂ ⁻ anion	350
CHA	APTER 9	
9.1	Vibrational data for chlorobenzene vs chlorinated biphenyls	403
9.2	Vibrational data for 1,2-dichlorobenzene vs chlorinated biphenyls	404
9.3	Vibrational data for 1,3-dichlorobenzene vs 2,3,3′,5,6-pentachlorobiphenyl	405
9.4	Vibrational data for 1,4-dichlorobenzene vs chlorinated biphenyls	406
9.5	Vibrational data for 1,3,5-trichlorobenzene vs chlorinated biphenyls	407
9.6	Vibrational data for 1,2,3-trichlorobenzene vs 2,2',3-trichlorobiphenyl,	
	2,2',3',4,5-pentachlorobiphenyl, and 2,2',4,6,'-pentachlorobiphenyl	408
9.7	Vibrational data for 1,2,4-trichlorobenzene vs chlorinated biphenyls	409
9.8	Vibrational data for 1,2,4,5-tetrachlorobenzene vs chlorinated biphenyls	411
9.9	Vibrational data for 1,2,3,5-tetrachlorobenzene vs chlorinated biphenyls	413
9.10	Infrared data for 1,2,3,4-tetrachlorobenzene vs chlorinated biphenyls	414
9.11	Vibrational data for pentachlorobenzene vs 2,2',3,4,6-pentachloro-biphenyl,	
	and 2,3,4,4',6-pentachlorobiphenyl	415
9.12	Vibrational data for 1,2,3,4,5,6-hexachlorobenzene vs 1,2,3,4,5-pentachloro-	
	biphenyl	416
9.13	Raman data for monosubstituted benzenes	417
9.14	Infrared and Raman data for an A ₁ fundamental for mono-x-benzenes	418
9.15	Vibrational assignments for bromodichlorobenzenes	418
9.16	Raman data and assignments for some in-plane ring modes of 1,2-disubstituted	
	benzenes	419
9.17	Raman data and assignments for some in-plane ring modes for 1,3-disubstituted benzenes	419
9.18	Raman data and assignments for some in-plane ring modes for 1,4-disubstituted	719
J.10	benzenes	420

Factors	Affecting Molecular Vibrations and Chemical Shifts	587
9.19	Raman data and tentative assignments for decabromobiphenyl and bis-(pentabromophenyl) ether	420
9.20	Vibrational assignments for benzene, benzene-d ₆ , benzyl alcohol, benzyl-	120
	$2,3,4,5,6-d_5$ alcohol, pyridene, and pyridene- d_5	421
9.21	Infrared data for the out-of-plane deformations for mono-x-benzenes	422
9.22	Summary of the out-of-plane hydrogen deformations for substituted benzenes,	
	and the out-of-plane ring deformation for mono-substituted benzenes	422
9.23	Combination and overtones of the out-of-plane hydrogen deformations for	
	substituted benzenes	423
9.24	Hexachlorobenzene vs 2,3,4,5,6-pentachlorobiphenyl	423
CHA	APTER 10	
10.1	Aliphatic hydrocarbons—the Nyquist Rule	432
10.2	Anilines—the Nyquist Rule	433
10.3	Anhydrides, imides, and 1,4- benzoquinones—the Nyquist Rule	434
10.4	Substituted hydantoins—the Nyquist Rule	435
10.5	1,4-Diphenylbutadiyne and 1-halopropadiene—the Nyquist Rule	435
10.6	3-Nitrobenzenes and 4-nitrobenzenes—the Nyquist Rule	436
10.7	Organic sulfate, sulfonate, sulfonyl chloride, and sulfones — the Nyquist Rule	437
CHA	APTER 11	
11.1	NMR ¹³ C solution- phase chemical shift data for 4-x-anilines	560
11.2	Infrared and NMR data for 3-x- and 4-x-benzoic acids	561
11.3	Infrared and NMR data for 4-x- acetanilides in solution	562
11.4	Infrared and NMR data for 4-x- benzaldehydes in CCl ₄ and/or CHCl ₃	302
	solutions	563
11.5	Infrared and NMR data for 4-x- acetophenones in CCl ₄ and/or CHCl ₃	
	solutions	564
11.6	Vapor-phase IR and NMR CHCl ₃ solution-phase data for 4-x- and	
	4,4'-x,x-benzophenones	565
11.7	Infrared and NMR data for methyl and ethyl 3-x- and 4-x-benzoates	566
11.8	Summary of IR and NMR data for the CO group	567
11.9	Infrared and NMR data for acetone in CHCl ₃ /CCl ₄ solutions	567
11.10	Infrared and NMR data for N,N'-dimethylacetamide in CHCl ₃ /CCl ₄ solutions	568
11.11		
	solutions	569
11.12	Infrared and NMR data for 3-x- and 4-x-benzonitriles	570
11.13		570
11.14		
	amines	571

The NMR data for organophosphorus and organonitrogen compounds

571

11.15

588	List of Tables

11.16	Infrared and NMR data for organophosphorus compounds	572
11.17	The NMR data for 2-x, 3-x, and 4-x-anisoles in CHCl ₃ solutions	574
11.17a	Infrared data for 3-x- and 4-x-substituted anisoles	575
11.18	Infrared and NMR data for mono-x-benzenes	576
11.19	The NMR data for 4-x- and 4,4'-x,x'-biphenyls in CHCl ₃ solutions	577
11.20	The NMR data for TMU in CHCl ₃ /CCl ₄ solutions	577
11.21	The NMR data for TMU in various solvents	578
11.22	The NMR data for dialkylketones in various solvents at 1 wt./vol. %	
	concentration	578
11.23	The NMR data for alkyl acetates and phenyl acetate in 1 wt./vol. % in various	
	solvents	579
11.24	Infrared and NMR data for alkyl acrylates and alkyl methacrylates in CCl ₄ and	
	CHCl ₃ solutions	579

CHAPTER 1

1.1	Vapor-phase IR spectrum of ethylene oxide.	8
1.2	Vapor-phase IR spectrum of propylene oxide.	9
1.3	A plot of the epoxy ring breathing mode frequency for styrene oxide vs the mole % CDCl ₃ /CCl ₄ (4).	10
1.4	A plot of the symmetric ring deformation frequency for styrene oxide vs mole % CDCl ₃ /CCl ₄ (4).	10
1.5	A plot of the antisymmetric ring deformation frequency for styrene oxide vs mole % CDCl ₃ /CCl ₄ (4).	11
1.6	Vapor-phase IR spectrum of trans-2,3-epoxybutane (or trans-1,2-dimethyl ethylene oxide).	12
1.7	A plot of the absorbance (A) for the oxirane ring breathing mode divided by (A) for the oxirane antisymmetric CH ₂ stretching mode vs the number of carbon	
1.8	atoms for the 1,2-epoxyalkanes (ethylene oxide is the exception). A plot of (A) for oxirane antisymmetric CH_2 stretching divided by (A) for antisymmetric CH_2 stretching for the alkyl group vs the number of carbon	13
1.9	atoms in the 1,2-epoxyalkanes. Vapor-phase IR spectrum of tetrahydrofuran.	13 14
CHA	APTER 2	
2.1 2.2	A plot of $vC \equiv N$ for alkanonitriles vs the number of protons on the α -carbon atom. A plot of unperturbed $vC \equiv N$, cm ⁻¹ (1% wt./vol.) vs AN (The solvent acceptor	32
2.3	number). Plots of $vC \equiv N$, cm ⁻¹ for acetonitrile (1 wt./vol.%) vs ($vC \equiv N$ in methyl alcohol)	32
2.3	minus (vC≡N in another solvent). The two plots represent perturbed and	22
2.4	unperturbed $vC \equiv N$. A plot of $vC \equiv N$ for 1 wt./vol. % vs $vC \equiv N$ for 1% wt./vol. in 15 different solvents.	33 34
2.5	A plot of unperturbed $vC \equiv N$ for acetonitrile vs $vC \equiv N$ for benzonitrile. Both compounds were recorded at 1% wt./vol. separately in each of the 15 solvents.	35

2.6 2.7	A plot of $vC \equiv N$ for 4-cyanobenzaldehyde in cm ⁻¹ vs mole % CHCl ₃ /CCl ₄ . A plot of the number of protons on the alkyl α -C $-N \equiv$ atom vs $vN \equiv$ C for alkyl	36
2.8	isonitriles. A plot of Taft's σ^* vs $\nu N \equiv C$ for alkyl isonitriles.	37 38
CHA	APTER 3	
3.1	Plots of ν asym. N=C=O and the combination tone ν (C_{α} -N) + ν sym. N=C=O and ν (C_{α} -N) + δ sym. CH ₃ for methyl isocyanate all corrected for Fermi	
3.2	resonance. Plots of the three observed IR bands for methyl isocyanate occurring in the region	51
3.3	2250–2320 vs mole % CHCl ₃ /CCl ₄ . Plots of the v asym. N=C=O frequencies for n-butyl, isopropyl and tert-butyl	51
J.J	isocyanate and of the frequencies of the most intense IR band for v asym. N=C=O in FR (uncorrected for FR) for methyl, ethyl and n-propyl isocyanate vs mole%	
	CHCl ₃ /CCl ₄ .	52
3.4	Plots of unperturbed v asym. N=C=O for the alkyl isocyanates vs mole % CHCl ₃ /CCl ₄ .	52
3.5	Plots of v asym N=C=O frequencies for alkyl isocyanates in CCl ₄ solution and in CHCl ₃ solution vs σ^* (The inductive release value of the alkyl group.)	53
3.6	Plots of v asym. N=C=O frequencies for alkyl isocyanates in CCl ₄ solution and in CHCl ₃ solution vs E_s (The stearic parameter of the alkyl group.)	53
3.7	Plots of <i>v</i> asym. N=C=O frequencies for alkyl isocyanates in CCl ₄ solution and in CHCl ₃ solution vs (E_s) (σ^*).	54
3.8	A plot of perturbed v asym. N=C=S (not corrected for FR) for five alkyl isothiocyanates vs mole % CHCl ₃ /CCl ₄).	54
3.9	A plot of unperturbed v asym. N=C=S (corrected for FR) for four alkyl isothiocyanates vs mole % CHCl ₃ /CCl ₄ and CDCl ₃ /CCl ₄ .	55
3.10	A plot of perturbed $2v$ C-N and perturbed v asym. N=C=S and unperturbed $2v$ C-N and unperturbed v asym, N=C=S vs mole % CHCl ₃ /CCl ₄ .	56
3.11	A plot of v C–N for methyl isothiocyanate vs mole % CHCl ₃ /CCl ₄ .	56
CHA	APTER 4	
4.1	Infrared spectra of O,O-bis-(2,4,5-trichlorophenyl) phosphorodithioate in 5 wt./vol. in CS_2 solution (2700–2400 cm ⁻¹) at temperatures ranging from 29 to -100 °C.	71
4.2	Top: Liquid-phase IR spectrum of methyl (methylthio) mercury between KBr plates in the region 3800–450 cm ⁻¹ . Bottom: Liquid-phase IR spectrum of methyl	, 1
	(methylthio) mercury between polyethylene plates in the region 600–45 cm ⁻¹ . The IR band near 72 cm ⁻¹ is due to absorbance from poly (ethylene).	72
4.3	Top: Raman liquid-phase spectrum of methyl (methylthio) mercury in a glass capillary tube. The sample was positioned perpendicularly to both the laser beam	

_	\cap	1
7	ч	-1

	plane of polarization of the incident beam was rotated 90°.	73
CHA	APTER 5	
5.1	Plots of v S=O and the mean average of (v asym. SO ₂ + v sym. SO ₂) vapor-phase	
5.2	frequencies for compounds containing the S=O or SO_2 group vs $\Sigma \sigma'$. A plot of ν asym; SO_2 vs ν sym. SO_2 vapor-phase frequencies for a variety of	96
5.3	compounds containing the SO_2 group. Plots of v asym. SO_2 vapor-phase frequencies for a variety of compounds	97
5.4	containing a SO_2 group vs $\Sigma \sigma'$. Plots of v sym. SO_2 vapor-phase frequencies for a variety of compounds	98
5.5	containing the SO ₂ group vs $\Sigma \sigma'$. Plots of ν asym. and ν sym. SO ₂ for methyl phenyl sulfone in 10 wt./vol.	99
	solvent vs mole % CHCl ₃ /CCl ₄ .	100
5.6	A plot of v asym. SO_2 vs v sym. SO_2 for methyl phenyl sulfone in 1% wt./vol. solvent vs mole $\%$ CHCl ₃ /CCl ₄ .	101
5.7	Plots of v asym. SO_2 and sym. SO_2 for dimethyl sulfate in 1% wt./vol. solvent vs mole % $CDCl_3/CCl_4$.	102
5.8	A plot of v asym. SO_2 vs v sym. SO_2 for dimethyl sulfate 1% wt./vol. solvent vs mole % CDCl ₃ /CCl ₄ .	103
	- · · ·	
CHA	APTER 6	
6.1*	Methyl chloride (200-mm Hg sample) (27).	129
6.2*	Methyl bromide (100-mm Hg sample) (27).	130
6.3*	Methyl iodide (200-mm Hg sample) (27).	131
6.4*	Methylene chloride (20- and 100-mm Hg sample) (27).	132
6.5* 6.6*	Methylene bromide (30-mm Hg sample) (27). Trichloromethane (chloroform) (10- and 50-mm Hg sample) (27).	133 134
6.7	Tetrafluoromethane (freon 14) (2 and 100 Hg sample) (26)	135
6.8*	Tetrachloromethane (carbon tetrachloride) (2- and 100-mm Hg sample) (27).	136
6.9*	Chlorotrifluoromethane (10- and 50-mm Hg sample) (27).	137
	Dichlorodifluoro methane (10- and 100-mm Hg sample) (27).	138
	Trichlorofluoromethane (f and 40-mm Hg sample) (27).	139
	Trichlorobromomethane (5- and 30-mm Hg sample) (27).	140
	1,2-Dichloroethane (ethylene dichloride) (50-mm Hg sample) (27).	141
	Infrared spectra of 3-halopropenes (allyl halides) in CCl ₄ solution	
-	$(3800-1333 \mathrm{cm}^{-1}) (133-400 \mathrm{cm}^{-1}) (12).$	142
6.15	Vapor-phase infrared spectra of 3-halopropenes (allyl halides) (12).	143
	Vapor-phase IR spectrum of 3-fluoropropyne in a 5-cm KBr cell (50-mm Hg	
	sample).	144

and the optical axis of he spectrometer. Bottom: Same as top except that the

6.16b	Vapor-phase IR spectrum of 3-chloropropyne in a 5-cm KBr cell (vapor pressure at -10 and 25 °C samples).	144
6.16c	Vapor-phase IR spectrum of 3-bromopropyne in a 5-cm KBr cell (vapor pressure	111
	at 0 and 25 °C samples).	144
	Vapor-phase IR spectrum of 3-iodopropyne in a 15-cm KBr cell ($\sim\!$ 8-mm Hg sample).	145
6.17a	Top: Liquid-phase IR spectrum of 3-chloropropyne-1-d in a 0.023-mm KBr cell. Bottom: Liquid-phase IR spectrum of 3-chloropropyne-1-d in a 0.1-mm polyethylene cell.	146
6.17b	Top: Vapor-phase IR spectrum of 3-chloropropyne-1-d in a 10-cm KBr cell (33-and 100-mm Hg sample); middle: 3-chloropropyne-1-d in a 10-cm polyethylene cell. Bottom: Solution-phase IR spectrum of 3-chloropropyne-1-d in 10% wt./vol. CCl ₄ (3800–1333 cm ⁻¹) and 10% wt./vol. in CS ₂ (1333–400 cm ⁻¹) using 0.1-mm KBr cells. Bands marked with X are due to 3-chloropropyne.	147
6.18	Top: A Raman liquid-phase spectrum of 3-chloropropyne-1-d. Bottom: A Raman polarized liquid-phase spectrum of 3-chloropropyne-1-d. Some 3-chloropropyne	
	is present (15).	148
6.19	Top: Solution-phase IR spectrum of 3-bromopropyne-1-d in 10% wt./vol. in CCl_4 (3800–1333 cm $^{-1}$) and 10% wt./vol. in CS_2 (1333–450 cm $^{-1}$) using 0.1-mm KBr cells (16). Bottom: A vapor-phase IR spectrum of 3-bromopropyne-1-d in a 10-cm KBr cell (40-mm Hg sample). Infrared bands marked with X are due to the	
	presence of 3-bromopropyne (16).	149
6.20	Top: Raman spectrum of 3-bromopropyne-1-d. Bottom: Polarized Raman spectrum of 3-bromopropyne-1-d. Infrared bands marked with X are due to the presence	
	of 3-bromopropyne (16).	150
6.21	An IR spectrum of 1,3-dichloropropyne in 10% wt./vol. CCl ₄ solution (3800–1333 emsp14;cm ⁻¹) and in CS ₂ solution (1333–450 cm ⁻¹) using 0.1-mm NaCl and KBr cells, respectively. Infrared bands at 1551 and 1580 cm ⁻¹ are due	
	to CCl ₄ and the IR band at 858 cm ⁻¹ is due to CS ₂ (17).	151
6.22	Vapor-phase IR spectrum of 1,3-dichloropropyne (ambient mm Hg sample at 25 °C in a 12.5-cm KBr cell) (17).	152
6.23	Solution-phase IR spectrum of 1,3-dibromopropyne in 10% wt./vol. in CCl_4 (3800–1333 cm ⁻¹) and in CS_2 solution (1333–450 cm ⁻¹) using 0.1-mm NaCl and KBr cells, respectively. Infrared bands at 1551 and 1580 cm ⁻¹ are due to CCl_4 and the IR band at 858 cm ⁻¹ to CS_2 (17).	153
6.24	Approximate normal modes for propyne, 3-halopropynes, and 1,3-dihalopropynes.	154
6.25	Vapor-phase IR spectrum for 1-bromopropyne in a 12.5-cm KBr cell. The weak IR band at 734 cm ⁻¹ is due to an impurity. The 1-bromopropyne decomposes	131
	rapidly in the atmosphere (25).	154
6.26	Infrared vapor spectrum for 1-iodopropyne in a 12.5-cm KBr cell (25).	155
6.27	Top: Vapor-phase IR spectrum of 1-bromo-1-chloroethylene using a 10-cm KBr cell (10-mm Hg sample). Bottom: Same as upper (100-mm Hg sample) (19).	155
6.28	Raman liquid-phase spectrum of 1-homo-1-chloroethylene. Top: Parallel	
	polarization. Bottom: Perpendicular polarization.	156
6.29	Vapor-phase IR spectrum of 1-chloropropadiene in a 12.5-cm KBr cell (50- and 100-mm Hg sample) (23).	156

6.30	Vapor-phase IR spectrum of 1-bromopropadiene in a 12.5-cm KBr cell (50- and	
	100-mm Hg sample).	157
6.31	Vapor-phase IR spectrum of 1-iodopropadiene in a 5-cm KBr cell (vapor pressure at	
	25 °C). Bands at 1105 and 1775 cm ⁻¹ are due to the presence of an impurity.	157
6.32	Infrared spectrum of 1-iodopropadiene in 10% wt./vol. CCl ₄ solution (3800–	
	1333 cm ⁻¹) and 10% wt./vol. CS ₂ solution (1333–450 cm ⁻) using NaCl and KBr	
	cells, respectively.	157
6.33	Vapor-phase IR spectrum of 1-bromopropadiene-1-d in a 12.5-cm KBr cell	
	(50- and 100-mm Hg sample) (16).	158
6.34	Solution-phase IR spectrum of 1-bromopropadiene-1-d 10% wt./vol. in CCl ₄	
	(3800–1333 cm ⁻¹) and in CS ₂ solution using 0.1-mm KBr cells. Infrared bands	
	marked with X are due to the presence of 1-bromopropadiene (16).	158
6.35	Top: Raman spectrum of 1-bromopropadiene-1-d using a capillary tube. Bottom:	
	Polarized Raman spectrum of 1-bromopropadiene-1-d (16).	159
6.36*	Vapor-phase IR spectrum of tetrafluoroethylene (8- and 50-mm Hg samples) (27).	160
6.37*	Vapor-phase IR spectrum of tetrachloroethylene (13-mm Hg sample) (27).	161
6.38*	Vapor-phase IR spectrum of 1,1-dichloro-2,2-difluoroethylene (10- and	
	60-mm Hg samples) (26).	162
6.39*	Vapor-phase IR spectrum of trichloroethylene (10- and 50-mm Hg samples).	163

CHAPTER 7

7.1	A plot of the observed v asym. NO ₂ frequencies vs the calculated v asym. NO ₂	
	frequencies for nitroalkanes using the equation v asym. $NO_2 = 1582 \text{ cm}^{-1} + \Sigma \Delta R$.	186
7.2	A plot of the observed v sym. NO_2 frequencies vs the calculated v sym. NO_2	
	frequencies using the equation v sym. $NO_2 = 1397 \text{ cm}^{-1} + \Sigma \Delta R$.	187
7.3	Vapor-phase IR spectrum for nitromethane in a 5-cm KBr cell (5 and 20 mm Hg	
	sample to $600 \text{mm} \text{Hg}$ with N_2).	188
7.4	Vapor-phase IR spectrum for 2-nitropropane in a 5-cm KBr cell (20 mm Hg sample	
	to $600 \mathrm{mm} \mathrm{Hg}$ with $\mathrm{N_2}$).	189
7.5	Plots of v asym. NO ₂ and v C=O for 4-nitrobenzaldehyde vs mole % CHCl ₃ /CCl ₄ .	190
7.6	Plots of v sym. NO ₂ for 4-nitrobenzaldehyde vs mole % CHCl ₃ /CCl ₄ .	190
7.7	A plot of v asym. NO ₂ for 4-X-nitrobenzenes in CCl ₄ solution vs v asym.	
	NO ₂ in CHCl ₃ solution.	191
7.8	A plot of v asym. NO ₂ for 4-X-nitrobenzenes in CCl ₄ solution vs σ_p .	192
7.9	A plot of v asym. NO ₂ for 4-X-nitrobenzenes in CHCl ₃ solution vs σ_p .	193
7.10	A plot of v asym. NO ₂ for 4-X-nitrobenzenes in CCl ₄ solution vs σ_{R^+} .	194
7.11	A plot of v asym. NO ₂ for 4-X-nitrobenzenes in CHCl ₃ solution vs σ_{R^+} .	195
7.12	A plot of v asym. NO ₂ for 4-X-nitrobenzenes in CCl ₄ solution vs σ_R .	196
7.13	A plot of v asym. NO ₂ for 4-X-nitrobenzenes in CHCl ₃ solution vs σ_R .	197
7.14	A plot of v asym. NO ₂ for 4-X-nitrobenzenes in CCl ₄ solution vs σ_I .	198
7.15	A plot of v asym. NO ₂ for 4-X-nitrobenzenes in CHCl ₃ solutions vs σ_I .	199

^{*}Those vapor-phrase infrared spectra figures for Chapter 6 with an asterisk following the figure number have a total vapor pressure of 600-mm Hg with nitrogen (N_2) , in a 5-cm KBr cell. The mm Hg sample is indicated in each figure.

7.16	Vapor-phase IR spectrum for ethyl nitrate in a 5-cm KBr cell (5 and 30 mm Hg sample to 600 mm Hg with N_2).	200
7.17	Vapor-phase IR spectrum for n -butyl nitrite in a 5-cm KBr cell (10 and 80 mm Hg sample to 600 mm Hg with N_2).	201
7.18	Plots of cis v N=O and trans v N=O for alkyl nitrites vs σ^* .	202
7.19	A plot of trans v N $-$ O for alkyl nitrites vs σ^* .	203
7.20	A plot of trans v N=O vs trans v N-O for alkyl nitrites.	204
7.21	Plots of the absorbance ratio (A) trans v N=O/(A) cis v N=O vs σ^* .	205
CHA	APTER 8	
8.1	Top: Infrared spectrum of thiophosphoryl dichloride fluoride 10% wt./vol. in CCl ₄	
0.1	solution (3800–1333 cm ⁻¹) and 10% wt./vol. in CS ₂ solution. Bottom: Vapor-phase spectrum of thiophosphoryl dichloride fluoride in the region 3800–450 cm ⁻¹ (9).	255
8.2	Top: Infrared spectrum of thiophosphoryl dichloride fluoride in hexane solution using polyethylene windows in the region 600–40 cm ⁻¹ . Bottom: Vapor-phase IR spectrum of thiophosphoryl dichloride fluoride using polyethylene windows in the	
	region 600–150 cm ⁻¹ (9).	256
8.3	Top: Infrared spectrum of phosphoryl chloride in CCl ₄ solution (3800–1333 cm ⁻¹)	230
0.5	and in CS_2 solution (1333–45 cm ⁻¹). Bottom: Infrared spectrum of phosphoryl	
	chloride in hexane solution (9).	257
8.4	A comparison of the approximate normal vibrations of thiophosphoryl dichloride	231
0.,	fluoride vs those for phosphoryl chloride (9).	258
8.5	Top: Infrared spectrum of O-methyl phosphorodichloridothioate in 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and in 10 wt./vol. % in CS ₂ solution (1333–	
	$400 \mathrm{cm}^{-1}$) using 0.1-mm KBr cells. The weak band at $\sim 752 \mathrm{cm}^{-1}$ is due to the	
	presence of a trace amount of $P(-S)Cl_3$. The band at 659 cm ⁻¹ is due to the	
	presence of ~4% O,O-dimethyl phosphorochloridothioate. Middle: Infrared spec-	
	trum of O-methyl-d ₃ phosphorodichloride-thioate in 10 wt./vol. % in CCl ₄ solution	
	$(3800-1333 \mathrm{cm}^{-1})$ and $10+2 \mathrm{wt./vol.}$ % in CS ₂ solution $(1333-400 \mathrm{cm}^{-1})$ using	
	0.1-mm KBr cells. Bottom: Infared spectrum of O-methyl phosphorodichloridate in	
	10 wt./vol. % in CCl ₄ solution (3800–1333 cm ^{-1}) and 10 wt./vol. % in CS ₂ solution	
	$(1333-450 \mathrm{cm}^{-1})$ using 0.1-mm KBr cells (21).	259
8.6	Top: Infrared spectrum of O-methyl phosphorodichloridothiate in 10 wt./vol.	
	% in hexane solution in a 1-mm polyethylene cell. Bottom: Infrared spectrum of	
	O-methyl phosphorodichloridothioate in 25 wt./vol. % in hexane solution in	260
8.7	a 2-mm polyethylene cell (25). Top: Infrared spectrum of O-methyl-d ₃ phosphorodichloridothioate in 10 wt./vol. %	200
0.7	hexane solution in a 1-mm polyethylene cell. Bottom: Infrared spectrum of	
	O-methyl-d ₃ phosphorodichloridothioate in 25 wt./vol. % hexane solution in	
	a 2-mm polyethylene cell and compensated with polyethylene (25).	261
8.8	Assumed normal vibrations of organophosphorus and inorganophosphorus	
	compounds (25).	262

8.9	Top: Infrared spectrum of O-ethyl phosphorodichlorodiothioate 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and 10 and 2 wt./vol. % in CS ₂ solution (1333–400 cm ⁻¹) in 0.1-mm KBr cells. The solvents were compensated. Bottom: Infrared	
	spectrum of O-ethyl phosphorodichloridothioate in 25 and 2 wt./vol. % in hexane	262
8.10	solution (600–45 cm ⁻¹) in a 1-mm polyethylene cell (22). Top: Infrared spectrum of O-ethyl-1,1-d ₂ phosphorodichloridothioate in 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and 10 and 2.5 wt./vol. % in CS ₂ solution (1333–400 cm ⁻¹) in 0.1-mm KBr cells. The solvents are compensated. Bottom: Infrared spectrum of O-ethyl-1,1-d ₂ phosphorodichloridothioate in 10 wt./vol.	263
	hexane solution (600–45 cm ⁻¹) in a 1-mm polyethylene cell (22).	264
8.11	Top: Infrared spectrum of O-ethyl-2,2,2-d ₃ phosphorodichloridothioate in $10\mathrm{wt./vol.}\ \%\ CCl_4\ \mathrm{solution}\ (3800-1333\mathrm{cm}^{-1})\ \mathrm{and}\ 10\mathrm{wt./vol.}\ \%\ CS_2\ \mathrm{solution}\ (1333-400\mathrm{cm}^{-1})\ \mathrm{in}\ 0.1$ -mm KBr cells. The solvents are not compensated. Bottom: Infrared spectrum of O-ethyl-2,2,2-d ₃ phosphorodichloridothioate in $10\mathrm{wt./vol.}$	
	hexane solution in a 1-mm polyethylene cell (22).	265
8.12	Top: Infrared spectrum of O,O-dimethyl phosphorochloridothioate in 10 wt./vol. % in CCl ₄ solution ($3800-1333 \text{ cm}^{-1}$) and $10 \text{ and } 2 \text{ wt./vol.}$ % in CS ₂ solution ($1333-450 \text{ cm}^{-1}$) in 0.1-mm KBr cells. The solvents have not been compensated. Bottom: Liquid-phase IR spectrum of O,O-dimethyl phosphorochloridothioate between KBr	203
	plates (27).	266
8.13	Top: Infrared spectrum of O,O-dimethyl-d ₆ phosphorochloridothioate in 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and 10 and 1 wt./vol. % in CS ₂ solution (1333–400 cm ⁻¹) in 0.1-mm KBr cells. Traces of toluene and methylene chloride are	200
	present. Bottom: Liquid-phase IR spectrum of O,O-dimethyl-d ₆ phosphorochloridothioate between KBr plates (27).	267
8.14	Top: Infrared spectrum of O,O-dimethyl phosphorochloridothioate in 2-mm polyethylene cells. The polyethylene has been compensated. Bottom: Infrared spectrum of O,O-dimethyl-d ₆ phosphorochloridothioate in 10 wt./vol. % n-hexane in 1- and	207
	2-mm polyethylene cells, respectively (27).	268
8.15	Top: Infrared spectrum of S-methyl phosphorodichloridothioate in $10 \text{wt./vol.} \%$ in CCl ₄ solution (3800–1333 cm ⁻¹) and in 10 and 2 wt./vol. % in CS ₂ solution (1333–400 cm ⁻¹) in 0.1-mm KBr cells. Bottom: Infrared liquid phase spectrum of S-methyl phosphorodichloridothioate in $10 \text{wt./vol.} \%$ hexane solution (600–45 cm ⁻¹) in a 1-mm polyethylene cell (23).	269
8.16	Upper: Raman liquid-phase spectrum of S-methyl phosphorodichloridothioate.	20)
	Lower: Polarized Raman liquid-phase spectrum of S-methyl phosphorodichloridothioate (23). Bottom: upper: Raman liquid-phase spectrum of phosphoryl	
8.17	chloride. Lower: Polarized Raman spectrum of phosphoryl chloride (23). Top: Infrared spectrum of trimethyl phosphite 10 wt./vol. %13334 cm ⁻¹) and 10 wt./vol. % in CS ₂ solution (1333–400 cm ⁻¹) in 0.1-mm KBr cells. The solvents have not been compensated. Bottom: Infrared spectrum of trimethyl phosphite in 1 wt./vol. % CCl ₄ solution (3800–1333 cm ⁻¹) and in 1 wt./vol. % CS ₂ solution (1333–400 cm ⁻¹) using 0.1-mm KBr cells. The solvents have not been compensated (36).	270271
	, :	

8.18	Infrared spectrum of trimethyl phosphite in 10 wt./vol. % hexane solution in a 0.1-mm polyethylene cell. The IR band at $\sim 70 \text{ cm}^{-1}$ in a lattice mode for polyethylene (36).	272
8.19		272
8.20	Vapor-phase IR spectrum of trimethyl phosphite in a 10-cm KBr cell (36). Top: Infrared spectrum of O,O-dimethyl phosphorodithioic acid in 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and 10 and 2 wt./vol. % in CS ₂ solution (1333–450 cm ⁻¹) in 0.1-mm KBr cells. Bottom: Infrared spectrum of O,O-dimethyl phosphorochloridothioate in CCl ₄ solution (3800–1333 cm ⁻¹ and 10 and 2 wt./vol.	212
	% in CS ₂ solutions (1333–450 cm ⁻¹) in 0.1-mm KBr cells (32).	273
8.21	Top: Infrared spectrum of O,O-diethyl phosphorodithioic acid in 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ^{$^{-1}$}) and 10 and 2 wt./vol. % in CS ₂ solutions (1333–400 cm ^{$^{-1}$}) in 0.1-mm KBr cells. The solvents have been compensated. Bottom: Infrared spectrum of O,O-diethyl phosphorochloridothioate in 10 wt./vol.% in CCl ₄ solution and in 10 and 2 wt./vol. % CS ₂ solutions (1333–450 cm ^{$^{-1}$}) in 0.1-mm KBr	
	cells (32).	273
8.22	Top: Infrared spectrum of dimethyl hydrogenphosphonate in 10wt./vol. % in CCl ₄ solution (38001333cm^{-1}) and in $10 \text{and} 2 \text{wt./vol.}$ % CS ₂ solutions in 0.1-mm KBr cells. The solvents have not been compensated. Bottom: Infrared spectrum of dimethyl deuterophosphonate in $10\% \text{wt./vol.}$ CCl ₄ solution (38001333cm^{-1}) and in $10 \text{and} 2 \text{wt./vol.}$ % solutions in CS ₂ solution (1333400cm^{-1}). The solvents have been compensated (32).	274
8.23	Top: Infrared spectrum of dimethyl hydrogenphosphonate saturated in hexane	214
0.23	solution $(600-35 \text{ cm}^{-1}-1)$ in a 2-mm polyethylene cell (32).	274
8.24	Top: Infrared spectrum of diethyl hydrogenphosphonate in 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and in 10 and 2 wt./vol. % in CS ₂ solutions (1333–400 cm ⁻¹) in 0.1-mm KBr cells. The solvents have not been compensated. Bottom: Infrared spectrum of diethyl deuterophosphonate in 10% wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and 10 and 2 wt./vol. % CS ₂ solutions (1333–400 cm ⁻¹) in 0.1-mm KBr cells. The solvents have been compensated (32).	275
8.25	Top: Infrared spectrum for diethyl hydrogenphosphonate in 0.25 and 5 wt./vol. % hexane solutions (600–35 cm ⁻¹) in a 2-mm polyethylene cell. Bottom: Infrared spectrum for diethyl deuterophosphonate in 10 wt./vol. % hexane solution	213
	$(600-35 \mathrm{cm}^{-1})$ in a 1-mm polyethylene cell.	275
8.26	Top: Raman liquid-phase spectrum of dimethyl hydrogenphosphonate in a 2.5-ml multipass cell, gain 7, spectral slit-width 0.4 cm ⁻¹ . Bottom: Same as top but with the	276
8.27	plane of polarization of the incident beam rotated through 90° (32). Top: Infrared spectrum of (chloromethyl) phosphonic dichloride in 4 wt./vol. %	276
0.21	CS ₂ solution (1500–400 cm ⁻¹) at 0 °C in a 0.1-mm KBr cell. Bottom: Same as above	
	except at -75 °C.	277
8.28	Top: Infrared spectrum of (chloromethyl) phosphonic dichloride in 10 wt./vol. % in CCl ₄ solution ($3800-1333 \text{ cm}^{-1}$) and 10 wt./vol. % in CS ₂ solution ($1333-400 \text{ cm}^{-1}$) in 0.1-mm KBr cells. Bottom: Infrared spectrum of (chloromethyl) phosphonic dichloride in 20 wt./vol. % hexane solution ($600-45 \text{ cm}^{-1}$) in a 1-mm polyethylene cell (17).	278

8.29	Top: Infrared spectrum of (chloromethyl) phosphonothioic dichloride in 10wt./vol. % CCl_4 solution ($3800-1333 \text{cm}^{-1}$) and in 10wt./vol. % CS_2 solution ($1333-400 \text{cm}^{-1}$) in 0.1 -mm KBr cells. Bottom: Infrared spectrum of (chloromethyl)	
	phosphonothioic dichloride in 20 wt./vol. % hexane solution (600–45x%cm ⁻¹) in a 1-mm polyethylene cell (17).	279
8.30	Infrared spectrum of (bromomethyl) phosphonic dibromide in 10 wt./vol. % CCl ₄ solution (3800–1333 cm ⁻¹) and 10 wt./vol. % in CS ₂ solution (1333–400 cm ⁻¹) in 0.1-mm KBr cells (17).	279
8.31	Top: Infrared spectrum of N-methyl phosphoramidodichloridothioate $10 \text{wt./vol.} \%$ in CCl ₄ solution (3800–1333 cm ⁻¹) and $10 \text{wt./vol.} \%$ in CS ₂ solution (1333–45 cm ⁻¹) in	
	0.1-mm KBr cells. The solvents have not been compensated. Bottom: Infrared spectrum of	
0 22	N-methyl phosphoramidodichloridothioate in 10 wt./vol. hexane solution (600–45 cm ⁻¹) in a 1-mm polyethylene cell (24).	280
8.32	Top: Infrared spectrum of N-methyl-d ₃ phosphoramidodichloridothioate in 10 wt./vol. % in CCl ₄ (3800–1333 cm ⁻¹) and 10 wt./vol. % in CS ₂ solution (1333–45 cm ⁻¹) in 0.1-mm KBr cells. Bottom:Infrared spectrum of N-methyl-d ₃ phosphoramidodichloridothioate in 10 wt./vol. % in hexane solution	
8.33	(600–45 cm ⁻¹) in a 1-mm polyethylene cell (24). Top: Infrared spectrum of N-D, N-methyl phosphoramidodichloridothioate in	281
	10 wt./vol. % CCl ₄ solution (3800–1333 cm ⁻¹) and in 10 wt./vol. % in CS ₂ solution (1333–45 cm ⁻¹) in 0.1-mm KBr cells. The solvents have been compensated. Bottom: Infrared spectrum of N-D, N-methyl phosphoramidodichloridothioate in 10 wt./vol. % hexane solution in a 1-mm polyethylene cell. Both samples contain	
8.34	N-methyl phosphoramidodichloridothioate as an impurity (24). Top: Infrared spectrum for N-D, N-methyl-d ₃ phosphoramidodichloridothioate in 10 wt./vol. % CCl_4 solution (3800–1333 cm $^{-1}$) and 10 and 2 wt./vol. % in CS_2 solutions (1333–400 cm $^{-1}$) in 0.1-mm KBr cells. The solvent bands are compen-	282
8.35	sated. Bottom: Infrared spectrum of N-D, N-methyl-d ₃ phosphoramidodichloridothioate in 10 wt./vol. % hexane solution in a 1-mm polyethylene cell. This sample contains N-methyl-d ₃ phosphoramidodichloridothioate as an impurity (24). Infrared spectrum 1 is for O-alkyl O-aryl N-methylphosphoramidate in 10 wt./vol. % CCl ₄ solution (3500–3000 cm ⁻¹) in a 0.1-mm NaCl cell. Infrared spectrum 2 is	283
8.36	for O-alkyl O-aryl N-methylphosphoramidothioate in 10 wt./vol. % in CCl ₄ solution (3500–300 cm ⁻¹) in a 0.1-mm NaCl cell (42). A plot of N–H stretching frequencies of O-alkyl O-aryl N-alkylphosphoramidates in the region 3450–3350 cm ⁻¹ vs an arbitrary assignment of one for each proton	283
0.27	joined to the N-α-carbon atom (42).	284
8.37	Plots of cis and trans N–H stretching frequencies of O-alkyl O-aryl N-alkyl-phosphoramidothioates in the region $3450-3350\mathrm{cm}^{-1}$ vs an arbitrary assignment of one for every proton joined to the N- α -carbon atom (42).	284
8.38	Infrared spectra of the cis and trans N–H stretching absorption bands of O-alkyl O-aryl N-alkylphosphoramidothioates in 0.01 molar or less in CCl ₄ solutions (3450–3350 cm ⁻¹) in a 14-mm NaCl cell. The N-alkyl group for A is methyl, B is	

	ethyl, C is n-propyl, D is isobutyl, E is n-butyl, F is isopropyl, G is sec-butyl, and H is tert-butyl. Spectra I and J are O,O-dialkyl N-methylphosphoramidothioate and O,O-dialkyl N-propylphosphoramidothioate, respectively (42).	285
8.39	Infrared spectra of the N-H stretching absorption bands of O-alkyl N,N'-dialkyl phosphorodiamidothioates. The N,N'-dialkyl group for A is dimethyl, B is diethyl, C	203
	is dipropyl, D is dibutyl, E is diisopropyl, F is di-sec-butyl, G is dibenzyl. The H and	
	I are IR spectra for the N-H stretching bands of O-aryl N,N'-diisopropyl-	
	phosphordiamidothioate and O-aryl N-isopropyl, N-methylphosphorodiamido-	
	thioate, respectively. Spectra A through J were recorded for 0.01 molar or less in	
	CCl ₄ solutions using 3-mm KBr cells. Spectra D and J are for O-aryl	
	N,N'-dibutylphosphorodiamidothioate in 0.01 molar CCl ₄ solution in a 3-mm cell and 10 wt./vol. % in CCl ₄ solution in a 0.1-mm KBr cell (42).	285
8.40	Infrared spectrum R gives the N–H stretching absorption bands for O-alkyl O-aryl	200
0.10	phosphoramidothioate in 0.01 molar CCl ₄ solution in a 3-mm NaCl cell. Infrared spectrum S gives O,O-dialkyl phosphoramidothioate in 0.01 molar CCl ₄ solution	
	in a 3-mm NaCl cell (42).	286
8.41	Top: Infrared spectrum of O,O-diethyl methylphosphoramidothioate in 10 wt./vol.	
	% CCl ₄ solution (3800–1333 cm ⁻¹) and 10 and 2 wt./vol. % CS ₂ solutions (1333–	
	400 cm ⁻¹) in 0.1-mm KBr cells. Middle: Infrared spectrum of O,O-diethyl	
	N-methyl, N-D-phosphoramidothioate in 2 wt./vol. % in CCl ₄ solution (3800–	
	$1333 \mathrm{cm}^{-1}$) and in $2 \mathrm{wt./vol.}$ % in CS_2 solution ($1333-400 \mathrm{cm}^{-1}$) in 0.1-mm KBr	
	cells. Bottom: Infrared spectrum of O,O-diethyl N-methyl, N-D-phosphorami-	
	dothioate 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and in 10 wt./vol. %	
0.43	CS_2 solution (1333–400 cm ⁻¹) in 0.1-mm KBr cells (37).	287
8.42	Top: Infrared spectrum of O,O-diethyl phosphoramidothioate in 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and 2 and 10 wt./vol. % in CS ₂ solutions (1333–	
	400 cm ⁻¹) in 0.1-mm KBr cells. Middle: Infrared spectrum of O,O-diethyl phos-	
	phoramidothioate-N-D ₂ in 2 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and in	
	2 wt./vol. % CS ₂ solution (1333–400 cm ⁻¹) in 0.1-mm KBr cells. Bottom: Infrared	
	spectrum of O,O-diethyl phosphoramidothioate-N-D ₂ 10 wt./vol. % in CCl ₄	
	solution (3800–1333 cm $^{-1}$) and 10 wt./vol. % in CS ₂ solution (1333–400 cm $^{-1}$)	
	in 0.1-mm KBr cells (37).	288
8.43	Top: Infrared spectrum of O,O-diethyl N-methylphosphoramidothioate 10 wt./vol.	
	% in CCl ₄ solution (3800–1333 cm ⁻¹) and 10 and 2 wt./vol. % in CS ₂ solutions	
	(1333–400 cm ⁻¹) in 0.1-mm KBr cells. Middle: Infrared spectrum of O,O-diethyl	
	N-methyl, N-D phosphoramidothioate in 2 wt./vol. % in CS ₂ solution	
	(1333–400 cm ⁻¹) in 0.1-mm KBr cells. Bottom: Infrared spectrum of O,O-diethyl	
	N-methyl, N-D-phosphoramidothioate in 10 wt./vol. % CCl ₄ solution	200
0.44	(1333–400 cm ⁻¹) in 0.1-mm KBr cells. The solvents are not compensated (37).	289
8.44	Infrared spectrum of O,O-dimethyl N-methylphosphoramidothioate in 10 wt./vol. % in CCl ₄ solution ($3800-1333 \text{ cm}^{-1}$) and $10 \text{ and } 2 \text{ wt./vol.}$ % in CS ₂ solutions	
	% in CC14 solution (3600–1333 cm ⁻¹) and 10 and 2 wt./vol. $%$ in CS ₂ solutions (1333–400 cm ⁻¹) in 0.1-mm KBr cells (37).	290
8.45	Top: Infrared spectrum of O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphor-	<i>29</i> 0
5.15	othioate 10 wt./vol. % in CCl ₄ solution (3800–1333 cm ⁻¹) and 10 and 2 wt./vol. %	
	in CS_2 solutions (1333–400 cm ⁻¹) in 0.1-mm KBr cells. Bottom: Infrared spectrum	

	of O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphate in 10wt./vol. % in CCl_4 solution (3800–1333 cm $^{-1}$) in 0.1-mm KBr cells. The solvents are not compensated (43).	291
3.46	Top: Infrared spectrum for O,O-dimethyl-d ₆ O-(2,4,5-trichlorophenyl) phosphorothioate in 10 wt./vol. % CCl ₄ solution (3800–1333 cm ⁻¹) and in 10 and 2 wt./vol. % CS ₂ solution (1333–400 cm ⁻¹) in 0.1-mm KBr cells. Bottom: Infrared spectrum for O,O-dimethyl-d ₆ O-(2,4,5-trichlorophenyl) phosphate in 10 wt./vol. % CS ₂ solutions (1333–450 cm ⁻¹) in 0.1-mm KBr cells. The solvents have not been	291
	compensated.	292
3.47	Top: Infrared spectrum of disodium methanephosphonate. Bottom: Infrared spectrum of disodium methane-d ₃ -phosphonate. In fluorolube oil mull (3800–1333 cm ⁻¹) and in Nujol oil mull (1333–400 cm ⁻¹) (40). These mulls	
	were placed between KBr plates.	293
3.48	Top: Infrared spectrum of disodium methanephosphonate in water solution	
	between AgCl plates. Bottom: Infrared spectrum of disodium methane-d ₃ -phos-	204
2.40	phonate in water solution between AgCl plates (40).	294
3.49	Top: Infrared spectrum of disodium methanephosphonate. Middle: Infrared	
	spectrum of disodium methane-d ₃ -phosphonate. Bottom: Infrared spectrum of	
	dipotassium methanephosphonate. These spectra were recorded from samples prepared as Nujol mulls between polyethylene film (600–45 cm ⁻¹) (40).	295
3.50	Infrared spectrum of disodium n-octadecanephosphonate prepared as a fluoroluble	293
5.50	mull (3800–1333 cm ⁻¹) prepared as a Nujol mull (1333–450 cm ⁻¹) (40).	296
3.51	Top: Infrared spectrum of sodium dimethylphosphinate prepared as a fluoroluble	290
).J1	mull (3800–1333 cm ⁻¹) and prepared as a Nujol mull (1333–400 cm ⁻¹) between	
	KBr plates. Bottom: Infrared spectrum of sodium dimethylphosphinate saturated in	
	water solution between AgCl plates (41).	297
3.52	Top: Infrared spectrum of sodium dimethylphosphinate prepared as Nujol mull	
	between polyethylene film (600–45 cm ⁻¹). Bottom: Infrared spectrum of potassium	
	dimethylphosphinate prepared as a Nujo mull between polyethylene film (600–	
	45 cm ⁻¹) (41).	298
3.53	Top: Raman saturated water solution of sodium dimethylphosphinate using a	
	0.25-ml multipass cell, gain 13.4, spectral slit 10 cm ⁻¹ . Bottom: Same as above,	
	except with the plane of polarization of the incident beam rotated 90° (41).	299
3.53a	(Top): IR spectrum for sodium diheptylphosphinate.	300
3.53a	(Bottom): IR spectrum for sodium dioctylphosphinate.	300
3.54	Plots of v P=O for P(=O)Cl ₃ vs mole % solvent system. The open triangles	
	represent CCl_4/C_6H_{14} as the solvent system. The open circles represent	
	CHCl ₃ /C ₆ H ₁₄ as the solvent system; and the open diamonds represent CHCl ₃ /CCl ₄	
	as the solvent system (26).	301
3.55	A plot of v P=O for CH ₃ P(=O)Cl ₂ vs mole % CDCl ₃ /CCl ₄ as represented by open	
	circles, and plots of v P=O for (CH ₃) ₃ C P(db;O)Cl ₂ vs mole % CHCl ₃ /CCl ₄ (open	201
. = <	triangles) and mole % (CDCl ₃ /CCl ₄ (open diamonds) (26).	301
3.56	Plots of v P—O rotational conformers 1 and 2 for CH ₃ O P(=O)Cl ₂ (conformer 1,	
	open circles; conformer 2, open squares), and for $C_2H_5OP(=0)Cl_2$ (conformer 1, open triangles; conformer 2, open diamonds) as male % CHCl (CCl (26))	302
	open triangles; conformer 2, open diamonds) vs mole % CHCl ₃ /CCl ₄ (26).	302

8.57	Plots of v P=O rotational conformers 1 and 2 for $(CH_3O)_3$ P=O vs mole %	202
8.58	CHCl ₃ /CCl ₄ (conformer 1, solid circles, and conformer 2, solid triangles) (55). Plots of v P=O rotational conformers 1 and 2 for $(C_2H_5O)_3P=O$ vs mole %	302
0.50	CDCl ₃ /CCl ₄ (conformer 1, solid triangles, conformer 2, closed circles) (55).	303
8.59	Plots of v P=O rotational conformers 1 and 2 for $(C_4H_9O)_3P=O$ vs mole %	
	CDCl ₃ /CCl ₄ (conformer 1, solid circles, conformer 2, solid triangles) (55).	303
8.60	Plots of v asym. PCl_3 for $P(=O)Cl_3$ vs mole % solvent system. The open circles	
	represent the CHCl ₃ /CCl ₄ solvent system; the open triangles represent the	
	$CHCl_3/C_6H_{14}$ solvent system; and the open diamonds represent the CCl_4/C_6H_{14} solvent system (26).	304
8.61	Plots of v asym. PCl_2 frequencies for $CH_3P(=O)Cl_2$ (open circles) and for	J0 1
0.01	$(CH_3)_3CP(=0)Cl_2$ (open triangle and open diamonds) vs mole % $CDCl_3/CCl_4$ and	
	CHCl ₃ /CCl ₄ (26).	304
8.62	Plots of v asym. PCl ₂ rotational conformers 1 and 2 frequencies for CH ₃ OP(=O)Cl ₂	
	(conformer 1, open circles; conformer 2, open squares) and for $C_2H_5OP(-O)Cl_2$	
	(conformer 1, open triangles, conformer 2, open diamonds) frequencies vs mole %	
0.63	CHCl ₃ /CCl ₄ (26).	305
8.63	Plots of v sym. PCl ₃ frequencies for P(=O)Cl ₃ vs mole % solvent system. The open circles represent CHCl ₃ /CCl ₄ as the solvent system, the open triangles represent the	
	CHCl ₃ / C_6H_{14} solvent system, and the open diamonds represent the CCl ₄ / C_6H_{14}	
	solvent system.	305
8.64	A plot of v sym. PCl_2 frequencies for $CH_3P(=O)Cl_2$ vs mole % $CDCl_3/CCl_4$ (open	
	circles) and plots of v sym. PCl_2 frequencies for $(CH_3)_3CP(=O)Cl_2$ vs mole %	
	CHCl ₃ /CCl ₄ (open triangles) and mole % CDCl ₃ /CCl ₄ (open diamonds) (26).	306
8.65	Plots of <i>v</i> sym. PCl ₂ rotational conformers 1 and 2 vs mole % CHCl ₃ CCl ₄ . The open	
	circles and open squares are for $CH_3OP(=O)Cl_2$) conformers 1 and 2, respectively.	
	The open triangles and open diamonds are for $C_2H_5OP(=O)Cl_2$ conformers 1 and 2, respectively (26).	306
8.66	Plots of v asym. PCl_2 frequencies vs v sym. PCl_2 frequencies for $CH_3OP(=O)Cl_2$	300
0.00	(conformer 1, solid squares); $CH_3OP(=O)Cl_2$ (conformer 2, open squares);	
	$C_2H_5OP(=O)Cl_2$ (conformer 1, solid triangles) $C_2H_5OP(=O)Cl_2$ (conformer 2,	
	open triangles); (CH ₃) ₃ CP(=O)Cl ₂ (solid diamonds); and CH ₃ P(=O)Cl ₂ (solid	
	circles) (26).	307
8.67	Plots of the absorbance (A) ratio of rotational conformer 1 and 2 band pairs for <i>v</i>	
	P=O (solid circles), v COP (solid triangles), v asym. PCl ₂ (solid squares), and v sym. PCl ₂ (solid diamonds) for CH ₃ OP(=O)Cl ₂ vs mole % CHCl ₃ /CCl ₄ (26).	307
8.68	Plots of the absorbance (A) ratio rational conformer 1 and 2 band pairs for $v = 0$	301
0.00	(solid circles), v COP (solid triangles), v asym. PCl ₂ (solid squares), and v sym. PCl ₂	
	(solid diamonds) for $C_2H_5OP(=O)Cl_2$ vs mole % $CHCl_3/CCl_4$ (26).	308
8.69	A plot of δ sym. CH ₃ frequencies for CH ₃ P(=O)Cl ₂ vs mole % CHCl ₃ /CCl ₄ (26).	308
8.70	A plot of ρ CH ₃ frequencies for CH ₃ P(=0)Cl ₂ vs mole % CHCl ₃ /CCl ₄ (26).	309
8.71	Plots of the in-phase δ sym. (CH ₃) ₃ frequencies (open circles) and the out-of-phase	200
Q 72	δ sym. (CH ₃) ₃ frequencies (open triangles) vs mole % CHCl ₃ /CCl ₄ (26).	309
8.72	Plots of the a' and a ρ CH ₃ frequencies for $C_{2_{H5}}O$ P(=O)Cl ₂ vs mole % CHCl ₃ /CCl ₄ (26).	310
	N -7:	

	-
60	1
uv	1

- uctors	, meeting indicedum violations and citement sintes	
8.73	Plots of the a' and a ρ CH ₃ modes of $(C_2H_5O)_3$ P=O vs mole % CDCl ₃ /CCl ₄ (55).	310
8.74	A plot of v CC for $C_2H_5OP(=O)Cl_2$) vs mole % CHCl ₃ /CCl ₄ (26).	311
8.75	A plot of v CC for $(C_2H_5O)_3$ P=O vs mole % CDCl ₃ /CCl ₄ (55).	311
8.76	Plots of v COP rotational conformers 1 and 2 for CH_3O $P(=O)Cl_2$ and	
	$C_2H_5OP(=O)Cl_2$ vs mole % CDCl ₃ /CCl ₄ (26).	312
8.77	Plots of v COP rotational conformers 1 and 2 frequencies for $(CH_3O)_3P=O$ vs mole	J 1 2
0.11	% CHCl ₃ /CCl ₄ . The solid triangles represent conformer 1 and the solid circles	
	represent conformer 2 (55).	312
8.78	A plot of v COP frequencies for $(CH_3O)_3P=O$ vs mole percnt; $CHCl_3/CCl_4$ (55).	313
8.79	A plot of v (ϕ OP), " $v\phi$ -O", frequencies for triphenyl phosphate vs mole %	515
0.19	CHCl ₃ /CCl ₄ (55).	313
8.80	A plot of v (ϕ OP), " v P-O", frequencies for triphenyl phosphate vs mole %	515
0.00	CHCl ₃ /CCl ₄ (55).	314
8.81		717
0.01	A plot of the in-plane hydrogen deformation frequencies for the phenyl groups of	214
0 02	triphenyl phosphate vs mole % CHCl ₃ /CCl ₄ (55).	314
8.82	A plot of the out-of-plane ring deformation frequencies for the phenyl groups of	215
0.02	triphenyl phosphate vs mole % CHCl ₃ /CCl ₄ (55).	315
8.83	A plot of v CD frequencies (for the solvent system $CDCl_3/CCl_4$) vs mole %	215
0.04	$CDCl_3/CCl_4$ (55).	315
8.84	A plot of the v CD frequencies for CDCl ₃ vs mole % CDCl ₃ /CCl ₄ for the	216
0.07	CDCl ₃ /CCl ₄ solvent system containing 1 wt./vol. % triphenylphosphate (55).	316
8.85	A plot of v CD for CDCl ₃ vs mole % CDCl ₃ /CCl ₄ .	316
8.86	A plot of v CD for CDCl ₃ vs mole % CDCl ₃ /CCl ₄ containing 1% triethylphosphate.	317
CH/	APTER 9	
		
9.1	Infrared spectrum for 2,3,4,5,6-pentachlorobiphenyl.	368
9.2	Infrared spectrum for 2,2′,3-trichlorobiphenyl.	368
9.3	Infrared spectrum for 2'3,4-trichlorobiphenyl.	369
9.4	Infrared spectrum for 2,2′,3,4,6-pentachlorobiphenyl.	369
9.5	Infrared spectrum for 2,3,4,4',6-pentachlorobiphenyl.	370
9.6	Infrared spectrum for 2,3',4,5',6-pentachlorobiphenyl.	370
9.7	Infrared spectrum for 2,2′,3′,4,5-pentachlorobiphenyl.	371
9.8	Infrared spectrum for 2,2',4,6,6'-pentachlorobiphenyl.	371
9.9	Infrared spectrum for 2,3',4,4',6-pentachlorobiphenyl.	372
9.10	Infrared spectrum for 2,2′,3,4′,6-pentachlorobiphenyl.	372
9.11	Infrared spectrum for 2,2′,3,5′,6-pentachlorobiphenyl.	373
9.12	Infrared spectrum for 2,2′,3,4′,5-pentachlorobiphenyl.	373
9.13	Infrared spectrum for 2,2',3,5,5'-pentachlorobiphenyl.	374
9.14	Infrared spectrum for 2,2',4,4',5-pentachlorobiphenyl.	374
9.15	Infrared spectrum for 2,2',4,5,5'-pentachlorobiphenyl.	375
9.16	Infrared spectrum for 2,2',3,4,5'-pentachlorobiphenyl.	375
9.17	A plot of an A ₁ fundamental for mono-substituted benzenes vs the number of	
	protons on the ring α -carbon atom.	376

9.18 9.19	A plot of an A_1 fundamental for mono-substituted benzenes vs Tafts σ^* . An IR spectrum for a uniaxially stretched syndiotactic polystyrene film	377
9.20	(perpendicular polarization). An IR spectrum for a uniaxially stretched syndiotactic polystyrene film (parallel	378
9.21	polarization). An IR spectrum of syndiotactic polystyrene film cast from boiling 1,2-dichloro-	378
	benzene onto a KBr plate.	379
9.22	An IR spectrum of the same film used to record the IR spectrum shown in Fig. 9.21except that the film was heated to 290°C then allowed to cool to ambient temperature before recording the IR spectrum of syndiotactic polystyrene.	380
9.23	An IR spectrum syndiotactic styrene (98%)-4-methyl-styrene (2%) copolymer cast from boiling 1,2-dichlorobenzene onto a C_SI plate.	381
9.24	An IR spectrum of a styrene (93%)-4-methylstyrene (7%) copolymer cast from	501
0.25	boiling 1,2-dichlorbenzene onto a C_SI plate. A plot of the IR band intensity ratio $A(1511 \text{ cm}^{-1})/A (900-904 \text{ cm}^{-1})$ vs the weight	382
9.259.26	% 4-methylstyrene in styrene —4-methylstyrene copolymers. A plot of the IR band intensity ratio A(815–817 cm ⁻¹)/A(900–904 cm ⁻¹) vs the	383
9.27	weight % 4-methylstyrene in styrene –4-methylstyrene copolymers. Top: Infrared spectrum of styrene (92%) –acrylic acid (8%) copolymer recorded at	384
J. 2 1	35 °C. Bottom: Infrared spectrum of styrene (92%) –acrylic acid (8%) copolymer recorded at 300 °C.	385
9.28	Styrene (92%) – acrylic acid (8%) copolymer absorbance ratios at the indicated frequencies vs copolymer film temperatures in $^{\circ}$ C; R_1 , R_2 , and R_4 indicate an increase in CO_2H concentrations at temperatures $> 150^{\circ}$ C; R_3 and R_5 indicate a decrease in $(CO_2H)_2$ concentrations at $> 150^{\circ}$ C. Base line tangents were drawn from 1630 – $1780\mathrm{cm}^{-1}$, 1560 – $1630\mathrm{cm}^{-1}$ and 720 – $800\mathrm{cm}^{-1}$ in order to measure the absorbance values at $1746\mathrm{cm}^{-1}$ and $1700\mathrm{cm}^{-1}$, $1600\mathrm{cm}^{-1}$ and $752\mathrm{cm}^{-1}$, respectively.	386
9.29	Top: Infrared spectrum of styrene-acrylamide copolymer recorded at 27 °C. Bottom:	
9.30	Infrared spectrum of styrene-acrylamide copolymer recorded at 275 °C. An IR spectrum for a styrene-2-isopropenyl-2-oxazoline copolymer (SIPO) cast	387
9.31	from methylene chloride onto a KBr plate. A plot of the weight % IPO in the SIPO copolymer vs the absorbance ratio	388
J. J1	(A) $(1656 \mathrm{cm}^{-1})/(A)(1600 \mathrm{cm}^{-1})$.	388
9.32	Top: Vapor-phase IR spectrum of ethynylbenzene in a 4-m cell (vapor pressure is in an equilibrium with the liquid at 25° C). Bottom: Vapor-phase IR spectrum of ethynylbenzene-d in a 4-m cell (vapor pressure is in an equilibrium with the liquid at 25° C)	390
9.33	at 25° C). Top: An IR solution spectrum for ethynylbenzene (3800–1333 cm $^{-1}$ in CCl ₄ (0.5 M) solution in a 0.1 mm NaCl cell), (1333–450 cm $^{-1}$ in CS ₂ (0.5 M) solution in a 0.1 mm KBr cell), and in hexane (0.5 M) solution using a 2 mm cis I cell. The IR band at 1546 and 853 cm $^{-1}$ is due to the solvents. Bottom: An IR solution spectrum for ethynylbenzene-d recorded under the same conditions used to record the top spectrum.	389 390

9.34	Top: Liquid-phase IR spectrum ethynylbenzene between KBr plates in the region $3800-450~\rm cm^{-1}$, and between C_SI plates in the region $450-300~\rm cm^{-1}$. Bottom: Liquid-phase IR spectrum of ethynylbenzene-d recorded under the same conditions as the top spectrum.	391
9.35	Top: Raman spectra for ethynylbenzene in the liquid phase. Bottom: Raman spectra	391
	for ethynylbenzene-d in the liquid phase.	392
9.36	A correlation chart for substituted benzenes in the region 5–6 μ (after Young, DuVall, and Wright).	393
9.37	Summary of out-of-plane hydrogen deformations and their combination and overtones for mono-substituted benzenes.	394
9.38	Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2-disubstituted benzenes.	395
9.39	Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,3-disubstituted benzenes.	396
9.40	Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,4-disubstituted benzenes.	397
9.41	Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,3,5-trisubstituted benzenes.	398
9.42	Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2,3-trisubstituted benzenes.	399
9.43	Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2,4-trisubstituted benzenes.	399
9.44	Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2,3,4-tetrasubstituted benzenes.	400
9.45	Summary for out-of-plane hydrogen deformations and their combination and overtones for 1,2,3,5-tetrasubstituted benzenes.	400
9.46	Summary of out-of-plane hydrogen deformations and their combination and overtones for 1,2,4,5-tetrasubstituted benzenes.	401
9.47	Summary of out-of-plane hydrogen deformation and its first overtone for 1,2,3,4,5-pentasubstituted benzenes.	401
9.48	Infrared correlation chart for out-of-plane hydrogen deformations and their combination and overtones for substituted benzenes.	402
CHA	APTER 11	
11.1	A plot of the NMR δ^{13} C-1 chemical shift data for 4-x-anilines in CHCl ₃ solution vs Hammett $\sigma_{\rm p}$ values for the 4-x atom or group.	459
11.2	A plot of the NMR δ ¹³ C-1 chemical shift data for 4-x-anilines in CHCl ₃ solution	
11.3	vs Taft $\sigma_{R^{\circ}}$ values for the 4-x atom or group. A plot of v asym. NH ₂ frequencies for 4-x-anilines in the vapor phase vs δ^{-13} C-1	460
11.4	chemical shift data for 4-x-anilines in $CHCl_3$ solution. A plot of v asym. NH_2 frequencies for 3-x- and 4-x-anilines in hexane solution vs	461
	δ ¹³ C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl ₃ solution.	462

11.5	A plot of v asym. NH ₂ frequencies for 3-x- and 4-x-anilines in CCl ₄ solution vs δ ¹³ C-1 chemical shift data for 3-x- and 4-x-anlines in CHCl ₃ solution.	463
11.6	A plot of the <i>v</i> asym. NH ₂ frequencies for 3-x- and 4-x-anilines in CHCl ₃ solution	103
	vs δ ¹³ C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl ₃ solution.	464
11.7	A plot of the v sym. NH ₂ frequencies for 4-x-anilines in the vapor phase	
11.0	vs δ^{13} C-1 chemical shift data for 3-x- and 4-x-anilines.	465
11.8	A plot of v sym. NH ₂ frequencies for 3-x- and 4-x-anilines in hexane solution vs δ ¹³ C-1 chemical shift data for 3-x- and 4-x-anilines in CHCl ₃ solution.	466
11.9	A plot of v sym. NH ₂ frequencies for 3-x- and 4-x-anilines in CCl ₄ solution vs δ	100
	13 C-1 chemical shift data for 3-x- and 4-x-anilines vs the δ 13 C-1 chemical shift	
	data for 3-x- and 4-x-anilines in CHCl ₃ solution.	467
11.10	A plot of the v sym. NH ₂ frequencies for 3-x- and 4-x-anilines in CHCl ₃ solution	
	VS	
	δ ¹³ C-1 chemical shift data for 3-x- and 4-x-anilnies in CHCl ₃ solution.	468
11.11	A plot of the frequency difference between v asym. NH ₂ and v sym. NH ₂ for	
	3-x- and 4-x-anilines in hexane solution vs δ ¹³ C-1 chemical shift data for	160
11.12	3-x- and 4-x-anilines in CHCl ₃ solution. A plot of the frequency difference between <i>v</i> asym. NH ₂ and <i>v</i> sym. NH ₂ for	469
11.12	3-x- and 4-x-anilines in CCl ₄ solution vs δ ¹³ C-1 chemical shift data for 3-x-	
	and 4-x-anilines in CHCl ₃ solution.	470
11.13	A plot of the frequency difference between v asym. NH ₂ and v sym. NH ₂ for	170
	3-x- and 4-x-anilines in CHCl ₄ solution vs δ ¹³ C-1 chemical shift data for 3-x-	
	and 4-x-anilines in CHCl ₃ solution.	471
11.1.4	A plot of the absorbance ratio $A(v \text{ asym. NH}_2)/A(v \text{ sym. NH}_2)$ for 3-x- and	
	4-x-anilines in CCl ₄ solution vs δ ¹³ C-1 chemical shift data for 3-x- and	
	4-x-anilines in CHCl ₃ solution.	472
11.1.5	A plot of δ ¹³ C-1 chemical shift data for 4-x-anilines in CHCl ₃ solution vs Taft $\sigma_{R^{\circ}}$	470
11 16	values for the 4-x atom or group.	473
11.16	A plot of δ^{13} C-1 for 3-x- and 4-x-benzoic acids vs Hammett σ values for the x atom or group.	474
11.17	Plots of $v \in O$ vs Hammett σ values of 3-x- and 4-x-benzoic acids. The solid	7/7
11.11	circles are for IR data in the vapor phase. The open circles are for IR dilute	
	solution data for unassociated 3-x- and 4-x-benzoic acids.	475
11.18	Plots of v C=O vs δ^{13} C-1 for 3-x- and 4-x-benzoic acids. The NMR data are for	
	CDCl ₃ solutions. The plot with closed circles includes vapor-phase IR data. The	
	plot with open circles includes IR CCl ₄ -solution data.	476
11.19	A plot of $\delta^{\hat{1}3}$ C-1 for 4-x-acetanilides in CDCl ₃ solution vs Hammett σ_p values for	
	the x-atom or group.	477
11.20	A plot of v C=O for 4-x-acetanilides vs Hammett σ_p values. The solid circles	170
11.21	represent IR CCl ₄ solution data and the solid squares IR CHCl ₃ solution data. A plot of δ ¹³ C-1 for 4-x-benzaldehydes vs Taft $\sigma_{R^{\circ}}$ values for the 4-x atom or	478
11.41	group.	479
11.22	A plot of v C=O for 4-x-benzaldehydes vs Taft $\sigma_{R^{\circ}}$ values for the 4-x atom or	117
	group. The solid circles represent IR data in CCl ₄ solutions and the solid triangles	
	represent IR data in CHCl ₃ solutions.	480

11.23	A plot of v C=O for 4-x-benzaldehydes vs Hammett σ_p values for the 4-x atom or group. The solid circles represent IR data in CCl ₄ solution and the solid	401
11.24	triangles IR data in CHCl ₃ solutions. Plots of v C=O vs δ ¹³ C-1 for 4-x-benzaldehydes. The δ ¹³ C-1 data are for CDCl ₃	481
	solutions. The plot with filled-in circles includes IR CCl ₄ solution data and the plot with the filled-in triangles includes IR CHCl ₃ solution data.	482
11.25	A plot of δ^{13} C-1 for 4-x-acetophenones in CDCl ₃ solutions vs Taft $\sigma_{R^{\circ}}$ values for the 4-x atom or groups.	483
11.26	A plot of v C=O for 4-x-acetophenones vs Taft σ_{R° values for the 4-x atom or group. The IR data is that for the 4-x-acetophenones in CHCl ₃ solution.	484
11.27	A plot of v C=O (CHCl ₃ solution) vs δ ¹³ C-1 (CDCl ₃ solution) for 4-x-acetophenones.	485
11.28	A plot of δ^{13} C-1 vs Taft $\sigma_{R^{\circ}}$ values for the 4-x and 4,4'-x,x atoms or groups for 4-x and 4,4'-x,x-benophenones. These data are for CHCl ₃ solutions.	486
11.29	A plot of ν C=O in the vapor phase vs δ ¹³ C-1 in CCl ₃ solution for 4-x and 4,4'-x,x-benzophenones.	487
11.30	A plot of v C=O in the vapor phase vs the sum of Hammett σ_p for the x-atom or group for 4-x- and 4,4'-x,x-benzophenones.	488
11.31	A plot of δ^{13} C-1 in CHCl ₃ solution vs Hammett σ values for the x atom or group for methyl and ethyl 3-x- and 4-x-benzoates.	489
11.32	Plots of the range of v C=O for the compounds studied in different physical phases vs the range of δ ¹³ C=O for the compounds studied in CHCl ₃ solutions.	490
11.33	A plot of δ^{13} C=O for acetone vs mole % CHCl ₃ /CCl ₄ solutions.	491
11.34	A plot of $v \in C=0$ vs $\delta^{13}C=0$ for acetone in mole % CHCl ₃ /CCl ₄ solutions.	492
11.35	A plot of v C=O for dimethylacetamide in CCl ₄ and/or CHCl ₃ solution vs mole % CHCl ₃ /CCl ₄ .	493
11.35a	A plot of δ^{13} C=O for dimethylacetamide in CCl ₄ and/or CHCl ₃ solution vs mole % CHCl ₃ /CCl ₄ .	493
11.35b	A plot of δ^{13} C=O for maleic anhydride vs mole % CHCl ₃ /CCl ₄ .	494
11.35c	A plot of δ^{13} C=O vs δ^{13} C=C for maleic anhydride in 0 to 100 mole %	
	CHCl ₃ /CCl ₄ solutions.	494
11.36	A plot of δ^{13} C-1 vs Taft $\sigma_{R^{\circ}}$ values for the 3-x and 4-x atom or group for 3-x- and	
	4-x-benzonitriles in CDCl ₃ solution.	495
11.37	A plot of δ^{13} C-1 vs Hammett σ values for the 3-x or 4-x atom or group for	
	3-x- and 4-x-benzonitriles in CHCl ₃ solution.	496
11.38	A plot of δ ¹³ CN vs Hammett σ values for the 3-x or 4-x atom or group for	
	3-x- and 4-x-benzonitriles in CHCl ₃ solution.	497
11.39	A plot of v CN vs δ ¹³ CN for organonitriles.	498
11.40	A plot of δ ¹³ CN vs the number of protons on the -carbon atom of alkyl nitriles.	498
11.41	A plot of Taft σ^* values for the alkyl group vs δ^{15} N for alkyl isonitriles.	499
11.42	A plot of δ^{15} N vs v NC for alkyl isonitriles.	500
11.43	Plots of the number of protons in the alkyl α -carbon atom vs ν sym. NO ₂ and	~~7
11 //	v asym. NO_2 for nitroalkanes in the vapor phase.	501
11.44	Plots of δ^{13} C (CHCl ₃ solution) for the alkyl α -carbon atom vs ν sym. NO ₂ and	502
	v asym. NO ₂ (vapor phase) for nitroalkanes.	502

606 List of Figures

11.45	Plots of δ^{13} N (in 0.3 M acetone) vs v sym. NO ₂ and v asym. NO ₂ (vapor phase)	~02
11.46	for nitroalkanes.	503
11.46	A plot of Taft σ^* values for the alkyl α -carbon atom group vs $\delta^{-13}C$ for	701
11 47	nitroalkanes.	504
11.47	A plot of Taft σ^* values for the alkyl α -carbon atom vs $\delta^{-15}N$ for nitroalkanes.	505
11.48	A plot of δ^{15} N vs δ^{13} C for the alkyl α -carbon atom for nitroalkanes.	506
11.49	A plot of δ^{15} N vs v asym. N=C=O for alkyl isocyanates.	507
11.50	Plots of Taft σ^* values for the alkyl groups for alkyl isocyanates and alkyl	500
11 ~1	isothiocyanates. Plots of δ ¹³ C for the N=C=O group vs the number of protons on the alkyl	508
11.51	α -carbon atom for alkyl isocyanates and alkyl diisocyanates.	509
11 50	Plots of v asym. N=C=O vs δ^{13} C for the N=C=O group of alkyl isocyanates and	309
11.52	alkyl diisocyanates. $N = C = 0$ vs θ C for the $N = C = 0$ group of alkyl isocyanates and	509
11.53	A plot of δ^{-15} N vs ν C $-$ N for primary alkylamines.	510
11.53	A plot of $\delta^{-1}N$ vs ψ C—N for primary anxylamines. A plot of $\delta^{-15}N$ vs ωN —H for dialkylamines.	
11.55	A plot of $v \in \mathbb{N}$ vs $w \in \mathbb{N}$ for the alkyl group of primary alkylamines.	511 512
11.56	A plot of δ ¹⁵ N vs Taft δ for the alkyl group of primary alkylamines.	513
11.50	Plots of δ^{-15} N vs the number of protons on the alkyl α -carbon atom(s) for mono-,	213
11.57	di-, and trialkylamines.	514
11.58	A plot of δ^{31} P for trialkylphosphines vs the sum of the number of protons on the	717
11.50	alkyl α -C-P carbon atoms.	515
11.59	A plot of δ^{-31} P for trialkylphosphines vs Taft σ^* values for the alkyl groups.	516
11.60	Plots of δ^{-31} P for R-PH ₂ vs δ^{-15} N for R-NH ₂ , δ^{-31} P for (R-) ₂ PH vs δ^{-15} N for	510
11.00	$(R-)_2NH$, and $\delta^{-31}P$ for $(R-)_3P$ vs $\delta^{-15}N$ for $(R-)_3N$.	517
11.61	Plots of the number of protons on the α -C-P atom(s) vs δ^{31} P for PH ₃ , R-PH ₂ ,	211
11.01	$(R-)_2$ PH.	518
11.62	A plot of the sum of Taft σ^* values $\delta^{-31}P$ for trialkylphosphine oxides.	519
11.63	A plot of the sum of the number of protons on the α C–P carbon atoms vs δ^{31} P	
	for trialkylphosphine oxides.	520
11.64	Plots of v P=O rotational conformers vs the sum of the number of protons on the	
	α -C-O-P carbon atoms for trialkyl phosphates.	521
11.65	Plots of v P=O rotational conformers vs δ^{31} P for trialkyl phosphates.	522
11.66	A plot of δ^{31} P vs the sum of the number of protons on the α -C-O-P carbon	
	atoms for trialkyl phosphates.	523
11.67	A plot of the sum of the protons on the α -C-O-P carbon atoms vs δ ³¹ P for	
	O,O,O-trialkyl phosphorothioates.	524
11.68	A plot of the sum of the number of protons on the α -C $-$ O $-$ P carbon atoms vs δ	
	³¹ P for O,O,O-trialkyl phosphoroselenates.	525
11.69	Plots of δ^{31} P vs the sum of the number of protons on the α -C-P carbon atoms	
	and the α -C-O-P carbon atoms for RP(=O)(OC ₂ H ₅) ₂ and (R) ₂ P(=O)(OR).	526
11.70	Plots of δ^{31} P for RP(=O)(OC ₂ H ₅) ₂ vs δ^{13} C=O for RC(=O)(OCH ₃) and δ^{31} P	
	for $CH_3P(=O)(OR)_2$ vs $\delta^{-13}C=O$ for $CH_3C(=O)(OR)$.	527
11.71	Plots of δ^{31} P for (RO) ₂ P(=O)H and for (RO) ₂ P(=S)H vs the sum of the protons	
	on the α -C $-$ O $-$ P carbon atoms.	528

11.72	A plot of δ^{31} P for (RO) ₂ P(=O)H analogs vs δ^{31} P for the corresponding (RO) ₂ P(=S)H alkyl analogs.	529
11.73	Plots of the number of protons on the α -CP carbon atoms vs δ^{31} P for RP(=O)Cl ₂ and RP(=S)Cl ₂ .	530
11.74	A plot of δ^{31} P for RP(=S)Cl ₂ vs δ^{31} P for RP(=O)Cl ₂ .	531
11.75	A plot of $\delta^{-31}P$ vs the number of protons on the α -C-P carbon atom for	<i>J</i> J1
11.7	$RP(=O)F_2$.	532
11.76	A plot of δ^{31} P vs the sum of the number of protons on the α C-P carbon	<i>J</i> J2
11.70	atom and the number of protons on the α -C-O-P carbon atom for	
	$RP(=S)Br(OC_3H_{7-iso})$.	533
11.77	Plots of δ^{31} P vs the number of chlorine atoms joined to phosphorus for	555
11.//	$PCl_{3-x}(OR)_x$.	534
11.78	Plots of the sum of the number of protons on the α -C-P carbon atom(s) vs δ^{31} P	<i>JJ</i> 1
11.70	for $PX_{3-n}R_n$.	535
11.79	A plot of δ^{31} P vs the number of protons on the α -C-O-P carbon atoms for	
11.19	$(R)_2P(=O)Cl_2$.	536
11.80	Plots of the number of Cl atoms joined to phosphorus vs v P=O and v P=O	<i>J J J J</i>
11.00	rotational conformers for $P(=O)Cl_3$ through $P(=O)Cl_{3-x}(OR)_x$ where R is	
	CH ₃ or C_2H_5 .	537
11.81	A plot of the number of Cl atoms joined to phosphorus vs v P=O for	551
11.01	$P(=O)Cl_{3-x}[N(CH_3)_2]_x$.	538
11.82	A plot of δ^{31} P for P(=S)(OR) ₃ vs δ^{31} P for the corresponding alkyl analogs of	550
11.02	$P(=O)(OR)_3$.	539
11.83	A plot of δ^{31} P for P(=Se)(OR) ₃ vs δ^{31} P for corresponding alkyl analogs of	337
11.03	$P(=O)(OR)_3$.	540
11.84	Plots of δ^{31} P for RP(=0)Cl ₂ vs δ^{31} P for corresponding alkyl analogs of	310
,	$RP(O)F_2$). The double plot is the $\delta^{-31}P$ range given in the literature for the	
	$RP(=O)Cl_2$ analogs.	541
11.85	A plot of v asym. ϕ -O-C vs δ ¹³ C-1 for 4-x-anisoles.	542
11.86	A plot of δ ¹³ C-1 vs Taft $\sigma_{R^{\circ}}$ for 3-x- and 4-x-anisoles.	543
11.87	A plot of δ^{13} C-1 vs Hammett σ values for 3-x ^v and 4-x-anisoles.	544
11.88	A plot of Taft $\sigma_{R^{\circ}}$ values vs σ^{13} C-1 for 4-x-anisoles.	544
11.89	A plot of Taft $\sigma_{R^{\circ}}$ values vs ν asym. ϕ -O-C for 4-x-anisoles.	545
11.90	A plot of δ^{13} C-1 vs Hammett σ_p values for 4-x-anisoles.	545
11.91	A plot of δ^{13} C-1 vs δ^{13} C-5 for 2-x-anisoles.	546
11.92	A plot of δ^{13} C-4 for mono-substituted benzenes vs Taft $\sigma_{R^{\circ}}$ values.	547
11.93	A plot of the out-of-plane hydrogen deformation mode I for mono-substituted	
	benzenes vs Taft $\sigma_{R^{\circ}}$ values.	548
11.94	A plot of the out-of-plane hydrogen deformation mode III for mono-substituted	
	benzenes vs Taft $\sigma_{R^{\circ}}$ values.	549
11.95	A plot of the out-of-plane hydrogen deformation mode I for mono-substituted	
	benzenes vs δ^{-13} C-4 for mono-substituted benzenes.	550
11.96	A plot of the out-of-plane hydrogen deformation mode III vs δ 13 C-4 for	
	mono-substituted benzenes.	551
11.97	A plot of δ^{13} C-1 vs Taft $\sigma_{R^{\circ}}$ values for 4-x and 4,4'-x,x-biphenyls.	552

608 List of Figures

11.98	A plot of δ $^{13}C=O$ for tetramethylurea (TMU) 1 wt./vol. % solutions vs mole %	
	CHCl ₃ /CCl ₄ .	552
11.99	A plot of v C=O vs δ^{13} C=O for TMU 0-100 mol % CHCl ₃ /CCl ₄ solutions.	553
11.100	A plot of δ^{13} C=O vs δ^{13} CH ₃ for TMU in 0–100 mol % CHCl ₃ /CCl ₄ solutions.	554
11.101	A plot of δ^{13} C=O for TMU vs the solvent acceptor number (AN) for different	
	solvents.	555
11.102	A plot of the δ ¹³ C-O chemical shift difference between TMU in solution with	
	acetic acid and in solution with each of the other solvents.	556
11.103	Plots of δ^{13} C=O for dialkylketones at 1 wt./vol. % in different solvents vs the	
	AN for each solvent.	557
11.104	Plots of the δ^{13} C=O chemical shift difference between each dialkyl-ketone in	
	methanol and the same dialkylketone in solution with each of the other solvents.	558
11.105	A plot of δ^{13} C=O for alkyl acetates and phenyl acetate vs the difference of δ	
	13 C=O in methanol and δ 13 C=O in each of the other solvents.	559

Name index

Di Yorio, J., 253n19

В	Dollish, F. R., 50n1, 94n2
Bellamy, L. J., 31n16, 94n3, 185nn5, 9, 14, 458n13	Dunbar, J. E., 94n36, 253n31
Bender, P., 94n12	Dungan, C. H., 458n28
Bentley, F. K., 50n1, 94n2	Durig, J. R., 128n7, 253nn7, 11, 18, 19, 33
Berger, S., 457n5	Du Vall, R. B., 367n2
Berry, R. J., 128n10	
Bigorne, M., 254n53	
Black, F., 253n18	E
Blair, E. H., 253nn37, 39	Ekejiuba, I.O.C., 128n8
Blake, B. H., 128n26	Erley, D. S., 128n26
Bouquet, M., 94n28	Eucken, A., 253nn5, 14
Bouquet, S., 254n53	Evans, J. C., 7n8, 69nn4, 7, 9, 10, 128nn13, 23, 367nn4,
Brame, E. G., Jr., 31n15	5, 20, 431n10
Braun, S., 457n5	
Breitmaier, E., 458n35	
Brown, H. C., 458n33	F
Brownlee, R.T.C., 185n11	Fassel, V. A., 50n8, 458n22
	Fateley, W. G., xvn10, 50n1, 94nn2, 4, 128n1, 254n49
	Favort, J., 94n28
С	Fawcett, A. H., 94n18
Camiade, M., 128n9	Fee, S., 94n18
Chassaing, G., 94n28	Fiedler, S. L., 6n4, 431nn2, 7
Chittenden, R. A., 253n30	Folt, V. L., 128n4
Chrisman, R. W., 367nn17, 21	Forel, M., 128n9
Clark, J. W., 253nn7, 11, 33	Forneris, R., 94n14, 253n6
Clark, R.J.H., 95n42	Fouchea, H. A., 50n17
Coburn, W. C., Jr., 50n10	Francois, F., 253nn2, 8, 12, 13, 15, 34
Cole, K. C., 50n5	114110010, 11, 2331112, 0, 12, 13, 13, 31
Colthup, N. B., xvnn3, 10, 31n4, 94n4, 128n1, 254n49	
Corbridge, D.E.C., 254n46	G
Corset, J., 94n28	
Craver, C. D., 254n48	Gaufres, R., 95n42 Geisler, G., 94n15, 185n4
Cross, P. C., xvn2	George, W. O., 128n5
Crutchfield, M. M., 458n28	Gerding, H., 253n10
	Glockler, G., 128n19
	Goldman, G. K., 458n30
_	Goodfield, J. E., 128n5
D	Grasselli, J. G., xvn10, 31n15, 94n4, 128n1, 254n49
Daasch, L. W., 254n54	Griffiths, P. R., xvn8
Daly, L. H., xvn3, 31n4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Deady, L., 458n15	Gutowwsky, H. S., 253n3
Decius, J. C., xvn2	
de Haseth, J. A., xvn8	**
Delwaulle, M. L., 253nn2, 8, 12, 13, 15, 34	H
Detoni, S., 94n16	Hadzi, D., 94n16

Hallam, H. E., 128n8

610 Name Index

010	Name mucx
Ham, N. S., 50n12 Hanai, K., 94nn17, 30, 31, 34 Hanschmann, G., 94n15 Hasha, D. L., 50nn14, 17, 457n4, 458n9 Hellwege, K. H., 253nn5, 14 Herrail, F., 253n38 Herzberg, G., xvn1, 7n14, 50n15, 128n25, 254n45 Hirschmann, R. P., 50n8, 458n22 Hoffman, G. A., 50n17 Hoyer, H., 50n11	Leugers, M. A., xvn11, 31n5, 94nn9, 19, 95n39, 254n51, 367n13 Levin, J. W., 253n18 Liehr, A. D., 253n3 Limougi, J., 94n28 Lin-Vien, D., xvn10, 94n4, 128n1, 254n49 Little, T. S., 128n10 Lo, YS., 128nn16, 23, 431n10 Loy, B. R., 367nn17, 21 Lunn, W. H., 185n2 Luoma, D. A., 31nn13, 14, 50n13, 185n6, 431nn3, 8, 457n7, 458nn10, 37
I	
J Jeschek, G., 458nn12, 36 Jewett, G. L., 458n24 Johnson, A. L., 128n16 Joshi, M., 94n29 Joshi, U. C., 94n29 Joyner, P., 128n19	M Machida, K., 94nn17, 30, 31, 33 Maddams, W. F., 128n5 Malanga, M., 367n16 Mann, J. R., 70n16 Mark, V., 458n28 Martz, D. E., 94n13 Mavel, G., 458n27 Mayants, L. S., 70n15 McLachlan, R. D., 7n11, 128n11, 367n13 Mitsch, R. A., 50n6 Muelder, W. W., 69n10, 253nn21, 22, 24, 27, 35, 254n43,
K	367n5
Kabachnik, M. I., 70n15 Kagel, R. O., xvn12, 7n18, 69n2, 254n51, 367n9 Kalasinsky, V. J., 128n10 Kalinowski, H. O., 457n5 Kallos, G. J., 7nn9, 10, 128nn14, 15, 431n11 Kanesaki, I., 94n35 Karriker, J. M., 128n7 Katritzky, A. R., 458n15 Kawai, K., 94n35 Kesler, G., 185n4 Killingsworth, R. B., 50n3 King, S. T., 50n6, 254n47 Kirrman, A., 50n2 Kitaev, Yu. P., 50n4 Klaeboe, P., 31n6, 94n7 Kloster-Jensen, E., 31n6 Kniseley, R. N., 50n8, 458n22 Koster, D. F., 50n9	N Nakamoto, K., xvnn13, 14 Neely, W. B., 253n39 Newman, M. S., 31nn8, 9, 11 Nielsen, J. R., 185n3 Nivorozhkin, L. E., 50n4 Nyquist, R. A., xvnn5–7, 11, 12, 6nn2–4, 7nn7–13, 15, 16, 18, 19, 31nn1, 2, 5, 7, 12–14, 17, 50nn7, 13, 14, 16–19, 69nn1, 2, 4, 7, 70nn12–14, 16, 94nn1, 5, 6, 9–11, 19–27, 36, 95nn37, 39, 40, 43, 128nn2, 11–18, 22–24, 185nn1, 6–8, 253nn9, 16, 17, 21–27, 31, 32, 35–37, 39–41, 254nn42, 43, 47, 48, 50–52, 55, 367nn6, 7, 9, 11, 13–21, 431nn1–12, 457nn1, 2, 4, 6, 7, 458nn8–12, 17, 18, 24, 26, 29, 31, 34, 36–39
L Lagemann, R. T., 94n13 Landolt-Bornstein, I., 253nn5, 14 Lau, C. L., 367n10 Lehman, H., 458n30	O Ogden, P. H., 50n6 Ogilivie, J. F., 50n5 Okamoto, Y. J., 458n33 Okuda, T., 94nn30, 34 Osborne, D. W., 253n37 Overend, J., 50n6, 69n10, 128n21, 367n5 Owen, N. L., 7n20

P Paetzold, R., 94n8 Pan, C. Y., 185n3 Pauling, L., 458n32 Peters, T. L., 50n7 Peterson, D. P., 367n7 Platt, A. E., 367n18 Plegontov, S. A., 50n4 Polo, S. R., 253nn1, 4 Popov, E. M., 70n15 Potts, W. J., Jr., xvn4, 6n1, 254n50, 458n31 Priddy, D. B., 367n18 Puehl, C. W., 50n16, 253n26, 254n55, 431n3 Putzig, C. L., xvn11, 6n2, 7n7, 31n5, 50nn13, 14, 94nn9, 19, 95n39, 128n12, 254n51, 367nn7, 13, 17, 431nn8, 9, 458n9	T Taft, R. W., Jr., 185n10, 253n29, 367nn12, 22, 458n23 Takasuka, M., 458n16 Tanka, Y., 94nn32, 33 Tarte, P., 185n12 Tavares, Y., 94n14, 253n6 Thill, B., 367n13 Thomas, L. C., 253n30 Thompson, J. W., 128n18 Titova, S. Z., 50n4 Topsom, R. D., 185n11, 458n15 Tsubio, M., 254n44 U Unger, I., 253n39 Uno/Ubo, T., 94nn17, 30, 31
R Raevskii, O. A., 50n4 Rao, C.N.R., 458nn14, 30 Reder, T. L., 7nn9, 10, 128n14, 431n11 Reid, C., 50n15 Rey-Lafon, M., 128n9 Ronsch, E., 94n8 Rothschild, W. G., 128n6 Rouffi, C., 128n9	V Van Wazer, J. R., 458n28 Varsanyi, G., 367n1 Venkataraghavan, R., 458n14 Voelter, W., 458n35
Saito, T., 458n16 Saito, Y., 94nn32, 33 Scherer, J. R., 69nn9–11, 128n21, 367nn3–5 Schrader, B., 128 Schuetz, J. E., 367n19 Settineri, S. E., 31nn13, 14, 185nn6, 8, 431n12, 457n7 Shanks, R. A., 458n15 Sheppard, N., 7n20, 69n5 Shipman, J. J., 128n4 Simons, W. W., 69n3 Singh, R. N., 94n29 Skelly, N. E., 7n7, 128n12 Sloane, H. J., 94n36, 253n31 Smith, D. C., 185n3, 254n54 Snyder, R. G., 367n10 Socrates, G., xvn9 Sportouch, S., 95n42 Stammreich, H., 94n14, 253n6 Steaniak, L., 458nn19, 21, 25 Stec, F. F., 7n10, 128n15, 431n11 Stephenson, C. V., 50n10 Stojilykovic, A., 69n8	W Walkden, P., 94n18 Ward, G. R., 7n9, 128n14 Wass, M. N., 253nn22, 24 Webb, G. A., 458nn19, 21, 25 Wertz, D. M., 128n7 West, W., 50n3 Westrick, R., 253n10 Whiffen, D. H., 69n8 Wiberley, S. E., xvn3, 31n4 Wilcox, W. S., 50n10 Willis, J. B., 50n12 Wilson, E. B., Jr., xvn2 Wilson, M. K., 253nn1, 4 Winter, F., 128n20 Witanowski, M., 458nn19, 21, 25 Wood, J. M., Jr., 94n12 Wright, N., 367n2 Wurrey, C. J., 128n10 Wyckoff, R., 31n10
Streck, R., 458nn12, 36, 39	

A	Anisoles, 5–6, 23
Acetamide, dimethyl, 445, 493, 568	spectra structure correlations, 453-454, 542-546, 574.
Acetanilides, 4-x, 443, 477, 478, 562	575
Acetates, 456, 559, 579	Antisymmetric ring deformation, 2, 3, 11
Acetone, 445, 491, 492, 567	Aromatic ethers, 5-6, 22, 23
Acetonitrile, 28, 29, 32, 33, 35, 40	Aryl-O stretching, 241, 338
Acetophenones, 4-x, 444, 483-485, 564	Azines
Acrylates	aldehyde, 46
glycidyl, 4	benzaldehyde, 46, 57
spectra structure correlations, 456-457, 579	empirical structures, 45
Acrylonitrile, 27	Fermi resonance, 46
Aliphatic ethers, 5-6, 22, 23	inductive effect, 46
Aliphatic hydrocarbons, 426-427, 432	ketone, 46
Alkanedithiols, 66	
Alkanes	
dihaloalkanes, 123-124, 169	В
1-haloalkanes, 121-122, 166	Benzaldehydes
2-haloalkanes, 122, 167	azine, 46, 57
halocycloalkanes, 121, 123, 168	4-x, 443, 479–482, 563
nitro, 174-176, 186, 187, 206, 207, 208, 209,	Benzene-d6, 361, 421
447–448, 501–506	Benzenes
phosphonic bromide, O-isopropyl, 533	See also under type of
phosphonic dichloride, 530, 531	correlation chart, 366
phosphonic difluoide, 532, 541	hexachlorobenzene, 366, 423
phosphonothioic dichloride, 530, 531, 541	in- and out-of plane vibrations, 353
tetrabromoalkanes, 125, 170	infrared data and assignments, 361, 421
Alkanethiols	isotatic polystyrene, 355
C–S stretching, 66	mono-substituted, 362, 393, 394, 402, 422, 423
rotational conformers, 66	mono-substituted, spectra structure correlations, 454
S-S stretching, 65-66, 74, 76-77	547–551, 576
Alkanonitriles, 32	out-of-plane deformations, 362-366
Alkylamines, 448-449, 510-513, 571	pentabromophenyl ether, 361, 420
Alkyl isocyanates, 448, 507-509	pentachlorobiphenyl, 366, 423
Alkyl isonitriles, 447, 499, 500	potential energy distribution and ring modes,
Alkyl group	354
joined to sulfur, oxygen, or halogen, 68-69, 81-83	potential energy distribution and toluene, 355
vibrations and solvent effects, 250-251	quantitative analyses, use of, 356–358
Amides, styrene-acrylamide copolymer, 359, 387	styrene-4-methylstyrene copolymer, 355–358, 381,
Amines, alkyl, 448–449, 510–513, 571	382
Anhydrides, 428, 434	toluene, 353, 355
maleic, 446, 494, 569	Benzenes, disubstituted (out-of-plane hydrogen
Anilines	deformations)
4-x-, 441–442, 459–473, 560	1,2-, 363–364, 393, 395, 402, 423
Nyquist rule, 427–428, 433	1,3-, 364, 393, 396, 402, 423
sulfinyl, 93, 117	1,4-, 364, 393, 397, 402, 423

Benzenes, disubstituted (Raman data and vibrations) 1,2-, Raman data and vibrations, 360, 419	Cyclic ethers, 5, 21
1,3-, Raman data and vibrations, 361, 419	
1,4-, Raman data and vibrations, 361, 420	D
Benzenes, pentasubstituted (out-of-plane hydrogen	Dialkyl cyanamides, 31
deformations), 366, 393, 401, 402, 423	Dialkylketones, 455-456, 557, 558, 578
Benzenes, tetrasubstituted (out-of-plane hydrogen	steric factor, 456
deformations)	Dielectric constants, 86
1,2,3,4-, 365, 393, 400, 402, 423	Diffuse reflectance infrared Fourier transform. See
1,2,3,5-, 365, 393, 400, 402, 423	DRIFT
1,2,4,5-, 365, 393, 401, 402, 423	Dimethylacetamide, 445, 493, 568
Benzenes, trisubstituted (out-of-plane hydrogen	Dimethyl ether, 5
deformations)	Dimethyl sulfoxide, 29
1,2,3-, 364–365, 393, 399, 402, 423	1,4-diphenylbutadiyne, 429-430, 435
1,2,4-, 365, 393, 399, 402, 423	Dipolar interaction, 3, 28
1,3,5-, 364, 393, 398, 402, 423	Disulfides
Benzenethiols, 66, 74, 79	alkane, 66–67, 76–77, 78
chlorobenzenethiol, 67-68, 79	dialkyl, aryl alkyl, and diaryl, 67
Benzoates, alkyl 3-x and 4-x, 444, 489, 566	DRIFT (diffuse reflectance infrared Fourier transform)
Benzoic acids, 3-x and 4-x, 442-443, 474-476, 561	technique, 353, 354
Benzonitriles, 27, 29, 34, 40	
3-x and 4-x, 446, 495-497, 570	
Benzophenones, 444, 486-488, 565	E
Benzoquinones, 428, 434	Epibromohydrin, 3
Benzyl alcohol, 361, 421	Epichlorohydrin, 3
Benzyl-2,3,4,5,6-d5 alcohol, 361, 421	Epihalohydrins, 3, 17
Biphenyls	Epoxides, 1–4
chlorinated, spectra structure correlations, 454, 552,	Epoxyalkanes, 2, 4
577	Epoxybutane, 3, 12
decabromo, 361, 420	Epoxypropane, 125–126, 171
diffuse reflectance, 354	Ethers
polychloro, 353–355	aliphatic and aromatic, 5-6, 22, 23
Bromodichlorobenzenes, 360, 418	cyclic, 5, 21
Butyl halides, tertiary, 122–125, 167	glycidyl, 4
	pentabromophenyl, 361
	vinyl, 6, 24–26
C	Ethylene oxide, 1–2, 8, 15
Carbodiimides, dialkyl and diaryl, 50, 63	tetrachloro, 3
Carboxylic acid, styrene-acrylic acid copolymer,	trans, 3, 12
358–359, 385	Ethylenes, 125-126, 171
C–C mode for C_2H_5OP group, 251	chloro- (vinyl chloride), 125, 126
C-D mode for CDCl ₃ and CCl ₄ solutions, 252, 316,	fluoro- (vinyl fluoride), 125
317, 359–360	tetrahalo-, 126
$CD_3 - PO_3^{2-}, 247 - 248, 349$	trichloro-, 126
Chlorobenzenethiol, 67–68, 79	Ethyl nitrates, 183, 225
C–H mode, 359–360	Ethynylbenzene, 359–360, 389, 390, 391
C=O group, summary of, 444–445, 490, 567	out-of-plane hydrogen deformations, 363
COP group, 251–252	Ethynylbenzene-d, 359-360, 389, 390, 391
C-O-P stretching, 241, 334–337	
C–P stretching, vC–P, 241–242, 338	
C–S stretching, alkanethiols, 66	F
Cyanamides, dialkyl, 31	Fermi resonance
Cyanobenzaldehyde, 29–30, 36, 41	acetonitrile, 29
Cyanogen halides, 28, 39	azines, 46

carbodiimides, 50	phosphoramidates, 247
isocyanates, 47, 51	P=O stretching, 249
isothiocyanates, 49	styrene-acrylic acid copolymer, 358-359
nitroalkanes, 174	sulfonamides, 89
nitrobenzenes, 177, 182	trimethyl phosphate, 249–250
nitropropane, 175	Hydrogen bonding, intramolecular
styrene-acrylic acid copolymer, 358	benzenethiols, 66
Field effects	nitrile, 30
correction, 49	2-X-nitrobenzenes, 180
N,N-dimethylacetamide, 445	phosphorodithioates, 68
isocyanates, 47	secondary sulfonamides, 90
nitrile, 30	sulfonyl fluorides, 91–92, 115
out-of-plane ring deformations, 252	Hydrogen phosphonate, 528–529
solvent system and P=O stretching, 248–249	dialkyl and diphenyl, 240–241, 333
1-Fluoro-2,4,5-trichlorobenzene, 345	Hydrogen phosphonthioate, 528, 529
1-1 tuoto 2,1,5 tremorobenzene, 375	Tydrogen phosphonanoue, 520, 525
G	I
Glycidyl acrylate, 4	Imides, 428, 434
Glycidyl ethers, 4	Inductive effects
	alkyl nitriles, 28
	alkyl nitrites, 184
H	azines, 46
1-haloalkanes, 121-122, 166	carbodiimides, 50
2-haloalkanes, 122, 167	cyanogen halides, 28
Halogen, alkyl groups joined to, 68-69, 81-83	isocyanates, 47
Halogenated hydrocarbons	isothiocyanates, 49
ethylene, propyne, epoxypropane, and propadiene,	nitroalkanes, 174
125–126, 171	P-NHR, 244
1-haloalkanes, 121-122, 166	sulfonamides, seconary, 90
2-haloalkanes, 122, 167	sulfoxides, 86
halopropadienes, 127	Infrared spectra
methanes, 120-121, 127, 164	1-bromo-1-chloroethylene, 155
tertiary butyl halides, 122-125, 167	1-bromopropadiene, 157
Halopropadienes, 127, 429-430, 435	1-bromopropadiene-1-d, 158
Hammett $\sigma_{\rm p}$ values, 182	1-bromopropyne, 154
Hexachlorobenzene, 366, 423	3-bromopropyne, 144
Hydantoins, 428-429, 435	3-bromopropyne-1-d, 149
Hydrogen bonding, intermolecular	bromotrichloromethane, 140
alkanethiols, 65, 66	n-butyl nitrite, 201
anhydrides, 428	carbon tetrachloride, 136
anilines, 427–428	1-chloropropadiene, 156
benzoquinones, 428	3-chloropropyne, 144
N,N-dimethylacetamide, 445	3-chloropropyne-1-d, 146, 147
1,4-diphenylbutadiyne, 429–430	chlorotrifluoromethane (Freon-13), 137
1-halopropadiene, 429–430, 435	1,3-dibromopropyne, 153
hydantoins, 429	1,1-dichloro-2,2-difluoroethylene, 162
hydrogenphosphonate, dialkyl and diphenyl, 240–241	dichlorodifluoromethane (Freon-12), 138
imides, 428	1,2-dichloroethane (ethylene dichloride), 141
methyl phenyl sulfone, 92–93	1,3-dichloropropyne, 151, 152
nitrobenzaldehyde, 178–179	diethyl deuterophosphonate, 275
nitrobenzenes, 178, 181, 430	diethyl hydrogenphosphonate, 275
O-alkyl O-aryl N-methylphosphor amidate and	dimethyl deuterophosphonate, 274
, , , , , , , , , , , , , , , , , , , ,	dimethyl deuterophosphonate, 274 dimethyl hydrogenphosphonate, 274
N-methylphosphor amidothioate, 244	unnetnyt nyurogenphosphonate, 274

Infrared spectra (continued) O,O-dimethyl O-(2,4,5-trichlorophenyl) phosphate, disodium methane-d3-phosphonate, 293, 294, 295 disodium methanephosphonate, 293, 294, 295 O,O-dimethyl O-(2,4,5-trichlorophenyl) disodium n-octadecanephosphonate, 296 phosphorothioate, 291 O,O-dimethyl phosphorochloridothioate, 236-237, ethylene oxide, 1, 8 ethyl nitrate, 200 266, 268, 273 O,O-dimethyl phosphorodithioic acid, 273 ethynylbenzene, 389, 390, 391 ethynylbenzene-d, 389, 390, 391 2,2',3,4',5-pentachlorobiphenyl, 373 2,2',3,4,5'-pentachlorobiphenyl, 375 3-fluoropropyne, 144 halopropenes, 142, 143 2,2',3',4,5-pentachlorobiphenyl, 371 2,2',3,4,6-pentachlorobiphenyl, 369 1-iodopropadiene, 157 1-iodopropyne, 155 2,2',3,4',6-pentachlorobiphenyl, 372 3-iodopropyne, 145 2,2',3,5,5'-pentachlorobiphenyl, 374 methyl bromide, 130 2,2',3,5',6-pentachlorobiphenyl, 373 2,2',4,4',5-pentachlorobiphenyl, 374 methyl chloride, 129 methylene bromide, 133 2,2',4,5,5'-pentachlorobiphenyl, 375 methylene chloride, 132 2,2',4,6,6'-pentachlorobiphenyl, 371 methyl iodide, 131 2,3,4,4',6-pentachlorobiphenyl, 370 methyl (methylthio) mercury, 72 2,3',4,4',6-pentachlorobiphenyl, 372 nitromethane, 188 2,3,4,5,6-pentachlorobiphenyl, 368 2,3',4,5',6-pentachlorobiphenyl, 370 2-nitropropane, 189 N-D, N-methyl phosphoramidodi chloridothioate, phosphonic dibromide (bromomethyl), 279 phosphonic dichloride (chloromethyl), 277, 278, 279 282, 283 N-methyl-d₃ phosphoramidodichlorido thioate, 281 phosphorodithioates, 68, 71 N-methyl phosphoramidodichlorido thioate, 280 phosphoryl chloride, 257 O-alkyl N,N'-diaryl phosphordiamido thioate, 285 potassium dimethylphosphinate, 298 O-alkyl O-aryl N-alkylphosphoramido thioate, 285 propylene oxide, 2, 9 S-methyl phosphorodichloridothioate, 239, 269, 331 O-alkyl O-aryl phosphoramidothioate, 286 O-alkyl O-aryl N-methylphosphor amidate, 283 sodium diheptylphosphinate, 300 O-alkyl O-aryl N-methylphosphoramido thioate, 283 sodium dimethylphosphinate, 297, 298 O-ethyl-1,1-d2 phosphorodichlorido thioate, 236, sodium dioctylphosphinate, 300 styrene-acrylamide copolymer, 387 O-ethyl-2,2,2-d₃ phosphorodichlorido thioate, 236, styrene-acrylic acid copolymer, 385 styrene-2-isopropenyl-2-oxazoline copolymer, 388 O-ethyl phosphorodichloridothioate, 236, 263 styrene-4-methylstyrene copolymer, 381, 382 syndiotactic polystyrene, 378, 379, 380 O-methyl-d₃ phosphorodichlorido-thioate, 259, 261 O-methyl phosphorodichloridothioate, 236, 259, 260 tetrafluoroethylene, 160 O,O-dialkyl phosphoramidothioate, 286 tetrafluoromethane, 135 O,O-diethyl N-methyl phosphoramido thioate, 289 tetrahydrofuran, 5, 14 O,O-diethyl N-methyl phosphoramido thioate N-d, thiophosphoryl dichloride fluoride, 255, 256 trans-1,2-dimethyl ethylene oxide, 3, 12 2,2',3-trichlorobiphenyl, 368 O,O-diethyl phosphoramidothioate, 288 O,O-diethyl phosphoramidothioate N-d2, 288 2',3,4-trichlorobiphenyl, 369 O,O-diethyl phosphorodithioic acid, 273 trichloroethylene, 161 O,O-dimethyl-d₆ O-(2,4,5-trichlorophenyl) trichlorofluoromethane (Freon-11), 139 phosphate, 292 trichloromethane, 134 1,1,2-trichloro-1,2,2-trifluoroethane, 163 O,O-dimethyl-d₆ O-(2,4,5-trichloro phenyl) phosphorothioate, 292 trimethyl phosphite, 271, 272 O,O-dimethyl-d₆ phosphorochlorido thioate, 267, Infrared spectra structure correlations acetamide, dimethyl, 445, 493, 568 acetanilides, 4-x, 443, 477, 478, 562 O,O-dimethyl methylphosphoramido thioate, 287 O,O-dimethyl methylphosphoramido thioate N-d₂, acetone, 445, 491, 492, 567 acetophenones, 4-x, 444, 483-485, 564 O,O-dimethyl N-methyl phosphoramido thioate, 290 acrylates, 456-457, 579

· ·	
amines, alkyl, 448-449, 510-513, 571	$(NO_2)_4$, 176–177
anisoles, 453-454, 542-546, 574, 575	Raman data for, 184, 227
benzaldehydes, 4-x, 443, 479-482, 563	spectra-structure correlations, 447-448, 501-506
benzenes, mono-substituted, 454, 547-551, 576	trans and gauche conformers, 175
benzoates, alkyl 3-x and 4-x, 444, 489, 566	vapor versus liquid-phase data, 176
benzoic acids, 3-x and 4-x, 442-443, 474-476, 561	Nitrobenzaldehyde, 178-179, 214
benzonitriles, 3-x and 4-x, 446, 495-497, 570	Nitrobenzenes, 177-178, 209-213, 215, 221-222
benzophenones, 444, 486-488, 565	band intensity ratios, 180
isocyanates, 448, 507–509	ethyl nitrates versus, 183, 225
maleic anhydride, 446, 494, 569	Hammett σ_p values, 182
methacrylates, 456-457, 579	intermolecular hydrogen bonding, 178, 430
organonitriles, 446-447, 498, 570	non-coplanar, 181
phosphates, trialkyl, 521, 522, 523, 539, 572	Nyquist rule, 430, 436
phosphoramidates, 538	Raman data for, 184, 228
phosphorodichloridate, monoalkyl, 537	solvent effects on NO ₂ , 181
tetramethylurea (TMU), 454–455, 553	2-X-, 180–181, 218, 219
Isocyanates, alkyl and aryl, 46-49, 51, 52, 53, 54, 58, 59,	3-X-, 179–180, 216, 217
60, 448, 507–509	4-X-, 181–182, 220, 223
Isonitriles, 37, 38	Nitrogen compounds, summary of correlations, 449–450
alkyl, 30, 447, 499, 500	Nitrosamines, 185, 230
Isothiocyanates, alkyl and aryl, 49–50, 54, 55, 56, 61–62	NMR spectra structure correlations
,	acetamide, dimethyl, 445, 493, 568
	acetanilides, 4-x, 443, 477, 478, 562
K	acetates, 456, 559, 579
Ketones, dialkyl, 455–456, 557, 558, 578	acetone, 445, 491, 492, 567
steric factor, 456	acetophenones, 4-x, 444, 483-485, 564
,	acrylates, 456-457, 579
	alkyl isonitriles, 447, 499, 500
M	amines, alkyl, 448-449, 510-513, 571
Maleic anhydride, 446, 494, 569	anilines, 3-x and 4-x, 441-442, 459-473, 560
Methanes, 120-121, 127, 164	anisoles, 453-454, 542-546, 574, 575
tetra, 120, 164	benzaldehydes, 4-x, 443, 479-482, 563
tri, 120, 164	benzenes, mono-substituted, 454, 547-551, 576
Methyl halides, 120	benzoates, alkyl 3-x and 4-x, 444, 489, 566
Methyl (methylthio) mercury, 69, 72, 73	benzoic acids, 3-x and 4-x, 442-443, 474-476, 561
	benzonitriles, 3-x and 4-x, 446, 495-497, 570
	benzophenones, 444, 486-488, 565
N	biphenyls, chlorinated, 454, 552, 577
NH ₂ stretching, 359	hydrogen phosphonates, 528-529
Nitrates	isocyanates, 448, 507-509
alkyl, 182–183, 224	isonitriles, 447, 499, 500
ethyl, 183, 225	ketones, dialkyl, 455-456, 557, 558, 578
Nitriles, 27–30, 39	maleic anhydride, 446, 494, 569
acetonitrile, 28, 29, 32, 33, 35, 40	methacrylates, 456-457, 579
benzonitrile, 27, 29, 34, 40, 446, 495-497, 570	nitroalkanes, 447-448, 501-506
field effect, 30	organonitriles, 446-447, 498, 570
Hammett σ values, 30	phosphates, trialkyl, 521, 522, 523, 539, 572
intramolecular hydrogen bonding, 30	phosphine oxides, trialkyl, 519, 520, 572
isonitriles, 30, 37, 38, 447, 499, 500	phosphines, dialkyl, 517, 518
organonitriles, 30, 42, 446-447, 498, 570	phosphines, monoalkyl, 518
Nitrites, alkyl, 183–184, 226	phosphines, trialkyl, 515, 516, 517, 518
Nitroalkanes, 174-176, 186, 187, 206-209	phosphonates, 526–529
empirical correlations, 174	phosphonic bromide, alkane O-isopropyl, 533
ethyl nitrates versus, 183, 225	phosphonic dichloride, alkane, 530, 531
•	

NMR spectra structure correlations (continued)	sodium dialkyl, 248, 350
phosphonic difluoide, alkane, 532, 541	sodium dimethyl, 248, 350
phosphonothioic dichloride, alkane, 530, 531, 541	Phosphine oxides, trialkyl, 519, 520, 572
phosphoroselenates, trialkyl, 525, 540, 572	Phosphines
phosphorothioates, trialkyl, 524, 539, 540, 572	dialkyl, 517, 518
tetramethylurea (TMU), 454–455, 552–556, 577, 578	monoalkyl, 518
thiophosphonothioic dichloride, alkane, 530, 531, 541	trialkyl, 515, 516, 517, 518
N=S=O, 93	Phosphites
Nyquist Frequency, defined, 425	dialkyl chloro, 534, 535
Nyquist Vibrational Group Frequency Rule	monoalkyl dichloro, 534
aliphatic hydrocarbons, 426–427, 432	trialkyl, 534
anhydrides, 428, 434	•
_*	trimethyl, 240, 271, 272, 331, 332
anilines, 427–428, 433	Phosphonates, 526–529
benzoquinones, 428, 434	hydrogen, 528, 529
CH ₂ X ₂ , 120	Phosphonthioate, hydrogen, 528, 529
defined, 425–426	Phosphoramidates
1,4-diphenylbutadiyne, 429–430, 435	O-alkyl O-aryl N-methyl, 243–244, 283
1-halopropadiene, 429-430, 435	O-methyl O-(2,4,5-trichlorophenyl) N-alkyl, 245,
hydantoins, 428–429, 435	341
imides, 428, 434	O,O-diethyl N-alkyl, 247, 349
nitrobenzenes, 430, 436	spectra structure correlations, 538
SO ₂ vibrations 87, 88, 89, 92–93, 426	Phosphoramidodichloridothioate, N-alkyl, 245, 343
sulfates, 430–431, 437	Phosphoramidothioates
sulfonates, 430-431, 437	O-alkyl O-aryl N-methyl, 243–244, 283
sulfones, 430–431, 437	primary, $P(=S)NH_2$, 244, 245, 340
sulfonyl chloride, 430-431, 437	Phosphorochloridothioate, O,O-dialkyl, 246, 346
	Phosphorodichloridate, monoalkyl, 537
O	Phosphorodichloridothioate
	O-alkyl, 247, 348
Organoisothiocyanates, 62	O-ethyl, 236, 263
Organonitriles, 30, 42, 446–447, 498, 570	O-ethyl-1,1-d ₂ , 236, 264
Organophosphorus compounds, 450–452, 515, 516,	O-ethyl-2,2,2-d ₃ , 236, 265
541, 571, 572–573	O-methyl, 236, 259, 260
Organophosphorus halides, phosphorus halogen	O,O-dimethyl, 236-237, 266, 268, 273
stretching for, 235, 321	S-alkyl, 247, 348
Organothiocyanates, 31, 43	S-methyl, 239, 269, 331
Oxirane, 4, 13, 20	Phosphorodithioates, 68, 71, 80
Oxygen, alkyl groups joined to, 68-69, 81-83	Phosphoroselenates, trialkyl, 525, 540, 572
	Phosphorothioates
P	O,O-dimethyl O-(2,4,5-trichlorophenyl), 245–246
PCl ₃ and PCl ₂ vibrations, 250	344, 345
P–Cl stretching, 237, 323	O,O,O-trialkyl, 246, 346, 524, 539, 540, 572
Pentabromophenyl ether, 361, 420	Phosphorus compounds
Pentachlorobiphenyl, 366, 423	absorbance ratios, 250
Phenetole, 5	alkyl group vibrations, 250–251
Phenoxarsine derivatives	applications, 233
	C-C mode for C_2H_5OP group, 251
P=O and P=S stretching for, 238–239, 327	C–D mode for CDCl ₃ and CCl ₄ solutions, 252
sulfate and thiosulfate, 88–89, 109, 110	$CD_3 - PO_3^{2-1}$, 247–248, 349
Phenylacetylene. See Ethynylbenzene	
Phosphates	$CH_3 - PO_3^{2-1}$, 247–248, 349
trialkyl, 521, 522, 523, 539, 572	$(CH_3)_2 - PO_2^1$, 248, 297, 298, 350
trimethyl, 240, 331	containing P–NH-R groups, 242–243, 339
Phosphinate	COP group, 251–252
potassium, 248, 350	C-O-P stretching, 241, 334-337

C-P stretching, vC-P, 241-242, 338	Q
halogen, 234–235, 318 halogen stretching for organo phosphorus halides,	Quantitative analyses, use of, 356–358
235, 321	
PCl ₃ and PCl ₂ vibrations, 250	R
P-Cl stretching, 237, 323	Raman spectra
PNHR and PNH ₂ , 245, 342	1-bromo-1-chloroethylene, 156
P=O stretching, vP=O, 237–238, 239, 240–241, 325,	1-bromopropadiene-1-d, 159
326, 327	3-bromopropyne-1-d, 150
$P(=S)NH_2$, 244, 245, 340	3-chloropropyne-1-d, 148
P–S stretching, 240	dimethyl hydrogenphosphonate, 276
P=S stretching, vP=S, 238–239, 240, 327, 329–330	ethynylbenzene, 392
PX coupling, 234–235	ethynylbenzene-d, 392
PX stretching, 234	methyl (methylthio) mercury, 73
rotational conformers, 235-243, 246, 249-250,	S-methyl phosphorodichloridothioate, 270
251–252	sodium dimethylphosphinate, 299
S–H stretching, 240	Reaction field (RF), 3
solvent effects, 248-250, 301, 304-307	benzenes, 362
summary of correlations, 452-453	defined, 86
Phosphorus oxyhalides, analysis of, 239	Reflectance, diffuse. See DRIFT (diffuse reflectance
P-NH-R groups, 242-243, 339	infrared Fourier transform)
$P(-O-C)_3$, 240	Refractive indices, 86
Polychlorobiphenyls, 353–355	Resonance. See Fermi resonance
Polystyrene	Ring breathing, 2–3, 10
out-of-plane hydrogen deformations, 362–363	Ring formation, ethylene oxide, 1–2
styrene-acrylamide copolymer, 359, 387	Rotational conformers
styrene-acrylic acid copolymer, 358–359, 385	alkanethiols, 66
styrene/2-isopropenyl-2-oxazoline copolymer (SIPO),	$ClCH_2P(=O)Cl_2$, 242
359–360, 388	dialkyl sulfides, 67
styrene-4-methylstyrene copolymer, 355–358, 381,	1-haloalkanes, 121–122, 166
382	2-haloalkanes, 122, 167
syndiotatic, 355, 362	phosphorodithioates, 68, 80
P=O stretching, vP=O	phosphorus compounds, 235–243, 246, 249–250,
in different physical phases, 237, 326	251–252
for hydrogenphosphonate, dialkyl and diphenyl,	P=O conformers for O-methyl
240–241, 333	phosphorodichloridate, 249, 302
for O,O-dimethyl O-(2-chloro 4-X-phenyl) phosphate, 238, 326	$(RO)_2 P(=S)SH, 240$
for phenoxarsine derivatives, 238–239, 327	
for phosphorus compounds, 237–238, 325, 326, 327	S
predicting frequencies, 238, 327	S–H stretching, 240
solvent effects, 248–250, 304–307	alkanethiols, 65-66, 74, 76-77
versus P=S, 239, 328	benzenethiols, 66, 74, 79
Propadiene analogs, 125–126, 171	phosphorodithioates, 68, 80
halo, 127	Solvent effects, phosphorus compounds and, 248-250,
Propenes, 4, 19	301, 304–307
Propylene oxide, 2, 9	S=O stretching
Propynes, 4, 19, 125–126, 171	frequencies, 86-87, 96, 104
P(=S)NH ₂ , 244, 245, 340	summary of, 92, 116–117
P–S stretching, 240	SO ₂ stretching
P=S stretching, vP=S, 240	calculated, 93
for phenoxarsine derivatives, 238–239, 327	correlations, 92
for phosphorus compounds, 239, 329–330	frequencies, 87, 105–106
versus P=O, 239, 328	summary of, 92, 116–117

SO ₂ stretching (continued)	phosphoramidates, 538
vibrations, 87, 88, 89, 92–93	phosphorodichloridate, monoalkyl, 537
Spectra-structure correlations	phosphoroselenates, trialkyl, 525, 540, 572
acetamide, dimethyl, 445, 493, 568	phosphorothioates, trialkyl, 524, 539, 540, 572
acetanilides, 4-x, 443, 477, 478, 562	phosphorus compounds summary of correlations,
acetates, 456, 559, 579	452–453, 534
acetones, 445, 491, 492, 567	physical phases, 490
acetophenones, 4-x, 444, 483–485, 564	role of, 441
acrylates, 456–457, 579	tetramethylurea (TMU), 454–455, 552–556, 577,
alkane phosphonic bromide, O-isopropyl, 533	578
alkane phosphonic dichloride, 530, 531	
- ·	thiophosphonates, 528, 529
alkane phosphonic diffuoide, 532, 541	thiophosphonothioic dichloride, alkane, 530, 531,
alkane phosphonothioic dichloride, 530, 531, 541	541
alkylamines, 448–449, 510–513, 571	Steric factor
alkyl isocyanates, 448, 507–509	alkanethiols, 66
alkyl isonitriles, 447, 499, 500	alkyl nitriles, 28
amines, 448–449, 510–513, 571	alkyl nitrites, 183
anilines, 3-x and 4-x, 441–442, 459–473, 560	cyanogen halides, 28
anisoles, 453–454, 542–546, 574, 575	dialkyl sulfoxides, 86
benzaldehydes, 4-x, 443, 479-482, 563	isocyanates, 48
benzenes, mono-substituted, 454, 547-551, 576	ketones, 456
benzoates, alkyl 3-x and 4-x, 444, 489, 566	P=O stretching, 249
benzoic acids, 3-x and 4-x, 442-443, 474-476, 561	sulfonamides, 89
benzonitriles, 3-x and 4-x, 446, 495-497, 570	Styrene-acrylamide copolymer, 359, 387
benzophenones, 444, 486-488, 565	Styrene-acrylic acid copolymer, 358-359, 385
biphenyls, chlorinated, 454, 552, 577	Styrene/2-isopropenyl-2-oxazoline copolymer (SIPO),
C=O group, summary of, 444-445, 490, 567	359–360, 388
dialkylketones, 455-456, 557, 558, 578	Styrene-4-methylstyrene copolymer, 355–358, 381, 382
dimethylacetamide, 445, 493, 568	Styrene oxide, 2–3, 10, 11
hydrogen phosphonates, 528, 529	dichloro-, 3
hydrogen phosphonthioate, 528, 529	Sulfates
isocyanates, 448, 507–509	Nyquist rule, 430–431, 437
isonitriles, 447, 499, 500	phenoxarsine derivatives, 88-89, 109, 110
maleic anhydride, 446, 494, 569	Sulfides
methacrylates, 456-457, 579	alkane, 66-67, 76-77
nitroalkanes, 447–448, 501–506	dialkyl, 67, 78
nitrogen compounds, summary of correlations,	Sulfinyl anilines, 93, 117
449–450	Sulfites, dialkyl, 89, 111
organonitriles, 446–447, 498, 570	Sulfonamides
organophosphorus compounds, 450–452, 515,	primary, 89–90, 111, 112
516,–541, 571, 572–573	secondary and tertiary, 90, 112
phosphates, trialkyl, 521, 522, 523, 539, 572	Sulfonates, organic, 91, 113
phosphine oxides, trialkyl, 519, 520, 572	Nyquist rule, 430–431, 437
phosphines, dialkyl, 517, 518	Sulfones
· · · · · · · · · · · · · · · · · · ·	
phosphines, monoalkyl, 518	dialkyl, 87–88, 107, 108
phosphines, trialkyl, 515, 516, 517, 518	diaryl, 88, 109
phosphites, dialkyl chloro, 534, 535	Nyquist rule, 430–431, 437
phosphites, monoalkyl dichloro, 534	Sulfonyl chlorides, 91, 114
phosphites, trialkyl, 534	Nyquist rule, 430–431, 437
phosphonates, 526–529	Sulfonyl fluorides, 91–92, 115
phosphonic bromide, alkane O-isopropyl, 533	Sulfoxides, dimethyl, 87–88, 107, 108
phosphonic dichloride, alkane, 530, 531	reaction field, 86
phosphonic difluoide, alkane, 532, 541	Sulfur, alkyl groups joined to, 68-69, 81-83
phosphopothioic dichloride alkane 530 531 541	Symmetric ring deformation 2 3 10

 \mathbf{T} benzenethiols, 66, 74, 79 Temperature effects chlorobenzenethiol, 67-68, 79 chloromethyl phosphonic dichloride, 242 Thiosulfates, phenoxarsine derivatives, 88-89, isotatic polystyrene, 355 109, 110 O-methyl phosphorodichloridothioate, 236 Toluene, 353, 355 phosphorodithioates, 68 2,4,5-trichlorophenyl, 245-246, 344, 345 styrene-acrylamide copolymer, 359, 387 Trihalomethane, 120, 164 styrene-acrylic acid copolymer, 358-359, 385 Tetrachloroethylene oxide, 3 Tetrahalomethane, 120, 164 \mathbf{U} Tetrahydrofuran, 5, 14 Urea, tetramethyl (TMU), 454-455, 552-556, 577, 578 Tetramethylurea (TMU), 454-455, 552-556, 577, 578 Tetranitromethane, 176-177 Thiocyanates, 31 Thiols See also Alkanethiols Vinyl ethers, 6, 24-26