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PREFACE

Nuclear magnetic resonance (NMR) is a technique for determining the structure of organic
molecules and biomolecules in solution. The covalent structure (what atoms are bonded to
what), the stereochemistry (relative orientation of groups in space), and the conformation
(preferred bond rotations or folding in three dimensions) are available by techniques that
measure direct distances (between hydrogens) and bond dihedral angles. Specific NMR
signals can be identified and assigned to each hydrogen (and/or carbon, nitrogen) in the
molecule.

You may have seen or been inside an MRI (magnetic resonance imaging) instrument,
a medical tool that creates detailed images (or “slices”) of the patient without ionizing
radiation. The NMR spectroscopy magnet is just a scaled-down version of this huge clinical
magnet, rotated by 90◦ so that the “bore” (the hole that the patient gets into) is vertical and
typically only 5 cm (2 in.) in diameter. Another technique, solid-state NMR, deals with solid
(powdered) samples and gives information similar to solution NMR. This book is limited
to solution-state NMR and will not cover the fields of NMR imaging and solid-state NMR,
even though the theoretical tools developed here can be applied to these fields.

NMR takes advantage of the magnetic properties of the nucleus to sense the proximity
of electronegative atoms, double bonds, and other magnetic nuclei nearby in the molecular
structure. About one half of a micromole of a pure molecule in 0.5 mL of solvent is required
for this nondestructive test. Precise structural information down to each atom and bond in the
molecule can be obtained, information rivaled only by X-ray crystallography. Because the
measurement can be made in aqueous solution, we can also study the effects of temperature,
pH, and interactions with ligands and other biomolecules. Uniform labeling (13C, 15N)
permits the study of large biomolecules, such as proteins and nucleic acids, up to 30 kD
and beyond.

Compared to other analytical techniques, NMR is quite insensitive. For molecules of the
size of most drugs and natural products (100–600 Da), about a milligram of pure material
is required, compared to less than 1 μg for mass spectrometry. The intensity of NMR
signals is directly proportional to concentration, so NMR “sees all” and “tells all,” even

xi
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giving multiple signals for stereoisomers or slowly interconverting conformations. This
complexity is very rich in information, but it makes mixtures very difficult to analyze.
Finally, the NMR instrument is quite expensive (from US $200,000 to more than $5 million
depending on the magnet strength) and can only analyze one sample at a time, with some
experiments requiring a few minutes and the most complex ones requiring up to 4 days to
acquire the data. But used in concert with complementary analytical techniques, such as
light spectroscopy and mass spectrometry, NMR is the most powerful tool by far for the
determination of organic structure. Only X-ray crystallography can give a comparable kind
of detailed information on the precise location of atoms and bonds within a molecule.

The kind of information NMR gives is always “local”: The world is viewed from the
point of view of one atom in a molecule, and it is a very myopic view indeed: This atom
can “see” only about 5 Å or three bonds away (a typical C–H bond is about 1 Å or 0.1 nm
long). But the point of view can be moved around so that we “see” the world from each
atom in the molecule in turn, as if we could carry a weak flashlight around in a dark room
and try to put together a picture of the whole room. The information obtained is always
coded and requires a complex (but very satisfying) puzzle-solving exercise to decode it and
produce a three-dimensional model of a molecule. In this sense, NMR does not produce
a direct “picture” of the molecule like an electron microscope or an electron density map
obtained from X-ray crystallography. The NMR data are a set of relationships among the
atoms of the molecule, relationships of proximity either directly through space or along
the bonding network of the molecule. With a knowledge of these relationships, we can
construct an unambiguous model of the molecular structure. To an organic chemist trained
in the interpretation of NMR data, this process of inference can be so rapid and unconscious
that the researcher really “sees” the molecule in the NMR spectrum. For a biochemist or
molecular biologist, the data are much more complex and the structural information emerges
slowly through a process of computer-aided data analysis.

The goal of this book is to develop in the reader a real understanding of NMR and how
it works. Many people who use NMR have no idea what the instrument does or how the
experiments manipulate the nuclei of the molecule to reveal structural information. Because
NMR is a technique involving the physics of magnetism and superconductivity, radio fre-
quency electronics, digital data processing, and quantum mechanics of nuclear spins, many
researchers are understandably intimidated and wish only to know “which button to push.”
Although a simple list of instructions and an understanding of data interpretation are enough
for many people, this book attempts to go deeper without getting buried in technical details
and physical and mathematical formalism. It is my belief that with a relatively simple set of
theoretical tools, learned by hands-on problem solving and experience, the organic chemist
or biologist can master all of the modern NMR techniques with a solid understanding of
how they work and what needs to be adjusted or optimized to get the most out of these
techniques.

In this book we will start with a very primitive model of the NMR experiment, and explain
the simplest NMR techniques using this model. As the techniques become more complex
and powerful, we will need to expand this model one step at a time, each time avoiding
formal physics and quantum mechanics as much as possible and instead relying on analogy
and common sense. Necessarily, as the model becomes more sophisticated, the comfortable
physical analogies become fewer, and we have to rely more on symbols and math. With lots
of examples and frequent reminders of what the practical result (NMR spectrum) would be
at each stage of the process, these symbols become familiar and useful tools. To understand
NMR one only needs to look at the interaction of at most two nearby nuclei in a molecule,
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so the theory will not be developed beyond this simplest of relationships. By the end of
this book, you should be able to read the literature of new NMR experiments and be able
to understand even the most complex biological NMR techniques. My goal is to make this
rich literature accessible to the “masses” of researchers who are not experts in physics
or physical chemistry. My hope is that this understanding, like all deep understanding of
science, will be satisfying and rewarding and, in a research environment, empowering.
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1
FUNDAMENTALS OF NMR
SPECTROSCOPY IN LIQUIDS

1.1 INTRODUCTION TO NMR SPECTROSCOPY

NMR is a spectroscopic technique that relies on the magnetic properties of the atomic
nucleus. When placed in a strong magnetic field, certain nuclei resonate at a characteristic
frequency in the radio frequency range of the electromagnetic spectrum. Slight variations in
this resonant frequency give us detailed information about the molecular structure in which
the atom resides.

1.1.1 The Classical Model

Many atoms (e.g., 1H, 13C, 15N, 31P) behave as if the positively charged nucleus was
spinning on an axis (Fig. 1.1). The spinning charge, like an electric current, creates a tiny
magnetic field. When placed in a strong external magnetic field, the magnetic nucleus tries
to align with it like a compass needle in the earth’s magnetic field. Because the nucleus is
spinning and has angular momentum, the torque exerted by the external field results in a
circular motion called precession, just like a spinning top in the earth’s gravitational field.
The rate of this precession is proportional to the external magnetic field strength and to the
strength of the nuclear magnet:

νo = γBo/2π

where νo is the precession rate (the “Larmor frequency”) in hertz, γ is the strength of the
nuclear magnet (the “magnetogyric ratio”), and Bo is the strength of the external magnetic
field. This resonant frequency is in the radio frequency range for strong magnetic fields

NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and
Structural Biology, by Neil E Jacobsen
Copyright © 2007 John Wiley & Sons, Inc.
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2 FUNDAMENTALS OF NMR SPECTROSCOPY IN LIQUIDS

Figure 1.1

and can be measured by applying a radio frequency signal to the sample and varying the
frequency until absorbance of energy is detected.

1.1.2 The Quantum Model

This classical view of magnetic resonance, in which the nucleus is treated as a macroscopic
object like a billiard ball, is insufficient to explain all aspects of the NMR phenomenon.
We must also consider the quantum mechanical picture of the nucleus in a magnetic field.
For the most useful nuclei, which are called “spin ½” nuclei, there are two quantum states
that can be visualized as having the spin axis pointing “up” or “down” (Fig. 1.2). In the
absence of an external magnetic field, these two states have the same energy and at thermal
equilibrium exactly one half of a large population of nuclei will be in the “up” state and
one half will be in the “down” state. In a magnetic field, however, the “up” state, which is
aligned with the magnetic field, is lower in energy than the “down” state, which is opposed
to the magnetic field. Because this is a quantum phenomenon, there are no possible states in
between. This energy separation or “gap” between the two quantum states is proportional
to the strength of the external magnetic field, and increases as the field strength is increased.
In a large population of nuclei in thermal equilibrium, slightly more than half will reside in
the “up” (lower energy) state and slightly less than half will reside in the “down” (higher
energy) state. As in all forms of spectroscopy, it is possible for a nucleus in the lower
energy state to absorb a photon of electromagnetic energy and be promoted to the higher
energy state. The energy of the photon must exactly match the energy “gap” (�E) between

Figure 1.2
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the two states, and this energy corresponds to a specific frequency of electromagnetic
radiation:

�E = hνo = hγBo/2π

where h is Planck’s constant. The resonant frequency, νo, is in the radio frequency range,
identical to the precession frequency (the Larmor frequency) predicted by the classical
model.

1.1.3 Useful Nuclei for NMR

The resonant frequencies of some important nuclei are shown below for the magnetic field
strength of a typical NMR spectrometer (Varian Gemini-200):

Nucleus Abundance (%) Sensitivity Frequency (MHz)

1H 100 1.0 200
13C 1.1 0.016 50
15N 0.37 0.001 20
19F 100 0.83 188
31P 100 0.066 81
57Fe 2.2 3.4 × 10−5 6.5

The spectrometer is a radio receiver, and we change the frequency to “tune in” each nucleus
at its characteristic frequency, just like the stations on your car radio. Because the resonant
frequency is proportional to the external magnetic field strength, all of the resonant fre-
quencies above would be increased by the same factor with a stronger magnetic field. The
relative sensitivity is a direct result of the strength of the nuclear magnet, and the effective
sensitivity is further reduced for those nuclei that occur at low natural abundance. For ex-
ample, 13C at natural abundance is 5700 times less sensitive (1/(0.011 × 0.016)) than 1H
when both factors are taken into consideration.

1.1.4 The Chemical Shift

The resonant frequency is not only a characteristic of the type of nucleus but also varies
slightly depending on the position of that atom within a molecule (the “chemical environ-
ment”). This occurs because the bonding electrons create their own small magnetic field
that modifies the external magnetic field in the vicinity of the nucleus. This subtle variation,
on the order of one part in a million, is called the chemical shift and provides detailed
information about the structure of molecules. Different atoms within a molecule can be
identified by their chemical shift, based on molecular symmetry and the predictable effects
of nearby electronegative atoms and unsaturated groups.

The chemical shift is measured in parts per million (ppm) and is designated by the Greek
letter delta (δ). The resonant frequency for a particular nucleus at a specific position within
a molecule is then equal to the fundamental resonant frequency of that isotope (e.g., 50.000
MHz for 13C) times a factor that is slightly greater than 1.0 due to the chemical shift:

Resonant frequency = ν(1.0 + δ × 10−6)
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Figure 1.3

For example, a 13C nucleus at the C-4 position of cycloheptanone (δ23.3 ppm) resonates at
a frequency of

50.000 MHz (1.0 + 23.2 × 10−6) = 50.000(1.0000232) = 50,001,160 Hz

A graph of the resonant frequencies over a very narrow range of frequencies centered on
the fundamental resonant frequency of the nucleus of interest (e.g., 13C at 50.000 MHz) is
called a spectrum, and each peak in the spectrum represents a unique chemical environment
within the molecule being studied. For example, cycloheptanone has four peaks due to the
four unique carbon positions in the molecule (Fig. 1.3). Note that symmetry in a molecule
can make the number of unique positions less than the total number of carbons.

1.1.5 Spin–Spin Splitting

Another valuable piece of information about molecular structure is obtained from the phe-
nomenon of spin–spin splitting. Consider two protons (1HaC–C1Hb) with different chemical
shifts on two adjacent carbon atoms in an organic molecule. The magnetic nucleus of Hb
can be either aligned with (“up”) or against (“down”) the magnetic field of the spectrometer
(Fig. 1.4). From the point of view of Ha, the Hb nucleus magnetic field perturbs the external
magnetic field, adding a slight amount to it or subtracting a slight amount from it, depending
on the orientation of the Hb nucleus (“up” or “down”). Because the resonant frequency is
always proportional to the magnetic field experienced by the nucleus, this changes the Ha
frequency so that it now resonates at one of two frequencies very close together. Because
roughly 50% of the Hb nuclei are in the “up” state and roughly 50% are in the “down”
state, the Ha resonance is “split” by Hb into a pair of resonance peaks of equal intensity
(a “doublet”) with a separation of J Hz, where J is called the coupling constant. The rela-
tionship is mutual so that Hb experiences the same splitting effect (separation of J Hz) from
Ha. This effect is transmitted through bonds and operates only when the two nuclei are very
close (three bonds or less) in the bonding network. If there is more than one “neighbor”
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Figure 1.4

proton, more complicated splitting occurs so that the number of peaks is equal to one more
than the number of neighboring protons doing the splitting. For example, if there are two
neighboring protons (HaC–CHb

2), there are four possibilities for the Hb protons, just like
the possible outcomes of flipping two coins: both “up,” the first “up” and the second “down,”
the first “down” and the second “up,” and both “down.” If one is “up” and one “down” the
effects cancel each other and the Ha proton absorbs at its normal chemical shift position (νa).
If both Hb spins are “up,” the Ha resonance is shifted to the right by J Hz. If both are “down,”
the Ha resonance occurs J Hz to the left of νa. Because there are two ways it can happen, the
central resonance at νa is twice as intense as the outer resonances, giving a “triplet” pattern
with intensity ratio 1 : 2 : 1 (Fig. 1.5). Similar arguments for larger numbers of neighboring
spins lead to the general case of n neighboring spins, which split the Ha resonance peak into
n + 1 peaks with an intensity ratio determined by Pascal’s triangle. This triangle of numbers
is created by adding each adjacent pair of numbers to get the value below it in the triangle:
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Figure 1.5

The strength of the spin–spin splitting interaction, measured by the peak separation
(“J value”) in units of hertz, depends in a predictable way on the dihedral angle defined
by Ha–C–C–Hb, so that information can be obtained about the stereochemistry and con-
formation of molecules in solution. Because of this dependence on the geometry of the
interceding bonds, it is possible to have couplings for two neighbors with different values
of the coupling constant, J. This gives rise to a splitting pattern with four peaks of equal
intensity: a double doublet (Fig. 1.5).

1.1.6 The NOE

A third type of information available from NMR comes from the nuclear Overhauser en-
hancement or NOE. This is a direct through-space interaction of two nuclei. Irradiation
of one nucleus with a weak radio frequency signal at its resonant frequency will equalize
the populations in its two energy levels. This perturbation of population levels disturbs the
populations of nearby nuclei so as to enhance the intensity of absorbance at the resonant
frequency of the nearby nuclei. This effect depends only on the distance between the two
nuclei, even if they are far apart in the bonding network, and varies in intensity as the in-
verse sixth power of the distance. Generally the NOE can only be detected between protons
(1H nuclei) that are separated by 5 Å or less in distance. These measured distances are used
to determine accurate three-dimensional structures of proteins and nucleic acids.

1.1.7 Pulsed Fourier Transform (FT) NMR

Early NMR spectrometers recorded a spectrum by slowly changing the frequency of a radio
frequency signal fed into a coil near the sample. During this gradual “sweep” of frequencies
the absorption of energy by the sample was recorded by a pen in a chart recorder. When
the frequency passed through a resonant frequency for a particular nucleus in the sample,
the pen went up and recorded a “peak” in the spectrum. This type of spectrometer, now
obsolete, is called “continuous wave” or CW. Modern NMR spectrometers operate in the
“pulsed Fourier-transform” (FT) mode, permitting the entire spectrum to be recorded in 2–3
s rather than the slow (5 min) frequency sweep. The collection of nuclei (sample) is given
a strong radio frequency pulse that aligns the nuclei so that they precess in unison, each
pointing in the same direction at the same time. The individual magnetic fields of the nuclei
add together to give a measurable rotating magnetic field that induces an electrical voltage
in a coil placed next to the sample. Over a period of a second or two the individual nuclei get
out of synch and the macroscopic signal dies down. This “echo” of the pulse, observed in the
coil, is called the free induction decay (FID), and it contains all of the resonant frequencies
of the sample nuclei combined in one cacophonous reply. These data are digitised, and a
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Figure 1.6

computer performs a Fast Fourier Transform to convert it from an FID signal as a function
of time (time domain) to a plot of intensity as a function of frequency (frequency domain).
The “spectrum” has one peak for each resonant frequency in the sample. The real advantage
of the pulsed-FT method is that, because the data is recorded so rapidly, the process of pulse
excitation and recording the FID can be repeated many times, each time adding the FID data
to a sum stored in the computer (Fig. 1.6). The signal intensity increases in direct proportion
to the number of repeats or “transients” (1.01, 2.01, 2.99, 4.00), but the random noise tends to
cancel because it can be either negative or positive, resulting in a noise level proportional
to the square root of the number of transients (0.101, 0.145, 0.174, 0.198). Thus the signal-
to-noise ratio increases with the square root of the number of transients (10.0, 13.9, 17.2,
20.2). This signal-averaging process results in a vastly improved sensitivity compared to
the old frequency sweep method.

The pulsed Fourier transform process is analogous to playing a chord on the piano and
recording the signal from the decaying sound coming out of a microphone (Fig. 1.7). The
chord consists of three separate notes: the “C” note is the lowest frequency, the “G” note
is the highest frequency, and the “E” note is in the middle. Each of these pure frequencies
gives a decaying pure sine wave in the microphone, and the combined signal of three
frequencies is a complex decaying signal. This time domain signal (“FID”) contains all
three of the frequencies of the piano chord. Fourier transform will then convert the data to
a “spectrum”—a graph of signal intensity as a function of frequency, revealing the three
frequencies of the chord as well as their relative intensities. The Fourier transform allows us
to record all of the signals simultaneously and then “sort out” the individual frequencies later.

Figure 1.7
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Figure 1.8

1.1.8 NMR Hardware

An NMR spectrometer consists of a superconducting magnet, a probe, a radio transmitter, a
radio receiver, an analog-to-digital converter (ADC), and a computer (Fig. 1.8). The magnet
consists of a closed loop (“solenoid”) of superconducting Nb/Ti alloy wire immersed in a
bath of liquid helium (bp 4 K). A large current flows effortlessly around the loop, creating a
strong continuous magnetic field with no external power supply. The helium can (“dewar”)
is insulated with a vacuum jacket and further cooled by an outer dewar of liquid nitrogen
(bp 77 K). The probe is basically a coil of wire positioned around the sample that alter-
nately transmits and receives radio frequency signals. The computer directs the transmitter to
send a high-power and very short duration pulse of radio frequency to the probe coil. Immedi-
ately after the pulse, the weak signal (FID) received by the probe coil is amplified, converted
to an audio frequency signal, and sampled at regular intervals of time by the ADC to produce
a digital FID signal, which is really just a list of numbers. The computer determines the
timing and intensity of pulses output by the transmitter and receives and processes the dig-
ital information supplied by the ADC. After the computer performs the Fourier transform,
the resulting spectrum can be displayed on the computer monitor and plotted on paper with
a digital plotter. The cost of an NMR instrument is on the order of $120,000–$5,000,000,
depending on the strength of the magnetic field (200–900 MHz proton frequency).

1.1.9 Overview of 1H and 13C Chemical Shifts

A general understanding of the trends of chemical shifts is essential for the interpretation
of NMR spectra. The chemical shifts of 1H and 13C signals are affected by the proximity
of electronegative atoms (O, N, Cl, etc.) in the bonding network and by the proximity to
unsaturated groups (C C, C O, aromatic) directly through space. Electronegative groups
shift resonances to the left (higher resonant frequency or “downfield”), whereas unsatu-
rated groups shift to the left (downfield) when the affected nucleus is in the plane of the
unsaturation, but have the opposite effect (shift to the right or “upfield”) in regions above
and below this plane. Although the range of chemical shifts in parts per million is much
larger for 13C than for 1H (0–220 ppm vs. 0–13 ppm), there is a rough correlation between
the shift of a proton and the shift of the carbon it is attached to (Fig. 1.9). For a “hydrocar-
bon” environment with no electronegative atoms or unsaturated groups nearby, the shift is
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near the upfield (right) edge of the range, with a small downfield shift for each substitution:
CH > CH2 > CH3 (1H: 1.6, 1.2, 0.8; 13C: 30, 20, 10 ppm). Oxygen has a stronger downfield-
shifting effect than nitrogen due to its greater electronegativity: 3–4 ppm (1H) and 50–85
(13C) for CH–O. As with the hydrocarbon environment, the same downfield shifts are seen
for increasing substitution: Cq–O (quaternary) > CH–O > CH2O > CH3O (13C around
85, 75, 65, and 55 ppm, respectively). Proximity to an unsaturated group usually is down-
field shifting because the affected atom is normally in the plane of the unsaturation: CH3
attached to C O moves downfield to 30 (13C) and 2.1 ppm (1H), whereas in HC C (closer
to the unsaturation) 13C moves to 120–130 ppm and 1H to 5–6 ppm. The combination of
unsaturation and electronegativity is seen in H–C O: 190 ppm 13C and 10 ppm 1H. There
are some departures from this correlation of 1H and 13C shifts. Aromatic protons typically
fall in the 7–8 ppm range rather than the 5–6 ppm range for olefinic (HC C for an isolated
C C bond) protons, whereas 13C shifts are about the same for aromatic or olefinic carbons.
Because carbon has more than one bond, it is sensitive to distortion of its bond angles by
the steric environment around it, with steric crowding usually leading to downfield shifts.
Hydrogen has no such effect because it has only one bond, but it is more sensitive than
carbon to the through-space effect of unsaturations. For example, converting an alcohol
(CH–OH) to an ester (CH–OC(O)R) shifts the 1H of the CH group downfield by 0.5 to
1 ppm, but has little effect on the 13C shift.

1.1.10 Equivalence in NMR

Nuclei can be equivalent (have the same chemical shift) by symmetry within a molecule
(e.g., the two methyl carbons in acetone, CH3COCH3), or by rapid rotation around single
bonds (e.g., the three methyl protons in acetic acid, CH3CO2H). The intensity (integrated
peak area or integral) of 1H signals is directly proportional to the number of equivalent
nuclei represented by that peak. For example, a CH3 peak in a molecule would have three
times the integrated peak area of a CH peak in the same molecule.

1.1.11 Proton Spectrum Example

The first step in learning to interpret NMR spectra is to learn how to predict them from
a known chemical structure. An example of a 1H (proton) NMR spectrum is shown for
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4-isopropylacetophenone (Fig. 1.10). The two isopropyl methyl groups are equivalent by
symmetry, and each methyl group has three protons made equivalent by rapid rotation
about the C–C bond. This makes all six Ha protons equivalent. Because they are far from
any electronegative atom, these protons have a chemical shift typical of an isolated CH3
group: 0.8 ppm (see Fig. 1.9). The absorbance is split into two peaks (a doublet) by the
single neighboring Hb proton. The six Ha protons do not split each other because they are
equivalent. The integrated area of the doublet is 6.0 because there are six Ha protons in
the molecule. The Hb proton is split by all six of the Ha protons, so its absorbance shows
up as a septet (seven peaks with intensity ratio 1:6:15:20:15:6:1). Its integrated area is 1.0,
and its chemical shift is downfield of an isolated CH2 (1.2 ppm) because of its proximity
to the unsaturated aromatic ring (close to the plane of the aromatic ring so the effect is a
downfield shift). The He methyl group protons are all equivalent due to rapid rotation of the
CH3 group, and their chemical shift is typical for a methyl group adjacent to the unsaturated
C O group (2.1 ppm). There are no neighboring protons (the Hd proton is five bonds away
from it, and the maximum distance for splitting is three bonds) so the absorbance appears
as a single peak (“singlet”) with an integrated area of 3.0. The Hc and Hd protons on the
aromatic ring appear at a chemical shift typical for protons bound directly to an aromatic
ring, with the Hd protons shifted further downfield by proximity to the unsaturated C O
group. Each pair of aromatic protons is equivalent due to the symmetry of the aromatic ring.
The Hc absorbance is split into a doublet by the neighboring Hd proton (note that from the
point of view of either of the Hc protons, only one of the Hd protons is close enough to cause
splitting), and the Hd absorbance is split in the same way. Note that the J value (separation
of split peaks) is the same for the Hc and Hd doublets, but slightly different for the Ha–Hb
splitting. In this way we know, for example, that Ha is not split by either Hc or Hd.

1.1.12 Carbon Spectrum Example

The 13C spectrum of the same compound is diagramed in Figure 1.11. Several differences
can be seen in comparison with the 1H spectrum. First, there is no spin–spin splitting due
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to adjacent carbons. This is because of the low natural abundance of 13C, which is only
1.1%. Thus the probability of a 13C occurring next to another 13C is very low, and split-
ting is not observed because 12C has no magnetic properties. Second, there is no spin–spin
splitting due to the protons attached to each carbon. This is prevented intentionally by a
process called decoupling, in which all the protons in the molecule are simultaneously
irradiated with continuous low-power radio frequency energy at the proton resonance fre-
quency. This causes each proton to flip rapidly between the upper and lower (disaligned
and aligned) energy states, so that the 13C nucleus sees only the average of the two states
and appears as a singlet, regardless of the number of attached protons. The lack of any
spin–spin splitting in decoupled 13C spectra means that each carbon always appears as a
singlet. The multiplicity (s, d, t, q) indicated for each carbon in the diagram is observed only
with the decoupler turned off and is not shown in the spectrum. Third, the peaks are not
integrated because the peak area does not indicate the number of carbon atoms accurately.
This is because 13C nuclei relax more slowly than protons, so that unless a very long re-
laxation delay between repetitive pulses is used, the population difference between the two
energy states of 13C is not reestablished before the next pulse arrives. Quaternary carbons,
which have no attached protons, relax particularly slowly and thus show up with very low
intensity.

The molecular symmetry, indicated by a dotted line (Fig. 1.11) where the mirror plane
intersects the plane of the paper, makes the two isopropyl methyl carbons Ca equivalent.
Their chemical shift is a bit downfield of an isolated methyl group due to the steric crowding
of the isopropyl group. Unlike protons, 13C nuclei are sensitive to the degree of substitution
or branching in the immediate vicinity, generally being shifted downfield by increased
branching. Cb is shifted further downfield because of direct substitution (it is attached to
three other carbons) and proximity to the aromatic ring. Ch is in a relatively uncrowded
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environment, but is shifted downfield by proximity to the unsaturated and electronegative
carbonyl group. With the decoupler turned off, CH3 carbons appear as quartets because of
the three neighboring protons. The aromatic CH carbons Cd and Ce are in nearly identical
environments typical of aromatic carbons, and each resonance peak represents two carbons
due to molecular symmetry. With the decoupler turned off, these peaks turn into doublets
due to the presence of a single attached proton. The two quaternary aromatic carbons Cc
and Cf are shifted further downfield by greater direct substitution (they are attached to three
other carbons) and by steric crowding (greater remote substitution) in the case of Cc and
proximity to a carbonyl group in the case of Cf . The chemical shift of the carbonyl carbon
Cg is typical for a ketone. All three of the quaternary carbons Cc, Cf , and Cg have low peak
intensities due to slow relaxation (reestablishment of population difference) in the absence
of directly attached protons.

1.2 EXAMPLES: NMR SPECTROSCOPY OF OLIGOSACCHARIDES
AND TERPENOIDS

A few real-world examples will illustrate the use of 1H and 13C chemical shifts and J
couplings, as well as introduce some advanced methods we will use later. Two typical
classes of complex organic molecules will be introduced here to familiarize the reader
with the elements of structural organic chemistry that are important in NMR and how they
translate into NMR spectra. Terpenoids are typical of natural products; they are relatively
nonpolar (water insoluble) molecules with a considerable amount of “hydrocarbon” part and
only a few functional groups—olefin, alcohol, ketone—in a rigid structure. Oligosaccharides
are polar (water soluble) molecules in which every carbon is functionalized with oxygen—
alcohol, ketone, or aldehyde oxidation states—and relatively rigid rings are connected with
flexible linkages. In both cases, rigid cyclohexane-chair ring structures are ideal for NMR
because they allow us to use J-coupling values to determine stereochemical relationships
of protons (cis and trans). The molecules introduced here will be used throughout the book
to illustrate the results of the NMR experiments.

1.2.1 Oligosaccharides

A typical monosaccharide (single carbohydrate building block) is a five or six carbon
molecule with one of the carbons in the aldehyde or ketone oxidation state (the “anomeric”
carbon) and the rest in the alcohol oxidation state (CH(OH) or CH2OH). Thus the anomeric
carbon is unique within the molecule because it has two bonds to oxygen whereas all of the
other carbons have only one bond to oxygen. Normally the open-chain monosaccharide will
form a five- or six-membered ring as a result of the addition of one of the alcohol groups
(usually the second to last in the chain) to the ketone or aldehyde, changing the C O double
bond to an OH group.

The six-membered ring of glucose prefers the chair conformation shown in Figure 1.12,
with nearly all of the OH groups arranged in the equatorial positions (sticking out and
roughly in the plane of the ring) with the less bulky H atoms in the axial positions (pointing up
or down, above or below the plane of the ring). This limits the dihedral angles between neigh-
boring protons (vicinal or three-bond relationships) to three categories: axial–axial (trans):
180◦ dihedral angle, large J coupling (∼10 Hz); axial-equatorial (cis): 60◦ dihedral angle,
small J (∼4 Hz); and equatorial–equatorial (trans): 60◦ dihedral angle, small J (∼4 Hz).
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Figure 1.12

The third category is rare in carbohydrates because the bulky OH groups prefer the equatorial
position, pushing the H into the axial position.

In this ring form, the anomeric carbon (C1) of an aldehyde sugar (aldose) has one bond to
the oxygen of the ring and another to an OH group external to the ring. Also external to the
ring is the CH2OH group of the last carbon in the chain. The anomeric OH group can either
be cis or trans to the external CH2OH group, depending on which side of the aldehyde or
ketone group the OH group is added to. If it is cis, we call this isomer the �-anomer, and if
it is trans we call it the �-anomer. When a crystalline monosaccharide is dissolved in water,
these two ring forms rapidly form an equilibrium mixture of α and β anomers with very
little of the open-ring aldehyde existing in solution (Fig. 1.12).

It is possible to link a monosaccharide to an alcohol at the anomeric carbon, so that
instead of an OH group the anomeric carbon is connected to an OR group (e.g., OCH3) that
is external to the ring. This is called a “glycoside,” and the anomeric carbon is now a full
acetal or ketal. The ring can no longer freely open into the open-chain aldehyde or ketone, so
there is no equilibration of α and β forms. Thus a �-glycoside (OR group cis to the CH2OH
group) will remain locked in the β form when dissolved in water. If the alcohol used to form
the glycoside is the alcohol of another monosaccharide, we have formed a disaccharide
with the two monosaccharides connected by a glycosidic linkage (Figure 1.13). Usually the
alcohol comes from one of the alcohol carbons of the second sugar, but it is also possible to
form a glycosidic linkage to the anomeric carbon of the second sugar. In this case we have
a linkage C–O–C from one anomeric carbon to another, and both monosaccharides are
“locked” with no possibility of opening to the aldehyde or ketone form.

1.2.2 NMR of Carbohydrates: Chemical Shifts

NMR chemical shifts give us information about the proximity of electronegative atoms
(e.g., oxygen) and unsaturated groups (double bonds and aromatic rings). In this discussion
we will ignore the protons attached directly to oxygen (OH) because they provide little
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Figure 1.13

chemical information in NMR and are exchanged for deuterium by the solvent if we use
deuterated water (D2O). In the case of carbohydrates, nearly all of the protons attached
to carbon are in a similar environment: one oxygen attached to the carbon (CHOH or
CH2OH). These protons all have similar chemical shifts, in the range of 3.3–4.1 ppm, so
there is often a great deal of overlap of these signals in the 1H NMR of carbohydrates, even
at the highest magnetic fields achievable. For this reason carbohydrate NMR (and NMR of
nucleic acids RNA and DNA, which have a sugar-phosphate backbone) has been limited
to relatively small molecules because the complexity of overlapping signals is limiting.
The anomeric proton, however, is in a unique position because the carbon it is attached to
has two bonds to oxygen. This additional inductive pull of electron density away from the
hydrogen atom leads to a further downfield shift of the NMR signal, so that anomeric protons
resonate in a distinct region at 5–6 ppm. A similar effect is seen for anomeric carbons, which
have 13C chemical shifts in the range of 90–110 ppm, whereas their neighbors with only
one bond to oxygen resonate in the normal alcohol region of 60–80 ppm. Because each
monosaccharide unit in a complex carbohydrate has only one anomeric carbon, we can
count up the number of monosaccharide building blocks by simply counting the number
of NMR signals in this anomeric region. Thus the analysis of carbohydrate NMR spectra
is greatly simplified if we focus on the anomeric region of the 1H or 13C spectrum. The
“alcohol” (nonanomeric) carbons of a sugar (H–C–O or H2C–O) are sensitive to steric
crowding, so that the CH2OH carbons appear at higher field (60–70 ppm) than the more
crowded CHOH carbons (70–80 ppm). This steric effect is also seen at the alcohol side of
a glycosidic linkage (–O–CH–O–CH–C): this carbon is shifted downfield by as much as
10 ppm from the rest of the “alcohol” carbons (HO–CH–C) that are not involved in glycosidic
linkages.

1.2.3 1H NMR: Coupling Constants

In the proton NMR spectrum, each signal is “split” into a multiple peak pattern by the
influence of its “neighbors,” the protons attached to the next carbon in the chain. These
protons are three bonds away from the proton being considered and are sometimes called
“vicinal” protons. For example, the anomeric proton in a cyclic aldose has only one neighbor:
the proton on the next carbon in the chain (carbon 2). Note that because of rapid exchange
processes or deuterium replacement in D2O, we seldom see splitting by the OH protons.
Because it has only one neighbor, the anomeric proton will always appear as a doublet in the
NMR spectrum. Also, because of its unique chemical shift position (5–6 ppm) and relatively
rare occurrence (only one anomeric position per monosaccharide unit), the anomeric proton
signal is usually not overlapped so we can see its splitting pattern clearly. The distance
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(J, in frequency units of Hz) between the two component peaks of the doublet is a measure
of the intensity of the splitting (or J coupling) interaction. For vicinal (“next-door neighbor”)
protons the value of J depends on the dihedral angle of the C–C bond between them. This
angle is fixed in six-membered ring (pyranose) sugars because the ring adopts a stable chair
conformation. For many common sugars (glucose, galactose, etc.) all or nearly all of the
bulky groups on the ring (OH or CH2OH) can be oriented in the less crowded equatorial
position in one of the two chair forms. Thus the sugar ring is effectively “locked” in this one
chair form and we can talk about each proton on the ring as being in an axial or equatorial
orientation. This is important for NMR because two neighboring (vicinal) protons that are
both in axial positions (“trans-diaxial” relationship) have a dihedral angle at the maximum
value of 180◦, and this leads to the maximum value of the coupling constant J (about 10 Hz
separation of the two peaks of the doublet). This does not make intuitive sense because in this
arrangement the two protons are as far apart as possible; however, it is the parallel alignment
of the two C–H bonds that leads to the strong coupling because the J-coupling (splitting)
interaction is transmitted through bonds and not through space. Two vicinal protons in a
locked chair with an axial–equatorial or an equatorial–equatorial relationship will have a
much smaller coupling constant (much narrower pair of peaks in the doublet) in the range
of 4 Hz. Thus we can use NMR coupling constants to determine the stereochemistry of
sugars.

Here is how we can use this in the analysis of carbohydrate 1H NMR spectra: most
naturally occurring sugars have an equatorial OH at the 2 position (numbering starts with
the anomeric position as number 1), so the proton at carbon 2 is axial in a six-membered
ring sugar. In addition, the CH2OH group is also equatorial in most pyranose sugars. So if
the anomeric proton is axial, we should see it in the 1H NMR spectrum as a doublet with
a large coupling (10 Hz), because the H1–H2 relationship is axial–axial. If the anomeric
proton is axial, then the anomeric OH or OR substituent is equatorial and the sugar is in the
β configuration (anomeric OH or OR cis to the CH2OH group at C5). If we see an anomeric
proton with a small (4 Hz) coupling, then the anomeric proton is equatorial, the OH or OR
group is axial, and we have an α sugar (anomeric OH or OR trans to the CH2OH group at
C5). This reasoning works only if we are dealing with an aldopyranose (six-membered ring
sugar based on an open-chain aldehyde) with an equatorial OH at C2; fortunately, nature
seems to favor this situation.

1.2.4 Reducing Sugars

If the anomeric carbon of a sugar in the ring form bears an OH substituent instead of OC
(glycosidic linkage), it will have the possibility of opening to the open-chain aldehyde or
ketone form and reclosing in either the α or the β configuration. This is called a “reducing
sugar” because the open-chain aldehyde form is accessible and can be oxidized to the
carboxylic acid. The two isomers (α and β) are in equilibrium and we usually see about a
2:1 ratio of β to α forms. The equilibration is slow on the NMR timescale (milliseconds)
and so we see two distinct NMR peaks for the two isomers. The anomeric proton for the
major β form will be a doublet with a large coupling constant (10 Hz) and for the minor
form a doublet at a different chemical shift with a small coupling constant (4 Hz). The
ratio of integrals for these two peaks will be about 2:1 (0.67:0.33 for normalized integrals).
This pattern is a dead giveaway that you have a free (reducing) aldopyranose sugar. This
monosaccharide could still be linked to other sugars by formation of a glycosidic linkage
with one of the nonanomeric OH groups.
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Figure 1.14

1.2.5 Keto Sugars

A ketose or keto sugar is a sugar based on a ketone rather than aldehyde functional group
for its anomeric carbon. In this case the anomeric carbon is not C1 and there is no proton
attached to the anomeric carbon (i.e., it is a quaternary carbon). The most common naturally
occurring ketose is fructose, a 6 carbon sugar with the anomeric (ketone) carbon at position
2 in the chain. It forms a five-membered ring hemiketal (furanose) with the C1 and C6
CH2OH groups external to the ring. For a keto sugar you will not see an anomeric proton
signal in the 1H NMR because the anomeric carbon has no hydrogen bonded to it. The
only evidence will be the quaternary carbon in the 13C spectrum that appears at the typical
chemical shift (90–110 ppm) for an anomeric carbon (two bonds to oxygen). Furanose
(five-membered ring) sugars pose another problem for NMR analysis: five-membered rings
are generally flexible and do not adopt a stable chair-type conformation. For this reason
we cannot speak of “axial” and “equatorial” protons or substituents in a furanose, so that
stereochemical analysis by 1H NMR is very difficult.

1.2.6 Sucrose

A classic example of a keto sugar occurs in sucrose, a disaccharide formed from glucose
in a six-membered ring linked to fructose in a five-membered ring, with the glycosidic
linkage between the anomeric carbon of glucose (α configuration) and the anomeric carbon
of fructose (β configuration) (Fig. 1.14). In the 1H spectrum of sucrose (Fig. 1.15) we see
the “alcohol” CH protons in the chemical shift range 3.4–4.2 ppm and the glucose anomeric
proton at about 5.4 ppm. Fructose has no anomeric proton signal because the anomeric
carbon is quaternary (keto sugar). The gl (glucose position 1) proton signal occurs as a
doublet (coupled only to g2) with a small coupling constant (3.8 Hz) indicating that it
is in the equatorial position (equatorial–axial coupling). This confirms that the glucose
configuration is α because the glycosidic oxygen is pointing “down,” opposite to the g6
CH2OH group. There is a double doublet at 3.5 ppm that can be broken down into two
couplings: a doublet coupling of 10.0 Hz is further split by another doublet coupling of
3.8 Hz. The 3.8 Hz coupling matches the H–g1 doublet (also 3.8 Hz), so we can assign
this peak to H–g2. Because the other coupling (to H–g2’s other neighbor H–g3) is large,
we know that H–g3 is axial and we confirm that H–g2 is also axial, further confirming
that H–g1 is equatorial. There are three triplets with large coupling constants (3.4, 3.7, and
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4.0 ppm), and it is likely that they represent axial protons in a cyclohexane chair structure
with an axial proton on each side. Because all of the OH groups and the CH2OH group are
in equatorial positions in the glucose portion, the nonanomeric H’s are in axial positions,
and we expect triplets with large couplings (∼10 Hz) for H–g3 and H–g4 because both
are in axial positions with one neighbor on each side in an axial position. These two large
(axial–axial) couplings, if identical, would lead to a triplet pattern. Because we see three
such triplets in the 1H spectrum, each one with normalized integral area 1, one of them must
belong to the fructose part. Only H–f4 can be a triplet because it is the only fructose position
with a single neighbor on each side. The doublet at 4.2 ppm (J = 8.8) can be assigned to
H–f3 because it is next to the quaternary (anomeric) carbon C–f2 and therefore has only
one coupling partner: H-f4. Note that this is the only doublet besides H-g1, which can be
assigned because of its chemical shift in the anomeric region. Of the three resolved triplets,
careful examination of the coupling constants reveals that one has a slightly smaller J value
(8.5 Hz) that closely matches the H–f3 doublet splitting. Thus we can assign this triplet at
4.0 ppm to H–f4. A sharp singlet at 3.6 ppm (integral area 2) corresponds to the only CH2
group (H-f1) that is isolated from coupling by the quaternary carbon (C–f2). Because this is
a chiral molecule, the two protons of CH2–f1 could have different chemical shifts, leading
to a pair of doublets, but in this case they coincidentally have the same chemical shift and
give a singlet. Two protons of the same carbon atom (CH2) are called “geminal” (twins),
and if they have the same chemical shift in a chiral molecule they are called “degenerate.”
The overlapped group of signals between 3.75 and 3.9 ppm integrates to six protons and
must contain the glucose CH2OH (H–g6), the other fructose CH2OH (H–f6), and the more
complex H–g5 and H–f5 signals (each with one coupling partner at position 4 and two
at position 6). Thus the only ambiguity remains the two resolved (not overlapped) triplet
signals at 3.4 and 3.7 ppm that correspond to H–g3 and H–g4. To solve this puzzle, we will
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need more information from more advanced NMR experiments such as two-dimensional
NMR.

The 13C spectrum of sucrose is shown in Figure 1.16. Because it is proton decoupled,
we see only one peak for each unique carbon in the molecule: 12 peaks for the C12H22O12
molecule of sucrose. We see two peaks in the anomeric (90–110 ppm) region, and we can
assign the more substituted C–f2 (two bonds to carbon) to the more downfield of the two
at 103.7 ppm. The less substituted C–g1 (one bond to carbon) appears at 92.2 ppm, about
10 ppm upfield of C–f2. This is a rule of thumb: about 10 ppm downfield shift each time
an H is replaced with a C in the four bonds to a carbon atom. We see a tight group of
three peaks at 60–63 ppm; these are the three CH2OH groups C–g6, C–f1 and C–f6. The
remaining peaks are more spread out over the range 69–82 ppm; these are the nonanomeric
“alcohol” or H–C–O carbons that constitute the majority of sugar positions. Again we see
the roughly 10 ppm downfield shift due to substitution of an H with a C on the carbon
atom of interest: CH2OH to C–CH–OH. How can we be sure that the CH2 and CH carbons
are so neatly divided into chemical shift regions? More advanced one-dimensional 13C
experiments called APT and DEPT allow us to determine the precise number of hydrogens
attached to each carbon in the spectrum. To specifically assign the carbons within these
three categories will require two-dimensional experiments.

1.2.6.1 Two-Dimensional Experiments A full NMR analysis of a carbohydrate, in
which each 1H and 13C peak in the spectrum is assigned to a particular position in the
molecule, requires the use of two-dimensional (2D) NMR. In a 2D spectrum, there are
two chemical shift scales (horizontal and vertical) and a “spot” appears in the graph at the
intersection of two chemical shifts when two nuclei (1H or 13C) in the molecule are close to
each other in the structure. For example, one type of 2D spectrum called an HSQC spectrum
presents the 1H chemical shift scale on the horizontal (x) axis and the 13C chemical shift
scale on the vertical (y) axis. If proton Ha is directly bonded to carbon Ca, there will be a
spot at the intersection of the 1H chemical shift of Ha (horizontal axis) and the 13C chem-
ical shift of Ca (vertical axis). Because the peaks are spread out into two dimensions, the
chances of overlap of peaks are much less and we can count up the number of anomeric and
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nonanomeric peaks very quickly. The HSQC spectrum of sucrose is shown in Figure 1.17.
There are 11 “spots” representing the 11 carbons that have at least one hydrogen attached.
Quaternary carbons do not show up in the spectrum because the H has to be directly bonded
to the C to generate a “spot.” Note that the crosspeaks (“spots”) fall roughly on a diagonal
line extending from the lower left to the upper right. This is because there is a rough cor-
relation between 1H chemical shifts and 13C chemical shifts: the same things that lead to
downfield or upfield shifts of protons also affect the carbon they are attached to in the same
way. We can also see that the small “triangle” of CH2OH peaks at the top is shifted “up”
from the other nonaromatic peaks, due to the reduced steric crowding of the less-substituted
CH2 (methylene) carbon compared to CH (methine) carbons. The 1H chemical shifts fall
in the range of 3.5–4.2 ppm regardless of the degree of substitution.

A variation of this experiment, called HMBC (MB stands for multiple bond), shows
spots only when the carbon and the proton are separated by two or three bonds in the
structure. For example, for a monosaccharide we would see a spot at the chemical shift
of the anomeric proton (H-1, horizontal axis) and the chemical shift of the C-3 carbon
(vertical axis). Working together with data from the HSQC and HMBC 2D spectra, we
can “walk” through the bonding structure of a carbohydrate, even “jumping” across the
glycosidic linkages and establishing the points of connection of each monosaccharide unit.

Figure 1.18 shows a portion of the 1H spectrum of the trisaccharide D-raffinose in D2O.
From just this portion we can conclude that, most probably, one of the sugars is a keto sugar
and the other two are aldoses locked in the α configuration. The presence of two anomeric
protons, each with a small doublet coupling (3.6 Hz) indicates that two of the sugars have
the anomeric proton in the equatorial orientation. This assumes that we have the common
pyranose arrangement with H-2 axial and the CH2OH group equatorial. The exact 1:1 ratio
of integrals and the absence of major and minor (β and α) anomeric peaks prove that these
anomeric centers are locked in a glycosidic linkage. The absence of a third proton in the
anomeric region means that the third sugar is most likely a keto sugar, with a quaternary
anomeric carbon.
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Figure 1.18

1.2.7 Terpenoids

A vast variety of plant and animal natural products are based on a repeating 5-carbon unit
called isoprene: C–C(–C)–C–C. The end of the chain nearest the branch can be called the
“head” and the other end is the “tail.” Two isoprene units connected together make up a
“monoterpene” or 10 carbon natural product (e.g., menthol, Fig. 1.19). Six isoprene units
make a “triterpene” with 30 carbons. Cholesterol loses three of these in the biosynthetic
process to give a 27 carbon “steroid” with four rings (Fig. 1.20). The trans ring junctures
and the planar olefin “lock” the cyclohexane chairs into a single rigid conformation with
well-defined axial and equatorial positions, just as we saw for the glucose ring in sucrose.
Another triterpene skeleton that retains all 30 carbons is shown in Figure 1.21; the D and E
rings are also locked in cyclohexane chair conformations.

1.2.8 Menthol

Menthol (Fig. 1.19) is a monoterpene natural product obtained from peppermint oil. Typical
of terpenoids, menthol is only slightly soluble in water and is soluble in most organic
solvents. The trans arrangement of the methyl and isopropyl substituents on the cyclohexane

Figure 1.19
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Figure 1.20

ring lock the ring in a single chair conformation with all of the substituents in the equatorial
position.

The 250 MHz 1H spectrum of menthol is shown in Figure 1.22. We see that even at 250
MHz a number of single proton signals are resolved (i.e., not overlapped with any other
signals): “h,” “l,” “m,” and “n.” Integral values (normalized to one for the smallest resolved
peaks) add up to 19.88 or 20 protons, consistent with the molecular formula C10H20O.
The tall, sharp peaks at the right-hand side (“a,” “b,” and “c”) represent the methyl groups,
which usually give the most intense peaks because there are three equivalent protons. The
most downfield signal (“n”) corresponds to the proton closest to the single functional group,
the H–C–OH proton. The OH proton chemical shift depends on concentration because of
hydrogen bonding with the OH oxygen of other menthol molecules in solution—looking at
different samples it can be identified as the singlet peak at 1.55 ppm. It is a singlet because
J-coupling interactions are averaged to zero by exchange: a particular OH proton on one
menthol molecule jumps to another menthol molecule rapidly so it is constantly exposed
to different H–C–OH protons at position 1, some in the α state and some in the β state,
so it sees only a blur and appears as a singlet instead of a doublet. The H-1 proton at 3.37
ppm appears at a chemical shift typical for “alcohol” protons: protons attached to an sp3

hybridized (i.e., tetrahedral) carbon with a single bond to oxygen (3–4 ppm). Its coupling

Figure 1.21
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Figure 1.22

pattern (inset, Fig. 1.22) shows two nearly equal large couplings (J = 9.9 and 10.9 Hz)
due to the axial–axial relationships to H–2 and H–6ax. Because these two couplings are not
equal, the double-triplet (1:1:2:2:1:1) pattern is distorted, widening the two center peaks and
making them shorter (less than twice the height of the four outer peaks). This is an example
of an unresolved splitting: we should be seeing eight peaks, but we see only six because the
separation of the third and fourth peaks (and of the fifth and sixth) is comparable to the peak
width. This separation is about 1.0 Hz (10.9–9.9) and the peak width (measured at half-
height) of the outer peaks is 1.3 Hz. Later on we will see how resolution enhancement can
be used to make the peaks sharper and at least begin to see the separation of this multiplet
into eight peaks. The third coupling of the double-doublet-doublet (ddd) is 4.3 Hz, due to
the interaction with H-6eq. This coupling is axial–equatorial (gauche relationship), so it is
smaller, in the middle range of observed couplings.

The peak at 2.14 ppm is a double septet, with an intensity ratio 1:1:6:6:15:15:20:
20:15:15:6:6:1:1 and J couplings of 7.0 Hz for the septet and 2.6 Hz for the doublet.
The only proton with six coupling partners is the CH proton of the isopropyl group, H-7.
A J coupling near 7.0 Hz is typical of a vicinal coupling with free rotation (of the methyl
group) averaging the dihedral angle effects. The additional coupling of 2.6 Hz is due to its
interaction with H-2. The outer peaks of the septet are only one twentieth of the intensity of
the center peaks, so unless you have very good signal-to-noise you might miss these peaks
and mistake it for a quintet. The intensity ratio for this “quintet” is 1:2.5:3.3:2.5:1, instead
of the expected 1:4:6:4:1. The remaining resolved single-proton peaks (“l” and “h”) cannot
be assigned without advanced experiments. The strong, sharp peaks at the right-hand side of
the spectrum correspond to the methyl groups. All three methyl groups are attached to CH
carbons (“methine” carbons) so they will appear as doublets. One doublet (“a”) is separate
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from the other two (“b” and “c”), but we cannot make the assumption that it represents
the “lone” methyl group H-10. Because this is a chiral molecule, the isopropyl group can
have distinct environments and widely different chemical shifts for the two methyls. The
J couplings for these three doublets are all around 7.0 Hz due to free rotation of the C–C
bond, although one is slightly lower (6.6 Hz) and this corresponds to the CH–CH3 group,
C-10. Chemical shifts for the methyl groups are a bit less than 1 ppm, typical for methyl
groups in a saturated hydrocarbon environment, far from any functional group. The same
is true for the four proton signals buried in the overlapped region between 0.75 and 1.15
ppm: they are shifted downfield of the methyl groups slightly because of the higher degree
of substitution (CH2 and CH), but they are not close to any functional group.

The 1H-decoupled 13C spectrum of menthol (Fig. 1.23) has ten peaks in addition to the
three solvent peaks. All we can say about it is that the most downfield peak (“j”) corresponds
to the carbon with the alcohol oxygen: C-1. We can see a bit of a gap between this peak and
the rest of the peaks, and we expect singly oxygenated sp3 carbons in the range 50–90 ppm,
with methine carbon (CHOH) typically in the range 70–80 ppm. Every time we replace an
H with C we add about 10 ppm to the chemical shift, so compared to CH3O (50–60 ppm)
we can add about 20 ppm to get the range of CHOH. The rest of the carbons can only be
assigned if we can assign the attached protons and then correlate the 13C shifts with the 1H
shifts by a 2D spectrum such as HSQC.

1.2.9 Cholesterol

Cholesterol (Fig. 1.20) is a steroid, the same rigid five-ring backbone used for the mam-
malian sex hormones. There are only two functional groups: an olefin (C-5, C-6) and an
alcohol (C-3). The bulk of the molecule can be described as saturated hydrocarbon. There
are five methyl groups: two are attached to quaternary carbons so they should appear as
singlets; and three are attached to CH carbons so they should appear as doublets. Most of the
protons in the A, B, and C rings can be described as “axial” or “equatorial” due to the rigid,
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Figure 1.24

locked cyclohexane ring structure. The 600 MHz 1H spectrum is shown in Figure 1.24. The
total integration adds up to 48.89 protons, a bit high for the molecular formula C27H46O but
consistent with the fact that the resolved peaks in the upfield part of the spectrum integrate
several percent above the expected integer values. The olefin functional group (C-5 and
C-6) has a single proton, H-6, which we expect in the region 5–6 ppm. Thus the one-proton
signal at 5.35 ppm (peak “i”) can be assigned to H-6 (only the resolved peaks are identified
with letters). The other functional group is an alcohol, and we expect the H–C–OH proton at
3–4 ppm; we can assign the one-proton signal at 3.52 ppm (peak “h”) to H-3. The splitting
pattern of H-3 can be described as a triplet of triplets, with a small triplet coupling of 4.6
Hz and a large triplet coupling of 11.2 Hz (Fig. 1.24, proton h inset). Because the OH group
is equatorial, H-3 is axial and is split by its two equatorial neighbors, H-2eq and H-4eq.
Because both the relationships are axial–equatorial (gauche), the couplings are identical
and in the medium range (4.6 Hz). H-3 is also split by its two axial neighbors, H-2ax and
H-4ax. Each of these relationships is axial–axial (anti), so the couplings are identical and
large (11.2 Hz). Taken together, we get a large triplet (1:2:1 intensity ratio, J = 11.2), with
each of the three arms split into a smaller triplet (1:2:1 ratio, J = 4.6). These coupling
relationships are shown in the partial structure in Figure 1.25.

Moving from left to right, the next resolved peak is a two-proton multiplet at 2.20–2.32
ppm (peaks “g” and “f”). The most likely assignment for these peaks would be H-4ax and
H-4eq, since C-4 lies between the two functional groups and we expect the minor downfield-
shifting effects of both groups to add together, pulling the H-4 resonances out of the “pack”
of saturated hydrocarbon peaks (0.6–1.7 ppm). We cannot be absolutely sure of this as-
signment until we see two-dimensional data, but this is a reasonable guess. Looking at the
fine structure of these two peaks (inset, Fig. 1.24) and ignoring the smaller couplings, we
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see a triplet on the right (peak “g”) and a doublet on the left (peak “f”). These two peaks
are “leaning” toward each other, with the outer peaks reduced in intensity and the inner
peaks increased relative to a “standard” doublet (1:1) or triplet (1:2:1). This distortion of
peak intensities is a common feature when the chemical shift difference (in Hz) is relatively
small compared to the J coupling between the two protons. In this case, the chemical shift
difference is 0.053 ppm or 32 Hz and the large geminal (2JHH) coupling is 13.0 Hz, leading
to a large distortion of peak intensities. The basic doublet and triplet patterns are further
split by smaller couplings: each side of the doublet is split into a double doublet (J = 5.0
and 2.1 Hz) and each of the three peaks of the triplet on the right is split into a quartet
(J = 2.8 Hz). Ignoring the “small” couplings, we can ask how many large couplings each
proton experiences and in this way count the number of geminal and axial–axial relation-
ships. The “doublet” peak (“g”) has only the geminal (2JHH) coupling, which is always
large for saturated (sp3 hybridized) carbons. So it must be the equatorial proton, H-4eq. The
“triplet” peak (“f”) has the geminal coupling and one axial-axial coupling, so it must be
the axial proton, H-4ax, which has an axial–axial coupling to H-3. The smaller couplings
can be explained as follows: H-4eq has one equatorial–axial coupling (5.0 Hz) to H-3ax and
one “W” coupling (4JHH) to H-2ax (2.1 Hz). A “W” coupling occurs in a series of saturated
carbons when the H–C–C–C–H network is rigidly aligned in a plane in the form of a “W.”
H-4ax has small long-range couplings to H-6, H-7ax, and H-7eq, all around 2.8 Hz. These
long-range couplings will be discussed later, but you can think of the C C double bond as a
kind of “conductor” for J couplings that allows these small interactions to occur over four or
five bonds as long as the double bond is in the path: H–C–C C–H (“allylic coupling”) and
H–C–C C–C–H (“bis-allylic” coupling). In each case, if you remove the C C from the path,
you have a close bonding relationship of two bonds (“geminal”) or three bonds (“vicinal”).

The five methyl groups of cholesterol give rise to tall, sharp peaks in the upfield region
of the 1H spectrum (inset, Fig. 1.24, peaks a–e). We can see two singlet methyl signals (“a”
and “e”) that correspond to the “angular” methyls attached to the quaternary carbons at the
A-B and C-D ring junctures (C-18 and C-19). Later on we will use an NOE experiment
to assign these two peaks specifically, taking advantage of the proximity of CH3-19 to the
H-4ax proton. There are also three doublet methyl signals (“b,” “c,” and “d”) that correspond
to the three methyl groups in the side chain attached to CH carbons: C-21, C-26, and C-27.
Specific assignments for these signals will require two-dimensional experiments such as
HSQC and HMBC.

The 125 MHz 1H-decoupled 13C spectrum of cholesterol is shown in Figure 1.26. Be-
cause the 13C nuclear magnet is only about one fourth as strong as the 1H nuclear magnet,
the 13C resonant frequency is always about one fourth of the 1H frequency in the same
magnetic field. Thus on a “500 MHz” NMR spectrometer (i.e., an 11.74 T Bo field in which
1H resonates at 500 MHz) the 13C frequency is about 125 MHz. The CDCl3 peaks (a 1:1:1
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triplet at 77.0 ppm) appear at the center of the spectrum. Note that there is a small peak
due to CHCl3 at 77.21 ppm (upper left inset, Fig. 1.26). This may be residual CHCl3 in the
CDCl3 (0.2%) or CHCl3 residue in the solid cholesterol sample. Such a small amount of
CHCl3 is visible in the spectrum due to the effects of relaxation and decoupling. Because
the 1H nuclear magnet is about seven times stronger than the 2H nuclear magnet, the 13C
in CHCl3 relaxes faster than the 13C in CDCl3 and thus gives a stronger NMR peak. In
addition, due to 1H decoupling there is only one peak for CHCl3, and this makes for a
taller peak than these for CDCl3, whose 13C intensity is divided into three peaks. Note also
that there is a deuterium isotope effect on the 13C chemical shift: CHCl3 appears 0.21 ppm
downfield of CDCl3.

In addition to these solvent peaks, we can count 26 peaks in the spectrum. Because there
are 27 carbons in the cholesterol molecule (three are lost in the biosythesis from a triterpene
precursor), there must be one peak that accounts for two carbons. The tallest peak (labeled
“l, m”) in fact corresponds to two different carbons with nearly identical chemical shifts. The
most downfield peaks (“aa” and “z”) are in the olefin/aromatic region of the 13C spectrum
(120–140 ppm), so they must correspond to C-5 and C-6. Peak “aa” is less intense (“shorter”)
than all of the other peaks because of slow relaxation: it must be a quaternary carbon. We
will see that the proximity of protons is the primary means of relaxation of 13C nuclei, so
carbons lacking a proton relax much more slowly and give less intense peaks, especially if
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the relaxation delay is short (in this case the recycle delay was only 1.74 s (1.04 s acquisition
time and 0.7 s relaxation delay). So we can assign peak “aa” (140.75) to C-5 and peak “z”
(121.69) to C-6. Note also that the more substituted carbon, C-5 (three bonds to carbon) is
shifted downfield relative to C-6 (two bonds to carbon) due to the steric crowding effect.

Peak “y” (71.78 ppm) is in the “alcohol” region (C–O) in the range expected for methine
carbon (CH–O), so it can be assigned to C-3. The next three carbons (peaks “x,” “w,”
and “v,” 50–57 ppm) could be methoxy (CH3O) groups, but because we have accounted
for all the functional groups of cholesterol they must be either close to these functional
groups (inductive effect) or shifted downfield due to steric crowding. The inductive effect
(electron withdrawing and donating groups) is most important for 1H chemical shifts, so
let us consider the steric effects. The most sterically crowded carbons in the cholesterol
structure are the methine (CH) groups next to an sp3-hybridized quaternary carbon: C-9,
C-14, and C-17. These three carbons account for this group of downfield-shifted peaks.
The rest of the 13C peaks (a–u) lie in the region of saturated hydrocarbon (sp3 carbon with
no functional groups) and cannot be assigned without more advanced experiments such as
DEPT and 2D HSQC/HMBC.

1.3 TYPICAL VALUES OF CHEMICAL SHIFTS
AND COUPLING CONSTANTS

1.3.1 Typical Values of 1H Chemical Shifts

The chemical shift scale can be roughly divided into regions that correspond to specific
chemical environments (olefinic, aromatic, etc.). Knowing these regions gives you a useful
first guess as to the interpretation of a resonance, but you must keep in mind that more
than one functional group might contribute in an additive fashion to the chemical shift. For
example, we can estimate the chemical shift of a CH2 group situated between an olefin and
a carbonyl group (C C–CH2–C O) as follows: A CH3 group next to an olefin or carbonyl
resonates at 2.1 ppm (see below under “b”). This represents a downfield shift of 1.25 ppm
from a “hydrocarbon” CH3 group (0.85 ppm, under “a” below). Thus we can estimate the
shift for this CH2 as follows:

1.2 CH2 in hydrocarbon environment
+2.5 effect of neighboring C=C or C=O (+1.25 ppm) times 2

3.7 total: predicted chemical shift of C=C–CH2–C=O

If we saw a resonance at 3.7 ppm, our first guess would be a proton on a singly oxygenated
carbon, -CH2–O- (part “d” below), but it is dangerous to get “locked into” that idea because
the possibility exists of smaller effects adding together, as shown in the example above.

(a) “Hydrocarbon”: attached to an sp3-hybridized carbon and many bonds away from
any unsaturation or electronegative atom. The same differences between methyl,
methylene, and methine are observed in all other environments.
1. CH3 0.85,
2. CH2 1.2,
3. CH 1.8.

(b) α to a carbonyl, olefin, or aromatic group: H–C–C O or H–C–C C: 2.1.

(c) Next to a nitrogen: H–C–N (attached to an sp3-hybridized carbon with one single
bond to nitrogen): 2.6.



28 FUNDAMENTALS OF NMR SPECTROSCOPY IN LIQUIDS

(d) Next to an oxygen: H–C–O (attached to an sp3-hybridized carbon with one single
bond to oxygen):
1. alcohol or ether (H–C–OH or H–C–O–C): 3.3
2. ester (H–C–O–CO–R): 3.8.

(e) “Olefinic”: H–C C: 5–6 ppm (where C C is not part of an aromatic ring). Reso-
nance effects can shift out of this range: up to 1 ppm upfield for electron-donating
groups (e.g., H–C C–O–) and 1 ppm downfield for electron-withdrawing groups
(e.g., H–C C–C O). This is a result of increased or decreased electron density at the
carbon bearing the proton in resonance structures such as H–C−–C O+– (electron
donation: vinyl ether) and H–C+–C C–O− (electron withdrawal: α,β-unsaturated
ketone).

(f) “Anomeric”: H–C(–O)–O (attached to an sp3-hybridized carbon that has two single
bonds to oxygen): 5–6 ppm.

(g) “Aromatic”: attached to carbon of a benzene, furan, pyrrole, pyridine, indole, naph-
thalene, and so on, ring: generic 7–8 ppm. The effect of substituents due to resonance
effects (strongest at ortho position):

1. electron-rich carbon (e.g., ortho or para to O or N of phenol, aniline, phenolic
ether, or in an electron-rich heteroaromatic: pyrrole, furan): 6–7 ppm;

2. electron-poor carbon (e.g., ortho or para to C O or NO2, or in the two or four
position of pyridine): 8–9 ppm.

(h) Aldehyde: H–C O: 10 ppm.

(i) Carboxylic acid: HO–C( O) or phenolic: HO–C(aromatic): 12–14 ppm.

Note that there are other types of protons not listed here that can fall into the same chem-
ical shift ranges listed above. The above categories are simply the most common ones.
Also, through-space (“anisotropic”) effects of unsaturated groups (C C, C O, and aro-
matic rings) can change chemical shifts from the above categories in ways that depend on
conformation.

1.3.2 Typical Values of 1H–1H Coupling Constants (J )

A superscipt preceding the letter J refers to the number of bonds between the two nuclei:
3J means three-bonds or vicinal (H–C–C–H) and 2J means two bonds or geminal (H–C–H).
Sometimes a subscript is used to clarify which types of nuclei are coupled: JHH means
proton-to-proton coupling.

(a) 3JHH (vicinal):

1. In freely rotating alkyl groups (e.g., CH3–CH2-): 7.0 Hz
2. In benzene rings: 3JHH = 7.5, 4JHH = 1.5, 5JHH = 0.7 Hz
3. In a pyridine ring: J2,3 = 5.5, J3,4 = 7.6, J3,5 = 1.6, J2,5 = 0.9, J2,6 = 0.4 Hz
4. In a furan (pyrrole) ring: J2,3 = 1.8 (2.6), J3,4 = 3.4 (3.5), J2,4 = 0.9 (1.3),

J2,5 = 1.5 (2.1) Hz
5. In a chair cyclohexane ring: J1,2 = 12 (ax-ax), 3 Hz (eq–ax or eq–eq)
6. In a chair six-membered ring sugar, J1,2(eq–ax) = 4, J1,2(ax–ax) = 9 Hz.
7. In an isolated olefin C1H-C2H C3H-C4H: J2,3 = 8–12(cis), 14–17(trans),

J1,2 = 7 Hz
8. In a cyclopropane, 7–13(cis), 4–9 Hz (trans)
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(b) 2JHH (geminal):

1. In a terminal olefin C=CH2, J1,1 = 0–2 Hz
2. On a saturated (sp3) carbon: 12–15 Hz (12.5 in a cyclohexane chair)

(c) Long-range (4JHH and 5JHH):

1. Isolated olefin C1H–C2H C3H–C4H: J1,3 and J2,4 (“allylic”) 0–3; J1,4 (“bis-
allylic”) 1–2 Hz

2. “W” coupling (saturated chain in rigid planar W conformation):

H
C

C
C

H H
C

C
CH3

or

1–4 Hz (2.5 in a cyclohexane chair: J1,3 eq–eq)

1.3.3 Typical Values of 13C Chemical Shifts
13C chemical shifts are more sensitive to steric crowding effects and less sensitive to through-
space effects of double bonds than 1H chemical shifts. Increasing the substitution of a carbon
(CH3 to CH2 to CH to C) leads to downfield shifts of about 10 ppm in each step.

(a) Carbonyl (C O) shifts are far downfield (155–210 ppm) and the peaks are generally
weak due to slow relaxation of quaternary carbons (except aldehydes, which are not
quaternary). Ketones and aldehydes: 200–210 (isolated), 190–200 (α,β unsaturated),
Carboxylic acids, esters, amides: 170–180, Urethanes (NC(O)O): 150–160.

(b) Aromatic carbons are typically 120–130 ppm for unsubstituted positions (i.e., CH)
and 136–150 at the position of alkyl substitution (weak quaternary peak). Strong
electron-withdrawing groups (O, N, NO2, F) can shift the substituted (ipso) carbon
to 150–160. Substituents that can donate to the ring by resonance (O, N) shift the
ortho carbons and, to a lesser extent, the para carbon upfield to 110–120. Likewise,
substituents that are electron-withdrawing by resonance (CO, CN) shift the ortho and
para carbons downfield to 130–140. Meta carbons are unaffected because resonance
structures cannot place + or − charges at these positions. Nitro (NO2) is unusual in
that it shifts the ortho carbon upfield about 5 ppm and the para carbon downfield
about 6 ppm. At the point of attachment of the substituent (“ipso” carbon) the range
is 130–140 for “neutral” substituents and farther downfield (150–160) for electron-
withdrawing substituents (e.g., O).

(c) Nitrile (CN with triple bond): 110–120.

(d) Olefinic carbons (isolated C C) fall in the same range as aromatic CH: 120–130.
Substitution pulls this value downfield: a quaternary olefinic carbon resonates in the
range of 140 ppm. They can also be shifted by resonance effects when electron with-
drawing or donating groups are attached, just like in aromatic systems. For example,
a quaternary β carbon of an α, β-unsaturated ketone resonates in the 170–180 ppm
range, making it easy to confuse with an ester carbonyl carbon. This is due to the
resonance structure: –Cβ

+–Cα C–O−.

(e) Anomeric carbons of sugars (O–C–O) and in acetals and ketals: 90–110.

(f) Singly oxygenated carbons (C–O single bond): 50–85. CH2OH carbon is in the upfield
range (60–70) and quaternary carbons in the downfield range (75–85). A methoxy
group (CH3O) is even farther upfield: 50–60.
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(g) Carbons with a single bond to nitrogen: 50–70.

(h) Saturated carbons with no nearby electronegative atoms or double bonds: 10–50,
with CH3 on the upfield side and quaternary carbons on the downfield side. Strained
rings (cyclobutane, cyclopropane) show significant upfield shifts.

1.4 FUNDAMENTAL CONCEPTS OF NMR SPECTROSCOPY

1.4.1 Spin

The atomic nucleus can be viewed as a positively charged sphere that is spinning on its
axis. This spin is an inherent property of the nucleus, and because charge is being moved
it creates a small magnetic field aligned with the axis of spinning. Thus we can consider
the nucleus as a tiny, permanent bar magnet. Because different isotopes of a given atom
(e.g., 12C, 13C, 14C) have different numbers of neutrons in the nucleus, they have different
magnetic properties. For this reason we only talk about specific isotopes in NMR: 1H, 19F,
11B, and so on, and our attention is focused on the nucleus of these isotopes.

The nucleus of each isotope has the following intrinsic properties:

1. Magnetogyric ratio, γ . This is essentially the strength of the nuclear magnet. Different
nuclei have different magnet strengths; for example, the 13C nuclear magnet is only
one-fourth as strong as the 1H nuclear magnet, and the 15N nuclear magnet has only
one-tenth of the strength of the 1H magnet. The γ is the same for every nucleus of a
given type (e.g., 19F), regardless of its position within a molecule.

2. “Spin.” This determines the number of quantum states available for the nucleus.

spin-0 no magnetic properties
spin-½ 2 states: 1/2,−1/2
spin-1 3 states: 1, 0, −1
spin-3⁄2 4 states: 3/2, 1/2,−1/2, 3/2
etc.

For example, a spin-½ nucleus can be viewed as having two quantum states: one
with the spin axis at a 45◦ angle to the external magnetic field and one with the spin
axis at a 135◦ angle to the external field. A spin-1 nucleus can be viewed as having
three possible states: 45◦, 90◦, and 135◦. In this book we will be concerned primarily
with spin-½ nuclei.

Here are some examples showing the composition of the nucleus (p = protons, n =
neutrons):

Spin-0 spin-½ spin > 1/2
12C (6p + 6n) 1H (1p + 0n) 2H (1p + 1n)
16O (8p + 8n) 3H (1p + 2n) 14N (7p + 7n)
18O (8p + 10n) 13C (6p + 7n) 17O (8p + 9n)

15N (7p + 8n)
19F (9p + 10n)

29Si (14p + 15n)
31P (15p + 16n)
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Note that there is a pattern: Nuclei with an even number of protons and neutrons (even–even)
have spin zero; “odd–even” and “even–odd” nuclei tend to be spin-½; and “odd-odd” nuclei
tend to have a spin greater than 1/2. This is just a rule of thumb (e.g., 17O violates the
“rule”). Nuclei with spin greater than 1/2 are more difficult to observe than spin-½ nuclei
because they have a “nuclear quadrupole moment” that makes their NMR peaks very broad.
For this reason, most NMR work is focused on the spin-½ nuclei. Because NMR is usually
done in deuterated solvents (D2O, CD3OD, etc.), we will have to occasionally consider the
effects of a spin-1 (three quantum states) nucleus.

1.4.2 Precession

When we place a spin-½ nucleus in a strong external magnetic field, the nucleus wants
to align itself with the magnetic field, just like a compass needle moves to align with the
earth’s magnetic field. But because the nucleus is spinning (i.e., it has an intrinsic property
of angular momentum), it cannot simply change its angle with the magnetic field from 45◦
to 0◦. The torque it experiences from the external magnetic field instead causes the spin axis
to “wobble” or precess around the magnetic field direction. This is analogous to a spinning
top or gyroscope, which responds to the torque produced by the earth’s gravitational field by
describing a circle with its spin axis. The precession rate of the nucleus in a magnetic field is
the resonant frequency referred to in the name “nuclear magnetic resonance.” The precession
rate is in the range of radio frequency, tens or hundreds of megahertz, or millions of rotations
per second. In this classical model the torque exerted on the nucleus is proportional to both
the laboratory magnetic field strength, Bo, and to the strength of the nuclear magnet, γ . The
rate of precession is proportional to the torque, so we have:

ωo = 2πνo = γBo

It cannot be emphasized too much that the resonant frequency in NMR is proportional to the
magnetogyric ratio, γ , and to the laboratory magnetic field strength, Bo. This relationship
forms the basis of nearly every phenomenon observed in NMR. There are two ways to
measure the precession rate: the angular velocity, ωo, in units of radians per second and the
frequency, νo, in units of cycles per second or hertz. In this book we will use frequencies in
hertz. This frequency is sometimes called the Larmor frequency, and the zero subscript refers
to this fundamental frequency, which results from the laboratory magnetic field interacting
with the nucleus’ magnetic field.

As an example, consider a proton (1H nucleus) in a 7.05 T laboratory magnetic field:

γH = 2.675 × 108 T−1 rad s−1

Bo = 7.05 T

νo = γBo/2π = 3.001 × 108 Hz = 300.1 MHz

Such a magnet would be called a “300 MHz” magnet because the 1H nucleus precesses at a
rate of 300 MHz in this magnet. NMR magnets are almost never described in tesla but rather
by their 1H resonance frequency. This can be confusing because if you are observing 13C
nuclei on a 500-MHz NMR instrument, you are operating at a resonant frequency of 125
MHz, not 500 MHz. Because the resonant frequency for a given magnet (NMR magnets
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have a fixed magnetic field strength) is proportional to the magnetogyric ratio, γ , of the
nucleus being observed, the NMR frequencies for different nuclei will always be in the
same ratio: the ratio determined by their relative γ values.

Bo = 7.05 T Bo = 11.74 T γ/γH(%) γH/γ Abund. (%)

1H 300.0 MHz 500.0 MHz 100.0 1.000 99.98
2H 46.05 76.75 15.35 6.515 0.015
13C 75.43 125.72 25.14 3.977 1.11
15N 30.40 50.66 10.13 9.870 0.37
19F 282.23 470.39 94.08 1.063 100
31P 121.44 202.40 40.48 2.470 100

Proton (1H) is the king of the nuclei (radioactive tritium, 3H, is actually 6.7% stronger) and
all other nuclei can be viewed in terms of their magnet strength (γ) relative to proton. 19F is a
bit weaker than proton (94%) and 31P is about 40% of the proton frequency. Proton is about
four times stronger than 13C, seven times stronger than 2H, and 10 times stronger than 15N.
Of all these spin-½ nuclei, three have very low natural abundance: 1.11% for 13C, 0.37% for
15N, and 0.015% for 2H. This makes them difficult to observe because the signal strength in
NMR is proportional to the number of NMR-active nuclei in the sample: for 13C, only one in
every 100 carbon atoms is participating in the NMR experiment. However, we will see that
there are advantages to having a “dilute” nucleus—one that is “sprinkled” lightly over the
collection of molecules in the sample. We can improve on nature by isotopically labeling or
enriching the sample either by synthesis from labeled starting materials or by biosynthesis
on labeled growth media. Many compounds can be purchased with nearly 100% abundance
of 13C, 2H, or 15N either at one site in the molecule or at all sites (“uniformly labeled”).
This can be very costly, but the benefits often justify the cost. For example, with uniform
13C labelling, the 13C signal can be increased by a factor of 100, reducing the experiment
time by a factor of 10,000. It should be noted that all three of these isotopes are stable, that
is, they are not radioactive.

1.4.3 Chemical Shift

Because at any given field strength each nucleus has a characteristic resonant frequency,
we can “tune” the radio dial to any nucleus we are interested in observing. We can think
of the various NMR-active nuclei in the sample as “radio stations” that we can tune into
very accurately, just as stations come into tune in a very narrow range of frequencies on
an FM radio. Having chosen a “station” to listen to, what can we learn by observing a
particular type of nucleus? The resonant frequency is always, always, always proportional
to the magnetic field:

νo = γBo/2π

but the exact magnetic field experienced by the nucleus may be slightly different than the
external magnetic field. The nucleus is located at the center of a cloud of electrons, and we
know that electrons are easily pulled away or pushed toward an atom, changing the electron
density around that nucleus. Furthermore, electron clouds can begin to circulate under the
influence of the laboratory field, creating their own magnetic fields, which subtract from or
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add to the external field. So the nucleus “feels” a slightly different field, depending on its
position within a molecule (its “chemical environment”):

Beff = Bo (1 − σ) νo = γBeff = γBo (1 − σ)

Where σ is a “shielding constant” in units of parts per million, which reflects the extent to
which the electron cloud around the nucleus “shields” it from the external magnetic field.
These differences, which we call “chemical shifts” are really tiny: for a 1H nucleus the
“spread” of resonant frequencies around the fundamental frequency is only about 10 ppm.
That means that on a 500 MHz NMR instrument, the protons in a molecule might have
a range of resonant frequencies between 499.9975 and 500.0025 MHz (0.0025 MHz is
5 ppm of 500 MHz), depending on their location within the molecule. Thus we tune in to
a “station” (499.9975–500.0025 MHz) and study the tiny variations (chemical shifts) in
resonant frequency to learn something about the chemical structure of the molecule. In this
way, physics (and radio electronics) comes to the aid of chemistry in helping us determine
a molecule’s structure. An NMR spectrum is just a graph of intensity versus frequency for
the narrow range of frequencies corresponding to the particular nucleus we are interested
in. Each “peak” in this graph corresponds to a particular environment within the molecule,
such as a particular hydrogen atom position in an organic structure. When each position in
a molecule has a different chemical shift, we can “talk” to these atoms individually in NMR
experiments, looking around at the local environment from the point of view of one atom
in the structure at a time.

1.4.4 The Energy Diagram

If we consider the energy of a nucleus as it interacts with the external magnetic field, we see
that there are two energy levels for a spin-½ nucleus. The “aligned” state (or α state) has
the nuclear magnet aligned with the laboratory field, giving it a lower energy (more stable)
state (Fig. 1.2). The “disaligned” state (or β state) is aligned opposite to the external field,
resulting in a higher energy. The energy “gap” between these two levels is:

�E = hνo = hγBo/2π

where h is Planck’s constant and νo is the Larmor (“resonant”) frequency. This relationship
between the energy gap between two quantum states and the frequency of electromagnetic
radiation (“photons”), which can excite a particle from the lower energy level to the higher
one, is fundamental to all forms of spectroscopy. The Larmor frequency, νo, is the same as
the rate of precession of the spinning nucleus in the classical model (Fig. 1.1). Note that
the size of the energy gap is proportional to the strength of the nuclear magnet (γ) and
also to the strength of the laboratory magnetic field (Bo). Much effort and expense is put
into getting the largest possible energy gap, as we design and build bigger and stronger
superconducting magnets for NMR. We will see that a larger energy gap results in a more
sensitive NMR experiment and better separation of the resonant frequencies of like nuclei
in different chemical environments.

1.4.5 Populations

In an NMR sample there are a very large number of identical spins, a number approaching
Avogadro’s number. Even though there may be different types of spins (1H, 13C, 15N, etc.)
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within a molecule and different environments (H1, H2, H3, etc.) within a molecule for each
type of spin, we can view each molecule in a sample of a pure compound as identical and
experiencing the same magnetic field. This is because the magnetic field has a very high
degree of spatial homogeneity (on the order of parts per billion variation in Bo) and each
molecule is tumbling very rapidly and has no preferred orientation in the magnetic field. Let
us focus on one type of nucleus (1H) and one position within the molecule (H2). If there are
N molecules in the sample (e.g., for a 1 mM sample, N = 3 × 1017), then we can talk about
the N 1H nuclei at position H2 in the molecule: each one will be either aligned with the
Bo field (lower energy or α state) or disaligned with the Bo field (higher energy or β state).
At thermal equilibrium, there will be a tendency for the spins to prefer the lower energy
state, but because the energy difference (�E = hγBo/2π, where h is Planck’s constant) is
small compared to the average energy available at room temperature (kT), the populations
are very nearly equal in the α and β states. The population of the more stable α state is
N/2 + δ, and the population of the less stable β state is N/2 − δ, where δ is a very small
number roughly equal to N�E/4kT.

For example, at 7.05 T magnetic field (a 300 MHz NMR instrument) and 25 ◦C, the
population difference for protons is 0.00064% of the number of nuclei N. This equilibrium
population difference is a constant throughout the NMR experiment and, as we perturb the
equilibrium, the spins will always try to return to this equilibrium population distribution.
Because the measureable signal from a nucleus in the β state is exactly cancelled by the
signal from a nucleus in the α state, it is this population difference that is the only material
we have to work with and to detect in the NMR experiment. Because the difference is so
small, the sensitivity of NMR is in many orders of magnitude lower than all other analytical
techniques; so low, in fact, that NMR is not considered a branch of “analytical chemistry”
but rather a tool used by organic chemists and biologists.

1.4.6 Net Magnetization at Equilibrium

At thermal equilibrium, the Boltzmann distribution determines the populations in various
energy levels. For any two quantum states, the ratio of populations between the higher
energy state and the lower energy state at equilibrium will always be:

Pβ/Pα = e−�E/kT

where k is the microscopic gas constant, T is the absolute temperature in kelvin (K), and �E
is the difference in energy between the two states—the “energy gap.” We can think of kT as
the average amount of total energy that a molecule has—analogous to the amount of money
the average person is carrying in his or her pocket. �E is analogous to the price difference
between a hamburger and a cheeseburger. If the amount of money the average person has
(kT) is very small and the price difference (�E) is large, then nearly everyone will take
the hamburger. But if the average person is carrying around a lot of money and the price
difference is very small, there will be only a very slight preference for the hamburger. Just
how big is kT compared to the energy difference in NMR? At 25 ◦C (298 K), kT is equal
to 2478 J/mol. For a proton (1H) in a 7.05 T magnetic field (νo = 300 MHz), the energy
gap is:

�E = hνo = �(γBo) = 0.0315 J/mol
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So the energy gap is very, very small compared to the average energy that a molecule has at
room temperature. Another way of saying this is that �E/kT is a number much, much less
than 1. The exponential function can be simplified by approximation if the argument is a
very small number compared to 1:

e−x ∼ 1 − x, if x � 1

We can now simplify the Boltzmann equation:

Pβ/Pα = e−�E/kT ∼ 1 − �E/kT

The population difference, Pα − Pβ, is the most interesting thing for us because the mag-
netism of every “up” nuclear magnet cancels the magnetism of every “down” nuclear mag-
net, and it is only the difference in population that results in a “net magnetization” of the
sample.

Pβ/Pα = 1 − �E/kT ; 1 − Pβ/Pα = �E/kT ; Pα/Pα − Pβ/Pα = �E/kT

(Pα − Pβ)/Pα = �E/kT ; Pα − Pβ = Pα�E/kT = N�E/2kT

The last equality is obtained by substituting N/2 for Pα because both Pα and Pβ are very
close to half the total number of spins in the sample. Finally, substituting �γBo for �E we
obtain:

Pα − Pβ = N�γBo/2kT

Thus the population difference is proportional to the total number of spins in the sample
and to the strength of the nuclear magnet (γ) and inversely proportional to the absolute
temperature (T). If we add together all of the nuclear magnets, each spin in the β state
cancels one in the α state and we end up with only Pα − Pβ spins in the α state, aligned
with the magnetic field. These add together to give a net magnetization, which is equal to
the net number of spins pointing “up” times the magnet strength of each individual spin, γ .
The magnitude of this net magnetization is called Mo,

Mo = γ (Pα − Pβ) = N�γ2Bo/2kT

The net magnetization of the sample at equilibrium is proportional to the amount of sample
(N), the square of the nuclear magnet strength (γ2), and the field strength (Bo), and inversely
proportional to the absolute temperature (T).

1.4.7 Absorption of Radio Frequency Energy

In order to measure the resonant frequency of each nucleus within a molecule, we need to
have some way of getting the nuclei to absorb or emit RF energy. If we subject the sample
to an oscillating magnetic field provided by a coil (the equivalent of a radio transmitter’s
antenna), a spin in the lower energy state can be “bumped” into the higher energy state if
the radio frequency is exactly equal to the Larmor frequency, νo. Formally, one spin jumps
up to the higher energy level and one “photon” of electromagnetic radiation (energy hνo) is
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absorbed. Unfortunately, there is another process that is equally likely, called “stimulated
emission,” in which one photon (hνo) is absorbed by a spin in the upper (β) energy state,
kicking it down to the lower state with the emission of two photons. So as long as our RF
energy is applied at the resonant frequency, spins are jumping up (absorption of one photon)
and down (emission of one photon) constantly. The rate of these processes is proportional
to the population of spins in each of the two states: absorption occurs at a rate proportional
to the number of spins in the sample that are in the lower energy state, and emission occurs
at a rate proportional to the number of spins in the upper energy state.

In order to understand the net behavior of this system, we have to think about the pop-
ulations (number of spins in the sample) in each of the two states. At thermal equilibrium,
there will be a slight preference for the lower energy state according to the Boltzmann
distribution. For now we will only think about this preference qualitatively; it turns out to
be very small indeed at room temperature—a population difference of about 1 in 106 spins.
But as long as there are more spins in the lower energy state, we will see a net absorption
of RF energy when we turn on an RF energy source at the Larmor frequency. As there is
a net migration of spins from the lower energy state to the upper energy state (absorption
exceeds emission), we will quickly see the two populations become equal:

N/2 − δ N/2 (β)
→

N/2 + δ N/2 (α)

where N is the total number of identical spins in the sample and δ is a very small fraction of
this number. With the equal populations, the rate of absorption equals the rate of emission
and we no longer have any net absorption of RF energy. This condition is called saturation.
If there were no other way for the spins to drop down to the lower energy state, this would
be the end of the NMR experiment: a quick burst of absorption and then nothing. But
there is a pathway to reestablish the Boltzmann distribution: spins can drop down from the
higher energy state to the lower energy state with the energy appearing as thermal energy
(molecular motion) instead of in the form of a photon. This process is called relaxation and
is an extremely important phenomenon that will be discussed in detail. If our source of RF
energy is weak enough, we can reach a steady state in which the absorption of RF energy
is exactly equal to the rate of relaxation. The amount of energy absorbed is very small, and
the heating of the sample resulting from relaxation is not even noticeable.

1.4.8 A Continuous Wave Spectrometer

So now we have a way to construct a simple NMR spectrometer: We have a weak source of
RF energy (a transmitter) and we gradually decrease the frequency, with the magnetic field
strength (Bo) remaining constant. A detector in the transmitter circuit monitors the amount of
RF energy absorbed, and this signal is applied to a pen, which moves up and down. The pen
moves from left to right across the paper as the frequency is gradually decreased, and when
we reach the Larmor frequency (νo), there is a net absorption of energy and the pen moves
up. As we pass through the Larmor frequency, the resonance condition is no longer met and
absorption stops, so the pen moves back down. The spins never reach the saturated state
because the RF energy level is very low, and after passing through the resonance condition
they quickly reestablish the equilibrium energy difference through the process of relaxation.
The result is an NMR spectrum: a graph of absorption of RF energy (vertical axis) versus
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frequency (horizontal axis). The range of frequencies “scanned” by the spectrometer is very
narrow—for example, from 500.0025 MHz down to 499.9975 MHz, and the position of the
absorption peak on the spectrum (its “chemical shift”) tells us something about the chemical
environment of the spin within the molecule. This technique is called “continuous wave”
(CW) NMR because the radio frequency energy is applied continuously as the frequency is
gradually varied. The first commercial NMR spectrometers (e.g., the Varian T-60 operating
at 60 MHz) were all continuous wave. In the earliest CW instruments, the radio frequency
was held constant and the field (Bo) was gradually changed (“swept”). This gave the same
result because the absorption of RF energy led to a peak when the field reached a value that
satisfied the resonance condition (νo = γBo/2π). The left-hand side of the spectrum was
called “low field” and the right-hand side was called “high field.” The chemical shift scale
was in ppm units of τ (τ = 10 − δ), which increased from left to right. To this day we use the
terms “downfield” and “upfield” to refer to the left-hand and right-hand side of the spectrum,
respectively, and the frequency scale runs from right-hand to left-hand side, contrary to all
other graphical scales. This is because a higher frequency in the frequency-swept spectrum
corresponds to a lower field (“downfield”) in the old field-swept instruments.

1.4.9 Pulsed Fourier transform NMR

All modern spectrometers now use a “pulsed Fourier transform” method, which is much
faster and allows repeating the experiment many times and summing the resulting data to
increase sensitivity. A very brief pulse of high-power radio frequency energy is used to
excite all of the nuclei in the sample of a given type (e.g., 1H). Immediately after the pulse
is over, the nuclei are organized in such a way that their precessing magnets sum together to
form a net magnetization of the sample, which rotates at the Larmor frequency. The coil that
was used to transmit RF is now used as a receiver, and a signal is observed at the precise
Larmor frequency, νo. This signal, which oscillates in time at the Larmor frequency, is
recorded by a computer and a mathematical calculation called the Fourier transform converts
it to a spectrum, a graph of intensity versus frequency. Essentially the Fourier transform
measures the frequency of oscillation of the signal. If there are a number of slightly different
Larmor frequencies, corresponding to different positions within a molecule, their signals
add together to give the recorded signal, and the Fourier transform can sort out all the
signals into a spectrum with many peaks at different frequencies. The whole experiment
(pulse followed by recording the “echo” signal) takes only a few seconds and can be repeated
as many times as desired, summing the data to get a stronger signal.

1.4.10 Sensitivity of the NMR Experiment

Although techniques like mass spectrometry require only nanograms (10−9 gram) of sam-
ple, NMR requires milligrams (10−3 gram) of a typical organic molecule. This insensitivity
stems primarily from the fact that only the difference in population at thermal equilibrium
is active in the experiment. That means that only approximately one spin in 106 is actually
detected. We saw this in the CW experiment, where absorption of RF energy is almost
completely cancelled by stimulated emission. Another important aspect is the relative sen-
sitivity of different nuclei: because of the inherent differences between different nuclei in
the strength of the nuclear magnet (γ), the signal strength received can be very much weaker
than a proton signal. There are three ways in which γ affects the sensitivity of the experiment
(“the three gammas”):
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1. The population difference at thermal equilibrium is proportional to the energy
gap, which is in turn proportional to γBo, and inversely proportional to absolute
temperature. This population difference is the only thing we can observe by
NMR.

2. As the nuclear magnet precesses, it induces a signal in the receiver coil. The amplitude
of this signal is proportional to the strength of the rotating magnet, which is the
magnetogyric ratio γ .

3. The rate at which the nuclear magnet precesses (νo) is also proportional to γBo. As
with any electrical generator, if you turn the crank faster you get a higher voltage out
of the generator.

Factors 1 and 2 taken together give the net magnetization at equilibrium, Mo, so we can
also think of a large magnet of strength Mo rotating in the x-y plane when we consider the
final factor, the rate of rotation (3). Either way we can say that the amplitude of the NMR
signal (sensitivity) for a spin-½ nucleus is proportional to:

[N × γBo/T ] × [γ] × [γBo] = Nγ3B2
o/T

where N is the number of identical spins in the sample. This tells us that sensitivity depends
on the third power of γ as well as the square of Bo. So it is worth a lot of money to build
larger and more powerful magnets, and we will pay a big price in sensitivity to study nuclei
with relatively small γ . Consider some of the most useful nuclei for organic chemistry and
biological research:

Bo = 7.05 T Bo = 11.74 T γ/γH(%) γ3/γH
3 Abundance (%)

1H 300.0 MHz 500.0 MHz 1.000 1.000 99.98
13C 75.43 125.72 0.2514 0.0159 1.11
15N 30.40 50.66 0.1013 0.00104 0.37

Using our rule of thumb that 13C has a γ value four times smaller than 1H and that 15N has
a γ value 10 times smaller than 1H, we can see that the FID signal will be 43 = 64 times less
with 13C and 103 = 1000 times less with 15N when compared to 1H with the same number
of identical nuclei (N) in the sample. But even at the same sample concentration we do not
have the same number of nuclei because for 13C only about one in 100 carbon atoms is 13C
and for 15N only about one in 300 nitrogen atoms is 15N. Accounting for this smaller value
of N, the signal strength (sensitivity) is 5670 times less than 1H for 13C and 260,000 times
less than 1H for 15N at natural abundance. For this reason, commercial continuous wave
NMR spectrometers could only detect 1H. With pulsed Fourier transform NMR it became
possible to detect 13C with long experiments (1 h or more) and concentrated samples (30 mg
or more of a typical organic molecule). Detection of 15N is still very difficult without isotopic
labeling of 15N in the sample. Biological NMR experiments (proteins, nucleic acids, etc.)
now typically involve preparation of uniformly 13C and 15N labeled samples by biosynthesis
(e.g., protein expression in E. coli) on labeled media (e.g., 15NH4Cl and U-13C-glucose).
We will see that NMR tricks can also allow us to avoid the disadvantage of the first γ (e.g.,
the DEPT experiment, Chapter 7), or even to avoid the disadvantage of all three gammas
(e.g., 1H-detected two-dimensional experiments, Chapter 11). Without isotopic labeling,
however, there is no trick that can overcome the disadvantage of low isotopic abundance.



2
INTERPRETATION OF PROTON (1H)
NMR SPECTRA

2.1 ASSIGNMENT

There are two things we can do with a proton spectrum: try to figure out the structure
of an unknown compound or try to assign the peaks to the hydrogen positions of a known
compound. The latter process is called assignment: pairing each resonance in a 1H spectrum
with a hydrogen or a group of equivalent hydrogens in the chemical structure. A “resonance”
is a single chemical shift position in the spectrum; it can be a single peak (a singlet) or it may
be “split” by J coupling into a complex pattern of peaks—a triplet or a double septet, for
example. Sometimes we refer to a “resonance” as a peak, but this can be confusing because
it may consist of many peaks of a multiplet pattern. The best way to learn to interpret
NMR spectra is to assign the peaks in a spectrum of a known compound. This is much
easier than dealing with unknowns and teaches the same principles that will be necessary
to analyze unknown spectra. The vast majority of examples in this book will be discussed
as assignment problems rather than unknown problems.

We will see that with complex molecules chemical shift is not enough to arrive at a
unique assignment; normally, there will be several or many 1H resonances with similar
chemical shifts, and we can only put these resonances into categories (e.g., 1H α to a car-
bonyl group or olefinic proton) rather than unique assignments. To uniquely assign we will
need to correlate protons to other protons or other spins (e.g., 13C) within the molecule,
either by through-bond relationships (i.e., J couplings) or by through-space relationships
(i.e., NOEs). Chemical shift correlation is a process of pairing a proton with another spin
that is nearby in the bonding network (number of bonds) or by direct distance through
space (Å), usually by a two-dimensional (2D) experiment. In establishing these relation-
ships, we only “know” a spin by its precise chemical shift. That is why we call the process
of correlating two spins chemical shift correlation. So the chemical shift of a proton is
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not only an imprecise description of its chemical environment but also a precise “address”
or “label” by which we can “talk to” that proton and ask questions about its immedi-
ate environment in the molecule, in terms of nearby spins. In this sense we can think of
each proton as a probe or flashlight, which we can shine on the immediate environment
of the molecule to see what is around it. The flashlight is very weak, however, and can
only “see” up to about 5 Å in space and about three bonds through the bonding network,
to identify its neighbors. The neighbors are, of course, only identified by their chemical
shifts.

2.2 EFFECT OF BO FIELD STRENGTH ON THE SPECTRUM

A large part of the history of NMR instrument development concerns the effort to attain
higher and higher magnetic fields by building stronger and stronger magnets. The first
widely available commercial NMR instruments were 60 MHz continuous-wave (CW) in-
struments (e.g., Varian A-60 and T-60) that only did 1H spectra. These magnets were simple
electromagnets: copper wire wound on an iron core with a large current passed through the
coil. A large amount of heat was generated by the current, so water was passed through the
magnet to cool it. Newer instruments came out with 90 MHz (Varian EM-390) and 100 MHz
(Varian XL-100) proton frequencies. These were also CW, although by the mid-1970s the
strongest electromagnets were being used for the first pulsed Fourier-transform instruments.
An early 13C instrument (FT-80) used an 80-MHz electromagnet with RF pulse electronics
and computer built by Nicolet. It operated at 20 MHz for 13C, used 8-mm sample tubes,
and had a whopping 8192 bytes of memory!

One hundred megahertz (2.35 T) was the “brick wall” for electromagnets, and it was
necessary to develop an entirely new technology to go beyond that limit. Superconductivity
is the phenomenon of zero resistance for electrical conductors at low temperature. Special
alloys including niobium and titanium can be made into wires that when cooled to 4.2
K (the boiling point of liquid helium) can support large electrical currents without any
resistance. This means that if a coil of this wire is immersed in liquid He and a current is
passed through the coil, we can connect the end of the coil to the beginning and get the
current to flow in a closed loop without any resistance. The large current will produce a
very strong magnetic field, and because there is no resistance, there is no loss of energy to
heat and the current will be stable. Superconducting magnets can run for decades without
any significant loss of magnetic field strength as long as the superconducting coil is kept
at liquid He temperature the whole time. The first superconducting NMR instrument I
used (in the late 1970s) was a 180 MHz instrument built by Alex Pines at the University
of California at Berkeley. The “pulse programmer” was set up using a teletype terminal;
the Nicolet computer had to be “bootstrapped” by setting an array of switches (bits) to a
specific binary number (address) and hitting the start button, and the audio filters had to
be set to the spectral width by twirling dials. Shims were adjusted with a vast array of
knobs, and data could be saved on a computer “disk” the size of a large dinner plate. Soon
commercial magnets began to climb in field strength: 200, 250, 300, 400, and 500 MHz.
Finally, the same technology was extended to 600 MHz, but this was the limit at 4.2 K, the
boiling point of He at atmospheric pressure. By reducing the pressure in the helium can, the
temperature was lowered and magnets reached 750, 800, and finally 900 MHz. A 900-MHz
magnet looks like a space shuttle on its launch pad and requires a whole building devoted
to one NMR instrument. Many groups are struggling to come up with the first 1-GHz
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(1000 MHz) magnet, but this has become a very difficult goal to achieve. It would seem that
the current superconductivity technology has been pushed to a limit, and there is a great
need for a fundamental breakthrough. Ceramic superconductors have been developed that
can achieve superconductivity at much higher temperatures (77 K and higher), but it has
been difficult to form these materials into wires, and the current carrying capacity is very
small.

NMR spectrometers cost roughly $1000 per MHz of field strength in the lower range, but
above 600 MHz the cost rises exponentially to more than $5 million for a 900-MHz system.
Why do people pay so much money to get higher magnetic fields? There is an obvious
advantage in sensitivity because increasing the Bo field increases the population difference
between the α and β states proportionately. This increases the net magnetization of the
sample at equilibrium and thus increases the FID signal received after the pulse. Another
factor enters in during the recording of the FID: The Larmor frequency, νo, is proportional
to Bo, so we have the nuclear magnets precessing at a higher speed when we increase the
magnetic field. Just as turning the crank on a generator faster produces a higher voltage in
the output, spinning the net magnetization faster generates a bigger FID. So we expect the
sensitivity to be proportional to Bo

2, but in reality you cannot increase Bo while keeping
everything else constant, so it works out in a practical sense to about Bo

1.5. That means that
a 13C acquisition on a 200-MHz instrument would require 27 times as long as the same
experiment on a 600-MHz instrument to achieve the same signal-to-noise ratio (600/200 to
the 1.5 power, then squared because signal-to-noise ratio varies with the square root of the
number of scans).

But it turns out that there is a much more important advantage to stronger magnets:
resolution. What do we mean by resolution? In a technical sense, resolution is the width
of an NMR line measured in hertz at one half the height of the peak. The peak width
depends on the rate of decay of the FID, which is determined by the homogeneity of the
magnetic field (shimming) and the inherent rate of decay of the net magnetization in the
x–y plane (determined by a relaxation parameter of that proton called T2). In this sense,
resolution is the same at 1.41 T (60 MHz) as it is at 21.1 T (900 MHz): about 1 Hz for a
“small” molecule in organic solvent. But there is a broader and more important meaning
of “resolution” that has to do with the ability to separate one proton resonance (chemical
shift with splitting pattern) from another without overlap. We say that two proton signals
(“signal” is another word for resonance) are “resolved” if there is no overlap between
the group of peaks associated with one chemical shift and the group of peaks associated
with another. As molecules become larger, the corresponding 1H spectra become more
complex because a larger number of resonances (chemical shift positions) is spread out
over the same range of chemical shifts: roughly 0–10 ppm. As this happens there is more
and more chance for overlap because many chemical shifts fall very close to each other. The
spread or footprint of a 1H resonance is determined by the J couplings, which are measured
in units of hertz (the total width of the multiplet pattern is roughly equal to the sum of all
J couplings to that proton). The larger this footprint, the fewer the unique 1H signals that can
be squeezed into the fixed 0–10 ppm territory without overlap. This is where a fundamental
difference between the J coupling and chemical shift becomes crucial to this discussion:
J couplings represent interactions between a pair of nuclei and as such their strength is
always measured in hertz and is independent of magnetic field. Chemical shifts (expressed
as frequency in hertz) are proportional to magnetic field, which is why we normally use
units of parts per million (millionths of the Larmor frequency), so we have the same ppm
value regardless of hertz value. Normally, we look at a proton spectrum with a horizontal
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Figure 2.1

scale in parts per million, not hertz, so the positions of peaks will be the same at any field
strength.

This is illustrated by the spectra of menthol at 200, 250, 300, 500, and 600 MHz. As
we saw in Chapter 1, NMR signals are frequencies measured in hertz, based on the audio
frequencies detected in the FID by the Fourier transform. If we plot the spectra on a frequency
scale in hertz (Fig. 2.1), we see that the chemical shifts (positions of the proton resonances
a–n) in hertz units are proportional to the magnetic field strength, as they should be:

νo = γBo/2π

The linewidths and J couplings are independent of field strength, so the appearance of each
proton multiplet is the same in each spectrum, regardless of field strength (compare, for
example, peak n). If we expand and align all of the peak n multiplets (Fig. 2.2), we can see
that they are identical, with a linewidth of about 1.5 Hz and three coupling constants of 10.7,
10.0, and 4.3 Hz (the two broader peaks in the center are unresolved pairs of lines). But this
method of displaying the spectrum is impractical because the chemical shift (in hertz) would
be different on different NMR instruments, and it would be confusing to make comparisons
unless everyone had the same field strength. This is why the ppm scale was developed:
to make chemical shifts independent of field strength so that they could be reported on a
universal scale. One part per million is one millionth of the fundamental frequency being
used for the nucleus being observed. For example, on a Bruker DRX-600, the 1H frequency
is 600.13 MHz, so 1 ppm is 600 Hz (600 × 106 Hz × 10−6). In Figure 2.1 the frequency cor-
responding to 3.00 ppm is shown on each spectrum: 3 × 200 = 600 Hz on the 200-MHz in-
strument, 3 × 250 = 750 Hz on the 250, 900 Hz on the 300, 1500 Hz on the 500, and 1800 Hz
on the 600. It is important to realize that the conversion from Hz to ppm depends on the
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Figure 2.2

nucleus as well as the field strength: on a “600” the 13C resonant frequency is 150 MHz
(roughly one fourth of 600 because γC/γH is about 0.25), so 1 ppm is 150 Hz, not 600 Hz.

Figure 2.3 shows the spectra lined up on a ppm scale rather than a hertz scale (the vertical
scale is increased and the tall methyl and OH peaks are clipped off). This is the universally
accepted format for presenting NMR data. Although all the peaks (resonances) appear at
the same place in the spectrum (same chemical shift in ppm), the multiplet patterns appear
to “shrink” horizontally as we go to higher field strength because the J couplings in hertz get
smaller and smaller on the ppm scale. For example, on a 200-MHz spectrometer, a typical

Figure 2.3
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7.0-Hz coupling appears as a separation of 7/200 or 0.035 ppm. The same coupling on a
250, 300, 500, or 600 MHz spectrometer appears as a separation of 0.028, 0.023, 0.014, and
0.012 ppm, respectively. As the 1H coupling patterns “shrink,” the footprint of each
resonance gets smaller and the chances of overlap get smaller. We say that peaks that
are overlapped on the 200-MHz spectrometer are “resolved” (separated by a region of base-
line with no intensity) on the 600-MHz spectrometer. This is clearly illustrated by peak g,
which at low field is spread out and overlapped with some peaks on its upfield (right-hand)
side. This is the more general and more important meaning of “resolution” and explains
why people are willing to spend enormous sums of money to achieve even modest gains
in magnetic field strength. With smaller footprints we can move to larger, more complex
molecules to make use of that “empty space” between the peaks. There are, of course, other
ways to avoid overlap—primarily by using 2D and even 3D and 4D experiments, but in
each case it is always better to have higher field because the “footprint” size is reduced on
the ppm scale. For peaks that are not overlapped at any field strength, there is no change in
the appearance of the peak as we move from 200 to 600 MHz, as long as we expand the
peak to the same range of chemical shifts in hertz (Fig. 2.2). In this case, the structure of the
multiplet depends only on the linewidth (a function of shimming and T2) and J-coupling
values, all of which are independent of the field strength, Bo.

A closer look at the methyl region (Fig. 2.4) shows how we can easily mistake two
resonances for one. The pattern observed for CH3(b) and CH3(c) at 600 MHz looks like
a double doublet. At 500 MHz it looks like a triplet. The reason it changes its form with
magnetic field is that it really represents two different resonances with their own chemical
shift positions, that is, two doublets. The two vertical lines show the peak positions in ppm,
which do not change with field strength. At 600 MHz the two doublets are separated, and

Figure 2.4
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we can read the coupling constants from the left-hand side pair (7.0 Hz) and the right-hand
side pair (6.6 Hz). At 500 MHz the doublet splittings are “wider” (on the ppm scale) so that
the two inner peaks are now overlapped. At 300 MHz and below, the two doublets become
intertwined, so that we have to measure the coupling constants from the first and third peaks
(7.0 Hz) and the second and fourth peaks (6.6 Hz). If we only saw the spectrum at one field
strength, we might be fooled into thinking it was a single resonance split into a triplet or a
double doublet.

2.3 FIRST-ORDER SPLITTING PATTERNS

All of this assumes that the proton in question is only coupled to other protons that are
far away in chemical shift, so that its coupling pattern is simple (“first order” or “weak
coupling”). If it is coupled to nearby peaks, distortions of the peak intensities and more
complex patterns can result, and this effect is strongest at lower field strengths (“second
order” or “strong coupling”). To state this more precisely, the J coupling in hertz between
two spins must be much less than the chemical shift difference in hertz to see a simple
first-order pattern. We could write this as

�ν/J > 5 for first-order (weak) coupling

where we arbitrarily divide it where J is one fifth of the chemical shift difference. Note that
the chemical shift difference (�ν) has to be expressed in hertz in order to directly compare
it to the J coupling. This means that the criterion depends on field strength: a pattern that
is second order at low field can be resolved into a simple first-order pattern at high field—
yet another reason to spend the big bucks. For example, if two protons are coupled with a
7.0-Hz coupling constant and have a chemical shift difference of 0.1 ppm, they would be in a
“second-order” splitting pattern at 200 MHz (�ν = 20 Hz, �ν/J = 2.86) and a “first-order”
pattern at 600 MHz (�ν = 60 Hz, �ν/J = 8.57). Of course, the transition from first order to
second order is a gradual process, so the cutoff of a factor of 5 is arbitrary, but you can see
that higher field means fewer problems with distorted and more complex splitting patterns.

First-order patterns are easy to analyze because each splitting by a proton divides the
pattern into two equal patterns separated by the coupling constant, J. To predict the splitting
pattern, you can draw a diagram starting with the chemical shift position of the resonance.
Arrange the coupling constants in descending order and write next to each one its multiplicity
(doublet, d; triplet, t; quartet, q). For example, if a proton Ha has a chemical shift of 3.56
ppm and has two “neighbors,” Hb and Hc, with coupling constants Jab = 10.0 Hz and Jac =
4.0 Hz, we have

Ha: δ 3.56 ppm (d, 10.0 Hz; d, 4.0 Hz)

We first divide the resonance position (3.56 ppm) into two equal peaks (1:1 ratio) by moving
left 5.0 Hz (J/2) and right 5.0 Hz (J/2) (Fig. 2.5). Then each of these peaks is divided again
into two equal peaks (1:1 ratio) by the 4.0-Hz coupling: 2.0 Hz to the left and 2.0 Hz to the
right. This results in a pattern we call a doublet of doublets or (more concisely) a double
doublet (abbreviated “dd”). In the literature we would report the peak like this: δ3.56 (dd,
10.0, 4.0). To “deconstruct” (analyze) the pattern, we first note that all four peaks are of the
same height, and because 4 is a power of 2 (22 = 4), we assume that there is no overlap of
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Figure 2.5

peaks. This implies that there are two coupling constants. The smaller one (Jac = 4.0 Hz)
can be measured as the separation of peaks 1 and 2 (left-hand side pair, numbering from
left to right) or peaks 3 and 4 (right-hand side pair). The larger coupling (Jab = 10.0 Hz)
can be measured as the separation between peaks 1 and 3 or between peaks 2 and 4. The
full “footprint” of the pattern (separation between peaks 1 and 4) is the sum of all coupling
constants: 10 + 4 = 14 Hz. The more the time you spend diagraming coupling patterns, the
easier it will be to recognize and deconstruct these patterns in real NMR spectra. In a more
theoretical sense, we can see that the effect on Ha of Hb being in the � state is a downfield
shift of its resonant frequency by 5.0 Hz (Jab/2). The effect on Ha of Hb being in the � state
is an upfield shift by 5.0 Hz. The effect on Ha of Hc being in the � state is a downfield
shift of 2.0 Hz (Jac/2), and the effect of Hc being in the � state is a upfield shift of 2.0
Hz. Thus, each component of the multiplet pattern can be viewed as a particular spin state
of Hb and Hc and its effect on the resonant frequency of Ha. Peak 1 (leftmost) is labeled
�� (Hb = �, Hc = �), peak 2 is labeled �� (Hb = �, Hc = �), and so on, and we can
calculate the position of each peak relative to the center by adding J/2 for � and subtracting
J/2 for �. For example, peak 2 (+3.0 Hz) represents the Ha resonance where Hb is in the
� state (+10.0/2 = 5.0 Hz) and Hc is in the � state (−4.0/2 = −2.0 Hz). Adding the two
effects, we get 5.0–2.0 = 3.0 Hz.

Note: In this book we will use the convention that the � state leads to a downfield shift (higher
resonant frequency) for all coupled spins and the � state leads to an upfield shift. In fact,
this may be reversed depending on the sign of the coupling constant J and the sign of the
magnetogyric ratios, γ . J couplings can be either negative or positive, as can magnetogyric
ratios. For simplicity, we will ignore this detail.

A triplet can be viewed as a special case of a double doublet where Jab = Jac. In this
case the two inner peaks (peaks 2 and 3) have the same resonant frequency and combine
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Figure 2.6

to form a single peak with twice the intensity of the outer peaks. This can occur by true
equivalence (i.e., by molecular symmetry making the Ha–Hb relationship identical to
the Ha–Hc relationship) or by coincidence: the two coupling constants may just happen
to be nearly or exactly the same. In the case of the triplet (1:2:1 ratio), the central peaks
represent both the �� and the �� states of the Hb/Hc system, and we have less than 2n peaks
(where n is the number of coupled spins affecting Ha) because of overlap.

More complex coupling patterns are dealt with in the same way. Generally, it is the
overlap or near overlap of the 2n original components that makes the pattern complex and
more challenging to take apart. Figure 2.6 shows a double triplet with coupling constants
of 10.0 Hz (doublet coupling) and 5.0 Hz (triplet coupling). This means that Ha (2.17 ppm)
is coupled to Hb (Jab = 10.0 Hz) and to two equivalent protons, Hc and Hd, each with a
coupling to Ha of 5.0 Hz. The two triplet patterns meet in the center so that an intensity
1 peak of the left-hand triplet combines with an intensity 1 peak of the right-hand triplet
to give a peak of intensity 2. Thus, the overall pattern is five equally spaced peaks with
intensity ratio 1:2:2:2:1. This might be mistaken for a quintet with a single coupling of
5.0 Hz, but that would give an intensity pattern of 1:4:6:4:1, very different from the pattern
we observe. To analyze this pattern, first note that there are five peaks in the multiplet,
so we must have at least three couplings (22 = 4; 23 = 8). If there are three couplings,
then we have eight peaks that are reduced to five peaks by overlap. The intensities are
clearly not all the same: the outer peaks are smaller and the inner peaks all look the same.
So 1:2:2:2:1 would be a good estimate of relative intensities. These numbers add up to
eight, confirming that there are three couplings. Measuring frequency differences from the
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Figure 2.7

outermost peaks, we see that peak 2 is 5.0 Hz from peak 1, and peak 3 is 10.0 Hz from peak 1.
This suggests that we have couplings of 5 and 10 Hz. The equal spacing and the 1:2 ratio of
peaks 1 and 2 suggest a triplet, and two triplets that meet in the center explain the pattern.
Diagraming the coupling pattern gives us the complete story: a double triplet with couplings
of 10.0 and 5.0 Hz. We report this as δ 2.17 (dt, J = 10.0, 5.0). The simpler splitting comes
first (d), and the coupling constants are listed in the same order as the coupling patterns,
so we know that the 10.0-Hz coupling goes with the “d” and the 5.0-Hz coupling goes
with the “t”.

Figure 2.7 shows a triple–triplet pattern where one triplet coupling is exactly twice the
other triplet coupling. As always, we start the diagram with the larger coupling and then
split each of the peaks again with the smaller coupling. The three narrow triplet patterns
grow out of the three peaks of the wider triplet, and we write the intensities according to
the intensities of the “parent” peaks they grow out of: 1:2:1 for the outer triplets and 2:4:2
for the inner triplet derived from the intensity 2 peak of the wide triplet. The narrow triplets
overlap in two places, and we add the intensities of the two peaks that combine in each case.
The final intensity pattern is 1:2:3:4:3:2:1. This is distinct from a septet (splitting by six
equivalent protons), which has intensity pattern 1:5:10:15:10:5:1. To analyze this pattern,
we have to rule out the possibility that there are only three couplings (23 = 8), even though
there are less than eight peaks. With three couplings, there would only be one overlap and
the intensity ratio would have to be 1:1:1:2:1:1:1. With four couplings (24 = 16) we would
have nine overlaps. In fact, the intensity ratio 1:2:3:4:3:2:1 adds up to 16, accounting for all
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of the overlap. The “triangular” shape of the multiplet envelope suggests the 1:2:3:4:3:2:1
intensity ratio. Measuring in from the outer peaks, we see couplings of 3.0 Hz (peak 1 to
peak 2) and 6.0 Hz (peak 1 to peak 3). One can visualize a triplet on each edge of the pattern
(1:2:1) and a more intense triplet in the center (2:4:2), and the even spacing, leading to
overlap, explains the anomolous intensity 3 peaks.

Figure 2.8 shows a double-double triplet (ddt) pattern. We see 10 peaks, not all evenly
spaced. With four couplings (24 = 16) we would have six overlaps, and because we see four
small peaks and six larger peaks, the intensity ratio might be 1:2:2:1:2:2:1:2:2:1, adding
up to 16. Starting from the leftmost peak, we measure separations of 1.5, 3.0, and 4.0 Hz.
The 1:2 ratio at the left edge suggests a triplet, so we know that the third peak (intensity
2) has another peak of intensity 1 from another triplet, suggested by the peak of intensity
1 (the fourth peak from the right-hand side) located 3.0 Hz to its right. It is useful when a
component such as the 1:2:1 triplet is identified to mark the pattern with three lines on a piece
of paper and then move the paper around on the multiplet to see if there are other identical
patterns in the multiplet. In this case, we can locate four 1.5-Hz triplets, and their centers
describe the double-doublet (J = 4.0, 3.0) that we see in the upper part of the diagram.
Another way to look at this pattern is the superposition of two doublet-triplets (see Fig. 2.6,
1:2:2:2:1 ratio) with a separation of 4.0 Hz. Notice also what happens when the separation
between two “lines” (components of the multiplet) comes close together: the smaller peak
“climbs” up the larger one and becomes a “shoulder” on the side of the peak. We do not
have “baseline separation” between the fourth and fifth peaks (1 and 0.5 Hz on the scale)
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because their linewidths (about 0.5 Hz) are similar to their separations (0.5 Hz). Baseline
separation means that the intensity level comes all the way to zero (to the noise baseline of
the spectrum) between the peaks. When there is partial overlap, the separation of the two
peaks in hertz will be a bit less than their actual frequency difference, and this can lead to
errors in measuring coupling constants. If there are multiple places to measure a frequency
difference, always avoid measuring it to a partially overlapped peak and choose two peaks
that are baseline separated.

Some real-world examples will help to reinforce these concepts. Figure 2.9 shows a
one-proton multiplet from the 600 MHz 1H spectrum of a testosterone (steroid) metabo-
lite. The chemical shift is measured at the precise center of the symmetrical pattern:
4.153 ppm, in the region of singly oxygenated CH groups. The spectrum on the right
is processed with resolution enhancement: a sine-bell function starting at zero and end-
ing at 180◦ of the sine function. The spectrum on the left is processed without resolu-
tion enhancement. The intensity ratio appears to be 1:1:1:2:1:1:1, which adds up to eight
and suggests three couplings (23 = 8) with one overlap (seven peaks). If you mark the
two leftmost peak positions on a piece of paper, you can see that the two rightmost
peaks have the same spacing. Measuring from the third peak, we can make a mark on
the right shoulder of the fourth (center) peak with the same spacing. These four lines
(1–4 on the right-side spectrum) make up a double doublet. The coupling constants
can be extracted from the line frequencies in hertz: J1 = 2501.2 − 2498.4 = 2.8 Hz;
J2 = 2501.2 − 2495.4 = 5.8 Hz. This entire four-line pattern can then be transferred to
the other side of the multiplet from your piece of paper, lining up the rightmost line with
the rightmost peak (Fig. 2.9, right, 1′–4′). When this is done, the two lines in the middle
do not perfectly overlap, resulting in a broader peak in the center with an intensity more
like 1.5 rather than 2. It is still possible, however, to extract the third coupling constant by
measuring the separation of the “second” lines (2 and 2′) in the two four-peak (dd) patterns,
or the separation of the two “third” lines (3 and 3′). The first (1 to 1′) and fourth (4 to 4′)
peak separations require measurement to an overlapped pair of peaks (1′ and 4) that are
not perfectly aligned, so we avoid these measurements. Using the line frequencies, we have
from the second peaks (lines 2 and 2′): J3 = 2498.4 − 2490.9 = 7.5 Hz; or from the third
peaks (lines 3 and 3′): J3 = 2495.4 − 2487.9 = 7.5 Hz. The complete diagram is shown on
the left-side spectrum: δ 4.153 (ddd, J = 7.5, 5.8, 2.8). Note that the method of measuring
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the separation from the outermost peak fails in this case: The first two couplings can be
obtained in this way but the third, which would come from the separation of peaks 1 and
1′/4, would be incorrect because peak 1′/4 is not a perfectly aligned overlap of two peaks.
It is always better to completely analyze and understand the coupling diagram and measure
from the resolved, single line peaks as much as possible.

A more complex pattern with some overlap is shown in Figure 2.10, another steroid
metabolite. First-order splitting patterns are always symmetric about the center, so this
cannot be a single resonance. Integration shows two protons, and the centers of the two
symmetric patterns can be measured as 2.523 ppm (left-hand side pattern with 14 lines) and
2.474 ppm (right-hand side pattern with four lines). These two peaks are barely resolved
at 600 MHz; at lower field the multiplets would expand about the same two chemical shift
positions, and it would be very difficult to analyze the two overlapping patterns. The right-
hand side multiplet is easy to analyze: it is a double-doublet with couplings of 13.7 and
5.7 Hz. The left-hand side pattern is more challenging. It has 14 lines (or “multiplet compo-
nents”) that suggests four couplings (24 = 16) and two overlaps: 1:1:1:1:1:2:1:1:2:1:1:1:1:1.
Peaks 1–4 can be diagrammed as a double-doublet because the 1–2 spacing is the same as the
3–4 spacing. Marking down this pattern, we can transfer it to peaks 11–14 exactly. The center
pattern can be viewed as two of these double-doublet patterns offset by the 1–2 separation.
This gives overlap at peaks 6 and 9, which are twice the intensity of the others. We can trace
peaks 1–4, 5, 6, 8, and 9 onto a piece of paper and verify that the pattern lines up with peaks 6,
7, 9, 10, and 11–14. This confirms that we have a double-double-double-doublet (dddd), and
we only have to measure the four coupling constants. The smallest coupling can be most eas-
ily measured as the difference between 1 and 2, 3 and 4, 11 and 12, or 13 and 14. In each case,
however, the two peaks are far from baseline resolved, so the difference we measure, even
in the resolution-enhanced spectrum, is an underestimate of the true coupling constant. The
two peaks “ride up” on each other, and the measured separation is reduced by the overlap.
A more accurate method is to make a computer simulation of two ideal shaped (Lorentzian)
peaks added together, and vary the peak width and J coupling to get the best fit to the data in
the lower trace (because of the resolution enhancement, the upper trace peaks do not have
ideal peak shape). This analysis, using a non linear least-squares fit, gives a linewidth of
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1.46 Hz and a J coupling of 1.47 Hz. This is slightly larger than the difference measured
on the lower spectrum (1.37 Hz) but very close to the distance measured on the resolution-
enhanced spectrum (1.51 Hz). Computer-generated peak lists can also be inaccurate due to
the distortion of peak shapes by “grainy” digitization: It is better to use cursors positioned
in the center of a peak by “eyeball” than to rely on an algorithm that simply looks for
the highest intensity data point in the peak.

To measure the larger couplings, we measure from one peak of the double doublet to the
corresponding peak of another double doublet. For example, we can measure the second-
to-largest coupling between peaks 1 and 5, 2 and 6, 3 and 8, or 4 and 9. But it is best to
avoid measuring to the “shoulder” peaks (5, 7, 8, and 10) because they are distorted toward
the nearby taller (more intense) peak they are riding on. So we can measure this coupling
best between peaks 2 and 6 or between 4 and 9. Peaks 6 and 9 are not distorted because
they are pulled equally toward the two shoulders on either side. This separation gives us a
coupling of 12.1 Hz, and measuring between the first and third group of four we get 13.5 Hz
(distance between 1 and 6 or between 3 and 9). The peak can be reported as δ 2.523 (dddd,
J = 13.5, 12.1, 5.0, 1.5). It is important to note that none of the couplings are between
the two nearly overlapped resonances. If any coupling were between two peaks with such
a small chemical shift difference (�ν = (2.523 − 2.474) × 600 = 29.4 Hz), we would
see some distortion of the peak intensities and possibly some additional, weak lines due to
strong coupling (second-order pattern). In fact, the peaks can be assigned to H-6� (left-hand
side peak) and H-1� (right-hand side peak), which are far apart in the steroid structure and
have no mutual couplings. In this case we can often fully analyze two resonances even if
they are overlapped, as long as we can recognize the coupling patterns and assign each
individual line to one or the other resonance.

2.4 THE USE OF 1H–1H COUPLING CONSTANTS TO DETERMINE
STEREOCHEMISTRY AND CONFORMATION

Clearly we can extract important information from coupling patterns about the number and
equivalence groupings of other protons that are nearby (generally two or three bonds away)
in the bonding network. But we can also get valuable information from the magnitude of the
coupling constants, which tells us about the geometric relationship of the bonds connecting
the two protons. Three-bond (vicinal) relationships are the most useful because the coupling
constant is related in a predictable way to the dihedral angle between the bonds attached to
the protons. For example, for two protons attached to neighboring saturated (sp3 hybridized)
carbons (H–C–C–H), rotation of the C–C bond leads to different relationships of the two
C–H bonds: anti if they are opposite each other (180◦ dihedral angle) and gauche if they
are next to each other in a staggered conformation (60◦ dihedral angle). If you look directly
down the C–C bond, with one carbon right behind the other, the angle described by the two
C–H bonds is the dihedral angle. Because J coupling is transmitted through bonds, and more
specifically through electrons in bonding orbitals, the magnitude of the coupling constant
depends on orbital overlap. The largest coupling constant actually corresponds to the anti
conformation (180◦ dihedral angle), which is counterintuitive in terms of a through-space
interaction but makes sense in terms of oribtal overlap. The minimum J coupling is observed
when the two C–H bonds are exactly perpendicular (90◦ dihedral angle) because the orbital
overlap is at a minimum for perpendicular molecular orbitals. This relationship between
dihedral angle and coupling constant has been formalized into a mathematical relationship
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Figure 2.11

called the Karplus relation or the Karplus curve. This is really an empirical relationship that
has been “parameterized” into many different equations for different specific situations.
A general equation used for organic molecules with two saturated carbons (H–C–C–H) can
be written as follows:

J = 7 − cos � + 5cos (2�)

where � is the dihedral angle. This equation is plotted in Figure 2.11, with experimental
J values for nine different steroid metabolites plotted against calculated dihedral angles
obtained from energy-minimized structures. The clustering of experimental points around
60◦ and 180◦ reflects the preference for staggered conformations (in this case cyclohexane
chair conformations) with either gauche (60◦) or anti (180◦) relationships. The eclipsed
conformation (0◦ dihedral angle), though rare, gives a second maximum in coupling con-
stant that is a bit smaller than the maximum at 180◦. The minimum J values are observed
for dihedral angles near 90◦, also a rare occurrence. More specific subsets of vicinal
relationships can be fit more accurately to yield specific Karplus equations. For exam-
ple, in NMR of peptides and proteins, the H–N–Cα–H dihedral angle (related to the �

angle that, along with the Ψ angle, defines the backbone conformation of the polypeptide)
can be related quite accurately to the HN–Hα J value by comparing dihedral angles mea-
sured in X-ray crystal structures of proteins to J values measured by NMR. There is another
Karplus equation for three-bond couplings between 1H and 13C, relating to the dihedral
angle H–C–C–C, so that long-range heteronuclear couplings, 3JCH, can be used to ob-
tain stereochemical and conformational information. J couplings are also sensitive to
electronegative substituents, so we must be careful not to overinterpret the general
Karpus relation in specific situations.

Steroids are rigid molecules, particularly in the locked six-membered A, B, and C rings.
More flexible molecules give rise to conformational averaging, whereby NMR measurables
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such as J values are really weighted averages of the values expected for each of the multi-
ple conformations available, weighted by the percent of time spent in each conformation.
Usually, these conformational changes are rapid on the timescale of the NMR experiment
(1/J), so we see only the average values. For example, a vicinal 1H–1H coupling across a
C–C bond with free rotation will average to about 7 Hz, which is the average of the J values
expected for the three staggered conformations: 4 Hz (60◦), 4 Hz (−60◦), and 13 Hz (180◦).
If the conformational change happens on a scale comparable to 1/J, we will see broadening
of the NMR lines due to the uncertainty in the J value.

If dihedral angles are measured from energy-minimized structures, it is important to con-
sider whether the structure is rigid (a steep potential well) or flexible (a broad minimum)
or if there are multiple steep minima (multiple interconverting conformations). Most
energy minimization programs simply search from the starting conformation for an en-
ergy minimum and then stop—this may be a broad minimum signifying little about the
actual structure, or it may be one of several minima. Solvents also affect conformation, and
most structure calculations do not specifically include solvent.

2.5 SYMMETRY AND CHIRALITY IN NMR

Proton NMR spectra are considerably simplified by the equivalence of many protons: A
group of protons may have exactly the same chemical shift (“chemical equivalence”) and/or
exactly the same J couplings (“magnetic equivalence”). This can happen in two ways: by
molecular symmetry (mirror plane or rotation axis) or by rapid conformational change
(bond rotation). The simplest example of bond rotation is a methyl (-CH3) group. If it
were stationary, we might expect different chemical shifts for each of the three protons and
different J couplings due to differences in dihedral angle. In fact, all methyl groups rotate
very rapidly about the bond connecting to the rest of the molecule, making all three protons
equivalent. The same can be said of a tert-butyl group (-C(CH3)3), which has nine equivalent
protons and three equivalent 13C nuclei. Cyclohexane has only one proton chemical shift
at room temperature because the chair conformation (with axial and equatorial protons)
rapidly interchanges with the other chair conformation, exchanging the roles of axial and
equatorial so rapidly that all protons experience a single, average chemical shift.

Another way to achieve equivalence is by symmetry. For flexible molecules, we al-
ways arrange the molecule in the most symmetric conformation to examine its symmetry
properties. Diethyl ether (CH3–CH2–O–CH2–CH3) has only two proton chemical shifts
(Fig. 2.12): The four CH2 protons are equivalent and the six CH3 protons are equivalent
due to symmetry. Each of the methyl groups contains three equivalent protons due to rotation
of the CH3–CH2 bond, and the mirror plane in the center (perpendicular to the plane of the
paper) reflects the Hf methyl group into the He methyl group, making them equivalent.
The mirror plane also converts Ha (coming out of the paper) into Hc (also coming out of
the paper), making them equivalent, and Hb (going into the paper) into Hd. Finally, there
is another mirror plane in the plane of the paper that converts Ha into Hb and Hc into Hd.
Thus, all four methylene (CH2) protons are equivalent. The spectrum consists of a triplet
at about 1.2 ppm (area = 6) and a quartet at about 3.4 ppm (area = 4), with a coupling
constant of about 7 Hz (free rotation). Note that protons within an equivalent group do not
split each other—we will see why this is when we consider the effect of strong coupling
(second-order splitting).
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Figure 2.12

In many cases you do not need to talk about formal symmetry elements to see the
equivalence of protons. Just look at the world from the point of view of the proton: What
kind of environment does it find itself in? If the world looks exactly the same (or is a
mirror image) from the point of view of one proton as it does from another, they will
be chemically equivalent, that is, they will have the same chemical shift. For example, in
4-bromotoluene (4-bromo-1-methylbenzene), the two protons adjacent to the bromine are
chemically equivalent. Imagine sitting at a six-sided table, and you see a bromine seated
at your right and a proton to its right, a proton seated to your left and a methyl group to
its left, and another proton across from you. Now, if you sit in the other position next to
the bromine, you have a bromine to your left and a proton to its left, a proton seated on
your right with a methyl group to its right, and a proton across from you. Except for the
mirror image relationships, which have no effect on chemical shift, you are in the same
environment. If there is a difference, no matter how far away in the molecule, the two
protons are not chemically equivalent. If the difference is far enough away, there may be
little or no difference in chemical shift, but there is no chemical equivalence in the formal
sense.

Chiral molecules do not have mirror planes, but they can have rotation axes as symmetry
elements. The molecule shown in Figure 2.13 is chiral in its central oxygen-bridged tricyclic
ring system as well as in the two R group substituents. But rotation about the C2 axis by 180◦
yields the identical molecule, transforming Ha into Hb and Hc into Hd. Even the chiral R
groups are interchanged by the rotation, so that there are exactly half the number of unique
1H resonances as one would predict just by counting protons. Without mass spectrometric
verification of the molecular weight, we might propose a “monomer” structure rather than
the dimer structure shown. Integration of peak areas only gives us the relative number of
protons represented by each peak, not the absolute number, so it is often difficult to confirm
the presence of symmetrical dimers and higher multimers by NMR alone.

A methyl group always forms an equivalent group of three protons, but saturated methy-
lene (X–CH2–Y) groups are more complicated. In an achiral molecule, such as diethyl
ether, they are always a chemically equivalent pair. But if the molecule has a chiral center,
it cannot have a mirror plane, and in most cases the two protons of the CH2 group will
not be chemically equivalent. Thus, in most of the interesting molecules such as natural
products and biological molecules, each CH2 group will give rise to two proton resonances
unless they have coincidentally the same chemical shift (a “degenerate” pair). The two
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Figure 2.13

nonequivalent protons will show a large two-bond coupling (13–16 Hz) in addition to any
other (vicinal and/or long-range) couplings. The nonequivalent protons of a methylene
group are often referred to as “diastereotopic” protons. Formally, if you do not have a mir-
ror plane in the X–C–Y plane or a C2 axis bisecting the H–C–H angle, the two methylene
protons are nonequivalent. The methylene protons of a terminal olefin ((R,R′)C=CH2) are
a different case; they are equivalent only if the two R groups are identical (C2 axis bisecting
the H–C–H angle) or mirror images (mirror plane through C C and bisecting the H–C–H
angle). If they are nonequivalent, the two-bond coupling is small (0–2 Hz).

2.6 THE ORIGIN OF THE CHEMICAL SHIFT

Each type of nucleus (each specific isotope like 1H) has a characteristic resonant frequency
(precession frequency or Larmor frequency) in a given external magnetic field, Bo. The
simple relationship νo = γ Bo/2π shows that the Larmor frequency depends only on the
“magnet strength” of the nuclear magnet (the magnetogyric ratio γ) and the strength of
the external magnetic field Bo. This is how we can “tune in” to a particular nucleus on
the spectrometer, by setting the base frequency (e.g., 500 MHz for 1H and 125 MHz for
13C on an 11.7 T spectrometer). But if all protons in a molecule had exactly the same
resonant frequency, the technique would be useless because we would see a single peak
in the spectrum representing all of the protons. In fact, as we have seen, there are slight
differences in resonant frequency depending on the chemical environment of the nucleus
within a molecule. The relationship still holds that resonant frequency is exactly proportional
to external field strength, but it is the local magnetic field strength at the position of the
nucleus that is important: the effective field Beff ,

νo = γBeff/2π
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This local magnetic field is slightly less than the applied magnetic field, Bo, due to the effect
of the electron cloud (bonding and nonbonding electrons) surrounding the nucleus. This
cloud of electrons “shields” the nucleus from the applied magnetic field by a tiny factor, on
the order of parts per million, of the applied field:

Beff = Bo (1 − σ)

The shielding factor, σ, is related to the chemical shift in parts per million:

δ = 106 × (σo − σ)

where σo is the shielding factor for a reference compound such as tetramethylsilane (TMS)
that defines the zero of the chemical shift scale. Note that δ gets smaller as there is more
shielding and larger as there is less shielding. We can view the right-hand side of the spectrum
as relatively “shielded” (upfield, small δ) and the left-hand side as relatively “deshielded”
(downfield, large δ).

The physical origin of this shielding by electrons is relatively easy to explain. The cloud of
electrons surrounding a nucleus begins to circulate when the sample is placed in a magnetic
field. This is a general phenomenon of physics: If you place a closed circle of wire in a
magnetic field, a current will be induced to flow around the circle. This induced current
will create a new magnetic field, just as any coil of wire with a current, and the direction
of the induced current will always be such that the new magnetic field will oppose the
original magnetic field that created it. This is called Lenz’s law. The stronger the original
magnetic field, the more the current will flow in the wire loop and the stronger will be the
new, opposing magnetic field. Thus, the opposing field is proportional to the original field.
Returning to the nucleus in a cloud of electrons, the electrons are mobile and thus form a
kind of circle of wire around the nucleus (Fig. 2.14). When the sample is inserted in the
magnetic field, the electrons begins to circulate around the nucleus (the induced current)
and produce a magnetic field that opposes the Bo field at the center of the current (i.e., at
the nucleus). This induced field (Bi) is proportional to the external field and subtracts from
it, reducing the effective field felt by the nucleus:

Beff = Bo − Bi = Bo − σBo = Bo (1 − σ)

νo = γBeff/2π = γBo(1 − σ)/2π = γBo/2π − γBoσ/2π (σ � 1)

The change in resonant frequency (in hertz) is thus proportional to Bo for a given shielding
constant σ, that is, for a given nucleus at a particular position in a molecule. This is exactly
the effect we saw in Figure 2.1, as the field strength Bo is increased. To make chemical
shifts the same regardless of magnet strength, we use the δ scale in parts per million, where
the proportionality to Bo is already taken into account:

1 ppm = γBo/2π × 10−6

Shielding is just a combination of electron density in the vicinity of the nucleus and the
ease of circulation of those electrons. For a proton, there is only one bond to the rest of the
molecule, and the electron density around the proton is affected primarily by the electron-
withdrawing effect of electronegative atoms that are nearby in the bonding network. For
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example, a proton bound to an oxygenated carbon (H–C–O) experiences a “deshielding”
effect (downfield shift) because the electronegative oxygen pulls electron density toward
it, making the carbon atom slightly positive and displacing electron density away from the
proton and toward the carbon. This reduction of electron density reduces the circulating
current around the proton, leading to a reduction in the opposing magnetic field created
by that current. Thus, the proton is less shielded from (more “exposed” to) the applied
magnetic field, Bo, and its resonant frequency increases (downfield shift). The magnitude
of this change in electron density is miniscule, on the order of a few parts per million.

2.6.1 Through-space Effects

The deshielding effect of electronegative groups operates by displacing electrons in bonds,
effectively decreasing the electron density immediately surrounding the proton. Another
effect arises when induced magnetic fields are strong enough to extend through space
from other atoms or molecular subunits to the point occupied by the proton. The classic
example of this is the benzene ring, which has two mobile clouds of π electrons, one above
and one below the plane of the ring (Fig. 2.15). In the external (Bo) magnetic field, the
π electrons circulate according to Lenz’s law, generating an induced magnetic field (Bi)
that opposes Bo at the center of the circulating current. The induced field lines are circular,
however, extending from the bottom upward around the outside of the benzene ring and then
descending again into the center of the ring. At the position of the proton, at the outside of the
benzene ring, the induced field is aligned with the Bo field so that it adds to the laboratory
field. This strong deshielding effect shifts the benzene protons downfield to more than
7 ppm on the δ scale. These larger scale electron currents due to loosely bound π electrons
in double bonds and conjugated systems generate stronger induced fields that can extend
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through space several Angstroms and influence chemical shifts. For the benzene ring, the
effect is shielding (upfield shifting) in the region directly above and below the ring, while it
is deshielding (downfield shifting) in the plane of the aromatic ring. One can imagine two
cones extending from the center of the ring, one above the ring and another cone below the
ring; protons inside one of the cones will be shielded (upfield shifted) and protons outside
of the cones will be deshielded (downfield shifted). The effect diminishes as the proton
moves away from the center of the ring. The same pair of cones can be visualized above and
below the plane of a single unsaturation (C C or C O), leading to zones of “anisotropic”
shielding and deshielding.

In rigid molecules, we sometimes see large chemical shift differences (up to 2 ppm)
between the two protons of a CH2 group if there is a double bond or aromatic ring nearby.
The inductive effects of electronegative groups will be the same for these two protons
because each one has the same through-bond relationship to the rest of the molecule, but
the difference in chemical shift is largely due to their different positions in space relative
to the plane of the unsaturated group (π bond). In globular proteins the monomer unit
(-NH–CH(R)–CO-) of the biological polymer can have unique chemical shifts even when
there are many of the same monomer unit (e.g., alanine: R = CH3) in the polypeptide
chain. For example, if there are six alanine residues (A4, A15, A26, A78, A92, and A126)
in a protein, there might be six different chemical shifts for the six methyl doublets. This
“dispersion” or spreading out of chemical shifts for identical monomer units is due in large
part to the proximity and orientation of aromatic rings (side chains of nearby aromatic amino
acids). Proteins with few aromatic amino acids usually show more overlap and are more
difficult to work with in NMR structure determination. In NMR of natural products, the use
of d6-benzene (C6D6) as a solvent can sometimes “spread out” overlapped chemical shifts
in the same way, due to the anisotropic (relative orientation dependent) effects of π-electron
circulation in the solvent molecules on solute chemical shifts.
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Figure 2.16

2.6.2 Chemical Shift Anisotropy

The amount of electron circulation (and thus the intensity of the induced field) is dependent
on the orientation of the molecule with respect to the Bo field direction. In the above example
of the benzene ring, we assumed that the plane of the aromatic ring is perpendicular to the
Bo field vector. In fact, in solution the molecule is rapidly reorienting itself and samples
all orientations equally over time (rapid isotropic tumbling). If we could lock the ring in
place and measure chemical shifts, we would see three different chemical shifts for the three
principle orthogonal orientations of the molecule. For example, the 13C chemical shift of
benzene is 245 ppm for the orientation with the ring plane perpendicular to Bo (Fig. 2.16)
because this orientation gives the maximum electron circulation. For the orientation with
the ring plane parallel to the Bo field and the 13C–H vector perpendicular to Bo, the chemical
shift is 110 ppm, and for the other parallel orientation with the 13C–H vector parallel to Bo,
the shift is only 35 ppm. In the two parallel cases, the electron circulation would have to
cross the plane of the benzene ring, which is a node (zero electron density) in the π orbital.
The observed chemical shift in solution (the “isotropic” chemical shift) is the average of
these three fixed-orientation chemical shifts:

δiso = (245 + 110 + 35)/3 = 130 ppm

The amount of variation of chemical shift with the orientation is called the chemical shift
anisotropy, or CSA. CSA is simply the difference between the smallest fixed-position
chemical shift and the average of the other two fixed-position chemical shifts:

CSA = (245 + 110)/2 − 35 = 177.5 − 35 = 142.5 ppm

By comparison, a saturated methine carbon (C–H) has a CSA of only 25 ppm because
the mobility of electrons around the carbon nucleus is much less in an sp3-hybridized car-
bon and depends much less on the orientation of the C–H bond with respect to Bo. In
solution-state NMR we only see the isotropic chemical shift, δiso, and the fixed-position
chemical shifts and the CSA value are obtained from solid-state NMR measurements.
Although CSA does not affect chemical shifts in solution, it does contribute to NMR re-
laxation and can be exploited to sharpen peaks of large molecules such as proteins in
solution. For large molecules, such as proteins, nucleic acids, and polymers, or in viscous
solutions, molecular tumbling is slow and CSA broadens NMR lines due to incomplete
averaging of the three principle chemical shift values on the NMR timescale. Like isotropic
chemical shifts, CSA in parts per million is independent of magnetic field strength Bo
but is proportional to Bo when expressed in hertz. Because linewidths are measured in
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hertz, the line-broadening effect of CSA becomes more significant as we increase the field
strength.

2.7 J COUPLING TO OTHER NMR-ACTIVE NUCLEI

Proton signals will also be split by (J coupled to) other NMR-active nuclei that are nearby
in the bonding network. Two commonly encountered spin-½ nuclei are 19F and 31P (both
100% abundance). Common NMR-active nuclei that must be introduced by isotopic labeling
include deuterium (2H, spin 1), and 13C and 15N (both spin ½).

Couplings to 31P are similar to 1H–1H couplings in magnitude for two- and three-bond
relationships. For example, dimethyl methylphosphonate (CH3P(O)(OCH3)2) gives two
doublets in the 1H NMR spectrum: CH3P at 1.481 ppm (integral 3H) and CH3O at
3.741 ppm (integral 6H). The CH3O doublet is 11.0 Hz wide (3JHP = 11.0) and the CH3P
doublet is 17.4 Hz wide (2JHP = 17.4). In the 13C spectrum we would expect two peaks
because there are only two distinct 13C chemical shifts: CH3P and CH3O. But instead
we see four peaks: a doublet at 52.19 ppm (CH3O, 2JCP = 6 Hz) and another doublet at
9.83 ppm (CH3P, 1JCP = 144 Hz). We do not expect to see splitting in 13C spectra because
they are 1H decoupled, but we have to remember that 1H is the only NMR-active nucleus
that is decoupled: all other splittings will show up in routine 13C spectra. In particular,
the one-bond 13C–31P coupling (144 Hz) is large enough that, especially on lower field
instruments, the doublet is easily mistaken for two different carbon chemical shifts.
As with 1H–1H couplings, long-range (>3 bond) couplings are observed in conjugated
systems. Triphenylphosphine oxide ((C6H5)3P O) shows coupling from 31P to the ipso
carbon (1JCP = 103 Hz), to the ortho carbon (2JCP = 10 Hz), to the meta carbon (3JCP =
12.5 Hz), and to the para carbon (4JCP = 3.5 Hz).

Coupling to 19F is also similar to 1H–1H couplings, but there are some unusually large
couplings as well. Geminal 1H–19F couplings on saturated (sp3-hybridized) carbons are
around 50 Hz, and on unsaturated (sp2-hybridized) carbons they can be around 80 Hz.
Vicinal 1H–19F couplings in rigid saturated systems with an anti relationship (180◦ dihedral
angle) are around 40 Hz, and in a fluoro-olefin the 3J values are around 20 for cis and 50
for trans. In flexible saturated systems, vicinal couplings are similar to 1H–1H couplings.
Long-range couplings can be significant: in aromatic rings the 4-bond or meta coupling
(6–8 Hz) is similar to the vicinal or ortho coupling (8–10 Hz), and the 5-bond or para
coupling is significant (∼2 Hz). Coupling of 19F is significant in 13C spectra, again because
only coupling to 1H is removed by decoupling. In fluorobenzene, for example, the JCF
couplings are 245, 21, 8, and 3 Hz for 1J, 2J, 3J, and 4J, respectively. A CF3 group will
be split into a quartet (1:3:3:1) with very wide coupling. Trifluoroacetic acid, for example,
gives two quartets in the 13C spectrum: 1JCF = 282 Hz (CF3) and 2JCF = 44 Hz (CO2H).
This splitting and the loss of the heteronuclear NOE can cause a fluorinated carbon to
“disappear” into the noise. It is possible to decouple 19F, but most spectrometers do not
have the capability to decouple both 1H and 19F simultaneously.

Coupling to deuterium, 2H, is observed for deuterated solvents and their residual peaks
(from solvent molecules with one 2H replaced by 1H). 1H–2H coupling constants are propor-
tional to the corresponding 1H–1H J value, reduced by a factor of about 7 (γH/γD = 6.51)
due to the weaker nuclear magnet of deuterium. Because deuterium has a spin of 1, it
has three spins states almost equally populated, and so it splits the 1H signal into three
equal peaks centered on the 1H chemical shift position. Multiple 2H splittings can be
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built up by diagramming just like with 1H splittings, as long as each 2H results in a
split into three peaks of intensity ratio 1:1:1. In 13C spectra we see the splitting by the
directly bound 2H nuclei, reduced by a factor of 6.5 from the corresponding 1H–13C cou-
plings. For example, without 1H decoupling CHCl3 gives a doublet in the 13C spectrum
with 1JCH = 209 Hz, and CDCl3 gives a 1:1:1 triplet in the 13C spectrum with 1JCD =
32 Hz (209/6.5 = 32.15). Exchange of 2H between the sample molecule and deuterated
solvent can lead to loss of 1H peak intensity, for example, at an activated position next to a
ketone functional group in CD3OD solvent. The carbon peak may disappear entirely from
the 13C spectrum due to splitting by 2H into many smaller peaks that sink into the noise. In
addition, carbons are much slower to relax when bound to 2H (relative to 1H), again due to
the smaller nuclear magnet of deuterium, further reducing their intensity in the 13C spectrum.

Coupling to 13C is observed as weak satellites on either side of each 1H resonance.
Because the natural abundance of 13C is only 1.1%, we have to consider two separate
molecules and add together their contributions to the 1H spectrum: one with our 1H bound
to 12C (98.9% of the sample) and another with 1H bound to 13C (1.1% of the sample).
In the 12C case, we see the normal 1H resonance with its splitting pattern from coupling
to other protons (triplet, double-doublet, singlet, etc.). In the 13C case, we see this same
splitting pattern but divided into two identical patterns, one about 75 Hz downfield of the
1H-(12C) pattern and one about 75 Hz upfield of this pattern (Fig. 2.17). The exact distance
is one half of 1JCH, which is typically in the range of 150 Hz for a one-bond coupling
between 13C and 1H. This doublet is 1.1% of the intensity of the central 1H–12C resonance,
so each component of the doublet (each side) is 0.55% of the intensity of the central peak.
For isotopically enriched (“labeled”) compounds, the satellites are larger due to the greater
abundance of 13C. For example, a sample of 13C-enriched methyl iodide (CH3I) with 50%
of 13C will show a 12CH3I singlet (50% of total intensity) and a 13CH3I doublet centered
on the same chemical shift (each side 25% of total intensity). This will look like a triplet
with spacing of 1JCH and intensity ratio 1:2:1, but it is not a triplet and it is important
to realize that this pattern is the superposition of two separate spectra from two different
species (isotopomers) in solution.

Long-range (2 or 3 bond) coupling to 13C is difficult to observe unless the sample is
enriched. A sample of ethyl acetate (CH3–C∗O–OCH2CH3) with 100% 13C label at the
carbonyl carbon would give a 1H spectrum with a doublet for the acetate methyl group
(2JCH), a double-quartet for the methylene group (3JCH), and the normal triplet for the

Figure 2.17
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Figure 2.18

ethyl CH3 group (4JCH = 0). These long-range couplings (2JCH and 3JCH) are similar in
magnitude to 1H–1H couplings (0–10 Hz), whereas couplings over more than three bonds are
extremely rare. If the enrichment was less than 100%, this spectrum would be superimposed
on the normal spectrum of ethyl acetate (singlet, quartet, triplet) with intensities proportional
to the quantity of each isotopic species (12C or 13C). Figure 2.18 shows the 1H spectrum
of alachlor herbicide with 99% 13C at the methyl group: N–CH2–O–13CH3. The methoxy
group singlet is split into a doublet (1JCH = 142 Hz) and the N–CH2–O methylene singlet
is also split into a doublet (3JCH = 5.3 Hz). The 1% 1H–12C peak for the methoxy group
can be seen at the center of the 1H–13C doublet. It is important to understand that we are
observing 1H here, not carbon nuclei. You cannot observe 12C by NMR because it has spin 0
(no magnetic properties of the nucleus), but you can observe the protons attached to 12C.

All heteronuclear couplings (couplings between two different kinds of nuclei—two
different isotopes) are first order, without any distortion of peak intensities. The chemi-
cal shift difference between two different isotopes is usually on the order of megahertz to
hundreds of megahertz, so even with large J couplings (hundreds of hertz), the shift dif-
ference is much, much larger than the J coupling, and there are no second-order (strong
coupling) effects.

2.8 NON-FIRST-ORDER SPLITTING PATTERNS: STRONG COUPLING

The simple splitting patterns discussed above appear only when we have weak coupling:
when the chemical shift difference between two nuclei (expressed in hertz) is much greater
than the J coupling between them. In this case, the coupling pattern is symmetric with a
maximum of 2n peaks (for n coupled spin ½ nuclei), and the chemical shift is at the exact
center of the pattern. When the chemical shift difference in hertz is on the same order
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of magnitude as the J coupling, the quantum mechanical situation is more complex and
we see distortions of peak intensity (nonsymmetric patterns), and in some cases new lines
arise in the pattern. These second-order patterns are often observed as simple “leaning” of
the classical (doublet, triplet, quartet, . . . ) patterns: the peaks on the “inside” (nearest to
the chemical shift of the coupled nucleus) are taller (more intense) and the peaks on the
“outside” (away from the chemical shift of the coupled nucleus) are shorter (weaker). For
the simplest case of two protons strongly coupled to each other and no other protons, we call
this an AB system. We use A and B because they are next to each other in the alphabet and
indicate that the chemical shifts are very close together (Fig. 2.19). If we think of the sloping
doublets as rooflines, we can use the analog to a cartoon house to remember the effect. The
tall side of the leaning doublet always “points” toward the other spin that is splitting it. More
complicated patterns can also “lean” when the J-coupled resonances get close to each other.
In Figure 2.20 we see the simplest possible pattern from two adjacent methylene groups:
X–CH2–CH2–Y. The two triplets “lean” toward each other so that the outer lines of the
triplets are less than 1 in relative area and the inner lines are more than 1; the center lines
still have relative area 2. Three methine (CH) groups in a row (Fig. 2.21) lead to doublets
for the outer protons (Ha and Hc) and a double doublet for the middle proton (Hb). The two
doublets will “lean” toward their coupling partner in the center, and the Hb pattern will lean
both ways: the large coupling (Jab) “leans” toward Ha and the small coupling (Jbc) “leans”
toward Hc. Another example is the case of three protons in a row on an aromatic ring, with

Figure 2.20
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Figure 2.21

the center proton being the most downfield (Fig. 2.22). If the center proton (Hb) has the same
coupling constant to Ha and Hc (i.e., if Jab = Jbc), it will appear as a triplet, leaning toward
the chemical shift positions of Ha and Hc. Ha and Hc will appear as doublets, each leaning
toward the Hb triplet. In reality, there is a smaller long-range coupling (4JHH) between Ha
and Hc (the “meta” coupling), and we would see the Ha and Hc patterns further split by
the smaller coupling. The distortion of this smaller coupling “points” to the right-hand side
in the Hc pattern and to the left-hand side in the Ha pattern. It is important to keep in
mind that these patterns can be considerably more complicated, but the “leaning” principle
can often be recognized and used to interpret coupling patterns even when they are more
complex.

Let’s look at the simple AB system in more detail. Consider that the J coupling is
held constant and the chemical shift difference �ν is gradually reduced (Fig. 2.23). We

Figure 2.22
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Figure 2.23

can do this by simply reducing the Bo field strength, so that the chemical shift difference
(which is constant in units of parts per million) is reduced in units of hertz, while the
J coupling is constant because it is independent of Bo. When the shift difference is very
large (�ν >> J), we see little or no “leaning” of the two doublets. As the shift difference
gets smaller, the inner peaks grow and the outer peaks shrink. Another important point is
that the chemical shift position is no longer halfway between the two lines of the doublet:
it is now the weighted average of the two line positions, weighted by the peak intensities:

δ = (δ1I1 + δ2I2)/(I1 + I2)

where δ1 and δ2 are the two line positions and I1 and I2 are the two line heights. You can
get the exact line positions from a peak list and the line heights by measuring in millimeters
with a ruler. Another way to say this is that as the two chemical shift positions, δa and δb,
are brought closer together, the outer lines get shorter and farther away from the chemical
shift positions and the inner lines get taller and closer to the chemical shift positions. The
distance between the two lines of each doublet does not change, however. It is always equal
to the coupling constant Jab.

There is a point in this process where the distance between the inner lines is exactly Jab
so that the patterns look very much like a quartet, the 1:3:3:1 pattern resulting from a single
resonance split by three equivalent protons (Fig. 2.23, �ν = 17.32 Hz). In this case �ν/J =
1.732 and the ratio of peaks in the AB system is exactly 1:3:3:1, because the outer lines have
been reduced by 50% and the inner lines have been increased in intensity by 50%. Some
people report this AB pattern as an “AB quartet,” but this terminology is misleading and
should not be used. The AB system always has two different chemical shifts coming from
two distinct proton resonances, unlike a true quartet that comes from a single resonance.
There is no way to distinguish a true quartet from an AB system with this coincidental
spacing; you have to consider both possibilities and use the context of what you already
know about the molecule to decide.

As we continue to reduce the Bo field, moving the δa position even closer to the δb
position, the two inner lines become very close to each other, but they never meet or cross.
The outer lines become so weak that they may appear as tiny bumps, or they may disappear
into the noise, depending on the signal-to-noise ratio of the spectrum. At this point of
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near-equivalence of chemical shifts, the pattern looks very much like a doublet with a small
coupling constant, especially if you do not notice the weak outer lines. This can be very
confusing if you do not consider the possibility of a “tight AB” (�ν < J) system. The
separation between the two inner peaks is not a J-coupling at all—it is a complex function
of �ν and Jab. In the weak coupling limit, this distance is close to �ν − J, but in the
strong coupling limit, it becomes close to �ν because the inner lines are just inside the
two chemical shift positions. If you cannot find the outer lines, there is really no way to
determine δa, δb, and Jab.

Finally, when the two chemical shifts are exactly equal (�ν = 0), the two inner lines
become one and the two outer lines have zero intensity. The two protons Ha and Hb are
chemically equivalent, that is, they have the same chemical shift, and we see no splitting at
all. This explains, in a way, why equivalent protons do not split each other: they do split each
other but the inner lines coincide and the outer lines have zero intensity. Theoretically, the
pattern still has four lines, but we only observe one: a singlet. The same applies to any number
of chemically equivalent protons, for example, a methyl group (CH3). All three protons have
the same chemical shift, and in the absence of any other coupling (e.g., CH3O or CH3Cq,
where Cq is a quaternary carbon), we will see a singlet with area proportional to three.

The distance between the first and second line of the AB system, and between the third
and fourth line, is always exactly equal to Jab, even though the chemical shift positions are
not exactly in the middle of these pairs. Here are some exact values for the intensities, the
error in chemical shift (in hertz) if you just calculate the simple average of line positions
for each doublet, and the hertz spacing of the two inner lines:

�ν/J I(outer) (%) I(inner) (%) ν error/J inner spacing/J

20 95 105 0.01 19.02
5 80 120 0.05 4.10
3 68 132 0.08 2.16
1.732 50 150 0.13 1.00
1 29 171 0.21 0.414
0.5 11 189 0.31 0.118
0.2 2 198 0.41 0.02
0 0 200 0.5 0

For a J coupling of 10 Hz, the �ν/J = 1.732 case above (1:3:3:1 ratio) would be observed
when �ν = 17.32 Hz, which is 0.29 ppm on a 60 MHz instrument, 0.058 ppm on a
300 MHz instrument, and 0.029 ppm on a 600 MHz instrument. Clearly, a much closer
similarity of chemical shifts in parts per million is required to see strong coupling on high-
field instruments. This is one reason to pay the big money for higher field—to simplify
spectra and see mostly first-order splitting patterns. The chemical shift error due to simply
averaging the line positions of each doublet of the AB pattern would be 1.3 Hz, which on a
60 MHz instrument is 0.022 ppm (a significant error) and on a 600 MHz instrument it is only
0.002 ppm.

In general, if we define �ν′ = [J2 + �ν2]1/2, then relative to the center of the overall
pattern the inner lines are (�ν′ − J)/2 away and the outer lines are (�ν′ + J)/2 away, with
intensities of 1 + J/�ν′ (inner) and 1 − J/�ν′ (outer).

The AB system is a basic building block that can be expanded to a more complex system
with additional weak couplings by simply building the splitting diagram (Fig. 2.24). Start
with the distorted AB system and then diagram in the additional coupling by moving J/2
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Figure 2.24

to one side and J/2 to the other side of each line in the AB system. This is called an ABX
system: The X is chosen far away in the alphabet to indicate that its chemical shift is far
away (weak coupling) from the Ha and Hb resonances, which are close together relative
to Jab. There are two additional coupling constants: Jax and Jbx, and generally they will
not be the same. Simply split the A half of the AB pattern with the Jax coupling and
split the B half of the pattern with the Jbx coupling. Because it is a weak coupling, the
additional splittings result in precise 50:50 intensity ratios, but they retain the distorted
intensities of the parent lines. This is an extremely common system; for example, the
CH–CH2 fragment in a chiral molecule will lead to an ABX system if it is isolated from
any other couplings: CHx–CHaHb. A classic example of this occurs in the amino acid
unit of peptides and proteins: in D2O the NH proton exchanges with D from solvent, so
we have ND–CH–CH2–X for many of the amino acids: Asp, Asn, Cys, Ser, His, Phe,
Trp, and Tyr. These systems are also referred sometimes as AMX systems, implying that
the A and M chemical shifts are farther apart than in an ABX system. Because amino
acids are chiral, the two protons of the CH2 group are nearly always nonequivalent and
the CH (alpha proton) is usually considerably downfield of the pair due to the bond to
electronegative nitrogen. If Ha and Hb are geminal protons on a saturated carbon, they will
have a large coupling Jab (2-bond coupling 16–18 Hz) and the vicinal couplings Jax and
Jbx will likely be smaller: for amino acids, 8–10 Hz for anti, 3–6 Hz for gauche, and 6–7.5
Hz for averaged conformations. The X position (Hx) should appear as a double doublet:
δx split by Jax and then by Jbx. If δa and db get very close (�νab < Jab), it is possible
that new lines will appear in the Hx pattern, making it more complex than a simple double
doublet.

Another example that illustrates both the consequences of asymmetry and the use of
the AB pattern as a building block is shown in Figure 2.25. The dihydropyridine has a
mirror plane perpendicular to the plane of the double bonds, passing through the nitrogen
and the CH–CH3 group. This makes the two ethyl groups chemically equivalent, and we
can label the methylene (CH2) protons coming out of the paper Ha and the ones pointing
back into the paper Hb. But we cannot say that Ha is equivalent to Hb because there is no
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Figure 2.25

plane of symmetry in the plane of the double bonds (the plane of the paper)—such a plane
would reflect the H into the CH3 at the 4-position of the dihydropyridine ring. This is an
interesting case because the molecule as a whole is not chiral, as it possesses a mirror plane
perpendicular to the plane of the double bonds. Because there is no mirror plane between the
geminal pairs of the CH2 groups, these pairs represent two equivalent AB systems, each with
two distinct chemical shifts. This makes sense because Ha is on the side of the CH3 group
at C-4 and Hb is on the side of the H atom at C-4: two different chemical environments. We
can predict the spectrum by first constructing an AB pattern (Jab = 16 for geminal protons
on an sp3 carbon) from the two chemical shift values, δa and δb, and then building a 1:3:3:1
quartet (J = 6 Hz) from each line of the AB pattern, to generate the AB part of an ABX3
system. In this case the outer lines are one fourth of the height of the inner lines, so the two
outer quartets have intensities 1:3:3:1 whereas the two inner quartets have intensity ratio
4:12:12:4. This is a surprisingly complex pattern for a pair of equivalent ethyl esters, for
which we expect a simple quartet (CH2) and triplet (CH3) pattern.

There are many computer programs available for calculating spectra from the chemical
shifts and J coupling values. NMR is unique in that all line positions and intensities are easily
calculated as long as the NMR parameters-chemical shifts and J values-are known. There
are programs that will simulate the spectrum and compare it to a real spectrum, incrementing
the NMR parameters in an iterative process until the greatest possible similarity is obtained
between calculated and observed spectra. In this way all of the shifts and couplings can
be determined even in systems that are too complex to analyze directly by diagraming and
measuring peak separations.

2.8.1 Virtual Coupling

A common phenomenon occurs at lower magnetic fields when one nucleus (Ha) is coupled
to another (Hm) that is far away from it in chemical shift but coupled to a third spin, Hn,
that is very close to Hm in chemical shift:

Ha------------Hm−Hn

We say that Hm and Hn are strongly coupled, which will distort the multiplet patterns of
these two spins. We expect a simple doublet for Ha (weak coupling to Hm only), but instead
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Figure 2.26

the Ha resonance is a more complex multiplet, as if it were coupled to Hn as well as to Hm.
This is called “virtual coupling” because the Ha nucleus, which has no J coupling to Hn,
appears to be coupled to it because of the strong coupling between Hm and Hn. It is like a
very tight social group: If you get to know one of them, you end up knowing all of them. A
general way of stating this is that any nucleus that is coupled to one member of a strongly
coupled group of nuclei will behave as if it is J coupled to all of the members of the group.
This phenomenon can lead to some very baffling results if you do not take it into account.
Consider, for example, the straight-chain alcohols CH3–(CH2)n–CH2OH (Fig. 2.26). For
n-propanol (n = 1), the CH3 resonance (0.94 ppm) is well separated from the neighboring
CH2 resonance (1.59 ppm), which in turn is well separated from the CH2OH resonance
(3.57 ppm). Both vicinal couplings (Jab ∼ 7 Hz, Jbc ∼ 7 Hz) can be described as weak
couplings because the chemical shift differences are fairly large (νb − νa = (1.59 − 0.94) ×
250 = 163 Hz; νc − νb = (3.57 − 1.59) × 250 = 495 Hz). A nearly perfect triplet (Ha),
sextet (Hb), and triplet (Hc) are observed with only slight “leaning.” The OH resonance (d)
does not show J coupling due to rapid exchange. For n-butanol (n = 2), the CH2 group next
to the CH3 is farther from the electronegative oxygen, so it resonates farther upfield (1.38
ppm), closer to the “generic” hydrocarbon CH2 chemical shift of around 1.3 ppm. Still,
the chemical shift difference (νa − νb = (1.38 − 0.94) × 250 = 110 Hz) is significantly
larger than the J value, and we can describe the Ha–Hb coupling as “weak.” The next CH2
resonance (Hc), however, is still somewhat distant from the oxygen and resonates at 1.55
ppm. The Hb–Hc coupling (∼7 Hz) is not ideally weak because the chemical shift separation
is only (1.55 − 1.38) × 250 = 42.5 Hz, so that �ν/J = 6. Some distortion of the Hb sextet
and the Hc quintet can be seen in the spectrum (Fig. 2.26, right).

The spectrum of n-octanol (n = 6, Figure 2.26, bottom) is dramatically different. The
first five CH2 groups after the CH3 group all resonate at nearly the same generic hy-
drocarbon shift, at 1.32 ppm (peak b). The CH3 peak falls at 0.83 ppm, essentially the
generic hydrocarbon value for a methyl group. Only the difference in substitution (CH3
vs. CH2) provides a chemical shift difference between the a and b resonances because
the OH group is far away and has no effect. Still, this difference is fairly large relative to
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J: �ν = (1.32 − 0.83) × 250 = 122.5 Hz = 17.5 J. The CH3 to CH2 coupling is a weak
coupling. But the CH3 triplet is broadened and highly distorted, in contrast to the clean,
sharp triplets observed for n-propanol and n-butanol. The reason is that the CH3 resonance
(C8) is coupled to a CH2 group (C7) that is very strongly coupled to the next CH2 resonance
in the chain (C6), leading the CH3 resonance to show “virtual coupling” to the protons on
C6. In fact, the protons on C2–C6 (five CH2 groups) all have nearly the same chemical shift
(1.32 ppm) and each vicinal relationship has a J coupling of around 7 Hz. This makes the
CH2 resonance next to the CH3 group part of an extremely strongly coupled family of 10
protons, and coupling to two of these (the CH2 next to the CH3) is like coupling a little bit to
all of them. This explains the very broad components of the CH3 triplet. This phenomenon
is seen in all long, straight hydrocarbon chains: a very broad and distorted CH3 resonance
around 0.83 ppm and a very tall and broad peak for all of the “hydrocarbon” CH2 protons
around 1.3 ppm. Even at higher field (e.g., 600 MHz), the “pack” of CH2 groups is very
strongly coupled and the “ugly” CH3 resonance is not improved.

2.9 MAGNETIC EQUIVALENCE

Two or more protons may have identical chemical shifts (chemical equivalence) but may not
have the same coupling constant (J) to another proton in the molecule. In this case they are
chemically equivalent but not magnetically equivalent. In this case we usually label protons
with a “prime”: Ha and Ha′ , to indicate their chemical equivalence but still distinguish
them. For example, in a para-disubstituted benzene ring, X–p-C6H4–Y, we have chemical
equivalence of the two protons ortho to group X (Ha and Ha′ ) and of the two protons ortho
to group Y (Hb and Hb′ ) because of the symmetry of the benzene ring. There is an ortho
coupling (3JHH) of 8–10 Hz between Ha and Hb, and between Ha′ and Hb′ (Fig. 2.27),
and if the two systems were completely isolated from each other and identical, we could
analyze this as an AB system. In fact, many such compounds show fairly clean AB systems
in the 1H spectrum, but a closer look reveals that there are other lines, although the whole
pattern is symmetrical. The reason for the additional lines is that there is a significant meta
(4JHH) coupling between Ha and Ha′ and between Hb and Hb′ . Even though these pairs are
chemically equivalent and should not split each other, their coupling complicates the overall

Figure 2.27
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Figure 2.28

pattern. This is because Ha and Ha′ are chemically equivalent but are not magnetically
equivalent since we can find a third proton, Hb, that has a different coupling to Ha (8–
10 Hz—ortho) than it does to Ha′ (∼0 Hz—para). Instead of calling this an AB system
(or two identical AB systems), we have to call it an AA′BB′ system, which has a more
complicated analysis. Computer programs can calculate the spectrum precisely, including
the additional lines, given the values of δa, δb, Jab, Jaa′ and Jbb′ .

A more dramatic example occurs for an ortho-disubstituted benzene with two identical
substituents: X–o-C6H4–X (Fig. 2.28). In this case we can label the four adjacent protons
on the benzene ring as Ha, Hb, Hb′ and Ha′ in that order. The two systems are very tightly
connected because Hb and Hb′ have a large coupling (ortho or 3JHH = 8–10 Hz), similar to
Jab and Ja′b′ . This pattern is very distorted, and in many instances there is no recognizable
underlying AB pattern.

Earlier on in this chapter, the X–CH2–CH2–Y system was mentioned and predicted
to give a pair of leaning triplets (A2B2 pattern). In fact, it can be much more complex
because this is actually an AA′BB′ system. This might seem surprising, because there is
no chiral center, and the molecule can be drawn with a mirror plane interchanging Ha
and Ha′ (Fig. 2.29). But again the criterion for magnetic equivalence of Ha and Ha′ is
not met: The coupling from Ha to Hb is not in general the same as the coupling between

Figure 2.29
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Ha′ and Hb. This is because the dihedral angle (in the conformation where X and Y are
anti) between Ha and Hb is 60◦ (gauche), and between Ha′ and Hb it is 180◦ (anti). This
would lead us to expect a smaller coupling constant (∼5 Hz) for Jab and a larger J value (8–
10 Hz) for Ja′b. One might argue that we have picked an arbitrary conformation—what about
the two gauche conformations? In one of these conformations, the criterion for magnetic
equivalence is approximately satisfied (both dihedral angles are gauche). But if Ha and Ha′
are not magnetically equivalent in any one of the conformations, they cannot be considered
magnetically equivalent, and we have to analyze the whole system as an AA′BB′ system,
not an A2B2 system. In fact, in many simple cases the X–CH2–CH2–Y system gives a very
complex pair of resonances, symmetrical about the center ((δa + δb)/2) but not resembling
in any way a pair of triplets leaning toward each other. In some cases, the outer lines of
the individual resonances are more intense than the inner lines, giving them a very odd
appearance because we always see overlap in the inner parts of a first-order multiplet, not
in the outer lines.



3
NMR HARDWARE AND SOFTWARE

In this chapter, we will follow the process of acquiring and processing an NMR spectrum in
chronological order: preparing the sample, inserting it in the spectrometer, locking, shim-
ming, acquiring the free induction decay (FID) (with a detailed look at the hardware), and
processing the data. The goal is to obtain a general understanding of how the spectrometer
works and how the data are processed, independent of any specific spectrometer (Bruker,
Varian, etc.) or NMR software package. As these steps are the same in all spectrometers
and with all software, you can apply this knowledge to the specific instrumentation and
programs available to you even though the terminology and specific software commands
and parameters may be different.

At this point, we need to discuss briefly the instrument manufacturers (“vendors”) and
the models (generations) of NMR spectrometers in use today. There are three main vendors
right now: Bruker (based in Germany and Switzerland), Varian (Palo Alto, CA), and JEOL
(Japan). We will concentrate on Bruker and Varian due to lack of experience with JEOL.
The earliest commercial instruments (continuous wave) are gone to the scrap heap. The first
significant generation of Fourier-transform (FT) instruments was the Bruker WM and AM,
and the Varian VXR and Gemini. These had built-in computers and two channels: a trans-
mitter for 1H, 13C, and other nuclei, and a decoupler devoted to 1H only. The Varian Unity
came along with an “industry standard” UNIX computer (made by Sun Microsystems)
connected to the spectrometer using an SCSI interface, and two equivalent “broadband”
channels (covering 1H and all other nuclei). Bruker introduced the AMX with a separate
UNIX computer made by Silicon Graphics (SGI) interfaced to the spectrometer with an
Ethernet link. The AMX had capabilities for shaped pulses and optional pulsed field gra-
dients (Chapter 8), as well as three radio frequency (RF) channels. Varian introduced the
Unity-Plus with these features as options. They were integrated into the design of the next
generation: Bruker DRX and Varian Inova models, which also included oversampling and
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digital filtering (Section 3.8). These have a modular design that allows for any number of
RF channels, so that the designations “transmitter” and “decoupler” are no longer relevant;
for example, you might have 1H, 13C, 15N, and 2H channels all working together in one
experiment.

In the discussion of parameter names and software commands, upper case (SW, TO, etc.)
will be used in describing the oldest generation (Bruker AM and Varian Gemini) and lower
case (sw, tof, etc.) will be used for the newer (UNIX based) models. Software is constantly
being upgraded, so that the reader will have to refer to the vendor’s manuals for precise
information; the parameter and command names used in this book are only illustrative.

3.1 SAMPLE PREPARATION

3.1.1 Solvent

For liquid-state NMR, you will need to dissolve your sample in a solvent. The solvent
molecules should have all hydrogen atoms replaced with deuterium atoms (2H) for two
reasons. First, if you are doing proton (1H) NMR, you do not want the solvent resonance to
dominate your spectrum. Solvent molecules typically outnumber solute molecules by 1000
to 1, so you would not really see your solute spectrum at all. Second, the spectrometer needs
a deuterium (2H) signal to “lock” the magnetic field strength and keep it from changing with
time. Because the NMR experiment usually adds together a number of FIDs (scans), if the
field changes during the experiment the frequency changes with it and the NMR peaks will
not add together correctly. The deuterium NMR signal is used to monitor “drift” of the field
and to correct it (more about this later). For ordinary lipophilic (“greasy”) organic molecules,
deuterochloroform (CDCl3) is the ideal solvent. For hydrophilic molecules (e.g., salts) the
ideal solvent is D2O. For molecules that are in-between in polarity or have both polar and
nonpolar parts (e.g., organic acids), there are a number of more expensive solvents to try.
d6-DMSO (CD3-SO-CD3) is a very good solvent, but it is difficult to recover your sample
from the solvent afterward. Fully deuterated versions of acetone, methanol, acetonitrile,
benzene, and THF are available at prices that increase in that order. Of course, test your
sample compound for solubility with the cheap, nondeuterated solvents first before wasting
the expensive stuff! Acetone, D2O, methanol, DMSO, and acetonitrile all absorb H2O from
the atmosphere when open, giving an H2O peak in the spectrum at a chemical shift that
depends on the solvent.

3.1.2 Concentration and Volume

The optimal concentration depends on the nucleus: For routine 1H NMR, 5–10 mg is typical
for medium-sized (MW 50–400) organic molecules; for 13C NMR, which is 5700 times
less sensitive, about 30–40 mg of sample is best if your molecule is soluble enough to get
this amount in less than 1 mL. Too high a concentration can cause problems: It may cause
overloading of the receiver in 1H spectra (this can be fixed, though); it will weaken the lock
signal because there is less solvent present; and it can increase the viscosity of the solution,
which will lead to broader peaks. The lower limits of concentration depend on field strength
and the type of probe: For 1H you can get a good spectrum of an organic molecule with
as little as 0.1 mg (500 MHz or higher); for 13C with a probe optimized for 13C detection
you can get away with as little as 2–3 mg. The sample volume should be about 0.65 mL,
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which gives a 4.0 cm depth in a standard 5-mm NMR tube. Smaller volumes will require
that you position the tube on the spinner turbine very carefully to center the sample volume
in the probe coils of the spectrometer. Small-volume samples will also require a lot more
time to shim properly. Too large a volume wastes solvent, reduces concentration, and can
sometimes cause problems with spinning the sample because the weight of the sample and
turbine is larger. The sample tube should be of high quality to avoid wobbling and breakage
in the probe. Cheap or damaged tubes can lead to a broken tube in the probe, which can cost
thousands of dollars in repairs and possibly lead to weeks of downtime for the spectrometer.
NMR tubes with cracked or broken tops should be discarded or “sawed off” in a glass
shop—they are dangerous and can lead to very serious injuries to the hands when capping
or removing caps. If there are any solid “specks,” chunks, or crystals in the sample solution,
it should be filtered through a plug of glass wool placed in a disposable pipette. These
chunks can degrade the linewidth and quality of your spectrum, even though solid material
is “invisible” in the liquid NMR experiment. Fine crystals or powders may have no effect if
they are evenly distributed throughout the sample volume or if they collect in an area above
or below the probe coil. Cloudiness indicates that the sample molecule is only marginally
soluble (“unhappy”) in the solvent, which leads to aggregation of solvent molecules into
large (but still microscopic) globs that tumble slowly in the solvent, leading to broad NMR
peaks. Adding a cosolvent may solve the problem; for example, CD3OD in CDCl3 for
molecules too polar for CDCl3, or CD3CN in D2O for molecules too nonpolar for D2O. If
you add a cosolvent, be sure to measure it accurately and keep track of the volume ratio of
the solvents used. You will need to report this ratio in the literature because chemical shifts
depend on the ratio of solvents used. Also, you will need to use tetramethylsilane (TMS) as
a reference because residual solvent peaks no longer will have the standard chemical shifts
in a mixed solvent. If TMS is not used, at least report the solvent peak and chemical shift
used as a reference.

3.1.3 Chemical Shift Reference

A standard is usually added to provide a sharp peak of known chemical shift in the NMR
spectrum, in a region of chemical shifts that does not interfere with the sample peaks. For
organic solvents, TMS is ideal because its 1H chemical shift is upfield of nearly all organic
signals, it gives a strong, sharp singlet, and its volatility makes it easy to remove. TMS is
not soluble in D2O, so a related sodium salt (sodium 2,2′,3,3′-d4-3-trimethylsilylpropionate
or TSP) is used as the standard. The solvent 13C peak is usually used as the 13C chemical
shift reference because the TMS peak is usually too weak (see below). Since D2O does not
contain carbon, you will need to add a standard (such as methanol, acetonitrile, or dioxane)
to the sample for a 13C reference. A very common error is to add too much of a standard—
this makes the standard peak dominate the spectrum and limits the sensitivity and dynamic
range of the sample peaks as the receiver gain has to be reduced to accommodate the huge
standard signal. The best way to add a standard is to “spike” a bottle (100 g) of deuterated
solvent with a single drop of standard and mark the bottle accordingly. Fourier-transform
NMR is very sensitive, and the standard peak can be very small and still be easily detected.

3.1.4 Sample Recovery

Unlike many other analytical techniques, NMR is a nondestructive test. You can recover
your sample by removing the solution from the tube and evaporating the solvent. Samples
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in organic solvents such as CDCl3 can be removed from the tube by simply inverting the
NMR tube into a vial and touching the top of the tube on the bottom of the vial to start the
flow of solvent; rinse the tube with organic solvent. D2O has too much surface tension to
be poured out of an NMR tube; Wilmad sells extra-long disposable glass pipettes that will
reach all the way to the bottom of the NMR tube. With care it is possible to remove relatively
volatile solvents in the NMR tube. The tube is clamped in a fume hood at a 45◦ angle and a
long glass pipette is introduced so that the end is near the top of the solvent. A very gentle
stream of dry air or nitrogen is introduced into the pipette and as the solvent evaporates the
pipette is moved down to keep it near the solvent level. This is usually done when NMR
data are needed in a different solvent for comparison with literature data—chemical shifts
are solvent dependent and must be compared in the same solvent. Care of NMR tubes is
important: They should be washed with solvents and water only, and dried with a stream
of dry air or nitrogen. NMR tubes can be cleaned by repeatedly filling them with solvent
(CHCl3, acetone, methanol, or water) and emptying. Aldrich sells an NMR tube cleaner
that uses pump or aspirator vacuum to pull solvent into the tube. Never use paramagnetic
solutions (e.g., chromium-containing glass cleaners) to clean NMR tubes. Drying the tubes
is very important—residues of nondeuterated solvent can ruin your spectrum or cause you
to make erroneous assignments. Drying NMR tubes in a drying oven not only is ineffective
at removing solvents but also warps the tubes. The best method is to invert an extra-long
glass pipette and run a slow stream of clean, dry air or nitrogen through it, and place the
inverted NMR tube on the pipette so that the pipette reaches all the way to the bottom of
the tube. A few seconds or minutes of gas flow should flush out all of the solvent residues
without any heating. One final caveat: storing NMR samples in D2O in the freezer will
crack or weaken the glass as the “water” expands.

3.2 SAMPLE INSERTION

At the top center of each NMR magnet is a round vertical hole, called the bore, which
extends all the way to the bottom of the magnet (Fig. 3.1). At the bottom, the bore is filled
with the probe, which is inserted from below, and the room temperature shim coils, which
form a concentric cylinder around the probe. The probe has a small vertical hole just large
enough to admit the sample tube, and inside there is a set of RF coils that surround the
sample. These are aligned with the center of the superconducting magnet. Wires connect
these coils to the probe head, at the bottom of the probe, where connectors lead RF power
into and out of the probe from cables. The probe coil acts as a radio transmitter antenna
during the exciting pulse and as a radio receiver antenna during acquisition of the FID. The
room temperature shims are just coils of wires wound in various directions and spacings
around the probe so that adjusting the currents in these coils adds or subtracts magnetic
field strength to the space occupied by the sample to make up for any lack of homogeneity
in the main (superconducting) magnetic field. The sample tube is held by a plastic spinner
turbine or “spinner,” which is ejected from the probe out through the top of the bore with
a cushion of air pressure, and inserted by gradually reducing the air pressure. When the
spinner turbine and sample are resting in the probe, a small current of air can be directed
at a skewed angle toward the spinner turbine, causing the spinner to lift slightly and spin
on the vertical axis. For one-dimensional (1D) NMR spectra, samples are usually spun at
about 20 Hz (revolutions per second) in order to average out any lack of magnetic field
homogeneity along the X and Y (horizontal) axes.
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Figure 3.1

To insert the sample, first push the sample tube gently into the spinner turbine and adjust
the vertical position of the tube using a gauge to assure that the actual sample solution will
be centered in the probe inside the RF coils. Place the sample on the air cushion at the top
of the magnet bore and deactivate the eject air, and the sample will gently descend into the
bore until the spinner rests on the probe with the bottom of the NMR tube inserted into the
probe.

3.3 THE DEUTERIUM LOCK FEEDBACK LOOP

3.3.1 The Lock Channel

Although the magnetic field of a superconducting magnet is very stable, there is a ten-
dency for the field strength to change gradually or “drift” by very small (parts per billion)
amounts. If this tendency were not corrected, it would be impossible to sum a number of FID
acquisitions because each FID would have a slightly different frequency than the previous
one. Drift is prevented by a separate channel in the probe and the spectrometer that detects
deuterium (2H). This can be done independently of proton or carbon acquisition because deu-
terium nuclei resonate at a very different frequency (e.g., 30.7 MHz compared to 200 MHz
for 1H on a 200 MHz instrument). The lock channel continuously detects the deuterium
signal of the deuterated solvent and monitors its chemical shift position. You can think of
this as a separate NMR spectrometer dedicated to 2H detection, which runs continuously
in the background. Because the resonance frequency of any nucleus is proportional to the
magnetic field strength (νo = γBo/2π), any drift in the magnetic field (decrease/increase)
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Figure 3.2

will cause a shift (upfield: lower frequency/downfield: higher frequency) of the deuterium
frequency detected. This shift in frequency is connected to a feedback loop that adjusts
the field strength (by changing the current through a room temperature coil in the shim
cylinder) so that the deuterium frequency does not change. This mechanism is called the
“lock” system, and it maintains a constant magnetic field strength throughout your NMR
acquisition. Regardless of the lock display presented to the user, the lock circuitry sees a
dispersive (up/down) deuterium signal centered on the zero frequency (null point) of the
feedback circuit (Fig. 3.2). The magnetic field strength is manually adjusted (Zo or field
knob) to center the signal at the zero frequency. When the lock is turned on, the feedback
loop is activated and control of the magnetic field strength (Bo) is given over to the control
circuit. If the magnetic field increases slightly, the 2H signal is shifted to the left (higher
frequency) leading to a positive error signal. This signal decreases the current in the Zo
(field) coil in the shim stack, which decreases the magnetic field, correcting the drift. A
slight decrease in magnetic field leads to the opposite error signal and a compensating in-
crease in current sent to the shim coil. The system cannot achieve lock unless the null point
is between the two maxima of the dispersive peak when the feedback loop is activated. The
proper lock phase setting assures a symmetrical (equally up and down) dispersive signal in
the feedback loop.

3.3.2 Locking

As soon as your sample drops into the probe, the 2H signal will become visible on the
screen. You may need to increase the lock power and gain, and adjust the field (Bruker:
Field, Varian: Zo) setting to see the lock signal. If the homogeneity of the magnetic field is
very poor (“bad shims”) you may not even see a signal! There is another major difference
(Fig. 3.3) between Varian and Bruker in the way the lock signal is displayed: Varian shows
a time-domain signal, which is a sine wave whose frequency is the audio frequency of the
deuterium signal. Bruker shows a frequency-domain signal, which is “swept” by moving
the deuterium excitation frequency back and forth repeatedly over a range of frequencies.
When the excitation frequency matches the deuterium resonance frequency, you get a peak
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Figure 3.3

that dies away in wiggles (“ringing”) as the excitation frequency moves away from reso-
nance. The same peak and ringing is observed as the excitation sweeps back the other way
across the resonance position. This display is in the “unlocked” state: the feedback loop
is inactivated and the deuterium signal is simply observed on the screen. If the deuterium
frequency is far from the locking position, you will not see any signal. For Varian this is
because the time-domain frequency is very high and the signal is weak; for Bruker it is be-
cause the deuterium resonance position is outside the range of frequencies being swept. On
the Varian spectrometers, you adjust the field strength (Zo) until you begin to see a sine-
wave signal (“wiggles”) and continue to adjust until the frequency (number of cycles of sine
wave displayed) decreases to zero and you have a horizontal line instead of a sine wave. On
Bruker, you adjust the field strength (field) until the pattern of peaks and ringing is exactly
centered on the screen. You are now ready to activate the lock feedback loop. Turning on
the lock leads to a horizontal line that rises above the baseline. You can think of the height
of this line as the peak height of the deuterium NMR peak of the solvent. Once locked,
the deuterium frequency is no longer swept (Bruker) and the magnetic field strength (Bo)
should be rock-stable over time. Mixed solvents (e.g., d6-acetone/CDCl3) or solvents with
more than one deuterium resonance (e.g., CD3OD) can lead to problems if you lock on the
wrong 2H signal, so be sure to verify which signal is centered in the 2H spectral window
before turning on the lock.

3.3.3 Lock Parameters

The field setting required to center the lock signal depends on the deuterium chemical shift,
which is roughly proportional to the proton chemical shift. Thus, the deuterium resonance
of CDCl3 (1H δ 7.24 ppm) is downfield of the deuterium resonance of d6-acetone (1H δ

2.04 ppm) but very similar to that of d6-benzene (1H δ 7.15 ppm). The field settings for
various common deuterated solvents are often posted near the spectrometer or in a logbook
to allow easy access to “ballpark” settings. The lock level (the height of the lock signal on
the screen) represents the height of the deuterium peak. As shimming (i.e., homogeneity
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of the magnetic field) is improved, the deuterium resonance becomes sharper and the height
of the deuterium “peak” increases, since the area (amount of deuterium in the sample)
remains constant. Two other factors affect the lock level: The lock power affects how much
2H signal is fed into the probe to excite the deuterium nuclei and the lock gain affects
how much the detected signal is amplified in the receiver before being presented on the
screen. Increasing either one will increase the lock signal level, but increasing the lock
power will eventually “saturate” or overload the 2H nuclei with RF energy, causing the lock
level to “breathe” or oscillate slowly up and down. Since the lock level is used to monitor
changes in field homogeneity while shimming, a randomly oscillating level will interfere
with shimming. If this happens you need to turn down the lock power and then pump up
the lock gain as necessary to get a good lock level. A “good” lock level is about 80% of the
maximum, allowing room for improvement during the shimming process. The lock signal
should have a little bit of noise, indicating that the lock power is not excessive, but it should
not have so much noise that small changes in the level cannot be readily observed. It is
important to realize that the lock level is arbitrary; you can increase it or decrease it at any
time by adjusting the lock gain and the lock power. It is only the changes in lock level
resulting from changes in the shim settings that are important. If shimming brings the lock
level above 100%, just reduce the lock gain to bring it back to 80% and continue shimming.

3.4 THE SHIM SYSTEM

Shimming is the process of adjusting the magnetic field to achieve the best possible homo-
geneity. By homogeneous we mean that the magnetic field strength does not vary signifi-
cantly from one part of the sample to another. Because the resonance frequency (chemical
shift) is directly proportional to magnetic field strength, a variation of 1 ppm in field strength
from one location within the sample volume to another would lead to a peak with a 1 ppm
linewidth (or 200 Hz on a 200-MHz instrument!). Since linewidths of 1.0 Hz can be rou-
tinely obtained, the magnetic field when well shimmed does not vary more than 5 ppb
within the sample volume. The dictionary meaning of a “shim” is a thin piece of wood or
metal placed within a gap to make two parts fits snugly. The NMR shim plays the same
role—it increases the magnetic field strength in certain volumes of space so that it is uniform
throughout. The inhomogeneity of the field is a complex function in three dimensions; the
goal of the shim system is to exactly match that function with a function of opposite sign
so that all of the inhomogeneity cancels out (Fig. 3.4). To match that function, a number of
simple 3D functions (Z, Z2, Z3, XY, XZ2, etc.) are summed with different coefficients. For
example, the Z (or Z1) shim coil creates a linear gradient of magnetic field along the vertical
(Z) axis, which is the axis of the NMR sample tube. When the Z shim is set to zero, there
is no effect; when it is set to a positive value, the field strength is slightly increased in the
upper part of the sample and slightly decreased in the lower part of the sample, to an extent
proportional to the vertical distance from the center of the sample. Increasing the Z shim
setting increases the current to the Z shim coil and makes the gradient “steeper” so that the
field varies more for a given vertical distance. Changing the Z shim setting to a negative
value reverses the sense of the gradient so that the field is decreased in the upper part of
the sample and increased in the lower part. Likewise, the other shim coils control other
simple gradient functions, and the current put through each coil controls its contribution to
the field correction (or, mathematically speaking, its coefficient). These shim currents are
set by computer and can be saved and recalled as files. Your job as operator is to search the



82 NMR HARDWARE AND SOFTWARE

Figure 3.4

n-dimensional space (where n is the number of shims available) to find the global optimum
of homogeneity. To get instant feedback on homogeneity, you have the lock level as a guide.
As the field becomes more homogeneous, the 2H peak of your deuterated solvent becomes
sharper, and its peak height (which is equivalent to the lock level) becomes higher as the
same peak area gets squeezed into a narrower and narrower peak. The newer and higher
field instruments have a large number of shim functions (or shim “gradients”) available,
so that you may be trying to find an optimum in a 28-dimensional space! This can be a
daunting task, and only those with experience and great patience attempt to adjust any but
the simple low-order shims.

3.4.1 Shimming for Beginners

Routine users usually adjust only Z and Z2, whereas experienced users might attempt to
adjust Z1, Z2, Z3, Z4, Z5, X, Y, XZ, YZ, XZ2, YZ2, XY, and X2–Y2. For beginners, the first thing
to learn is to move the shim far enough past the optimum so that there is a significant and
observable drop in lock level (e.g., 10%), and then move back to the setting that gives the
highest lock level. The territory on both sides of the optimal setting needs to be explored,
and the optimal setting is near the center of the two settings that degrade the lock level
by 10% on either side. The other problem for beginners is understanding that you are not
finished shimming until you cannot improve the lock level any more with the shims you
are adjusting (e.g., Z1 and Z2). There is no universal “good” lock level at which you can
stop shimming, only the “best” lock level for your sample achieved after going over the
shims several times (e.g., Z1, Z2, Z1, Z2, etc.). Although you should not be shy to make large
changes, if you change any shim too rapidly there may be a transient response that obscures
the true effect of the shim. For example, increasing Z2 might give an increase in lock level,
but when you stop changing the shim this effect goes away. A rapid change in shim setting
in the opposite direction will cause a transient decrease in lock level. In this situation you
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have to make changes slowly and be sure to wait for a moment after making a change to
see if the lock level has really changed. As the shim settings are changed, the lock phase
may be affected. Improperly set lock phase can lead to a situation where the optimal lock
level does not correspond to the best peak shape in your spectrum. Since you need to use
the lock level as a criterion for shimming, it is important to reoptimize the lock phase from
time to time as you change the shims. This can be done simply by adjusting the lock phase
for maximum lock level, just as you would do with a shim.

3.4.2 Shimming and Peak Shape

The effect of large errors in Z shim settings on peak shape is simulated in Figure 3.5 for
a singlet NMR peak with a natural linewidth of 1.0 Hz. Note that a linear Z gradient (bad
Z shim setting) simply “stretches” the peak horizontally. This peak is now a map of the
sample molecules, with the molecules at the top of the sample having a resonant frequency
at the left edge of the peak and the molecules at the bottom giving rise to the right edge
of the peak (actually the limits of the peak are the top and bottom of the probe coil, since
only that part of the sample within the coil is “seen”). This is an NMR imaging experiment
(MRI) and illustrates the principle of making images by NMR using a linear gradient of
magnetic field. For example, if there were bubbles in the sample these would show up as
dips in the peak at the point corresponding to the position of the bubble along the vertical
axis, since sample molecules would be missing at these points. Note that the higher order
“odd” Z gradients (Z3 and Z5, Fig. 3.5, left) have symmetrical “pedestals” at the base of the
peak. These pedestals are lower relative to the top of the peak as the shim order increases
from Z3 to Z5. The “even” Z gradients (Z2, Z4, and Z6, Fig. 3.5, right) have “porches” or
“verandas” at the base of the peak on one side only. If the shim error is reversed (e.g.,
from Z2 too high to Z2 too low) the porch will move to the opposite side of the peak. Each
instrument will usually have a different polarity of the even shim gradients, so you will

Figure 3.5
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Figure 3.6

have to experiment to see which way to move the shim in order to move the porch into the
peak. As with the odd Z gradients, as we move to higher order even Z gradients, the wide
portion appears lower down at the base of the peak. Figure 3.6 shows the effect on lineshape
of smaller errors in shim settings on an ideal peak with 1.0 Hz linewidth. A Z1 error just
broadens the peak evenly from top to bottom, while a Z2 error leads to a bulge or shoulder
on one side of the peak. Similar effects are seen with higher order Z shims, with odd shims
leading to symmetrical bulges and even shims leading to bulges on one side. The bulges
move down lower in the peaks as we go to higher order shims. All of this assumes that the
shim coils (Z1, Z2, Z3, etc.) actually deliver pure mathematical changes in magnetic field
(z, z2, z3, etc.) as a function of position in the sample (z coordinate). In reality, there is a
good deal of mixing of these pure functions, such that the Z1 shim knob actually changes all
the other shims a little bit as well. This means that in practice you may not see these ideal
changes in lineshape, and it is more difficult to diagnose which shim needs to be adjusted
just by looking at peak shape. Furthermore, when you make a change in a higher order shim,
such as Z4, you will need to readjust the lower order shims, especially Z2, because the Z4

shim “contains” a bit of Z2. Likewise, changes in Z3 and Z5 will require readjustment of Z1

and Z2.

3.4.3 More Advanced Shimming

In general, high-order shim errors do not affect the linewidth at half-height, but they do
affect the linewidth at the base of the peak and reduce the peak height by spreading the
peak intensity into the pedestals and porches at the base. To assess the overall quality of
shimming, it is best to measure the peak width in several places; typically for a singlet peak
such as chloroform (CHCl3), the width in hertz is measured at 50% of peak height, 0.55%
of peak height, and 0.11% of peak height. The 0.55% is conveniently determined by the
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Figure 3.7

height of the doublet produced by the 1.1% 13CHCl3 present at natural abundance. These
13C “satellite” peaks are found at 105 Hz (1JCH/2) downfield and upfield from the main
12CHCl3 peak. For example, the quality of shimming could be reported as 0.5/8/11 Hz at
50/0.55/0.11% of peak height. If linewidth is only measured at the half-height level, you
will be ignoring the higher order shim errors.

Often the effect of two shims is interactive, such that changing one shim setting affects
the optimal setting of the other. This is commonly observed for Z and Z2 with short (low
volume) samples. For example, you might visualize the effect of Z and Z2 on the lock level
as a two-dimensional plot, like a topographic map (Fig. 3.7). Climbing a simple round
peak (Fig. 3.7, left) is easy: just optimize Z (the east-west direction) by moving to the
right (segment a) as long as the lock level continues to increase. The lock level reaches a
maximum and begins to go down again (segment b), so you turn around and move left to
return to the maximum. It is important to really see the lock level go down significantly, so
you know you have reached the maximum for the noisy lock level. Next optimize Z2 (the
north-south direction) by finding the direction (up or down on the map) that increases the
lock level and then moving straight to the top of the peak (segment c). Again, to be sure you
are at the maximum you need to go significantly beyond and return to the peak (segment
d). But what if the surface is more like a ridge that runs from the southwest to the northeast
(Fig. 3.7, right)? You might use Z1 to climb to the top of the ridge (segment a), but Z2 would
not give any further improvement, even though the peak is a long way up the ridge. What
you need to do is simultaneously adjust Z1 and Z2 so that you can move diagonally, like
trying to draw a diagonal line with an Etch-a-Sketch. To do this on a spectrometer, note the
lock level and then arbitrarily move Z2 away from the maximum in one direction to degrade
the lock level by a certain amount, like 10% (segment b). Then use Z1 to optimize again
(segment c). If the optimized lock level is better than where you started, you have made
progress up the ridge. Now you only need to continue making small changes in Z2 in the
same direction away from the Z2 optimum, followed by optimization of Z1. If the optimized
lock level is worse, try an arbitrary change in Z2 in the opposite direction. The process is
a zigzag approach to the peak, alternately going downhill and then uphill to the top of the
ridge. Many shim pairs behave in this way, so you can see how shimming is an art requiring
a lot of patience.

Another way to shim is to use the FID as a criterion for homogeneity instead of the
lock level. The goal is to get a smooth exponential decay curve with the longest time
constant (slowest decay) possible for the FID. Bruker uses the command GS to enter an
interactive mode where the FID is acquired over and over again, displaying it each time



86 NMR HARDWARE AND SOFTWARE

Figure 3.8

without summing in the sum to memory. On the Varian you can do the same thing by
selecting FID instead of SHIM in the acqi window. A simple Z1 shim error (Fig. 3.8,
bottom) will give an FID that not only decays faster but also goes though a series of evenly
spaced nulls (“pinches”) in the FID as it decays. At each null the FID signal reverses phase.
Mathematically this can be described as a “sinc” function (y = sin(x)/x), which gives a
rectangle in frequency domain when you do the Fourier transform. The rectangle is the
peak shape you get from a linear Z gradient, the MRI experiment (Fig. 3.5). The sinc
function and the rectangle can be viewed as a “Fourier pair” since Fourier transformation
of one shape gives the other and vice versa. We will encounter this and other Fourier pairs
later in the course of this book. As you improve the Z shim you will see the “pinches” move
to the right, to longer times, corresponding to a narrower rectangle in frequency domain,
and eventually off the “end” of the FID. After the last “pinch” is moved off the end, you
should be able to maximize the signal at the end of the FID to get the slowest decay. The
lock level may actually be going down as you do this! The reason is that either the lock
phase is not adjusted right or there are other shims, especially higher order shims, which
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are interacting with Z1. If Z1 were the only misadjusted shim, the lock signal would go
up as you improve the FID. You may be able to alternate between optimizing other shims
(Z2, Z3, etc.) using the lock level and optimizing Z1 using the FID. You may also find that
the Z2 shim moves the pinches, contrary to theory. Go with it! Shimming is an art, not a
science. Sometimes if the FID has no “pinches” but the shape is not exponential, you can
adjust higher order shims (Z3, Z4, Z5, Z6) to try to get an exponential FID shape. Then you
can go back to the lower order shims to get a slower exponential decay. Shimming on the
FID is easiest if you have a single peak dominating the spectrum so that the FID is a simple
decay of one sine wave. For example, a small amount of CHCl3 in CDCl3 or d6-acetone,
or of H2O in D2O is good for this kind of shimming.

The “pure” Z shims are called “axial” shims. Other shims contain X or Y in their names;
for example, X, Y, XZ, YZ2, and so on. Spinning does not correct these “off-axial” errors;
it simply moves the intensity to spinning sidebands, which are satellite peaks separated on
either side of the main peak. If the sample is spinning at 20 Hz (20 revolutions per second),
spinning sidebands will appear at 20, 40, 60 Hz, and so on, away from the main peak
on either side. If there are large errors in the off-axial shims there will be large spinning
sidebands. Another indication of poor off-axial shims is the increase in lock level observed
when the spinning is turned on. If this is more than about 15% of the nonspinning lock
level, the X and Y contributions to the shims are not optimal. The off-axial shims must
be adjusted without spinning the sample. In general, low-order shims (Z, Z2, X, and Y)
should be adjusted with small changes (“fine” setting), and all higher order shims can be
adjusted using large changes in the shim value (“coarse” setting). A typical approach for
off-axis shims is to adjust them in the order X, Y, XZ, YZ, XZ2, YZ2, XY, and X2–Y2, and
then reoptimize X and Y.

If shims are really bad, you may be able to recall a recent shim file from the disk.
Ideally, a spectrometer should be shimmed regularly (daily or weekly) by an expert, and
these “current” shims should be saved. Rather than waste a lot of time trying to get home
from someone else’s n-dimensional wanderings away from the optimum, you can just read
the latest shim file and start from there. Of course, you will still need to adjust Z1 and Z2

because these change a great deal based on the sample volume, position, and polarity of the
solvent.

3.4.4 Autoshimming

There are two automated methods for shimming. The first, simplex autoshimming, has
been around as long as shims have been controlled by computers. A computer program
simply does what you do—moves a shim by a certain amount and notes the effect on lock
level. If there is an improvement, it moves again in the same direction. The whole tedious
process can be written into a computer method and you can choose which shims you want
to adjust in what order, including turning the spinner on and off. Because there is no human
element, the process is slow but it is perfect to set up overnight and check in the morning.
The second automated shimming method is gradient shimming, which is only available if
you have pulsed field gradient capability and a gradient probe. This is an imaging (MRI)
experiment that actually makes a physical map of the magnetic field strength as a function
of position within the sample volume. Medical MRI uses the water in the human body to
make images, relying on the fact that from an NMR standpoint the human body has just
one peak: water (fat is a minor peak). Likewise, for gradient shimming you need a sample
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with one dominating peak. For 1H imaging, that sample would be water, so we are limited
to biological NMR samples that are typically dissolved in 90% H2O/10% D2O. A more
recent development is the convenient use of deuterium gradient shimming, which makes
an image of the sample using the single, very strong 2H peak of the deuterated solvent. In
either case, a one-dimensional map of field strength variations along the Z axis is created
using a Z gradient, so the variation of field is known and what remains is to figure out how
much change in each shim would cancel out that variation. Stored in the computer is a
“shim map,” which gives the exact effect at each point in the sample of a given change in
each of the Z shims. For example, we expect that the Z2 shim map is a parabolic function
of position along the Z axis, but the shim map for Z2 gives the exact values of this function
at each point. The computer then calculates using these maps the exact combination of
shim value changes that will best correct the measured inhomogeneities. These changes are
applied and the process is repeated: map the inhomogeneities, calculate the new changes
using the shim map, and apply the shim value changes. After several rounds of this process
the homogeneity cannot be improved and we have the “best” shims for that sample. The
whole process requires only a minute or two. For “triple axis” gradient probes, which have
the capability of creating imaging gradients along the X and Y axes as well as the Z axis,
gradient shimming can be used to optimize all of the shims, including the off-axis shims.
One round of 3D gradient shimming might require about 5 min. Gradient shimming is
rapidly eliminating the need for experienced shimming “experts”! This topic is covered in
detail in Chapter 12, Section 12.3.

3.5 TUNING AND MATCHING THE PROBE

Tuning the probe assures that the resonant frequency of the probe coil is the same as the RF
frequency you will be using and matching the probe matches the probe coil as a load to the
impedance (internal electrical resistance) of the amplifiers. This gives maximum efficiency
of transfer of RF power from the amplifiers to your sample nuclei and maximum sensitivity
in detecting the FID. Each sample modifies the resonant frequency and matching of the
probe, so these have to be reoptimized with each new sample. Tuning the probe is not
necessary for routine 1H spectra, but for advanced experiments it is important if you wish
to use standard values for pulse widths without the need to calibrate for each sample.

3.5.1 Matching and Tuning

Every electrical device that supplies power (such as a battery) has an internal resistance
associated with it. For example, if you short out the two terminals of a battery, you will
get a very large current but not the infinite current that would result from zero resistance
(Ohm’s law: current = voltage/resistance). This is because the battery’s voltage is applied
across the total resistance of the circuit: the sum of the external load (zero resistance) and
the internal load (the internal resistance of the battery). In the case of the short circuit, all of
the power (power = current2 × resistance) is delivered to the battery itself since there is no
resistance in the “load,” and the battery heats up. If, on the contrary, the resistance of the load
is very high, there will be very little current flow and very little power will be transferred
to the load. It turns out that the maximum transfer of power from the source (the battery)
to the load (e.g., a light bulb) is obtained if the resistance of the load equals the internal
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resistance of the battery. In RF electronics we use the term impedance instead of resistance,
but the principle is the same: Matching the impedance of the load to the impedance of the
source will maximize the transfer of power to the load. The internal impedance of the RF
amplifiers is 50 �, so we are always trying to match the probe coil to 50 �. The other factor
to consider is the resonant frequency of the probe. The probe circuit may be very complex,
but we can view it as an inductance (the coil) connected in parallel with a variable capacitor
(the tuning capacitor). The resonant frequency of this tuned circuit is determined by the
amount of inductance in the coil and the (variable) amount of capacitance in the capacitor.
By rotating the tuning rod we change the capacitance and move the resonant frequency to
higher or lower frequency.

If the probe is not properly tuned and matched, the pulse will “reflect” off of the probe
and return to the amplifier rather than reaching the sample. The simplest way to tune a
probe is to introduce a continuous RF source at very low power and measure the amount of
reflected power using a bridge circuit that compares the probe to a 50 � resistor. The probe
tuning and matching knobs are adjusted to minimize the reflected power reading on the
bridge. This is a bit like shimming, except that we are trying for a minimum signal rather
than a maximum signal. As with shimming, sometimes the tune and match interact, so it is
necessary to “detune” one of the settings a bit and readjust the other to get a lower minimum.
Varian still uses this method with a built-in tune display on the preamplifier. The cable from
the probe has to be moved from the preamplifier connector to the “probe” connector of the
tune interface. Bruker (AMX, DRX) uses a “wobble” tuning method that sweeps the tune
frequency back and forth around the desired frequency and records the probe response as a
graph on the computer screen. A “dip” in the curve occurs at the resonant frequency of the
probe, and the tune knob can be adjusted to position the bottom of the dip (left and right)
exactly at the desired frequency. The match knob makes the dip sharper and deeper, so this
can be independently adjusted to bring the dip to its lowest value (best impedance match).

The probe tuning rods are long extensions of the variable capacitors located at the top
of the probe, near the probe coil. The capacitors are delicate and there are two ends of the
travel of the knob: If any force at all is applied at the end of the travel, the capacitor will
break. This will usually require that the probe be sent back to the manufacturer for repair,
a process requiring a week or two and costing many thousands of dollars. For this reason
many NMR labs do not allow users to tune the probe!

3.5.2 Types of Probes

All multinuclear probes have more than one probe coil: one is dedicated to 1H and the
other is for one or more heteronuclei (e.g., 13C). They are positioned concentrically about
the NMR tube, with a cylindrical glass insert separating the tube from the inner coil and
another larger insert separating the inner coil from the outer coil. The inner coil is much
more sensitive for detection of the FID, so usually we detect using this coil. RF pulses can
be applied on either coil, but pulses applied on the inner coil will require less power to
excite the nuclei. The inner coil is also more sensitive to the electronic disturbance of the
sample, so it is much more important to tune the inner coil when a new sample is introduced.
Probes with the heteronucleus (e.g., 13C) coil on the inside are called “direct” probes and
those with the 1H coil on the inside are called “inverse” probes. In many probes the coils
are “double tuned” so that more than one nucleus can be detected. For example, 19F and
1H, 13C and 31P, or 13C and 15N can be paired together. Some double-tuned probes can
have as many as eight tuning knobs at the probe head, and getting a good compromise
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between the two nuclei can be very complicated. “Broadband” probes try to cover a very
wide range of frequency, nearly all of the NMR-detectable nuclei in a single probe coil.
This often involves “tuning rods”: long rods with a fixed capacitor at the end. The rod
is inserted into the probe head from the bottom, and the capacitor screws into the circuit
near the probe coil. By using a set of rods with different capacitor values, the entire range
of NMR frequencies can be tuned with the tuning knob of the heteronuclear coil. This
kind of probe is essential for working with “exotic” nuclei such as 57Fe, 29Si, and 77Se.
Usually a spectrometer will have a number of probes optimized for different purposes; for
example, a direct 13C probe (13C inside, 1H outside) for 13C spectra, a direct broadband
probe for “exotic” nuclei, an inverse 13C probe (1H inside, 13C outside) for heteronuclear 2D
experiments, and an “HCN” or “triple-resonance” probe (1H inside, double-tuned 13C/15N
outside) for biological work. Changing probes takes about 15 min, but it should only be
done by expert users. For biological samples (usually in 90% H2O/10% D2O) you need a
“water suppression probe” with shielded wires coming from the probe to avoid picking up
the very strong H2O signal on these wires.

For a heteronuclear experiment, such as a 1D 13C spectrum with 1H decoupling, you need
to tune and match both the 1H and the 13C coil. First, set the spectrometer frequency to the
1H frequency and tune and match the 1H coil at the probe head. Then set the spectrometer
frequency to the 13C frequency and tune and match the 13C coil. If you are using a direct
probe (the most sensitive for 13C detection) the 1H tuning is less important because it varies
only slightly from sample to sample (outer coil). If you try to get a 13C spectrum with an
inverse probe you will get poor sensitivity, but if you have lots of sample you may be able to
overcome this. The baseline may not be flat since you are observing on a coil not designed
for observing the FID. If you do not tune and match the 1H coil, you may get no spectrum
at all because 1H decoupling will not work if the probe is very badly tuned for 1H, and as
the inner coil, the 1H coil is most sensitive to sample differences.

3.6 NMR DATA ACQUISITION AND ACQUISITION PARAMETERS

The process of data acquisition results in an FID signal residing in the computer of the NMR
instrument. In order to properly set up the acquisition parameters, it is helpful to understand
a little about how this is accomplished. We will follow the sequence of events involved
in the acquisition of the raw data for a simple 1D 1H spectrum on a 200-MHz instrument
through a simplified diagram of the spectrometer:

(a) Wait for a period of time called the relaxation delay for spins to reach thermal
equilibrium;

(b) send a high-power short-duration RF (200 MHz) pulse to the probe coil;

(c) receive the resulting FID signal from the probe coil;

(d) amplify this weak RF (∼200 MHz) signal;

(e) convert the RF (MHz) signal to a “stereo” audio (kHz) signal;

(f) sample the audio (analog) signal at regular intervals and convert it to a list of
integers;

(g) add the digital FID “list” to a sum FID in memory;

(h) repeat steps (a)–(g) for as many “scans” or “transients” as desired.
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Each of these steps will be discussed in more detail with the goal of understanding
the basic parameters needed to set up an NMR experiment. The FID contains all of the
frequencies of the sample protons, which represent a range of chemical shift values. The
range of radio frequencies in the FID is extremely narrow: 199.999–200.001 MHz for a
10 ppm range of chemical shifts. We are only interested in this tiny slice of frequencies, so
it is convenient to subtract out the fundamental frequency (200.000 MHz) and look only at
the differences, ranging from −0.001 to +0.001 MHz, or from −1000 to +1000 Hz. These
much lower frequencies are called “audio” frequencies, since they are in the range of sound
waves that can be detected by the human ear. In fact, the audio signal of an NMR can be
connected to a pair of speakers so that you can listen to the FID in stereo!

The audio signals must be converted into a list of numbers, which is the only language
that a computer understands. This is done by sampling the voltage of each signal at regular
intervals of time and converting each analog voltage level into an integer number. Thus,
an FID becomes a long list of numbers, which is stored in the computer memory. As the
same FID is acquired over and over again, repeating the sequence (relaxation delay—pulse-
acquire FID), each new list of numbers is added to the list stored in memory. This process
is called “sum to memory.” As more and more “scans” or “transients” are acquired, the
signal-to-noise ratio of this sum improves.

Now let’s look in detail at each process, so that we can understand the NMR acquisition
parameters needed to set up the experiment. After the pulse, we will follow through the
hardware devices in a block diagram and try to understand a little about the NMR hardware.
It turns out that processing of the NMR signal in the hardware is strictly analogous to the
theoretical steps we will use in viewing the NMR experiment with the vector model, so it
is essential to understand it in general.

3.6.1 Relaxation Delay: D1 (Varian) or RD (Bruker)

Usually the acquisition (pulse-FID) is repeated a number of times in order to sum the individ-
ual FIDs and increase the signal-to-noise ratio. In this case, a delay must be inserted before
each pulse-FID sequence to allow the populations to return to a Boltzmann distribution
(“relaxation”). Without this delay the nuclei will become saturated (equal populations in
the two energy levels), and there will be little or no signal in each FID. Ideally, you should
wait for about five times the characteristic relaxation time (T1) before starting the next pulse,
but in practice the relaxation delay is quite a bit less and you live with a certain reduction of
signal. This is a compromise value because pulsing more often gives you more data per unit
time. In this case, you rapidly reach a steady state where the nuclei are not completely relaxed
but are at least at the same degree of relaxation each time a new pulse arrives. Relaxation is
going on during the FID acquisition period as well, and sometimes with long FID acquisition
times, there is no need for a specific relaxation delay. Another strategy for slow-relaxing
nuclei (e.g., quaternary carbons in 13C-NMR) is to reduce the amount of RF excitation (the
pulse width) so that the perturbation from equilibrium resulting from each pulse is reduced.

3.6.2 The Pulse

The RF pulse is simply a high-power RF signal turned on for a very short period of time,
on the order of microseconds (�s). The duration of the RF pulse in microseconds is called
the pulse width (PW) (Fig. 3.9). As with all sine waves, the pulse has characteristics of
frequency, amplitude, and phase. The frequency of the pulse is set at the center of the
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Figure 3.9

spectral window (range of resonant frequencies expected), but because of its short duration
and high power it is capable of exciting all of the sample nuclei within the spectral window
simultaneously. Using our example of a 200 MHz 1H experiment, the pulse frequency would
be 200.000 MHz, but all nuclei resonating in the range 199.999–200.001 MHz would be
equally excited by it. The pulse shape is rectangular, meaning that the RF power turns on
more or less instantaneously to full power, and then PW microseconds later turns off. A
“90◦ pulse” is the pulse width required to exactly tip the sample magnetization from the z
axis into the x-y plane, where it rotates at the resonant frequency in the x-y plane, leading to
a maximum-intensity FID signal. The sample magnetization is just the vector sum of all the
individual nuclear magnets. The amplitude of the pulse (height of the rectangular envelope)
can be adjusted but is usually set near the maximum for simple 1D spectra. RF power is
the square of the amplitude, and usually we talk about pulse power (in watts or decibels)
rather than amplitude. The duration (pulse width) of the 90◦ pulse depends on the RF power
and, to some extent, on the characteristics of the probe and the sample. With higher power
(higher pulse amplitude) we need less time to rotate the magnetization by 90◦, so the 90◦
pulse width is shorter. For some experiments, calibration of the 90◦ pulse width is essential
for the experiment to work right. For simple one-pulse experiments, an approximate value
is sufficient. In more sophisticated experiments that use more than one pulse separated by
various time delays, the pulse duration parameters are P1, P2, P3, and so on for the various
pulses in the sequence. Pulses are always entered in microseconds (�s) and should not be
made very long (more than a few hundred microseconds) because at full power the amplifiers
can “burn up” if left on continuously for too long. Finally, we have control over the pulse
phase as well. Relative to an RF signal that starts at the zero degree point of the sine function,
we can shift the phase by any amount we choose, although 90◦, 180◦, and 270◦ phase shifts
are the most common. For example, a 90◦ phase shift means that the wave starts at the top
of the cycle and goes down to zero and then to negative. We will see that setting the pulse
phase is equivalent to placing the pulse vector on the x, y, −x, or −y axis of the rotating
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Figure 3.10

frame of reference (0◦, 90◦, 180◦, or 270◦ phase shifts, respectively). This gives us much
more flexibility in controlling the complex “dance” of sample magnetization in advanced
experiments. In the actual pulse sequence code, which is written to tell the spectrometer the
exact sequence of events in an NMR experiment, the phases are represented by 0, 1, 2, and
3 for the x, y, −x, and −y axes, respectively, in the rotating frame of reference.

The remaining steps involved in receiving the FID signal are diagramed in Figure 3.10,
showing the process of amplification, quadrature detection, digitisation, and summation to
give the final FID in the computer.

3.6.3 Receiving the FID from the Sample

As the sample magnetization rotates in the x-y plane, the same probe coil that transmitted
the high-power RF pulse to the sample experiences a very weak induced signal. This signal
decays to nothing over a period of a second or two, and the full-time course of this induced
signal is called the free induction decay or FID. Each type of nucleus in the molecule (e.g.,
the CH3, CH2, and OH protons in ethanol) has its own resonant frequency, so the FID
consists of a superposition of a number of pure frequencies, corresponding to a number of
peaks in the spectrum. All of the information of the NMR spectrum is contained in the FID,
and a large part of the spectrometer is devoted to amplifying, recording, and analyzing this
signal. In cryogenic probes (Chapter 12, Section 12.3), the probe coil is cooled to very low
temperatures (e.g., 25 K) resulting in a 3–4 times reduction in thermal electronic noise and
a concomitant 3–4 times increase in sensitivity (signal-to-noise ratio).
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Figure 3.11

3.6.4 The Receiver

The receiver consists of preamplifier, detector, audio filters, analog-to-digital converter
(ADC), and sum to memory. It amplifies the RF FID signal coming from the probe, converts
it to an audio frequency signal by subtracting out the RF at the center of the spectral window,
amplifies it some more, converts it to a list of numbers, and adds these numbers over a number
of repeated scans (Fig. 3.10). The total amplification given to the FID in the receiver is called
the receiver gain (Varian: GAIN or Bruker: RG). The intensity of the FID signal induced in
the probe coil depends on the sample concentration, so the amount of gain or amplification
in the receiver must be adjusted for each new sample. The audio signal coming into the
digitization stage (ADC) should ideally be of the same magnitude for all samples, regardless
of concentration. The ADC has a maximum range of integer values that it can give to the
signal as it comes in, for example −32,767 to +32,768 (Fig. 3.11). If the signal is amplified
too little before digitization, the numbers will get “grainy”: they might range from −1 to +1
with only three possible values (Fig. 3.11, bottom). In this case, it would be very difficult
to find a small peak in the spectrum in the presence of big ones (this is called a “dynamic
range” limitation). If, on the contrary, the signal is amplified too much, it might exceed the
digitizer limits and get truncated or “cut off” (Fig. 3.11, top). For example, a signal that
would give a value of 52,314 would be read as 32,768 because the digitizer cannot respond
to any larger value. This cutting off or “clipping” has very drastic effects on the spectrum:
the baseline gets huge oscillations (“wiggles”) that cannot be corrected in any way. So it is
clear that the receiver gain has to be set correctly for each sample to get the best results. More
concentrated samples (or samples with large solvent peaks) will require smaller receiver gain
values, whereas dilute samples are best run with large gain. Both Varian and Bruker allow for
an automatic receiver gain adjustment. On the Varian, simply set GAIN to “N” (not used) and
start the acquisition; a number of trial FIDs will be recorded to determine the best gain value
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and then the acquisition will begin. On the Bruker, the command RGA (receiver gain adjust)
will do the same thing but will not automatically start acquisition. To better understand how
the NMR hardware works, we will look in detail at five essential stages of the receiver
(Fig. 3.10).

3.6.4.1 The Preamplifier This is a physical box that sits on the floor next to the magnet
or is part of the “magnet leg,” which either supports the magnet (Varian Gemini-200)
or stands alone next to the magnet (Varian Unity or Inova). Its job is to amplify the RF
FID signal immediately, before any thermal electronic noise has accumulated from the
connecting cables. That is why it is located very close to the magnet, so the cables from the
probe are short. Once the FID has been amplified, any thermal noise that is added to it later
will be less important relative to the NMR signal. In cryogenic probes (Chapter 12, Section
12.3) the preamplifier is actually moved into the probe head where it is cooled to the same
low temperature (e.g., 25 K) as the probe coil. This further limits the introduction of thermal
noise at the first stage of amplification. Any noise that comes into the preamplifier is there
“forever” because amplification at that stage will amplify the noise just as much as the signal
(the FID). Thus, it is essential to limit this noise as much as possible in the early stages.

The preamplifier also contains a “send-receive” switch that allows the high-power pulse
going into the probe and the very low-power FID coming out to travel on the same cable
connecting the preamp to the probe. This “switch” is actually a solid-state device with no
moving parts.

3.6.4.2 The Detector This converts the RF FID signal into an audio frequency FID signal
by “mixing” it with a reference RF signal that has a single pure frequency at the center of the
spectral window (νr , the reference frequency). Subtraction of frequencies is accomplished
by an electronic process called “mixing” using an analog device called a “mixer,” “phase-
sensitive detector,” or “modulator.” It actually involves analog multiplication of the FID
signal by a reference frequency signal (200.000 MHz in this example), with the resulting
signal having frequency components representing both the sum and the difference of the
FID frequency and the reference frequency.

(199.999 − 200.001 MHz range) × 200.000 MHz reference

= −1000 to +1000 Hz range
(difference)

+ 399.999 − 400.001 MHz range
(sum)

The multiplication sign represents a multiplication of the two signal amplitudes at each
instant in time to give a momentary product amplitude. The sum frequency is eliminated
by an electronic filter, leaving only the desired (difference) audio signal. In case any of
you are wondering about this bit of electronic magic, it can be explained by high-school
trigonometry as follows:

sin(αt)cos(βt) = 1/2{[sin(αt)cos(βt) + sin(βt)cos(αt)]

+ [sin(αt)cos(−βt) + sin(−βt)cos(αt)]}
= 1/2{[sin((α + β)t)] + [sin((α − β)t)]}

This just says that the product of two waves of different frequency α and β is the same as
the sum of two waves of frequency α + β (sum) and α − β (difference).
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In reality this is done twice, first to “mix down” to an intermediate frequency (IF) still
in the megahertz range [e.g., 20.5 MHz (Varian) or 22 MHz (Bruker)] and then to mix to
the final audio frequency by subtracting out the IF. The reason for this is that we want to
detect a wide range of different NMR frequencies (different nuclei), but it is difficult
to have all of the amplification stages “broadband” so that they can deal equally well with
all frequencies. By mixing down to an IF that is the same regardless of which nucleus we
are observing, the electronics can be optimized to that frequency alone (narrow band) with
greater efficiency. For example, a 300-MHz spectrometer with an IF of 20.5 MHz will
mix a 1H FID (300 MHz) with a reference frequency (also called the “local oscillator”
or “LO”) of 320.5 to get an IF of 20.5 MHz. This signal is amplified and then split into
two signals that are mixed with 20.5 MHz reference signals (0◦ and 90◦ phase) to give
the real and imaginary audio FIDs. To observe 13C, the LO is changed from 320.5 to
95.5 MHz and mixed with the 75 MHz 13C FID to give the 20.5 MHz IF. As before, the
IF is split and mixed with the 20.5-MHz reference signals to give the real and imaginary
13C FIDs. Regardless of the NMR frequency being observed (300 or 75 MHz), the IF
(20.5 MHz) is the same. Radio receivers use the same principle of mixing to a common
IF regardless of which station you are tuned to, and then mixing again to the audio
frequency that you hear. The newest spectrometers produced today have an ADC that
is fast enough to directly sample the RF FID, eliminating the need for analog mixing of
any kind! The detection step (conversion to audio) is done by digital multiplication of the
sampled RF FID.

The resulting audio signal has frequencies that represent the difference between the actual
resonant frequencies of the sample nuclei and the reference frequency (νo − νr ). This means
that the audio frequency at the center of the spectral window is zero (reference frequency
minus reference frequency = 0); the downfield half of the spectrum represents positive audio
frequencies (FID frequency > reference frequency) and the upfield half represents negative
audio frequencies (FID frequency < reference frequency). It is important to recognize that
this audio frequency scale has nothing to do with the chemical shift (ppm) scale; that scale
is added by the software after we find a reference peak and assign it a value on the ppm
scale. Subtracting out the reference frequency from the RF FID corresponds to rotating the
coordinate system used to represent the sample magnetization about the z (vertical) axis at
the reference frequency. In this rotating frame of reference, a nucleus that resonates at the
reference frequency (νr ) would have its magnetization vector stand still in the x′–y′ plane
after the pulse, since it is rotating in the same direction and at the same speed as the x′
and y′ axes of the rotating frame of reference. Nuclei that resonate in the downfield half of
the spectral window have their magnetization rotating counter-clockwise in the x′–y′ plane
after the pulse, and those that resonate in the upfield half give rise to magnetization that
rotates clockwise in the rotating frame of reference (Fig. 3.12).

Placing the zero of our audio frequency scale in the center of the spectral window has
many advantages, but it requires that we have a way to tell the difference between positive
frequencies and negative frequencies. This is accomplished by using a technique called
quadrature detection. The RF FID signal is split into two and mixed with two different
reference RF signals, one of which is phase shifted by 90◦ (one fourth of a cycle) with respect
to the other (Fig. 3.10). The different frequency is selected in both cases, resulting in two
audio signals that are 90◦ out of phase with each other. These signals are traditionally called
the “real” and the “imaginary” FIDs, but there is nothing more or less real about either one.
The best way to think about these “stereo” signals is to imagine that there are two receiver
coils in the spectrometer: one placed on the x′ axis of the rotating frame (recording the
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Figure 3.12

x-component Mx of the sample magnetization) and one placed on the y′-axis of the rotating
frame (recording the y-component My ). If the magnetization vector resulting from a nucleus
in the sample is rotating counter-clockwise in the rotating frame (i.e., faster than the axes
are rotating), it will generate a maximum signal in the x-axis detector just before it reaches
a maximum signal in the y-axis detector, so that the “real” (x-axis) signal will lead ahead
of the “imaginary” (y-axis) signal by 90◦ (Fig. 3.12, left). We can thus determine that this
frequency is a positive audio frequency, and place the peak in the spectrum in the downfield
(left) half of the spectral window. If instead the magnetization vector is rotating clockwise
in the rotating frame (i.e., slower than the x′ and y′ axes), it will generate a maximum signal
in the y-axis detector just before it reaches a maximum signal in the x-axis detector, so the
“imaginary” (y-axis) signal will lead ahead of the “real” (x-axis) signal by 90◦ (Fig. 3.12,
right). In this case the frequency is a negative audio frequency, and the peak belongs in the
upfield (right) half of the spectral window. Imagine a carrousel with one person riding on
it near the edge. If you have two observers, one on the north side and one on the east side,
and each observer calls out the direction as the rider goes by, you can tell which way the
carrousel is rotating because you would hear “north east . . . . . . north east . . . . . . ” for the
clockwise direction and “east north . . . . . . east north . . . . . . ” for the counter-clockwise
direction. With only one observer you would hear, for example, “north . . . . . . . . . north . . .
. . . . . . ” and you would not be able to tell which direction the carrousel is rotating. The
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direction of rotation of the carrousel is analogous to the sign of the frequency of an NMR
peak in your spectrum. If we only had one “detector,” which is the equivalent of having only
one FID channel, we could not distinguish between positive and negative audio frequencies.
The two FIDs, real and imaginary, are processed by the computer using a complex (i.e., both
real and imaginary) Fourier transform, which sorts out the positive and negative frequencies
mathematically and spits out the correct NMR spectrum.

3.6.4.3 Audio Filters The audio stage amplifies the audio signal and noise and also tries
to block by analog filtering any signals that are outside of the spectral window, that is, which
have frequencies greater than the maximum frequency you have set up to observe (set by the
ADC, see below). Generally you would not have any signals outside these limits, but you
do have noise frequencies that extend in both directions from zero to positive and negative
infinity. If these noise frequencies are not blocked, they will “fold in” to the desired range
of frequencies and add to the noise that is mixed in with your desired signals. Without audio
filters, the signal-to-noise ratio would be very near to zero. The audio filter response should
ideally be flat throughout the desired range of frequencies and fall to zero very rapidly
beyond the maximum frequency. This is not possible with analog filter devices (made up
of electronic components such as capacitors, inductors, and resistors), so there is a certain
amount of reduction in response (“droop”) within the spectral window near the edges, and
the response falls to zero gradually rather than suddenly for frequencies above the maximum
(see Fig. 3.20). There are no parameters to adjust since the computer automatically adjusts
the audio filters to a response that fits the width of the spectral window, as defined by the
parameter SW (spectral width).

3.6.4.4 The ADC The computer cannot understand anything but numbers. The audio
frequency FID is a continuous, smooth function of voltage (electrical intensity) versus
time. The ADC or digitizer samples the FID voltage at regular intervals of time and assigns
an integer value (positive or negative) to the intensity at each sample time (Fig. 3.13).
These numbers go into a continuous list of numbers that constitute the digital FID. The
spectrometer does not actually just acquire a single value for each time point—it is more
like a stereo receiver. There are two channels in the receiver, one that effectively records
signals along the x′-axis of the rotating frame and one that records signals along the y′-axis
(Fig. 3.10). So the list of numbers is really twice as long because both FIDs are sampled
by the ADC, and the numbers are loaded into the list in pairs: real (1), imaginary (1),
real (2), imaginary (2), . . . , and so on. Bruker and Varian originally had different ways of
sampling, which led to some differences in processing and interpretation of data. Varian
samples the two FIDs simultaneously at each time value, and Bruker alternates between
real and imaginary samples in time; for example,

Varian Bruker
(simultaneous) (alternate)

Time (μs) Real Imaginary Real Imaginary

0 1. 23435 2. −2344 1. 13465
80 2. 9354
160 3. 6509 4. 3496 3. −3546
240 4. 31593
320 5. 5673 6. −234 5. 23486
400 6. −14367
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Figure 3.13

We will see that in 2D NMR, the sampling in the second dimension can also be done
either way, except that this choice is up to the user and is not “hard wired.” The al-
ternate (“Bruker-like”) sampling method is called “TPPI” (time proportional phase in-
crementation), and the simultaneous (“Varian-like”) method is called “States” or “States-
Haberkorn” (after the originators of the technique). The consequences for processing and
interpretation of the data are the same in the second dimension of 2D spectra as they are in
1D NMR.

This leads to confusion over two parameters: the number of points collected (do you
mean the total number of data points, or the number of real/imaginary pairs or “complex”
pairs?) and the time spacing between data points. Both Bruker and Varian list the number
of data points (Varian: NP, Bruker: TD) as the total number of points, counting both real
and imaginary. Some independent NMR software packages (e.g., Felix) count points as
“complex pairs”: One “point” corresponds to one pair of numbers (real and imaginary).
The time spacing between successive data points sampled in the FID is called the dwell
time (Bruker: DW). In the above example, the dwell time is clearly equal to 80 �s between
samples for the Bruker data, but in the Varian case we need to think of the dwell time as
the average time per sample, which is still 80 �s because two samples are collected in a
period of 160 �s. Varian does not have a parameter corresponding to dwell time, leaving the
sampling process hidden from the user. The two types of data (alternate and simultaneous)
must be processed by a different Fourier transform algorithm, but this is transparent as long
as you process the data on the instrument that acquired it. If you transfer the data to another
computer and use “third party” software (e.g., Felix, MestRec, Acorn-NMR, NMR-pipe,
etc.) to process it, you need to choose the correct Fourier transform method for the type of
FID data (alternating or simultaneous) being processed.

How rapidly do we need to sample the data? Clearly this is limited by how fast the
hardware can convert analog to digital, but in most cases this limitation is not serious. It
turns out that the rate of sampling is determined by the highest frequency signal you need
to describe by the digitized data. In other words, what peak in your spectrum is farthest
from the center frequency (the reference frequency)? For the sake of simplicity, consider a
spectrometer from the middle ages that does not use quadrature detection, so that the audio
frequency scale runs from zero on the right to the maximum detectable audio frequency
(Fmax) on the left. The highest frequency signal needs to be sampled at least twice during
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each cycle of its sine wave, meaning that the number of samples has to be twice the number
of cycles in the highest frequency signal allowed.

Number of samples in 1 s = 1/DW = 2 × number of cycles in 1s

1/DW = 2 × Fmax

Once we have chosen a particular dwell time DW, the maximum frequency we can accurately
determine (since the computer does not know anything about the what the signal does in
between the samples) is 1/(2 × DW). What happens if the frequency of a signal exceeds
1/(2 × DW)? The signal will not simply disappear; instead it is misinterpreted as a signal of
lower frequency. For example, if the dwell time is 1/6 of a second, we will get six samples
in 1 s from a signal of 1.5 Hz for a total of four samples per cycle, describing the sine
wave quite accurately (Fig. 3.14, top). If we keep the sampling rate constant and increase
the frequency to 3 Hz, we now have two samples per cycle, which is the minimum to
describe its frequency: one sample at each trough and one sample at each crest of the wave
(Fig. 3.14, middle). The frequency is now equal to Fmax = 1/(2 × DW) = 1/(2 × (1/6)) =
3 Hz, and the peak will appear in the spectrum at the left edge of the spectral window. If we
now increase the frequency of the FID signal to 4.5 Hz, we have 1.33 samples per cycle,
which is not sufficient to describe the sine wave and accurately determine its frequency
(Fig. 3.14, bottom). Instead, a simpler interpretation would be to connect the dots to reveal
a different sine wave of frequency 1.5 Hz, since we do not know what is going on between
samples. Thus the peak would appear in the center of the spectrum, at Fobs = Fmax − (F −
Fmax) = 3 − (4.5 − 3) = 3 − 1.5 = 1.5 Hz. This process is called “aliasing” or “folding”
because the peak appears at the wrong position in the NMR spectrum. Anyone who has
watched Western movies or television shows has seen the phenomenon of aliasing. A film
(or videotape) of a moving stagecoach will often show the wheels slowing, coming to a

Figure 3.14



NMR DATA ACQUISITION AND ACQUISITION PARAMETERS 101

stop, or reversing direction even though the stagecoach is still obviously moving forward at
full speed. The film is sampling the position of the spokes at a rate of 30 frames (samples)
per second. If the wheels move fast enough, the motion of the spokes exceeds the sampling
rate and we interpret the motion as being at a lower frequency than it really is. If this
occurs in an NMR spectrum, we need to increase the sampling rate (decrease the dwell
time DW) until we have two or more samples per cycle of the aliased frequency. Usually
the aliased peak can be identified because it is lower in intensity and cannot be correctly
phased.

The limits of frequency imposed by a fixed sampling rate lead directly to the concept
of the “spectral window” (Fig. 3.15). In the case of quadrature detection, the center of
the window is the zero point of audio frequency, which is determined by the reference
frequency. The width of the spectral window is called the spectral width (SW), which is
determined by the sampling rate and corresponds to Fmax in the nonquadrature example.
The extremes of the spectral window are +SW/2 at the left edge and −SW/2 at the right
edge, and we can replace Fmax with SW in the equation: SW = 1/(2 × DW). The spectral
window can be moved to the left or right by adjusting the offset (Bruker: O1; Varian: TO),
which changes the exact value of the reference frequency. The offset frequency (in hertz)
is added to the fundamental resonance frequency for the nucleus of interest to obtain the
reference frequency. For example, a 250 MHz instrument set up for proton acquisition
might have a fundamental 1H frequency of 250.13 MHz. Adding an offset (O1) of 10,000
Hz (0.01 MHz) would yield a reference frequency of 250.14 MHz. To move the spectral
window downfield by 1 ppm (250 Hz), one would simply add 250 Hz to the offset value
(O1), changing the value of this parameter from 10,000 to 10,250.

Why would you need to move the spectral window upfield or downfield? The lock sys-
tem changes the magnetic field strength of the spectrometer (Bo) slightly to center the
2H frequency of the solvent at the null point of the lock feedback circuit. Changing the
field changes all of the resonant frequencies of the spectrum by the same amount, effec-
tively moving the whole spectrum upfield or downfield by as much as 5 ppm when you

Figure 3.15
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change from one deuterated solvent (e.g., CDCl3) to another (e.g., d6-acetone). If this is
not corrected by changing the offset by an equal and opposite amount, the spectrum will
move out of the spectral window and some peaks will be aliased. For routine work, this
hassle has been removed in two ways. On the old Bruker (AM) instruments, you had to
have a list of O1 values for different solvents in order to keep the center of the spectral
window at the same value (e.g., 5 ppm) for all solvents. On the Varian, the correction is
made automatically by entering the lock solvent as the parameter “SOLVNT.” This changes
the fundamental resonance frequency so that the offset (TO) is always the same for a
given ppm value at the center of the window. This can be frustrating if you neglect to
change the SOLVNT parameter for solvents other than the default setting (e.g., CDCl3).
The newer Bruker instruments (DRX) use a parameter in the lock system called lock shift,
which is the ppm value of the lock solvent (for example, 7.24 for CDCl3), and this cor-
rects the reference frequency internally. If you use the automatic lock and specify the lock
solvent, this parameter is automatically set to the correct value. Sometimes the spectral
window needs to be changed for unusual samples with chemical shifts outside the standard
(for example, 11 ppm to −1 ppm for 1H) spectral window. If you have a carboxylic acid
with an OH resonance at 13 ppm, you would like to have a spectral window from −1 to
17 ppm. That means you need to increase the spectral width by 6 ppm (from 12 ppm
to 18 ppm) and move the center of the spectral window downfield (to higher frequency)
by 3 ppm (from 5 ppm to 8 ppm). On a 200 MHz instrument that would mean adding
6 × 200 = 1200 Hz to the spectral width (SW) parameter and adding 3 × 200 = 600
Hz to the transmitter offset (TO or O1) parameter. You will have to repeat the acquisi-
tion, of course, because these parameters have no effect, except at the time that the FID is
acquired.

With quadrature detection, the range of audio frequencies detected runs from +SW/2
to −SW/2, with zero in the center. The same relationship exists between the maximum
frequency detectable and the dwell time, except that we substitute SW for Fmax:

1/(2 × DW) = SW

The last equation tells us what value of the dwell time we have to use to establish a particular
spectral width. In practice, the user enters a value for SW and the computer calculates DW
and sets up the ADC to digitize at that rate. It is important to understand that with the
simultaneous (Varian-type) acquisition mode, there is a wait of 2 × DW between acquisition
of successive pairs of data points. The average time to acquire a data point (DW) is the total
time to acquire a data set divided by the number of data points acquired whether they are
acquired simultaneously or alternately. The spectral window is fixed once the sampling rate
and the reference frequency have been set up. The spectral window must not be confused with
the “display window,” which is simply an expansion of the acquired spectrum displayed
on the computer screen or printed on a paper spectrum (Fig. 3.15, bottom). The display
window can be changed at will but the spectral window is fixed once the acquisition is
started.

Any peak outside the spectral window will be aliased (“folded”) into the spectral win-
dow at a position the same distance from the edge of the window. Aliased peaks are usually
reduced in intensity (by the audio filter) and impossible to correctly phase; increasing the
spectral width will eliminate them and reveal the peak in its correct position. The manner
of aliasing depends on the type of acquisition. With the “Bruker-type” acquisition (alternat-
ing acquisition of real and imaginary data samples), aliased peaks appear reflected at equal
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distance from the same edge of the spectral window (“folded”), as shown in Figure 3.15 (up-
per left). With the “Varian-type” acquisition (simultaneous acquisition of a real, imaginary
pair of samples), aliased peaks appear at equal distance inside the opposite edge of the spec-
tral window (“aliased”). The terms “folding” and “aliasing” are often used interchangeably,
but it would be more accurate to use “folding” for the alternating mode (reflecting across the
nearest edge of the spectral window) and “aliasing” for the simultaneous mode (appearing
at the same distance inside the other edge of the spectral window as the frequency is from
the nearest edge).

The same phenomenon applies to aliasing in the second dimension of a 2D spectrum:
Alternating (TPPI) acquisition in the second dimension will lead to aliasing on the same side
of the spectral window (“folding”); simultaneous (States) acquisition will lead to aliasing
from the opposite edge of the spectral window (“aliasing”).

An example of the real part of an actual audio frequency FID of a sample of chloroform
and dichloromethane (recorded on a Varian Gemini-200) is shown in Figure 3.16. The full
real FID (acquisition time (AT) = 2.9 s) is shown in the inset at the upper right: a decaying
oscillating signal is clearly visible with a frequency of about 34 cycles per 2.9 s = 11.7 Hz. A
horizontal expansion of the first 0.43 s (below the inset) makes it clear that there are two dif-
ferent frequencies, with their oscillating signals added together in the FID. The slower (lower
frequency) oscillation completes one cycle in 87.5 ms, corresponding to a CH2Cl2 frequency
of 11.5 Hz (1/0.0875 s), whereas the faster (higher frequency) signal completes a cycle in
2.67 ms, corresponding to a CHCl3 frequency of 375 Hz (1/0.00267 s). Figure 3.17 shows a
horizontal expansion of the first 36 ms of the real FID, capturing one-half cycle of the 11.5 Hz
signal and 13.5 cycles of the 375 Hz signal. Now we can see the “grain” of the actual
digital samples: one every 360 �s (0.36 ms) for a dwell time of 180 �s, since there are two
data points, real and imaginary, for each point shown. The NMR software draws straight
lines to connect the data points (�), but in fact, we know nothing about the signal in be-
tween these samples. One cycle of the highest frequency signal (375 Hz) corresponds to

Figure 3.16
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Figure 3.17

7.25 real samples, well over the minimum of two samples per cycle. The spectral width
(SW) is 1/(2 × 180 �s) or 2777.8 Hz. The high-frequency signal (from CHCl3) has a
frequency of 375 Hz (one cycle = 1/375 s = 2.67 ms), and the low-frequency signal
(from CH2Cl2) has a frequency of −11.5 Hz. The sign of the frequency can be deter-
mined only by examining the relative phases of the real and imaginary parts of the FID
(quadrature detection). When you set the spectral reference using a standard such as TMS,
you establish a third frequency scale (in addition to the absolute RF scale and the audio
frequency scale relative to the reference frequency), which is the chemical shift scale in
parts per million. Because the data were acquired on a 200 MHz spectrometer, an au-
dio frequency of 200 Hz is 1 ppm away from the center of the spectral window. In this
case the center of the spectral window is 5.37 ppm, so that the CHCl3 chemical shift is
5.37 + (375/200) = 7.24 ppm and the CH2Cl2 chemical shift is 5.37 − (11.5/200) =
5.31 ppm.

The 99 data points shown in Figure 3.17 are part of a total FID of 8000 complex pairs
(total number of data points NP = 16,000). Since a single data point takes 180 �s (the dwell
time) to acquire on average, 16,000 points require 16,000 × 180 �s = 2,880,000 �s or 2.88 s
to acquire. This is called the acquisition time (Bruker: AQ; Varian: AT), and it represents
the time required to record the entire FID once. This is not the time required for the entire
spectrum to be acquired, since it does not include the relaxation delay and the pulse width,
and it does not take into account the number of times the whole sequence is repeated (i.e.,
the number of scans or transients). In general,

Acquisition time

= number of points (real and imaginary) × time required per data point

AT = NP × DW

But the dwell time (DW) is determined by the spectral width: DW =1/(2×SW). Substitution
of 1/(2 × SW) for DW gives

AT = NP × DW = NP × (1/(2 × SW))
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Multiplying by (2 × SW) on both sides:

NP = 2 × SW × AT (Varian)

TD = 2 × SW × AQ (Bruker)

Number of data points = 2 × spectral width × acquisition time

This is the fundamental equation of NMR data acquisition (the mnemonic “swat” is
useful). It tells us that the three parameters NP, SW, and AT (or TD, SW, and AQ in Bruker)
are wedded by this equation such that changing any one of the three will require changing
another to maintain the equality. For example, if we double the spectral width, either the
number of points will double or the acquisition time will be cut by half. This is because the
larger spectral width requires a faster sampling rate (half the dwell time) to assure that all
of the frequencies in the spectral window are sampled at least twice in each cycle. With
twice the sampling rate, you will either complete sampling the fixed number of points in
half the time or keep the acquisition time constant and sample twice as many points. Bruker
keeps the number of points constant and changes the acquisition time; Varian leaves the
acquisition time unchanged and calculates a new value for the number of points. This can
be frustrating because parameters you thought you had not changed are changing before
your eyes!

The spectrum resulting from Fourier transformation of this FID is diagramed in Figure
3.18. The three frequency scales shown illustrate the progression in recording the FID from
RF (actual frequency observed) to audio frequency (after subtracting out the reference RF
signal, νr = 200.010 MHz in this example) to a referenced chemical shift scale (after setting
the spectral reference of TMS).

3.6.4.5 The Sum to Memory The sequence: (relaxation delay–pulse–acquisition of FID)
is repeated a number of times (Fig. 3.19) with the acquired and digitized FID added each
time to a “sum” FID stored in memory. The figure shows Bruker parameter names with
Varian names in parentheses. The “recycle time” is the total time required to acquire one
scan: relaxation delay + pulse width + acquisition time. The total experiment time is the

Figure 3.18
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Figure 3.19

product of the recycle time, RD + PW + AQ (Varian: D1 + PW + AT), and the number
of scans, NS (Varian: NT). Each individual FID contains the same signal (sum of decaying
sine waves for all the sample nuclei), but the noise is different in each FID because it
is random. The signal intensity increases directly with the number of repeats (“scans” or
“transients”), but the noise increases with the square root of the number of repeats (Chapter 1,
Fig. 1.6). This is like two people walking from the same starting point: one is sober and
walks continuously in a straight line and the other is drunk and changes direction regularly
in a random fashion. The distance from the start is directly proportional to the time for the
sober one, but the drunk walk is less efficient, gradually drifting farther and farther from
the start. The signal-to-noise ratio (S/N) is thus proportional to the number of scans divided
by the square root of the number of scans:

S/N = signal/noise α NS/
√

NS =
√

NS

This means that if you want to improve the S/N by a factor of 2, you will need to acquire four
times as many scans. Since the total experiment time is proportional to the number of scans

Time required = NS (RD + PW + AQ) (Bruker)
= NT (D1 + PW + AT)(Varian)

you will need four times as much time on the spectrometer to get a factor of 2 improvement
in S/N.

Because in each repeated acquisition the observed data is simply added into the accu-
mulated sum in memory, the size of the data file is not changed by increasing the number
of scans. The individual FIDs are lost as their data values are added to memory. Consider a
simplified example in which four FIDs are summed in memory. Although these calculations
are always done in the computer with binary numbers, we will use decimal numbers in this
example for clarity. Assume that the digitizer has only one decimal digit (typically there are
16 binary digits) available and that the memory allotment for each data point is two decimal
digits (typically there are 16, 24, or 32 binary digits). Thus, the FID data coming out of the
digitizer can range from a value of −9 to a value of +9, and the sum-to-memory value at
each time point can range from −99 to +99. Although this list may be very long (16384
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or 32768 data points in all for a 1D spectrum), we will consider only the first six real data
points (DW = 40 �s).

time (�s) 80 160 240 320 400 480 . . .
FID1 8 3 0 −2 −3 −1 . . .
memory 8 3 0 −2 −3 −1 . . .
FID2 7 2 0 −1 −3 0 . . .
memory 15 5 0 −3 −6 −1 . . .
FID3 9 3 1 −3 −2 −1 . . .
memory 24 8 1 −6 −8 −2 . . .
FID4 8 3 −1 −1 −4 0 . . .
memory 32 11 0 −7 −12 −2 . . .

In this case the receiver would overflow (“clip”) with any FID value greater than +9
or less than −9. Notice that the FID values for different scans at any given time point are
roughly the same, since only the noise is different. At each time point the FID value is
added to the running total in memory; for example, the 160 �s time point of FID3 has a
value of 3, which is added to the previous sum value of 5 to give the new sum value of
8. As more and more FIDs are acquired, the sum increases steadily and will overflow the
number of digits allotted to it in memory after a certain number of scans (sum greater than
99 or less than −99). On Varian instruments this will stop acquisition, resulting in the error
message “maximum number of transients accumulated.” This will only occur on long (e.g.,
overnight) acquisitions and can be avoided by setting the variable DP (double precision) to
Y (Yes). This doubles the number of digits used in memory (from 16 to 32 binary digits)
and also doubles the size of the data file. On the Bruker a memory overflow (beyond the
24 or 32 binary digits reserved) results in the whole FID sum in memory being divided by
2; acquisition continues with the new FIDs being divided by 2 before being added in. In this
way Bruker never has a problem with memory overflow, but accuracy is lost in the division
process because 1 bit is discarded with each overflow.

The number of scans needed is primarily determined by the concentration of the sample
and the desired signal-to-noise ratio. Another factor to consider is the phase cycle. Artifacts
that are inherent in the electronics of the spectrometer can be canceled out by changing the
phase of the RF pulse in a fixed pattern (e.g., 0◦, 90◦, 180◦, and 270◦ in scans 1, 2, 3, and
4) and changing the phase of the receiver (by subtracting the signal instead of adding, or
switching the real and imaginary parts) to follow this progression. The number of scans
should be an integer multiple of the phase cycle length (a multiple of four for simple 1D
acquisition) to assure optimal cancelation of artifacts. Some experiments, which subtract
undesired signals from desired ones, will not work if the number of scans is set wrong. The
phase cycle cancelation can also be screwed up if the first scan or two are acquired with
the nuclei not in the “steady state” in terms of relaxation. Often the relaxation delay is not
long enough for complete return of all spins to the equilibrium state, so the spins reach a
steady state after a few scans where the degree of relaxation is always the same at the start
of each scan. This steady state can be established by using dummy (or steady-state) scans.
These are scans that include a relaxation delay, pulse, and acquisition just like a normal
scan, but the data are not added into memory. The number of dummy (steady-state) scans
is DS (Bruker) or SS (Varian).

3.6.4.6 The Computer On newer (Bruker AMX, Varian Unity and newer) NMR spec-
trometers there is an acquisition computer that runs the NMR console and a data processing



108 NMR HARDWARE AND SOFTWARE

computer (usually a UNIX system purchased off the shelf from Sun Microsystems or Silicon
Graphics) that communicates with the NMR console through an Ethernet (Internet-like) or
SCSI (device interface) communication cable. When the data acquisition is complete, the
FID data in the sum to memory is transferred to the acquisition computer in the console,
and this data is then sent to the “master” (or “host”) computer that the user is running. All
the data processing—display on the screen, weighting functions, Fourier transform, phase
correction, baseline correction, peak and integral analysis, and plotting—is done on this
computer using the vendor’s own software package.

3.7 NOISE AND DYNAMIC RANGE

Two terms that are very important in assessing the quality of NMR data are signal to noise
and dynamic range. The first has already been discussed, but it is useful to think about
where noise comes from and what can be done to reduce it. The signal is proportional
to the concentration of the sample and to the number of scans. Although signal is often
measured as peak height, we must remember that it is the peak area that is proportional to
concentration and number of scans; the peak height is very sensitive to shimming. As the
shimming improves, the peak gets taller because the constant peak area is squeezed into a
narrower and narrower peak. It is the peak height that determines whether a peak can be
seen “over” the noise: If a peak is very broad, it is much easier to “lose” it in the noise than
a sharp peak that “sticks up” above the level of the noise. If we compare two one-proton
signals from the same molecule, the one with fewer splittings (J couplings) will be easier
to see above the noise. For example, a fully resolved doublet of doublets (four peaks of
equal height) is only one fourth of the height of a singlet with the same linewidth and area.
Especially in low-sensitivity 2D experiments, the complex multiplet signals are often lost
in the noise while the sharp singlet signals are easy to see. When measuring signal-to-noise
ratio with a standard sample (0.1% Ethylbenzene in CDCl3 is the 1H standard), the result
is not meaningful unless the shimming is superb. With high-order shim errors, all of those
“porches” and “pedestals” that may not even show above the noise are robbing intensity
from the peak and lowering its peak height.

3.7.1 Analog Noise

The source of noise is another consideration. As already discussed, noise that comes into
the preamplifier is there forever and will be amplified along with the signal throughout the
receiver. But with each successive stage of amplification (RF, IF, and audio) new thermal
noise is introduced, and this noise only gets amplified by the successive stages of ampli-
fication that follow. So noise introduced late in the process contributes less to degrading
the signal-to-noise ratio because the signal was amplified already quite a bit before the
noise was introduced. A quantitative way of measuring the noise introduced in the receiver
is the “noise figure.” This is a measure of all noise added to the initial signal introduced
to the input of the preamplifier. As technology improves, the noise figure goes down and
NMR instruments become more sensitive because the signal-to-noise ratio improves. The
noise figure can be measured by introducing a calibrated source of noise into the preampli-
fier and measuring the noise level in the fake “FID” recorded. A cheaper but less reliable
method involves measuring noise from a 50-� resistor attached to the preamplifier input
and comparing the “FID” noise with the resistor at room temperature and at 77 K (in a
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bath of liquid nitrogen). Since the increase in noise from the resistor in going from 77 K
to room temperature is known, the increase in noise in the FID should reflect a constant
(the noise introduced by the receiver) plus this variable of known ratio. If the noise figure
is small, signal and noise get about the same amplification in the receiver, and signal-to-
noise ratio will not change much as the receiver gain is increased, but if the noise figure
is large there will be a significant increase in signal-to-noise ratio as the gain is increased,
since noise that is introduced at later stages of amplification will not be boosted as much
as the signal, which is amplified at all of the stages. This is one reason why you want
to increase the receiver gain as much as possible to a level just below where you start
overloading the digitizer (“clipping” the FID).

3.7.2 Digitizer Noise

Finally, noise can be introduced digitally by the sampling process of the ADC. Since the
ADC must select an integer value for the intensity of the FID at each moment it samples,
an input voltage right at the dividing point for choosing one integer or the next larger value
leads to an uncertainty or “jitter” of one integer unit in the digital output. If the real thermal
noise is less than one integer value in the ADC, the thermal noise is masked and we only
see this digital noise. In this case, the thermal noise fluctuations are too small to “flip” the
ADC to the next integer value, so the noise information is completely lost. Starting with
a very low value of the receiver gain (RG or GAIN), increasing the gain leads to a steady
increase in signal-to-noise ratio, since the noise is fixed at the value of the digital noise.
At some point, however, the noise amplitude gets large enough that it is being accurately
digitized by the ADC. Beyond this point any increase in receiver gain boosts both the signal
and the noise, and the signal-to-noise ratio no longer increases as steeply. Using an ADC
with more “bits” (a finer division of integer values with respect to the input voltages) or
sampling many points and averaging them to get each single data point (oversampling) can
reduce the step size of the ADC so that this maximum of signal to noise is achieved at lower
gain values. This is important if there are large signals like solvents (e.g., H2O in biological
samples) that dominate the FID and limit the gain to a low value.

3.7.3 Dynamic Range

Dynamic range is the range of concentrations or signal intensities over which you can detect
samples in a single measurement. If you are trying to find a “needle in a haystack”—for
example, observing the 1H spectrum of a 1 mM protein sample in 55 M H2O—you need
to have dynamic range. Signal to noise is an absolute limitation: It sets a minimum of
signal height that can be observed for a “weak” signal, regardless of any strong signals in
the sample. Dynamic range is a relative limitation: It determines how small a signal can
be detected relative to the largest signal in the sample. The receiver gain is limited by the
largest signal in the sample because the digitizer limits will be exceeded first by that large
signal as you increase the receiver gain. Thus at this limit, the “top” of the digitizer (largest
integer value it can assign to a signal) is set to the signal strength of the largest signal in
the sample. We say that the digitizer is “dominated” by this large signal. The small signal
that “rides” on top of this large signal FID has to be accurately described by the digitizer.
If it is smaller than one integer step in the ADC output, the signal is lost. If it is only a few
integer steps, it will be picked up but the peak in the spectrum will be “blocky”—described
by large square integer steps in intensity instead of by smooth curves, similar to a bitmap
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drawing with very low resolution. The ratio between the largest integer and the smallest
(one unit) is the dynamic range of the digitizer. A 12-bit ADC uses 12 bits to digitally
measure the analog voltage at each sample point, so the dynamic range is 4096 to 1 (212 to
1). More modern instruments use 16-bit digitizers, so they have a dynamic range of 65,536
to 1 (216 to 1). This can be further increased by oversampling (acquiring many samples
for each data point and averaging them), since this allows partial integer values when the
average is computed. For example, if you digitize four equally spaced data points during
an 80 �s dwell time and average the value to one data point, you can have a result that is,
for example, 645.00, 645.25, 645.50, or 645.75. You now have four times as many intensity
levels to choose from and you have increased your digitizer resolution by 2 bits. A modern
NMR spectrometer can typically oversample by a factor of 32, leading to 5 additional bits
or a total of 21 effective bits in the digitizer and a dynamic range of 2,097,152 to 1!

3.8 SPECIAL TOPIC: OVERSAMPLING AND DIGITAL FILTERING

The sampling rate is the rate at which the ADC samples the raw analog FID audio signal and
converts the intensities (voltages) into numbers. The delay between samples is called the
dwell time (DW) so that the sampling rate can also be expressed as 1/DW in units of hertz.
Because we must have at least two samples per cycle of a sinusoidal signal to properly define
its frequency without aliasing, the sampling rate is determined by the highest frequency we
need to digitize. The user defines the spectral width (SW) and the spectrometer calculates
the sampling rate:

Rate = 1/DW = 2 × SW (DW = 1/(2 × SW))

For a typical spectral width of 6250 Hz (12.5 ppm for a 1H spectrum on a 500 MHz
spectrometer), the sampling rate is 12,500 samples per second. For a 13C spectrum the
spectral width is larger, so that a 13C spectrum with a 250 ppm spectral width on a 600 MHz
spectrometer would require a sampling rate of

Rate = 2 × SW = 2 × 250 ppm × 150 MHz = 75,000 samples per second

since the 13C frequency on a 600 MHz spectrometer is 600 × (γC/γH) = 150 MHz. This
may seem like an impressive feat, but it is well within the capabilities of even an older
generation ADC. Even an inexpensive modern ADC can sample at 400,000 samples per
second, so that the capacity is 5.33 times greater than that needed for the 13C spectrum
example and 32 times greater than that needed for the 1H spectrum example. The question
naturally arises: Is there anything useful we can do with the excess sampling capacity?

3.8.1 Oversampling

In the 1H spectrum example, if we sample at 400,000 samples per second, we will have 32
samples for every data point that we actually need for the FID. The simplest thing to do with
all of this extra data is to divide them into groups of 32 consecutive data samples and average
each group to give a single data value. Is this any better than sampling 12,500 samples per
second? Yes, because any time you repeat a measurement many times and average the
results, you get a more accurate measurement. Furthermore, since each measurement is an
integer value with a limited dynamic range (e.g., −32,767 to 32,768 for a 16-bit ADC) you
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would have a much finer range of possible intensities because each bit (0 or 1) can now
have 32 possible values after averaging 32 measurements (0, 1/32, 2/32, . . . , 31/32). This
finer “graininess” of the intensity values might be useful if we are trying to find a very weak
signal in the presence of a very strong one (needle in a haystack problem). Essentially we
now have more significant figures (precision) in each measurement, increasing the dynamic
range (ability to detect small signals in the presence of large ones).

This simple process of averaging each set of 32 raw measurements to get a single value
is called decimation, and we would define the decimation factor as 32 in this case. Thus
we see a part of the overall strategy: Oversampling produces many more data points than
we need, and decimation averages them to give us the required sampling rate determined
by the spectral width. But we can do much more than just increase the accuracy of our
measurements: We can use digital methods to construct a filter that rejects signals outside
of the spectral window without affecting the desired signals within the spectral window.
With digital filtering, we can set a narrow spectral window that covers only part of the
spectrum, and none of the other peaks in the spectrum will alias or “fold in” to the narrow
window because they are removed by the digital filter. To understand how this works, we
need to first understand the “old fashioned” analog filter used in an NMR spectrometer.

3.8.2 Analog Filtering

We have already seen that the digitization of the FID signal (sampling at regular intervals)
sets a limit on the frequencies that can be detected without aliasing. Any frequency larger
than SW/2 (with quadrature detection, the frequency is zero at the center of the spectral
window, so the edges are at ±SW/2) will be aliased back into the spectral window. This
applies to noise as well as to peaks, so that without some way of rejecting signals outside the
spectral window, we would have a huge amount of noise aliased into the spectral window
and the signal-to-noise ratio would be abysmally low. To avoid this, an analog audio filter is
included before the ADC to remove any frequencies with absolute value greater than SW/2.
Analog filters are constructed from capacitors, resistors, and inductors and have switches
to match the “bandpass” (region of frequencies passed through) of the filter to the spectral
width set by the user. The frequency response curve shows how effectively a filter blocks
the signals outside the spectral window and to what extent it affects signals within the
spectral window. The ideal filter response would be “flat” throughout the spectral window
and would drop instantly to zero outside the spectral window (Fig. 3.20). Unfortunately,
real audio filters tend to attenuate signals in the spectral window that are near the edge,
and drop off only gradually outside the spectral window. Peaks that are outside the spectral
window are aliased with some attenuation into the spectral window, along with the noise.

Figure 3.20
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Thus we expect less signal and more noise near the edges of the spectral window, and this
will degrade the sensitivity as well as the accuracy of integration. Peaks and noise that are
very far outside the spectral window are effectively blocked by the analog filter. The goal
of digital filtering is to achieve a nearly ideal filter response curve, matched to the spectral
window, with only the computational tools of a computer chip rather than the cumbersome
and imperfect electronic components of an analog circuit. The filter will be moved from its
place in the analog stream before the ADC and placed in the digital stream after the ADC.

3.8.3 Decimation with Digital Filtering

Let us return to our example of a 1H FID oversampled 32 times and decimated by a simple
average of each set of 32 data values. It turns out that this method of decimation by simple
averaging actually discriminates among frequencies in the FID, so that a high frequency
that changes sign many times during the 32 samples will be nearly eliminated (positive
swings cancel the negative swings) and a low frequency that is nearly constant for the 32
samples is unaffected. So this simple filter is a crude kind of low-pass filter: It cuts out the
high frequencies and passes (leaves unchanged) the signals with low frequencies.

To understand how this works, consider a simpler example: a filter that averages groups
of four data points to give a single filtered value. If the data is oversampled with a decimation
factor of 4, the sampling rate (1/DW) is eight times the spectral width (8 × SW) instead of
twice the spectral width (2 × SW). Consider the effect of this process on a pure sine wave
FID with frequency 4 × SW, which is sampled at a rate of 8 × SW (delay between samples is
1/(8 × SW)). The raw data has sampled values of 1, −1, 1, −1, . . . and has a frequency of
4 × SW since it goes through a complete sine wave cycle in two data points (period = 1/(4
× SW)). Such a signal would be reduced to zero by the filter, which averages each group
of four data points. A zero response would also be obtained for a signal of frequency 2 ×
SW (0, 1, 0, −1, . . . ). A signal with frequency SW (data values 0, 0.707, 1, 0.707, 0, −0.707,
−1, −0.707) would be retained with reduced intensity because decimation would give two
data points: 0.604 and −0.604. This pair would repeat leading to a correct frequency mea-
surement of SW. A signal of zero frequency (1, 1, 1, 1) would also be retained with unchanged
intensity (1.0 for each averaged value). We can map out the frequency response curve for this
digital filter as shown in Figure 3.21: the response is maximum at the left edge of the spectral
window, drops to 71% at the right edge, then drops to zero and oscillates and decays for
larger frequencies (for simplicity we are not considering real and imaginary data acquired
with quadrature detection, so the edge of the spectral window is at frequency SW rather than
SW/2). The response is a “sinc” function (sin(x)/x) that effectively passes low frequencies

Figure 3.21
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and discriminates against high frequencies, but it has many undesirable characteristics. The
response is far from constant in the interval 0–SW, and there is significant nonzero response
outside of the spectral window. Furthermore, the filtered data switches sign in some regions,
indicating an alteration of the original phase. Clearly we need to design a better filter, and
to do so we must examine various digital filters with different sizes and shapes.

3.8.4 Digital Filtering and the Convolution Theorem

Consider a filter that averages in groups of three data points without any decimation. Every
group of three consecutive raw data points is summed together, and the sum is applied to the
center value (second of three data points) in a new data set—the digitally filtered FID. We
can think of the filter as a rectangle-shaped window, three data points wide, which moves
through the FID data, stopping to add together three points and deposit the sum in the new
data set and then moving one data point to the right-hand side and repeating the process.
What effect will this have on a simple sine function FID? The math is shown in Figure
3.22(a). Each data value on the bottom is the sum of the three data values above it: one
above and to the left-hand side, one directly above, and one above and to the right-hand
side. Note that the filtered data has one extra data point at each end since the filter is three
data points wide and begins to encounter data when the first raw data point is reached. After
two anomalous points at the beginning (the “group delay” of the filter) the filtered data are
identical to the raw data. Thus this frequency (2 × SW sampled at a rate of 8 × SW) is
passed without any change by the filter. With a raw FID of frequency 4 × SW we see that the
data are passed by the filter but with inverted phase (Fig. 3.22(b)). A frequency of zero (all
data points equal to 1) is passed with high efficiency (all data points equal to three). Thus
the frequency response for this digital filter is a sinc function with a maximum response at
zero frequency, a smaller positive response at 2 × SW, and a negative response at 4 × SW.

A wider filter function gives a narrower frequency response. Consider a digital filter
that is four points wide, with all four values given equal weight. A frequency of 4 × SW is

Figure 3.22
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Figure 3.23

blocked by the filter after a brief transient response (Fig. 3.22(c)). Likewise a frequency of
2 × SW is also blocked (Fig. 3.22(d)). As before, a zero frequency (all data points equal
to 1) is passed with maximum response. Similar arguments show that odd multiples of SW
(SW, 3 × SW, etc.) are passed by this filter. The filter response curve for the four-point
filter is a sinc function with null points at 2 × SW and 4 × SW, so it is narrower than the
response curve for the three-point filter (Fig. 3.23). Note that the shape of the frequency
response curve (frequency domain) is the Fourier transform of the shape of the filter
function (time domain). A filter function that is rectangular in shape (three or four equally
weighted points with all other points weighted zero) leads to a frequency response curve
that is a sinc (sin(x)/x) function, and the sinc function is narrower in frequency as the filter
function is made wider in time. This is just what we expect for the Fourier transform of
a rectangular shape in time domain. This principle can be stated more generally if we
consider that the filter function need not be rectangular, that is, the points in the filter do not
have to be weighted equally. A general digital filter has N coefficients or weighting factors
c1, c2, c3, . . . ., cN , and it is passed through the raw data stopping at each new position
where the weighted average is calculated (Fig. 3.24, top), where r1, r2, r3, . . . represent the
raw (unfiltered) FID data and the filtered data value for point 7 is

d7 = c1r3 + c2r4 + c3r5 + c4r6 + c5r7

The filter is then moved to the next position and the weighted average is again calculated
(Fig. 3.24, bottom). The value for point 8 is

d8 = c1r4 + c2r5 + c3r6 + c4r7 + c5r8

This process of moving the filter function through the raw data and calculating weighted
averages is called convolution, and the digitally filtered data d1, d2, d3, . . . are called the

Figure 3.24
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convolution of the raw data (r1, r2, r3, . . . ) with the filter function (c1, c2, c3, . . . ). In
mathematical terms,

d(t) = c(t) ⊗ r(t)

where d(t) is the digitally filtered FID, c(t) is the filter function, and r(t) is the raw FID, all
of them digital time-domain functions. The process of digital filtering is the same as the
mathematical operation of convolution, represented by the symbol ⊗.

The convolution theorem states that the Fourier transform of the convolution (d) is simply
the product of the Fourier transforms of the two functions (c and r) that are combined by con-
volution to make d. Thus convolution in time domain is equivalent to simple multiplication
in frequency domain:

d(t) = c(t) ⊗ r(t) D(f ) = C(f ) × R(f )

where D(f) is the spectrum obtained by Fourier transformation of the digitally filtered FID
d(t), R(f) is the spectrum obtained by Fourier transform (FT) of the raw FID r(t), and C(f)
is the frequency response curve obtained by FT of the filter function c(t). To determine the
effect of any digital filter on the spectrum, we simply look at the Fourier transform of the
digital filter’s shape (its coefficients).

Now that we understand the exact relationship between the shape of the weighting factors
(coefficients) used in the digital filter and the frequency response curve it produces in the
spectrum, we can begin to design a digital filter with ideal properties. The ideal frequency
response curve is flat throughout the spectral window and falls off instantly to zero outside
the window. In mathematical terms, this is a rectangular shape in frequency domain. The
design question then boils down to this: What time-domain function (digital filter shape)
will give, after FT, a rectangular function (frequency response curve)? The answer is simple:
A sinc (sin(t)/t) time-domain function gives a rectangular frequency-domain function upon
FT. The narrower we make the sinc function in time domain, the wider will be the rectangular
frequency response curve. So this is our goal: to construct a set of digital filter coefficients
that correspond to a sinc function in time domain.

3.8.5 Optimizing the Digital Filter

The digital filter cannot be infinitely long, so we will have to cut off (truncate) the sinc
function at some point. This will affect the frequency response curve, so it will not be a
perfect rectangle, and some of the proprietary (trade secret) information guarded by NMR
instrument makers (Bruker and Varian) has to do with the optimization of finite-sized filter
functions to give optimal frequency response. We can start with a fairly simple filter: a
15-point sinc function with “sinc” coefficients (Fig. 3.25). Note that this is a symmetrical
sinc shape with a maximum at the center (c8) and two null points (c2 and c5, c11 and
c14) on each side. The effect of this filter was tested on a “fake” FID that gives, after FT,
a spectrum with 41 equally spaced peaks of equal height and width. This raw FID was
digitally filtered by sliding the 15-point “sinc” filter (Fig. 3.25) through it, calculating the
sum of 15 products (ci × rj ) at each stop. The Fourier transform of the digitally filtered FID
is shown in Fig. 3.26. Clearly the effect of truncating the sinc function (using only 15 points)
is dramatic: the response sags in the center, and the cutoff is not very sharp at the edges of
the spectral window. In addition, there is significant intensity outside the spectral window
with alternating phase. But this frequency response curve is much better than the simple
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Figure 3.25

sinc functions obtained with “flat” (rectangular) digital filters (Fig. 3.23). The filters in use
on modern spectrometers use many more coefficients and are optimized to compensate for
truncation effects, so that rejection of signals outside the spectral window is excellent and
the cutoff is very sharp.

3.8.6 Combining Decimation with Digital Filtering

Our discussion of digital filtering was inspired by a need to reduce the sampling rate from
the maximum possible permitted by the ADC to the rate desired for the spectral window
of interest (2 × SW). We found that a simple average is not a good way to decimate

Figure 3.26
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the oversampled data because it introduces a sinc-shaped frequency response curve into
the spectrum. After a detailed examination of the effect of filter weighting on frequency
response, we found that this seeming disadvantage can be used to construct a frequency filter
that is far better than any analog audio filter. Thus we can get the advantages of oversampling
(greater accuracy and dynamic range) as well as the advantages of digital filtering (very
sharp or “brick wall” audio filters) by using a carefully planned shaped digital filter to
average the oversampled data and reduce (decimate) it to the desired sampling rate. The
only difference in our convolution process is that the filter function does not stop at every
point in the raw FID; instead, it jumps ahead by many points each time. For example, if
the raw FID is oversampled by a factor of 24 (sampling rate 48 × SW), the filter function
will jump 24 points forward each time and calculate a weighted average. The filter function
can contain many points: for example, 3000 points for a decimation factor of 24. The
sinc-shaped “footprint” of the filter function moves forward through the raw FID jumping
24 points forward each time and calculating the weighted average over the whole filter
function width (3000 points) at each stop. This weighted average becomes the data value
for the digitally filtered FID at each stop, so that the new FID has only 1/24 the number of
points as the raw FID (decimation factor = 24).

3.8.7 Practical Considerations and Applications

Digital filtering is more or less invisible to the routine user. You will notice that the filtered
FID has a “dead time” at the beginning during which intensities are very low, and then the
normal FID “blossoms out” after this group delay. The group delay is the time necessary for
the digital filter function to “walk into” the raw FID and start generating significant intensity.
For a sinc function, most of the intensity of the function is at the center, so the digitally
filtered FID does not start to show intensity until this part of the filter function reaches the
beginning of the raw FID. This may be as far as 64 points into the digitally filtered FID.
The effect of this delay is the same as the effect of a delay in the start of acquisition after
a pulse: It introduces a very large first-order (chemical shift dependent) phase error into
the spectrum. This will appear as a lot of “squiggles” in the baseline of the spectrum in a
shape similar to a sinc function centered at the center of the spectral window. First-order
phase errors in the order of 30,000 are typical, so that it is nearly impossible to correct them
manually. On the spectrometer, the NMR software calculates this phase correction from the
decimation factor and automatically applies it, so the spectrum never shows any unusual
phase errors. When using a “third-party” software package (e.g., Felix), the decimation
factor must be supplied so that the software can calculate these phase corrections. The only
other noticeable difference between digitally filtered data and analog filtered data is that
the Bruker “brick wall” filter function produces a slight downturn in the baseline at the
extreme edges of the spectral window. This “Bruker frown” is more preferable to the old
“Bruker smile” baseline distortion because the baseline is extremely flat through nearly all
the spectral window.

Because digital filtering can produce a “brick wall” frequency response, any peak that
falls outside the spectral window is removed completely and will not alias. This can be a
problem if you set the spectral window too narrow: You will never be aware of the peaks
you miss. If you accidentally set the spectral window to include nothing but noise, you
will get just that in the spectrum: nothing but noise! The good news is that if we are only
interested in a small part of the 1D spectrum, we can “cut out” the rest of the spectrum using
the digital filter. For example, in a 2D 15N-1H HSQC spectrum of a protein, we are only
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interested in the HN (H of the peptide NHCO linkage) region of the spectrum (7–11 ppm).
The rest of the spectrum, including the intense water resonance at 4.7 ppm, can be cut out
by setting our spectral window to include only the HN region. That does not allow you to
turn up the receiver gain, however, since it is the raw, unfiltered analog FID that is being
digitized by the ADC. In 2D NMR the digital filter only applies to the directly detected
dimension (F2). Any excitation that occurs outside the F1 (vertical) spectral window will
alias into the spectral window.

3.9 NMR DATA PROCESSING—OVERVIEW

When you have finished acquiring your NMR data, you will need to process the data into
a spectrum and plot that spectrum on paper with a ppm axis, and possibly with integrals,
peak lists, and other features. You may want to expand interesting or complex regions of
the spectrum as insets or on a separate plot so that the fine structure of peaks (splitting
patterns, J values, etc.) can be analyzed. Each NMR instrument has its own software for
data processing, and it can be daunting to try to learn all of the different commands and
operations. The actual data processing task, however, is the same in all cases and the
learning curve will be more efficient if we first deal with these tasks in general without
discussing individual NMR programs. Starting with an FID (raw time-domain data), we
need to carry out the following operations:

(a) Multiply the FID by a multiplier or window function.

(b) Fourier transform the time domain data to obtain a frequency domain spectrum.

(c) Correct for phase errors by adjusting the phase.

(d) Find a reference standard peak and set its chemical shift to the reference value in
parts per million.

(e) Expand the desired region of the full spectral window to be plotted.

(f) Plot the spectrum.

In addition, there are several optional operations we might want to perform:

(g) Add zeroes to the end of the FID to increase digital resolution (“zero fill”).

(h) Flatten the spectrum baseline (average of noise regions where there are no peaks).

(i) Measure the area under individual peaks by integration.

(j) Plot the chemical shift values of peaks on the spectrum, or print a separate list.

(k) List the acquisition and processing parameters on the spectrum or in a printout.

(l) Expand and plot smaller regions of the spectral window.

To gain a better understanding of what is involved in these steps, we will start with a look
at the raw time-domain data (FID).

3.9.1 What is NMR Data?

Raw time-domain NMR data (the FID) consists of a list of numbers, usually negative and
positive integers, as a function of time in equal time increments. The list is usually quite
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long, with as many as 16,000 or 32,000 entries. There are two types of data values (reflecting
the two channels of the NMR receiver): real and imaginary. Data are arranged in the order:
real, imaginary, real, imaginary, .. . . , regardless of the acquisition mode (alternating or
simultaneous) of the pairs. This is the “raw” data of the NMR experiment. The data are
contained in a computer disk file (if you saved it!) as a binary file containing a header
(with some information about the spectrometer settings—not used on Bruker AMX and
DRX instruments) and a list of numbers without the time values. For newer instruments,
the NMR data are saved as a directory that contains the binary FID file (fid), and a number
of text files containing parameters (Bruker acqu, Varian procpar) and other information
relevant to the experiment. On the older instruments (Bruker AM and Varian Gemini) you
simply save the FID as a single binary file.

Some experiments involve more than one FID: For example, DEPT analysis (Chapter 7)
performs a 13C experiment four times with different parameter settings; 2D experiments
involve collections of up to 750 similar FIDs. These can be combined in a single binary file.
The FIDs are just listed one after the other in a single continuous list of data that Bruker
calls a serial file. Varian treats these multiple FID files in the same way as single-FID files,
so they can be used for “arrayed” experiments (a set of 1D experiments acquired by varying
some parameter such as pulse width) or for 2D experiments. The file name is the same in
either case that is, “fid.” Bruker uses the filename “fid” only for single FIDs, and instead
uses “ser” for the binary data of all serial files.

3.10 THE FOURIER TRANSFORM

The raw data or FID is a series of intensity values collected as a function of time: time-
domain data. A single proton signal, for example, would give a simple sine wave in time with
a particular frequency corresponding to the chemical shift of that proton. This signal dies out
gradually as the protons recover from the pulse and relax. To convert this time-domain data
into a spectrum, we perform a mathematical calculation called the Fourier transform (FT),
which essentially looks at the sine wave and analyzes it to determine the frequency. This
frequency then appears as a peak in the spectrum, which is a plot in frequency domain of the
same data (Fig. 3.27). If there are many different types of protons with different chemical
shifts, the FID will be a complex sum of a number of decaying sine waves with different
frequencies and amplitudes. The FT extracts the information about each of the frequencies:

Figure 3.27
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their intensities, phases and even the rate at which they decay, which determines the linewidth
of each peak in the spectrum (signals that decay quickly transform into broad peaks, whereas
signals that last a long time transform into sharp peaks). The method of data collection
(“Bruker” sequential vs. “Varian” simultaneous) will affect the type of Fourier transform
calculation you must perform. This difference is invisible if you process your data on the
instrument on which it was acquired, but if you transfer data to a separate workstation and
use independent processing software, you need to tell the software which kind of data you
have. For example, with the Felix software package you will have to specify Bruker Fourier
transform (bft) or complex Fourier transform (ft) for Bruker or Varian data, respectively.

3.10.1 How the FT Works

It is actually very easy to visualize how the Fourier transform works. Consider an FID
with a single frequency (one peak in the spectrum). The goal of the Fourier transform is to
determine the value of that frequency. First, we pick a “guess” frequency ν and multiply
the FID by the “test function” sin(2πνt). At each point in time we multiply the value of the
FID with the value of the test function, and then we measure the area under the curve of the
product:

spectrum(ν) =
∫

FID(t)sin(2πνt)dt

Suppose, first of all, that we guessed right and the test function has exactly the same
frequency as the FID (ν = νo = 2.5 Hz). The two functions (Fig. 3.28) are completely “in
sync”: wherever the FID is positive the test function is positive and wherever the FID is
negative the test function is also negative. The product of these two functions is thus always
positive (positive × positive = positive; negative × negative = positive). For our spectrum,

Figure 3.28
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Figure 3.29

we take the area under the curve of this product function (the integral) as the intensity value
for the spectrum at frequency ν = νo. This maximum positive intensity (1.00) falls right at
the top of our peak in the spectrum. Now consider what happens if we pick a guess frequency
that is a bit lower than νo: ν = 2.0 Hz (Fig. 3.29). The test function is “slower” than the FID
and begins to fall “out of sync” as time progresses, so the product function starts out positive
(p × p or n × n) and then goes negative (p × n or n × p). As the test function “outruns”
the oscillations of the FID, the product function jumps back and forth between positive
and negative. Because of the decay of the FID, greater weight is given to the earlier part,
and the positive swing outweighs the negative swing, leading to a small positive total area
(0.289). In frequency domain, this is down the right side of our peak. An even lower guess
frequency (1.66 Hz, Fig. 3.30) leads to a faster oscillation of the product function and better
cancelation of the positive and negative areas. This point (intensity 0.124) is farther down
the right-hand side of the peak in frequency domain, close to the baseline. Test frequencies
still farther from the FID frequency will lead to even more rapid oscillation of the product
function and nearly perfect or perfect cancelation of the positive and negative areas: here
we are far from the peak in frequency domain, and the intensity of spectrum(ν) is zero.

The real power of the Fourier transform is the linear nature of the calculation. If we have
an FID that is a sum of two different pure frequencies (like Fig. 3.16), the spectrum function
looks like this:

spectrum(ν) =
∫

[FIDa(t) + FIDb(t)]sin(2πνt)dt

We can multiply the terms and separate to obtain

spectrum(ν) =
∫

FIDa(t)sin(2πνt)dt +
∫

FIDb(t)sin(2πνt)dt
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Figure 3.30

Thus, the Fourier transform of the sum of two pure signals is just the sum of the Fourier
transforms of the individual signals. The first term above (using FIDa (t)) will be nonzero
only when the test frequency ν is at or near νa (the frequency of FIDa ), and the second
term will only be nonzero only when the test frequency ν is at or near νb (the frequency of
FIDb ). This is how the Fourier transform “pulls apart” the individual frequencies that are
all mixed up in the time-domain data (the FID).

The actual Fourier transform is a digital calculation, so not all frequencies are tested. In
fact, the number of frequencies tested is exactly equal to the number of time values sampled
in the FID. If we start with 16,384 complex data points in our FID (16,384 real data points and
16,384 imaginary data points), we will end up with 16,384 data points in the real spectrum
(the imaginary spectrum is discarded). Another difference from the above description is
that the actual Fourier transform algorithm used by computers is much more efficient than
the tedious process of multiplying test functions, one by one, and calculating the area under
the curve of the product function. This fast Fourier transform (FFT) algorithm makes the
whole process vastly more efficient and in fact makes Fourier transform NMR possible.

3.11 DATA MANIPULATION BEFORE THE FOURIER TRANSFORM

3.11.1 Zero Filling

Before performing the FT, there are two things we can do to enhance the quality of the
spectrum. First, the size of the data set can be artificially increased by adding zeroes to the
end of the list of FID data. This process of zero filling has no effect on the peak positions,
intensities, or linewidths of the spectrum, but it does increase the digital resolution (fewer
hertz per data point) in the spectrum (Fig. 3.31). This can be useful to give better definition
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Figure 3.31

of peak shapes for sharp peaks. For example, you might have an FID that contains 3276
total data points (1638 pairs of real, imaginary). If you transform it directly, you will have
1638 points in your spectrum (i.e., the real spectrum). If your spectral width (SW) was
4915 Hz when you acquired the data, your spectrum will have a digital resolution of
4915/1638 or 3.00 Hz per point. A doublet with a splitting of 8 Hz would be described
by only three points, so the measurement of the splitting would be very inaccurate due to
the “graininess” of the spectrum (Fig. 3.31, left). If, on the other hand, you zero fill the
acquired data by adding 14,746 pairs of zeroes to the data list before FT (16,384 total com-
plex pairs), you will get a spectrum with 16,384 (16 K) data points describing the full 4915
Hz spectral window. The digital resolution is much greater (4915/16,384 = 0.300 Hz per
point), and the same doublet would be described by 39 data points (Fig. 3.31, right). Zero
filling is accomplished by simply defining the final data size before FT (Bruker SI, Varian
FN) to a larger number than the acquired number of data points (Bruker TD, Varian NP).
In the above example, you would set TD (NP) to 3276 and SI (FN) to 16,384.

3.11.2 Weighting or Window Functions

A more common pre-FT massaging of data is the application of a window function or
weighting function. The idea is to emphasize (“weight”) certain parts of the FID at the
expense of others. For example, suppose that your FID signal disappears into the noise after
0.2 s, even though you acquired data up to 1.0 s. The noise from 0.2 to 1.0 s in your FID
only increases the noise in your spectrum and does not contribute to the peak height, so your
signal-to-noise ratio is reduced. One solution would be to simply set all the data after 0.2 s.
to zero, but this introduces a sharp discontinuity in the FID at 0.2 s, which could introduce
artifacts into the spectrum. A smoother method is to multiply the FID by an exponential
decay function that emphasizes the early data in the FID and deemphasizes the later (mostly
noise) data (Fig. 3.32). In the figure, a signal of 1 Hz linewidth is buried in noise after 0.5 s of
the 2.6-s acquisition time. The “steepness” of this exponential multiplier (line-broadening
parameter LB) can be varied so that it matches the natural decay of the signal (LB = 1 Hz).
The net effect on the spectrum (Fig. 3.33) is that the signal-to-noise ratio is increased (from
27.8 to 56.1) and the peak is 1 Hz broader (2 vs. 1 Hz), because faster decay of the signal
leads to a broader peak. The line broadening actually reduces the absolute peak height, but
the reduction in noise level more than compensates for this effect. If the line-broadening
effect is not a problem, the increase in S/N is usually worth the price, especially for carbon
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Figure 3.32

spectra where signal is always weak. I usually use an LB value of 0.2 Hz for proton spectra
and 1.0 Hz for carbon spectra. If you have a very weak signal carbon spectrum and just
want to see if there are peaks, you can use an LB of 3.0 or 5.0 Hz.

Other window functions can be used for the opposite effect: resolution enhancement
(Fig. 3.34). By deemphasizing the beginning of the FID and amplifying the later part, the

Figure 3.33
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Figure 3.34

natural decay of the FID signal is delayed and the peaks in the spectrum get sharper. This
is especially useful for measuring coupling constants. Of course, “there is no free lunch,”
so you pay a price in poorer signal-to-noise ratio, but with some samples you have more
signal than you could ever want. The naïve approach would be to multiply the FID with
an exponentially increasing function to “slow down” the natural decay of the FID. As with
rabbit population and uncontrolled nuclear fission, exponential growth would be disastrous
because the end of the FID (dominated by noise) would be huge and then would suddenly
drop to zero. But we can rein it in by multiplying by a Gaussian function (the old statistical
bell curve):

Window = e−LB×te−a(t−τ)2

The first exponential is increasing if LB is made negative. The second one, the Gaussian
term, reaches a maximum at time t = τ, which can be set to any time during the FID. In
Figure 3.34, the parameters for the Gaussian window are set to LB = −1 Hz, with τ adjusted
to make the window reach a maximum at one fourth of the way through the FID. The first
quarter of the FID is multiplied by an increasing function, slowing down the decay of the
FID data, whereas the rest of the window function is decreasing, bringing the noise down.

A very simple window function for resolution enhancement is the sine bell (Fig. 3.34),
which is just the function sin(x) for x = 0 to 180◦. This function “grows” for the first half of
the FID and then brings the signal smoothly to zero during the second half. We saw examples
of this window in Chapter 2 (Figs. 2.9 and 2.10). We will see that the sine-bell family of
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Figure 3.35

window functions is very important for processing 2D NMR data. Figure 3.35 shows the
result of Fourier transformation of a single-frequency FID with noise, after multiplication
with the window functions of Figure 3.34. The Gaussian window actually increases S/N in
this example because it decays during the last three quarters of the FID, but it narrows the
peak because it grows during the first quarter. The unshifted sine-bell window narrows the
peak even more (from 1.0 to 0.60 Hz), but the peak shape is distorted (prominent negative
“ditches” appear on either side) and the S/N is cut in half. The exponential multiplier (LB =
1.0) gives a doubling of signal-to-noise ratio in this example (Fig. 3.35, right). The effect
of these window functions on S/N depends greatly on the decay rate of the signal in the raw
FID and the acquisition time: If AQ (AT) is long relative to the FID decay, we are acquiring
mostly noise in the later part of the FID, and any window that significantly reduces this
part of the FID will result in a dramatic S/N improvement. In this case it might be better,
however, to just reduce the acquisition time.

Bruker uses the command EM (exponential multiplication) to implement the exponential
window function, so a typical processing sequence on the Bruker is EM followed by FT
or simply EF (EF = EM + FT). Varian uses the general command wft (weighted Fourier
transform) and allows you to set any of a number of weighting functions (lb for exponential
multiplication, sb for sine bell, gf for Gaussian function, etc.). Executing wft applies the
window function to the FID and then transforms it.

3.12 DATA MANIPULATION AFTER THE FOURIER TRANSFORM

3.12.1 Phase Correction

After you Fourier transform your FID, you get a frequency-domain spectrum with peaks,
but the shape of the peaks may not be what you expected. Some peaks may be upside
down, whereas others may have a “dispersive” (half up–half down) lineshape (Fig. 3.36).
The shape of the peak in the spectrum (+ or − absorptive, + or − dispersive) depends on
the starting point of the sine function in the time-domain FID (0◦ or 180◦, 90◦ or −90◦).
The starting point of a sinusoidal function is called its “phase.” Phase errors come in all
possible angles, including those intermediate between absorptive and dispersive (Fig. 3.37).
The spectrum has to be phase corrected (“phased”) after the Fourier transform to obtain the
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Figure 3.36

desired “absorptive” (0◦ error) peak shape. Phasing corrects certain unavoidable instrumen-
tal errors involved in acquiring the FID.

Recall that the raw NMR data (FID) consists of two numbers for each data point: one
real value and one imaginary value. After the Fourier transform, there are also two numbers
for each frequency point: one real and one imaginary. In a perfect world, the real spectrum
would be in pure absorptive mode (normal peak shape) and the imaginary spectrum would be
in pure dispersive (up/down) mode. In reality, each spectrum is a mixture of absorptive and
dispersive modes, and the proportions of each can vary with chemical shift (usually in a linear

Figure 3.37
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Figure 3.38

fashion). To correct for this, we calculate a linear combination of the real and the imaginary
spectra, and use this for our “phased” spectrum (Fig. 3.38). For the mathematically inclined,
the actual linear combination is

Absorptive spectrum = (real spectrum) × cos(θ) + (imaginary spectrum) × sin(θ)

The angle θ can be thought of as a rotation of the two mutually perpendicular vectors repre-
senting the real and imaginary spectra. The problem of phase correction boils down to finding
the correct phase rotation angle θ. Well, actually it is a little more complicated because the
phase correction θ is usually a linear function of the chemical shift (δ). Defining the line

θ(δ) = (m × δ) + b

requires that you determine two parameters: the intercept b (called the zero-order phase
correction) and the slope m (called the first-order phase correction). All phasing routines
are based on optimizing these two numbers.

Consider a hypothetical spectrum with six equally spaced peaks (Fig. 3.39, top). There is
a chemical shift dependent (linear) phase error that makes the phase error grow by 45◦ with
each peak as we move from left to right. The phase correction process starts with choosing
a large peak at one end of the spectrum as the “pivot” peak: this is the peak that is defined as
δ = 0 for the purposes of phase correction. In Figure 3.39, we choose the rightmost peak,
which has a phase error of 135◦. The phase of this pivot peak is optimized by varying
the intercept (b) value (the zero-order phase correction) until the pivot peak is perfectly
absorptive. This correction applies equally to all of the peaks in the spectrum, regardless
of chemical shift, subtracting 135◦ from the phase error of each of the six peaks. Then
another peak is chosen (without moving the pivot) at the other end of the spectrum and
its phase is optimized by adjusting the slope (m) parameter (Fig. 3.39, center). The phase
correction applied to each peak is determined by the vertical position of the line as it goes
through that chemical shift. The key to this method is that changing the slope has no effect
on the “pivot” peak because the line goes through zero at this chemical shift. The actual
zero of the chemical shift scale is not important—this is just for the purpose of the phase
calculation. With both parameters set, the line is defined and all peaks in between should
also be correctly phased (Fig. 3.39, bottom). Because the dependence on chemical shift
should be linear, correcting both ends of the spectrum should make the whole spectrum
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Figure 3.39

“fall into line” with perfect absorptive phase. One notable exception is an aliased (folded)
peak, which appears within the spectral window when it really belongs to a very different
chemical shift. Its true chemical shift defines its phase error and the method fails for this
peak. The two signs of an aliased peak are an uncorrectable phase error and reduced intensity
due to attenuation by the audio filter.

There is one situation where any phase correction procedure can fail: It is possible to
set m to a large value such that the second (nonpivot) peak is given a phase correction that
is 360◦ too large (Fig. 3.40). This will not affect the shape of the “other” peak, but will
introduce a “phase twist” to all the peaks in between. For example, a peak exactly between
the pivot peak and the second peak in chemical shift will have a phase error of 180◦ and
thus will appear upside down. Even greater phase twists (720◦, 1080◦, etc.) can be applied
if you are not careful. Using an automatic phasing routine (e.g., Varian aph command)
can give bizarre values for the first-order phase parameters (slope = m) for spectra with
poor signal-to-noise ratios. If you get into this situation, set the first-order phase correction
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Figure 3.40

(Varian parameter lp, Bruker parameter PHC1) to zero and start over using manual phase
correction. This time adjust the first-order phase correction by looking at a peak that is close
to the pivot peak, and then move to peaks farther and farther away.

Whether you are adjusting the b (zero-order) or the m (first-order) parameter, when you
get close to the correct phase setting, focus your attention on the baseline (or noise line)
on either side of the peak in question (Fig. 3.41). This should be at the same (vertical)
level on each side of the peak. Expand the peak horizontally and increase the vertical scale
first so that these baseline differences are greatly exaggerated. If there are distortions to
the baseline (curvature), try to imagine a smooth curve between the noise on one side of
the peak and the noise on the other side of the peak. Then make the peak blend smoothly
into this imaginary curve on both sides of the peak with neither side extending higher
over the curve than the other. Sometimes it is necessary to exaggerate the phase error in
both directions, especially with noisy data, to clearly see the phase error (one side of the
peak extending below the baseline) and then create the same phase error on the other side
of the peak. The correct phase setting will then be somewhere near the middle of these
two settings.

3.12.2 Setting the Reference

This is a simple procedure whereby a reference peak (e.g., TMS in organic solvents) is
selected with a cursor (Bruker uses a triangle or vertical arrow, Varian a vertical red line)
and given a specific chemical-shift value. Without this reference, the chemical-shift scale

Figure 3.41
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of your spectrum will be meaningless. The primary reference for 1H and 13C NMR is TMS
at zero ppm, but in many cases this fails or is not practical. Referencing in D2O or 90%
H2O/10% D2O presents a challenge because the solvent contains no 13C and TMS is not
water soluble. Adding a water-soluble form of TMS (Me3SiCD2CD2CO2

− Na+ or TSP)
or a small amount of acetonitrile, dioxane, or methanol can give a sharp peak of known
chemical shift.

An alternative to the added standards is to use the solvent peak as a chemical-shift
reference. If you forgot to add TMS, or the TMS peak is obscured by other peaks, you can
use this (residual) solvent peak as the reference peak. This is only valid in dilute solutions
where there is only one solvent. Each solvent gives a characteristic residual 1H peak in the
1H spectrum due to the 0.2% or so of the solvent molecules that contain 1H, and a solvent 13C
peak in the 13C spectrum. For example, CDCl3 solvent is typically 99.8% CDCl3 and 0.2%
CHCl3, since it is impossible to get 100% incorporation of 2H into the chloroform molecule.
In the 1H spectrum one sees a small singlet peak at 7.26 ppm due to the 0.2% of CHCl3.
This can be used as a chemical-shift reference if the normal reference compound (added
TMS) is not present, provided there are no solute peaks at 7.26 ppm. In aqueous solutions
(D2O or H2O/D2O) the solvent peak (HOD/H2O) chemical shift depends on temperature:
δ(H2O) = 7.83 – T/96.9, where T is the absolute temperature in kelvin (◦C + 273).

In organic solvents the solvent peak is almost always used as the reference in 13C NMR.
For 13C spectra in CDCl3 solvent, we observe a “triplet” pattern (1:1:1 intensity ratio) at
77.0 ppm due to the 13C in the CDCl3 solvent. There are three peaks because 2H is a spin-1
nucleus with three spin states possible: spin 1, 0, and −1. Just as a single spin-½ nucleus like
1H will split the NMR signal of a directly bonded 13C into a doublet (1:1 ratio, J ∼ 150 Hz),
the 2H nucleus splits the 13C signal into three equally spaced peaks (1:1:1 ratio due to the
nearly equal populations of the three 2H spin states). Because the magnet strength of the
deuterium nucleus is about 1/7 of the strength of the 1H nucleus (γH /γD ∼ 7), the coupling
constant is reduced by a factor of 7, and the separation between peaks is around 20 Hz.
This solvent 13C peak is usually used for a chemical-shift reference since the tiny amount
of TMS added (typically 0.02%) does not give a strong enough peak in the 13C spectrum
to be observed over the noise level. You might think that this solvent 13C peak would be
enormous compared to the solute peaks due to the preponderance of solvent molecules, but
the relaxation of 13C is very slow if it has no 1H atoms attached, so the peak is usually
similar in height to the solute peaks.

Solvents with more than one 2H give more complicated patterns in both 1H and 13C
spectra. The 13C and residual 1H chemical shifts and coupling patterns of all deuterated
solvents can be found in charts provided by the solvent manufacturers (isotope companies).
For example, CD2Cl2 (d2-dichloromethane) gives a residual 1H peak (from the 0.2% of
CHDCl2 present), which is a 1:1:1 “triplet” (J = 1.1 Hz) at 5.32 ppm, and a solvent 13C
peak (from the 99.8% of CD2Cl2 present), which is a 1:2:3:2:1 “quintet” (J = 27 Hz)
at 54.0 ppm. The “quintet” pattern is due to splitting first by one deuterium into three
equally spaced peaks and then splitting each of these by the second deuterium, resulting
in a pattern of five peaks. The geminal 1H–2H splitting in the residual 1H solvent peak
is quite small due to the reduced magnet strength (γ) of 2H, so that often these splittings
are barely resolved or not resolved at all depending on the quality of shimming. Even
if poorly resolved, the shape of these peaks can be a dead giveaway in identifying them
and using them as a chemical-shift reference, or at least for ignoring them in interpreting
the solute 1H spectrum. The 13C solvent peak splitting patterns can be quite complicated.
For example, d6-acetone (CD3COCD3) gives a “septet” (1:3:6:7:6:3:1 ratio, J = 19 Hz) at
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29.9 ppm and a singlet (C O peak) at 206.7 ppm. The terms triplet, quintet, and so on are
placed in quotations because these are not the classical spin-½ splitting pattern intensities
we will concentrate on in this book. One can diagram these splitting patterns as long as each
splitting is diagramed as a division into three equally spaced peaks of equal intensities. You
can even draw a “spin-1 Pascal’s triangle” as follows:

No D 1 (e.g., CHC13)
One D 1 1 1 (CDC13, C6D6)
Two Ds 1 2 3 2 1 (CD2C12)
Three Ds 1 3 6 7 6 3 1 (d6−acetone, −DMSO)

Note that each number is the sum of three numbers: the number directly above it, the number
above it to the right, and the number above it to the left. The long-range (2 or 3 bond)
couplings between 2H and 13C are usually not resolved (∼1 Hz) so we do not need to worry
about these. Keep in mind that the 1H to 13C couplings are not observed in ordinary 13C
spectra because we are using 1H decoupling to actively suppress these couplings. Because
2H has a completely different resonant frequency than 1H, the 1H decoupling does not affect
the 2H to 13C couplings at all.

3.12.3 Peak Lists

You will often want a printed list of chemical shifts for all the major peaks of your spectrum.
First you have to set a threshold intensity (Bruker minimum intensity MI, Varian threshold
th) below which a peak is not included in the list. If you set the threshold too low, you
will get a very long list that includes many noise intensities; if you set it too high, you will
miss real peaks. Peak lists can be displayed on the screen next to each peak, plotted on the
spectrum next to each peak, or printed out as a list on a printer. With a list showing both ppm
and hertz values for each peak, simple subtraction gives the J values in hertz. Be careful
of using subtraction of ppm values to get J couplings: these are often not accurate enough.
For example, even if ppm values are printed with four digits after the decimal point (e.g.,
7.3293 ppm) the precision is 0.0001 ppm or (on a 600 MHz instrument) 0.6 Hz. Subtracting
another ppm values increases this error to 1.2 Hz. Much more accurate J values can be
measured by printing out peak lists in hertz or by using the software to visually position
two cursors and compute the separation in hertz. Another common error is to measure
J couplings directly between peaks when the J value is similar to or not much more than
the linewidth. If the peaks are not resolved to baseline (intensity dropping to the baseline
between the peaks), the distance between peaks is less than the J value because one peak
“rides up” on the other, skewing the peak shape and shifting the maximum of the peak
toward the other peak. In the extreme of a single peak with a slight “notch” at the top, the
difference between the two maxima may be a small fraction of the true coupling. In this
case, a resolution-enhancing window function (e.g., an unshifted sine bell) can be used to
sharpen the peaks, or a nonlinear least squares fit can be performed to extract both the peak
width and the J coupling independently.

3.12.4 Baseline Correction

The “baseline” is the average of the noise part of your spectrum. Ideally, this would be a
straight, horizontal line representing zero intensity. In the real world it can drift, roll, and
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wiggle like a drunken sailor. These errors generally result from erroneous data that are
collected at the very beginning of the FID, when the electronics is still recovering from the
shock of the RF excitation pulse. This becomes a problem when you try to measure peak
areas (see Section 3.12.5). On the Varian, you indicate where you have peaks and where you
have noise in your spectrum by indicating integral regions as part of the integration process.
Then the command bc(1) fits the noise portions of the spectrum to a smooth function, which
is then subtracted from the whole spectrum including peaks. Bruker uses the command abs
(automatic baseline straightening) to accomplish the same thing. There are also a variety of
more sophisticated baseline correction methods, such as mathematically or visually fitting
the noise points to polynomial functions.

3.12.5 Integration

To get quantitation of peak areas (numbers of protons), you need to plot an integral. In
the old days before Fourier transform NMR, the plotter was set to integral mode and the
pen was swept through the peak as the pen level rose with the integrated intensity. For
this reason, integrals are still presented as lines that start at the left-hand side of a peak
and rise vertically as they pass through the peak. In FT NMR there is often a problem
with baseline “wiggle” and this will lead to inaccurate integration of proton peaks (car-
bon peaks are essentially never integrated because their peak areas are determined more
by differences in relaxation rates than by differences in the number of carbons). To get
good integrals, you may need to correct the baseline first (see above). Other causes of in-
accurate integration include low pulse power (poor excitation of peaks at the edge of the
spectral window), “droop” at the edges due to the response of audio filters, and incom-
plete relaxation due to short relaxation delays. The first and last become more important
for higher field instruments because the spectral width (in hertz) and the relaxation times
(T1) increase as the field strength (Bo) increases. Integration generally involves adjusting
the display height of the integrals, indicating the start and end points of each peak inte-
gral, correcting the drift and curvature so that noise regions give a horizontal line in the
integral, and normalizing the peak areas so that the number of protons can be read directly.
All processing software allows you to plot the integral area numbers directly on the spec-
trum next to each integral or to print out a list of integral values. Details of how these
steps are accomplished are specific to the software being used and will not be dealt with
here.

3.12.6 Plotting

A hardcopy of your spectrum can be obtained using a pen plotter, an inkjet, or laser printer.
There are a number of things you can include in your plot:

� spectrum
� integrals
� integral areas (numerical values)
� scale (x axis in ppm)
� peak position labels (in ppm)
� parameters
� title
� text describing sample, experiment
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Plots can be made on “normal” paper (8.5′′ × 11′′) or “large” paper (11′′ × 17′′). Multiple
spectra can also be plotted on the same paper, either side-by-side or one above the other
(horizontal or vertical “stacked” plots). The plotting procedures for Varian, Bruker, and
“third” party software packages are quite different, so these details will not be covered here.
Usually the software will also plot to a file, in PostScript format or the more PC-friendly
TIFF or JPEG formats. These files can then be introduced into PC drawing programs
and annotated with structure diagrams, text, arrows, and lines for use in publications and
posters. For example, most of the spectra in this book were processed using Felix software
and “plotted” to a graphics file in PostScript format. This text file is converted to a bitmap
and imported into a drawing program on a PC.

3.12.7 Archiving (Saving) Your Data

If you had the foresight to save your data on the NMR instrument’s hard disk, you will find
that these data must be periodically “purged” as the disk gets full. Why save it forever?
Someday you will be writing up a paper or thesis and will ask the inevitable question,
“what was the coupling constant for that triplet at 3.5 ppm?” Since you probably did not
anticipate this question when you plotted your spectrum, you will need to get the data back
and reprocess it. At that point you will thank yourself profusely for having the foresight to
archive your data. NMR data are generally archived in the raw (FID) form so that you have
the maximum flexibility in processing it. Data can be transferred to a PC via the internet
or a local network using file transfer protocol (ftp) or the more secure and modern version
SSH secure file transfer. From the PC, it can be saved on a CD-ROM or DVD. Bruker and
Varian software give data file sizes in terms of the number of data points (Bruker TD, Varian
NP). But because each data point uses 2 bytes (Varian with dp = ‘n’), 3 bytes (Bruker AM),
or 4 bytes (Bruker AMX, DRX or Varian with dp = ‘y’) of data, the actual file size of a 16
K FID (16,384 data points) can be a little more than 32 or 64 kB on Varian (depending on
the dp setting), a little more than 48 kB on the AM or 64 kB on the DRX (the “little more”
is for a file header). When you transfer it to a PC (Windows), you will see the file size in
actual bytes. On modern UNIX-based NMR instruments, the NMR data file is actually a
directory that contains a number of files in addition to the FID binary data file, and even may
contain other directories. When transferring these data by ftp or SSH secure file transfer,
be sure to specify that directories as well as files are to be transferred. Sometimes long file
names will be truncated by Windows when the files are transferred to the PC, and restoring
files can cause problems because the names are not correct when they return to the UNIX
environment. This problem can be fixed on a case-by-case basis and is never disastrous.
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CARBON-13 (13C) NMR SPECTROSCOPY

4.1 SENSITIVITY OF 13C

After 1H, the second most important nucleus is 13C because carbon is the building block of
all organic molecules, including natural products as well as biopolymers. The 13C nuclear
magnet strength is very close to one fourth of that of 1H (γC/γH = 1/4), leading to a
sensitivity of 1/64 (γ3) of that of 1H. Further bad news is that the natural abundance of 13C
on earth is only 1.1%, with nearly all of the remainder being 12C, whose nucleus has no
magnetic properties. Thus the overall sensitivity of 13C is about (1/64) × (0.011) = 1.72 ×
10−4 relative to that of 1H, a “hit” of nearly four orders of magnitude. To get the same 13C
signal-to-noise ratio as a single-scan proton signal would require 33,850,000 scans because
S/N is proportional to the square root of the number of scans! In fact, 13C NMR was not
practical until pulsed Fourier transform instruments were available. While a 1H spectrum
can be obtained in a single scan for samples of organic molecules as small as 1 mg, a “fat”
sample of 30 mg might require 1000 scans or more for a 13C spectrum.

4.2 SPLITTING OF 13C SIGNALS

4.2.1 13C–13C J Coupling

Although the low natural abundance of 13C carries a big sensitivity disadvantage, it also is a
big advantage in that 13C is a “dilute” nucleus: the chances of a 13C being right next to another
13C in a molecule are extremely small (0.011 × 0.011 = 1.21 × 10−4). For this reason we
never see 13C–13C splitting in 13C spectra of natural-abundance samples. Compared to the
complexity and wide “footprint” of 1H signals due to 1H–1H splitting, this is an enormous
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simplification of the spectrum. Of course, this is also a loss of information, but we will make
up for that later by using 1H–13C couplings to piece together the carbon skeleton. Thus from
the point of view of carbon isotopes, the NMR sample of a pure compound is a complex mix-
ture of isotopomers (molecules of different isotopic composition at specific positions within
the molecule). For example, a sample of n-propanol (3 carbons) at a concentration of 1 mM
actually has the following components, each giving rise to a resonance in the 13C spectrum:

13CH3−12CH2−12CH2−OH 11 �M = 0.011 × 1 mM
12CH3−13CH2−12CH2−OH 11 �M
12CH3−12CH2−13CH2−OH 11 �M

In addition, there are isotopomers with two 13C isotopes in one molecule:

13CH3−13CH2−12CH2−OH 121 nM = (0.011)2 × 1 mM
12CH3−13CH2−13CH2−OH 121 nM
13CH3−12CH2−13CH2−OH 121 nM

Each of these gives rise to an AB pattern due to 13C–13C splitting (1JCC for the first two
and 2JCC for the third species). These additional 13C signals appear as weak satellite peaks
(0.55% of the main peak) around the main peaks from the first three species, and because
signal-to-noise ratios are typically much less than 200 for 13C spectra, these signals will
be buried in the noise. Finally, there is one isotopomer with three 13C nuclei:

13CH3−13CH2−13CH2−OH 1.33 nM = (0.011)3 × 1 mM

This species, which can be prepared by uniform isotopic labeling, would give a spectrum
even more complex than a 1H spectrum: the CH3 signal, for example, would be split into a
double doublet by 1JCC (large: ∼35 Hz) and 2JCC (small: <5 Hz). The central CH2 signal
would be split into a double-doublet or triplet by two large 1JCC splittings. In a natural
abundance sample we would have to have a signal-to-noise ratio of 33,000:1 to see these
signals rising out of the noise!

The remainder of the 1 mM concentration is made up of the predominant isotopomer:
the one without any 13C at all:

12CH3−12CH2−12CH2−OH

0.96663567 mM = 1 mM − 3 × 11 �M − 3 × 121 nM − 1.33 nM

This species is invisible to 13C NMR and does not contribute at all to the 13C spectrum.
The advantage of 13C’s low natural abundance can be seen clearly in this example: each

carbon resonance in the spectrum represents a pure isotopomer with 13C only at that position
and 12C at all other positions within the molecule. Any species with two or more 13C atoms
in the molecule is present at a concentration of at most two orders of magnitude lower than
the one-13C isotopomers, so we will never see any contribution from these species in our
13C spectrum.

4.2.2 Isotopic Enrichment

You may be familiar with the use of carbon-14 as a “tracer” in biosynthetic stud-
ies: a metabolic building block such as acetate (CH3–CO−

2 ) can be prepared with 14C
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(a radioactive isotope) enriched at one of the carbon positions in the molecule. Any
biomolecule that is put together using this building block will end up with 14C in it, which
can be detected by measuring radioactivity. We can do the same thing with 13C, without the
dangers and cumbersome precautions of working with radioactivity. For example, starting
with 13CH3–12CO−

2 (prepared synthetically), an enzyme, cell-free extract, cell culture, or
a whole organism can be used to prepare a natural product. This molecule is isolated and
purified, and in the 13C NMR spectrum we would see that the peak corresponding to any
carbon position that is derived from the methyl group of acetate will be 91 times more
intense (abundance 100% vs. 1.1%) than the other peaks! The 14C tracer method only tells
us whether the building block is incorporated or not, but the 13C NMR method tells us
exactly at which position the labeled carbon is incorporated, assuming that the peaks in the
spectrum can be assigned to specific carbon positions in the molecular structure.

An even more powerful technique is to label both the positions of a two-carbon building
block such as acetate (13CH3–13CO−

2 ) and mix it equally with natural-abundance molecules
(primarily 12CH3–12CO−

2 ). If the two-carbon “synthon” is incorporated intact, without
breaking it apart into two one-carbon pieces, we should see 13C–13C coupling due to 1JCC
in all of the final molecules that contain 13C from the acetate building block. If the acetate
is broken down first into one-carbon pieces and then joined together in the biosynthesis,
there would only be 50% abundance of 13C at each of the two positions, and we would see
a normal resonance (singlet) superimposed on a split resonance (doublet) at each position
derived from the building block.

13C labels can also be used in metabolic studies to watch the breakdown of biological
molecules. This can even be done in suspensions of living cells in an NMR tube, watching
the progression of 13C peaks in a starting molecule (such as glucose) moving to 13C signals
of breakdown products (such as ethanol). The background of natural abundance 13C is much
weaker and usually does not rise above the noise level.

Finally, uniform labeling with 13C is extremely important in biological NMR. Expression
of proteins in cell culture can be carried out with uniformly labeled 13C-glucose or 13C-
acetate at high enrichment (95–99%) as the only carbon source. Isolation and purification
of the overexpressed protein leads to an NMR sample with the potential of measuring and
assigning 13C chemical shifts at all positions. We will see in Chapter 12 how 13C–13C and
13C–15N one-bond couplings can be used to build complex and sophisticated biological
NMR experiments capable of determining the three-dimensional structure and residue-
specific dynamics of very large (e.g., 30 kD) biological molecules.

4.2.3 1H–13C J Coupling

So far we have ignored the effect of protons on the 13C spectrum. The 1H–13C one-bond
coupling (1JCH) is very large (∼150 Hz), so we can expect to see very wide doublets
(for methine, CH), triplets (for methylene, CH2), and quartets (for methyl, CH3) for the
13C resonances in our spectrum. Only the quaternary carbons (Cq) would be free of this
large coupling. In fact, for all but the simplest molecules, a simple pulse-and-observe 13C
experiment (relaxation delay–pulse–acquire FID) will give a forest of overlapping peaks
that is very difficult to unravel and analyze. In addition, there are long-range (two-bond
and three-bond) couplings between 1H and 13C. Because 1H has essentially 100% natural
abundance, any coupling to 1H will show up completely and not as a small satellite. For
example, consider n-propanol again. The isotopomer that gives rise to the CH3 peak in the
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13C spectrum is

13CH3−12CH2−12CH2−OH

The 13C signal will be split into a quartet by the three methyl protons (1JCH = 125 Hz)
and each line of this quartet will be split into a triplet by the two protons on the adjacent
carbon (2JCH = 4–6 Hz). Each of these 12 lines will be further split into a triplet by the two
protons on the CH2OH group (3JCH ∼ 5 Hz). Thus our 13C chemical shift position will give
as many as 36 lines in the spectrum, spreading our already miserable signal-to-noise ratio
into a multitude of tiny peaks barely discernible in the noise. A similar cascade of splittings
will complicate the other two resonances of n-propanol.

Later we will see how these couplings can be exploited in experiments that enhance
the sensitivity of 13C spectra (INEPT), measure the number of hydrogens attached to each
carbon (APT and DEPT), and correlate 13C chemical shifts with 1H chemical shifts using
a second dimension (2D-HETCOR, -HMQC, -HSQC, and -HMBC). But for detecting a
simple 13C spectrum, we need a way to suppress these 13C–1H couplings so we can observe
a single line (singlet) for each 13C resonance.

4.3 DECOUPLING

For the remainder of this chapter we will be exploring the effects of continuous low-power
irradiation of one nucleus on the spectrum of another. Two important phenomena occur as
a result of low-power irradiation: decoupling, which reduces or eliminates the J-coupling
(splitting) effect on the observed nucleus and the nuclear Overhauser effect (NOE), which
enhances the population difference (and hence the signal intensity) of the observed nucleus.
Decoupling is accomplished by continuous low-power irradiation during the acquisition of
the FID, and the NOE develops during continuous irradiation at even lower power during
the relaxation delay.

Decoupling is the process of removing specific kinds of J-coupling interactions in order
to simplify a spectrum or to identify which pair of nuclei is involved in the J coupling. In
order to understand how decoupling works, we should review what causes J coupling in
the first place. As we saw in Section 1.1, a resonance is split into a doublet by a nearby
spin-½ nucleus because the tiny magnetic field produced by that nucleus perturbs the Bo
field experienced by the nucleus we are observing. If the perturbing nucleus is aligned with
the Bo field (α state), we see a shift in the effective field Beff in one sense (increase by our
convention), and if the nucleus is aligned against the Bo field (β state) we see a perturbation
of Beff in the opposite sense (decrease). These changes in Beff lead to a shift in the Larmor
frequency (νo = γ Beff /2π) by J/2 Hz downfield (perturbing nucleus in the α state) or by J/2
Hz upfield (perturbing nucleus in the β state). Because the perturbing nucleus has a 50%
chance of being in the α state and a 50% chance of being in the β state (actually something
like 50.0001 and 49.9999, respectively), we see a doublet with a 1:1 ratio, centered on
the chemical shift position and separated by J Hz. It is important to recognize that the
J-coupling effect is transmitted through bonds and not through space. A much larger effect
occurs directly through space (with couplings in the order of kHz instead of Hz), but this
effect (dipolar or direct coupling) depends on molecular orientation relative to Bo and is
averaged exactly to zero by the rapid isotropic reorientation (tumbling) of molecules in
solution. This dipolar interaction is important as a mechanism of relaxation in liquid state
NMR, but it shows up as a splitting only in solid state NMR.
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Figure 4.1

A methine carbon (CH) is split into a wide (1JCH ∼ 150 Hz) doublet, one line representing
the population of molecules with 13C in that position and the attached 1H in the α state and
the other line representing the population of molecules with 13C in that same position and
the attached 1H in the β state. The C is underlined in CH to indicate that we are observing
and discussing the C resonance, not the H resonance. The H is included in the discussion
only with respect to its effect on the C resonance.

Decoupling is accomplished by irradiating at the frequency of one nucleus (1H) with
continuous low-power RF (Figure 4.1). This irradiation causes the 1H nucleus to “flip” from
the lower energy (α or aligned) to the higher energy (β or opposed) state and back again
very rapidly. Because the NMR “timescale” or “shutter speed” is relatively slow (in this
case on the order of 1/J = 1/150 = 6.67 ms), the other 13C sees only an average magnetic
environment, which is not perturbed at all by the presence of the proton’s magnetic field.
The two components of the 13C doublet are averaged to a single peak in the center as long
as the 1H spins are “flipping” back and forth rapidly enough. If the RF power is not enough
to create perfect averaging, the protons will flip back and forth more slowly and we will
see a doublet for 13C with a reduced separation or J value. The RF irradiation must go on
during the entire process of recording the FID (the acquisition time) in order to eliminate
the coupling. If the frequency of the irradiation is not exactly at the resonant frequency of
the CH proton, there will still be some decoupling, but it depends on the power of the RF
signal and the frequency difference. The larger the frequency difference between the RF
signal and the resonant frequency of the proton, the greater the power required to achieve
decoupling. Another way of saying that is that a high-power RF signal will decouple a wider
range or band of frequencies (chemical shifts) around the frequency of the RF signal. Most
of the time this is desirable, but in some cases, where we want to irradiate a specific peak
in the 1H spectrum and not any other peaks, higher power is undesirable because it reduces
the selectivity of decoupling.

4.4 HETERONUCLEAR DECOUPLING: 1H DECOUPLED 13C SPECTRA

4.4.1 Why Decouple?

There are two main reasons to decouple. The first is to identify which pair of nuclei is
involved in the J coupling, and the second is to simplify 13C spectra by removing the
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Figure 4.2

1H–13C couplings. The latter application is so routine that most users forget that these large
couplings (J up to 180 Hz) even exist. In fact, without 1H decoupling all 13C spectra would
show very wide quartets for CH3 carbons, triplets for CH2 carbons, and doublets for CH
carbons. This can be useful information, but for molecules of any size and complexity it
leads to a tangled forest of multiplets and a costly reduction in signal-to-noise ratio. 1H
decoupling gives 13C spectra in which there is only one (singlet) peak for each unique
carbon in the molecule. For example, the 13C spectrum of phenetole (ethoxybenzene) is
shown with 1H decoupling in Figure 4.2 (top). In the aromatic region we see two large peaks
(two carbons each, ortho and meta to the ethoxy group), one smaller (para) and the other
quite small quaternary peak (ipso, or at the point of attachment of the ethoxy group). In the
upfield region of the spectrum we see two peaks (one singly oxygenated sp3 carbon and
one carbon without oxygen). In the 13C spectrum without 1H decoupling (Fig. 4.2, bottom),
only the ipso aromatic carbon (quaternary) is a singlet. The other aromatic carbons are
doublets (CH), and the ethoxy group gives rise to a triplet (CH2) and a quartet (CH3). In
Figure 4.3 we see the 13C spectrum of sucrose with and without 1H decoupling. The CH2OH
region (60–63 ppm) is particularly crowded with overlapping triplets in the absence of 1H
decoupling.

4.4.2 Continuous-Wave Heteronuclear Decoupling

Low-power irradiation at a single frequency tends to excite only a very narrow range of
frequencies because a rectangular pulse of duration tp seconds excites a bandwidth of
roughly 1/tp Hz. For a typical 13C acquisition time of 1.0 s, irradiation of protons during the
entire acquisition period would correspond to an excitation bandwidth of 1.0 Hz (1/1.0 s) in
the proton spectrum. A more precise treatment describes the reduction of the “undecoupled”
coupling constant Jo to the observed (reduced) coupling constant JR, by a continuous 1H
irradiation at decoupler field strength B2 with frequency offset �ν away from the frequency
of the proton being decoupled (Fig. 4.4):

γHB2/2π = �ν(J2
o − J2

R)
1/2

/JR (4.1)

The left-hand side of the equation can be regarded as the decoupler field strength in units of
hertz. This is the same as describing the main magnetic field, Bo, as γHBo/2π in hertz. For
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Figure 4.3

example, you might say “we have a 300 MHz instrument,” which means that you have a
magnetic field strength Bo that gives a resonance frequency of 300 MHz for protons. To be
precise, it means that γHBo/2π is 300 MHz, where γH is the magnetogyric ratio for protons.
Likewise, if you say “we have a decoupler field strength of 10 kHz,” this means that in the
rotating frame of reference the proton magnetization precesses at 10 kHz around the B2

Figure 4.4
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field vector, which is in the x′-y′ plane. More precisely, it means that γHB2/2π is 10 kHz,
where we use the proton magnetogyric ratio γH. We use B2 to refer to the decoupler and
B1 for the transmitter, but they represent the same thing: the magnetic field due to the radio
frequency signal applied to the probe coil, which is a stationary vector in the x′-y′ plane
when viewed in the rotating frame of reference.

The right-hand side of the equation represents the amount by which the proton frequency
is off-resonance (�ν) and the factor by which the apparent 13C–1H coupling constant is
reduced. For nice, sharp 13C singlets we would like to have the apparent J value, JR, be less
than the natural 13C linewidth so that it does not even broaden the singlet carbon peak. The
equation makes more sense in rearranged form:

JR/(J2
o − J2

R)
1/2 = �ν/(γHB2/2π) (4.1)

This says that the residual coupling, JR, is larger if the proton resonance is farther away
from the decoupler frequency (larger �ν) and smaller if we use more decoupler power
(larger γHB2/2π). Figure 4.4 shows that peaks near the decoupler frequency in the 1H
spectrum (top) have small JR values (1H–13C splittings) in the 13C spectrum (bottom),
and protons that are far away from the decoupler position have wide multiplets in the 13C
spectrum for the corresponding 13C directly bound to that 1H. Equation (4.1) can actually
be used to calibrate the decoupler field strength B2 by observing the effect of off-resonance
decoupling on the observed J value of a 13C multiplet.

4.4.3 Selective Decoupling

Another reason for decoupling is to identify the coupling “partner” of a particular peak in
the spectrum. Irradiation of that peak at its exact frequency using low-power (for selectivity)
continuous RF during the acquisition time will “collapse” to a singlet any multiplet patterns
that result from the protons in the irradiated peak. For example, you might irradiate a 1H
multiplet at 4.68 ppm and find that a 1H double doublet (J = 12.2, 5.6 Hz) at 3.24 ppm
“collapses” to a doublet (J = 12.2 Hz). This means that the multiplet at 4.68 ppm was
the source of the 5.6 Hz coupling in the double doublet at 3.24 ppm, the coupling that
“disappeared.” This is an example of selective homonuclear decoupling: the nucleus we are
irradiating is of the same type (1H) as the nucleus we are observing. This selective technique
can also be used for heteronuclear couplings, so that irradiating a particular proton resonance
results in the collapse of a 13C multiplet to a sharp singlet in the 13C spectrum. This is called
selective heteronuclear decoupling to distinguish it from the broadband nonselective 1H
decoupling that is normally used during the acquisition of 13C spectra. As we saw above,
not only will we collapse the 13C multiplet corresponding to the carbon directly bound to
the proton we are irradiating (�ν = 0), but other 13C multiplets will be narrowed (JR < Jo)
depending on the frequency difference (�ν) between the irradiated proton and the other 13C
multiplet’s proton, and on the decoupler field strength. Figure 4.5 shows the 13C spectrum
of phenetole with selective continuous-wave irradiation of the methyl protons (bottom) and
the methylene protons (center). In the bottom spectrum, with irradiation of the CH3 proton
peak at 1.37 ppm, the CH3 carbon peak is a clean singlet, and the CH2 carbon is a distorted
triplet with a reduced coupling JR = 109 Hz (vs. Jo = 140). In the middle spectrum, with
irradiation of the CH2 proton peak at 3.96 ppm, the CH2 carbon peak is a clean singlet, and
the CH3 carbon is a distorted quartet with a reduced coupling JR = 96 Hz (vs. Jo = 131).
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Figure 4.5

The aromatic CH 13C peaks in the bottom spectrum are little affected and show nearly
the full coupling (148 vs. 160 Hz) because the aromatic CH protons are far from the CH3
protons in the proton spectrum (large �ν). Selective heteronuclear decoupling is rarely used
because the two-dimensional (2D) HETCOR and related inverse 2D experiments (HMQC,
HSQC, and HMBC) give the same information with far less ambiguity (Chapter 11). In fact,
selective homonuclear decoupling has all been replaced by 2D-COSY and related variants
such as DQF-COSY and COSY-35 (Chapter 9). There are instances, however, where only
one or two couplings are ambiguous and a 1D selective decoupling experiment can sort it
out quickly.

4.4.4 Broadband Heteronuclear Decoupling

Normally in 13C spectra we want to decouple all of the protons from their attached 13C atoms.
This means that we cannot irradiate exactly at the frequency of each proton simultaneously.
We need “broadband” decoupling that will “cover” the entire range of 1H chemical shifts,
which typically range from 0 ppm to 10 ppm, a width of 3000 Hz on a 300 MHz instrument.
Because the decoupler frequency cannot be on-resonance for all of the protons in the sample
at the same time, it is usually set in the center of the expected range of 1H frequencies.
The problem then becomes how to “cover” the entire range of proton chemical shifts with
effective decoupling. If we place the 1H decoupler frequency at the center of the 1H spectrum,
the worst case would be trying to decouple a 1H signal at the upfield or downfield extremes
of the 1H chemical shift range, which could be as much as 5 ppm (1500 Hz on a 300 MHz
spectrometer) away from the center. According to equation (4.1), reduction of the observed
J value from 150 to 1 Hz with �ν = 1500 Hz would require a decoupler field strength
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(γHB2/2π) of 225 kHz. This is an RF field strength corresponding to a 1.1 �s 90◦ pulse
because one cycle of rotation of the sample 1H magnetization takes 1/225,000 s or 4.4 �s.
This is ten times the amplitude of a high-power excitation (B1) pulse, corresponding to
100 times the power: a power level that cannot be achieved without frying the sample and
vaporizing the probe coil and the RF amplifiers!

4.4.5 Composite-Pulse Decoupling: Waltz-16

What we need is a method to achieve “broadband” decoupling of protons over the entire
chemical shift range (e.g., 0–10 ppm) of the protons, in a very efficient way that uses the
lowest possible γHB2/2π value (i.e., the lowest possible decoupler power). An early solution
to this problem was to vary (modulate) the decoupling frequency over a wide range of 1H
chemical shifts either by sweeping it back and forth or by random (noise modulated) varia-
tion. The currently accepted method to achieve wide decoupling bandwidths at low power
levels is to employ repeated pulses of different phase and duration at a single frequency:
“composite pulse decoupling.” A “composite pulse” is a sandwich of several pulses designed
to give an overall rotation that is less dependent on the resonance offset than a single pulse.
Later we will see (Chapter 8, Figs. 8.5 and 8.6) that a “sandwich” of 90◦

x–180◦−x–270◦
x

(written as 123 in multiples of 90◦, with bold italics indicating a phase of −x) gives efficient
inversion (overall 180◦ pulse) over a wide range of chemical shifts (“broadband inversion”).
A rapid-fire sequence of repeating 180o pulses would give good decoupling because the
spins are inverted (α→β, β →α) over and over again very rapidly, averaging the J-coupling
effect to zero. By using sandwich pulses in place of simple 180◦ pulses, the decoupling per-
formance is good over a wide range of chemical shifts around the pulse frequency νr. To
eliminate the accumulation of pulse calibration errors, the pulse phase is reversed (from x to
−x) at regular intervals in the sequence: using R = 123, we have RRRR for 123123123123.
Moving the beginning “1” (90◦

x) to the end gives 231231231231 or (combining 90◦ and
270◦ rotations of the same phase, 31 = 4 and 31 = 4) 2423124231. Repeat this with all
phases reversed and you have: 24231 24231 24231 24231. Finally, if we move the end-
ing 1 to the beginning and combine (12 = 3, 12 = 3) we have 342312423 342312423
(Fig. 4.6). This can be represented as R′R′, which when repeated with opposite phase
(R′R′R′R′) gives a “supercycle” called “waltz-16”: “waltz” because of the 123 building
block and 16 because it contains 16 of the original 123 sandwiches. The 36 pulse block is
repeated as many times as necessary to cover the entire time of acquiring the FID (Bruker
aq, Varian at). From a hardware perspective, waltz-16 only involves changing the phase
of the RF (x or −x) at specific times while keeping the amplitude constant (Fig. 4.6).
The only parameters you need to set are the RF amplitude (Varian dpwr, Bruker DP or
pl17) and the duration of the 90o pulse at that power level (Varian dmf = 1/t90, Bruker
pcpd2).

With this method we can achieve decoupling of the full 1H chemical shift range with a
decoupler power level (γHB2/2π) of less than 2500 Hz, or about one tenth of the amplitude
(one percent of the power) used for single-pulse excitation of protons (e.g., γB1/2π =
25,000 Hz for a 10 �s 90◦ 1H pulse). This decoupling power level corresponds to a 90◦
1H pulse width of 1/(4 × 2500 Hz) = 100 �s, and a reduction in power of 10 log [power
ratio] = 10 log [(25,000/2500 Hz)2] = 10 log [(100/10 �s)2] = 10 log [100] = 20 dB. The
decoupler field strength, expressed in units of Hz, is proportional to the B1 amplitude, so
the relation dB = 20 log [amplitude ratio] = 20 log [90◦ pulse width ratio] = 10 log [power
ratio] can be applied. As power is the square of amplitude, we can also say that the power
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Figure 4.6

level required for decoupling is 100 times (102) less than that of hard pulses (typically
0.5 watts for decoupling instead of 50 watts for hard pulses).

Figure 4.7 shows a series of 13C spectra of dioxane (four chemically equivalent CH2
groups) with waltz-16 decoupling, setting the proton decoupler frequency 12 ppm downfield
of the 1H peak of dioxane and then repeating the experiment, each time moving the decoupler
1H frequency upfield by 2 ppm (600 Hz on a Varian Unity-300). We see excellent decoupling
over a range of 16 ppm, more than sufficient for “covering” the normal range of 1H chemical
shifts. At the edges the peak height falls off drastically as the reduced coupling, JR, begins
to show up enough to broaden the singlet line. A lower decoupler power setting would
result in a narrower pattern, and higher power a larger range of 1H offsets (�ν) that still
give good decoupling. We try to minimize decoupler power because at high-power sample,
heating will degrade the field homogeneity by setting up a radial temperature gradient in
the sample.

4.5 DECOUPLING HARDWARE

How does a spectrometer deliver this RF irradiation to the probe? Compared to normal
excitation pulses, which are very high-power and short (∼10 �s) duration, decoupling re-
quires low-power irradiation for the entire acquisition time (1–2 s). This is usually accom-
plished by having two separate sources of RF power, a “broadband” transmitter that can be
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Figure 4.7

operated at a wide range of frequencies (e.g., 15N is 30.4 MHz, 13C is 75.4 MHz, and 1H
is 300.0 MHz on a 7.05 T instrument) and a proton decoupler that can only produce the
proton frequency (e.g., 300.0 MHz). The transmitter is set to the frequency of the nucleus
to be observed with a high-power level for pulses, and the decoupler is set to a low-power
level for proton decoupling. As soon as the pulse sequence is over and acquisition of the
FID begins, the decoupler is turned on for the duration of the acquisition time. Even when
1H is being observed, the proton (high-power) pulses come from the transmitter, and the
decoupler is used to deliver the low-power 1H irradiation during the acquisition time. This
is necessary in older machines because it takes time (milliseconds!) and requires physical
switching of relays to change the power level of the transmitter, so you can not just use a
single source of RF to supply high-power pulses and low-power decoupling irradiation.

Figure 4.8
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Figure 4.9

With instruments that are a bit more modern than this basic system, the decoupler is not
fixed at the 1H frequency. Instead, it is identical to the transmitter in that it can be set to the
frequency of any nucleus. Thus, you could decouple 13C while observing 1H, for example
(an “inverse” experiment). This arrangement is called “dual broadband” because both RF
sources are “broadband”—adjustable over a wide range of frequencies. Still more modern
spectrometers can switch power levels in a few microseconds without relays, so that a single
“box” can be used for all proton RF, whether it is for high-power pulses or for low-power
decoupling. This feature makes the whole concept of “transmitter” and “decoupler” a matter
of language rather than real hardware differences. Figures 4.8–4.10 show the configuration
of a Varian Unity-300 spectrometer (with direct 13C probe) for routine 1H, for 13C with
1H decoupling, and for 1H with homonuclear decoupling. Note that the inner coil of the
probe is used for 13C to maximize the sensitivity of detection of this “insensitive” nucleus.
The outer coil, which is farther from the sample and therefore less sensitive, is used for 1H
because it is much easier to detect.

For routine 1H acquisition (Fig. 4.8), the transmitter is set to the 1H frequency (300 MHz)
and pulses from the transmitter are directed to the outer coil of the probe, which is tuned to the
1H frequency. The decoupler is not used. After the exciting pulse, the 1H FID is detected on
the outer coil of the probe and directed to the receiver, which uses a continuous signal from

Figure 4.10
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the transmitter (300 MHz) as a reference frequency that is “mixed” with (i.e., subtracted
from) the FID frequency. For routine 13C acquisition with 1H decoupling (Fig. 4.9), the
transmitter is set to the 13C frequency (75 MHz) and pulses from the transmitter are directed
to the inner coil of the probe, which is tuned to the 13C frequency. The decoupler operates
continuously at low power (with waltz-16 phase modulation) and its output is directed to
the outer coil of the probe, which is tuned to the 1H frequency. After the exciting pulse,
the 13C FID is detected on the inner coil of the probe and directed to the receiver, which
uses a continuous signal from the transmitter (75 MHz) as a reference frequency that is
“mixed” with (i.e., subtracted from) the FID frequency. For 1H acquisition with selective
1H decoupling or NOE difference (Fig. 4.10), the transmitter is set to the 1H frequency
(300 MHz) and pulses from the transmitter are directed to the outer coil of the probe,
which is tuned to the 1H frequency. The decoupler operates continuously at very low power
during the relaxation delay (NOE difference) or during the acquisition of the FID (selective
homonuclear decoupling) and its output is also directed to the outer (1H) coil of the probe.
In either case, the 1H FID is detected on the outer coil of the probe and directed to the
receiver, which uses a continuous signal from the transmitter (300 MHz) as a reference
frequency that is “mixed” with (i.e., subtracted from) the FID frequency.

Changing from one of these configurations to another simply involves changing the
frequency settings of the two channels (“transmitter” and “decoupler”) and rerouting the
outputs to the probe inputs. This is done by resetting electrical relays, which give a “click”
when you issue the command (Varian: su or go, Bruker: ii or zg) to set the hardware according
to the experimental parameters. Figure 4.11 shows the configuration for an “inverse-mode”
experiment (Chapter 11), in which 1H is detected and pulses are delivered to the probe
on both the 1H and 13C channels (e.g., 2D HSQC, a 1H-detected 2D 13C–1H correlation
experiment). In this case an inverse probe is used, which has the inner coil tuned to 1H (the
“observe” nucleus) and the outer coil tuned to 13C (the “decoupler” nucleus). The transmitter
is set to the 1H frequency (300 MHz) and pulses from the transmitter are directed to the
inner coil of the probe, which is tuned to the 1H frequency. The decoupler is set to the 13C
frequency (75 MHz) and pulses from the decoupler are directed to the outer coil of the
probe, which is tuned to the 13C frequency. After the HSQC pulse sequence, the 1H FID is
detected on the inner coil of the probe and directed to the receiver, which uses a continuous
signal from the transmitter (300 MHz) as a reference frequency that is “mixed” with (i.e.,
subtracted from) the FID frequency.

Figure 4.11
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Modern NMR spectrometers may have many sources of RF (“channels”). For biolog-
ical NMR, it is typical to have three channels, usually set to the frequencies of 1H (e.g.,
600 MHz), 13C (e.g., 150 MHz), and 15N (e.g., 60 MHz). Bruker refers to these as F1, F2,
and F3, whereas Varian uses transmitter, decoupler A, and decoupler B. Recently, a fourth
channel has become common, used for decoupling of deuterium (2H) in 2H-labeled proteins
and nucleic acids. In these 3-channel and 4-channel spectrometers, the RF for pulses and
for the reference frequency is produced by separate fully broadband (zero to 1H frequency)
sources, and these low-power (∼1 V) signals are fed into power amplifiers to boost them to
the high power (50–300 W) needed for pulses fed into the probe. The power amplifiers are
not broadband: one is devoted to 1H and the others are for all nuclei except 1H (“X” nuclei).
For example, on a 3-channel 600-MHz spectrometer, one power amplifier handles only
600 MHz (1H) pulses, whereas the other two are broadband from 6 to 242 MHz (242 MHz
is the 31P frequency, the highest frequency below 1H (except 19F, 570 MHz)). The interface
between the flexible low-power RF sources and the more restricted power amplifiers is a
kind of switchboard, whose connections depend on which nucleus is being detected and
what kind of experiment is being done. The connections in the switchboard are not made by
moving cables or switching physical relays, but rather by solid-state switches (PIN diodes)
that are controlled by software. These switches can be changed in 1 �s or less and do not
have moving parts to wear out like relays.

4.6 DECOUPLING SOFTWARE: PARAMETERS

Most Varian decoupling parameters start with the letter “d ” to distinguish them from the
transmitter parameters, which start with a “t.” Bruker uses a “1” (F1 channel) to specify the
transmitter channel and a “2” (F2 channel) to specify the decoupler channel. The following
parameters can be examined by entering dg (Varian) or eda (Bruker):

Bruker Varian
nuc2 dn Decoupler nucleus: H1, C13, N15, and so on. This determines the basic

frequency of the decoupler irradiation (300.0, 75.4, 30.4 MHz, etc.)
o2 dof Decoupler offset: This sets the exact frequency (chemical shift) of the

decoupler irradiation in hertz.
— dm Decoupler mode: This determines when the decoupler is on or off during

the pulse sequence (e.g., “nny” for on, on, off).
pl17 dpwr Decoupler power: Power level of the decoupler irradiation in decibels (dB)

(increasing power from 0 to 63 for Varian, from 120 to −6 for Bruker)
cpdprg2 dmm Decoupler modulation: This defines the decoupling sequence for compos-

ite pulse decoupling (e.g., Varian ‘w’ for waltz-16)
dcpd2 dmf Decoupler modulation frequency. This sets the 90◦ pulse width at the power

level used for decoupling (90◦ pulse = dcpd2 = 1/dmf)
— homo Homonuclear: Set to ‘y’ for homonuclear (1H–1H) decoupling, or ‘n’ for

heteronuclear (e.g., 1H–13C) decoupling.

Bruker has no corresponding parameter for dm and homo because these options are written
into each pulse program.

The Varian parameter dmm determines whether the decoupler output is a simple continu-
ous irradiation (dmm =“c”) or a pulsed waltz-16 modulation (dmm =“w”). For nonselective
(“broadband”) decoupling such as that desired for a 1D 13C spectrum, the waltz-16 mode is
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used to minimize power requirements and maximize the range (“bandwidth”) of chemical
shifts decoupled. For selective decoupling, the continuous mode is used to minimize the
range of chemical shifts affected. For Bruker the choice between continuous wave (cw) and
composite pulse decoupling (cpd) is coded into the pulse program; the parameter cpdprg2
defines the sequence used for composite pulse decoupling (e.g., waltz-16). The Varian dmf
(decoupler modulation frequency) parameter is used to set the duration of pulses (e.g.,
90◦ pulse, 270◦ pulse) in the waltz-16 sequence. It is determined by calibration of the 90◦
pulse width at the power level dpwr and is defined as the reciprocal of the 90◦ pulse width:
dmf = 1/tp(90) in units of hertz. From the example above (100 �s 90◦ pulse for waltz-16),
we would use dmf = 1/(100 �s) = 10,000 Hz. The 90◦ pulse is much longer than a hard pulse
(∼10 �s) because we use much lower power for decoupling. Note that the decoupler field
strength in hertz is one fourth of dmf (typical γB2/2π = dmf/4 = 2500 Hz). Bruker uses the
parameter dcpd2 for the 90◦ degree pulse width calibrated at power level pl17 (decoupler
power level). The decoupler frequency is set by the Varian parameter dof (decoupler offset)
and Bruker parameter o2 (oh-two, offset channel 2), which function just like tof (transmitter
offset) and o1 (oh-one, offset channel 1), respectively.

The decoupler power (Varian dpwr, Bruker pl17) is set according to the desired effect of
the decoupler irradiation. Bruker uses a decibel scale for RF power that decreases as power
increases (120 to −6 dB), and Varian uses a decibel scale that increases as power increases
(0 to 63 dB). For homonuclear (i.e., 1H–1H) NOE experiments, a very low power (5 dB
Varian, 58 dB Bruker) is used to maximize selectivity—only a “simmer” is required to
equalize populations. For selective decoupling, values of 10–15 (Varian) or 48–53 (Bruker)
are typical—small enough to be selective but powerful enough to maintain the “rolling
boil” necessary for decoupling. For broadband (nonselective) decoupling (e.g., waltz-16),
a power level of 40 (Varian) or 23 (Bruker) is typical, adjusted to obtain good decoupling
over the entire range (e.g., 5 ppm ± 6 ppm: −1 to 11 ppm) of proton chemical shifts. For
each setting of decoupler power, the 90◦ pulse must be measured and dmf (1/t90) or dcpd2
(t90) set appropriately.

There are more advanced experiments such as DEPT (Chapter 7) that observe 13C and
use the decoupler to supply high power, short duration (“hard”) pulses at the 1H frequency.
This requires full power from the decoupler, but the parameters dpwr and pl17 are avoided
for these pulses. Setting decoupler power to the maximum might lead to disastrous mistakes
because the decoupler can only deliver full power for short (∼10 �s) periods of time without
burning up the decoupler, the probe, and the sample. Instead, the parameters pp (Varian) and
p3 (Bruker) are used for the 90◦ pulse width for decoupler hard pulses and pplvl (Varian)
and pl2 (Bruker) indicate the power level for short-duration high-power decoupler pulses.

4.7 THE NUCLEAR OVERHAUSER EFFECT (NOE)

The population distribution of a nucleus (difference between populations in the upper spin
state and the lower spin state) can be affected by the population distributions of other nuclei
that are nearby in space. Experimentally, one can observe an enhancement of the pop-
ulation difference of one nucleus by saturating (equalizing the populations of) a nearby
nucleus (Fig. 4.12). In the figure, filled circles represent a slight excess of population
(+δ) and open circles represent a slight deficit (−δ). Irradiation of one proton signal (Ha)
equalizes its populations across the α ↔ β transition (Fig. 4.12, center), and over a pe-
riod of time this perturbation “propagates” through space to a nearby proton (Hb), which
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Figure 4.12

experiences a population perturbation in the opposite sense: an increase in population differ-
ence (Fig. 4.12, right). An enhanced population difference means a larger net magnetization
along the z axis (Mz > Mo) and can be observed by applying a 90◦ pulse to the affected
nucleus and observing its NMR signal, which will also be enhanced. The intensity of this
effect dies off very quickly with increasing distance between the saturated nucleus and the
observed nucleus: the exact dependence is 1/r6, where r is the distance between the nuclei.
This is extremely important for proton–proton interactions because it allows distances be-
tween individual atoms in a molecule to be measured. This strategy has led to the accurate
determination of 3D structures of proteins and nucleic acids in aqueous solution, so that
NMR now rivals X-ray crystallography as a method for defining the precise conformations of
biomolecules.

Heteronuclear NOEs can also be observed; for example, between 1H and 13C nuclei
(Fig. 4.13). Continuous irradiation of the proton signal during the relaxation delay leads over
time to an increase in the population difference (and net z-magnetization) of the 13C bonded
to that proton. This builds up and finally levels off at a steady state, where relaxation exactly
balances the enhancement from the proton. At this point the 13C pulse rotates this enhanced
z-magnetization into the x-y plane where it precesses and induces an enhanced signal in
the probe coil. After Fourier transformation we have an enhanced peak height in the 13C
spectrum (Fig. 4.13). We want all of the 13C signals to get this benefit, so waltz-16 decoupling
is used to irradiate the protons, covering the entire range of 1H chemical shifts. Because
saturation of protons is typically carried out during acquisition of 13C signals anyway
to eliminate the effects of 1H-13C J coupling, it is convenient to continue this saturation
throughout the whole experiment, including during the relaxation delay. The effect is that a
heteronuclear NOE builds up on the 13C nuclei during the relaxation delay, enhancing their
z magnetization and giving a stronger signal in the FID after this z magnetization is rotated
into the x–y plane by the observe pulse. This gives the 13C signals a much-needed increase
in the signal-to-noise ratio. It is not used to measure distances because the majority of the
enhancement comes from directly bound protons, and this covalent bond distance is already
known.
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Figure 4.13

4.7.1 Comparison of NOE and Decoupling

It is important to recognize that the power level required for saturation (equalization of
populations in the two energy levels) of nuclei, which causes the NOE, is much less than
that required for decoupling. Decoupling requires not just equalization of populations but
a situation where each 1H nucleus jumps back and forth rapidly between the two levels. It
is sort of like simmering the spins versus a raging boil. Continuous saturation causes the
NOE to “build up” to a steady-state level over a period of time on the order of T1. The
NOE manifests itself as an enhancement of Mz in the target nucleus, and the effect dies off
after saturation is discontinued with a time constant on the order of T1. The irradiation in
an NOE experiment occurs during the relaxation delay and before the exciting 90◦ pulse.
Decoupling is effective only during the acquisition period because it averages out the effect
of the spin state of other nuclei on the precession frequency of the observed nucleus. Thus
to decouple the irradiation must occur during acquisition of the FID. Decoupling manifests
itself as a reduction or elimination of the J coupling, and the effect stops immediately after
the decoupler is turned off.

4.8 HETERONUCLEAR DECOUPLER MODES

The standard 13C experiment leaves the decoupler on continuously to take advantage of the
NOE enhancement (1H decoupler on at very low power during the relaxation delay) and to
get decoupling of JCH (1H decoupler on at low power during the acquisition of the FID).
Even when decoupling is not used during acquisition (i.e., when you want to observe fully
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Figure 4.14

coupled 13C multiplets) you should keep the decoupler on during the relaxation delay to get
the benefit of the heteronuclear NOE. Decoupling that is applied only during the relaxation
delay is sometimes called gated decoupling because the decoupler signal is “gated” on
and off during each transient. We saw the gated-decoupled 13C spectrum of phenetole in
Figure 4.2 (bottom). Occasionally you may want to measure quantitative 1H-decoupled 13C
spectra that can be integrated just like proton spectra to determine the number of carbons
represented by each line. To get accurate peak areas, you will have to increase the relaxation
delay to be at least 5 × T1 for the most slowly relaxing 13C in the sample. You will also want
to turn the decoupler off during the relaxation delay to eliminate the heteronuclear NOE,
which would enhance some peaks more than others. This experiment is the reverse of gated
decoupling so it is called inverse gated decoupling. Figure 4.14 shows the inverse-gated
13C spectrum of phenetole with a relaxation delay of 30 s. While it is difficult to integrate
these very sharp peaks with a noisy baseline, the integrals and peak heights clearly follow
the pattern 1:2:1:2:1:1 for the six resonances, showing that the ortho and meta positions
of the aromatic ring represent two carbons each. Without any 1H decoupling at all the 13C
spectrum is very weak and split into complex and overlapping multiplets, so this mode is
not used. In fact, the first sign that your 1H decoupler is not working is that your 13C spectra
only show the solvent (e.g., CDCl3) peak.

Figure 4.15 shows the 13C spectrum of sucrose with four different decoupling modes:
decoupler off, decoupler on during the relaxation delay (A: NOE only), decoupler on during
the acquisition of the FID (B: decoupling only), and decoupler on continuously (decoupling
and NOE). The effect of the NOE can be seen by comparing the first and second spectrum
(none vs. A only), and the effect of decoupling can be seen by comparing the second and
fourth spectra (A only vs. A and B). The increase in peak height seen with decoupling is
due to the multiplet signals being combined into a single, tall peak. In the third spectrum
(B only) we are already seeing some NOE enhancement due to NOE buildup during the
acquisition of the FID that does not completely dissipate during the relaxation time.
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Figure 4.15

4.8.1 Parameters for Decoupler Gating

Varian uses the decoupler mode (dm) parameter to determine when the decoupler should be
turned on and off during the pulse sequence. Time periods A, B, C, . . . are defined during
any pulse sequence, and the definition of these time periods can be observed by entering
dps (display pulse sequence). For the general 1D sequence called “s2pul” (simple 2-pulse),
the periods A, B, and C are defined as follows:

d1 - p1 - d2 - pw - at
Relaxation delay Pulse Delay Pulse Acquisition

| A | B | C |

The B period is irrelevant in a simple 13C experiment because p1 and d2 are usually set to
zero.

These four decoupling modes along with their Bruker equivalents can be defined as
follows:

Varian Bruker Definition Result
dm = “yyy” pulprog: zgdc Continuous decoupling. Singlets with enhancement.
dm = “yyn” pulprog: zggd Gated decoupling. Multiplets with enhancement.
dm = “nny” pulprog: zgig Inverse-gated decoupling. Singlets without enhancement.
dm = “nnn” pulprog: zg No decoupling. Multiplets without enhancement.

where enhancement refers to the nuclear Overhauser effect. Bruker uses different pulse
programs (parameter pulprog) for each application, but Varian uses different settings of the
parameter dm.



5
NMR RELAXATION—INVERSION-
RECOVERY AND THE NUCLEAR
OVERHAUSER EFFECT (NOE)

5.1 THE VECTOR MODEL

Before we can understand any experiment more complicated than a simple 1H spectrum,
we need to develop some theoretical tools to help us describe a large population of spins
and how they respond to RF pulses and delays. The vector model uses a magnetic vector to
represent one peak (one NMR line) in the spectrum. The vector model is easy to understand
but because it represents a quantum phenomenon in terms of classical physics, it can describe
only the simpler NMR experiments. It is important to realize that the vector model is just
a convenient way of picturing the NMR phenomenon in our minds and is not really an
accurate description of what is going on. As human beings, however, we need a physical
picture in our minds and the vector model provides it by analogy to macroscopic objects.

5.2 ONE SPIN IN A MAGNETIC FIELD

The nucleus is viewed as a positively charged sphere that spins on its axis, producing a
small magnetic field whose strength (magnetogyric ratio or gamma: γ) is characteristic of
the particular isotope (e.g., 1H, 13C, 31P, etc.).

Throughout this book we will treat γ as the “strength of the nuclear magnet,” ignoring
its units and its definition as a ratio. We will also assume that γ is positive.

The spinning is a fundamental property of the nucleus, so it never stops or changes speed
and the magnetic field it produces is a constant. The magnetic field provided by the NMR
magnet (Bo) is always shown on the vertical axis (z axis) and the spin axis is represented as
forming an angle � with the applied magnetic field (Fig. 5.1). Like a compass needle in the
earth’s magnetic field, the nuclear magnet wants to align with the Bo field, and it experiences
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Figure 5.1

a torque pushing the spin axis toward the z axis. Because it is spinning and possesses angular
momentum, however, the torque does not change the angle of the spin axis but instead causes
the axis to precess, describing a circular motion in a plane perpendicular to the Bo field,
similar to the motion of a gyroscope (a spinning top) in the earth’s gravitational field.
Although we are always talking about NMR-active nuclei as “spins,” it is not the spinning
rate we are interested in but rather the precession rate, which is the resonant frequency that
forms the basis of nuclear magnetic resonance. This precession rate is proportional to the
strength of the nuclear magnet (γ), and to the strength of the applied magnetic field Bo:

νo = γBo/2π

The precession frequency, also called the Larmor frequency, is represented as νo (“new-
zero,” in hertz or cycles per second). The division by 2π is sometimes omitted because the
units of γ can be expressed in hertz per tesla rather than radians per seconds per tesla. When
the Larmor frequency is represented in units of radians per second it is called the angular
velocity or ωo. These are related by a factor of 2π:

ωo (radians/s) = γBo = 2πνo (Hz)

For a typical superconducting magnet with a field strength of 7.05 T, protons (1H nuclei)
precess at a rate of 300 million revolutions per second (300 MHz). This frequency is in the
radio frequency portion of the electromagnetic spectrum, a bit higher than the frequencies
on your FM radio dial (88–108 MHz). The important thing is that νo depends on the nuclear
magnet strength γ , which is a fundamental property of the type of nucleus we are looking
at (e.g., 1H or 13C) and never changes, and the field strength Bo, which depends on the
NMR instrument (“200 MHz,” “500 MHz,” etc.) and can also be changed slightly by NMR
hardware (lock system Zo coil, shim coils, or gradient coils) or by the chemical environment
of the molecule in which the nucleus finds itself (chemical shift) and the neighboring nuclear
magnets (J coupling). Virtually everything we observe in NMR depends on this resonant
frequency, and the resonant frequency depends on the effective magnetic field that the
nucleus experiences (Beff ), which is very close to the NMR magnet’s field, Bo. We will
return to this fundamental relationship again and again.

In the classical world, all possible angles � can be formed with the magnetic field
direction, between 0◦ (+z axis) and 180◦ (−z axis). To gain some flavor of the quantum
world, however, we will allow only two angles corresponding to the two quantum states
of a spin-1/2 nucleus. The lower energy or α state will be represented by an angle of 45◦,
and the higher energy or β state will be represented by an angle of 135◦ to the positive
z axis. Thus the axis of the nuclear spin will sweep out a cone as it precesses around the
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z axis, and this cone will be opening upward (toward the positive z axis) for spins in the
α state and downward (toward the negative z axis) for spins in the β state (Fig. 5.1). Our
vector model combines these two fundamental aspects of the NMR phenomenon: precession
(circular motion in the x–y plane that leads to observable NMR signals) and energy levels
(the quantum requirement that each spin be in either the α or aligned energy state or the β

or opposed energy state).

5.3 A LARGE POPULATION OF IDENTICAL SPINS:
NET MAGNETIZATION

People tend to think of NMR as a quantum phenomenon. But quantum mechanics deals with
the options available to a single particle (e.g., two options for a spin-1/2 nucleus) and the
probabilities of being in each of the energy states. In NMR we cannot measure something
until we have a very large number of spins, like 1020 spins, all behaving statistically in
a similar way so their miniscule microscopic magnetic fields add together to generate a
macroscopic magnetic signal. Thus NMR is really about statistical mechanics, the sociology
of large groups of spins, rather than quantum mechanics, the psychology of individual spins.
In order to generate this measurable macroscopic signal the individual spins have to be
“organized” so that they behave in a coherent manner, with “teamwork” to make sure that
their individual signals do not just cancel each other out. This coherence or organization is
provided by the radio frequency (RF) pulse.

A large population of identical spins in a sample is called an “ensemble” of spins. This
would correspond to a sample with a single compound in solution with only one NMR
peak (e.g., the 1H spectrum of chloroform, CHCl3). Each individual nucleus in the sample
precesses at its resonant frequency around the external magnetic field Bo, which is along
the +z axis. Forget about the location of the each molecule within the volume of the sample
solution, or the orientation of that molecule relative to the z axis. The nucleus maintains
its orientation with respect to the Bo field (α or β state) even as the atom it belongs to is
tumbling with the molecule and moving through the solution. The only thing the nucleus
can interact with is a magnetic field; it is not “attached” in any way to the molecule so
we can think of the spinning nucleus mounted on frictionless bearings (“gimbles” to the
nautically inclined) that allow it to stay oriented to the Bo field regardless of the molecule’s
position or orientation. The orientation of the spin axis of the nucleus can be represented as
a magnetic vector, pointing along the spin axis from the South pole of the nuclear magnet
to the North pole, with length equal to the magnitude of the spin’s magnetic field (γ). If
all of the vectors representing the magnetic dipoles of the individual spins are lined up in a
row, we have a sort of “chorus line” of spins facing us, and all of them will be precessing in
the same direction (counterclockwise) and at exactly the same rate, the Larmor frequency
νo (Fig. 5.2). But at equilibrium they are all rotating with random phase; that is, at any
moment in time if we take a snapshot we see that some are pointing to the right side
(y axis), some are pointing to the left side (−y), some to the front (x axis) and some to
the back (−x axis), and in fact every possible direction around the cone defined by the 45◦
angle with the +z axis will be represented (Fig. 5.2(a)). For the moment, we consider only
the spins in the lower energy (α) state, which are precessing around a cone which opens
upward. This is like a bad ballet company: the dancers are spinning around together, but
at any moment some are facing the audience, some have their backs to the audience, some
face the right side, and some face the left side in a random fashion. In technical terms we
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Figure 5.2

say that there is no phase coherence in the ensemble. Now we subject the sample to a high
power pulse of RF for a precise, short period of time. The effect of the RF pulse is to get
the spins “in sync” in terms of phase. After the pulse, all the spins are pointing in the same
direction at any point in time (Fig. 5.2(b)). Their precessional motion is now identical and
we say that the ensemble has phase coherence. This is like a good ballet company: all the
dancers are spinning at the same rate and come around to face the audience at exactly the
same time. With this organization of the sample spins extending to the bulk level of, say,
1020 spins, the individual magnetic vectors add together to give a bulk magnetic vector (the
“net magnetization”) of the sample that is also rotating counterclockwise at the Larmor
frequency around the upper cone. The bulk magnetism is large enough to measure, and by
placing an electrical coil next to the sample we can detect a weak voltage oscillating at
the Larmor frequency. Thus we can detect the signal (the FID) and measure the Larmor
frequency very precisely. This concept of organization or phase coherence created in an
ensemble of spins by a pulse is fundamental to the understanding of NMR spectroscopy.
Without the pulse there is no coherence and the random orientations of the precessing spins
cancel out their motions: there is no measurable signal.

Now that the concept of coherence has been introduced, let us make our model of the
ensemble of spins a little more accurate. Instead of lining up the spins in a row, we move
their magnetic vectors to the same origin, with the South pole of each vector placed at the
same point in space (Fig. 5.3(a)). Furthermore, we need to consider both quantum states,
the “up” cone (α or lower energy state) and the “down” cone (β or higher energy state).

Figure 5.3
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For a large population of identical spins, the individual magnetic vectors are all precessing
at exactly the same rate (assuming a perfectly homogeneous Bo field) around either the
upper cone (α state, “aligned” with Bo) or the lower cone (β state, “opposed” to Bo). The
populations will be nearly equal in the two states, with very slightly more spins in the upper
cone (lower energy state). In Figure 5.3(a) we have a cartoon representation with 8 spins in
the β state and 16 in the α state, so the total population is 24 (N = 24) and an even distribution
would be Pα (population in the α state) = 12 and Pβ = 12. The energy difference creates
a slight preference for the α state, which we have enormously exaggerated in the figure:
Pα = N/2 + δ = 12 + 4 = 16; Pβ = N/2 − δ = 12 − 4 = 8, with δ = 4. (In the real
world δ is only about 0.001 or 0.0001% of N, not 1/6). Imagine a snapshot at one instant
in time: the dipoles are not aligned in any particular direction with respect to the x and y
axes, but are spread out evenly over each cone. In other words, the individual spins are all
precessing at the same frequency, but their phase is random. Notice that for every vector in
the upper cone (α state), there is another vector in the lower cone (β state) exactly opposite
that vector. Their magnetic vectors will exactly cancel each other so we can erase them in
our picture: they contribute nothing to the net magnetization, which is the only thing we can
measure. In the cartoon, we first cancel four pairs of opposing spins (Fig. 5.3(b)), then four
more pairs (Fig. 5.3(c)), leaving only 8 spins of the original 24, all of which are in the upper
cone (α state). Thus we have wiped out nearly all of the N spins in the ensemble and we are
dealing with only the population difference, Pα − Pβ = (N/2 + δ) − (N/2 − δ) = 2δ = 8.
So the vast majority of the spins cancel each other throughout the NMR experiment and
we can only detect about one in 105 spins! Remember that in the real world, unlike this
example shown in Figure 5.3, δ is much, much less than N. This gives you some idea why
NMR is a relatively insensitive experiment, requiring milligrams (mg) of material rather
than micrograms or nanograms.

After canceling the opposing spins, we see that the x and y components of the individual
vectors cancel when they are combined to form the vector sum because all possible directions
are equally represented in the population. The motion of precession is thus not detectable in
a sample at equilibrium: no voltage will be induced in the probe coil and no NMR signal will
be received by the spectrometer. Now consider the z component of the individual vectors
remaining in the upper cone (Fig. 5.3(c)). All of these vectors are pointing upwards at a 45◦
angle to the z axis, so all have the same positive z component. Adding these together we get
the vector sum, which is called the net magnetization vector (Fig. 5.3(d)). This vector is a
macroscopic property of the sample, and we can view it as a large magnet with potentially
measurable properties. At the moment it is stationary because only the x and y components
of the individual vectors are moving, and all of these cancel due to their random distribution
around the upper cone. We will see, though, how the RF pulse can create from this stationary
vector a moving vector that can induce a measurable voltage in the probe coil.

So this net magnetization vector M, pointing along the +z axis and stationary at equilib-
rium, is the starting material for all NMR experiments. Its magnitude (length of the vector)
is called Mo, and it is proportional to the population difference, 2δ, and to the length of the
individual magnetic vectors, the “strength of the nuclear magnet” or γ .

Mo = (constant) × (Pα − Pβ)eq × γ = (constant) × 2δ × γ

How big is this population difference at equilibrium? The Boltzmann distribution defines
the populations of the two states precisely, and it turns out that the equilibrium population
difference �Peq is proportional to the energy difference between the two states (α and β)
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and inversely proportional to the absolute temperature T (in degrees kelvin):

�Peq = (Pα − Pβ)eq = 2δ = (constant) × N × �E/T

This makes sense because the larger the energy gap between the two states, the greater the
preference will be for spins to be in the α state. If we lower the absolute temperature, each
individual spin has less thermal energy available so it will be even more likely to prefer
the lower energy state. In practice, liquid state NMR cannot benefit much from lowering
the absolute temperature because the sample will freeze if we go very far below room
temperature, but we can increase the energy gap (�E) by getting stronger and stronger
NMR magnets. Because the energy difference is proportional to the Larmor frequency:

�E = hνo = hγBo/2π

the energy gap is proportional to both Bo and to γ . Thus Mo, our NMR “starting material,”
depends on Bo and γ as follows:

Mo = (constant) × �Peq × γ = (constant) × (N × �E/T ) × γ

= (constant) × (N × γBo/T ) × γ = (constant) × N × γ2 × Bo/T

So the net magnetization at equilibrium is proportional to the number of identical spins in
the sample (i.e., the concentration of molecules), the square of the nuclear magnet strength,
and the strength of the NMR magnet, and inversely proportional to the absolute temperature.
For example, Mo for 1H is 16 times larger than Mo for 13C because γH/γC = 4. This net
magnetization vector is the material that we mold, transform and measure in all NMR
experiments.

Now consider the effect of a 180◦ pulse on the ensemble of spins represented in Fig. 5.3.
The RF pulse is actually a rotation, and we will see in Chapter 6 that this rotation is exactly
analogous to the precession of magnetic vectors around the Bo field. The pulse itself can be
viewed as a magnetic field (the “B1” field) oriented in the x–y plane, perpendicular to the
Bo field, and for the short period when it is “turned on” it exerts a torque on the individual
nuclear magnets that makes them precess counterclockwise around the B1 field. This is
shown in Fig. 5.4. Each magnetic vector is rotated by 180◦, so the entire structure of two
cones is turned upside down, with the upper cone and all its magnetic vectors turned down
to become the lower cone, and the lower cone turned up to become the upper cone. This

Figure 5.4
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means that every spin that was in the α state is now in the β state and every spin that was
in the β state is now in the α state. Each individual magnetic vector is still precessing at the
Larmor frequency counterclockwise around the z axis (Bo field), and they are still randomly
distributed around each of the cones. The only obvious difference is that the population of
the upper cone (α or lower energy state) is now N/2 − δ, or a tiny bit less than half of the
spins in the ensemble. This is because every one of those spins started out in the lower cone
(higher energy state) at equilibrium, before the pulse. The population in the lower cone
(β or higher energy state) is now N/2 + δ, or a tiny bit more than half of the spins. We
have inverted the population distribution, and Herr Dr. Prof. Boltzmann is turning over in
his grave, because you are not supposed to have more spins in the higher energy state than
in the lower energy state! As before, we cancel the exactly opposing pairs of spins until
we have only 2δ spins in the lower cone (β state) and these vectors are then combined by
vector addition to give the net magnetization vector, M (Fig. 5.4, right). This vector is now
pointing along the −z axis, with the same magnitude, Mo, that it had at equilibrium. We
see a general pattern here: rotating the ensemble of magnetic vectors by an angle � has the
effect of rotating the net magnetization vector M by the same angle �. This is not surprising
because the net magnetization is just the vector sum of all the individual magnetic vectors.

5.4 COHERENCE: NET MAGNETIZATION IN THE X–Y PLANE

The effect of a 90◦ pulse (i.e., turning on the B1 field for half of the time that we used
for the 180◦ pulse) is more interesting (Fig. 5.5). Again the entire double-cone structure is
rotated counterclockwise by the pulse, this time stopping with the (formerly) upper cone
at the left-hand side and the (formerly) lower cone at the right-hand side. Each individual
magnetic vector has experienced a 90◦ rotation around the B1 vector, which is extending out
toward us. As before, we can cancel all of the exactly opposing magnetic vectors, leaving
just 2δ spins in the left-hand side cone. Now we have to wave the magic quantum wand
because most of the magnetic vectors are violating the rule that they must choose either
the upper cone or the lower cone, as defined by the Bo field direction. In other words, they
must be either “aligned” (45◦ angle to Bo) with or “opposed” (135◦ angle to Bo) to the Bo
field in our model. We sort these out by rotating them around the left-hand side cone to the
nearest point where they are in a “proper” cone pointing either up or down. Now we have
δ spins in the upper cone and δ spins in the lower cone, with a population difference �P of
zero. The 90◦ pulse has destroyed the equilibrium population difference. More importantly,
all of these magnetic vectors are pointing to the left-hand extreme of their respective cones
at the moment the pulse stops. We have created phase coherence because at this instant

Figure 5.5



162 NMR RELAXATION—INVERSION-RECOVERY

in time all of the spins point to the left side and will start their precession around Bo in
unison. The net magnetization is the vector sum of all 2δ magnetic vectors, and it points to
the left side (Fig. 5.5, right) and has the same magnitude (Mo) as the vector sum formed
from the 2δ surviving magnetic vectors in the upper cone at equilibrium. As we saw with
the 180◦ pulse, the effect of the 90◦ pulse on the net magnetization vector is to rotate it in a
counterclockwise direction around the B1 field (this time by 90◦), just as it does to each of
the individual magnetic vectors. Hopefully this exercise will give you some confidence in
the validity of the vector model, which ignores the individual nuclear spins and deals only
with the net magnetization vector M. Pulse rotations are applied to the net magnetization
vector and we do not need to worry about the complex behavior of the individual spins any
more. But the model of the individual nuclear magnetic vectors combining to form the net
magnetization is very important to keep in your head because it gives us an understanding
of the nature of phase coherence. We will see when we look at NMR relaxation how the
individual behavior of spins contributes to the loss of coherence over time.

The simplest NMR experiment is just to apply a 90◦ pulse to the sample and then record
the FID signal. A pulse of high power and short duration radio frequency energy at the
Larmor frequency will have the effect of organizing the individual precessing spins into a
coherent, in-phase motion so that at any instant in time all 2δ of the “net” spins are oriented in
the same direction with respect to the x and y axes. Now, instead of canceling out (random
phase), the x and y components of the individual spins add together (phase coherence)
to form a net magnetization vector in the x–y plane that rotates at the Larmor frequency
(Fig. 5.6). Because at equilibrium each of the N/2 − δ spins in the higher energy state was
directly opposed to one of the spins in the lower energy state, only the 2δ spins representing
the equilibrium population difference, �P, contribute to this vector. This rotating magnetic
vector induces a sinusoidal voltage in the probe coil of the spectrometer that can be amplified
and detected to give a free induction decay (FID). Fourier transformation of the FID gives
a frequency domain spectrum with a single peak at the Larmor frequency.

5.5 RELAXATION

The equilibrium state is characterized by a complete lack of coherence (random phase), a
slight excess of population in the α state (N/2 + δ), and a deficit in the β state (N/2 − δ).
Anything that perturbs this equilibrium (e.g., an RF pulse) will be followed immediately
by a process of relaxation back to the equilibrium state that can take as long as seconds
to reestablish. Relaxation is extremely important in NMR because it not only determines
how long we have to wait to repeat the data acquisition for signal averaging, but it also
determines how quickly the FID decays and how narrow our NMR lines will be in the
spectrum. Relaxation is also the basis of the nuclear Overhauser effect (NOE), which can
be used to measure distances between nuclei: one of the most important pieces of molecular
information we can obtain from NMR.

5.5.1 Relaxation After a 90◦ Pulse

Immediately after a 90◦ pulse the net magnetization vector is in the x–y plane. This means
that the z component of the net magnetization is zero and that there is no difference in
population between the upper (β) and lower (α) energy states. The net magnetization vector
will rotate (precess) in the x–y plane at the Larmor frequency, νo. The phase coherence
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Figure 5.6

dies out with time due to inhomogeneity of the magnetic field and small differences in the
local magnetic field experienced by each of the spins, largely due to the presence of nearby
nuclear magnets in the tumbling molecule. The individual vectors “fan out” around the
cone, and eventually they are randomly oriented again and the net magnetization in the x
and y directions is zero (Fig. 5.7, A→B→C→D). The magnitude of this x–y component
of the net magnetization vector will decrease exponentially toward zero as the individual
magnetic vectors “fan out” over the cone and lose phase coherence (Fig. 5.7, bottom right:
Mxy ). We can represent this magnetization as an exponential decay with time constant T2
(Fig. 5.7, bottom left: T2 = 0.4 s, νo = 2 Hz):

My = −Mo cos(2πνot) e−t/T2

Mx = Mo sin(2πνot) e−t/T2

The cosine and sine functions represent the rotation of the net magnetization vector: it starts
on the −y′ axis (−cos(0) = −1, sin (0) = 0) and moves toward the +x′ axis. After 1/4
counterclockwise rotation (νot = 1/4) we have −cos(90◦) = 0, sin(90◦) = 1. The decaying
exponential function e−t/T2 represents the fanning out of individual vectors and loss of
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Figure 5.7

coherence. We can define a “half-life” for the process just as you might for radioactive
decay:

0.5 = e−t/T2 ; ln(0.5) = ln [e−t/T2 ] = −t/T2; ln 2 = t/T2; t½ = (ln 2) T2 = 0.693T2

So after the period of time 0.693 T2 (0.277 s for T2 = 0.4 s) we would see the coherence
reduced to 1/2 of its original value; after twice that time (1.386 T2 = 0.554 s) we would see
it reduced to 1/4 of its original value, and after three times the half-life (2.079 T2 = 0.832 s)
we would see the net magnetization in the x–y plane reduced to one eighth of its original
value. T2 (tea-two; the T is always upper case) is called the transverse relaxation time or
spin–spin relaxation time, and after this amount of time (T2) the coherence has decayed to
36.8% (e−1) of its original value right after the 90◦ pulse. After twice T2 we have 13.5%
(e−2) of the coherence left, and after three times T2 we have only 5.0% (e−3) left. Sometimes
it is more convenient to talk about the rate of loss of coherence, R2 = 1/T2, which is in
units of s−1 (Hz) instead of seconds. This is just like a rate constant in chemical kinetics. If
you are familiar with exponential decay (e.g., radioactive decay) or, more generally, first-
order processes (e.g., heat flow or first order chemical reactions), you will have no trouble
understanding NMR relaxation.

At the same time that the individual spins are losing their phase coherence, some of the
spins in the higher energy β state are “dropping down” to the α state (Fig. 5.8) as the system
moves back to thermal equilibrium (the Boltzmann distribution). In Figure 5.8, we start
with equal populations (Pα = Pβ = 12) right after the 90◦ pulse (Fig. 5.8, left). After a time
corresponding to one “half-life” (0.693 times T1), 2 spins have dropped down, increasing
the population difference to �P = 4 (Pα = 14, Pβ = 10). Eventually a total of δ spins
will move from the β state to the α state, decreasing the β state population from N/2 to
N/2 − δ and increasing the α state population from N/2 to N/2 + δ (Fig. 5.8, right: δ = 4 and
N/2 = 12). The reestablishment of the Boltzmann distribution between the spin states will
cause a z component of the net magnetization to appear and grow toward the equilibrium
magnitude Mo. This is shown in Fig. 5.7 in the graph at the bottom right for T1 = 0.5 s.
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The z magnetization (Mz ) grows from zero to Mo with characteristic time T1 = 0.5 s whereas

the magnetization in the x–y plane (Mxy = [Mx
2+My

2]
1/2

) decreases from Mo to zero with
characteristic time T2 = 0.4 s. Note that in Figure 5.7 the magnitude (length) of the net

magnetization vector (Mtot = [Mx
2+My

2+Mz
2]

1/2
) drops initially because T2 is always

shorter than T1; that is, the loss of Mxy is faster than the recovery of Mz . The “regrowth”
of Mz is an exponential process, characterized by the function e−t/T1 . The mathematical
form of Mz is not quite as simple as the loss of transverse (x–y) magnetization because the
z component of net magnetization is “growing back” from zero to Mo rather than decaying.
What we can say is that the amount of “disequilibrium,” defined by the difference between
the z magnetization at any point in time, Mz , and the equilibrium value Mo is decaying
exponentially:

�Mz = Mz − Mo = �Mz(t = 0) e−t/T1

This is true regardless of the extent or the nature of the perturbation away from the Boltzmann
distribution (90◦ pulse, 180◦ pulse, saturation, etc.). The z magnetization will always move
toward Mo in this way, so that the distance to equilibrium (�Mz ) is decaying exponentially.
For the specific case of a 90◦ pulse, we can describe the z magnetization by an exponential
function that approaches Mo with time constant T1:

�Mz(t) = Mz − Mo = −Mo e−t/T1

Mz(t) = Mo − Mo e−t/T1 = Mo(1 − e−t/T1 )

since �Mz (t = 0) is equal to (0 − Mo) or −Mo. Note that Mz = Mo (1 − 1) = 0 at time zero
(e−0 = 1), immediately after the pulse, and after a very long time the exponential term dies
away to zero and we have Mz = Mo (Fig. 5.7, bottom right). The populations in the α and β

states as a function of time are shown in Figure 5.9. After the 90◦ pulse, the z magnetization
grows from 0 to 63% of Mo after one T1, to 86% after two times T1, to 95% after three
times T1, and to 99% of Mo after five times T1. Often 5T1 is used as a rule of thumb for a
complete return to equilibrium—apparently 99% is “good enough for government work.”
Remember that the z component of net magnetization, Mz , is proportional to the difference
in population �P = Pα − Pβ, which grows as spins move from the β state to the α state.
The rate of spins “dropping down” from β to α is driven by the amount of “disequilibrium”
or the deviation from the Boltzmann distribution, so we see the rate get slower and slower
as the populations get closer and closer to the equilibrium distribution.
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Figure 5.9

5.5.2 Relaxation After a 180◦ Pulse

At the end of a 180◦ pulse, the populations are inverted so that there is a slight excess (N/2 +
δ) in the upper energy (β) state and a slight deficit (N/2 − δ) in the lower energy (α) state
(Fig. 5.10, T1 = 0.5 s). This is twice as far from equilibrium as the situation immediately
after a 90◦ pulse (�P = −2δ after a 180◦ pulse, 0 after a 90◦ pulse, and 2δ at equilibrium).
Spins drop down from the β state to the α state, reducing the population in the β state and
increasing the population in the α state. After δ spins have dropped down (time = t½ =
0.693 T1 = 0.35 s), we have reached the point where populations are equal in the two states
(Mz = 0). This is half of the way to equilibrium. Spins continue to drop down until in all
2δ spins have dropped down from β to α, leaving a population of N/2 + δ in the α state and
N/2 – δ in the β state. In mathematical terms, Mz = −Mo at the end of the 180◦ pulse, so

�Mz(t = 0) = Mz(t = 0) − Mo = −Mo − Mo = −2Mo

�Mz(t) = Mz(t) − Mo = �Mz(t = 0) e−t/T1 = −2Mo e−t/T1

Mz(t) = Mo (1 − 2 e−t/T1 )

Thus Mz starts at −Mo and after 0.693 T1 it equals zero (halfway to equilibrium from the
starting point: Fig. 5.10). After two half-lives it equals 1/2 Mo (3/4 of the way to equilibrium)
and after 3 × 0.693 × T1 it equals 3/4 Mo. After a long time it equals Mo. It is important to
recognize that this return to equilibrium, which moves the net magnetization vector from
the −z axis to the +z axis after a 180◦ pulse, is not a rotation. This process of longitudinal
or spin-lattice relaxation involves only the process of spins dropping down from the higher
energy state to the lower energy state and therefore cannot create magnetization in the x′–y′
plane (coherence). After a 180◦ pulse there is no coherence, so the net magnetization vector
simply shrinks in magnitude along the −z axis until it reaches zero magnitude, and then
grows along the +z axis until it reaches the magnitude Mo defined by thermal equilibrium.
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5.5.3 Spin Temperature

It is sometimes convenient to compare longitudinal (T1) relaxation to the process of heat flow
(also a first-order process). When we apply a pulse to the spins, we “heat them up,” and as
they return to equilibrium they “cool down” again to the temperature of their surroundings.
We can even define a “spin temperature” (Ts) as the temperature corresponding to a given
population difference between the α and β states:

Pβ/Pα = e−�E/(kTs)

where �E is the energy gap between the α and β states. This is the same as the Boltzmann
relationship, except that the population ratio can assume any value and not just the equi-
librium ratio. In Figure 5.8, the equilibrium ratio at room temperature (300 K) was 8/16 =
0.5 or e−0.693. If we start to saturate the spins and the ratio increases to 9/15 = 0.714 or
e−0.511, the spin temperature has increased to 407 K (407 = 300 × 0.693/0.511). Full sat-
uration (Pβ/Pα = 1) corresponds to an infinite spin temperature (e–�E/∞ = e−0 = 1) and
inversion (180◦ pulse) corresponds to a negative spin temperature of −300 K (Pβ/Pα =
e−�E/(−T) = e+�E/T). These are not physically reasonable temperatures, but the concept
is still useful that we are “heating up” the spins when we promote spins from the α state
to the β state. After we heat up the spins, T1 relaxation can be viewed as a flow of heat
from the spin “container” to the “outside world” of the sample solution (sometimes called
the “lattice,” a term from solid-state NMR). The amount of energy is very small compared
to average thermal energy of the molecules, so the sample temperature increases only very
slightly, but the spin temperature goes down and approaches the sample temperature in an
exponential manner.

5.5.4 T 1 versus T 2

Because T2 is always smaller than T1, the loss of magnetization in the x–y plane will
always be faster than the re-establishment of magnetization along the z axis (Fig. 5.7, lower
right). The equation for Mz is independent of the equations for Mx and My . This means
we can deal with transverse relaxation (the T2 process) and longitudinal relaxation (the T1
process) as completely separate phenomena. Any transverse (x–y plane) component of the
magnetization will undergo exponential decay with time constant T2 and any nonequilibrium
longitudinal component (z axis) will approach Mo exponentially with time constant T1. It is
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Figure 5.11

important to realize that relaxation is not a rotation back to the z axis: the net magnetization
vector only rotates in a plane perpendicular to the x–y plane during an RF pulse. In the
absence of pulses, the x and y components decay toward zero with time constant T2 and
the z component recovers toward Mo with the longer time constant T1. The combination of
precession, loss of coherence (T2 relaxation) and the slower recovery of z magnetization (T1
relaxation) after a 90◦ pulse is illustrated in Figure 5.11. The tip of the net magnetization
vector describes an inward spiral over the surface of a circular “tent” with a single pole
in the center (+z axis). In the extreme case where T2 is much less than T1, the x and y
components would decay to zero first, and then the z magnetization would “grow back”
along the +z axis to the Mo value. Relaxation may seem like a troublesome side issue, sort
of like friction in classical mechanics, but we will see later that cross relaxation, the process
by which the relaxation of one spin influences the relaxation of a nearby spin, leads to the
NOE, which is an important method for measuring distances within a molecule.

5.6 SUMMARY OF THE VECTOR MODEL

The vector model is a way of visualizing the NMR phenomenon that includes some of the
requirements of quantum mechanics while retaining a simple visual model. We will jump
back and forth between a “classical” spinning top model and a “quantum” energy diagram
with populations (filled and open circles) whenever it is convenient. The vector model
explains many simple NMR experiments, but to understand more complex phenomena one
must use the product operator (Chapter 7) or density matrix (Chapter 10) formalism. We
will see how these more abstract and mathematical models grow naturally from a solid
understanding of the vector model.

Consider a large population of identical spins—for example the protons in a liquid sample
of 12CHCl3—in a strong, uniform magnetic field Bo oriented along the positive z axis.
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1. Each 1H nucleus can be in one of two states: aligned at a 45◦ angle to the +z axis
(“up”) or aligned at a 135◦ angle to the +z axis (“down”).

2. Each 1H nucleus precesses about the z axis, with its spin axis tracing a conical path
always at a 45◦ (or 135◦) angle to the +z axis, at a rate equal to the Larmor frequency
νo:

νo = γBo/2π

where γ is a measure of the magnet strength of the nuclear magnet. The Larmor
frequency is in the radio frequency range of the electromagnetic spectrum.

3. The “up” or α state, which is aligned with the laboratory magnetic field, is lower in
energy than the “down” or β state, which is aligned against the field. This energy
“gap” is proportional to the magnetic field strength and to the strength of the nuclear
magnet:

�E = hνo = hγBo/2π

4. At thermal equilibrium, slightly more than half of the population of spins is in
the lower energy “up” state and slightly less than half is in the higher energy
“down” state. The population difference is on the order of one spin in every
105 spins. At equilibrium each spin is randomly oriented around the cone at any
moment in time, even though all spins precess at exactly the same frequency. Thus
the “phase” of the precessing nuclei is random and spread equally around the two
cones.

5. The net magnetization is defined as the vector sum of all of the nuclear magnets in
the sample. If each vector’s origin is moved to the origin of the coordinate system, the
vectors can be added together for the whole population. The x and y components of
the net magnetization are zero at equilibrium because the spins are spread equally
around the two cones at any instant in time. The z components cancel for each pair
of one “up” and one “down” spin, but because there is a slightly larger population
of spins in the “up” state the net magnetization is a small vector pointing along the
positive z axis. This macroscopic equilibrium net magnetization has a magnitude of
Mo, and it is the starting point of all NMR experiments.

6. A radio frequency pulse has the effect of “organizing” the phase of the spins in their
precession, so that at the end of a pulse all of the excess spins have the same phase.
At any moment in time, all of these spins point in the same direction on the cone,
so that they add together to make a net magnetization vector that rotates in the x–y
plane at the Larmor frequency. We can say that the pulse created “phase coherence” or
simply “coherence” in the sample. The net magnetization is no longer stationary, and
its rotation induces a voltage in the probe coil that oscillates at the Larmor frequency.
After the pulse the spins begin to lose the organization imparted by the pulse, and the
spins spread out on the cone until they are again randomly oriented on the cone at any
moment in time. This loss of coherence causes the induced signal in the probe coil to
decay exponentially to zero. The probe coil signal is called the free induction decay
(FID). The information contained in the FID signal is the frequency of the oscillating
voltage, which corresponds to the chemical shift of the nuclei in the sample, the
amplitude of the voltage, which corresponds to the height of the peak, and the phase
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of the signal, which corresponds to the phase (absorptive positive, dispersive, etc.) of
the NMR line.

7. The z component (Mz ) of the net magnetization vector represents the difference in
population between the two spin states (“up” and “down”). For example, immediately
after a 90◦ pulse enough spins have been promoted from the lower energy (“up”) state
to the higher energy (“down”) state to equalize the populations. At this moment
the z components of the population of spins exactly cancel and the z component
of the net magnetization vector is zero. The net magnetization vector is in the x–y
plane, rotating at the Larmor frequency.

8. The radio frequency pulse is a very short (tens of microseconds), and a very high
power (tens or hundreds of watts) pulse of radio frequency power applied to the probe
coil at or very near the Larmor frequency. It has a rectangular envelope: the power
turns on and instantly reaches full power, then at the end of its duration it goes instantly
to zero. The pulse creates an oscillating magnetic field, which can be represented by
a vector (the “B1 vector”) that rotates in the x–y plane at the frequency of the pulse.
The length of the B1 vector is equal to the amplitude of the radio frequency pulse.

9. After a 90◦ pulse, the phase coherence created by the pulse begins to be lost as the
individual spins “fan out” around the cones due to slight local differences in magnetic
field. The loss of coherence is exponential and goes to zero with time constant T2. At
the end of the 90◦ pulse the populations of the two spin states are equal: half of the
spins are in the “up” state and half are in the “down” state. Immediately spins begin
to drop down from the higher energy (“down” or β) state to the lower energy (“up”
or α) state until the equilibrium population difference is reestablished. This process,
which leads to an exponential growth of Mz with time constant T1 until it is equal to
the full equilibrium value Mo, is called longitudinal relaxation. It is always slower
than the loss of coherence, which is called transverse relaxation.

10. A 180◦ pulse rotates the equilibrium sample magnetization to the −z axis. Immedi-
ately after the pulse there is no phase coherence (no x or y component to the net mag-
netization) and no FID can be recorded. The population difference in now reversed:
slightly more than half of the spins are in the higher energy (“down” or β) state and
slightly less than half are in the lower energy (“up” or α) state. This is the largest
deviation from the equilibrium population distribution that can be achieved by an RF
pulse. The reversal of populations actually occurs by moving every single spin that
was in the “up” state to the “down” state, and every spin that was in the “down” state
to the “up” state. After the pulse the slight excess of spins in the higher energy state
begin to drop down and the net magnetization vector along the –z axis shrinks, passes
through zero, and grows toward Mo along the +z axis in an exponential fashion.

5.7 MOLECULAR TUMBLING AND NMR RELAXATION

What is the mechanism of spins “dropping down” from the β state to the α state and “fanning
out” around the two cones, and what determines the rates (R1 = 1/T1 and R2 = 1/T2) of NMR
relaxation? These processes are intimately tied to the motion of molecules as they tumble
(“reorient”) in solution in their rapid Brownian motion, and measurement of the NMR
relaxation parameters T1 and T2 can even give us detailed information about molecular
dynamics (motion) from the point of view of each spin in the molecule. A simplified model
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of these physical processes and their consequences for NMR will help you to understand
the effect of molecular size on relaxation and the NOE.

The nucleus cannot simply transfer energy to molecular motions (vibration, rotation,
translation, etc.) by collisions because the nucleus is not really “attached” to the rest of
the molecule. The tiny nucleus sits in a vacuum very far from the bonding electrons that
hold the molecule together, and its only mechanism for interaction with the outside world
is through its magnetic properties. Thus only magnetic fields can affect the nucleus and
induce transitions from the β to the α state (longitudinal relaxation) or create random
differences in the rate of precession (transverse relaxation). For T1 relaxation, a magnetic
field must be oscillating at the frequency of the transition (the Larmor frequency, νo) in
order to induce a transition from the β to the α state. Molecular motion (“tumbling”) can
generate these oscillating magnetic fields if the molecule is tumbling at the right frequency.
There are several ways this can happen; we will focus on the major one, which is called the
dipole–dipole interaction, and later mention one other mechanism.

5.7.1 Dipole–Dipole Relaxation

Consider a nucleus such as a 13C nucleus within a molecule. If the carbon in question is a
methine (CH) carbon, then it has a hydrogen atom (1H) rigidly attached to it at a distance of
1.1 Å (1 Å = 10−10 m). As the molecule tumbles, from the point of view of the 13C nucleus,
the 1H nucleus is rotating around it in a circle of radius 1.1 Å at the tumbling rate of the
molecule. The 1H nucleus retains its orientation with respect to the external (Bo) magnetic
field as the molecule tumbles because the nucleus is not “attached” to the molecule in any
way. Precession of the 1H nucleus is not important for this phenomenon, so we can view
the proton as a rigid magnet oriented along +z (α state) or −z (β state). As the molecule
tumbles, the tiny magnetic field of the 1H nucleus is “felt” by the 13C nucleus at its location
in space (Fig. 5.12). When the 1H is above or below the 13C, its field adds to the Bo field at the

Figure 5.12
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location of the 13C nucleus, but when it is to the left or right of the 13C nucleus its magnetic
field subtracts a slight amount from the Bo field at the position of the 13C nucleus. Thus the
effective magnetic field experienced by the 13C nucleus (Beff ) is modulated by a sinusoidal
variation whose frequency is the rate of tumbling of the molecule and whose amplitude is
proportional to the 1H “magnet strength” (γH) and to the inverse third power of the distance
(rCH = 1.1 Å) between the 1H and the 13C. If the frequency of this perturbation is exactly
equal to the Larmor frequency for the 13C nucleus (γCBo/2π), then 13C spins in the upper
energy state will be stimulated to drop down to the lower energy state in a process similar to
stimulated emission (Chapter 1, Section 1.4.7). Unlike stimulated emission, which occurs
when we add a radio frequency signal to the sample, there are no photons absorbed or
emitted, and the energy is coupled to the rotational motion of the molecule and released
as heat. Because the process of relaxation involves interaction of the 13C nuclear magnet’s
field with the 1H nuclear magnet’s field, the rate of stimulated transitions is proportional
to both γC/r3 and to γH/r3, so it depends on the inverse sixth power (1/r6) of the distance
between the two nuclei. This dipole–dipole interaction is central to the NOE as well, which
also exhibits a 1/r6 dependence.

5.7.2 The Distribution of Tumbling Rates

All of this requires that the molecule be tumbling at exactly the Larmor frequency of the
nucleus that is undergoing relaxation in order to stimulate a transition from β state to
α state. In fact, only a very small fraction of molecules is tumbling at this frequency at any
one time. We can look at the distribution of tumbling rates as a histogram with tumbling
frequency ν (in hertz) on the horizontal axis and number of molecules tumbling at that
frequency on the vertical axis. This function, which is a property of molecular size and
shape as well as the viscosity of the solvent, is called the spectral density function or J(ν).
A simplified logarithmic plot is shown in Figure 5.13 for five different molecules ranging in
molecular weight from 10 to 100,000 Da (100 kD). A typical “organic” molecule (a “small”
molecule to the NMR spectroscopist) would be on the order of 100 Da, whereas a peptide,
glycopeptide, or oligosaccharide might be in the range of 1000 Da (“medium-sized”) and
proteins and nucleic acids (DNA and RNA) would range from 10 to 100 kD (“large”) in
molecular weight. Each molecule can also be characterized by its average tumbling time τc
(formally known as the rotational correlation time). This is essentially the average time it
takes for the molecule to change its orientation with respect to the Bo field (z axis); it is the
reciprocal of the average tumbling frequency. Small molecules tumble rapidly and have a
short τc, whereas large molecules tumble slowly and have a long τc. As you can see from
the histogram (Fig. 5.13), the distribution of tumbling frequencies for any size molecule is
flat over a wide range of frequencies up to a maximum or cutoff value. Above this frequency
the number of molecules drops rapidly to zero. The cutoff frequency is very high for small
molecules (10–100 Da), lower for the “medium-sized” molecules (1 kD) and quite low for
large molecules (10–100 kD). The graph is based on the tumbling of spherical molecules
in water at 27 ◦C, with molecular density typical of proteins.

Because in each case we are dealing with the same number of molecules, as we squeeze
the population of molecules into a smaller range of frequencies, the number of molecules
at any one frequency within the range increases. This explains the higher level at the left
side of the histogram as the molecular size increases. Because of the logarithmic horizontal
scale, the differences are much larger than those shown in the plots—note the increase in
vertical scaling at lower molecular weights. At 500 MHz, which is the Larmor frequency
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for protons in a magnetic field of 11.74 T, the dotted line (νSQ = νo) shows that the number
of molecules tumbling at this rate is greatest for the 1 kD (“medium-sized”) molecules (the
100 Da curve is actually only 15% of the height shown, in relation to the 1 kD curve). This
would give the fastest T1 relaxation because a larger proportion of molecules of this size are
tumbling at exactly the Larmor frequency. For smaller molecules, the much wider range of
tumbling rates means that it is unlikely to find a molecule tumbling at exactly the Larmor
frequency, and for larger molecules the Larmor frequency is higher than the “cutoff”; so
very, very few molecules tumble this fast. This is consistent with experimental results: As
molecular size increases from 10 to 1000 Da, the relaxation rate (R1 = 1/T1) increases (T1
decreases), and above this critical size (1000 Da) the relaxation rate falls off (T1 increases).
This relationship is shown in Figure 5.14 for a pair of protons separated in a rigid molecule
by a distance of 1.8 Å at a field strength corresponding to a Larmor frequency of 500 MHz.
Again, the molecular weight scale is based on a spherical molecule of density 1.42 g/L
(typical for a protein) in water at 27 ◦C. The critical molecular weight, where the reciprocal
of the tumbling time (1/τc) is close to the Larmor frequency in radians s−1 (ωo), depends on
molecular shape as well as solvent viscosity. This “crossover” condition is usually written
as: ωo τc ∼ 1. We will see that molecules with this “medium” size are a problem for NOE
experiments because the theoretical NOE falls to zero. In the “small molecule” regime (ωo
τc � 1) an increase in molecular weight increases the relaxation rate (decreases T1) and
in the large molecule regime (ωo τc � 1) an increase in molecular weight decreases the
relaxation rate (increases T1).

Although T1 increases with molecular size for large molecules, note that the spin–spin or
transverse relaxation rate T2 continues to decrease as molecular size increases (Fig. 5.14).
This is harder to explain, but we can rationalize this effect by considering that the “fanning
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out” of individual magnetic vectors in the cones is the result of slightly different effective
fields experienced at each of the identical nuclei leading to slightly different precession
rates. If the molecule is tumbling rapidly, the oscillation in the magnetic field is too rapid
to have any effect on the phase of the individual magnetic vectors as they rotate in the x–y
plane. Think of a race with a large number of exactly matched runners, each one speeding
up and slowing down repeatedly with the same average speed. If the cycle of speeding
up and slowing down is very rapid so that many, many cycles occur during the race, the
runners will remain in a “pack” and will all cross the finish line at the same time. If the
molecule is tumbling very slowly, however, one molecule might start out with a slightly
faster magnetic vector and another with a slightly slower vector, and the slow vector would
begin to fall behind the fast one during the recording of the FID. In the extreme case (e.g.,
for a solid sample) the differences in Larmor frequency do not oscillate at all and each
spin is “locked” at one part of the tumbling cycle, either slower or faster than the average
precession rate. This leads to very rapid loss of coherence and very short T2 values, so short
that without special techniques we can not observe NMR peaks in the spectrum at all: they
are “broadened” out of existence and fall into the noise baseline. Even for slowly tumbling
molecules in solution, it makes a difference over the course of the FID what the orientation
of the molecule was at the start of the FID and how fast the molecule is tumbling. Because
the molecules are all oriented randomly at any moment, these slight oscillations in Larmor
frequency are phase incoherent and there is a random distribution of tumbling frequencies
at any one time during the FID, leading to loss of phase coherence. Referring back to the
histogram of tumbling rates (Fig. 5.13), we see that the number of molecules tumbling at
the very slow rates at the left side of the diagram increases monotonically as we go from
small molecules to medium-sized molecules to large molecules. Because it is these slowly
tumbling molecules that have the most dramatic “fanning out” due to random differences in
νo, this explains why T2 always gets shorter (faster relaxation) as the size of the molecule
increases (Fig. 5.14).
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What is the significance for a simple NMR experiment of differences in T1 and T2? We
are almost always using signal averaging of many FIDs to obtain a good signal to-noise ratio,
and we will have to wait until Mz has recovered to near Mo before repeating the acquisition.
So T1 determines how rapidly we can obtain NMR data: long T1 values will force us to
wait longer to repeat the acquisition and will slow down the overall experiment. The best
relaxation delay (RD or D1) is determined by the value of T1—an ideal value would be
5 × T1 for 99% recovery of z magnetization. The T2 value determines the decay rate of
the FID: a short T2 corresponds to a rapidly decaying FID and a long T2 value corresponds
to a long, ringing FID. The Fourier transform converts time-domain data to frequency-
domain data, and because time and frequency are inversely related (s vs. s−1) there are
opposite effects in an FID and a spectrum. The shorter the time duration of the FID (short
T2, faster transverse relaxation), the broader the resulting peak in the spectrum after Fourier
transformation. Conversely, an FID that decays slowly leads to a very sharp (narrow) peak
in the spectrum. Because resolution is very important in NMR spectroscopy, especially
as we study more and more complex molecules, we always want the narrowest peaks
we can get. With a perfectly homogeneous magnetic field (perfectly shimmed magnet)
the decay rate of the FID is determined by T2, which is determined by the molecular
tumbling processes described above. A perfect world for the NMR spectroscopist would
be one in which all T1s are very short and all T2s are very long. Unfortunately, this cannot
happen because for any nucleus T1 is always longer than T2. We can see why this is if
we consider that T1 is primarily determined by the number of molecules tumbling at the
Larmor frequency (νSQ), whereas T2 is primarily determined by the number of molecules
tumbling at the low frequencies (νZQ, Fig. 5.13). For small molecules, the numbers are
nearly equal (T1 ∼ T2) and for large molecules there are far more molecules tumbling at
the low (“zero quantum”) frequencies than at the Larmor (“single quantum”) frequency
(T1 � T2).

These arguments only attempt to capture some general trends. The math leads to a
precise dependence of T1 and T2 on the tumbling rates at three frequencies: νZQ (difference
between the Larmor frequencies of the two nuclei that are close in the molecule), νSQ (the
Larmor frequency of the nucleus being observed), and νDQ (the sum of the two Larmor
frequencies). For a pair of protons interacting within a molecule, νZQ is on the order of
Hz or kHz because νo differs only slightly due to chemical shift differences, and νDQ is
essentially twice the Larmor frequency (Fig. 5.13). We will come back to this topic and
give some more detailed numbers when we look at the NOE and the effect of molecular
size on the sign and magnitude of the NOE. Another detail we have ignored is that the term
“tumbling rate” implies that molecules rotate at a constant rate in solution as they would
in the gas phase and that they behave as rigid bodies. In fact, the ν we use in the spectral
density function J(ν) is really an instantaneous “reorientation rate” describing how rapidly
the molecule is changing its orientation with respect to the Bo direction as it is bumped
and shoved around by solvent molecules. Futhermore, this reorientation rate is the rate of
reorientation of the H–H (or C–H) vector with respect to Bo, which may not be the same
as the motion of molecule as a whole. This is an advantage because we can look at local
flexibility and conformational change within a large molecule such as a protein by studying
relaxation rates at different locations within the molecule. The reorientation of a particular
relationship between two nuclei is determined by the motion of the molecule as a whole
as well as the sometimes much faster motion of the two nuclei within the molecule. It is
this ability to study molecular dynamics at many different timescales (ms, �s, ns, etc.) that
makes solution-state NMR a powerful tool in biology.
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5.7.3 Other Relaxation Mechanisms: CSA

There are several other ways besides the dipole–dipole mechanism by which spins can be
induced to drop down and reestablish the Boltzmann equilibrium, but we will look at only
one. Recall that the chemical shift of a spin within a molecule actually depends on the
orientation of the molecule with respect to the magnetic field Bo (Chapter 2, Section 2.6.2).
In some cases (e.g., aromatic rings or amide bonds) this variation (chemical shift anisotropy
or CSA) can be quite large, and in other cases (e.g., a CH group in a saturated hydrocarbon
environment) there is very little dependence on orientation. As far as the NMR spectrum
is concerned, the rapid tumbling of a molecule in a solution causes this variation to blur
so that on the NMR timescale (roughly milliseconds) only a single, sharp peak is observed
at a chemical shift that is the average over all orientations. But chemical shift is nothing
more than a perturbation of the magnetic field strength experienced by a nucleus (Beff ), so
as the molecule tumbles and samples various orientations the Beff field at the nucleus is
modulated in a sinusoidal fashion at a rate equal to the tumbling rate of the molecule and with
an amplitude proportional to the amount of chemical-shift dependence on orientation (the
CSA). Like the oscillating magnetic fields produced by the through-space interaction of the
magnetic dipoles of a pair of nuclei (dipole–dipole relaxation), the oscillating magnetic field
resulting from CSA can also induce transitions and lead to NMR relaxation. The dependence
on molecular tumbling rate and molecular size is exactly the same as that described above
for the dipole–dipole effect.

5.8 INVERSION-RECOVERY: MEASUREMENT OF T1 VALUES

The inversion-recovery method is a convenient way to measure T1 values of both 1H and 13C
nuclei. In a moderately complex molecule (15–30 carbons), the T1 values of all positions in
the molecule can be determined simultaneously, with spectral overlap the only limitation.
The method is a multiple-pulse experiment in which net magnetization of the sample nuclei
is first inverted with a 180◦ pulse (“inversion”) and then allowed to relax along the z axis
with the characteristic time constant T1 (“recovery”). The effect of the 180◦ pulse is to
interchange all of the spins between the upper and lower energy levels, so that now the
higher energy spin state has a slight excess of population and the lower energy spin state
has a slightly depleted population. This causes the net magnetization vector to be turned
upside-down so that Mz now equals −Mo. Recovery begins immediately according to the
exponential law, with characteristic rate R1 = 1/T1. Because z magnetization is not a directly
observable quantity, the recovery period is followed by a 90◦ pulse that “samples” or “reads”
the z magnetization by converting it into observable x–y magnetization (Fig. 5.15 ).

Notice how we diagram a multiple-pulse NMR experiment: the horizontal axis represents time
and the vertical axis represents RF amplitude for pulses. The times and amplitudes are not
drawn to scale—they are just cartoon representations. 90◦ pulses are shown as half the width
of 180◦ pulses, and recording of the FID is shown as a decaying signal. Each RF channel is
labeled according to the nucleus being irradiated (pulses) and/or observed (FID).

The magnitude of the FID signal that results from this x–y magnetization (and the peak
height in the spectrum) should be directly proportional to the sample’s z magnetization just
before the 90◦ pulse. By repeating the experiment with different time delays after the 180◦
pulse, we can monitor this return of z magnetization to equilibrium and determine the value
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Figure 5.15

of T1 by curve fitting of the data to an exponential function. The phase correction parameters
are first set using a simple 90◦ pulse acquisition (starting with equilibrium magnetization,
along +z) and then applied to a series of inversion-recovery spectra acquired with increasing
values of the delay τ. For τ = 0 we should see an upside-down spectrum, with each peak at its
maximum height but inverted. As the delay is increased each peak will become less intense,
pass through zero, and finally become positive. At very long τ delays the spectrum should
look just like a normal spectrum. For each signal in the spectrum, corresponding to a unique
position in the sample molecule, the recovery of z magnetization will obey the first equation
and the signal intensity after the 90◦ pulse will follow the second equation as a function of τ:

Z magnetization: Mz(τ) = Mo + (Mz(0) − Mo) e−τ/T1 = Mo + (−Mo − Mo) e−τ/T1

= Mo (1 − 2 e−τ/T1 )

Signal intensity (peak height): I(τ) = Iinf (1 − 2 e−t/T1 )

where Iinf is the signal intensity for very long values of τ where Mz has recovered all
the way to Mo. We will use peak height as a surrogate for peak area because peak width
should not change for a given peak as a function of τ. A simple way to estimate T1 without
making a plot is to look for a null or near-null condition for a given peak:

I(τo) = (1 − 2 e−τ/T1 ) Iinf = 0; 1 − 2 e−τ/T1 = 0; 1 = 2 e−τ/T1 ; 0.5 = e−τ/T1

ln(0.5) = −τo/T1; ln(2) = τo/T1; T1 = τo/ln(2) = τo/0.693

Here we use τo to indicate the delay time at the null point and set the intensity I(τo)
to zero. To eliminate the exponential, we take the natural logarithm of both sides of the
equation: ln(ex ) = x. This is the same as saying that the half-life of T1 relaxation occurs at
the time 0.693 times T1. For more accurate T1 measurement, a line can be fitted to a plot
of log(I) versus, time, or even better a nonlinear least-squares fit can be performed directly
on the time course data of I(τ) vs. τ, with Iinf and T1 as parameters to be adjusted.
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Figure 5.16

The data from a 13C inversion-recovery experiment on sucrose in D2O is shown in
Figure 5.16. The experiment was run on a Varian Unity-300, and the data were acquired
in an array, a back-to-back series of FIDs acquired one after the other by varying a single
parameter—in this case the recovery delay τ. The spectra are plotted side-by-side in a
“horizontal stacked plot” with the τ values ranging from 0.0 (left) to 2.1 s (right). In each
spectrum we see the anomeric carbons fructose-2 (quaternary, �) and glucose-1 (CH, ♦)
furthest downfield, followed by seven peaks representing singly oxygenated CH carbons
(CHOH), and at the upfield end three peaks representing singly oxygenated CH2 carbons
(CH2OH). We see that the “CHOH” carbons and C-g1 all pass through zero (Mz = 0) at τ =
0.2 s, which means that t½ = 0.2 s for these carbons (Mz = 0 is halfway between Mz =
−Mo, the starting value, and Mz = +Mo, the equilibrium value). Since t½ = 0.693 T1, we
have as a rough estimate T1 = 0.2/0.693 = 0.29 s for all of the CH (“methine”) carbons.
To get more accurate values, the peak heights can be measured and plotted against time,
fitting the data to the equation I = Iinf (1–2 e–t/T1 ). This gives T1 values of 2.0 s for the
quaternary carbon C-f2 and 0.30 s for the anomeric CH carbon C-g1 (Fig. 5.16, inset).
There is a very dramatic difference between having no directly bonded protons (C-f2) and
having one directly bonded proton (all CH carbons). The directly bonded protons provide
a strong oscillating magnetic field to the 13C nucleus as the molecule tumbles, and those
molecules tumbling at the Larmor frequency (75 MHz) are stimulated to relax from the
β state to the α state. A slight difference in T1 can be observed between the CH carbons and
the CH2 carbons: at 0.2 s the three CH2OH carbons at the upfield end of the spectrum are
beginning to rise from the noise as positive peaks, whereas the C-g1 and CHOH carbons are
still nulled. This means that t½ is a bit shorter for the CH2OH carbons, and T1 = t½/0.693
is also shorter. This is because two protons at close range are a bit more effective than one
at stimulating T1 relaxation.

Figure 5.17 shows the 1H inversion-recovery experiment for sucrose. Recovery values of
0, 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, and 2.0 s were used, plotting the whole 1H spectrum for each
experiment. In the analysis of these data, we use the proton assignments for sucrose derived
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Figure 5.17

from the homonuclear decoupling experiment (see section 5.10 below). The residual water
peak (HOD in the D2O solvent, labeled “H”) does not show any recovery at all: at 18 Da it
is very small and has a very long T1. At the right edge of each spectrum is the singlet peak
for the added methanol reference (CH3OH, 32 Da, labeled “M”), which has recovered only
about 30% of the way from −Mo to Mo after 2 s, corresponding to a T1 value of about 6 s
(e−2.0/6.0 = 0.72). The T1 values for sucrose (C12H22O12, 358 Da) are all much shorter, in
keeping with the trend for small molecules of decreasing T1 with increasing molecular size.
Site-specific assignments for all of the sucrose resonances are determined below using the
homonuclear decoupling experiment. These allow us to look at differences in T1 relaxation
within the sucrose molecule. The fastest relaxing protons are the CH2OH protons: H-g6
and H-f6 (♦) and H-f1 (O). These can be seen rising above the baseline in the τ = 0.2 s
spectrum as two peaks (H-g6 and H-f6 on the left-hand side, H-f1 on the right-hand side).
We can estimate the time they cross zero (t½) as about 0.18 s, corresponding to a T1 value
of 0.18/0.693 = 0.26 s. The farthest downfield peak, H-g1 (�), crosses zero between 0.3
and 0.5 s, so if we use t½ = 0.4 s we can estimate T1 = 0.4/0.693 = 0.58 s. In the τ = 0.5
s experiment, we can see that the H-f3 doublet and the H-g3 triplet are negative, whereas
the H-f5/g5 multiplet, the H-f4 triplet, the H-g2 double doublet, and the H-g4 triplet are all
very close to zero. Thus T1 can be estimated to be 0.5/0.693 = 0.72 s for all five of these
resonances. H-f3 and H-g3 are the last of the sucrose resonances to cross zero with t½ of
about 0.75 s and T1 = 0.75/0.693 = 1.1 s:

g1 HOD f3 f4 f5/g5 g6/f6 g3 f1 g2 g4 MeOH

0.58 long 1.1 0.72 0.72 0.26 1.1 0.26 0.72 0.72 6.0 s
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Most of these differences can be explained by the number and proximity of nearby protons
in the sucrose structure. H-f3 has only one vicinal neighbor, whereas H-g3’s two vicinal
neighbors are both far away in a fixed anti relationship. This may explain their relatively slow
relaxation. H-g1 relaxes faster than the “pack” of –CH–O protons (f4, f5, g5, g2, and g4),
perhaps due to its proximity to the H-f1 CH2OH group. This is not evident in the structure
diagram, but the strong NOE observed between these two resonances (see below) suggests
that a conformation that places them close together may dominate. Finally, the CH2O
protons f1, f6, and g6 relax the fastest because of the very close proximity of a geminal
proton in a fixed geometric relationship. In all of these cases, we can see how molecular
tumbling rotates the vector between a pair of protons, causing each one to experience an
oscillating magnetic field due to the nuclear magnet of the other. For those molecules that
happen to be tumbling at the Larmor frequency at any particular moment, transitions are
stimulated that allow them to return to the equilibrium (Boltzmann) distribution between
the aligned (α) and disaligned (β) states.

What kind of information can we gain from T1 values? First of all, regardless of any
physical interpretation, we need to have some idea of T1 values to set up any kind of
repetitive scanning experiment because the relaxation delay must allow for reestablishing
the equilibrium Boltzmann population distribution before starting the next scan. In the real
world we usually do not wait as long as 5T1, and we get a “steady state” for each spin where
it recovers only partially and then gets hit again by the pulse. This means that positions
in the molecule with long T1 values, such as quaternary carbons, will have lower intensity
peaks than positions with short T1. Usually this does not affect proton integration because
all protons relax fairly rapidly, but at higher Bo field strengths (600–900 MHz), even the
proton T1 values can be long enough that you need relaxation delays of 2 or 3 s to get
accurate integration.

To understand the physical meaning of T1 values, we need to consider the mechanism of
longitudinal relaxation. As we saw above, the relaxation rate depends primarily on: (1) the
number, type, and proximity of nearby nuclear magnets (especially the strong 1H magnets)
within the molecular structure and (2) the percentage of molecules tumbling at the Larmor
frequency. In a practical sense, a few rules of thumb can be stated. For 13C nuclei, the effect
of directly bonded protons far outweighs the effect of any more distant nuclei, so that the
relaxation rate depends pretty much on the number of attached protons: CH3 groups have
the shortest T1 values, followed by CH2 groups and CH groups. Quaternary carbons, with no
directly attached protons, have very long T1 values because they experience only very weak
oscillating magnetic fields and therefore relax very slowly. In fact, the relaxation delay in
13C experiments is dominated by the need to allow time for the quaternary carbons to relax.
The majority of protons in organic molecules are bound to 12C rather than 13C, and therefore
experience no intense oscillating magnetic fields from directly bound atoms because 12C
nuclei are not magnetic. Protons are affected weakly by a large number of other protons
in their immediate vicinity. For small molecules, local motions of flexible groups within
the molecule can decrease the rotational correlation time, τc, leading to longer T1 values
than the rigid portions of the molecule. In a sense, the flexible portions are behaving like
smaller molecules (independent pieces) and thus have a wider distribution of reorientation
rates and a smaller percentage moving at the Larmor frequency.

Unpaired electrons produce much stronger magnetic fields than nuclei, so in paramag-
netic molecules this effect dominates and greatly reduces T1 values. These strong magnetic
fields have a much longer “reach” (20–30 Å), so even paramagnetic ions in solution can in-
crease longitudinal relaxation rates (reduce T1) of non-paramagnetic molecules. Transition



CONTINUOUS-WAVE LOW-POWER IRRADIATION OF ONE RESONANCE 181

metal ions such as Cr(III) or Cu(II) can be used in this way to shorten 13C T1 values and
speed up data acquisition. In medical NMR imaging, T1 values of water vary greatly in
different tissue types due to differing degrees of association with large biological molecules
and membranes, providing contrast in the images. Injectable contrast agents in MRI consist
of T1-increasing paramagnetic ions complexed to ligands with specific affinities for tissues
(e.g., tumors).

5.9 CONTINUOUS-WAVE LOW-POWER IRRADIATION OF
ONE RESONANCE

The following sections examine three techniques that all use low-power irradiation of a
proton resonance in a proton-observe experiment. Homonuclear decoupling involves irra-
diation at a proton peak during the acquisition period in order to eliminate a J coupling to
another proton resonance. This is similar to selective heteronuclear decoupling in that it is
used to identify J coupling relationships between nuclei. Presaturation and NOE difference
involve irradiation of a signal during the relaxation delay period, either to eliminate an un-
wanted signal (presaturation) or to observe the enhancement of z magnetization (Mz ) of
protons that are close in space to the irradiated proton (NOE difference). In either case
the purpose of the irradiation is “saturation”: to equalize the populations of the two energy
levels (spin states). All three of these experiments are being replaced by new methods using
shaped pulses and pulsed field gradients (Chapter 8): Selective 1D TOCSY for identifying
J coupling relationships, “Watergate” for solvent suppression, and selective 1D transient
NOE for identifying through-space relationships. Later on we will use the two-dimensional
(2D) equivalents of the homonuclear decoupling and NOE difference experiments, which
are known as COSY and NOESY, respectively (Chapter 9).

We saw in Chapter 1 how continuous low-power irradiation at a single frequency (the
exact frequency of one proton resonance in a spectrum) leads to net absorption of energy
by those spins. This happens because there are slightly more spins in the lower energy (α)
state to absorb “photons” of RF energy and jump up to the higher energy (β) state than
there are in the β state to undergo stimulated emission and drop down to the α state. But
this absorption of energy rapidly reduces the tiny population difference to zero, at which
point the rates of emission and absorption are equal. This state is called saturation, and
it differs from the situation after a 90◦ pulse because no coherence is produced and there
is no net magnetization at all. Spins are being promoted all the time during the irradiation
period and other spins are dropping down at the same rate, unlike the “starting gun” effect
of an RF pulse that gets all the spins moving in phase at the same moment. The relatively
slow (∼1 s) process of irradiation with low-power (<1 W) RF differs in another way
from the rapid and precise rotation that results from a short (tens of �s), high power (50–
300 W) pulse of RF energy: the irradiation is fairly selective, affecting only a narrow range
of frequencies around the exact frequency of the RF. The lower the RF power level used,
the narrower a band of resonances that is saturated. Hence we can use this technique to “wipe
out” the population difference (and hence the net magnetization) of just one resonance in the
spectrum. Once the saturation condition is established (�P = 0), any particular nucleus in
the ensemble is cycling between the α and β states, and the average time between transitions
depends on the amount of RF power used: for very low RF power, transitions are relatively
rare, but for higher power the spins are rapidly bouncing back and forth between the α and β

states.
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A word about RF power levels would be useful at this point. The amplitude of the RF
pulse can be set to a very wide range of values from very weak (“spin tickling”) to the high
power (“hard”) pulses we use to excite all of the spins of a particular type (e.g., 1H) in the
sample equally. The 90◦ pulse “width” is the time required for the pulse to rotate the net
magnetization by a 90◦ angle from its equilibrium position (+z axis) down to the x–y plane.
The sample magnetization rotates faster during a pulse of higher amplitude (higher power)
than during a “weaker” pulse, so the 90◦ pulse width depends on the pulse amplitude (the
“B1 amplitude”). One way to talk about power levels, then, is to simply specify the 90◦ pulse
width at that power level. You could say, “set the RF power level of the pulse so that the 90◦
pulse width for 1H is 100 �s” and anyone in the world on any spectrometer could duplicate
that power level, without reference to volts or watts or any electronic measurement. We let
the spins do the measuring. Having said this, we can give you an idea of the power levels
used for CW irradiation of protons. For NOE difference, a typical power level would give
a 30 ms 90◦ pulse, or 3000 times lower RF pulse (B1) amplitude than a “hard” (10 �s) 90◦
pulse. This is very low power, but we will be applying it for much longer (typically 1.0
or 1.5 s) than the hard pulse (10 �s). For homonuclear decoupling we need to have spins
bouncing back and forth rapidly between the α and β states, and this typically requires 10
times higher power, corresponding to a 90◦ pulse width of 3 ms. This is still 300 times
lower RF amplitude than the hard pulse. For presaturation of 90% H2O, a typical power
level corresponds to a 90◦ pulse width of 6 ms, or 600 times lower pulse amplitude than
the hard pulse. For waltz-16 heteronuclear decoupling, which must “cover” the entire 1H
chemical shift range (0–10 ppm) rather than just a single peak, and must overcome a much
large J value (1JCH ∼ 150 Hz), a power level is used that corresponds to a 100 �s 90◦ pulse,
only 10 times lower amplitude (100 times lower power) than the hard pulse.

Relative Relative
Experiment B1 amplitude RF power 90◦ Pulse

“hard” pulse 1 1 10 �s
Hetero-dec. (waltz-16) 1/10 1/100 100 �s
Homo-decoupling 1/300 1/90,000 3 ms
Presaturation (90% H2O) 1/600 1/360,000 6 ms
NOE Difference 1/3000 1/90,000,000 30 ms

The important point is that a much longer duration, much lower power pulse can give
selectivity of excitation, affecting only one resonance in the 1H spectrum if it is sufficiently
separated from other resonances in chemical shift. Very little RF power is required to saturate
a resonance (equalize populations), but a bit higher power is necessary for decoupling
because the spins must rapidly shuttle between the two spin states to give the “blurring” effect
which makes other spins blind to the J coupling phenomenon. Nonselective or “broadband”
decoupling (waltz-16 heteronuclear decoupling) requires much higher power levels, near
the limits set by amplifier and sample heating.

5.10 HOMONUCLEAR DECOUPLING

This traditional 1D NMR experiment involves selectively decoupling a proton from its J
coupling partners. This is accomplished by low-power irradiation at the frequency of the
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peak of interest in the 1H spectrum during the acquisition of the FID. The power level
required is a bit higher because the presaturation and NOE experiments need only enough
power to equalize populations, whereas the decoupling experiment requires enough power
to rapidly (relative to the “NMR timescale” 1/(2.2 J)) flip each spin at the selected fre-
quency back and forth between the upper and lower energy levels. As with heteronuclear
decoupling, the rapid flipping on the NMR timescale means that other protons that are
J coupled to this spin see an average magnetic field that is unaffected by the orientation
(α or β state) of the spin being irradiated. The selected spin is thus removed from the
coupling network, and any peak in the spectrum that is coupled to it will be simplified
by removal of that one splitting. For example, a doublet will become a singlet if the J
coupling is from the peak being irradiated, and a double doublet will become a doublet.
In the latter case, the coupling that is removed can be unequivocally assigned to the pro-
ton being irradiated and the remaining coupling must be due to some other proton in the
molecule. In some cases the decoupling power is insufficient to completely remove the
coupling and the apparent J value is reduced rather than being eliminated. This is the same
as the heteronuclear case where the reduced J value (JR) is a function of decoupler field
strength (Chapter 4, Section 4.4.2). For example, a triplet might be changed into a dou-
ble doublet with one small coupling due to the proton being irradiated. In general, any
change in a peak’s coupling pattern can be interpreted as a J coupling to the peak being
irradiated.

The results of a homonuclear decoupling experiment on sucrose are shown in Fig. 5.18.
The experiment is set up by acquiring a normal 1H spectrum and determining the exact
RF frequency of each peak (each resonance) we wish to “test” by CW irradiation during
the acquisition of the FID. The desired frequencies are actually offsets from a fundamen-
tal decoupler frequency; for example, an offset (Bruker: o2 for channel 2 offset; Varian:
dof for decoupler offset) of 132.6 Hz is added to the fundamental frequency (Bruker: BF2

Figure 5.18
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for base frequency, channel 2; Varian: dfrq for decoupler frequency) of 299.956 MHz to
get the exact frequency of the decoupler, 299.9561326 MHz (299.956 + 0.0001326). The
experiment is run as a series of 1H acquisitions yielding a series of FIDs, each using a
different decoupler offset. In Fig. 5.18, the top spectrum is a control spectrum using a
decoupler frequency away from any of the peaks, and the other spectra (a)–(f) are ac-
quired with different peaks selected. On the Varian, the dof values are loaded into an array
by typing in the values: dof = 1536.7, 467.8, 258.4, and so on. On the Bruker, a sepa-
rate text file is created, a frequency list, in which the o2 values are entered one line at a
time.

From a hardware standpoint, homonuclear decoupling is more challenging than presaturation
or NOE difference because we need to do the CW irradiation at the same time that we are
acquiring FID data. This is accomplished by shutting off (“gating”) the decoupler RF for a
brief period while each FID data point is being observed and digitized. Thus the send/receiver
(or T/R) switch is very busy going back and forth between transmitting the decoupling CW RF
signal and “listening” to the FID.

For sucrose, the experiment allows us to assign all of the peaks in the 1H spectrum.
As always, we have to start with some prior knowledge, based on a unique chemical
shift or coupling pattern. For the glucose part, we have H-g1, the only anomeric pro-
ton, which is farthest downfield because it is bonded to a carbon with two bonds to oxy-
gen. For the fructose part, we have H-f3, which is the only doublet peak (besides H-g1)
because it has a quaternary carbon on one side (C-f2). From these two pieces of infor-
mation we begin the process of assignment. Irradiation of H-g1 (Fig. 5.18(f)) converts
the double doublet at 3.5 ppm into a doublet. Thus the double doublet represents H-g2,
and the remaining large doublet coupling is the J coupling between H-g2 and H-g3. The
smaller coupling of the H-g2 double doublet is the small (axial-equatorial) coupling ob-
served in the H-g1 doublet (3.8 Hz). Irradiation of H-g2 (Fig. 5.18(b)) causes the triplet at
3.7 ppm to “collapse” into a broad doublet, as well as converting the H-g1 doublet into a
broad singlet. Thus the triplet at 3.7 ppm is H-g3. Irradiation at this position in turn causes
(Fig. 5.18(c)) the triplet at 3.4 ppm to collapse to a sort of ugly doublet, as well as simplify-
ing the H-g2 double doublet into a narrow doublet (glucose J1−2 remains). Now we select
H-g4 (Fig. 5.18(a)) and see the H-g3 triplet simplify to a broad doublet (3.7 ppm) and a
very subtle change in the overlapped region at 3.8 ppm, which is evident if you compare to
the control spectrum directly above it. So we can guess that the H-g5 resonance is buried in
overlap at about 3.8 ppm. This is the end of the trail for the glucose part. Now pick the H-f3
peak to irradiate at 4.16 ppm (Fig. 5.18(e)). The triplet at 3.99 ppm collapses very neatly
to a doublet, proving that this resonance is H-f4. No other peak is changed, confirming
that H-f3 is at the end of the “spin system,” next to a quaternary carbon. Irradiating H-f4
(Fig. 5.18(d)) we see a subtle change in the messy region at 3.84 ppm as well as the collapse
of the H-f3 doublet to a narrow pattern resembling the superposition of a doublet and a sin-
glet. The H-f5 proton can be assigned to an overlapped peak at 3.84 ppm. The only protons
that remain to be assigned are the CH2OH protons H-f6, H-f1, and H-g6. The singlet at
3.62 ppm integrates to 2 protons, so it must be H-f1. H-f6 and H-g6 should have couplings
to the proton at position 5. In addition, the NOE difference spectrum (see Fig. 5.30, below)
clearly shows an NOE from this singlet peak to H-g1 (across the glycosidic linkage) and to
H-f3 within the fructose unit. By process of elimination, the large overlapped peak at 3.76
ppm must be both H-f6 and H-g6.
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Homonuclear decoupling is pretty much a historical experiment, as newer experiments
such as 1D-TOCSY (Chapter 8) and 2D-COSY (Chapter 9) have replaced it.

5.11 PRESATURATION OF SOLVENT RESONANCE

Often the solvent gives rise to a very large peak in the spectrum that interferes with obser-
vation of the solute peaks. For example, many biological samples are run in 90% H2O/10%
D2O so that exchangeable peptide amide and nucleotide base N–H resonances can be
observed (the 10% D2O is for locking). In this case the water protons are present at a con-
centration of about 100 M (55 M × 2 × 0.90) and the solute may be at 1 mM or less—a
factor of 105 difference in concentration. Without some strategy to suppress the solvent
signal, the solute peaks in the spectrum will be very difficult to observe. The receiver gain
would have to be turned down dramatically so that the FID, which is dominated by the water
signal, will not overflow the digitizer. At a low receiver gain setting (low amplification of
the FID signal) the signal-to-noise ratio of the solute peaks is greatly reduced. Furthermore,
the solute portion of the FID can be lost in the accuracy limits of the digitizer because the
solvent signal is now filling the range of the digitizer. For example, with a 12-bit digitizer
a signal that is 0.024% (100%/212) or less of the maximum signal cannot be represented
in digital form because the entire signal is less than the least-significant digit (bit) of the
digitizer. A 1 mM solution in 90% H2O corresponds to a 0.001% solute signal, or 24 times
smaller than the smallest digital “currency” of the digitizer, if the water signal is just filling
the digitizer. A 16-bit digitizer improves the situation, but still provides only two thirds of a
bit to digitize the solute signal! Without active suppression of the water peak, you will not
see the solute at all.

There are many methods for suppressing a strong solvent signal, but we will consider
here only the simplest: presaturation. This technique involves irradiating at the precise sol-
vent frequency with a long (∼1 s) low-power signal to saturate (equalize populations of) the
solvent protons. Then a normal high-power (nonselective or “hard”) pulse is immediately
delivered to excite the solute nuclei and obtain an FID. The solvent protons have no popu-
lation difference (Mz = 0) and no coherence (Mx = My = 0) at the time of the high-power
pulse and therefore produce no magnetization in the x–y plane and no signal in the FID.

Presaturation (as well as homonuclear decoupling and NOE difference) requires that
you have two power levels of RF available at the proton frequency: high power (e.g.,
30–50 W) for the 90◦ nonselective “hard” pulse, and low power (<1 W) for continuous
irradiation. In newer models of spectrometers, this is done simply by switching the power
level (attenuation) of a single RF source from low power (during presaturation) to high
power (during the “read” pulse). Older spectrometers cannot switch power levels rapidly,
and some even use mechanical relays for power switching. The repeated switching of
a relay with every scan would burn it out in the course of a few experiments. For this
reason, the traditional way of presaturating the solvent resonance involves using the proton
decoupler (which produces low power RF at the 1H frequency during 13C experiments)
to deliver the low-power irradiation, and the broadband “transmitter” (the usual source of
high-power pulses in both 1H and 13C experiments) to generate the “read” pulse. These
two signals are electronically combined and delivered to the probehead. This allows the
frequency for presaturation to be set independently from the observe frequency (the pulse
and reference frequency—center of the spectral window). In a practical sense, this means
that the solvent resonance does not have to be placed at the center of the spectral window. The
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Figure 5.19

same hardware setup is used for NOE difference and homonuclear decoupling experiments.
Current spectrometers can switch both power level and frequency of the 1H channel in a
few �s or less without mechanical relays, so there really are no longer any hardware issues
for CW irradiation experiments.

Presaturation is very precise and cuts a razor-sharp swath out of the spectrum, but there
will be some attenuation of peaks near the solvent peak. For 90% H2O (10% D2O) samples
typically used in biological NMR, the method is very demanding because if the shimming is
not perfect, there will be broad components at the base of the water peak and these will not be
removed by the narrow slice of the presaturation. This leads to broad “humps” at the water
frequency that can still be very large compared to the solute peaks, usually caused by higher
order shim problems (Z4, Z5, and Z6: see Chapter 3, Fig. 3.5). With very good shimming, the
water signal appears as a sharp, negative dip between two humps (Fig. 5.19). Since even with
the best shimming the FID is dominated by the water signal, the quality of water suppression
can be measured by how high the receiver gain can be increased without overloading the
digitizer. Better water suppression means a less intense FID signal in the probe coil, and
more amplification is possible before reaching the digitizer. Good presaturation should
allow a receiver gain of 64 (Bruker) or 22 (Varian). Solute signals, such as amide HN
protons that exchange with water protons, can be strongly attenuated (“bleached”) because
these protons spend some of their time at the water resonance. Depending on the rate of
exchange with water, protons bound to nitrogen may be slightly attenuated or completely
wiped out. For this reason, solvent saturation methods involving gradients and selective
pulses (e.g., Watergate, Chapter 8) have largely replaced “presat.” It is still useful as a very
demanding test of the experimental setup: if the presat spectrum looks good, the shimming
must be excellent!

Figure 5.20 shows the 500 MHz presaturation 1H spectrum of a cyclic octapeptide in
90% H2O/10% D2O. H2O is used so that the exchangeable amide protons (CO-NH) can be
observed; in D2O they would be replaced with deuterium. The tiny remaining H2O peak
is seen as a sharp spike at 4.6 ppm with a broad signal around it. The tryptophane NH is
seen as a singlet at 10 ppm, and the region from 7.5–9.0 ppm contains most of the amide
NH resonances, as well as the histidine NH at 8.4 ppm. The aromatic protons fall in the
region of 7.0–7.5 ppm, and the eight CαH protons and the threonine CβH (CH(OH)CH3) are
near the water at 3.5–4.5 ppm. The 2.2–3.5 ppm region contains the other CβH protons and
the lysine CδH (CH2-NH3

+), and the farthest upfield region at 0.5–1.5 ppm has the CγH
protons and the methyl groups. The CαH protons near the water are somewhat attenuated,
as are some of the amide NH protons that exchange more rapidly with water.
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Figure 5.20

5.12 THE HOMONUCLEAR NUCLEAR OVERHAUSER EFFECT (NOE)

In the previous chapter the NOE was introduced but not explained in detail. Why should
equalization of the populations of one spin cause an enhancement of the population dif-
ference of a nearby spin? The key to understand this effect is to take a close look at the
longitudinal (T1) relaxation process, now in the context of two nearby protons within one
molecule. Consider two nonequivalent protons Ha and Hb in an organic molecule, with a
distance between them of less than 5 Å. If we saturate nucleus Ha by selective low-power
irradiation, it will be out of equilibrium because the populations in the α (lower) and β (up-
per) energy levels will be equal. From the point of view of Ha, Hb will be rotating around
it at the tumbling rate of the molecule. For those molecules that are tumbling at a rate very
close to the Larmor frequency (e.g., 300 MHz in a 7.05 T magnet), Ha will experience an
oscillating magnetic field that will stimulate it to drop from the β level to the α level. This
is the major mechanism for T1 relaxation; if it were the only mechanism, there would be
no nuclear Overhauser effect.

How can relaxation lead to an NOE? There is another pathway for relaxation that involves
both Ha and Hb changing spin state simultaneously. For example, if both Ha and Hb are in
the β state (overall state ββ), both can flip simultaneously to the α state (overall state αα).
This is called a double-quantum transition, and it is sensitive to magnetic fields oscillating at
twice the Larmor frequency (600 MHz in our case). Small organic molecules (MW < 1000)
tumble rapidly and have significant populations tumbling at both the Larmor frequency and
twice the Larmor frequency (Fig. 5.13), so this “cross-relaxation” (simultaneous spin flip)
is a significant relaxation pathway. Consider an extreme case where double-quantum relax-
ation is the only pathway available: after saturation of Ha, every time an Ha spin drops down
from the β state to the α state it drags an Hb spin (in the same molecule) down with it. This
is fine for the Ha spins—they are reestablishing the Boltzmann distribution by increasing
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Figure 5.21

Pα and decreasing Pβ—but as the Hb spins drop down they are actually “pumping up” the
Hb population difference beyond the equilibrium difference! In Fig. 5.21 (center) we start
the relaxation process (“mixing time”) with �P(Ha) = 0 and �P(Hb) = 8. If four of the Ha
spins drop down from β to α we get back to the equilibrium population difference of �P(Ha)
= 8, but we also drag four of the Hb spins down from the β state to the α state, giving a
population difference of �P(Hb) = 16, or twice the equilibrium population difference!
This means that Mz for the Hb resonance has increased from Mo (�P = 8) to 2Mo
(�P = 16) as a result of this cross-relaxation process. If we rotate the net magnetiza-
tion into the x–y plane with a 90◦ pulse and record a spectrum at this point, we would see
the Hb peak twice as large as it would be if we had not saturated Ha first. This is an exagger-
ated version of the simple NOE experiment for small molecules (ωoτc < 1): preirradiation
of one resonance leads to enhancement of the 1H peak for another resonance representing
a proton that is nearby (<5 Å) in space.

While we are looking at this figure, consider another extreme where the only route for
relaxation is the zero-quantum pathway, whereby Ha drops down from the β state to the
α state while “dragging up” an Hb spin from the α state to the β state. This transition is
stimulated by molecules tumbling at the zero-quantum frequency, which is just the difference
in frequency between the two spins: νo(Ha) − νo(Hb). This frequency is very low in the audio
frequency range for two protons, and for large molecules there are significant numbers of
molecules tumbling at this rate (Fig. 5.13). Again we start (Fig. 5.22, center) with �P(Ha) =
0 (saturation) and �P(Hb) = 8 (equilibrium) and allow Ha spins to drop from the β state
to the α state, each time pulling up an Hb spin from the α state to the β state. By the time
Ha has reached equilibrium (Fig. 5.22, right: �P = 8), we have destroyed the population
difference for Hb (�P = 0). The effect of irradiating Ha has been to reduce the intensity
of the Hb peak in the final spectrum. This is the case for large molecules (ωoτc > 1). This
might seem like a stupid thing to do, but we will see that it is the difference in peak intensity

Figure 5.22
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Figure 5.23

compared to a normal 1H spectrum that defines the NOE, and this difference can be either
an increase or a decrease. Either way it can be measured and quantified and interpreted in
terms of a close approach (<5 Å) of two protons.

Although this is a useful exercise, it is not really accurate to draw two energy diagrams—
one for Ha and one for Hb. Because the two spins are interacting in a single molecule, we
use an energy level diagram with four spin states for the two nuclei Ha and Hb: one with
both spins in the α state (“αα”), one with both spins in the β state (“ββ”), one with Ha in
the α state and Hb in the β state (“αβ”) and one with Ha in the β state and Hb in the α state
(“βα”). In an energy diagram the ββ state is highest in energy, the αα state is lowest, and the
αβ and βα states are in the middle at the same energy level (Fig. 5.23). The transitions can
be identified as four “single-quantum” transitions, where only one of the protons changes
state while the other remains the same (αβ → αα, βα → αα, ββ → αβ, ββ → βα), a
“double-quantum” transition, where both spins drop down (or move up) simultaneously
(ββ → αα), and a “zero-quantum” transition where one spins drops down and the other
spin moves up (αβ → βα). The single-quantum transitions are observable, so they can be
associated with the peaks in the spectrum. The lower right and upper left SQ transitions
give rise to the Ha peak in the spectrum because only Ha undergoes a transition and Hb
does not change. The lower left and upper right SQ transitions give rise to the Hb peak in
the spectrum, with Hb changing its spin state and Ha doing nothing. Note that the energy
difference for any SQ transition is just the energy difference for one proton to change state:
�E = hνo = hγBo/2π. The energy difference for a DQ transition is twice this amount,
and the energy difference for a ZQ transition is zero (actually it is h[νa − νb] due to the
slight difference in Larmor frequencies of Ha and Hb). We will be using this energy diagram
throughout the book whenever we discuss populations and NOE interactions in a two-spin
homonuclear (two proton) system.

If all four energy states had the same population, they would each have N/4 molecules
(or N/4 “spin pairs” Ha–Hb). But at thermal equilibrium the upper spin state (ββ) will lose
a few molecules to the middle states, leaving a slightly depleted population of N/4 − 2δ

(represented by two open circles in Fig. 5.24). The two middle levels (Ha = α, Hb = β

and Ha = β, Hb = α) will initially gain 2δ molecules from ββ but will lose these to the
lower state αα, leaving them with populations of N/4 (represented by the absence of any
circles). Finally, the lower spin state (αα) will gain 2δ molecules from the middle states
to get a slightly augmented population N/4 + 2δ (represented by two filled circles). The
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populations can be derived from the Boltzmann distribution using the energies: zero for the
αβ and βα states, +�E for the ββ state and –�E for the αα state, where �E is the energy
gap of a single proton transition. But it should make sense that the two middle states (αβ

and βα) have the same population because they are equal in energy, whereas the upper ββ

state is depleted a bit and the lower αα state’s population is enhanced by the same amount:
2δ (Fig. 5.24). Note that the population difference across each of the observable transitions
is exactly 2δ, with the lower energy level of each transition having the greater population.
The Ha transitions are those in which Ha changes from α to β or from β to α without any
change in Hb, and the Hb transitions are labeled where Hb changes and Ha remains the
same. This is the population diagram corresponding to a sample that has been placed in the
magnetic field and been given time to come to thermal equilibrium. Because z magnetization
(Mz ) is proportional to the population difference and is equal to Mo at equilibrium, we can
associate this single-quantum population difference 2δ with a z magnetization of +Mo.
Thus if we perturb the system at this moment with a 90◦ pulse and record an FID, the Ha
net magnetization vector will be rotated into the x–y plane where it will precess according
to its Larmor frequency, νa, and induce an oscillating and decaying voltage in the FID. The
same thing will happen to the Hb net magnetization, which will induce a decaying voltage
corresponding to a slightly different frequency, νb, in the FID. Fourier transformation of
this FID will give a spectrum with two peaks, one at frequency νa and one at frequency
νb. The height of each of these two peaks will be taken as our “control” experiment: 100%
because we started with an equilibrium distribution of populations (Fig. 5.24, right). By
executing a 90◦ pulse, recording the FID and doing the Fourier transform we effectively
“read out” the population differences across the single-quantum transitions. Any deviation
from the equilibrium population difference (2δ) across any of the SQ transitions will change
the z magnetization just before the pulse, which will change the length of the vector in the
x–y plane after the pulse and change the height of the peak in the resulting spectrum. For
example, if the populations are equal across the Ha transitions (�P = 0), the Ha peak
will disappear from the resulting spectrum. If, on the contrary, the populations are inverted
across the Hb transitions (�P = −2δ), the Hb peak in the spectrum will be upside-down
(−100% peak height).

Now let’s us have some fun by perturbing this equilibrium population distribution!
Selective saturation of the Ha transitions (αα → βα and αβ → ββ) by low-power



THE HOMONUCLEAR NUCLEAR OVERHAUSER EFFECT (NOE) 191

Figure 5.25

continuous irradiation at frequency νa (Fig. 5.25) will promote exactly δ Ha spins in each
transition, decreasing the αα state population from N/4 + 2δ to N/4 + δ (one filled circle)
and increasing the βα state population from N/4 to N/4 + δ (one filled circle). Likewise for
the other Ha transition (upper left) the αβ state population is decreased from N/4 to N/4 −
δ (one open circle) and the ββ state population is increased from N/4 − 2δ to N/4 − δ (one
open circle) as exactly δ spins are promoted to the higher level. At this point, the population
differences across the Hb transitions (αα → αβ and βα → ββ) are still all exactly equal to
2δ, but the Ha transitions have no population difference. If we were to execute a 90◦ pulse
and collect the FID at this point we would see a normal peak for Hb (�P = 2δ for both of
the Hb transitions before the pulse, so Mb

z = Mo) and no peak at all for Ha (�P = 0 for
both of the Ha transitions before the pulse, so Ma

z = 0). This makes sense because we have
saturated the Ha spins selectively without affecting the Hb spins.

Now suppose that double-quantum relaxation (ββ → αα) is the only mechanism of
relaxation. Of course, simple one-nucleus relaxation is also going on but because it does
not lead to an NOE we will ignore it. At this point, the population difference between the
αα and the ββ states is just 2δ (N/4 + δ vs. N/4 − δ). Because the equilibrium population
difference between the ββ and αα states is 4δ (Fig. 5.24), we will see δ molecules drop down
from ββ to αα to restore the equilibrium. The result is shown in Figure 5.26: the ββ state
population has been reduced to N/4 – 2δ and the αα state population has been increased to
N/4 + 2δ. Note that the Ha transitions are now halfway back to their equilibrium distribution
(population difference of δ versus equilibrium difference of 2δ). This corresponds to a
net z magnetization of Mz

a = Mo/2. More importantly, the Hb transitions now have a
population difference even greater than equilibrium (3δ versus an equilibrium population
difference of 2δ). The net z magnetization of the Hb spins is therefore Mz

b = 3Mo/2, or
50% enhanced from its equilibrium value. Thus the process of saturation of Ha followed
by allowing time for Ha to relax, with double-quantum relaxation predominating, leads
to a 50% NOE enhancement of Hb. Note that as our model becomes more accurate, the
theoretical maximum NOE enhancement drops!

Exercise: Go through the same thought experiment with relaxation occurring to completion
only by the zero-quantum pathway (αβ ↔ βα, the dominant pathway for a large molecule).
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What is the equilibrium population difference between αβ and βα? After cross-relaxation,
what is the percentage change in the z magnetization of Hb, and is it increased (enhanced) or
decreased?

Because z magnetization is not observable, we need to convert it to observable (x–y plane)
magnetization in order to measure the NOE enhancement. At this point a 90◦ hard pulse
on all protons will yield a spectrum in which the Ha peak is reduced to 50% of its normal
intensity and the Hb peak is enhanced by 50% of its normal intensity (Fig. 5.26, right).
Note that the amount of z magnetization gained by the Hb nuclei is exactly equal to that
lost by the Ha nuclei. We can say that the NOE experiment has transferred z magnetization
from the Ha to the Hb nuclei. This concept of magnetization transfer from one nucleus
to another is the key to understanding all 2D NMR experiments. Actual NOEs are quite
a bit less than 50% because cross relaxation by this pathway (ββ → αα) is not the only
relaxation pathway available. Also, the 1D NOE difference experiment does not instantly
saturate the Ha resonance and then stop irradiation and wait for cross relaxation to happen.
Instead, cross relaxation and normal relaxation are happening as the Ha transitions are being
irradiated, so that eventually a steady state is reached when all of these processes are going
on simultaneously and the population levels are constant. It is this steady-state population
distribution that is then sampled by the 90◦ “read” pulse. The enhancement in the Hb signal
observed is referred to as the “steady state NOE,” and it is typically in the range of a fraction
of a percent to 10%.

Our crude picture of the distribution of tumbling rates explains why zero-quantum relax-
ation dominates for large molecules because they have negligible populations tumbling at
the SQ (single-quantum or T1 relaxation) frequency (νo) or the DQ frequency (2νo = νa +
νb) and large numbers tumbling at the ZQ frequency (νa − νb). Effectively the SQ and DQ
frequencies are above the cutoff tumbling frequency for these large molecules (Fig. 5.13).
But for small molecules it looks like ZQ, DQ, and SQ would all have the same rates because
all three frequencies lie in the flat region of the tumbling rate distribution. But there are
inherent differences in the efficiency of ZQ and DQ relaxation relative to SQ relaxation,
and a more detailed mathematical analysis gives the following relative rates for ZQ, SQ,
and DQ relaxation:
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ZQ (αβ → βα) SQ (βα → αα, etc.) DQ (ββ → αα)

Small molecule: (ωoτc � 1) 2 3 12
Large molecule: (ωoτc � 1) 2 �1 �1

Each of these numbers is multiplied by 1/r6, reflecting the distance dependence of the
dipole–dipole interaction. Now we see that double-quantum relaxation does in fact domi-
nate the dipole–dipole relaxation of small molecules, and our cartoon model of relaxation
exclusively by the DQ pathway during the mixing time is not that far off. Likewise, the
assumption that only ZQ relaxation occurs for large molecules (see exercise above) is also
qualitatively correct.

5.12.1 NOE Difference

The NOE interaction between two protons in a molecule can conveniently be measured by
applying a low power, continuous-wave RF irradiation at the exact resonance frequency of
one nucleus (i.e., one peak in the spectrum: Ha) for a period of seconds (usually during the
entire relaxation delay). During the irradiation period, the NOE builds up at another nucleus
that is close (<5 Å) in space (Hb), meaning that its Mz value increases by a few percent
beyond Mo (Fig. 5.27). Eventually a steady state is reached and the Mz values of nearby
nuclei do not increase any more, whereas the Mz of the irradiated nucleus remains near zero.
At the end of the irradiation period (also called the “mixing time”), a 90◦ high power pulse
is applied to excite all of the nuclei in the sample, rotating all z magnetization down to the
x–y plane where it precesses and generates signals in the FID. The nucleus being irradiated
(Ha) gives essentially no signal because its Mz was near zero at the start of the 90◦ pulse,
and the nuclei that are close to it in space (e.g., Hb) give signals that are enhanced by a few
percent over their normal peak intensities. This difference in peak intensity is often difficult

Figure 5.27
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Figure 5.28

to detect directly, so normally a reference spectrum is collected in which the irradiation
occurs in a region of noise rather than on any peak in the spectrum. This reference spectrum
(which should be identical to a normal 1D spectrum) is then mathematically subtracted from
the NOE spectrum at every point to yield a difference spectrum. In the difference spectrum,
the peak that was irradiated will be upside down (zero minus a normal peak), peaks that
show no NOE enhancement will be missing (normal minus normal), and peaks that show an
NOE will appear as weak positive peaks (enhanced minus normal). This method is called
the NOE difference experiment.

An analogy to heat flow helps to explain how the experiment works. Consider a container
of water divided into two compartments by a glass partition (Fig. 5.28, top). The left-hand
side represents proton Ha and the right-hand side represents a nearby proton Hb. At the
start of the experiment (equilibrium), both compartments are at 25 ◦C, the temperature of
the surrounding water bath (the “lattice” temperature). Then we rapidly heat the left-hand
compartment (Hb) to 50 ◦C and hold it constant at that temperature for several minutes.
During this time, heat flows from compartment A through the glass sides of the container to
the environment (Ha’s T1 relaxation), but we keep adding heat to maintain the temperature
at 50 ◦C (saturation: continuous input of RF energy). Some heat also flows through the
partition to compartment B (cross-relaxation) and raises the temperature of compartment
B (NOE enhancement of Hb). As the temperature of compartment B rises, heat begins
to flow through the sides to the environment (Hb’s T1 relaxation), limiting the rise in
temperature of compartment B to a small amount. Eventually we reach a steady state where
the temperature in compartment B is no longer rising and the heat flow from compartment
A (cross relaxation) exactly equals the heat loss to the environment (Hb’s T1 relaxation).
The temperature in compartment B is steady at 30 ◦C (Mz of Hb is steady at 1.10 Mo).
At this point we measure the temperature in compartment B (90◦ pulse to “read” the Hb z
magnetization: the Hb peak is enhanced by 10%).
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The time course of these changes is shown in at the bottom of Fig. 5.28 for the heat
flow analogy. The temperature of compartment A rises very quickly from 25 to 50 ◦C, and
then the temperature of compartment B rises slowly to reach its steady-state value of 30 ◦C
(the “mixing time”). From the point of view of z magnetization, the CW irradiation quickly
reduces Mz of Ha from Mo to zero (Fig. 5.29). During the mixing time, the Mz of Hb “builds
up” from the equilibrium value of Mo to the steady-state enhanced value of 1.10 Mo. When
the steady state is reached, we sample the z magnetization with a 90◦ pulse, recording an
FID. The spectrum will show no peak for Ha (Ma

z = 0 before the pulse), and a 10% taller
than normal peak for Hb (Mb

z = 1.10Mo before the pulse). Note that for small molecules
(i.e., molecules for which ωoτc << 1) the effect of “heating up” Ha is actually to “cool
down” Hb, moving spins from the β state down to the α state and increasing the population
difference above the equilibrium value of 2δ. For this reason the small molecule NOE is
often referred to as a “negative” NOE. For large molecules, the effect is opposite: heating up
Ha leads to a loss of z magnetization (heating up) for Hb. We call this a “positive” NOE. For
“medium-sized” molecules (ωoτc ∼ 1, MW ∼ 1000 Da) the sign of the NOE crosses zero
and we see no NOE at all! We will see later on that there are other experimental techniques
available to get around this problem.

Any change in the experimental parameters, such as temperature, Bo field (lock feedback
loop variation), RF power level or phase coming from the amplifiers, or vibration, will
degrade the subtraction process because we are looking for very small differences in peak
intensities. For this reason, the NOE spectrum and the control spectrum are usually collected
in an interleaved manner: for example, eight scans with the decoupler frequency (Varian
dof, Bruker o2) set to the resonance of interest, eight scans with the decoupler set to
a region of noise, and then repeating this sequence as many times as required for the
desired signal-to-noise ratio. Each set of eight scans is added into the appropriate “NOE”
or “control” FID. In this way, the two spectra are acquired essentially simultaneously and
subtraction artifacts are minimized. The process can be expanded to include each peak in
the 1H spectrum and a single control frequency, giving a map of all NOE interactions in the
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Figure 5.30

molecule, which identifies all of the close approaches of one proton to another (distances
over 5 Å are generally too weak to be detected as an NOE). This NOE correlation map can
also be obtained by the two-dimensional NOESY experiment (Chapter 10). Artifacts are a
big problem with the NOE difference experiment, as with any subtraction experiment, and
currently the much cleaner transient NOE experiment is used with selective (shaped) pulses
and pulsed field gradients (PFGs). This technique will be discussed in Chapter 8.

Figure 5.30 shows the steady-state NOE difference spectrum of sucrose in D2O, selecting
the H-f1 singlet at 3.62 ppm for saturation. We can see that the crowded region around H-f1
is also affected to some extent, giving small negative peaks for H-g3 (triplet just downfield
of H-f1), for H-g6 and H-f6 (a bit further downfield) and for H-g2 (just upfield of H-f1).
Because these protons are partially saturated, they will also give NOE enhancement to the
peaks representing protons near them in space. This makes the data harder to interpret, so it
is best to select peaks that are clearly resolved and far from any other peaks in chemical shift.
In this case, the small negative peaks are so weak compared to the negative H-f1 peak that
these unwanted NOE interactions are probably not even measurable. We see very strong
NOE enhancements to H-f3 (doublet at 4.16 ppm, 5% peak area relative to −100% for
H-f1) and to H-g1 (7% peak area). The NOE to H-f3 is due to the cis-1,3 relationship
within the five-membered fructose ring, and the NOE to H-g1 is across the glycosidic
linkage from the fructose ring to the glucose ring. This type of NOE across a glycosidic
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Figure 5.31

linkage is extremely useful in establishing the linkage (connectivity of monosaccharides)
within an oligosaccharide. Before NMR was available, this kind of information had to be
obtained by a series of chemical protection and degradation steps to find which position
on each side was contributing to the glycosidic linkage. This NOE also indicates that our
structure diagram (Fig. 5.30) is probably not accurate as drawn: the fructose ring must
rotate around the glycosidic linkage to put the CH2 group of position f1 close to H-g1 in
the glucose unit. This illustrates how NOE measurements can be used to determine the
conformation of biomolecules.

What if we try the NOE experiment the other way around, irradiating H-g1 on the
other side of the glycosidic linkage? Figure 5.31 shows the result of this NOE difference
experiment. Note that H-g1 is cleanly selected, with no saturation of any other resonances in
the spectrum. Anomeric protons in sugars are useful “handles” for this kind of experiment
because they are rare (no more than one per monosaccharide) and shifted to another region
of the spectrum (4.5–6 ppm) away from the simple –CH–O protons on singly oxygenated
carbons. We see a strong and clean NOE enhancement of the H-f1 singlet at 3.62 ppm (3.5%
NOE—we divide by two because there are two protons in the H-f1 resonance), proving that
the NOE interaction is a mutual effect: if saturating Ha affects Hb, then saturating Hb should
affect Ha to the same extent. We see an even stronger NOE for the cis 1,2-related H-g2
resonance (14% enhancement). There are also some artifacts due to imperfect subtraction:
the H-f3 doublet at 4.16 ppm shows a “dispersive” line shape due to imperfect horizontal
alignment of the identical doublets in the two raw spectra (NOE and control). Subtraction
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then gives the “dispersive” appearance. The integral area is zero, so we know it is not a
true NOE. The H-f4 triplet at 3.99 ppm looks somewhat dispersive but is more positive
than negative. The peak area is positive, representing a 2% NOE enhancement. Thus H-g1
“talks” to both H-f1 and H-f4 across the glycosidic linkage, suggesting that the fructose
ring can adopt two different conformations relative to the glucose ring.

5.13 SUMMARY OF THE NUCLEAR OVERHAUSER EFFECT

1. Perturbation of the equilibrium population difference for one nucleus (increased
spin temperature) spreads over time to perturb the population difference (increase
or decrease the spin temperature) of other nuclei that are nearby in space. For small
molecules, increasing the spin temperature of one nucleus will decrease the spin tem-
perature of nearby nuclei (“negative NOE”). This leads to an enhancement of peak
intensities corresponding to the nearby nuclei. For large molecules, increasing the
spin temperature of one nucleus will increase the spin temperature of nearby nuclei
(“positive NOE”), leading to a reduction in peak intensity.

2. The NOE effect (perturbation of population difference in nearby nuclei) takes time to
develop—this process is called the NOE buildup. The time allowed for the NOE to
build up is called the mixing time and is on the order of magnitude of T1, or typically
hundreds of milliseconds (ms) for small molecules.

3. The heteronuclear NOE, for example, from 1H to 13C, is used to enhance the signal-
to-noise ratio of 13C peaks in the spectrum. All protons are irradiated equally and
simultaneously during the relaxation delay to “pump up” the z magnetization of 13C
above the equilibrium value of Mo. Theoretically this can triple the Mz of 13C.

4. The homonuclear NOE, almost always between two protons, is used to measure dis-
tances and determine stereochemical relationships. The NOE intensity (the percent
increase or decrease of z magnetization observed at a nearby proton) is proportional
to the inverse sixth power of distance between the two protons (1/r6), and is generally
too weak to be observed for distances over 5 Å.

5. There are two experimental methods for observing the NOE: steady-state NOE and
transient NOE. The steady-state NOE involves a long, continuous-wave irradiation
at the resonant frequency of the proton of interest, which equalizes the populations
(“saturation”). During this time, the NOE builds up and reaches a steady state with
the processes of NOE buildup and relaxation back to equilibrium in balance. The
transient NOE (Chapter 8) involves a sudden perturbation (usually by a selective
180◦ pulse) followed by a mixing time with no pulses. During the mixing period, the
perturbation propagates to nearby protons, changing their z magnetization. In both
cases, at the end of the mixing time a 90◦ pulse samples the z magnetization of all
nuclei, and enhancement or reduction of peak heights is observed in the spectrum.

6. The NOE is caused by dipole–dipole interaction (through-space) of two nuclear mag-
nets, modulated by the tumbling of the molecule in solution. The NOE is an effect of
mutual relaxation (or cross relaxation) of two nuclei. Mutual relaxation can occur in
two ways: zero-quantum (ZQ) relaxation involves a transition from the αβ state (one
spin up and one down) to the βα state (one spin down and one up); double-quantum
(DQ) relaxation involves a transition from the ββ state (both spins down) to the αα

state (both spins up). These transitions are driven by a population difference out of



SUMMARY OF THE NUCLEAR OVERHAUSER EFFECT 199

equilibrium (Boltzmann) for the two states, and are stimulated by molecular tumbling
at the frequency of the transition (νa − νb for ZQ and νa + νb for DQ) that leads to
an oscillating magnetic field at both nuclei whose amplitude is strongly dependent on
the distance between the two nuclei (overall inverse sixth power).

7. Longitudinal (population) relaxation of large molecules is dominated by ZQ relax-
ation, leading to a positive NOE (reduction of peak intensity). Small-molecule re-
laxation is dominated by DQ relaxation, leading to a negative NOE (enhancement of
peak intensity). This effect can be understood by a thought experiment in which the
mixing period of the NOE experiment consists exclusively of ZQ or DQ relaxation,
which goes to completion (equilibrium population difference between the two states)
before the 90◦ “read” pulse.

8. Molecules in the transition area of molecular weight (2000–4000 Da depending on
molecular shape, rigidity, and solvent viscosity) show little or no NOE. For these
molecules an alternative experiment called ROESY (rotating-frame Overhauser effect
spectroscopy, Chapters 8 and 10) is effective.

9. Conformational flexibility can lead to loss of NOE interactions because the observed
NOE is the weighted average over all conformations. A strong NOE resulting from
a close approach of two protons in one conformation may be “diluted” by larger
distances in other conformations to the extent that it is not observed at all. Rigid small
molecules (e.g., fused ring systems) and tightly folded large molecules (proteins and
nucleic acids) give the best NOE information. Flexible molecules, such as lipids,
peptides, and oligosaccarides, give few useful NOEs.

10. Long NOE mixing times can lead to spin diffusion, in which perturbation of one
proton leads to perturbation of a second proton, whose nonequilibrium population
now perturbs a third proton. The appearance of an NOE between the first and third
proton may be misinterpreted as a close (<5 Å) approach.

11. Organic chemists often misinterpret the NOE experiment by: (a) making distance
predictions based on two-dimensional drawings rather than energy-minimized three-
dimensional models, (b) testing only one isomer in a pair of stereo- or regioisomers,
(c) calculating distances from NOE intensities rather than from initial rates of NOE
buildup, or, (d) reading subtraction artifacts as NOE peaks. NOEs are always weak
and must be interpreted with great care.



6
THE SPIN ECHO AND THE ATTACHED
PROTON TEST (APT)

A major theme of this book is developing a “toolbox” of nuclear magnetic resonance (NMR)
pulse sequence building blocks. So far we have described a number of fundamental tools of
NMR experiments: pulses, continuous-wave (CW) low-power irradiation, and decoupling
sequences such as waltz-16. In this chapter we will see the value of a delay, a simple
waiting period of precise duration without any pulses, in building up a more complex
“building block.” The spin echo is a combination of pulses and delays that carries out a
specific function: It allows us to control the type of changes that occur (due to chemical
shifts only, J coupling only, or neither) during a precise period of time. We can “plug in” this
module anywhere we want in a complex pulse sequence to achieve these predictable effects.
Once we have used the vector model to understand what happens during a spin echo, we
will not have to go through this analysis again because we will see that the overall effect is
predictable in a simple way. Eventually, we will add other fundamental tools (e.g., selective
pulses, pulsed field gradients, and spin locks) and continue combining these into more pulse
sequence building blocks. As we learn how to predict the effects of these building blocks,
eventually even the most complex and advanced NMR experiments can be pulled apart into
a series of modules that we understand completely.

In this chapter, we will look at a one-dimensional technique for 1H-decoupled 13C
spectra that uses the phase of the 13C signal (positive or negative peaks) as a way to en-
code information about the number of protons attached to a carbon (Cq, CH, CH2, or
CH3). We saw that a fully coupled spectrum gives this information, but the sensitivity is
very low, and even with a simple molecule like sucrose, the overlapping multiplets are
difficult to sort out. By designing experiments that modulate the sign of a single 1H-
decoupled carbon peak (positive or negative), we can get this information without over-
lap, because the peak remains a singlet and does not increase its horizontal “footprint”.
This “editing” of the 13C spectrum according to the number of attached protons (Cq, CH,
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CH2, or CH3) is achieved with a ubiquitous building block of NMR pulse sequences: the
spin echo.

To understand these new building blocks, we need to look in detail at the motion of
the net magnetization vector during a delay as it precesses in the x–y plane. This motion
is called “evolution” because the net magnetization changes with time or “evolves” as it
rotates.

6.1 THE ROTATING FRAME OF REFERENCE

In a real sample, there will be more than one kind of nucleus of a given type. For exam-
ple, a sample of ethanol has two different kinds of 13C nuclei: the CH3 carbons and the
CH2OH carbons. Due to differences in the amount of nuclear shielding, these two kinds of
13C will have slightly different Larmor frequencies. For example, on a 300-MHz (7.05-T)
spectrometer we might have 75.000000 MHz as the resonant frequency (νo) of the CH3
carbon and 75.003375 MHz for the resonant frequency of the CH2OH carbon. Because
these differences are small (on the order of parts per million of the Larmor frequency), it
is convenient to view the NMR experiment from a rotating frame of reference, so that the
fundamental resonant frequency (near which all of the sample nuclei precess) is removed
from consideration. In our example, all 13C nuclei have a resonant frequency very near to
75 MHz, so we are not really interested in this; it is the differences in resonant frequency,
which are thousands of hertz at most, that are important. For example, the reference axes in
the rotating frame, referred to as the x′ and y′ axes, could be rotated counterclockwise (ccw)
about the z axis at a frequency of 75.000000 MHz. In this case, the 13C nuclei of the CH3
group of ethanol precess at exactly the frequency of rotation of the x′ and y′ axes, and the
net magnetization vector for these nuclei after a pulse will appear to stand still in the x′–y′
plane of the rotating frame of reference. The other 13C nuclei, corresponding to the CH2OH
group of ethanol, will give rise to a net magnetization vector that appears to rotate slowly
counterclockwise in the x′–y′ plane at a rate corresponding to the difference between its
Larmor frequency and that of the reference frequency (75.003375 − 75.000000 = 0.003375
MHz = 3375 Hz). This rotation will be counterclockwise in this case because the Larmor
frequency of the CH2OH group is greater than that of the CH3 group, but in other cases
it could be clockwise (cw). The rotation frequency we choose for the rotating frame of
reference establishes a reference frequency in the spectrum, which is just the center of the
spectral window. This is also the frequency of the radio frequency (RF) pulses we apply to
the sample and of the reference signal used in the detector of the NMR receiver. If a certain
type of spin (e.g., CH3 of ethanol) has a chemical shift at the exact center of the spectral
window, it is said to be “on resonance” and its magnetization vector will stand still in the
x′–y′ plane. All other nuclei will rotate at a frequency and direction determined by their
“offset”: the chemical shift (in hertz or radians per second) relative to zero at the center of
the spectral window.

Moving from the laboratory frame of reference to the rotating frame of reference is
exactly analogous to the detection step in the NMR hardware. If the reference frequency is
75.000000 MHz, the detection step subtracts this frequency from the free induction decay
(FID) frequency, which for the CH2OH carbon of ethanol is 75.003375 MHz. The resulting
analog signal, 3375 Hz, is the audio signal that we digitize and record as the FID. After
Fourier transformation, this leads to a single peak positioned 3375 Hz to the left of the
center of the spectral window in the NMR spectrum.
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Figure 6.1

For those of you who have studied physics, you may recognize that the rotating frame
of reference is an accelerating frame of reference, which is a major no-no if we want the
laws of physics to be preserved. A similar situation arises on the earth where all of us are in
a rotating frame of reference at the surface of the earth. The laws of physics will not work
in this accelerating frame of reference, so we have to invent fictitious forces called Coriolis
forces to correct for the discrepancies. For example, it is the Coriolis force that makes storm
systems rotate on the earth’s surface. In the NMR world, the sins of the accelerating frame
can be atoned for by inventing a fictitious magnetic field (or “pseudo-field”) that is opposed
to the applied magnetic field Bo (Fig. 6.1). This fictitious field has a strength of 2πνr/γ ,
where νr is the reference frequency. The faster we spin the x′and y′ axes in the rotating frame,
the larger is the pseudofield required to maintain the laws of physics. If the spin in question
is exactly on-resonance (2πνr/γ = 2πνo/γ = Bo), the fictitious field precisely cancels the Bo
field and there is no magnetic field; hence, any net sample magnetization in the x′–y′ plane
remains stationary. If the spin is not on-resonance, the Bo field is not perfectly canceled and
there remains a small residual field (Bres = Bo − 2πνr/γ = 2πνo/γ − 2πνr/γ = 2π(νo−
νr)/γ), along either the +z or the −z axis, which is proportional in strength to the difference
between the Larmor frequency (chemical shift) and the center of the spectral window. This
residual field makes the net magnetization vector rotate in the x′–y′ plane the same way the
Bo field makes the net magnetization rotate in the x–y plane of the laboratory frame:

νo = γBo/2π, �ν = νo − νr = γBres/2π = γ[2π(νo − νr)/γ]/2π

Note that we use �ν to refer to the rotating-frame frequency (sometimes called the resonance
offset). This is the difference between the Larmor frequency and the reference frequency:
νo − νr. The above equation shows that the same physical law expressed in the equation on
the left-hand side (precession rate is proportional to γ and to Bo) is operating in the equation
on the right-hand side (resonance offset is proportional to γ and to Bres) in the rotating
frame of reference, as long as we introduce the pseudofield. In the NMR spectrum, �ν is the
distance from the center of the spectral window to the NMR peak (Fig. 6.2), also represented
as � in units of radians per second. If the peak is in the downfield half (left half) of the spec-
trum, the Larmor frequency is greater than the reference frequency (νo > νr) and we have a
positive resonance offset (�ν > 0). This corresponds to the motion of the net magnetization
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Figure 6.2

vector in a counterclockwise direction in the rotating frame at the frequency �ν. If the
NMR peak is in the upfield half (right half) of the spectrum, the Larmor frequency is
less than the reference frequency (νo < νr) and we have a negative resonance offset
(�ν < 0). This corresponds to the motion of the net magnetization vector in a clockwise
direction in the rotating frame at the frequency −�ν. Remember that in the NMR spectrum
the frequency scale runs from right to left, opposite to every other graphical scale known to
man. In discussions of NMR theory, we will ignore the chemical shift scale (δ in ppm) and
view the NMR spectrum as a frequency scale (Hz) with zero at the center, negative frequen-
cies on the right-hand side, and positive frequencies on the left-hand side. The resonance
offset is the key to understanding what happens to the net magnetization vector during a
delay. We call this motion of the net magnetization vector in the x′–y′ plane of the rotating
frame of reference “evolution.” Sometimes to simplify the terms in equations, we will use
the upper case Greek letter omega to represent the resonance offset in radians per second:

laboratory frame: ωo = 2πνo, rotating frame: � = 2π�ν

6.2 THE RADIO FREQUENCY (RF) PULSE

The RF pulse is a short (∼10 �s) burst of a very high power (50–300 W) RF sig-
nal with a specific frequency, amplitude, and phase. The frequency is the same as the
reference frequency, νr. The ideal pulse turns on and off instantly and has constant amplitude
(Fig. 6.3), leading to a rectangular shape or envelope (“rectangular pulse”). The duration of
the pulse is called the pulse width, usually measured in microseconds. The phase of the pulse
is determined by its starting point in the sine function: starting at 0◦ the amplitude increases at
first from zero to maximum; starting at 90◦ it decreases at first from maximum to zero; start-
ing at 180◦ it decreases at first from zero to the negative peak; and starting at 270◦ it increases
at first from the negative peak to zero. This can be precisely controlled by the hardware and
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Figure 6.3

is programed into the pulse sequence. In the pulse sequence code that drives the hardware,
the pulse phase is referred to as 0, 1, 2, and 3 for 0◦, 90◦, 180◦, and 270◦, respectively. In the
probe, the pulse is applied to a tuned circuit consisting of the probe coil (an inductance) and
a variable capacitance that is used to tune the probe (Fig. 6.4). The actual circuit is much
more complex, with at least two variable capacitors, but the simple tuned LC circuit is
sufficient to understand how it works. The probe coil is saddle shaped, which is designed to
produce a magnetic field oriented perpendicular to the NMR tube axis, that is, to the z-axis.
When a pulse is applied to the coil, an oscillating magnetic field (B1) appears along an axis
in the x–y plane. For example, if this is aligned on the x axis, we have B1 oscillating in time
along the x axis: first zero, then growing to a maximum B1 field oriented on the positive
x axis, then decreasing to zero, then growing to a maximum B1 field along the negative
x axis, and then decreasing to zero again. This sequence repeats itself νr times per sec-
ond, where νr is the frequency of the pulse (e.g., 300 MHz for 1H excitation on a 7.05-T
instrument).

To get interaction with the individual magnetic vectors, which are precessing in a coun-
terclockwise path around the cones at the Larmor frequency, we need a B1 field that is also
rotating in a counterclockwise direction at the same frequency. We can divide the oscillating
B1 field into two components: one that rotates clockwise in the x–y plane at frequency νr
and the other that rotates counterclockwise in the x–y plane at the same frequency (Fig. 6.5).
The vector sum of these two rotating vectors is the B1 vector, which oscillates in amplitude
along the x axis alone. Of the two rotating components, only the counterclockwise one has
any effect on the precessing spins; the other one is effectively 2νr away from the resonant
frequency because it is rotating in the wrong direction. So we ignore this component and
from now on we will describe the RF pulse as a magnetic vector of constant magnitude B1,
which rotates counterclockwise in the x–y plane at the frequency νr. This explanation is
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Figure 6.4

formally required to come up with a rotating B1 vector, but you can forget you ever heard of
it if you like because we will always talk about the pulse as a rotating B1 vector from now on.

In the rotating frame of reference, the B1 vector always stands still because the reference
frequency and the pulse frequency are the same. Changing the pulse phase changes the
position of the B1 vector in the x′–y′ plane, so that a 0◦ phase corresponds to the x′ axis,
a 90◦ phase to the y′ axis, a 180◦ phase to the –x′ axis, and a 270◦ phase to the −y′ axis.
This ability to position the B1 vector wherever we want in the x′–y′ plane through the RF
hardware allows us to control precisely the effect of the pulse. We can also change the
amplitude of the pulse, which adjusts the length of the B1 vector and changes the strength
of the magnetic field it represents.

Figure 6.5
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6.3 THE EFFECT OF RF PULSES

In the rotating frame of reference, the effect of an RF pulse can be described in terms of the in-
teraction of the stationary magnetic field vector (B1) of the pulse and the net magnetization of
the sample. At equilibrium, the sample net magnetization vector lies along the +z axis. The
RF pulse magnetic field, which is referred to as B1 to distinguish it from the Bo field, exerts a
torque on the net magnetization vector that rotates it in a plane perpendicular to the B1 field
vector (Fig. 6.6). For example, an RF pulse with appropriate phase to place the B1 field vec-
tor along the x′ axis will rotate the net magnetization vector in a counterclockwise direction
from the +z axis toward the −y′ axis in the rotating frame. This rotation is the same as the
precession under the influence of the Bo field (νo = γBo/2π), except that it is much slower
because the B1 field is much weaker than Bo even for the highest power RF pulses. In the ro-
tating frame, for an on-resonance spin, the Bo field goes away and the only field affecting the
net magnetization vector is the B1 field. The net magnetization vector rotates faster if the B1
amplitude is greater. The rate of precession of the net magnetization vector around B1 can be
written as ν1 = γB1/2π. Be careful to recognize that ν1 is not the frequency of the pulse (that
would be νr), but rather the frequency of rotation of the sample net magnetization around
the B1 vector during the pulse. This rotation rate, γB1/2π, is often used as a measure of the
amplitude of the pulse because it is in more convenient units of hertz rather than tesla. This is
analogous to the way we measure Bo field strength in megahertz (γHBo/2π) rather than tesla.

The extent of precession of the sample net magnetization vector under the influence of
the B1 field depends on the duration of the pulse. The longer we leave the pulse on, the
farther the net magnetization vector rotates. A pulse that lasts just long enough to rotate
the net magnetization vector by an angle of 90◦ is called a “90◦ pulse.” A stronger B1 field
(higher RF power during the pulse) will rotate the net magnetization faster and will lead to
a shorter duration for the 90◦ pulse. If we are measuring pulse amplitude in units of hertz
(γB1/2π), we can calculate the 90◦ pulse width from the amplitude:

t360 = time to rotate one cycle aroundB1 = 1/ν1 = 1/(γB1/2π)

t90 = time to rotate one-fourth cycle around B1 = 1/(4 × ν1) = 1/(4γB1/2π)

Likewise if we calibrate the pulse width to give the maximum peak height in the spectrum
(90◦ pulse), we can calculate the pulse amplitude in hertz:

γB1/2π = 1/(4 × t90)

Figure 6.6
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Figure 6.7

All pulse rotations are counterclockwise when viewed with the B1 vector pointing toward
you.

As we look at the effect of pulses on the net magnetization vector, it is useful to keep
track of the population difference between the α and β states at the same time. This can be
done by drawing the energy diagram (two levels) and using filled circles to represent excess
population and open circles to represent population deficits relative to an equal division of
spins between the two energy states. For example, at equilibrium we have N/2 + δ spins in
the α state and N/2 − δ spins in the β state, where δ is a number much smaller than N (e.g.,
10−5 N). We can draw an open circle (−δ) in the upper energy level and a closed circle
(+δ) in the lower energy state (Fig. 6.7, left). Note that as we are only concerned with the
population difference �P (in this case Pα – Pβ = 2δ), we ignore the N/2 term in our circle
representation.

At the end of the 90◦ pulse with B1 on the x′ axis, the net magnetization is on the −y′
axis, and we have no z component. We will refer to this spin state as −Iy . Because the z
component of net magnetization results from the population difference between the α and β

states, we can say that there is no population difference at the end of a 90◦ pulse (Fig. 6.7).
With the 90◦ pulse, we have effectively converted the population difference into coherence.
If we record the FID right after this pulse, we would get a normal spectrum with a positive
absorptive peak.

A 180◦ pulse, which lasts twice as long as a 90◦ pulse, will rotate the net magnetization
from the +z axis to the −z axis (Fig. 6.7, center). We can call this spin state −Iz . There is
no coherence, and we would not observe any spectrum if we collected an FID at this point.
As net magnetization on the +z axis at equilibrium results from the slight excess of spins
in the lower energy (α) state, rotating this to the −z axis means that we have inverted the
population difference, so that now there is a slight excess of spins in the higher energy (β)
state. We have the same population difference but now it is negative: �P = Pα − Pβ = −2δ.
This is represented by a filled circle (N/2 + δ) in the higher energy (β) state and an open
circle (N/2 − δ) in the lower energy (α) state. We call this an “inversion” pulse because it
inverts the populations in the α and β states. The really bizarre thing is that the 180◦ pulse
does not simply move 2δ spins from the α to the β state; instead, it moves every single spin
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that was in the α state to the β state and every spin that was in the β state to the α state.
From the point of view of the spins, the entire world is turned upside down! The N/2 + δ

spins that were in the α state are now in the β state, and the N/2 − δ spins that were in the β

state are now all in the α state. This is truly an inversion pulse! This may seem like a trivial
point, but it will be very important later on when we talk about J-coupling relationships.

At the end of a 270◦ pulse, the net magnetization vector lands on the +y′ axis, opposite
to where it would be at the end of a 90◦ pulse. We call this state Iy . There is no z component,
so we have no population difference. If the 90◦ pulse gives a normal (positive absorptive)
peak in the spectrum, a 270◦ pulse will give an upside down peak. In this case we would
call the −y′ axis the “reference axis,” and any magnetization vector that is on this axis at
the start of the FID would give a normal (positive absorptive) peak in the spectrum. If the
magnetization vector is on the opposite axis (the +y′ axis) at the start of the FID, it will
give an upside-down (negative absorptive) peak. Vectors on the +x′ or −x′ axes would lead
to dispersive (up/down or down/up) peaks. We can choose which axis we want to use for
the reference axis, and this is referred to in the pulse program (the software that drives the
experiment) as the “receiver phase.” NMR data processing software can always change the
phase of peaks, but it cannot (or at least should not) change the relative phase of peaks, so
that if the 90◦ pulse on the x′ axis gives an upside-down peak, the 270◦ pulse on the x′ axis
will give a normal peak (i.e., we have changed the phase reference to the +y′ axis by phase
correction in software).

At the end of a 360◦ pulse, the net magnetization vector has made one complete rotation
around the B1 vector and lands on the +z axis, exactly where it started (Fig. 6.7, right).
The spin state is identical to the equilibrium state, Iz . We have the equilibrium (Boltzmann)
population distribution, represented with one open circle in the upper state and one filled
circle in the lower state. If we collect an FID right after the 360◦ pulse, we will see no
spectrum.

Pulse calibration is the process of collecting a series of FIDs, each with the pulse width
increased a little bit from the last one. For example, we might acquire 18 13C spectra starting
with a pulse width of 0 and increasing by 3 �s each time (i.e., 0, 3, 6, 9, 12, etc.) (Fig. 6.8).
The fifth spectrum (12 �s pulse) gives the maximum positive peak (90◦ pulse), the ninth
(24 �s pulse) gives a very weak negative peak—nearly a null (180◦ pulse), the 13th spectrum
(36 �s pulse) gives a maximum negative peak (270◦ pulse), and the second null (360◦ pulse)
occurs halfway between the 45 �s pulse and the 48 �s pulse. A very long relaxation delay
(70 s) is necessary to make sure we are starting with the equilibrium state (Mz = +Mo)
each time. It is important to understand that only one peak is shown in the spectrum, and
we are repeating the experiment each time with a new pulse width value, plotting it to the
right-hand side of the previous spectrum. As it is easier to pin down the null point exactly
rather than the maximum spectrum, we usually find the 180◦ pulse width and divide by 2,
or the 360◦ pulse width and divide by 4, to get the 90◦ pulse width. In this case, the 360◦
pulse can be interpolated as 46.5 �s, so the 90◦ pulse is 11.6 �s (46.5/4). The calibrated
90◦ pulse is always reported at a particular RF power setting, in this case 60 dB. Because the
90◦ pulse width depends on the B1 amplitude (RF power level), we need to specify that value,
or the calibration will be meaningless. The B1 field strength in hertz (γB1/2π) is 1/(4 × t90) =
1/(4 × 11.6 �s) = 1/(4 × 0.0000116 s) = 1,000,000/(4 × 11.6 s) = 1,000,000/(46.4 s) =
21,552 Hz or 21.552 kHz. This is the reciprocal of the 360◦ pulse: the rate of rotation of
the sample net magnetization vector around the B1 vector during the pulse (ν1). Note that
this is only 0.0287% (100 × 0.021552 MHz/75 MHz) of the Bo field strength expressed
in hertz for a 7.05-T instrument. Here we are comparing γB1/2π to γBo/2π, so we have
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Figure 6.8

to use γ for 13C, which gives us 75 MHz for γBo/2π on a “300-MHz” instrument. The B1
field (oscillating at 75 MHz and oriented along the x′ or y′ axis) is very small (short vector)
compared to the Bo field (static and oriented along the +z axis), but we can not get much
higher than this without heating the sample and/or burning up the amplifiers.

6.4 QUADRATURE DETECTION, PHASE CYCLING,
AND THE RECEIVER PHASE

The real and imaginary channels of the NMR receiver can be considered to record the x′
and y′ components of the net magnetization vector in the rotating frame: Mx and My . Thus,
if we use a 90◦ excitation pulse on the x′ axis, the net magnetization vector will rotate to
the −y′ axis and then undergo chemical shift evolution in a ccw direction (for peaks in
the downfield half of the spectral window) or in a cw direction (for peaks in the upfield
half). For example, for a positive rotating-frame frequency, the net magnetization vector
will move from the −y′ axis to the +x′, +y′, −x′ axis and back to the −y′ axis, as it rotates.
The x′ component (Mx ) will start at zero, then increase to a positive maximum as the vector
passes the x′ axis, then decrease to zero as the vector crosses the +y′ axis, and pass to a
negative maximum as it crosses the −x′ axis. This is shown in Figure 6.9, along with the
y′ component (My ), which starts at a negative maximum, decreases to zero, increases to a
positive maximum, and decreases to zero again in the same time period. If we see these two
waveforms, can we deduce the position of the net magnetization vector at the beginning of
the FID (the peak phase), as well as its direction of rotation (the sign of the peak frequency)?
First consider that we have only the real part of the FID (the Mx component): What can we
say about the sample net magnetization? It could be starting on the −y′ axis and moving
ccw (positive frequency), or it could be starting on the +y′ axis and moving cw (negative
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Figure 6.9

frequency). In both cases, we would see the same Mx waveform. So if we use the −y′
axis as our reference axis, we could draw the spectrum as a positive absorptive peak with
frequency (“chemical shift”) equal to +�ν, on the left-hand side of the spectral window,
or as a negative absorptive peak with frequency equal to –�ν, on the right-hand side of
the spectral window. As both are equally likely given the information available, the Fourier
transform includes both peaks with equal intensity in the spectrum (Fig. 6.9). If instead
we only have the imaginary part of the FID (My ), we could say that the net magnetization
definitely starts on the −y′ axis (positive absorptive peak), but we do not know whether
it moves ccw or cw, because both directions would give the same results in the My trace:
starting at a negative maximum, decreasing to zero, building to a positive maximum, and so
forth. So the Fourier transform would give a spectrum with positive peaks of equal intensity
at +�ν and −�ν. If we add these two spectra together, we get an idea of how quadrature
detection works: Combining what we know from the real part of the FID with what we
know from the imaginary part of the FID gives us a spectrum with a single positive peak at
frequency +�ν, and the “quadrature image” peak at –�ν is canceled out. This gives us a
sense of how the mathematics of the complex (i.e., real and imaginary combined) Fourier
transform works.



QUADRATURE DETECTION, PHASE CYCLING, AND THE RECEIVER PHASE 211

Another term for quadrature detection is “phase-sensitive detection,” and we can see
how the complex Fourier transform is truly sensitive to the phase of the NMR signal: It
can not only distinguish positive frequencies (ccw rotation) from negative frequencies (cw
rotation), but also tell on which axis the net magnetization started at the beginning of the
FID (corresponding to the phase of the NMR peak). In Figure 6.9 we saw how the ghost
image, or quadrature image, at −�ν in the spectrum was canceled out in the two spectra
obtained from Mx and My . Sometimes this cancellation is not perfect and we get a small
image, either positive or negative on the opposite side of the spectral window from our
peak. This is especially likely for a very intense peak in the spectrum. The most likely
cause of this artifact is that the two receiver channels, real and imaginary, have unequal
gain or amplification so that the negative peak and the positive peak at −�ν are not equal
in intensity. Consider, for example, that the imaginary channel has a gain 10% higher than
the real channel. We would then see a signal for Mx equal to sin(2π�νt) and a signal for
My equal to −1.1cos(2π �ν t), ignoring the decay of the FID. The center spectrum with
two positive peaks in Figure 6.9 would be 10% more intense than the upper one with one
positive and one negative peak, and in the sum the true peak at +�ν would have an intensity
of 2.1 whereas the quadrature artifact at −�ν would have an intensity of +0.1.

We could spend a lot of time adjusting and balancing the two receiver channels of
the spectrometer to get exactly the same gain, but there is a much simpler way to eliminate the
“quad” artifacts. We can acquire a four-scan spectrum, but with each scan we advance
the phase of the pulse, starting with a pulse on x′ (scan 1), moving ccw by 90◦ to a pulse
on y′ (scan 2), then ccw again to a pulse on −x′ (scan 3), and finally to a pulse on −y′ (scan
4). The table below shows the signals that we would observe for Mx and My for each of
these pulses. You should draw the three axes (x′, y′ and z) and verify for yourself that the
two components will vary as shown as the net magnetization vector rotates ccw in the x′–y′
plane after the excitation pulse.

Scan Pulse phase Vector starts on Mx My

1 +x′ −y′ sin(2π�νt) −1.1 cos(2π�νt)
2 +y′ +x′ cos(2π�νt) 1.1 sin(2π�νt)
3 −x′ +y′ −sin(2π�νt) 1.1 cos(2π�νt)
4 −y′ −x′ −cos(2π�νt) −1.1 sin(2π�νt)

Now we can construct a perfectly balanced real and imaginary FID from these signals
by combining all the sine functions into a real FID and all the cosine functions into an
imaginary FID:

real FID = Mx (1) +My (2) −Mx (3) −My (4) = 4.2 sin(2π�νt)
imaginary FID = My (1) −Mx (2) −My (3) +Mx (4) = −4.2 cos(2π�νt)

Now the two parts of the FID are perfectly balanced, regardless of the matching of gain
of the two receiver channels. This technique is an example of phase cycling, a general
way of eliminating artifacts by subtraction in the sum-to-memory as a number of scans are
acquired.

The trick of directing the Mx and My components of net magnetization to different data
tables in the sum-to-memory (real and imaginary sums) is a way of changing the reference
phase (also called the receiver phase or the observe phase). If we just add Mx to the real
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sum and My to the imaginary sum in the sum-to-memory, we say that the receiver phase
is −y′, and magnetization that starts on the −y′ axis will give rise to a positive absorptive
peak in the spectrum. If instead we subtract Mx from the real sum and subtract My from the
imaginary sum (as in scan 3 above), we say that the receiver phase is +y′, and magnetization
that starts on the +y′ axis will give rise to a positive absorptive peak. But we can also “swap”
the channels: If we add My to the real sum and subtract Mx from the imaginary sum (as in
scan 2 above), we say that the receiver phase is +x′, and net magnetization that starts on the
+x′ axis will give a positive absorptive peak. Finally, if we subtract My from the real sum
and add Mx to the imaginary sum (as in scan 4 above), we have receiver phase −x′, and
magnetization that starts on −x′ will give a positive absorptive peak. Thus, another way of
describing the phase cycle above is

Scan No. 1 2 3 4
Pulse phase +x′ +y′ −x′ −y′

M starts on −y′ x′ y′ −x′

Receiver phase −y′ x′ y′ −x′

In the phase cycle, the receiver “follows” the starting phase of the sample net magnetization,
leading to addition of four positive absorptive peaks. In pulse sequence programing, the +x′
axis is given a code of 0, +y′ is 1, −x′ is 2, and −y′ is 3, so we would say the pulse phase is
0 1 2 3 and the receiver phase is 3 0 1 2. The important point is that every time we advance
the phase of the pulse by 90◦, which advances the starting position of the net magnetization
by 90◦, we also advance the receiver phase (our point of view) by 90◦, so it looks the same
in each scan. But we are alternately exercising different physical receiver channels (Mx

and My ) so that any imbalances in the two channels will cancel out and there will be no
quadrature artifacts in the spectrum.

6.5 CHEMICAL SHIFT EVOLUTION

We can consider the detection coil as lying along the y′ axis of the rotating frame and
recording a voltage proportional to My , the y′ component of net magnetization. Of course,
the coil is not rotating at hundreds of megahertz, but the electronics involved in detecting
the FID signal and converting it to an audio signal are equivalent to placing the coil at a
stationary position in the rotating frame of reference. If we start the experiment with a 90◦
RF pulse that places the B1 field along the y′ axis, the net magnetization will be rotated to
the x′ axis and will start to precess in a counterclockwise direction at a rate corresponding
to its resonance offset �ν (or � in radians per second) relative to the center of the spectral
window (Fig. 6.10). This motion induces an RF signal in the probe coil, which corresponds
to a cosine function (Mx = +Mo, 0, −Mo, 0, etc., as the vector rotates) for the real audio
signal (Mx ) and a sine function (My = 0, +Mo, 0, −Mo, etc.) for the imaginary audio signal
(My ). Fourier transformation of this signal leads to a peak in the spectrum with the normal
absorptive lineshape.

Things get interesting if we insert a delay between the end of the 90◦ pulse and the
beginning of the FID. Because of the delay, the net magnetization recorded in the FID
will start at a different place in the x′–y′ plane due to precession during the delay. This
motion is called chemical shift evolution. If the delay is just long enough to allow the
net magnetization to precess from the x′ axis to the y′ axis, the real FID signal will be a



SCALAR (J) COUPLING EVOLUTION 213

Figure 6.10

negative sine (−sin) function (Mx = 0, −Mo, 0, +Mo, etc.) and the peak in the resulting
spectrum will have a dispersive lineshape in the absence of phase correction. A delay that
is twice as long will allow the magnetization to precess to the −x′ axis, which will give
a real FID that is a negative cosine (−cos) function (Mx = −Mo, 0, Mo, 0, etc.), leading
to a negative or upside-down absorptive line. In this case, we can say that the reference
axis is +x, so that magnetization starting on the +x axis at the beginning of the FID will
give a positive absorptive peak, and if we start with the spin state −Ix we will get an
upside-down peak.

The exact amount of rotation that occurs during the delay can be calculated in degrees
as 360(νo − νr)t, where νo is the resonant frequency in hertz (Larmor frequency) in the
laboratory frame, νr is the reference frequency in hertz (frequency of rotation of the axes in
the rotating frame, frequency at the center of the spectral window), and t is the length of time
of the delay in seconds. If the peak is in the upfield half of the spectral window, νo < νr and
the rotating-frame frequency (νo − νr) will be negative. The total rotation will be negative,
indicating a clockwise rotation looking down from the +z axis. If the peak is in the downfield
half, νo > νr and the rotating-frame frequency (or resonance offset) will be positive. Total
rotation in the above equation will be positive and the rotation will be counterclockwise.
For example, if the NMR peak is 75 Hz downfield of the center of the spectral window
(�ν = 75 Hz), to get a rotation of 90◦ we would have to insert a delay τ such that

360 (75 Hz)τ = 90; τ = (90/360)/75 = 0.25/75 Hz = 0.003333 s = 3.333 ms

Note that as Hz = s−1, when we divide by hertz we get seconds. With this delay, the net
magnetization will rotate from the x′ axis to the y′ axis, and the peak in the spectrum will
be dispersive (reference axis = x′).

6.6 SCALAR (J) COUPLING EVOLUTION

Now consider a two-spin system which is scalar (J) coupled, such as the 1H–13C pair in
chloroform (CHCl3). The 13C nuclei have two different resonant frequencies depending on
whether the attached 1H nucleus is in the α or the β spin state. In the absence of proton
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decoupling, the 13C spectrum will show a doublet with two peaks separated by the coupling
constant J. The population of 13C nuclei in the sample can be divided into two parts. One
half of the 13C nuclei are attached to a 1H nucleus in the α state, and the magnetization of
these 13C spins can be summed to give one net magnetization vector with a precession rate
�ν + J/2 (in hertz). The remaining half of the 13C nuclei are attached to a 1H nucleus in
the β state, and they add up to form another net magnetization vector that precesses at a rate
�ν − J/2. Of course, there are slightly more 13C nuclei in the H = α group, but the difference
is so small as to be insignificant in this analysis. To describe the motion of these two net
magnetization vectors, it is convenient to choose the rotation rate of the rotating frame of
reference to be νo, the chemical shift position of the 13C. This is the equivalent of placing
the center of the spectral window exactly between the two components of the 13C doublet
in the spectrum, so that �ν = 0 (“on resonance”). In this case, rotating-frame frequencies
for the two components of the 13C doublet are +J/2 for the H = α peak and −J/2 for the
H = β peak.

Consider the sequence shown in Figure 6.11, which consists of a 90◦ 13C pulse followed
by a variable time delay before the start of acquisition of the (13C) FID. The vector diagram
shows the x′–y′ plane, viewed from the +z axis (i.e., from above). At equilibrium, both net
magnetization vectors will lie along the +z axis. A 90◦ pulse on the −x′ axis of the rotating
frame will rotate both vectors to the +y′ axis. Both magnetization vectors will precess, but
the “β” vector will rotate with a velocity of −J/2 Hz (in a clockwise direction toward the
x′ axis) and the “α” vector will rotate with a velocity of +J/2 Hz (in a counterclockwise
direction toward the −x′ axis). After a delay of time 1/(2J) from the end of the 90◦ pulse,
the two vectors will be opposite to each other on the +x′ and −x′ axes. This state means that
the first half of the 13C nuclei, which are attached to protons in the α state, give rise to a net
magnetization vector that is 180◦ out of phase with the vector resulting from the other half,
which are attached to protons in the β state. This condition is called antiphase magnetization,
and it is crucial to many NMR experiments. We will see in the next chapter that this very
special antiphase state is a prerequisite for magnetization transfer, the process of making
the net magnetization “jump” from the 13C nucleus to the attached 1H. Collecting an FID
beginning with this antiphase state would yield a spectrum in which both of the components
of the 13C doublet are dispersive, but one component peak is opposite in phase relative to
the other (up-down vs. down-up). A 90◦ phase correction of this spectrum (i.e., changing
the phase reference from y′ to −x′) would yield a spectrum in which the H = α component
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is positive absorptive (“up”) and the H = β component is negative absorptive (“down”)
(Fig. 6.11, center spectrum). A further delay of 1/(2J), for a total delay of 1/J, causes
the two vectors to meet again along the −y′ axis. This state is called “in-phase” because
the two components have the same phase. Starting the FID at this point would yield an
upside-down (negative) absorptive doublet using the original phase reference (y′ axis).
A total delay time of 2/J would allow both magnetization vectors to precess in opposite
directions a full rotation, meeting back on the y′ axis. This in-phase state would lead to a
normal positive absorptive doublet in the spectrum.

It is important to recognize the difference between the terms absorptive and dispersive
on the one hand, and in-phase and antiphase on the other hand. An antiphase doublet
is sometimes confused with a dispersive peak because both have “up” and “down”
components. Absorptive and dispersive lineshapes are characteristic of a single resonant
frequency or “line” in a spectrum, and they can be interchanged by a 90◦ zero-order phase
correction (i.e., changing the reference axis by 90◦). In the vector model, using the y′ axis as
a phase reference, absorptive and dispersive lineshapes correspond to net magnetization on
the y′ and x′ axes, respectively, at the start of the FID. Thus, they differ only in the phase of
the NMR signal resulting from a single magnetization vector. In-phase and antiphase states
refer to the relative phase of the two components of a J-coupled doublet system (Fig. 6.12).
The antiphase state is one in which the two magnetization vectors of a doublet, which
correspond to the two lines in the spectrum (in the above 13C example H = α and H = β),
are directly opposite to each other in the x′–y′ plane. The in-phase state is one in which the
two component vectors are aligned. In the spectrum, an antiphase doublet cannot be phase
corrected to look like a normal doublet; if positive absorptive peak shape is achieved for
one component, the other will be negative absorptive (upside down). It is quite possible
to have a doublet that is in-phase absorptive, in-phase dispersive, antiphase absorptive, or
antiphase dispersive (Fig. 6.12).

Evolution (rotation of net magnetization in the x′–y′ plane) occurs during delays, and
the direction and speed of motion in the x–y plane depend on the resonant frequency of the
NMR line relative to the reference frequency (νo − νr). In general, when the NMR peak
is not on-resonance, there are two kinds of evolution. We think of the chemical shift as the
frequency of the whole resonance or peak due to a nucleus or group of equivalent nuclei,

Figure 6.12
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which is at the center of a symmetrical multiplet such as a doublet. Chemical shift evolution
is the movement of this central position in the x′–y′ plane during a delay—for a doublet this
position is exactly in the middle of the two magnetization vectors representing the α and
β components (“lines”) of the doublet. J-coupling evolution is the divergence of the two
vectors in a doublet away from this central position during the delay as they rotate at slightly
different frequencies. Eventually, they reach the antiphase state and begin to converge again
on the other side.

6.7 EXAMPLES OF J-COUPLING AND CHEMICAL SHIFT EVOLUTION

Consider the example of a 13C–1H pair with J = 150 Hz and 13C chemical shift of 51.5 ppm
on a Bruker DRX-600 instrument (Fig. 6.13). We know that the 13C Larmor frequency is
very close to one fourth of the 1H frequency (600 MHz), so the spectrometer frequency is
150 MHz (γC/γH = 1/4) and 1 ppm is 150 MHz × 10−6 = 150 Hz. If the center of the
13C spectral window is placed at 50 ppm, the rotating frame chemical shift for the doublet
(�ν) is 225 Hz (1.5 ppm downfield of the center, which is 0 Hz). The H = α line of the
13C doublet (in the absence of 1H decoupling) is at 225 + 75 = 300 Hz in the rotating
frame, and the H = β line is at 225 − 75 = 150 Hz. Immediately after a 90◦ pulse on the
y′ axis, both of the net magnetization vectors are on the x′ axis. After a delay of 0.8333 ms
(833.3 �s), which corresponds to 1/(8J), we can calculate the amount of rotation each vector
has experienced:

�(H = α) = 360◦ × 300 Hz × 0.0008333 s = 90◦(counterclockwise)
�(H = β) = 360◦ × 150 Hz × 0.0008333 s = 45◦(counterclockwise)

The angle between the two vectors is 45◦ and the center position (chemical shift position
of the doublet) has rotated 67.5◦ (360◦ × 225 Hz × 0.0008333 s) to find itself exactly
between the two vectors. We will represent this position with a dotted line (Fig. 6.13,
τ = 1/(8J)). Note that the H = α vector moves faster than the H = β vector because
the NMR line that corresponds to it is farther from the center of the spectral window.

Figure 6.13
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Both move counterclockwise, and they diverge from the center line even as the center line
itself rotates counterclockwise at a rate of 225 Hz (the “chemical shift” of the doublet).
After a total delay of 1.6667 ms (1/(4J)), the H = α vector is on the −x′ axis and the
H = β vector is on the y′ axis, with a 90◦ angle between them. After a total delay of
3.333 ms (the magic 1/(2J) value), the H = α vector has rotated 360◦ back to the x′ axis
and the H = β vector has rotated 180◦ to the −x′ axis. The pair is now in the antiphase
relationship, and the chemical shift position (dotted line) is on the −y′ axis, having rotated
three fourths of a full rotation in the counterclockwise direction. The chemical shift position
is not a magnetization vector, it is just a bookkeeping device to keep track of where the
vectors would be if they had not undergone J-coupling evolution (i.e., if they had not
diverged from each other during the delay). We can draw what the spectrum would look
like at each stage of evolution if we started recording an FID at that moment. Typically, we
choose the reference axis to be the one that would give positive absorptive peaks if there
were no delay: in this case, the x′ axis. After a 1/(4J) delay, the H = α line is upside down
(its vector is on the −x′ axis) and the H = β line is dispersive (its vector is on the y′ axis).
After a 1/(2J) delay, the H = α peak is positive absorptive and the H = β peak is negative
absorptive.

6.7.1 Experimental Example: 1H Observe with J-Coupling Evolution Only

The effect of J-coupling evolution can be observed directly using a sample of methyl iodide
(CH3I) in CDCl3, which is enriched in 13C to the level of 60% (Fig. 6.14). Now we are
looking at the 1H–13C one-bond coupling from the point of view of the three equivalent
protons, rather than from the point of view of 13C. In the 1H spectrum, we see a singlet at
the center for the 12CH3I peak (placed on-resonance, �ν = 0, and representing 40% of peak
intensity) and a doublet centered on the same chemical shift for the 13CH3I molecules (60%
of the sample, each peak 30% of the total intensity). If we observe 13C, we would see only

Figure 6.14
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the 13CH3I (60%) part of the sample, and the peak would appear as a quartet due to coupling
to the three protons, but observing 1H we see a doublet because each of the three equivalent
protons is coupled to only one 13C nucleus. If we insert a delay of duration τ between the
90◦ 1H excitation pulse and the start of the FID, we will see J-coupling evolution for the
13CH3I protons but the 12CH3I protons will not evolve. Let us put the 1H 90◦ pulse on
the y′ axis, so the two vectors representing 1H net magnetization (C = α and C = β) will
both be rotated by the pulse from the +z axis to the +x′ axis. We choose the +x′ axis as
our reference axis, so the FID with no delay (τ = 0, Fig. 6.14(a)) gives positive absorptive
peaks for both components, at +J/2 (C = α) and −J/2 (C = β) in the spectrum. The net
1H magnetization for 12CH3I is also rotated to the +x′ axis and gives a positive absorptive
peak in the spectrum at the center of the spectral window (�ν = 0). If we increase the delay
from zero to 1/(4J), the C = α component rotates counterclockwise (toward the y′ axis) by
an angle

rotation = �ν × τ = 1/(4J) × J/2 = 1/8 cycle = 45◦

The C = β vector rotates clockwise (toward the −y′ axis) by the same amount. The two
vectors have diverged (J-coupling evolution) to an angle of 90◦ between them but the center
position between them has not moved (no chemical shift evolution: the chemical shift is
on-resonance). The net magnetization for 12CH3I has not moved because it has a single
peak which is on-resonance. We see a positive absorptive peak at the center and the outer
peaks show some dispersive character, in opposite directions (Fig. 6.14(b)). Repeating the
experiment with a longer delay, t = 1/(2J), the C = α vector has now rotated by 90◦ and is in
the y′ axis, whereas the C=β vector has rotated 90◦ in the opposite direction and is on the−y′
axis. As the reference axis is +x′, both peaks are completely dispersive, but in the opposite
sense. The 12CH3I vector remains on the +x′ axis and still gives a positive absorptive peak
at the center (Fig. 6.14(c)). This is the antiphase state, which we always reach from the
in-phase state after J-coupling evolution for a period of time equal to 1/(2J). The two vectors
(C =α and C =β) have diverged to the maximum angle (180◦) and are opposite to each other
on the y′ axis. Increasing the delay to 3/(4J), we have a rotation of 135◦ for each vector, and
they have diverged to an angle of 270◦ between them. The C = α vector is halfway between
the +y′ and −x′ axes and the C = β vector is halfway between the −y′ and −x′ axes. In the
spectrum, both are nearly upside down, with some dispersive character in the opposite sense
(Fig. 6.14(d)). Finally, after a delay of τ = 1/J, each vector has rotated 180◦ in opposite
directions, meeting each other on the −x′ axis. The doublet is in-phase on the −x′ axis, which
is opposite to the reference axis (+x′), so the peaks are negative absorptive. The 12CH3I
peak is still positive absorptive at the center of the spectrum (Fig. 6.14(e)). The 1/J delay has
turned the 13CH3I doublet upside down without changing the 12CH3I singlet. We will see
that this reversal of sign for a doublet after a 1/J delay is the basis of the attached proton test
(APT).

The antiphase doublet (Fig. 6.14(c)) is dispersive because J-coupling evolution to the
antiphase state moves the vectors by 90◦, from the +x′ axis to the +y′ and −y′ axes. This
dispersive antiphase doublet can be phase corrected by moving the reference axis from the
+x′ axis to the +y′ axis (90◦ zero-order phase correction). Now the C = α peak is positive
absorptive and the C = β peak is negative absorptive (Fig. 6.15) and the central 12CH3I
peak is pure dispersive because the vector is on the +x′ axis and the reference axis is now
+y′ (90◦ phase error).
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Figure 6.15

We usually ignore relaxation during short delays (e.g., 1/(2J) is usually milliseconds
or tens of milliseconds) and consider it only when relaxation is essential to the experi-
ment (e.g., inversion-recovery or nuclear Overhauser effect (NOE) experiments, typically
hundreds of milliseconds or seconds for small molecules). Pulses are very short (tens of mi-
croseconds), so we do not usually worry about either evolution or relaxation during pulses.
Although pulses may look “fat” in pulse sequence diagrams, they are really much shorter
than most delays and their duration is not important in terms of evolution. Pulses lead to
rotation of the net magnetization vector around the B1 axis, always in the counterclockwise
direction.

6.7.2 Summary of Evolution

In the rotating frame of reference, the x′ and y′ axes are rotating at the frequency of the pulse
relative to the laboratory frame of reference. If the pulse frequency is not exactly equal to
the Larmor frequency (“off-resonance pulse”), then the sample magnetization vector will
not be stationary in the x′–y′ plane after a 90◦ pulse. The pulse frequency corresponds to
the center of the spectral window, so any peak that is not exactly in the center of the spectral
window will lead to a magnetization vector that rotates in the x′–y′ plane at a rate that is
equal to the distance (in hertz) between the peak and the center of the spectral window.
A peak in the upfield half of the spectral window will give rise to a magnetization vector
that rotates clockwise (negative frequency) in the x′–y′ plane, and a peak in the downfield
half of the spectral window will give rise to a magnetization vector that rotates counter-
clockwise (positive frequency) in the x′–y′ plane. A peak that is on-resonance (exactly at
the center of the spectral window) will give rise to a stationary magnetization vector in
the x′–y′ plane. The motion of the magnetization vector in the rotating frame is called
evolution.
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6.8 THE ATTACHED PROTON TEST (APT)

APT is a technique for 1H-decoupled 13C spectra, which uses the phase (normal or upside
down) of the 13C peaks as a way to encode information about the number of protons attached
to a carbon: Cq (quaternary carbon, no protons), CH (methine, one proton), CH2 (methylene,
two), or CH3 (methyl, three). These spectra are called “edited” because the phase (positive
absorptive or negative absorptive) is modified relative to a normal 13C spectrum in order to
encode additional information. APT gives all of the information of a normal carbon spectrum
with somewhat reduced sensitivity, and it tells you whether the number of attached protons
is odd (CH3 or CH) or even (CH2 or quaternary).

To illustrate the concept, Figure 6.16 shows the expected results of a normal 13C
spectrum and an APT spectrum of 4-hydroxy-3-methyl-2-butanone. The APT spectrum
shows all carbons including the quaternary C O and solvent carbons, and sorts the carbons
into categories of CH and CH3 (“up” peaks) and quaternary and CH2 (“down” peaks). Note
that sometimes APT spectra are presented “upside down” with CH and CH3 peaks “down”
and quaternary and CH2 peaks “up”, but the deuterated solvent peak (no attached protons)
tells us how to interpret it.

The APT spectrum of sucrose in D2O is shown in Figure 6.17. The quaternary
carbon (fructose C2) is upside down, as are the three CH2OH carbons (fructose C1 and
C6 and glucose C6). The remaining carbons are all CHOH carbons, with positive absorp-
tive phase. From the chemical shifts we can assign glucose C1 as the most downfield of the
CH carbons (anomeric carbon—two oxygens attached) and we can easily distinguish fruc-
tose C2 (anomeric and quaternary) from the CH2OH carbons (typical region 60–70 ppm).
Figure 6.18 shows the downfield region of the APT spectrum of cholesterol in CDCl3,
aligned with the 13C spectrum acquired with the same number of scans for comparison.
The CDCl3 solvent peak (1:1:1 “triplet”) is upside down at 77.0 ppm (technically, it is a
quaternary carbon because it has no attached protons), as is the quaternary olefinic carbon

Figure 6.16
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Figure 6.17

(C5, 140.8 ppm). The other olefinic carbon (C6, 122.0 ppm) is a CH and gives a positive
APT peak. The single oxygenated carbon (C3, CHOH at 72.0 ppm) is also positive (CH),
as are the three downfield CH carbons (C9, C14 and C17, 50–60 ppm) that are adjacent
to sp3-hybridized quaternary carbons (sterically crowded). The upfield region is shown in
Figure 6.19, also aligned with the 13C spectrum. The structural assignments (carbon num-
bers), which are derived from analysis of two-dimensional spectra, are also shown. In the
13C spectrum, there is a peak at 32.0 ppm that represents two overlapped carbons peaks:
a CH and a CH2. Because these have slightly different chemical shifts, the opposite sign
in the APT spectrum allows them to be clearly resolved. A broad peak at 42.3 ppm in the
13C spectrum represents two peaks that are not resolved: a CH2 and a Cq. These are also

Figure 6.18
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Figure 6.19

not resolved in the APT spectrum because both lead to negative peaks. In all, there are 13
positive peaks and 14 negative peaks (counting as two the broad peak at 42.3 ppm) in the
APT spectrum. This is consistent with the structure of cholesterol, which has 3 quaternary
carbons and 11 CH2 carbons (14 negative peaks), and 8 CH carbons and 5 CH3 carbons (13
positive peaks).

You might wonder why anyone would do a simple 13C spectrum when an APT spectrum
gives the same information (chemical shifts and intensities) plus the added distinction of
spectral editing (CH and CH3 opposite in phase to Cq and CH2). But the signal-to-noise
ratio is 45.0 for the simple 13C spectrum and 16.1 for the APT with the same number of
scans (Fig. 6.19); to get the same signal-to-noise ratio for the APT would require 2.5 times
as long an acquisition. The reduced sensitivity for APT is the result of T2 relaxation during
the long 2/J (13.33 ms) delay of the spin echo.

6.8.1 Understanding APT with the Vector Model

APT is a very simple and elegant method to distinguish the number of protons attached to
a carbon atom. Recall that in the rotating frame of reference, the net magnetization vector
stands still in the x′–y′ plane for resonance frequencies exactly at the center of the spectral
window (“on resonance”). Off-resonance lines give rise to magnetization vectors that rotate
in the x′–y′ plane at an angular velocity �ν, where �ν is the frequency offset (in hertz) from
the center of the spectral window. Peaks downfield of the center will rotate with a positive
angular velocity (counterclockwise from x′ to y′, −x′, −y′, etc.) and peaks in the upfield
half of the spectral window will rotate in the opposite direction (clockwise). In the APT
experiment, 13C magnetization is rotated into the x–y plane by a 90◦ 13C pulse, and then
allowed to precess (without 1H decoupling) for a short period of time equal to 1/J, where J
is the one-bond 1H–13C coupling constant (∼150 Hz). The effect of this precession period
is shown in Figure 6.20 for a 13C nucleus with a single 1H attached, assuming that the 13C
resonance frequency (center of the doublet) is exactly on-resonance (center of the spectral
window). The 90◦ 13C pulse (on the y′ axis) rotates the 13C z magnetization onto the x′
axis of the rotating frame of reference. The downfield component of the 13C doublet, which
arises from 13C nuclei attached to 1H nuclei that are in the α state, begins to rotate in the
x′–y′ plane counterclockwise (ccw) toward the y′ axis with angular frequency J/2 in hertz.
The upfield component of the 13C doublet, which arises from 13C attached to 1H nuclei
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Figure 6.20

that are in the β state, rotates in the opposite direction (cw) in the x′–y′ plane toward the
−y′ axis with angular frequency −J/2 in hertz. After a period of time τ equal to 1/(2J), the
H = α vector is on the y′ axis and the H = β vector is on the −y′ axis; this is the antiphase
state. After a period of time τ equal to 1/J, both components have rotated exactly 360◦×
J/2 × 1/J = 180◦, meeting at that moment on the −x′ axis. If we begin acquisition at this
point, the FID will be exactly 180◦ out of phase from a normal FID acquired without the
1/J time delay and will yield an upside-down doublet in frequency domain (reference axis
= +x′). If we apply 1H decoupling during the acquisition of the FID, the two components
(H = α and H = β) now have the same resonant frequency and we observe a single upside-
down peak at the center of the spectral window. A quaternary carbon (on-resonance) has a
single magnetization vector that will not budge from the x′ axis during the whole 1/J delay
period and will give a normal spectrum with a positive peak (Fig. 6.21). A 13CH2 group will
give a triplet 13C spectrum (Fig. 6.22). With the central peak of the triplet on-resonance,
the downfield component of the triplet (with attached 1H nuclei H1 = α, H2 = α) rotates

Figure 6.21
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Figure 6.22

with angular f requency J Hz (ccw) whereas the central peak (attached 1H nuclei αβ or βα)
will remain on the y′ axis (on-resonance) and the upfield component (1H nuclei ββ) will
rotate with angular frequency −J Hz (cw). Note that each attached proton in the α state
leads to an increase in the resonant frequency of the 13C nucleus (downfield shift) of J/2 Hz,
and each attached proton in the β state leads to a decrease in resonant frequency (upfield
shift) of J/2 Hz. We are assuming that the two protons are equivalent, so the effect of each
proton is the same (13C–H1 coupling = 13C–H2 coupling) and they cancel out if one is α

and the other is β. After a period of time τ equal to 1/(2J), the two outer peaks (αα vector
and ββ vector) will have traveled 180◦ (J × 1/(2J) = 1/2 cycle) in opposite directions to
meet on the −x′ axis, whereas the inner peak (αβ/βα vector) remained stationary on the x′
axis. After a total delay of 1/J, both off-resonance components will have made a complete
rotation (360◦ and −360◦) back to the positive x′ axis, so that all three components of the
triplet will give positive peaks after acquisition and Fourier transform. With 1H decoupling,
the 13C triplet will “collapse” into a single on-resonance positive peak. Similar arguments
can be used to show that a 13C quartet (13CH3 group) will end up with all four components
on the −x′ axis after a period of time 1/J (Fig. 6.23). The outer lines ααα (three times J/2
downfield shift) and βββ (3J/2 upfield shift) rotate 270◦ (3J/2 × 1/(2J) = 3/4 cycle) in a
delay of 1/(2J), with the ααα vector rotating ccw from +x′ to +y′, −x′ and finally to −y′.
The βββ vector rotates cw at the same rate to −y′, −x′ and ending at +y′. After another
1/(2J) period, the ααα and βββ vectors rotate another 3/4 turn: ααα from −y′ ccw to x′, y′,
and −x′ and βββ from +y′ to +x′, −y′, and −x′. Thus, after a total delay of 1/J, both of
the “outer line” vectors are on −x′. The “inner line” vectors correspond to the line at +J/2,
composed of all 13C nuclei with two Hs in the α state and one in the β state (ααβ, αβα,
and βαα), and the line at −J/2, composed of all 13C nuclei with one H in the α state and
two Hs in the β state (ββα, βαβ, and αββ). In each case, the two opposing 1H spins cancel
out and only the effect of the remaining one is observed, leading to a shift of J/2 Hz from
the chemical shift position of 13C. The vector corresponding to the +J/2 line behaves just
like the H = α vector in the CH case (Fig. 6.20) and moves to the +y′ axis after τ = 1/(2J)
and to the −x′ axis after τ = 1/J. The vector with frequency −J/2 moves to the −y′ axis
after τ = 1/(2J) and to the −x′ axis after τ = 1/J. Thus, at the end of the 1/J delay all four
vectors are on the −x′ axis, leading to an upside-down quartet in the 13C spectrum. With 1H
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Figure 6.23

decoupling, we have an upside-down (negative absorptive) singlet at the center of the spectral
window.

With this simple process, we have encoded information about the number of attached
protons into the phase of the 13C peak. Proton decoupling during the acquisition period will
give a spectrum with single peaks for each carbon resonance, pointing either up or down
according to the number of attached protons.

Angular Frequency Rotation in cycles
Group Pattern in hertz after τ = 1/J Axis Phase

C (quaternary) Singlet 0 0 +x′ Positive
CH Doublet J/2, −J/2 0.5, −0.5 −x′ Negative
CH2 Triplet J, 0, −J 1, 0, −1 +x′ Positive
CH3 Quartet 3J/2, J/2, −J/2, −3J/2 1.5, 0.5, −0.5, −1.5 −x′ Negative

If we choose the +x′ axis as our reference, we will have positive peaks for the Cq and
CH2 groups, and negative peaks for the CH and CH3 groups. Usually, the APT spectrum
is phased the other way, using the −x′ axis for the reference axis, so that the CH and CH3
peaks are positive and the Cq and CH2 peaks are negative.

There is, however, one very important assumption we have made that is not practical: The
carbon resonance was assumed to be on-resonance. Obviously, we cannot guarantee this
for all carbon resonances in a spectrum because different 13C peaks have different resonant
frequencies. What happens if the carbon chemical shift is not at the center of the spectral
window? The magnetization, which starts on the y′ axis, will precess in the x–y plane at an
angular frequency �ν, where �ν is the position of the 13C resonance relative to the center
of the spectral window on a hertz scale. Components of the multiplet will rotate a little faster
or a little slower relative to the central component; for example, the three components of a
triplet will rotate at angular frequencies �ν + J, �ν, and �ν − J. This additional rotation
due to the chemical shift (�ν) will affect the phase of the magnetization when acquisition
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is started, and the phase information of interest, which is determined by the number of
attached protons, will be hopelessly lost in the jumble of chemical shift effects. What we
need is a trick that will allow the J-coupling precession (“evolution”) to proceed but will
somehow cancel out the effect of the chemical shift evolution. In other words, we need some
control over what kind of evolution occurs during a delay. Such a trick exists, of course,
and it is called the spin echo.

6.9 THE SPIN ECHO

The spin echo is one of the fundamental building blocks of pulse sequences and is used in a
variety of 1D and 2D experiments. Consider first a 13C spectrum with three peaks, each one
representing a separate 13C position in the molecule (singlet). The first half of the spin-echo
sequence is very much like the primitive sequence described in Figure 6.11: a 90◦ 13C pulse
puts the sample magnetization on the y′ axis in the rotating frame and a delay of duration
τ follows. The magnetization vectors of the three 13C resonances in the sample will “fan
out” in both directions away from the y′ axis with angular frequencies �ν depending on
the resonance offset �ν of each NMR peak relative to the center of the spectral window
(Fig. 6.24). Then a 180◦ 13C pulse is applied along the y′ axis of the rotating frame. This
rotates all three of the magnetization vectors in the x–y plane to the opposite side of the y′
axis. Essentially, if you view all of the magnetization vectors as lines radiating out from
the center of a pancake, you are flipping the pancake along the y′ axis. Now a delay of the
exact same duration τ follows. Precession continues, with each carbon resonance rotating
in the same direction and velocity as before, depending on its resonance offset (position
of the peak in the spectrum). Because the two delays are of the same length, all of the
magnetization vectors will be exactly aligned along the y′ axis at the end of the second

Figure 6.24
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Figure 6.25

delay (Fig. 6.24, right). This is analogous to a foot race around a circular track. The starting
gun is fired; the runners fan out according to each runner’s characteristic speed. After a
certain period of time τ, the gun is fired again and all of the runners turn around and run in
the opposite direction. As long as all runners maintain the same characteristic speeds in the
second half of the race, all of them will reach the starting line at the same time, exactly 2τ

after the start of the race. It is this coalescence of all the runners (or magnetization vectors)
at the starting point at the end of the 2τ period that is referred to as the “echo,” because
it bounces back and reappears after a specific length of time. The spin echo is sometimes
described as “time reversal”: With the spin echo we have reversed the effects of chemical
shift evolution, effectively making time stand still for a period of time 2τ. The second half of
the echo (second τ delay) is sometimes called the “refocusing” period because the chemical
shift effects are focused back to the starting axis.

Consider the example of Figure 6.13 once again using a simple 13C spin-echo sequence
(Fig. 6.25) with the delay τ set to 1/(8J). We saw how the initial 90◦

y pulse on the 13C
channel rotates the two 13C net magnetization vectors (H = α and H = β) representing the
two components of the 13C doublet from the +z axis (equilibrium) to the +x′ axis. After a
delay of 1/(8J), the H = α vector has rotated one-fourth turn ccw and lies on the +y′ axis,
whereas the “slower” H = β vector has rotated only 45◦ and lies between the +x′ and +y′
axes (Fig. 6.26(c)). If we apply the 13C 180◦ pulse now (τ = 1/(8J)) on the +x′ axis, the
H = α vector is rotated to the −y′ axis and the H = β vector ends up between the +x′ and
–y′ axes (Fig. 6.26(d)).

It is very important to note that a 180◦ pulse (sometimes called an “inversion” pulse) does not
always move a vector exactly to the opposite side of the x′–y′ plane! The H = α vector in this
case sweeps out a plane (the y′−z plane) as it rotates up to the +z axis and down to the −y′

axis, but the H = β vector sweeps out a cone as it rotates up to halfway between the +x′ and
z axes and down to halfway between the x′ and −y′ axes. To get this concept clear you might
want to think of the B1 vector (the pulse) as a physical object, an “axle” or broomstick glued to
the net magnetization vector, another broomstick. The pulse “twists” the B1 vector (the axle)
on the x′ axis by a counterclockwise rotation of 180◦, whereas the net magnetization vector
is dragged along because it is physically attached. If the B1 vector forms a 90◦ angle with the
net magnetization, the twisting moves the net magnetization to the opposite side—in this case
from the +y′ axis to the −y′ axis. But if the net magnetization is at a different angle to B1—45◦

in this example—it rotates in a conical path, reversing the sign of its y′ axis projection without
changing the x′ axis projection at all. In the extreme case where the net magnetization is on the
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Figure 6.26

same axis as the B1 vector (in this case, on the +x′ or −x′ axis), it is not affected at all by the
pulse, as we can visualize a broomstick colinear with the B1 broomstick being twisted but not
changing its direction as the B1 “axle” is rotated. To make this distinction, we refer to a 180◦

pulse as an “inversion” pulse only when the net magnetization moves from +z to −z, and we
use the term “refocusing” pulse when the net magnetization starts and ends in the x′–y′ plane.

Continuing with the simple spin-echo sequence (Fig. 6.25), during a second 1/(8J) delay
the H = α vector will rotate another one-fourth turn ccw, ending on the x′ axis, and the H = β

vector will rotate by 45◦ ccw, also landing on the x′ axis (Fig. 6.26(e)). This is exactly where
we started after the initial 13C 90◦ pulse, with both vectors on the x′ axis: the simple spin
echo refocuses both the J-coupling evolution (divergence of the α and β components) and
the chemical shift evolution (rotation of the center position—the dotted line representing
the 13C chemical shift of the doublet). Basically, we have wasted a period of time equal to
1/(4J) and nothing has happened! This might seem like a pointless exercise, but later we
will see that there might be things you need to do during that delay, and the spin echo is a
way to get everything back to where you started.

Applying this to the APT experiment, we could solve the problem of chemical shift
differences affecting the final phase by applying a 180◦ pulse in the middle of the 1/J delay
period, effectively making a spin echo with delay τ = 1/(2J). The chemical shift evolution
that occurs during the first half is now refocused in the second half, and we do not have to
require that the 13C peak be on-resonance. But the desired information would also be lost,
because the evolution of magnetization vectors under the influence of J coupling would
also be canceled in the second half of the spin echo! Each line of a 13C multiplet (doublet,
triplet, or quartet) would undergo the same evolution and “de-evolution” described above
and end up on the same axis at the end of the spin echo. We can, however, turn J coupling
on and off at will using the proton decoupler. By using a spin-echo delay of τ = 1/J and
turning the decoupler on during the second half of the spin echo only, we generate the
desired phase encoding due to J coupling during the first half of the spin echo and refocus
the chemical shift effects during the second half, when each 13C resonance behaves as a
single line centered at the chemical shift position (Fig. 6.27). Because the proton decoupler
eliminates the J couplings for the second half of the spin echo, the divergence of multiplets
that occurred during the first half does not get refocused during the second half. Note that the
1H decoupler is on all of the time except for the first 1/J delay of the spin echo: During
the relaxation delay, the decoupler is “pumping up” the 13C z magnetization above Mo due
to the heteronuclear NOE, and during the acquisition of the FID the decoupler is collapsing
the 13C multiplets into singlets so that we see only one line for each 13C resonance.

Often a second, short spin echo is added to this sequence so that pulses shorter than 90◦
(e.g., 30◦) can be used for the first pulse. A starting pulse of less than 90◦ is desirable to
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Figure 6.27

allow for shorter relaxation delays, but in the simple APT sequence (Fig. 6.27) the sample
magnetization left on the z axis is inverted by the 180◦ pulse of the spin echo and a long
relaxation delay would be required to bring it back from the −z axis to equilibrium by T1
relaxation. The combination of two spin echoes (two 180◦ pulses) brings this z magnetization
back to the positive z axis and allows for a more rapid return to equilibrium.

6.9.1 Measurement of T2 Values Using Multiple Spin Echoes: CPMG

We saw in Chapter 5 that in a perfectly homogeneous magnetic field the FID decays to zero
in an exponential fashion with characteristic time T2. In the real world, field inhomogeneity
makes the FID decay faster (Fig. 6.28), with a characteristic time we can call T ∗

2 (T ∗
2 < T2).

The envelope of the FID drops to 63% (e−1) of its original size after this period of time
T ∗

2 . If we look at decay rate rather than characteristic time, the intrinsic rate (R2 = 1/T2) of
decay of coherence is added to the rate of decay due to “fanning out” of individual vectors
from different physical locations in the sample (Ri=1/T i

2, the inhomogeneity decay rate) to
obtain the experimental rate of decay (R∗ = 1/T ∗

2 ):

R∗
2 = R2+Ri

2, 1/T ∗
2 = (1/T2)+(1/T i

2)

The Fourier transform converts the FID into a Lorentzian peak with absorptive lineshape
(after phase correction). The full width of this peak at one half of the peak’s height (the
“linewidth”) is inversely related to the decay time constant of the FID, T ∗

2 :

linewidth = �ν1/2 = 1/(πT ∗
2 )

So just by measuring the width of the NMR peak we can determine the time constant for
decay of the FID, but this is not an interesting number because it depends on shimming. The
interesting number, which is a fundamental physical measurement for that particular spin
in a specific environment, is the T2 value. How can we extract the T2 value from the easily
measured T ∗

2 value, which is a combination of T2 and the inhomogeneity decay constant
T i

2? Recall that in a spin echo the differences in chemical shift evolution that occur during
a delay are “refocused” or removed during the second half of the spin echo following the
180◦ pulse. These differences may be real differences due to different positions within a
molecule, or differences in resonant frequency due to the different locations of identical
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Figure 6.28

spins within the sample volume in an inhomogeneous magnetic field. It does not matter: In
either case the vectors that lag behind in precession during the first half of the spin echo have
less distance to travel in the second half, and the vectors that pull ahead in the first half have
farther to travel in the second half. All of these individual vectors (“isochromats” if you like
fancy words) representing different locations within the sample come together at the end of
the second delay, creating a maximum in the net magnetization measured throughout the
sample (an “echo”: Fig. 6.29). In the extreme case, where field homogeneity is very bad
(T i

2�T2), we would see the transverse magnetization we are measuring in the FID (e.g.,
Mx ) decay rapidly (e−t/T ∗

2 ) during the first half of the FID as the individual vectors “fan
out” in the x–y plane and become evenly distributed in all directions. After the 180◦ pulse,
these vectors begin to gather together and the transverse magnetization grows exponentially
until it reaches a maximum when all the vectors cross the “finish line” (the echo). After they
cross, the vectors fan out again just as rapidly due to field inhomogeneity and the coherence
is lost (Fig. 6.29, top).
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Figure 6.29

The interesting thing is that the maximum intensity of the FID at the “top” of the echo is
still less that that at the start of the FID: not all of the coherence is recovered by refocusing
in the second half of the spin echo. The part that is lost is the intrinsic decay, the loss
of coherence due to pure T2 relaxation, a fundamental relaxation process. The spin echo
simply gets back the losses due to inhomogeneity of the magnetic field (T i

2 losses). This
gives us a method to measure T2: We could repeat the spin-echo experiment a number of
times with different echo delays (t values) and start the acquisition of the FID at the “top” of
the echo:

90◦−τ−180◦−τ−FID

The signal intensity at the start of the FID is proportional to the peak height after Fourier
transformation, so we could make a plot of peak height versus τ delay and fit the exponential
decay to a theoretical curve to measure the T2 value. This is the T2 equivalent of the inversion-
recovery experiment (Section 5.8) for measurement of T1.

There is still one problem with this method. As we make the τ delay longer and longer,
it is possible that some molecules will diffuse from one part of the sample to another so
that the spins do not experience the same magnetic field (Bo) in the two delays (τ) of the
spin echo. The refocusing of the spin echo works only if the inhomogeneity experienced
in the first half is identical to that experienced in the second half for each of the identical
spins. This diffusion problem will lead to loss of signal at the top of the echo in addition to
the intrinsic T2 loss and will be more pronounced for smaller molecules or in less viscous
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solvents. One way to avoid this is to keep the echo time (τ) short and use a large number
of repeated spin echoes (Fig. 6.29, bottom). Instead of increasing the τ value to explore the
T2 decay curve, we increase the number of repeats of the spin-echo unit (τ–180◦–τ) while
keeping τ constant. As long as the τ delay is quite short, the loss of signal due to diffusion
is kept to a minimum. This method is called CPMG, or Carr–Purcell–Meiboom–Gill, after
the four investigators who developed it.

6.10 THE HETERONUCLEAR SPIN ECHO: CONTROLLING J-COUPLING
EVOLUTION AND CHEMICAL SHIFT EVOLUTION

As we move on to more complex and more powerful pulse sequences for heteronuclear
(e.g., 1H–13C) experiments, we would like to use the spin echo to refocus only one of the two
kinds of evolution, J-coupling evolution or chemical shift evolution. This can be done in a
very simple and elegant way by adding another 180◦ pulse to the 1H channel, simultaneous
with the 13C 180◦ pulse. This “heteronuclear” spin-echo sequence is shown in Figure 6.30.
Notice that we now are using the 1H channel (lower line) for more than just decoupling: We
are delivering high-power pulses of defined duration, calibrated for a specific rotation—in
this case, 180◦. In the early commercial FT spectrometers this was an advance in hardware
capability, because power could not be rapidly and repeatedly switched from high power
(“hard” pulses) to low power (waltz-16 decoupling), so two separate sources of 1H RF were
required.

Again using the example of Figure 6.26, consider what happens if we include the 1H 180◦
pulse at the center of the spin echo. At this point in the sequence (time “C” in Fig. 6.30), at
the end of the first delay, we have the H = α vector on the +y′ axis and the H = β vector
halfway between the +x′ and +y′ axes (Fig. 6.31 C). As before, the 13C 180◦ pulse on the
x′ axis rotates the H = α vector to the −y′ axis and the H = β vector to a position halfway
between the −y′ axis and the x′ axis. We can consider the effect of the 1H 180 pulse after the
13C 180◦ pulse, even though they are simultaneous. The 1H 180◦ pulse does not rotate
the vectors because they represent 13C net magnetization and are not affected by a pulse at
the 1H frequency. It does, however, affect the 1H nuclei that are attached to (and J-coupled
to) to the 13C nuclei. The effect is to change every 1H nucleus that was in the α state to
the β state and every 1H nucleus that was in the β state to the α state. This means that our
“H = α” vector, representing the net magnetization of all 13C nuclei whose attached 1H
is in the α state, is now an “H = β” vector, because all of those protons are now in the β

Figure 6.30
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Figure 6.31

state. Likewise, our “H = β” vector can now be called an “H = α” vector because all of the
protons attached to those 13C nuclei are now in the α state. In other words, the effect of the
1H 180◦ pulse is to “swap the labels” on the 13C net magnetization vectors without moving
them. Now we have the H = α vector halfway between the +x′ and −y′ axes and the H =
β vector on the −y′ axis (Fig. 6.31 D). Next we have the second delay, of duration 1/(8J),
of the spin echo. The H = α vector will rotate one-fourth turn ccw as before, ending up
halfway between the +x′ and +y′ axes, and the H = β vector will rotate 45◦ ccw as before,
ending up halfway between the +x′ and −y′ axes (Fig. 6.31 E). Note that the only thing that
is different in the second half of the spin echo is the behavior of the two vectors, because
we know that the H = α component of the 13C doublet has a rotating-frame frequency (�ν)
of 300 Hz and the H = β component has a rotating-frame frequency of 150 Hz. By flipping
the 1H from the α state to the β state, we changed the effective magnetic field experienced
by the 13C nucleus, decreasing its Larmor frequency by 150 Hz (J).

So how does the result compare to the simple spin echo (without the 1H 180◦ pulse:
Fig. 6.26)? The two vectors diverged during the first half of the spin echo, ending up with a
45◦ angle between them: this is J-coupling evolution. The center position between the two
vectors rotated 67.5◦ from the +x′ axis to a position three-fourths of the way from the +x′
axis toward the +y′ axis: this is chemical shift evolution. In the simple spin echo, both of
these types of evolution were reversed during the second half, as the two vectors converged
toward each other and the center position moved back to the +x′ axis. But with the 1H
180◦ pulse included, the divergence of the two vectors (J-coupling evolution) continues in
the second half, resulting in an angle of 90◦ (twice as large) between them at the end of
the delay. J-coupling evolution is “active” throughout the pulse sequence, and we have a
divergence of 90◦ that is the result of J-coupling evolution for a total period of 1/(4J), which
is the sum of the two delays. Recall that the “magic time” for J-coupling evolution is 1/(2J),
which takes us from in-phase to antiphase (0◦ angle between the two vectors of a doublet
to 180◦), so a delay of 1/(4J) should give a divergence of 90◦.

We can say that the 180◦ 13C pulse reverses the J-coupling evolution (Fig. 6.26), but the 180◦
1H pulse “reverses the reversal” so that the two vectors continue to diverge during the second
half (Fig. 6.31). Another way to look at it is that 13C chemical shift evolution (a result of the
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Bo field interacting with the 13C nucleus) is sensitive only to 13C pulses, because only these
can rotate the 13C net magnetization vectors. But J-coupling evolution is a mutual interaction
between the 13C nucleus and the 1H nucleus, so both of the 180◦ pulses affect it, and effectively
they cancel each other out, just as the product of two negative numbers is a positive number.

What about the chemical shift evolution? During the second half, the center position between
the two vectors (dotted line in Fig. 6.31) rotates ccw from a position three fourths of the
way between the +x′ and −y′ axes to end up back on the +x′ axis. We have refocused the
chemical shift evolution which occurred during the first delay. The chemical shift evolution
of the 13C net magnetization “sees” only the 13C 180◦ pulse, so it is refocused just as it
was in the simple spin echo. In Figure 6.30, we represent the overall effect of the spin echo
by writing “+νC” (13C chemical shift evolution) and “+J” (J-coupling evolution) in the
space of the first delay, and “−νC” (13C chemical shift refocusing) and “+J” (J-coupling
evolution continuing in the same sense) in the space of the second delay. Overall, we have
+νC for time 1/(8J) and −νC for time 1/(8J), for a net chemical shift evolution of zero. We
also have J evolution for 1/(8J) and again J evolution in the same sense for 1/(8J) for a total
J evolution of 1/(4J), which leads to a total divergence of the two vectors by J Hz times
1/(4J) seconds or one-fourth turn (90◦). This way of getting a simple overview of the effects
of a pulse sequence building block will be crucial to your understanding of more complex
experiments: Once you are very comfortable with the details of vector rotation in the x′–y′
plane and the effects of pulses, you no longer will need to consider these details—only the
overall effect of the pulse sequence building block is important. You will eventually be able
to break up complicated pulse sequences into well-understood building blocks and guess
the effect of each building block on the net magnetization.

This is a very powerful pulse sequence building block! We now have control over the
two kinds of evolution. We will see how in many heteronuclear experiments we want to get
the 13C (or the 1H) into the “magic” antiphase state, but we do not want to complicate things
with the chemical shift evolution, which would be different for every peak in the spectrum
leading to a great confusion of phases and peak shapes at the end of the experiment. Let’s
see if we can apply this technique to the APT sequence. Recall that the goal of the APT
sequence is to have J-coupling evolution for a period of time 1/J to introduce the editing
effect (CH and CH3 phases reversed, Cq and CH2 phases unaffected). We do not want to
mess up all the phases by having chemical shift evolution, so we used a simple spin echo of
total duration 2/J with the 1H decoupler on for one of the 1/J delays (Fig. 6.27). Chemical
shift evolution that occurs during the first half (+νC) is reversed during the second half
(−νC) because of the 13C 180◦ pulse. Whether the 1H decoupler is on or off is irrelevant
to 13C shift evolution. We have J-coupling evolution (+J) during the first half, when the
decoupler is off, and no J-coupling evolution during the second half. So the net J-coupling
evolution is +J for a period of time 1/J, leading to a divergence of the two vectors of a CH
group by an angle of J Hz times 1/J seconds or one cycle (360◦). The two vectors are once
again in-phase but on the opposite side of the x′–y′ plane, each individual vector having
traveled by an angle of J/2 times 1/J or one half cycle (180◦): Each component of the doublet
considered alone is J/2 Hz away from the center or chemical shift position. Now let’s try
to achieve the same effect but with an “advanced” heteronuclear spin echo including a 1H
180◦ pulse at the center along with the 13C 180◦ pulse. Using the sequence of Figure 6.30,
we can set the delays to 1/(2J) each so that we get a total J-coupling evolution period of
1/J without any chemical shift evolution. That is it! We do not need to play around with the
1H decoupler, except to turn it on during the acquisition of the FID. This “improved” APT
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Figure 6.32

sequence is shown in Figure 6.32. In what way is it superior to the original APT sequence?
The total time that we have 13C net magnetization in the x′–y′ plane is reduced from 2/J to
1/J, cutting in half the loss of NMR signal due to T2 relaxation. Thus, the loss of sensitivity
that we see in the APT compared to a simple 13C spectrum could be cut in half! Hardly
anyone uses this sequence, however, because old methods die hard. We will also see in the
next chapter that an even better alternative to the APT experiment exists, one that is actually
quite a bit more sensitive than the simple 13C experiment.

As a final illustration of the power and versatility of the heteronuclear spin echo, let’s see
if we can design a spin-echo sequence that allows chemical shift evolution but refocuses
J-coupling evolution. We start with the simple spin echo, and we remove the 13C 180◦
pulse because it is responsible for the reversal of chemical shift evolution (changing +νC
to −νC in our shortcut notation). But now we do not have any refocusing, just two delays
of equal duration. How can we reverse the J-coupling evolution without rotating the 13C
magnetization vectors? Remember that because the J-coupling evolution is due to a mutual
interaction of the 1H and the 13C nucleus, it can be reversed with a 180◦ pulse on either
the 1H channel or the 13C channel, and that 180◦ pulses on both channels cancel each other
in this effect. So we can put our 180◦ pulse on the 1H channel only, where it will reverse
the J-coupling evolution without affecting the 13C chemical shift evolution. The pulse
sequence is shown in Figure 6.33, with the notations “+νC” and “+J” in the first delay
and “+νC” and “−J” in the second delay. The overall effect of this pulse sequence is 13C

Figure 6.33
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Figure 6.34

chemical shift evolution for a total time of 2τ, leading to a total rotation of �ν Hz times 2τ

seconds, where �ν is the rotating-frame frequency at the center of the CH 13C doublet. The
J-coupling evolution is +J for time τ and −J for time τ, indicating that J-coupling evolution
is refocused in the second half and the vectors will still be in-phase, without diverging at all.
Figure 6.34 shows the effect of this pulse sequence using vector diagrams for our example.
As before, at the end of the first 1/(8J) delay we have the H = α vector on the +y′ axis and
the H = β vector halfway between the +x′ and +y′ axes. As we saw before, the only effect
of the 180◦ 1H pulse is to reverse the labels on the 13C net magnetization vectors: now the
H = β vector is on the +y′ axis and the H = α vector is halfway between the +x′ and +y′
axes. The chemical shift position is in the same place between the two vectors. During the
second delay, the chemical shift position continues to rotate counterclockwise. The H = β

vector rotates 45◦ ccw to end up halfway between the +y′ and −x′ axes, and the faster H = α

vector rotates 90◦ ccw to end up at exactly the same place. The two vectors are in-phase
again, and there has been no net J-coupling evolution. But the chemical shift evolution has
continued, as if the pair of vectors never diverged, and moved a total of 135◦ (67.5◦ times 2)
in a ccw direction (225 Hz × 0.833 ms × 2 = 0.375 rotations, 0.375 × 360◦ = 135◦).

One technical question remains: What is the effect of the phase of the 13C 180◦ pulse
in these spin-echo sequences? If we place the B1 field on the −x′ axis, the result is exactly
the same, because rotation by 180◦ in one direction is the same as rotation by 180◦ in the
opposite direction. But if we place the 13C 180◦ pulse on the y′ axis, the details of the vector
motions will change, and the final result will be different, but the question of evolution
remains the same. Do this as an exercise, going through our example for three types of
spin echoes: the simple spin echo (13C 180◦

y only), the spin echo with 180◦ pulses on
both channels, and the spin echo with 180◦ pulse on the 1H channel only. You will see that
the simple spin echo refocuses J-coupling evolution and chemical shift evolution, but the
vectors end up on the −x′ axis instead of on the +x′ axis. You might have to try a different
chemical shift (e.g., �ν = 150 Hz) to convince yourself that the vectors always land on the
−x′ axis, regardless of the resonance offset of the center of the doublet. The reason is that
not only did the 13C 180◦ pulse refocus the chemical shift and J-coupling evolution, but
it also flipped the vectors from the +x′ axis to the −x′ axis. We can say that the effect of
the sequence is the same as it would be if the delay times were set to zero (90◦

y–180◦
y–):

the two vectors are rotated to the +x′ axis by the 90◦
y pulse, and then to the −x′ axis by the

180◦ pulse on the y′ axis. In the original example, the 13C 180◦ pulse was on the x′ axis,
so it had no effect overall on the position of the vectors: If we imagine the delays being
zero, we have a 90◦

y pulse rotating the vectors to the +x′ axis, and a 180◦
x pulse having no

effect on the two vectors because they are colinear with the B1 field. Thus, the two vectors
end up on the +x′ axis. But be careful about saying that the 180◦ 13C pulse on the x′ axis
has “no effect”: It has the effect of refocusing the chemical shift and J-coupling evolution,
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and if we leave it out the result will be entirely different. It just has no effect beyond the
refocusing, whereas a 13C 180◦ pulse on the y′ axis has the additional effect of rotating the
vectors from their original position on the +x′ axis to the −x′ axis.

The same reasoning can be applied to the sequence of Figure 6.30: Overall we have
J-coupling evolution only, as if the 13C doublet were on-resonance. The two vectors diverge
from each other but the center position does not move; the more downfield H = α line (J/2
Hz downfield of the center of the doublet) leads to a ccw rotation at a rate of J/2, and the
more upfield H = β line (−J/2 relative to the center of the doublet) leads to a cw rotation
at a rate of J/2. The effect of the phase of the 180◦ pulse is correctly accounted for if we
imagine it happening at the beginning of the first delay: The two vectors rotate from the
+x′ axis to the −x′ axis as a result of the 180◦ pulse on the y′ axis, and then they diverge
by an total angle of 90◦ (each one moving J/2 Hz times 1/(4J) or 45◦) without changing
the position of the center, which remains on the −x′ axis. The phase of the 180◦ 1H pulse
in either spin-echo sequence (Fig. 6.30 or Fig. 6.33) is irrelevant because it serves only to
convert every 1H from the α state to the β state and vice versa. It does not rotate the 13C
magnetization vector, so we do not care which axis the B1 field is on. We refer to this pulse
as an inversion pulse, and like an inversion of net magnetization from +z to −z, it does not
matter which axis the B1 field is on.

The overall lesson from this exercise is that we can ignore the details of vector rota-
tion during a spin echo if we understand its overall effect: Which types of evolution are
allowed and which are refocused? This is easily determined by looking at the 180◦ pulses at
the center. A 180◦ pulse on the nucleus that has the net magnetization in the x′–y′ plane
(i.e., the coherence) will lead to refocusing of chemical shift evolution. A 180◦ pulse on one
of the two nuclei involved in the J coupling will lead to refocusing of J-coupling evolution.
The 180◦ pulses on neither or both of the two nuclei will allow J-coupling evolution to occur.
The phase of the 180◦ pulse on the channel where we have coherence can be accounted for
by imagining that the pulse occurs at the beginning of the first delay and accounting for the
allowed evolution for the full delay time (2τ) of the spin echo. The phase of any 180◦ pulse
on the other channel, corresponding to the nucleus that is not evolving, is irrelevant. By
looking at the spin echo in this overall view we can avoid the tedious analysis of considering
the effect of each pulse and delay individually.



7
COHERENCE TRANSFER:
INEPT AND DEPT

Now we are ready to see something truly magical in NMR. With our toolbox of pulses and
delays, and the more complex “plug in” units of spin echoes, we can make net magnetization
“jump” from one nucleus to another across the “bridge” of a J coupling or an nuclear Over-
hauser effect (NOE) interaction. This strategy allows us to enhance the sensitivity of many
experiments by starting with 1H, which has the highest equilibrium population difference,
and moving its magnetization to less sensitive nuclei such as 13C. Later, we will see how we
can correlate two related spins (actually we correlate their chemical shift positions in the
spectrum) to demonstrate the nature (J or NOE) and intensity of the relationship. We will do
this first with selective one-dimensional (1D) experiments and then with two-dimensional
(2D) experiments. In both cases, the basis of the correlation is making the magnetization
“jump” from one nucleus to another by the process of magnetization transfer. But first we
need to understand very clearly what this material is that we work with in NMR: the net
magnetization. A little bit of review will help.

7.1 NET MAGNETIZATION

Each atom that is NMR-active in a sample (each “spin”) contributes its magnetism to the
bulk or net magnetization of the sample. This spin produces a tiny magnetic field, and
we can represent this little magnet with a vector pointing in the direction of the spin axis
(Fig. 7.1(a)). If we move the origin (the magnet’s south pole) of each vector to a common
point, we will have the spins in the “up” or α state precessing at the Larmor frequency
forming a 45◦ angle to the +z axis, tracing out an upward-facing cone. The spins in the
“down” or β state form a 135◦ angle to the z axis and trace out a downward-facing cone as
they precess (Fig. 7.1(b)). To trace the path of each spin in the sample would be an impossibly
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Figure 7.1

complicated task. Instead, we add together all of the individual magnetic dipoles (vectors)
to obtain the bulk magnetization of the sample, and we can work with this bulk feature
only. At equilibrium, after the spins have been in the applied field for a while, there will
be a slight excess of spins in the lower energy (aligned, α, “up”) state. Because the energy
difference is very small compared to the average thermal energy at room temperature, this
population difference is only about one spin in 105. For this reason, for nearly every spin
in the “up” state, there will be another in the “down” state pointing in exactly the opposite
direction. These pairs can be erased from our picture as they do not contribute anything
to the net magnetization. After erasing all these pairs, we are left with a much smaller
number of spins in the upper cone and none in the lower cone. Of these, the individual spins
are precessing at exactly the same frequency but at any moment if we took a snapshot of
their orientations we would find that they are equally distributed around the cone; no one
orientation is preferred. Thus, the components of magnetism in the x–y plane all cancel
each other out and we are left only with the sum of the z components, which add together
to give a macroscopic magnetic field oriented along the positive z axis. This equilibrium z
magnetization simply means that we have weakly magnetized the sample by giving a slight
preference to spins oriented with the Bo field.

This equilibrium magnetization is the stuff we have to work with in NMR. With pulses
of radio frequency energy, we can make this vector move around, “dance,” and tell us things
of importance about molecular structure. NMR is like radar with a magnet: high-power
pulses of radio frequency energy are sent to the sample, and an “echo” is received (the
FID). Analysis of this echo provides information about the sample. In particular, we can
learn about the relationships between different spins (atoms) within a molecule, both in the
sense of the number of bonds separating them and the angles of those bonds, and in the
sense of the direct through-space distance between the atoms.

In NMR, there is a very important distinction between the z-axis component of the net
magnetization (“z magnetization”) and the component of the net magnetization that lies in
the x–y plane (“coherence”). z-Magnetization, which is the result of unequal populations in
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the two spin states (“up” and “down”, α and β, aligned and disaligned, lower energy and
higher energy), gradually relaxes to its equilibrium value Mo, defined by the Boltzmann
distribution of spins between the two energy levels. It is not directly measurable because
the net vector is stationary and does not rotate. Net magnetization in the x–y plane is called
coherence because it results from the temporary organization (coherence) of the individual
spins as they rotate around the cone. Coherence always relaxes to zero as the individual
spins gradually get out of phase and lose their “memory” of the organizing pulse. Coherence
is measurable because it rotates and creates the FID signal in the probe coil. The RF pulse
converts z magnetization into coherence.

The effect of the RF pulse can be viewed more simply if we forget about the individual
spins and think only about the net magnetization vector. The RF pulse is a magnetic field
that rotates in the x–y plane at the frequency of the pulse. This signal is turned on for a
very short time (about 10 �s) and then abruptly turned off. During the pulse, we can view
this rotating magnetic field as a vector, the B1 vector, which rotates in the x–y plane while
the Bo field (about 20,000 times larger) is on the positive z axis, as is the equilibrium net
magnetization of the sample. To make the analysis simpler, we rotate the x and y axes at the
frequency of the pulse, so that the B1 vector stands still in this rotating frame of reference
(Fig. 7.2(a)). In order to preserve the laws of physics in this artificial rotating frame, we
have to remove the Bo field from our picture. Now we have only the stationary B1 vector in
the x–y plane and the sample net magnetization on the z axis. During the pulse, the sample
net magnetization vector, M, rotates around the B1 vector. This is analogous to the rotation
of M around the Bo field during the FID. If we place the B1 vector on the x axis, for example
(we can control this by setting the phase of the radio frequency), the M vector will rotate
counterclockwise from the z axis to the −y axis, then to the −z axis, then to the +y axis

Figure 7.2
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and then back to the +z axis. If we time the duration of the pulse correctly, we can rotate
M by exactly 90◦ so that it ends up on the −y axis at the moment the pulse is turned off.
This pulse is called a 90◦ pulse.

After a 90◦ pulse there is no z magnetization: all of it has been converted into x–y
magnetization (coherence). This means there is no difference in population between the
two spin states. We go back to the laboratory frame at this instant to look at the motion of
the net magnetization M (Fig. 7.2(b)). It rotates in the x–y plane at the Larmor frequency,
inducing the FID signal in the probe coil and gradually decaying (due to loss of coherence)
to zero. At a bit slower rate, the population difference is reestablished between the two
levels as a small percentage of spins fall down (relax) from the upper energy level to the
lower energy level. This causes the z magnetization to grow and eventually return to the
equilibrium magnitude, Mo, aligned along the positive z axis. When all coherence is gone
and the z magnetization has returned to equilibrium (a few seconds), we can repeat the whole
process of pulse, recording the FID and relaxation, adding the new FID to the previous one
to obtain a better signal-to-noise ratio.

7.2 MAGNETIZATION TRANSFER

Magnetization transfer is the central process in all advanced NMR experiments, both 1D
and 2D. By an appropriate combination of pulses and/or waiting periods (“delays”), we can
make net magnetization “jump” from one nucleus in a molecule to another. I will not attempt
to explain the details of how this happens, I will just “narrate” the process in general terms
and you will have to take it mostly on faith. Just as there are two kinds of net magnetization,
z magnetization and coherence, there are two ways to transfer magnetization: NOE (transfer
of z magnetization) and INEPT (coherence transfer). The NOE transfer occurs directly
through space from one proton in a molecule to a nearby proton. The distance between them
must be less than 5 Å and the efficiency of transfer is proportional to the inverse 6th power of
the distance between them (1/r6). In this way we can measure distances within a molecule
and make conclusions about stereochemistry and conformation. The INEPT (insensitive
nuclei enhanced by polarization transfer) transfer occurs via J couplings, which means it
is a through-bond effect between atoms that are two or three (occasionally more) bonds
apart in the covalent bonding network of a molecule. As J coupling values depend on the
dihedral angle for vicinal (three-bond) relationships (Karplus relation), we can learn about
conformation as well as covalent connectivity. These are the structural relationships we can
discover using NMR, and the key to connecting one spin to another via these relationships
is magnetization transfer.

The NOE works like this: if you perturb the z magnetization of one proton in a molecule
so that it is no longer at equilibrium (i.e., no longer +Mo), this perturbation will prop-
agate over time (0.2–1 s for small molecules) to other protons in the molecule, creating
perturbations of their z magnetization away from equilibrium. For small molecules (<1000
Da) the effect is “negative”: reducing the z magnetization of one proton will lead to the
buildup of an increase in z magnetization of nearby spins. There are several experiments
that can be designed to perturb one proton’s z magnetization and to convert the transferred z
magnetization into a measurable signal (enhanced peak height in the spectrum) and thereby
determine the distances between protons. The initial perturbation can be created by a long,
low power radio frequency signal at the exact resonant frequency of one proton in the spec-
trum (“saturation”) or by a 180◦ pulse which rotates the net magnetization of one proton
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Figure 7.3

in the molecule to the negative z axis. The NOE process can be viewed as magnetization
transfer as the z magnetization difference (perturbation from equilibrium) of one proton is
transferred to another during the “mixing time” of the experiment, leading to a z magne-
tization difference in the second proton. Two-dimensional experiments that use NOE as a
means of magnetization transfer include the NOESY and ROESY experiments.

INEPT coherence transfer works differently. We create coherence on one nucleus with a
90◦ pulse and then wait a period of time (equal to 1/(2J), where J is the coupling constant).
At this point, the two components of the doublet signal are opposite in phase: an FID
acquired at this point would give a spectrum of a doublet with one component pointing up
and one pointing down (Fig. 7.3, left). This “antiphase” state has a very special property: if
we subject it to 90◦ pulses simultaneously affecting both nuclei in the J-coupled pair, the
coherence will “jump” from one nucleus to the other. We will now have antiphase coherence
on the J-coupled nucleus and no coherence on the starting nucleus (Fig. 7.3, right). This can
be applied to any pair of nuclei that are J coupled: two protons on adjacent carbons (vicinal
relationship), a proton and its directly bonded carbon (1-bond heteronuclear coupling), a
proton and the carbon next to its own carbon (2-bond heteronuclear J coupling), and so
on. The INEPT transfer is used in advanced 1D experiments such as DEPT, as well as in a
number of 2D experiments (COSY, DQF-COSY, HETCOR, HSQC, HMBC).

7.3 THE PRODUCT OPERATOR FORMALISM: INTRODUCTION

It is very difficult to describe coherence transfer using the vector model. To understand it we
will need to expand our theoretical picture to include product operators. Product operators
are a shorthand notation that describes the spin state of a population of spins by dividing it
into symbolic components called operators. You might wonder why you would trade in a
nice pictorial system for a bunch of equations and symbols. The best reason I can give is
that the vector model is useless for describing most of the interesting NMR experiments,
and product operators offer a bridge between the familiar vectors and the more formal and
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mathematical matrix representation. Later on you will see that product operators are just
shorthand for the elements of the density matrix.

Using the vector model, when we want to describe the spin state of a particular nucleus,
we can draw a vector in three-dimensional space, or we can describe the projection of that
vector onto the three axes (the “components” of the vector). For example, a vector of length
Mo on the −x′ axis could be described as

Mx = − Mo
My = 0
Mz = 0

Note that this description requires that we make three statements about the components
of the vector. In the product operator formalism, we simply say that the spin state is −Ix .
We do not have to say anything about the y and z components because if we do not see Iy

or Iz in the spin state, we just assume that those components are zero. If we wish to talk
about two different spins at the same time in the vector model, we need two different sets
of coordinate axes; for example, one for 1H and one for 13C, to keep it straight which one
we are talking about. With product operators, we usually use I for 1H and S for 13C, so we
could describe a spin state as −Iz + Sx , meaning that the 1H net magnetization is on the −z
axis and the 13C net magnetization is on the +x axis. If we want to talk about two protons,
we can use either I and S or Ia and Ib to describe Ha and Hb. As you can see, we are going to
move away from the pictorial representation on a coordinate system (vectors) to a symbolic
representation using the product operators. These symbols can be easily manipulated using
simple math and rules about how they behave with pulses (rotations about the B1 vector)
and delays (rotation about the z axis, also known as “evolution”). The rules all refer back to
the vectors, so if we understand how the vectors behave we can manipulate these symbols
very easily.

A more complicated case is that of the 13C doublet of a methine (13C–1H) group in
the absence of 1H decoupling. In the vector model we draw two vectors: one for the net
magnetization of all 13C spins whose 1H coupling partner is in the α state, and the other
for the net magnetization of all 13C spins whose 1H coupling partner is in the β state.
This corresponds to the two lines in the 13C spectrum (without 1H decoupling) for the CH
doublet: the 13C spins with a 1H partner in the α state give rise to the left-hand peak of the
doublet, and the 13C spins with a 1H partner in the β state give rise to the right-hand peak of
the doublet. If both the “α” vector and the “β” vector are on the −x axis, we would call this
state “in-phase magnetization on the −x axis.” In the product operator notation, we would
call this −Sx , meaning that the 13C magnetization, regardless of the spin state (α or β) of
its 1H coupling partner, is on the −x axis (Fig. 7.4). If the “α” vector is on the y axis and the
“β” vector is on the −y axis, we call this state “antiphase.” In the product operator notation,
we represent the spin state with the symbol 2SyIz , which we read as “13C magnetization on
the y axis, antiphase with respect to its coupling partner 1H.” Everyone who sees this for the
first time is completely mystified. First of all, the 2 is just a normalization constant, so you
can ignore it. It is necessary any time you have two operators multiplied together (hence the
name “product” operators). The Sy means that the 13C magnetization from carbons attached
to 1H in the α state is on the +y axis. The multiplication by Iz is the hard part. This Iz says
nothing about the net magnetization of 1H, so do not make the mistake of thinking that the
1H net magnetization vector is on the +z axis. The Iz multiplier represents the microscopic
spin state of each individual proton: half are in the α state (Iz = +1/2, nuclear magnet
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Figure 7.4

pointing “up,” along the +z axis) and half are in the β state (Iz = −1/2, nuclear magnet
pointing “down,” along the −z axis), and we are multiplying 2Sy by this number. So as we
add up the individual nuclear magnetic dipoles (vectors) to yield the net magnetization, we
are saying that the individual 13C vectors are aligned with the +y axis if the attached 1H is
in the α state (multiply the 2Sy by +1/2), and the individual 13C vectors are aligned with
the −y axis if the attached 1H is in the β state (multiply the 2Sy by −1/2). We end up with
the two net magnetization vectors, one on the +y axis for those 13C nuclei whose attached
protons are in the α state, and one on the −y axis for those 13C nuclei whose attached
protons are in the β state. Later, when we consider the density matrix representation, we
will see that multiplication by Iz is really multiplication by a 4 × 4 matrix, and all the math
works out perfectly to generate the vector model picture of two opposed vectors. For now,
you can think of the Iz multiplier as a +1/2 (for I = α) or a −1/2 for (I = β). Iz by itself
still represents the 1H net magnetization on the +z axis (Mz (1H) = +Mo).

7.4 SINGLE SPIN PRODUCT OPERATORS:
CHEMICAL SHIFT EVOLUTION

If there is only one NMR line in the spectrum (a population of identical nuclei) there
are only three product operators, and they correspond to the three components of the net
magnetization vector. A complete description of a population of spins can be given by the
spin state σ:

σ = cxIx + cyIy + czIz

where cx , cy , and cz are coefficients equal to Mx /Mo, My /Mo, and Mz /Mo. This is the product
operator representation of the spin state of a population of spins. Compare this to the vector
representation of the net magnetization (sum of individual spin vectors):

M = Mxi+ Myj+ Mzk

where i, j, and k are the unit vectors along the x, y, and, z axes. The product operators Ix ,
Iy , and Iz can be viewed as pure spin states. Iz is the equilibrium state, Iy is the spin state
immediately following a 90◦ pulse on the −x′ axis, and Ix is the spin state immediately
following a 90◦ pulse on the y′ axis. In the literature you will find that pulses are regarded as
counterclockwise rotations for product operators, so that a 90◦ pulse on the x′ axis rotates
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Figure 7.5

the Iz state into the −Iy state. This is opposite to the convention sometimes used for the
vector model. For consistency, in this book all pulse rotations are counterclockwise.

These simple product operators precess in the x′–y′ plane of the rotating frame at a
frequency corresponding to the chemical shift in hertz relative to the center of the spectral
window (the resonance offset �ν = νo − νr). The chemical shift frequency �ν can also be
represented as the angular velocity � in units of rad/s (� = 2π�ν). Using � allows us to
skip all the 2π terms.

Ix
delay τ−−−→ Ix cos�τ + Iy sin�τ

Iy
delay τ−−−→ Iy cos�τ − Ix sin�τ

Iz
delay τ−−−→ Iz (no precession for z magnetization)

The first two changes represent the circular motion described by the components Mx and
My of the net magnetization vector in the x′–y′ plane (Fig. 7.5), a process called evolution.
The projection of the net magnetization vector on the x axis, relative to Mo, gives the factor
in front of Ix and the projection on the y axis, relative to Mo, gives the factor in front of Iy .
Note that in every evolution period, the spin state you start with is multiplied by a cosine
term (cos� = 1 for � = 0; cos� = 0 for � = 90◦) and the spin state you are moving toward
(by 90◦ counterclockwise rotation in the x′–y′ plane) is multiplied by a sine term (sin �

= 0 for � = 0, sin � = 1 for � = 90◦). If the NMR line is upfield of the center of the
spectral window (νo < νr, negative value of �), the sine terms will start negative and the
cosine terms will start out positive, reflecting the clockwise rotation. So we always think of
the motion as counterclockwise and let the sign of � correct for any clockwise rotations:

{starting state}—τ delay, � evolution → {starting state} cos�τ + {Next ccw stop} sin�τ

Any complicated representation of a spin system in terms of Ix , Iy , and Iz can be described
after a delay τ by substituting the corresponding expression on the right side every time one
of the terms on the left side (Ix , Iy , or Iz ) occurs in the representation. For example, if we
start with the spin state

Ix − Iy + Iz
at time t = 0, we will have at time t = τ as a result of chemical shift evolution

{Ixcos�τ + Iysin�τ} + {−Iycos�τ + Ixsin�τ} + Iz
= Ix(cos�τ + sin�τ) + Iy(sin�τ − cos�τ) + Iz
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Each operator in the original spin state is replaced by that operator (“where we are starting”),
multiplied by the cosine term, plus the next operator we encounter moving counterclock-
wise in the x–y plane (“where we are headed”), multiplied by the sine term. Because z
magnetization is stationary during delays, Iz does not undergo evolution.

The beauty of the product operators is that we never have to deal with any more than
one operator at a time. If we know how Ix , Iy , and Iz behave for a pulse or delay, we know
how any combination of these operators behaves as we just replace each operator with the
result of the pulse or delay on that operator alone. Instead of the net magnetization vector,
which can point anywhere in 3D space, we have reduced the problem to understanding how
pulses and delays affect the three simple components: Ix , Iy , Iz .

So far we have not included the relaxation processes (T1 and T2), and for many pulse
sequences we can leave out this aspect to make the math simpler. We know that relaxation is
going on, but in many cases this is merely a technicality and is not essential in understanding
the pulse sequence. In general, pulses are on the timescale of microseconds (�s), delays
for evolution are on the order of milliseconds (ms), and delays for buildup of NOE can be
hundreds of ms. For organic-sized molecules, we can safely ignore relaxation for delays in
the μs or ms range. Of course, for some experiments such as NOE, the relaxation process
is central to the experiment so we cannot ignore it.

The chemical shift evolution (precession of spins as a result of chemical shift) can be
represented as a circle with the rotation rate (in radians per second) written in the center
(Fig. 7.6). This is the same as the motion of the net magnetization vector, viewed from the
+z axis. Homonuclear product operators (Ha represented by Ia and Hb represented by Ib)
undergo chemical shift evolution in the same way:

Iax
delay τ−−−→ Iax cos�aτ + Iay sin�aτ

Iby
delay τ−−−→ Iby cos�bτ − Ibx sin�bτ

Note that the rate (and direction) of precession in the rotating frame is controlled by the
chemical shift � term, which is specific to each different proton in the molecule (each
different resonance or peak in the spectrum).

Figure 7.6
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7.5 TWO-SPIN OPERATORS: J-COUPLING EVOLUTION
AND ANTIPHASE COHERENCE

For a system with two kinds of nuclei, the symbols I and S are used to represent the two
nuclei. For example, in a 1H–13C system, the 1H is usually represented as I and the 13C as
S. The six simple spin states Ix , Iy , Iz and Sx , Sy , Sz can be represented, but we can also
form products of these spin states to represent situations which cannot be described by the
vector model. This is where the “product” of product operator comes from. Consider first
the product of one nucleus in the x′–y′ plane with another nucleus on the z axis:

2Ix Sz , 2Iy Sz : I (1H) magnetization in the x′–y′ plane, antiphase with respect to the z orien-
tation of the J-coupled spin S (13C)

2Sx Iz , 2Sy Iz : S (13C) magnetization in the x′–y′ plane, antiphase with respect to the z orien-
tation of the J-coupled spin I (1H)

The 2 is a normalization factor that will be explained in Chapter 10—it is needed any time
we multiply two operators together. In the vector model, these product operators can each
be represented by two vectors in the x′–y′ plane, 180◦ apart. For example, 2IxSz represents
a spin state where the half of the I nuclei that are coupled to an S nucleus in the α state add
up to form a vector along the +x′ axis, whereas the other half of the I nuclei that are coupled
to an S nucleus in the β state add up to form a vector along the −x′ axis (Fig. 7.7). We
always put the α vector on the axis represented by the first part of the product: for example,
for −2IxSz we put the 1H net magnetization (13C = α) vector on the −x axis and the 1H
net magnetization (13C = β) vector on the +x axis.

The chemical shift evolution of these product operators is obtained simply by plugging
in the time evolution of the component single-nucleus operators. For example

2IxSz
τ delay−−−→ 2{Ix cos�Iτ + Iy sin�Iτ}{Sz} = 2IxSz cos�Iτ + 2IySz sin�Iτ.

This sequence of events can be represented schematically in a circle (Fig. 7.8) with the
rotation rate (�I) in the center. This is simply the rotation of the two opposed (antiphase)
vectors in the x′–y′ plane at the frequency determined by the chemical shift of nucleus I.
The Sz part just “goes along for the ride” because the antiphase relationship is retained
throughout. Stand up with your arms outstretched at your sides: your right arm represents
the 1H net magnetization vector (13C = α) on the +x axis, and your left arm represents the
1H net magnetization vector (13C = β) on the −x axis. The +y axis is in front of you and the
−y axis is behind you. Now slowly turn your body counterclockwise (to your left), holding

Figure 7.7
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Figure 7.8

your arms apart opposite each other. The “13C = α” vector (your right arm, corresponding
to the downfield line of the 1H doublet) moves from the +x axis to the y axis, then the −x
axis and then the −y axis, whereas the “13C = β” vector (your left arm, corresponding to
the upfield line of the 1H doublet) moves from the −x axis to the −y axis, then the +x
axis and then the +y axis, always opposite the “13C = α” vector. You are turning at a rate
corresponding to �I, the chemical shift position of the proton resonance relative to the
center of the spectral window. Of course, it requires some special tricks (decoupling, spin
echo, etc.) to have a coupled nucleus affected only by its chemical shift and not by the J
coupling, but it is easiest to understand these two effects separately.

Evolution under the influence of J coupling alone results in refocusing of antiphase
magnetization, whereas in-phase magnetization evolves into antiphase:

Ix
in-phase

→ 2IySz
antiphase

→ −Ix
in-phase

→ −2IySz
antiphase

→ Ix
in-phase

Note that the operator in the x–y plane (1H or I in this case) evolves, just like chemical shift
evolution (Ix → Iy → −Ix → −Iy ), a simple counterclockwise rotation in the x–y plane,
but with each 90◦ rotation it alternates between in-phase (omitting the 2 and the Sz ) and
antiphase (including them). You can do some NMR calisthenics by first putting both arms
forward in front of you (Ix , in-phase) and then moving them apart until they are at your
sides sticking out (2IySz , antiphase—your left arm is the 13C = α component on the +y
axis and your right arm is the 13C = β component on the −y axis) and then moving them
further around to meet in the back (−Ix , in-phase). You cannot go further without hurting
yourself, but if you could move further your arms would cross and your right arm would
point left and your left arm would point right (−2IySz , antiphase in the opposite sense,
with your left arm, 13C = α, on the right, the −y axis). Further rotation would bring your
(broken) arms to the front (Ix , in-phase). This sequence can be represented in a circle (Fig.
7.9, left) with the rotation rate (πJ rad/s or J/2 Hz) in the center. If we start with Iy instead
of Ix , we see the same progression of axes for the I spin (1H) going counterclockwise from
Iy to –Ix to −Iy to Ix , but we start with in-phase on the y axis (Iy ) and alternate in-phase
and antiphase as we go around: Iy → −2IxSz → −Iy → 2IxSz → Iy (Fig. 7.9, right).

We can also think about the spectrum that would be observed at each stage of this
evolution (“J coupling evolution”) if we started recording the FID at that point in time. For
this purpose, we have to decide on a phase reference (receiver phase): let’s use the +x axis
as representing a positive absorptive peak in the spectrum. In other words, if a vector is on
the +x axis at the start of the FID, it will give a peak in the spectrum that is positive and
absorptive. Ix will give a nice positive absorptive peak for both components (Fig. 7.10) of
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the doublet (1H–13C system with J coupling 1JCH ∼ 150 Hz). 2IySz will give a dispersive
(up/down) peak for the 13C = α component on the +y axis and an opposite dispersive peak
(down/up) for the 13C = β component of the doublet on the −y axis. −Ix gives an upside-
down (negative absorptive) doublet and −2IySz gives the dispersive antiphase doublet in the
opposite sense (down/up, up/down) to 2IySz . If we use the +y axis as the phase reference,
any vector on +y will give a positive absorptive peak, and any vector that leads +y by 90◦
(i.e., any vector on −x, which is 90◦ counterclockwise from +y) will be dispersive up/down.
This gives absorptive phase for 2IySz and −2IySz (Fig. 7.10, bottom). A real life example
of this evolution was shown for 13C labeled methyl iodide (13CH3I) in Chapter 6, Fig. 6.14.
It is easier to think about the spectrum if we jump back and forth between the +x axis phase
reference (for Ix and −Ix ) and the +y axis reference (for 2IySz and −2IySz ), avoiding the
dispersive lineshape (Fig. 7.10, following the arrows).

We can also use the sine and cosine functions to describe any general rotation, not
confined to the four “points of the compass”:

Ix
τ delay−−−→ Ix cos(πJτ) + 2IySz sin(πJτ) (evolution into antiphase: Fig. 7.9, left)

Iy
τ delay−−−→ Iy cos(πJτ) − 2IxSz sin(πJτ) (evolution into antiphase: Fig. 7.9, right)

Figure 7.10
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Figure 7.11

2IxSz
τ delay−−−→ 2IxSz cos(πJτ) + Iy sin(πJτ) (refocusing: Fig. 7.9, right)

2IySz
τ delay−−−→ 2IySz cos(πJτ) − Ix sin(πJτ) (refocusing: Fig. 7.9, left)

As before, the cosine term multiplies the starting spin state of the rotation, and the sine
term multiplies the “next stop” on the counterclockwise rotation of J-coupling evolution.
For example, for Ix , we know that the next stop for simple chemical shift evolution is Iy

(if you have any doubts, draw a small set of coordinate axes (x, y, and z) and trace the
counterclockwise rotation by 90◦ from the starting spin state). We multiply this by 2 in
front and Sz after the Iy term (evolution into antiphase) to get 2IySz . Starting from −2IySz ,
we move counterclockwise from −Iy to Ix and remove the 2 and the Sz (refocusing) to get
Ix . This representation breaks down the vector model of two vectors moving in opposite
directions into two components: the in-phase component and the antiphase component
(Fig. 7.11). Note that the cosine term always goes with the unchanged product operator and
the sine term always goes with the new product operator it evolves into. This makes sense,
as the cosine function is 1 and the sine function is 0 at time zero.

Finally, consider the effect of both chemical shift evolution and J coupling. This gets
pretty complicated, but we can consider either one of them first and then apply the effect of
the other. Let’s consider the chemical shift evolution first:

Ix
delay τ−−−→ Ix cos�Iτ + Iy sin�Iτ (chemical shift only).

Now substitute for Ix and Iy , considering the effect of J-coupling evolution:

Ix cos�Iτ + Iy sin�Iτ
delay τ−−−→ [Ix cosπJτ + 2IySz sinπJτ]cos�Iτ

+ [Iy cos πJτ − 2IxSz sin πJτ]sin�Iτ = Ix cosπJτcos�Iτ
A

+ 2IySz sinπJτcos�Iτ
B

+ Iy cosπJτsin�Iτ
C

− 2IxSz sinπJτsin�Iτ
D

In the square brackets we have the result of J-coupling evolution starting from Ix (first term
in brackets) and from Iy (second term in brackets). The result is four separate terms, and
we can think of them like this: (A) coherence that underwent neither J-coupling evolution
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nor chemical shift evolution; (B) coherence that underwent J-coupling evolution but not
chemical shift evolution; (C) coherence that underwent chemical shift evolution but not
J-coupling evolution; and (D) coherence that underwent both chemical shift evolution and
J-coupling evolution. In each case, we use a cosine term if that type of evolution (�τ for
chemical shift evolution and πJτ for J-coupling evolution) did not occur, and a sine term
if it did occur. The correct product operators can also be written directly using this type
of reasoning. Starting with Ix , we can go directly to the four terms: first, write Ix with two
cosine terms (i.e., no evolution at all); then write 2IySz (counterclockwise rotation Ix →
Iy plus evolution from in-phase into antiphase) with a sinπJτ term (J-coupling evolution
did occur) and a cos�Iτ term (chemical shift evolution did not occur); then write Iy with a
cosπJτ term (no J-coupling evolution) and a sin�Iτ term (chemical shift evolution); finally,
write −2IxSz with two sine terms (both kinds of evolution, resulting in a 180◦ rotation of
the I operator and evolution into antiphase). If we use s and c for sinπJτ and cosπJτ,
respectively, and s′ and c′ for sin�Iτ and cos�Iτ, respectively, this can be written quickly
and simply as follows:

Ix
τ delay−−−→ Ix cc′ + 2IySz sc′ + Iycs′ − 2IxSzss′

This is pretty complicated, but the advantage is that we can keep track of everything of
importance. Any pulse sequence can, in principle, be examined to see what effect it will
have on the sample magnetization and what observable signals will remain at the end. Prod-
uct operator formalism represents the full quantum-mechanical phenomenon of NMR, so
that any type of experiment including mysterious things like multiple-quantum coherences
(MQCs) can be represented correctly.

7.6 THE EFFECT OF RF PULSES ON PRODUCT OPERATORS

The effect of pulses is very simple: each individual operator is acted on by the pulse, and
replaced by the result of that rotation about the B1 vector. For example, consider the effect
of a 90◦ 1H pulse on the x axis:

Iz → −Iy Ix → Ix Iy → Iz − Iy → − Iz Sy →Sy

These are exactly the same as the vector rotations, and you should draw a small set of
coordinate axes in the margin of your paper to figure out these rotations as you work with
product operators (Fig. 7.12). Note that 13C net magnetization is not affected by a 1H pulse
(Sy → Sy ). The effect of a 90◦ 13C pulse on the y axis is likewise the same as the vector
model predicts:

Sx → − Sz Ix → Ix Sy →Sy Sz →Sx − Sx →Sz

180◦ pulses lead to inversion (z → −z and vice versa) or refocusing (x → −x, y → −y)
as long as they are applied on an axis 90◦ from the axis of the starting magnetization. Any
pulse applied on the same axis as the net magnetization has no effect. A 180◦ 13C pulse on
the y axis brings about the following rotations (or “non-rotations”):

Sx → − Sx Sy →Sy − Sz →Sz Ix → Ix Iz → Iz
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Figure 7.12

For two-spin operators, just figure out the effect of the pulse on each of the operators and
replace the each starting operator with the result of the rotation. For example, for a 180◦
13C pulse on the x axis

2IySz → 2Iy(−Sz) = −2IySz (onlySz is affected by the13C pulse)

−2SxIz → −2SxIz 2SyIz → 2(−Sy)Iz = −2SyIz

For a 90◦ 1H pulse on the y axis

2IySz → 2IySz 2IxSx → 2(−Iz)Sx = −2SxIz 2SyIz → 2SyIx 2IxSz → −2IzSz

Note that the observable operator (the operator representing coherence or net magnetization
in the x–y plane) is always written first in the product. Also, we see above some examples
where both operators are in the x–y plane, or both operators are on the z axis! These products
represent nonobservable states which are nonetheless very important in NMR experiments.
The only observable product operators are those with only one operator in the x–y plane
(“single-quantum transitions”).

For a homonuclear system (Ha and Hb with coupling constant J) we can do the same
kinds of tricks:

Iax
(90H

y )−−−→ −Iaz Iby
(180H

x )−−−→ −Iby Ibz
(90H

x )−−−→ −Iby
Coupled protons also evolve into antiphase and refocus during delays:

Iby − 1/(2J) → − 2IbxI
a
z → − Iby → 2IbxI

a
z → Iby

For example, −2IbxI
a
z is read as “proton Hb net magnetization on the −x axis, antiphase

with respect to its coupling partner Ha.” Again, we can think of the Iaz part as a multiplier,
equal to +1/2 or −1/2 depending on the spin state (α or β) of each individual Ha nucleus.
The observable magnetization is on Hb, and as it rotates around the axes (y → −x →
−y → x → y) it alternates between in-phase and antiphase with respect to its coupling
partner Ha. The effect of pulses is similar to what we saw for a 1H–13C pair, except that
with hard (high power, short duration, nonselective) 1H pulses we cannot deliver a rotation
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to one of the spins and not the other: all hard pulses affect both Ha and Hb. For example,
for a 180◦ 1H pulse on the y axis:

Iax → − Iax − Ibx → Ibx 2IayI
b
z → 2Iay(−Ibz) = −2IayI

b
z

2IbxI
a
z → 2(−Ibx)(−Iaz) = 2IbxI

a
z 2IbyI

a
z → 2(Iby)(−Iaz) = −2IbyI

a
z

Likewise, a 90◦ 1H pulse on the x axis is viewed as a simultaneous pulse on Ha and on Hb:

Iay → Iaz Ibz → − Iby 2IayI
b
z → 2(Iaz)(−Iby) = −2IbyI

a
z

2IbxI
a
z → 2(Ibx)(−Iay) = −2IbxI

a
y − 2IbyI

a
z → 2IayI

b
z

In the two examples above on the right, observable magnetization (antiphase coherence) is
transferred by the 90◦ 1H pulse from Hb to Ha (top) and from Ha to Hb (bottom). This is a
key process in all advanced NMR experiments that depend on J couplings. The role of the
two operators is reversed as the operator in the x–y plane (the observable net magnetization)
rotates to the z axis and the operator on the z axis (the multiplier that represents microscopic
z magnetization) rotates to the x–y plane. After the rotations, we reverse the order of the
two operators because we always write the observable operator first in the product.

7.7 INEPT AND THE TRANSFER OF MAGNETIZATION FROM 1H TO 13C

Now that we have the precise tools of product operator notation, we can look at coherence
transfer in detail. In the NOE difference experiment (Chapter 5), we saw an example of
transfer of z magnetization from one nucleus to another via the through-space interaction
of cross-relaxation. It is also possible to transfer magnetization in the x–y plane (observable
magnetization or coherence) via the through-bond J-coupling interaction. The simplest form
of the INEPT pulse sequence is shown in Figure 7.13 for transfer of 1H coherence to 13C
coherence. Consider a simple case of a single proton bonded to a 13C (e.g., benzene) and
assume for the sake of simplicity that both the 1H and the 13C frequencies are exactly on-
resonance. The 90◦ 1H pulse (B1 vector on −x) rotates the proton z magnetization onto the
y′ axis of the rotating frame of reference (Fig. 7.14). The downfield component of the proton
doublet, which arises from protons attached to 13C nuclei in the α state, begins to rotate
counterclockwise in the x′–y′ plane toward the −x′ axis with angular frequency J/2 Hz (or πJ

Figure 7.13
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Figure 7.14

radians). The upfield component of the proton doublet, which arises from protons attached
to 13C nuclei in the β state, rotates in the opposite direction in the x′–y′ plane (clockwise)
toward the +x′ axis with angular frequency −J/2 Hz (−πJ radians). After a period of time
equal to 1/(2J), the two components are exactly opposite to each other, with the downfield
(H = α) component on the −x axis and the upfield (H = β) component on the +x axis.
This special condition is called antiphase magnetization and is represented as −2IxSz ,
where I stands for the 1H spins and S stands for the 13C spins. This can be read as “I spin
magnetization along the −x′ axis, antiphase with respect to the z orientation of the individual
S spins.” The downfield component of the doublet (which we will always show as the α

component) points along the indicated axis (−x from the −2Ix part of the product) in the
vector model, and the upfield (β) component points along the opposite (+x) axis (Fig. 7.14).

Acquisition of data at this point would yield a spectrum with a proton doublet, in which
the upfield component of the doublet is of opposite phase (upside down) with respect to the
downfield component. If we choose +x as our reference axis (receiver phase), the downfield
component will be negative absorptive and the upfield component will be positive absorptive
in the spectrum (Fig. 7.14). Instead of starting acquisition at this point, however, we deliver
two simultaneous 90◦ pulses: one at the 1H frequency and the other at the 13C frequency
(Fig. 7.13). This is where the magic happens. The 1H magnetization, which is antiphase
with respect to the attached 13C nucleus, is converted into 13C magnetization, which is
antiphase with respect to its attached 1H nucleus. The observable (x–y plane) magnetization
has jumped from the 1H to the 13C attached to it as a result of the simultaneous 90◦ pulses
on the 1H and 13C channels. This coherence transfer is possible only if we have a J coupling
between the two nuclei, and if the magnetization is in this antiphase state at the time of the
pulses. In terms of product operators, the proton Ix component is rotated by the 90◦ proton
pulse on the y′ axis onto the −z axis, whereas the 13C Sz component is rotated by the 90◦
13C pulse on the y′ axis onto the +x′ axis:

Ix component → −Iz by 90◦ 1H pulse on y′ axis
Sz component →Sx by 90◦ 13C pulse ony′ axis

−2IxSz → − 2(−Iz)Sx = 2SxIz by simultaneous 90◦ 1H and 13C pulses on y′ axis
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Figure 7.15

This is just following the rules for each individual operator in the product (Fig. 7.15).
The resulting product operator, 2SxIz , can be described as 13C magnetization on the
x′ axis, antiphase with respect to the z magnetization (α or β state) of its attached 1H
nucleus. Acquisition at this time would yield an FID at the 13C frequency, and Fourier
transformation with phase reference +x would give a carbon doublet with a downfield
component of normal phase and an upfield component of opposite phase (upside-down).
This is what you will see in your INEPT spectrum: an antiphase 13C doublet. Later, we will
see that this spectrum is actually four times as intense as the normal 13C spectrum: this is
the enhancement part of INEPT.

As with the APT experiment (Chapter 6), we have the problem that chemical shift
differences during the 1/(2J) delay will lead to a hopelessly confused pattern of phases in
the final spectrum. To eliminate the chemical shift evolution, we use the same strategy we
used in the APT experiment: convert the 1/(2J) delay into a spin echo. By placing a 180◦
1H pulse in the center of the 1/(2J) delay, we refocus the phase shifts due to 1H chemical
shift differences. To make sure that the J coupling effect from the attached 13C nucleus
is not refocused as well, a 180◦ 13C pulse is delivered simultaneously with the 180◦ 1H
pulse. This is a more sophisticated method than the decoupler switching method used in the
APT sequence. In this case to use the APT approach, we would have to decouple the 13C
nuclei, which requires nonstandard hardware. The result is the same: the 1H magnetization
evolves into antiphase under the influence of the J coupling from the attached 13C nucleus,
but the 1H chemical shift differences are refocused by the spin echo. The complete INEPT
sequence is shown in Figure 7.16.

Figure 7.16
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There are two important consequences of this method. Both result from the fact that the
magnetization that is being observed (13C antiphase doublet) arises from 1H magnetization
that is rotated from its equilibrium state along the z axis by the first 90◦ proton pulse. The
first consequence arises because the 1H population difference at equilibrium (sometimes
called “polarization”) is four times the carbon population difference at equilibrium. This
results from the larger energy separation between the α and β states for protons:

�P(1H) = (γHBoh/4πkT )N �P(13C) = (γCBoh/4πkT )N

�P(1H)/�P(13C) = γH/γC = 3.977

where N is the number of identical nuclei in the sample and T is the temperature in kelvin.
This means that, compared to a normal 13C experiment in which the observed signal orig-
inates from �P(13C), the signal will be four times as large! This increase in sensitivity
is extremely important for nuclei such as 13C that have a weak nuclear magnet (small γ).
The second consequence is that with repetitive scans it is the 1H T1 value, and not the
13C T1 value, which determines how long the relaxation delay needs to be, as we start the
experiment with �P(1H) rather than �P(13C). The 13C z magnetization can be completely
saturated and this experiment will still work! Because the 1H T1 values are often shorter
than those of 13C, and may be dramatically shorter than those of more “exotic” heavy nuclei,
the reduction in experiment time can be significant.

Figure 7.17 shows the INEPT spectrum of sucrose (top) compared to the nondecoupled
13C spectrum (bottom) acquired with the same number of scans. This is run with the phase
cycle to remove all coherence that comes from the 13C z magnetization (Sz ), so the result
is pure antiphase coherence on 13C. Note that the CH resonances give antiphase doublets
with each component four times as intense as the corresponding component in the 13C
spectrum. The lone quaternary carbon (C-f2) is missing in the INEPT spectrum, and the
CH2 resonances give rise to triplets with the central line missing (1, 0, −1). These CH2
patterns are antiphase with respect to only one of the two protons of the CH2 group (the

Figure 7.17
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one from which the coherence was transferred), so the intensities result from two antiphase
doublets (1, −1 and 1, −1) for which the two inner peaks are overlapped and cancel.
For example, if the coherence comes from H1 to C, we have α1α2 (most downfield peak)
antiphase with respect to β1α2 (center peak): 1, −1; and α1β2 (center peak) antiphase with
respect to β1β2 (most upfield peak): 1, −1. These four lines form the triplet and the two
inner lines (β1α2 and α1β2) have the same frequency, so the intensities are 1, 0, −1 for the
triplet. It is easy to see that as it is, this is not a very practical experiment: without decoupling
the peaks are spread out into complex overlapping multiplets (doublets, triplets, quartets),
and with decoupling there is no intensity because each multiplet adds up to intensity zero.
In Section 7.13, we will see how a refocusing delay brings the antiphase terms back to
in-phase so we can apply 1H decoupling and have singlet peaks for each 13C resonance in
the spectrum.

7.8 SELECTIVE POPULATION TRANSFER (SPT) AS A WAY
OF UNDERSTANDING INEPT COHERENCE TRANSFER

At this point you may understand the math of the product operator “switch” that occurs
with the two simultaneous 90◦ pulses, but you might be feeling unsatisfied and in need of
an explanation of what is really happening. Of course, the sooner you accept the product
operator math as an explanation the easier the things will be for you, but there is a vector
model way of explaining INEPT coherence transfer that involves keeping track of popu-
lations. Consider a “thought experiment” in which we apply a 180◦ (inversion) pulse to
only one component of the 1H doublet. This can actually be done using shaped (selective)
pulses, as we will see in Chapter 8. In the vector model, we start with both vectors (rep-
resenting the two components of the 1H net magnetization in the 1H–13C pair) pointing
along the +z axis. This is the equilibrium state. Now we apply a selective 180◦ pulse to
the downfield (13C = α) component of the 1H doublet. The vector labeled “α” will rotate
from the +z axis to the −z axis, giving us an antiphase state along the z axis (Fig. 7.18).
We can describe this state as −2IzSz , as the Sz “multiplier” represents +1/2 for the pairs
with 13C in the α state and −1/2 for the pairs with 13C in the β state. The “α” vector is on
the −z axis (−2Iz [1/2] = −Iz ) and the “β” vector is on the +z axis (−2Iz [−1/2] = Iz ).
We will see in the next section that this state is a useful “intermediate” in coherence
transfer.

Figure 7.18
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Figure 7.19

Usually when we are talking about nonequilibrium populations, we use the population
diagrams (energy states with filled and open circles) to describe the changes. Let’s draw an
energy diagram for the 1H–13C pair, just like we did for the 1Ha–1Hb pair in our discussion
of the NOE difference experiment (Chapter 5, Section 5.12). As with the homonuclear case,
there will be four energy states: αHαC, αHβC, βHαC, and βHβC. The difference is that the
energy gap for the 13C =α to 13C =β transition is one-fourth of the energy gap for the 1H =α

to 1H=β transition becauseγH =4γC. In other words, the much stronger 1H nuclear magnet
requires four times more energy to turn it against the Bo field. So we need to draw the energy
diagram to reflect this difference in energy gaps. From the center of the diagram (E = 0) we
go up in energy 4 units for 1H = β, down in energy 4 units for 1H = α, up 1 unit for 13C = β

and down 1 unit for 13C = α. This puts the αHαC state at E = −4 −1 = −5, the αHβC state
at E = −4 + 1 = −3, the βHαC state at E = +4 −1 = 3 and the βHβC state at E = +4 +1 =
+5 units (Fig. 7.19). The energy unit here is �EC/2, where �EC is the energy gap for a 13C
transition. We can identify the 1H transitions as αα → βα (1H transition with 13C = α) and
αβ → ββ (1H transition with 13C = β). The 13C transitions, which have an energy difference
one-fourth of the 1H transitions, are αα → αβ (13C transition with 1H = α) and βα → ββ

(13C transition with 1H = β). The two 1H transitions correspond to the two components of
the doublet in the 1H spectrum (downfield component is αα → βα, upfield component is
αβ → ββ) and the two 13C transitions correspond to the two components of the doublet in
the 13C spectrum (downfield component is αα → αβ, upfield component is βα → ββ).

Now we need to write in the population of each level at equilibrium (Fig. 7.20). According
to the Boltzmann distribution, the population of each level will be N/4 times the exponential
factor:

P = (N/4) e−E/kT ∼ (N/4) (1 − E/kT )

The deviation in population from an equal distribution between all four states (N/4) is thus
proportional to the energy. For the αHαC state, we draw five filled circles (E = −5) to
indicate a population of N/4 + 5δ where δ is (N/4)(�EC/8kT). For the αHβC state we draw
three filled circles (E = −3), for the βHαC state we draw three open circles (E = +3), and
for the βHβC state we draw five open circles (E = +5) representing a population deficit of
5δ (Fig. 7.20). Now look at the population differences at equilibrium: for the 1H transitions,



SELECTIVE POPULATION TRANSFER (SPT) 259

Figure 7.20

we have �P = 8δ [+5δ − (−3δ) for the 13C = α transition and +3δ – (−5δ) for the 13C =
β transition] and for the 13C transitions we have �P = 2δ [+5δ − (+3δ) for the 1H =
α transition and −3δ − (−5δ) for the 1H = β transition]. Note that population difference
is always defined as the population in the lower energy state minus the population in the
higher energy state. As expected, the 1H population differences are four times as large as
the 13C population differences (8δ vs. 2δ).

We are finally ready to consider the effect of the selective 180◦ 1H pulse on the downfield
component of the 1H doublet (αHαC → βHαC transition). We know that the 180◦ 1H pulse
reverses (“inverts”) the spin state of each proton in the sample: every proton in the α state is
converted to the β state and every proton in the β state is converted to the α state. Looking
at the energy diagram for the 1H–13C pair, we see that the 180◦ 1H pulse swaps the entire
population across the 1H transition: each pair in the αα state is now βα, and each pair in the
βα state is now αα. The population of the αα state, which was N/4 + 5δ, is now N/4 − 3δ,
and the population of the αβ state, which was N/4 − 3δ, is now N/4 + 5δ (Fig. 7.21). The
redistribution of populations is the result of every single pair in the βα state moving down
to the αα state, and every single pair in the αα state moving up to the βα state. Consider the
analogy of two towns on opposite sides of a river. East Podunk has a population of 51, and
West Podunk has a population of 49. If two people move from East Podunk to West Podunk,
we now have reversed the populations of the two towns. But this is not analogous to NMR
inversion: the correct analogy is that all 51 residents of East Podunk move to West Podunk,
and all 49 residents of West Podunk move to East Podunk, reversing the populations.

The spin state diagrammed in Figure 7.21 is the −2IzSz state, an antiphase state on the
z axis. It can be represented in a vector diagram with the 1H net magnetization (13C = α)
vector pointing down along the −z axis and the 1H net magnetization (13C = β) vector
pointing up along the +z axis (Fig. 7.18). Note that spin I (1H) and spin S (13C) play equal
roles in the product; we could also write it as −2SzIz because neither operator is observable
and the rule that observable operators go first does not apply. Writing it with Sz first implies
that we have net S spin (13C) magnetization on the z axis, and the Iz term is acting as a
multiplier (+1/2 for 1H in the α state and −1/2 for 1H in the β state). Now look at this spin
state from the point of view of population differences for the 13C transitions (Fig. 7.21). The
αα → αβ transition (downfield or “1H = α” component of the 13C doublet) has a population
difference of −6δ (−3δ− (+3δ)), or −3 times the equilibrium difference of 2δ, and the βα→
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Figure 7.21

ββ transition (upfield or “1H =β” component of the 13C doublet) has a population difference
of 10δ (+5δ − (−5δ)), or 5 times the equilibrium difference of 2δ. In the vector model, we
can represent the 13C net magnetization (on a separate coordinate system from the 1H net
magnetization) as a vector labeled “1H = α” pointing down along the −z axis with length
3 (three times the normal length for 13C) and another vector labeled “1H = β” pointing up
along the +z axis with length 5 (five times the normal length for 13C (Fig. 7.22). We can think
of this as the sum of the equilibrium 13C net magnetization (both “α” and “β” vectors on +z
with length 1) and the antiphase z magnetization transferred from 1H (“α” vector on −z and
“β” vector on +z, both four times as long as the normal 13C equilibrium magnetization).
The equilibrium 13C z magnetization is still there because we have not perturbed it: only a
selective 1H pulse has been delivered to the sample. The transferred magnetization is four
times as large as normal 13C magnetization because it came from the equilibrium population
difference (“polarization”) of the proton, which is four times as large as 13C. This is the
origin of the enhancement by polarization transfer part (EPT) of the name INEPT. The

Figure 7.22
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proton population difference has been converted into a 13C population difference of the
same magnitude. The product operator view of the process thus far is as follows:

Iz + Sz
selective1H 180◦ pulse−−−−−−−−−−−→ −2IzSz + Sz = 4[−2SzIz] + Sz

Our equilibrium starting point is both Iz (equilibrium proton net magnetization) and Sz (equi-
librium 13C carbon magnetization). Adding these two together (Iz + Sz ) simply means that
both are present; it is like a list of the types of net magnetization in the sample. This is very dif-
ferent from multiplying them together (−2IzSz ); in this case the first operator is net magneti-
zation and the second is a multiplier that makes it antiphase (+1/2 for 13C = α, −1/2 for 13C
= β). Note that there is no systematic way of calculating the effect of the selective 1H pulse
on Iz ; we have to reason it out using the vector model and then name the final state −2IzSz

based on our understanding of how to represent antiphase magnetization using the product
operators. When we switch the order of operators from 2IzSz to 2SzIz we put in a factor of 4 to
indicate that net 13C magnetization is now four times larger than equilibrium 13C magnetiza-
tion (Sz ). Because we are viewing 2SzIz as 13C net magnetization modified by the multiplier
Iz , the point of comparison for the magnitude of this magnetization is now Sz and not Iz .

At this point in order to observe a 13C spectrum, we need to rotate the 13C net magne-

Figure 7.23

Figure 7.24
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tization vectors into the x–y plane with a 90◦ 13C pulse. If we set the phase of the pulse
to y (B1 field on the y′ axis in the rotating frame), the 1H = β vector, which is on the +z
axis, rotates 90◦ ccw to the x′ axis and the 1H = α vector, which is on the −z axis, rotates
90◦ ccw to the −x′ axis (Fig. 7.23). If we begin acquiring the FID at this moment, with
the x′ axis as our phase reference, we will see a 13C doublet with the downfield component
(1H = α) upside-down with intensity three times the normal 13C spectrum, and the upfield
component (1H = β) positive absorptive with intensity five times the normal 13C spectrum.
In product operator terms, we have

4[−2SzIz] + Sz

13C 90◦ pulse on y′ axis−−−−−−−−−−−−→ 4[−2SxIz] + Sx

The vector representation of the final state is the sum of antiphase 13C magnetization on the
−x axis (1H = α vector of length 4 on −x′, 1H = β vector of length 4 on x′) and in-phase 13C
magnetization on the +x′ axis (1H = α vector of length 1 on x′ and 1H = β vector of length 1
on x′). The sum can also be represented as the sum of two spectra: an antiphase 13C doublet
four times as intense as a normal 13C spectrum (downfield component upside-down) plus
a normal (in-phase) 13C spectrum (Fig. 7.24). The antiphase part was transferred from 1H
equilibrium net magnetization (enhancement by polarization transfer), and the in-phase part
is just the normal 13C spectrum derived from 13C equilibrium net magnetization.

What does this “thought experiment” have to do with the INEPT experiment? The same
spin state that results from the selective 1H 180◦ pulse on the downfield component of the
1H doublet (−2IzSz + Sz ) can be obtained in a more practical way by a nonselective 90◦
1H pulse followed by a delay of 1/(2J) and another nonselective 1H 90◦ pulse:

Iz + Sz

1H 90◦ pulse on x′ axis−−−−−−−−−−−→ −Iy + Sz

−Iy + Sz
1/(2J) delay−−−−−−−−→ 2IxSz + Sz (J − coupling evolution)

2IxSz + Sz

1H 90◦ pulse on y′
−−−−−−−−−→ −2IzSz + Sz

This may seem more complicated, but it is much more practical because all of the pulses are
nonselective (“hard”) pulses. If we add the final 13C 90◦ pulse used in the SPT experiment
to bring the magnetization to the x–y plane, we have the INEPT experiment:

1H 90◦
x − 1/(2J) delay − 1H 90◦

y − 13C 90◦
y − FID

The final 90◦ pulses on 1H and 13C can be applied simultaneously or one immediately after
the other, as shown above.

Exercise: The equilibrium 13C z magnetization makes the SPT analysis more complicated than
it has to be. Go through the SPT thought experiment again showing the population diagrams
and the final 13C spectrum if the 13C resonances are first saturated by continuous low-power
RF irradiation at both 13C transition frequencies. Draw the population diagram after saturation
of the 13C transitions. Then start the SPT experiment with the selective 180◦ 1H pulse on the
1H (13C = α) component of the 1H doublet.
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7.9 PHASE CYCLING IN INEPT

All NMR experiments are beset by artifacts: peaks in the spectrum that are not supposed
to be there. They may be caused by imperfectly calibrated pulses, by delays (such
as 1/(2J)), that cannot be set perfectly for every resonance in the spectrum, or by
hardware imperfections. We can also speak of coherence pathways—different origins
and histories of NMR magnetization that eventually reach the receiver during the
FID. We saw in the previous section, for example, that observable 13C coherence can
come from 1H “polarization” (population difference) via INEPT transfer, or it can
come from 13C polarization directly as a result of the final 13C 90◦ pulse. These
two components result in the antiphase (+4, −4) 13C spectrum and the in-phase (+1,
+1) 13C spectrum combined in the receiver. If we view the direct (13C → 13C)
pathway as an artifact, we can explore methods to remove it. There are two main tech-
niques for removing artifacts: pulsed field gradients (which we will discuss in Chap-
ter 8) and phase cycling. Phase cycling is a subtraction method, which relies on ac-
quiring more than one scan and combining the FIDs (by adding or subtracting) in
such a way that the desired signals add together and the artifacts cancel out by sub-
traction. A phase cycle for INEPT can be designed very easily by looking at the
product operator description at each stage of the experiment. By changing the phase
of one of the pulses, we can differentiate between the desired operators (the “sig-
nal”) and the undesired operators (the “artifacts”). Starting from the equilibrium state,
we have

Iz + Sz

1H 90◦ pulse on x′ axis−−−−−−−−−−−→ −Iy + Sz

−Iy + Sz
1/(2J)delay−−−−−−−→ 2IxSz + Sz (J − coupling evolution)

2IxSz + Sz

1H and13C 90◦ pulses on y′
−−−−−−−−−−−−−→ 2[−Iz] [Sx] + Sx

Note that the conversion Sz → Sx in the last step is brought about by the 90◦ 13C pulse
only; the 90◦ 1H pulse has no effect on this conversion. The desired term, 4[−2SxIz ], comes
from 2IxSz and requires both 90◦ pulses, on 1H and 13C, to be produced. Consider what
happens if we change the phase of the 1H 90◦ pulse from +y′ to −y′:

2IxSz

1H 90◦on+y′ and 13C 90◦on+y′
−−−−−−−−−−−−−−−−→ 2[−Iz][Sx] = 4[−2SxIz]

2IxSz

1H 90◦on−y′ and 13C 90◦on+y′
−−−−−−−−−−−−−−−−→ 2[Iz][Sx] = 4[2SxIz]

By inverting the phase of the 1H 90◦ pulse (+y′ to −y′), we have inverted the phase of
the resulting antiphase 13C signal. If we choose the +x′ axis as our phase reference, the
−2SxIz term will give an antiphase doublet with the downfield (left) component negative
(upside-down) and the upfield (right) component positive (Fig. 7.25, top left). The 2SxIz

term will give the opposite spectrum: downfield component positive and upfield compo-
nent negative (Fig. 7.25, top center). The final Sx term will be positive and in-phase in
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Figure 7.25

either case:

Sz

1H 90◦on+y′and 13C 90◦on+y′
−−−−−−−−−−−−−−−−→ Sx

Sz

1H 90◦on+y′and 13C 90◦on+y′
−−−−−−−−−−−−−−−−→ Sx

Only the 13C 90◦ pulse operates on Sz to rotate it to Sx , so the phase of the 1H 90◦ pulse is
irrelevant (Fig. 7.25, bottom left and bottom center). Now we can apply the phase-cycling
strategy: acquire one FID using the 1H 90◦ pulse on +y′ and a second FID with the 1H 90◦
pulse on −y′. Subtract the second FID from the first. The result will be:

Difference = {4[−2SxIz] + Sx} − {4[2SxIz] + Sx} = 8[−2SxIz]

Fourier transformation will give a spectrum corresponding to 8[−2SxIz ]: an antiphase
13C doublet with intensities of −8 (1H = α component) and +8 (1H = β component)
(Fig. 7.25, right). This spectrum is the pure INEPT spectrum, without any contribution
from the in-phase 13C doublet (the “artifact”). If you understand this strategy of cancella-
tion, you will understand the use of phase cycling in all NMR experiments: pick a pulse
whose phase has a different effect on the desired signal than on the artifact peaks, change
its phase over more than one scan, and combine the FIDs by addition or subtraction so as
to cancel the artifact signals and sum the desired signals.

Figure 7.26 (left) shows the INEPT spectrum of neat benzene (C6H6) using the sequence
of Figure 7.16 with no 1H decoupling and no phase cycling. With the final 1H pulse phase
set to 1 (y′ axis), we see the H = α component upside-down with intensity 3 and the H =
β component positive with intensity 5 (spectrum A). With the final 1H pulse phase set to
3 (−y′ axis), the antiphase (−4, +4) portion of the signal is inverted (spectrum B), giving
intensities of +5 (H = α) and −3 (H = β). If the FIDs from spectrum A and spectrum
B are subtracted, Fourier transformation of the difference FID gives only the portion of
the signal that results from coherence transfer from 1H to 13C: an antiphase doublet with
intensities of −8 (H = α) and +8 (H = β). If instead the two FIDs are added together,
Fourier transformation of the sum FID gives only that portion of the signal that results
from direct excitation of the 13C z magnetization: an in-phase doublet with intensities of
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Figure 7.26

+2 (H = α) and +2 (H = β). Note that the intensities add directly from the two scans,
but the noise increases as the square root of the number of scans increases, so the noise in
the sum and difference spectra (right) is

√
2 times larger (1.414 times larger) than in the

individual scan spectra (left).

7.10 INTERMEDIATE STATES IN COHERENCE TRANSFER

In the INEPT experiment, the final step of coherence transfer is the simultaneous 90◦ pulses
on 13C and 1H:

2IxSz

1H and 13C 90◦ pulses on y′
−−−−−−−−−−−−−−→ 2[−Iz][Sx] = 4[−2SxIz]

Again, reversing the roles of 1H and 13C operators requires the additional factor of four
because our point of comparison is now 13C equilibrium net magnetization. We do not
actually need to do the two 90◦ pulses simultaneously—we can do them in sequence with a
small delay in between. First, let’s try doing the 90◦ pulse on 1H, followed by a short delay
and a 90◦ pulse on 13C:

2IxSz
1H 90◦ pulse on y′
−−−−−−−−−→ −2IzSz

13C 90◦ pulse on y′
−−−−−−−−−→ −2IzSx = 4[−2SxIz]

We can consider the state −2IzSz as an intermediate state in coherence transfer, just as we
did in the analysis of populations (SPT) above. Often in INEPT-based experiments, this
intermediate state is used as a way of “cleaning up” other coherences that are not desired.
A pulsed field gradient (PFG, Chapter 8) is a way of temporarily messing up the shims, and
this will destroy any magnetization that is in the x–y plane. The intermediate state −2IzSz

is not affected, however, because there is no net magnetization in the x–y plane. After
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the “spoiler” gradient, we can complete the coherence transfer (with the 13C 90◦ pulse).
The field gradient (“temporary bad shimming”) can be regarded as a filter that lets only z
magnetization and more complicated spin states involving z magnetization get through.

Something even more interesting happens if we reverse the order of the two 90◦ pulses,
starting with the 13C 90◦ pulse:

2IxSz

13C 90◦ pulse on y′
−−−−−−−−−→ 2IxSx

1H 90◦ pulse on y′
−−−−−−−−−→ −2IzSx = 4[−2SxIz]

Now in the intermediate state 2IxSx , we have both operators in the x–y plane. An operator in
the x–y plane corresponds to observable coherence, corresponding to a transition between
two energy states in which only one spin changes state (α to β or β to α). This is called
a single-quantum (SQ) transition. For example, the αHαC → βHαC transition is an SQ
transition because only the 1H changes its spin state. The corresponding coherence could
be represented as Ix or Iy , for example. But what happens if two of these x–y plane operators
are multiplied together? The product corresponds to transitions in which both spins change
their spin state: for example, αHαC → βHβC. In this case, because both spins jump up
simultaneously from α to β, we call this a double-quantum (DQ) transition. The transition
αHβC → βHαC is called a “zero-quantum” (ZQ) transition because one spin (1H) jumps up
and one (13C) falls down, leading to a net change of zero in the total spin quantum number.
At this point, all we can say about the product operator 2IxSx is that it represents a mixture
of double-quantum coherence (DQC) and zero-quantum coherence (ZQC). We can call it
“DQC/ZQC” or simply “MQC” for multiple-quantum coherence. This may seem pretty
vague, but we will see later that ZQC and DQC can be very precisely defined and they
undergo precession (evolution) and respond to RF pulses in completely predictable ways.
Unlike 2IzSz , we cannot even draw a vector diagram of the spin state 2IxSx , so you can
see we have finally left the vector model behind completely. Furthermore, if we turn on the
ADC and record an FID at this point in the pulse sequence, starting with 2IxSx , we will
see nothing at all: no FID and no spectrum. Double-quantum and zero-quantum coherences
are not observable. From the point of view of quantum mechanics, there is a “selection
rule” that states that observable transitions can only have a change in the total spin quantum
number of +1 or −1 (1/2 to −1/2 or −1/2 to 1/2). Double-quantum transitions involve a
change of +2 or −2, and zero-quantum transitions involve a change of zero. These violate
the selection rule and therefore they are not observable in the FID. This “stuff” called
DQC/ZQC is looking pretty mysterious: you can’t draw a picture of it or see it. Does it
really exist? It does because you can change it into observable single-quantum coherence
(SQC) by applying an RF pulse:

2IxSx

1H 90◦ pulse on y′
−−−−−−−−−→ −2IzSx = 4[−2SxIz]

Not only does this make it observable, but whatever changes might happen to 2IxSx during a
delay (evolution, due to chemical shifts or J couplings) will change the observable outcome
of the RF pulse, so we can infer changes that happen during the invisible MQC state. This
is similar to z magnetization, which changes during the recovery period of an inversion-
recovery experiment. We cannot observe z magnetization because it does not undergo preces-
sion in the magnetic field, but we can convert it into observable magnetization by “flipping”
it into the x–y plane with a 90◦ pulse. What we observe in the FID after the 90◦ pulse is
affected by what happened to the z magnetization (i.e., relaxation) during the recovery delay.
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Figure 7.27

The MQC intermediate state in coherence (“INEPT”) transfer can also be used to “clean
up” the spectrum. In this case, we can apply a double-quantum filter (using either gradients
or a phase cycle) to kill all coherences at the intermediate step that are not DQC. We will see
the usefulness of this technique in the DQF (double-quantum filtered) COSY experiment
(Chapter 10). As with the “spoiler” gradient applied to the 2IzSz intermediate state, a double-
quantum filter destroys any unwanted magnetization, leaving only DQC that can then be
carried on to observable antiphase magnetization in the second step of INEPT transfer.

In either case, whether we do the 1H 90◦ pulse first or the 13C 90◦ pulse first, we are
simply choosing the order of the two processes (Fig. 7.27): the 1H operator (Ix ) in the
product moves from the x–y plane to the z axis (1H 90◦ pulse) and the 13C operator (Sz )
in the product moves from the z axis to the x–y plane (13C 90◦ pulse). We can “bump
up” the 1H operator to the z axis first, resulting in both operators on the z axis, and then
“knock down” the 13C operator to the x–y plane. Alternatively, we can first “knock down”
the 13C operator from the z axis to the x–y plane, resulting in both operators in the product
in the x–y plane (MQC), and then “bump up” the 1H operator from the x–y plane to the
z axis.

7.11 ZERO- AND DOUBLE-QUANTUM OPERATORS

Product operators in which both components are in the x′–y′ plane represent zero-quantum
and double-quantum coherences (collectively called “multiple-quantum” coherences). DQC
is a superposition of the spin states αIαS and βIβS, which involves promotion of both nuclei
I and S simultaneously from the α state to the β state or vice versa. ZQC is a superposition of
the spin states αIβS and βIαS, which involves nucleus I flipping from α to β while nucleus S
flips from the β state to the α state, or the reverse process. Neither of these coherences can be
directly observed, but we can convert them into observable (single-quantum) coherence and
see the effect of evolution during the time spent as zero- and double-quantum coherences.
In product operator notation they look like this

1
2 [2IxSx − 2IySy] = Pure DQC along the x′ axis = {DQ}x

1
2 [2IxSy + 2IySx] = Pure DQC along the y′ axis = {DQ}y
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Figure 7.28

1
2 [2IxSx + 2IySy] = Pure ZQC along the x′ axis = {ZQ}x
1
2 [2IxSy − 2IySx] = Pure ZQC along the y′ axis = {ZQ}y

DQC precesses under the influence of chemical shifts at a rate determined by the sum
of the two chemical shifts, whereas ZQC precesses at a rate determined by the differ-
ence (Fig. 7.28). This can be demonstrated by plugging in [Ix cos(�Iτ) + Iy sin(�Iτ)]
for Ix and [Sy cos(�Sτ) − Sx sin(�Sτ)] for Sy , etc., and multiplying the expressions to-
gether. The math is rather messy (although very satisfying) so we will not go through it
here.

Neither double-quantum nor zero-quantum coherence undergoes J-coupling evolution
due to JIS. This is because the energy of interaction of the two nuclear magnets does not
change in the transitions αα → ββ and αβ → βα, as they remain either aligned with each
other or against each other. Because this energy is not involved, the J coupling has no effect
on the evolution. This can also be see by examining the exact energies of the four quantum
states: αα, αβ, βα, and ββ. For two protons, we have (all energies are divided by Planck’s
constant h so we can read out frequencies in hertz directly)

βaβb = νa
o/2 + νb

o/2 − J/4

αaβb = −νa
o/2 + νb

o/2 + J/4 βaαb = νa
o/2 − νb

o/2 + J/4

αaαb = −νa
o/2 − νb

o/2 − J/4

Note that the four single-quantum transitions have energy differences corresponding to their
exact frequencies in the 1H spectrum:

αβ − αα (Hb transition“α”) = νb
o + J/2 ββ − βα (Hb transition“β”) = νb

o − J/2

βα − αα (Ha transition“α”) = νa
o + J/2 ββ − αβ (Ha transition“β”) = νa

o − J/2

These are the four lines of a 1H spectrum with two doublets: one centered on νa with splitting
J and the other centered on νb with splitting J. In each case, the higher frequency (downfield
line) of the pair is the transition in which the other spin remains in the α state—the line we
label “α” in the doublet. The two states in which the Ha and Hb spins are aligned (both α or
both β) are slightly lower in energy (by J/4) and the two states in which the Ha and Hb spins
are opposed (αβ and βα) are slightly higher in energy. This is not universally true, but as
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we have chosen to always label the downfield component of a doublet the “α” component,
we are committed to this relationship.

Now look at the energy differences corresponding to the double-quantum and zero-
quantum transitions:

ββ − αα (DQ transition) = νa
o + νb

o βα − αβ (ZQ transition) = νa
o − νb

o

The J terms cancel out in both cases because the interaction between Ha and Hb is the same:
it remains opposed (ZQ transition) or it remains aligned (DQ transition).

If there is another spin besides I and S, which is coupled to either I or S, this “passive
coupling” will undergo J-coupling evolution. It is only the J coupling between the two nuclei
involved in the DQC or ZQC (in this case I and S), which does not lead to any evolution.

As you can see, the bookkeeping for MQCs gets pretty messy, and we will see later
(Chapter 10, Section 10.4) that another kind of operator called spherical operators is
neater and easier to visualize for MQCs.

7.12 SUMMARY OF TWO-SPIN OPERATORS

For a system of two kinds of spins (I and S for heteronuclear, or Ia and Ib for homonuclear
systems), there are 16 product operators, formed from the 16 matrix elements of the density
matrix. So far we have discussed 14 of them:

Iz,Sz z magnetization(population difference)
Ix, Iy,Sx,Sy in-phase magnetization in the x′ – y′ plane
2IxSz, 2IySz, 2SxIz, 2SyIz antiphase magnetization in the x′ – y′ plane
2IxSy, 2IySx, 2IxSx, 2IySy zero-and double-quantum coherences (not observable)

The remaining two are the longitudinal spin order, which results when the macroscopic z
magnetization of one nucleus (e.g., 1H) is opposite depending on the microscopic z mag-
netization (α or β) state of the other nucleus (e.g., 13C), and the identity (1) operator, which
simply represents the vast majority of spins that cancel each other out and play no role in
NMR experiments. Longitudinal spin order can be viewed as an intermediate state in co-
herence transfer: 2IxSz → 2IzSz → 2IzSx = 2SxIz . Like z magnetization, it is not affected
by gradients. The identity operator is usually ignored because we are interested only in
population differences.

2IzSz longitudinal spin order
1 the identity operator(equal populations in all four states)

Together, these 16 product operators describe the 16 matrix elements in the 4 × 4 density
matrix representation of a two-spin system (Chapter 10). In the matrix, each element repre-
sents coherence between (or superposition of) two spin states. As there are four spin states
for a two-spin system (αIαS, αIβS, βIαS, and βIβS), there are 16 possible pairs of states,
which can be superimposed or share coherence. The product operators are closer to the
visually and geometrically concrete vector model representations, so in most cases they are
preferable to writing down the 16 elements of the density matrix, especially as only a few
of the elements are nonzero in most of the examples we discuss.
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These operators and the rules that govern chemical shift and J-coupling evolution in time
can be used to describe any combination of RF pulses and delays, giving a prediction of the
observable magnetization (and thus the spectrum) at the end of the sequence. This gives us
the means of understanding all of the 1D and 2D NMR experiments. By comparison, the
vector model can explain only a few of the 1D experiments.

7.13 REFOCUSED INEPT: ADDING SPECTRAL EDITING

The INEPT sequence is not very useful because we cannot apply 1H decoupling to the
antiphase signals observed in the FID. For example, the antiphase 13C doublet of a CH
group (1:−1) would, with 1H decoupling, collapse to a single frequency with the positive
peak right on top of the negative peak. These would exactly cancel, and we would see
no peak at all. The same is true for a CH2 antiphase triplet (1:0:−1) and a CH3 antiphase
quartet (1:1:−1:−1); all of these have zero net signal if they are collapsed by 1H decoupling
into a single frequency. In order to apply 1H decoupling, we need to add a refocusing
period to allow antiphase magnetization to evolve back into in-phase magnetization. For
the CH group, this is very simple: we add a 1/(2J) delay to go from antiphase to in-phase:
2SxIz —1/(2J) →Sy. To prevent phase twisting by chemical shift evolution, we need to
add simultaneous 1H and 13C pulses in the center of the 1/(2J) delay, just as we did in
the first (“defocusing”) 1/(2J) delay. Figure 7.29 shows the full sequence with a general
refocusing time of 2τ. For the CH group, we would set 2τ = 1/(2J). In the first spin echo,
we have J-coupling evolution only from in-phase to antiphase: Iy —1/(2J) → − 2IxSy.
We think of the 180◦ 1H pulse on the y′ axis as occurring at the start of the first delay, where
it has no effect on Iy . The simultaneous 90◦ pulses on 1H and 13C then lead to transfer
of coherence: −2IxSz → −2 [−Iz ] [Sx ] = 4[2SxIz ]. Finally, the refocusing delay 1/(2J)
brings us from antiphase 13C coherence back to in-phase: 4[2SxIz ] → 4Sy . The 180◦ 13C
pulse on the x′ axis has no effect because we imagine it at the beginning of the refocusing
period, where 13C coherence is on the x′ axis. For a general refocusing delay � = 2τ, we
have

2SxIz → 2SxIz cos(πJ�) + Sy sin(πJ�)

Figure 7.29
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Figure 7.30

With 1H decoupling, the antiphase term is not observed, so we see only the in-phase signal
with an intensity of sin �, where the “angle” � (in radians) is equal to πJ� or 2πJτ. The
maximum signal occurs with � = π/2 (90◦) or � = 1/(2J). We will see that while this is
ideal for the CH group, we would see no signal at all for CH2 or CH3 groups! This can
be useful because it allows us to get a 13C spectrum with only the CH peaks, so we can
distinguish between CH and CH3 peaks—something that the APT experiment cannot do.

Figure 7.30 shows the INEPT spectrum of neat benzene, C6H6, acquired with the se-
quence of Figure 7.16. On the left is the spectrum without refocusing or 1H decoupling: we
see an antiphase doublet with complex long-range (2JCH and 3JCH) couplings making the
components “ragged.” With refocusing (sequence of Fig. 7.29, � = 1/(2J), where J is 1JCH)
we see an in-phase doublet, still showing the long-range couplings. When 1H decoupling is
applied during acquisition of the FID, we see a sharp singlet. This singlet peak is about four
times the height of the 13C singlet obtained in a simple 13C spectrum with 1H decoupling
(Fig. 7.30, right) because of the enhancement coming from coherence transfer from the 1H.

Now we need to look at the refocusing step in general—for all three types of 13C nuclei
that are coupled to 1H. The defocusing step (first 1/(2J) period) was simple because any
proton, whether it is a part of a CH, CH2, or CH3 group, is still connected to only one 13C,
so it can be looked at as a doublet. In the refocusing step, however, we have 13C coherence
and it behaves differently depending on whether it is a doublet (CH), triplet (CH2), or
quartet (CH3). We will have to define two 1H product operators — I1 and — I2 for the CH2
group and three — I1, I2 and I3 — for the CH3 group. As soon as we have 13C magnetization
in the x′–y′ plane, we can have an in-phase or antiphase relationship to any of the attached
protons. Thus, for pure 13C SQC with a CH2 group, we can have product operators like

Sx 2SxI
1
z, 2SxI

2
z 4SxI

1
zI

2
z
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Figure 7.31

Sx is in-phase with respect to both protons, 2SxI
1
z is antiphase with respect to H1 and in-

phase with respect to H2, and 4SxI
1
zI

2
z is antiphase with respect to both attached protons. In

each case, the multiplication by I1z means that the 13C coherence is multiplied by 1/2 if H1 =
α and by −1/2 if H1 = β. We can draw vector diagrams for any of these states, but we have
to be more specific about the vector labels. We are already familiar with the in-phase and an-
tiphase states for a CH group (Fig. 7.31, top). For a CH2 group (triplet in the nondecoupled
13C spectrum), we have four states for the two protons (Fig. 7.31, center). Both can be in the
α state (αα, giving rise to the downfield peak of intensity 1), one can be α and the other β (αβ

or βα, giving rise to the central peak of intensity 2), or both can be β (ββ, giving rise to the
upfield peak of intensity 1). For the operator product 2SyI

1
z , we have four net magnetization

vectors, each representing one-fourth of the 13C nuclei, differentiated by the spin state of the
two attached protons: αα, αβ, βα, or ββ. Multiplication by I1z corresponds to multiplication
by +1/2 if H1 is in the α state and by −1/2 if H1 is in the β state, so the α1α2 and α1β2 vectors
lie on the +y′ axis (α1) and the β1α2 and β1β2 vectors lie on the −y′ axis (β1, Fig. 7.31, cen-
ter). In other words, it does not matter what state H2 is in, but the H1 state (α or β) determines
whether the vector is on +y′ or −y′. Even though they are on the same axis, we cannot com-
bine the αα and αβ vectors into a single vector because they have different rotating frame
frequencies: αα rotates at +J and αβ rotates at 0 Hz for an on-resonance triplet. The product
−2SxI

2
z has the αα and βα vectors on −x and the αβ and ββ vectors on +x′: in this case

only the H2 spin state affects the direction of the vector. The product 4SyI
1
zI

2
z represents 13C

coherence that is antiphase with respect to both attached protons. The αα and ββ vectors lie
on the +y′ axis (multiplication by +1/2 and +1/2 for αα and by −1/2 and −1/2 for ββ) and
the αβ and βα vectors lie on the −y′ axis (multiplication by +1/2 and −1/2). These last two
can be combined into one vector of twice the length as H1H2 = αβ and H1H2 = βα have
the same rotating-frame frequency (i.e., the same behavior during delays). Note that the
normalization factor of 4 is needed to take care of the two factors of 1/2 coming from the Iz

terms.
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For a CH3 group (Fig. 7.31, bottom), we have eight different vectors: ααα (frequency =
3J/2); ααβ, αβα, and βαα (frequency = J/2); αββ, βαβ, and ββα (frequency = −J/2); and
βββ (frequency = −3J/2). The product 2SyI

1
z can be drawn with all the 1H states starting

with α on the +y′ axis and all the 1H states starting with β on the −y′ axis. The ααβ and αβα

vectors can be combined, as can the βαβ and ββα vectors. Notice that the normalization
factor of 2 is introduced for each antiphase relationship. Thus, for a CH3 group, we can have
8SyI

1
zI

2
zI

3
z , which could be represented by a vector on the +y′ axis for the H1H2H3 = ααα

state (length 1), another vector on the +y′ axis for the αββ, ββα, and βαβ states (length 3),
a vector on the −y′ axis for the ααβ, αβα, and βαα states (length 3), and a fourth vector on
the −y′ axis for the βββ state (length 1). In all cases where the vector is on +y′, we have an
even number of protons in the β state (so the multiplication by −1/2 is cancelled), and in
all cases where the vector lies on the −y′ axis, we have an odd number of protons in the β

state (so the multiplication by −1/2 takes effect). Again, we can group together vectors that
are on the same axis and have the same rotation frequency. This product operator represents
13C coherence antiphase with respect to all three of the attached protons. A normalization
factor of 8 is required because of three factors of ±1/2.

During a delay, all antiphase relationships evolve toward the in-phase relationship and
all in-phase relationships evolve toward the antiphase relationship. For example, for a CH2
group during a delay � we have

2SxI
1
z

J1−−−→ 2SxI
1
z cos(πJ�) + Sy sin (πJ�) H1J-coupling evolution

J2−−−→ 2SxI
1
z cos2(πJ�) + 4SyI

1
zI

2
z cos (πJ�)sin (πJ�)

+Sy sin (πJ�)cos(πJ�) − 2SxI
2
z sin2 (πJ�) H2 J-coupling evolution

Here we are assuming that both J couplings (13C–H1 and 13C–H2) are the same. For sim-
plicity, we are treating the � delay as two separate J-coupling evolution periods—the first
for J-coupling evolution with respect to H1 only and the second for J-coupling evolution
with respect to H2 only. In the second step, the first two terms (in the upper line) come
from the 2SxI

1
zcos(πJ�) term and the last two terms (in the lower line) come from the Sy

sin(πJ�) term. So we see that, starting with 13C coherence antiphase with respect to H1, we
get the unchanged product 2SxI

1
z times the cosine term plus the in-phase state with respect

to H1, rotated 90◦ ccw in the x′–y′ plane (Sy ) times the sine term. This last term represents
refocusing. The effect of H2 J-coupling evolution is to bring both of these terms toward the
antiphase state with respect to H2 (defocusing) with a cosine term for the starting state and
a sine term for the “destination” state.

Now we have the theoretical tools to look at the refocusing for CH2 and CH3 groups in
the refocused INEPT experiment. For a CH2 group, we can start the experiment with either
I1z or I2z , the result is the same. So we will start with I1z and multiply the final result by 2,
as the 13C coherence is coming equally from two different attached protons. Up until the
refocusing delay, the product operator analysis is the same, resulting in the product 2SxI

1
z

that represents coherence transfer from H1 to 13C. The refocusing process was already
described above for this product, and yields

2SxI
1
z cos2(πJ�) + 4SyI

1
zI

2
z cos(πJ�)sin(πJ�)

+Sy sin(πJ�)cos(πJ�) − 2SxI
2
z sin2(πJ�)
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Figure 7.32

With 1H decoupling, all antiphase terms will give no signal, so we are interested only in
the in-phase term Sy . Its intensity is modulated by the factor sin(πJ�)cos(πJ�), which
when we consider an equal amount of 13C coherence coming from H2 can be increased
to 2sin(πJ�)cos(πJ�). If we think of the product πJ� as an angle �, we would get a
relative intensity of 1 for � = 45◦ (� = 1/(4J)), zero for 90◦ (� = 1/(2J)), and −1 for 135◦
(� = 3/(4J)). Considering that 2sin�cos� = sin2�, we can see that the maximum intensity
occurs at � = 45◦ or 135◦ (2� = 90◦ or 270◦).

We can also look at the refocusing of the CH2 group using vectors (Fig. 7.32). The vector
representation of 2SxI

1
z has the αα and αβ vectors on the +x′ axis and the βα and ββ vectors

on the −x′ axis. With 1H decoupling, this operator gives zero intensity, as all of the vectors
have the same frequency and will always cancel each other out. Even without decoupling,
the central peak (αβ/βα) is gone because the two vectors are exactly opposed (a small x in
Fig. 7.32 indicates cancellation). During a total refocusing delay of 1/(4J) (� = 45◦), the
αα vector rotates 90◦ ccw and the ββ vector rotates 90◦ cw, bringing the two together on
the +y′ axis. The αβ and βα vectors are frozen because their rotating frame frequencies
are both zero relative to the chemical shift position. They will always cancel each other
and we can never get that half of the intensity back! So the intensity of 1 that we observe
(2sin�cos� = 1) is one-half of the intensity of an in-phase triplet getting its coherence
from two protons. After another delay of 1/(4J), the αα vector continues to rotate ccw and
the ββ vector rotates cw until they are again opposite each other, with αα on the −x′ axis
and ββ on the +x′ axis. At this point (total refocusing delay = 1/(2J), � = 90◦), we have
no intensity with 1H decoupling, and the spin state can be represented as −2SxI

2
z . Note that

all states in which H2 = α are on the −x′ axis and all states in which H2 = β are on the +x′
axis, as the spin state is on −x′ and antiphase with respect to H2. In the product operator
expression, we see that πJ� = πJ/(2J) = π/2, so each sine term is 1 and each cosine term
is 0, leaving only the one sin2 term −2SxI

2
z . This is the null point where only CH peaks are

observed in the refocused INEPT spectrum. After a third delay of 1/(4J), for a total delay
of 3/(4J), the αα vector rotates another 90◦ ccw and the ββ vector rotates another 90◦ cw,
so both land on the −y′ axis. Again we have one-half of the full intensity we would have
with all four vectors aligned, and the observable intensity is opposite in sign (on the −y′
axis). With � = 135◦, the factor 2sin�cos� equals −1, and we see upside-down peaks in
the 1H-decoupled spectrum for all CH2 groups.
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Finally, let’s look at the CH3 group. We will start with I1z and assume that starting with
I2z or I3z would give the same result, so the final result will be increased by a factor of 3 to
represent coherence transfer from all three attached protons. We now know that only the
in-phase 13C coherence will be observable with 1H decoupling, so we can ignore any terms
that will lead to antiphase terms at the end of the refocusing period. To get an in-phase
operator, we need to “unwind” the antiphase relationship with H1 and avoid “winding up”
the antiphase state with respect to H2 or H3. We can therefore ignore any term that does
not do what we want, while considering the three coupling relationships in three separate
delays of length �:

2SxI
1
z →Sy sin(πJ�) full J-coupling evolution with respect to H1

→Sy sin(πJ�) cos(πJ�) no J-coupling evolution with respect to H2

→Sy sin(πJ�) cos(πJ�) cos(πJ�) no J-coupling evolution with respect to H3

Putting in the factor of 3, we have a final observable spin state of Sy [3sin�cos2�]. This
factor has a value of 1.061 for � = 45◦, 0 for � = 90◦, and 1.061 for � = 135◦, compared
to 3 if it were possible to fully refocus all coherence coming from the three protons. Just
for fun, the vector diagram is shown in Figure 7.33. For both � = 45◦ and � = 135◦, the
“short” vectors ααα, βββ, αββ, and βαα are at four opposite corners, canceling out, and the
two “long” vectors βαβ/ββα and ααβ/αβα are halfway between the +x′ and +y′ axes and
halfway between the −x′ and +y′ axes. Each of the “long” vectors represents one-fourth
of the intensity of a fully in-phase CH3 peak coming from one proton, so the vector sum
has magnitude

√
2/4 = 0.3536. Multiplying by 3 for the three protons, we get 1.061 for

the peak intensity. For � = 90◦, we have the two long vectors on the +y′ axis and the
four short vectors on the −y′ axis, leading to complete cancellation and a peak intensity of
zero. The maximum value of the function 3sin�cos2� occurs at � = 35.26◦ (or 144.74◦),
corresponding to a � delay of about 1/(5J) and an in-phase intensity of 1.155.

So you see that refocusing of 13C is always complicated by the fact that the optimal
refocusing time is different for a CH, CH2, or CH3 group. Of course, we can exploit these
differences to get spectral editing (making peak phase—up, down, or missing—tells us about

Figure 7.33
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the number of attached protons), which is even more informative than the APT experiment.
If we do three refocused INEPT experiments using the three delay times � = 1/(4J), 1/(2J),
and 3/(4J), we get the following in-phase intensities:

� = 1/(4J) 1/(2J) 3/(4J)
� = 45◦ 90◦ 135◦
CH: sin� = 0.707 1 0.707
CH2: 2sin�cos� = 1 0 −1
CH3: 3sin�cos2� = 1.061 0 1.061

Thus, an “INEPT-45” experiment will give all positive 13C peaks, an “INEPT-90” will give
only CH peaks, and an “INEPT-135” will give positive peaks for CH and CH3 and negative
peaks for CH2. These three experiments (actually just the last two) give us a complete
identification of each peak as CH, CH2, or CH3 while maintaining the 1H-decoupled, singlet
character of each peak. We will see how another experiment, called DEPT, achieves exactly
the same results with a simpler pulse sequence by varying the width of a pulse rather than
a delay time, using 45◦, 90◦, and 135◦ pulses.

7.14 DEPT: DISTORTIONLESS ENHANCEMENT
BY POLARIZATION TRANSFER

The INEPT method can be used to distinguish CH, CH2, and CH3 carbons in addition to
enhancing the signal-to-noise ratio, but a related method called DEPT is superior in many
ways. The DEPT pulse sequence is shown in Figure 7.34. We will discuss how it works
later; for now, just note that if we forget about the two 180◦ pulses and the second 1/(2J)
delay, and we set � = 90◦, we have a refocused INEPT that would work well for the CH
group. DEPT combines the coherence transfer technique of INEPT (90◦ on 1H, delay of
1/(2J), simultaneous 90◦ pulses on 1H and 13C) with the spin-echo technique of APT (1/(2J)
delay, 180◦ pulse, 1/(2J) delay) to achieve both signal enhancement and spectral editing

Figure 7.34
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(distinction between CH, CH2, and CH3 carbons by phase labeling). The three “flavors” of
the DEPT experiment are called “DEPT-45”, “DEPT-90”, and “DEPT-135” depending on
the pulse width (45◦, 90◦, and 135◦, respectively) of the final 1H pulse in the sequence. We
need only to perform a normal 13C spectrum, a DEPT-90, and a DEPT-135 spectrum in order
to assign each carbon in the molecule to quaternary (Cq), methine (CH), methylene (CH2),
or methyl (CH3) based on its exact number of attached protons. The expected behavior is
as follows: quaternary carbons (Cq) will be present in the 13C spectrum but absent in all
DEPT spectra; methine carbons (CH) will be positive in the DEPT-90 and in the DEPT-135;
methylene carbons (CH2) will be negative in the DEPT-135 and absent in the DEPT-90;
and methyl carbons (CH3) will be positive in the DEPT-135 and absent in the DEPT-90.
Because the 1H frequency is being used for “hard” pulses as well as for decoupling in this
sequence, we need either a 1H decoupler separate from the 1H and 13C pulse transmitters,
or a means of rapidly switching the power level from high power (for 1H pulses) to low
power (for 1H decoupling) and back again. Modern spectrometers use the latter approach,
with power level changing in a matter of microseconds without relays.

The expected results for the 13C and DEPT experiments are diagramed in Figure 7.35
for 4-hydroxy-3-methyl-2-butanone, which has one quaternary carbon, one methine, one
methylene, and two methyl groups. Note that the solvent resonance (CDCl3 in this case) is
absent in the DEPT spectra because solvent carbon is effectively quaternary (no attached
hydrogens) and cannot undergo INEPT transfer from 1H to 13C. This presents a problem
for referencing the DEPT spectra; usually the exact chemical shift of an easily identified
peak in the referenced 13C spectrum is used to reference the DEPT spectra. The ketone
carbonyl peak, which appears at 213 ppm in the 13C and APT spectra, is missing in
the DEPT spectra because it has no attached proton. This identifies it as a quaternary
carbon, Cq. The next peak, at 64 ppm, is negative in the DEPT-135, so it must be the

Figure 7.35
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CH2 carbon (position b, CH2OH). The peak at 50 ppm is the only peak in the DEPT-90
spectrum, so it can be assigned to the CH carbon (position c) in the molecule. The two
most upfield peaks are positive in the DEPT-135 and missing in the DEPT-90, so they
must be the two CH3 carbons (positions d and e in the structure). Note that the DEPT-135
is similar to an APT spectrum (Chapter 6, Fig. 6.16): there is an alternation of sign as we
go from CH (positive) to CH2 (negative) to CH3 (positive). But in the APT spectrum, we
would also see the carbonyl carbon peak (negative) and the solvent resonance (CDCl3,
negative), and the sensitivity would be worse than that of a 13C spectrum (which has
about one-fourth of the sensitivity of DEPT) because there is no coherence transfer
involved.

The width of the final 1H pulse in the DEPT sequence (�) affects the intensity and phase
(positive or negative) of the 13C peaks in a way very similar to the length of the refocusing
delay � in refocused INEPT, according to the relation � = πJ�. The intensities are shown
below for the three types of carbon in DEPT:

Scans
CH peak
intensity

CH2 peak
intensity

CH3 peak
intensity

Relative
noise level

�◦ 1H pulse: sin� 2sin�cos� 3sin�cos2�

s1. 45◦ 1H pulse: n 0.707 1.0 1.060 1.0
s2. 90◦ 1H pulse: 2n 2.0 0 0 1.414
s3. 135◦ 1H pulse: n 0.707 −1.0 1.060 1.0

If all three experiments are run on the same sample, simple linear combinations of the three
spectra (s1, s2, and s3) can be generated, which are “pure subspectra”: one containing only
CH carbon peaks, another containing only CH2 carbon peaks, and a third containing only
CH3 carbon peaks. Generally, the 90◦ pulse experiment (spectrum 2) is run with twice
the number of transients as the others (or simply run twice and added together) so that its
signal-to-noise ratio will be comparable to the others. The precise weightings are shown
below:

(A) 0.354*(s1 + s3) − 0.25*(s2) = CH3 peaks only

(B) 0.5*(s1 − s3) = CH2 peaks only

(C) 0.5*(s2) = CH peaks only

(D) 0.854*(s1) + 0.25*(s2) − 0.146*(s3) = all three types together

The predicted signal intensities and noise levels can be calculated from the weighting in the
above equations, giving equal signal-to-noise in the three pure subspectra:

CH peak
intensity

CH2 peak
intensity

CH3 peak
intensity

Relative noise
level S/N

CH3 only 0 0 1.225 0.612 2
CH2 only 0 1.414 0 0.707 2
CH only 1.414 0 0 0.707 2
All protonated 1.069 1.069 0.802 0.936
(S/N) (1.142) (1.142) (0.857)
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Figure 7.36

The pure subspectra are diagramed for 4-hydroxy-3-methyl-2-butanone in Figure 7.36,
with simplified linear combinations. We can directly read off the assignments for peaks a–e
from the pure subspectra: a is Cq (missing in all DEPT spectra), c is CH, b is CH2, and
d and e are CH3. Varian sets up the full DEPT experiment by defining the parameter mult
as 0.5, 1.0, or 1.5 and using the parameter pp for the proton 90◦ pulse. The actual final
1H pulse used is then mult*pp, which will be a 45◦, 90◦, or 135◦ pulse. To run all three
spectra in succession as a single experiment, an array is created with mult = 0.5, 1.0, 1.0,
1.5. This will acquire four FIDs with final 1H pulses of 45◦, 90◦, 90◦, and 135◦. Bruker
uses three different pulse programs called “dept45”, “dept90,” and “dept135” in which p1
is the transmitter 90◦ 1H pulse and p0 is the decoupler 1H 90◦ pulse. These three can be
set up in consecutive experiment numbers and run in queued fashion using the “multizg”
command.

In the DEPT-90 experiment (Fig. 7.35), if the pulse is slightly too long (e.g., � = 100◦),
the DEPT-90 spectrum will contain a little bit of the DEPT-135: there will be weak negative
peaks for the CH2 carbons and weak positive peaks for the CH3 carbons. If the pulse is
slightly too short (e.g., � = 80◦), the DEPT-90 spectrum will contain a little bit of the
DEPT-45: there will be weak positive peaks for both the CH2 carbons and the CH3 carbons.
Thus, the DEPT-90 experiment, using a concentrated sample of a simple molecule like
menthol, is the best way to calibrate the decoupler 90◦ 1H pulse. Simply calibrating the 1H
90◦ pulse by observing the 1H spectrum may give a different result. In older instruments,
the 13C pulses come from the transmitter (a “broadband” RF source that can be set to
any frequency up to the proton frequency) and the 1H pulses come from the decoupler
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Figure 7.37

(a different RF source that is often limited to proton frequency only). The normal method
for calibrating 1H pulses uses pulses from the transmitter, which does not necessarily put
out the same power level as the decoupler.

Figure 7.37 shows the three DEPT spectra of cholesterol in CDCl3, run on a Bruker
AM-250 (62.9 MHz 13C). The DEPT-90 spectrum was acquired with twice the number
of scans of the other two. The DEPT-45 spectrum (bottom) shows all of the “protonated”
(nonquaternary) carbon peaks as normal, positive peaks. The three quaternary carbons in
cholesterol—C5 in the C C group, C10 at the A-B ring juncture, and C13 at the C-D ring
juncture—are missing from the DEPT spectra. The DEPT-90 spectrum (middle) clearly
shows eight methine (CH) carbons: one olefinic (C6 at 103 ppm), one “alcohol” (C3 at 61
ppm), three “crowded aliphatic” (C9, C14, and C17 between 40 and 50 ppm) and three
“normal aliphatic” (C8, C20, and C25 between 24 and 34 ppm). From the DEPT-135
spectrum (top), we can count 11 negative peaks, corresponding to the 11 methylene (CH2)
groups in cholesterol: C1, 2, 4, 7, 11, 12, 15, 16, 22–24. Those peaks that are missing from
the DEPT-90 and positive in the DEPT-135 are CH3 groups: the five most upfield positive
peaks in the DEPT-135 can be assigned to C18, 19, 21, 26, and 27. Note that the CDCl3
peak (1:1:1 “triplet” at 77 ppm) is missing from all DEPT spectra.

Figure 7.38 shows the pure subspectra derived from the “raw” DEPT data in Figure
7.37 by linear combination. Although the interpretation of the “raw” DEPT spectra is
straightforward, this presentation is especially simple and beautiful to look at. The eight
CH carbons, 11 CH2 carbons, and five CH3 carbons can directly be read from the three
subspectra. Keep in mind, however, that these are not in fact “spectra”: they are the results
of adding and subtracting the “raw” DEPT spectra.

When you have a very small amount of compound, a full DEPT analysis is a luxury.
All you really need is a 13C spectrum, a DEPT-90, and a DEPT-135 to assign all of the
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Figure 7.38

carbons to one of the four categories: Cq, CH, CH2, or CH3. Figure 7.39 shows a stacked
plot of spectra obtained on a 0.19 mg sample of a testosterone (steroid) metabolite dis-
solved in CD3OD. The data were acquired in an overnight run on a Bruker DRX-500, using
about three-fourths of the time for the 13C and the remaining one-fourth divided equally
between the DEPT-90 and the DEPT-135 spectra. Because of the theoretical advantage of
four times in sensitivity, the DEPT spectra take much less time than the 13C spectrum. The

Figure 7.39
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1H → 13C NOE (up to 3× enhanced signal) observed in the 13C spectrum reduces
the difference in sensitivity somewhat (without NOE it would take 16 times longer than
the DEPT to acquire a 13C spectrum), but as we need to see the slowly relaxing quater-
nary carbons in the 13C spectrum, most of the time is allotted to this experiment. The 13C
spectrum (bottom) includes the intense CD3OD solvent peak at 49.15 ppm (seven peaks,
1:3:6:7:6:3:1 ratio), which goes off-scale at the top of the spectrum. The solvent peak is
intense because we are comparing it to the very weak 13C peaks of the dilute sample. The
DEPT-90 spectrum (top) clearly shows six strong peaks (*), but a number of weak peaks
result from incorrect calibration of the final 90◦ 1H pulse. Because all of these are positive,
including those that show up negative in the DEPT-135, it is clear that the final 1H pulse was
less than 90◦, so that we have some DEPT-45 mixed in with the DEPT-90. It is impossible
to calibrate the pulse on such a dilute sample, but it would have been possible to calibrate
on a concentrated sample of menthol or cholesterol dissolved in CD3OD before starting the
experiment. This was not done, however, so this is what we have to work with. It is easy to
see that the weak peaks in the DEPT-90 are a combination of CH2 peaks (negative in the
DEPT-135) and CH3 peaks (positive in the DEPT-135), so we can ignore them. We can see
two quaternary carbons (@) at 202.59 and 175.61 ppm (ketone C O and β carbon of α,β
unsaturated C O, respectively), and six CH (*) carbons (olefinic at 124.24, two alcohols
at 81.97 and 69.58, two “crowded” aliphatic and one “normal” aliphatic). We count seven
CH2 carbon peaks (O) in the DEPT-135 (negative peaks) and two CH3 (#) peaks (positive in
DEPT-135 and weak in DEPT-90) at the upfield end of the spectrum. Two more quaternary
(@) carbons, the bridgehead C10 and C13 carbons, are seen in an expanded plot (Fig. 7.40)
at 43.47 and 40.38 ppm. From this data alone we can infer that one of the eight CH2 groups
of testosterone was converted into a CH group bearing an alcohol (OH). Testosterone has
only one alcohol, and there are two “alcohol” carbons in the metabolite. To find out which
position in the steroid bears the “new” alcohol functionality would require 2D experiments.

Figure 7.40
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7.15 PRODUCT OPERATOR ANALYSIS OF THE DEPT EXPERIMENT

The DEPT pulse sequence is more difficult to understand than refocused INEPT, but it
accomplishes the same thing. Coherence is transferred from 1H to 13C via the one-bond
JCH coupling, and the 13C signal is edited according to the number of hydrogens attached.
We saw in the refocused INEPT that the refocusing period � can be used to modify the
editing: � = 1/(4J) gives all positive peaks, � = 1/(2J) gives only the CH peak, and � =
3/(4J) gives CH and CH3 carbons positive and CH2 carbons negative. This is due to the effect
of refocusing time on the in-phase signal intensity: sin(πJ�) for CH, 2sin(πJ�)cos(πJ�)
for CH2, and 3sin(πJ�)cos(πJ�)cos(πJ�) for CH3. DEPT accomplishes the same control
over spectral editing by maintaining the refocusing period constant at 1/(2J) and varying the
pulse width of the final 1H pulse, �. The in-phase intensity of the 13C signal in the FID is
sin� for CH, 2sin(�)cos(�) for CH2, and 3sin(�)cos(�)cos(�) for CH3. Thus, for a 45◦
pulse (“DEPT-45”: sin� = cos� = 0.707), we get positive peaks for CH, CH2, and CH3
(CH:CH2:CH3 = 0.707:1:1.060), for a 90◦ pulse (“DEPT-90”: sin� = 1; cos� = 0) we
see only the CH peaks (CH:CH2:CH3 = 1:0:0), and for a 135◦ pulse (“DEPT-135”: sin�

= 0.707; cos� = −0.707) we see positive peaks for CH and CH3 and negative peaks for
CH2 (CH:CH2:CH3 = 0.707:−1:1.060).

To understand the pulse sequence, we will try to get an overview of what is happening
and then look at some simplified product operator analysis. Consider first the CH case in
the DEPT-90 experiment. Ignoring the 180◦ pulses, the DEPT-90 sequence can be viewed
as an INEPT sequence in which the coherence transfer is split up into two steps (Fig. 7.41):
the two 90◦ pulses are no longer simultaneous and between them we have an intermediate
state in coherence transfer: multiple-quantum coherence (ZQC and DQC).

Iz
A

1H 90◦
x−−−→ −Iy

B

1/(2J)−−−→ 2IxSz
C

13 C 90◦
x−−−→ −2IxSy

D

The 90◦
x

1H pulse puts the 1H magnetization on the −y′ axis, and J-coupling evolution for
a period of exactly 1/(2J) allows this in-phase magnetization to evolve into antiphase. For
simplicity, we assume that the 13C and 1H are on-resonance so we can ignore chemical shift
evolution during the delays. The 13C 90◦ pulse then converts this to a mixture of ZQ and

Figure 7.41
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DQ (−2IxSy = ZQy – DQy ). Both operators in the product are in the x′–y′ plane, so this
can be thought of as an intermediate state in coherence transfer.

−2IxSy
D

1/(2J)−−−→ −2IxSy
E

1H 90◦
y−−−−−−−→ 2SyIz

F

1/(2J)−−−→ −Sx
G

During the second 1/(2J) delay, we have no J-coupling evolution because ZQC and DQC
do not undergo evolution of the active (1H–13C) coupling of the MQC. Because both 1H
and 13C are on-resonance, we can ignore chemical shift evolution as well. The next pulse,
the second 90◦ pulse on 1H, completes the coherence transfer by moving the 1H operator
from the x′–y′ plane to the z axis, resulting in antiphase 13C coherence (2SyIz ). The final
1/(2J) delay is for refocusing: the antiphase 13C coherence undergoes J-coupling evolution
back to the in-phase state and we can observe the FID with 1H decoupling. The result is
exactly the same as a refocused INEPT with refocusing delay set for observing the CH 13C
signal. All we have done is pull apart the simultaneous 1H and 13C 90◦ pulses and insert a
delay of 1/(2J) between them.

The next step in understanding the DEPT-90 sequence is to insert the 180◦ pulses and
look at their effect on chemical shift evolution for “real” 1H and 13C peaks that are not
on-resonance. For this it is best to consider what kind of evolution is going on at each
stage of the pulse sequence. In the first delay, we have 1H coherence that is undergoing
J-coupling evolution (in-phase to antiphase) as well as 1H chemical shift evolution, so we
can write “J” and “νH” in this space. The 180◦ 1H pulse at the end of this delay reverses
the 1H chemical shift evolution so that after this we have “−νH.” But now we have ZQC
and DQC, so the chemical shift evolution that occurs in this second delay is “−νH − νC”
for DQC and “−νH + νC” for ZQC. For simplicity let’s consider just the DQC part: “−νH
− νC.” Notice that the 1H chemical shift evolution that occurred in the first 1/(2J) delay
is now refocused by the opposite 1H chemical shift evolution in the second delay. We can
think of the first two 1/(2J) delays as a 1H spin echo, with the 1H 180◦ pulse in the center
(Fig. 7.42). There is no J-coupling evolution during this second delay because ZQC and
DQC are not affected by the active J coupling. At the end of this delay, the 1H 90◦ pulse

Figure 7.42
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rotates the 1H magnetization to the z axis and the 13C 180◦ pulse reverses the 13C chemical
shift evolution that occurred during the central 1/(2J) delay. So during the final 1/(2J) delay,
we have “+νC” for chemical shift evolution and “J” for J-coupling evolution (from 13C
antiphase to 13C in-phase coherence). We see that the last two 1/(2J) delays form a 13C
spin echo with a 13C 180◦ pulse in the center. Thus, all chemical shift evolution, 1H and
13C, is refocused in this sequence and we have only the necessary J-coupling evolution to
move 1H from in-phase to antiphase before the coherence transfer and to refocus 13C from
antiphase to in-phase after the coherence transfer.

Next, we need to make the pulse width of the final 1H pulse variable, with a rotation
angle of � (� = 45◦, 90◦, or 135◦). For the CH case, we have already discussed the full
coherence transfer, so in the final pulse we have:

−2IxSy
E

1H �◦
y/

13C 180y−−−−−−−−→ −2IxSy cos� + 2SyIz sin�
F

Note that the 180◦
y pulse on the 13C channel has no effect on Sy . The cosine term is just the

product operator we started with, unaffected by the 1H pulse, and the sine term is the operator
we would get with a full 90◦ 1H pulse. Note that rotation of the Ix magnetization vector by a
1H B1 field on the y′ axis goes from x to −z to −x to +z as � is incremented from 0◦ to 90◦ to
180◦ to 270◦ in the trigonometric expression. The first term is DQC/ZQC, which will not be
observable in the FID—there are no more pulses in the sequence to convert it to observable
magnetization. Only the second term represents full coherence transfer to antiphase 13C
coherence, which will refocus during the final 1/(2J) delay into in-phase 13C coherence:

2SyIz sin�
F

1/(2J)−−−→ −Sx sin�
G

Thus, the intensity of the in-phase coherence varies as sin� with the pulse width � of
the final 1H pulse for a CH group. This gives intensities of 0.707, 1, and 0.707 for the
DEPT-45, DEPT-90, and DEPT-135 experiments, respectively.

Now we can understand all aspects of DEPT clearly, at least for a CH group. The final
step is to understand the spectral editing aspect of the DEPT experiment, and here we will
have to look at the complexities of CH2 and CH3 groups. For the CH2 group, we can start
with I1z and work our way through the pulse sequence. Although starting with I2z would
give the same result (coherence transfer to the same 13C), we can just multiply by 2 when
we are finished to reflect the fact that coherence is transferred to the 13C from each of the
two attached protons. Things get more complicated after the 13C 90◦ pulse. The DQC/ZQC
term −2I1xSy represents a multiple-quantum “dance” between the 13C nucleus and one of
the attached protons (H1), and the other proton (H2) is not involved. While it is true that
J coupling is not involved in the evolution of ZQC/DQC, this is true only for the active
coupling, in this case the 13C–1H1 coupling. The other coupling, 13C–1H2, is a passive
coupling not involved in the MQC and we will see J-coupling evolution with respect to this
proton during the second 1/(2J) delay. Because of the spin-echo effects of the two 180◦
pulses, we can continue to ignore chemical shift evolution but we have to consider the
J-coupling evolution due to these passive couplings during the second delay:

−2I1x[Sy]
D

1/(2J)−−−→ −2I1x[−2SxI
2
z] = 4I1xSxI

2
z

E
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Note that the Sy operator is replaced by the −2SxI
2
z operator because it undergoes J-coupling

evolution with respect to H2 for a period of exactly 1/(2J), arriving at the antiphase state on
the −x′ axis. We can view this product operator as a mixture of ZQC and DQC involving
13C and H1 (more precisely, {DQ}1

x+{ZQ}1
x), which is antiphase with respect to the spin

state of H2. That is, if H2 is in the α state, we multiply by 1/2 (to get {DQ}1
x+{ZQ}1

x) and
if H2 is in the β state, we multiply by −1/2 (to get −{DQ}1

x − {ZQ}1
x).

The effect of the 1H pulse of width � can be calculated using the sine and cosine terms
for each of the proton operators:

4I1xSxI
2
z

E

1H �◦
y/

13C 180◦
y−−−−−−−−→ 4(I1xcos� − I1zsin�)[−Sx](I2zcos� + I2xsin�)

F

Note that the 180◦ 13C pulse on the y′ axis inverts Sx . The 1H pulse rotates I1x from +x′
toward −z by the angle � and rotates I2z from +z toward +x′ by the angle �. Any term
with either H1 or H2 in the x′–y′ plane will represent MQC, as 13C is already in the x′–y′
plane, so we can ignore these terms because they are not observable in the FID. The only
term of interest is the doubly antiphase term:

4(−I1zsin�)[−Sx](I2zcos�) = 4SxI
1
zI

2
zsin�cos�

F

During the final 1/(2J) delay both of the antiphase relationships will evolve into an in-phase
relationship due to J-coupling evolution:

4SxI
1
zI

2
zsin�cos�

F

1/(2J)−−−→ −Sx sin�cos�
G

Each J-coupling evolution from antiphase to in-phase involves a 90◦ rotation in the x′–y′
plane. We can view the refocusing as two steps, first J-coupling evolution with respect to
H1 and then J-coupling evolution with respect to H2:

2[2SxI
1
z]I2zsin�cos�

1/(2J) H1−−−−−→ 2[Sy]I2zsin�cos�

2SyI
2
zsin�cos�

1/(2J) H2−−−−−→ −Sx sin�cos�

Because we could do the same thing starting with I2z and get sin� cos� again, we have a
final spin state of −Sx [2sin�cos�], and we can say that the CH2 group 13C resonance is
edited by a factor of 2sin�cos�, which works out to 1 for DEPT-45, zero for DEPT-90,
and −1 for DEPT-135.

Now for a real challenge, let’s look at the CH3 group. Again, we start with the z magne-
tization of one proton, I1z , and at the end we will multiply by 3 to account for the coherence
transfer from all three attached protons. Everything is the same until the second delay, where
we have multiple-quantum coherence (ZQC/DQC) between 13C and H1, which during the
delay undergoes J coupling evolution with respect to both of the passive couplings: 13C–1H2
and 13C–1H3. As before, we can consider J-coupling evolution with respect to H2 first and
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then as a second step consider the J-coupling evolution with respect to H3:

−2I1x[Sy]
D

1/(2J) H2−−−−−→ −2I1x[−2SxI
2
z] = 4I1xSxI

2
z

4I1x[Sx]I2z
1/(2J) H3−−−−−−−→ 4I1x[2SyI

3
z]I2z = 8I1xSyI

2
zI

3
z

E

The final 1H pulse rotates all three of the 1H operators by the angle �:

8I1xSyI
2
zI

3
z

E

1H �◦
y/

13C 180◦
y−−−−−−−−→

8(I1xcos� − I1zsin�) × Sy × (I2zcos� + I2xsin�) × (I3zcos� + I3xsin�)
F

As in the CH case, the Sy term is not affected by the 13C 180◦ pulse on the y′ axis. The
only term of interest is the one with only 13C coherence in the x′–y′ plane:

8(−I1zsin�)Sy(I2zcos�)(I3zcos�) = −8SyI
1
zI

2
zI

3
zsin�cos�cos�

F

During the final 1/(2J) delay, all three antiphase relationships will evolve under J-coupling
evolution into in-phase relationships. We can view this process in three steps:

−4[2SyI
1
z]I2zI

3
zsin�cos2�

F

1/(2J) H1−−−−−−−→ −4[−Sx]I2zI
3
zsin�cos2�

2[2SxI
2
z]I3zsin�cos2�

1/(2J) H2−−−−−−−→ 2[Sy]I3zsin�cos2�

2SyI
3
zsin�cos2�

1/(2J) H3−−−−−−−→ −Sx sin�cos2�
G

When we combine this with the other two identical terms that come from I2z and I3z , we have
−Sx [3sin�cos2�], so we can say that the intensity of in-phase 13C coherence in the FID
is edited by the factor 3sin�cos2�, which works out to 1.060, 0, and 1.060 for DEPT-45,
DEPT-90, and DEPT-135, respectively.

This analysis assumes that both the 13C peak and the 1H peak are on-resonance with
respect to their reference frequencies (pulse frequencies), but we tried to show at least
conceptually how this is not important because all chemical shift evolution, 1H or 13C,
is refocused by the two overlapping spin echoes. The result of this analysis is that the
observable (i.e., SQC) magnetization at the beginning of the FID will be

CH group: −Sx [sin�]
CH2 group: −Sx [2sin�cos�]
CH3 group: −Sx [3sin�cos2�]

These editing factors are the same we observe for the refocused INEPT experiment, if
we replace � with πJ�, where � is variable refocusing delay.
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8
SHAPED PULSES, PULSED FIELD
GRADIENTS, AND SPIN LOCKS:
SELECTIVE 1D NOE AND 1D TOCSY

8.1 INTRODUCING THREE NEW PULSE SEQUENCE TOOLS

In many nuclear magnetic resonance (NMR) experiments, we wish to excite only one
resonance or peak in the spectrum, corresponding to a specific position within the molecule.
Once this resonance has been “selected,” we can transfer magnetization via J couplings
(through bond) or via NOE (nuclear Overhauser effect) transfer (through space) to other
positions nearby in the molecule. The new, transferred magnetization can be observed in
the free induction decay (FID) and identified by its chemical shift, allowing us to “connect”
or “correlate” two resonances in the spectrum (two different chemical shifts). This process
of establishing a relationship (through bond or through space) between two spins is central
to all advanced NMR experiments.

So far, the only way we know to select a resonance is through saturation: a long,
very low power radio frequency (RF) pulse set to the exact frequency of that resonance
(Section 5.9), equalizing the populations and destroying any net magnetization on that pro-
ton. This technique is used by the 1D NOE difference experiment (Section 5.12), which
allows us to select a single resonance in the spectrum and observe an enhancement of the
peak intensities of any resonance corresponding to a proton close in space to the selected
proton. New technology in NMR hardware began to be commonly available in the 1990s
allowing not just saturation but specific pulse excitation (e.g., 90◦ pulse or 180◦ pulse) with
specific phase (e.g., x′, y′, −x′, or −y′) of any resonance in the spectrum, without affecting
the other spins in the molecule in any way. This is much more powerful than saturation
because now we can create coherence (90◦ pulse) on a single spin (a single position within
the molecule) or invert (180◦ pulse) specifically just one resonance in the spectrum.

Another new tool in our arsenal comes from the technology of NMR imaging (MRI).
In MRI, there is only one chemical shift (that of H2O) and the chemical shift scale is used

NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and
Structural Biology, by Neil E Jacobsen
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instead for indicating the physical location of a spin within the sample volume. By “bending”
the homogeneity of the magnetic field during the acquisition of the FID, the Bo field becomes
dependent on the position within the sample. This intentionally nonhomogeneous field is
called a “field gradient.” Because the NMR resonance frequency is directly proportional to
the field strength (νo = γBo/2π), this means that the resonant frequency of each spin now
depends only on its position within the sample. The 1H NMR spectrum becomes a physical
“map” (or image) of where the spins are located.

In NMR spectroscopy (as opposed to imaging), we do not use field gradients during the
acquisition of the FID, but the gradient technology can be used for another purpose: for
destroying coherences that we do not want to see. Gradients are applied for a brief period
of time (typically 1–2 ms) and then removed, returning the magnetic field to its very high
degree of homogeneity. The gradient affects coherence because the precession frequency
changes during the gradient (again, νo = γBo/2π), and this makes all the “identical” spins
have different precession frequencies depending on their position within the sample tube.
The end result after a millisecond or two of this chaos is that the phase of the coherence
is now scrambled throughout the sample and no longer adds together to make measurable
net magnetization. The technique of “pulsing” the gradient on and then off again rapidly
is called “pulsed field gradients” (PFGs), and it has become an integral part of all modern
NMR experiments. We can think of PFGs as the janitorial service of NMR, sweeping up
and discarding all of the signals we do not want to see (the “artifacts”) and leaving the clean
spectrum we are interested in.

A third new technique or pulse sequence tool will be introduced in this chapter: the
spin lock. A spin lock is just a long RF pulse, applied to give a very large number
of rotations of the net magnetization: hundreds or thousands rather than the one-fourth
(90◦ pulse) or half (180◦ pulse) we usually think of for pulses. Because we can not shim
it, the B1 (RF) field is notoriously inhomogeneous compared to the Bo field. This means
that depending on where you are in the sample, a well-calibrated 90◦ pulse might give a
rotation of 88◦ or 91◦ rather than 90◦. This does not create a big problem for most pulse
sequences, but imagine what happens if you rotate 100 times (400 times the duration of a
90◦ pulse): the 88◦ pulse rotates 97.777 cycles and the 91◦ pulse rotates 101.111 cycles.
The integer number of cycles does not matter much, but the fraction is 280◦ (0.777 times
360◦) for the 88◦ pulse and 40◦ for the 91◦ pulse. Depending on where you are in the
sample, you will see every possible rotation of the sample magnetization, and the total
net magnetization throughout the sample will be zero. Again, as with the pulsed field gra-
dient, we have destroyed the magnetization by scrambling it as a function of location in
space.

But we have been assuming that the sample net magnetization is forming a 90◦ angle
to the B1 field. What if the magnetization is colinear with the B1 field? We have seen with
simple pulse rotations that the B1 field has no effect on magnetization that is aligned with
it; for example, a 90◦

y pulse does not change Iy . The same is true for a spin lock: All
magnetization perpendicular to the B1 field is scrambled and all magnetization aligned with
it is preserved. Not only is this magnetization preserved, but it is also locked to the axis
of the B1 field for the duration of this long pulse, preventing it from moving. Some very
interesting things happen to this magnetization while it is locked on the B1 axis: Mag-
netization can transfer from one spin to a nearby spin either by NOE (through space) or
by J coupling (through bond). These processes are complex and even with the powerful
theoretical tools we have developed, we will only get a glimpse of how they work. But
they are the basis of two extremely useful NMR experiments: TOCSY (total correlation
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spectroscopy) and ROESY (rotating-frame Overhauser effect spectroscopy). We will at-
tempt to at least get a feel for what is going on in the spin lock and how we can get transfer
of magnetization.

To understand selective (shaped) pulses and the spin lock, we need to look in detail at
the effect of pulses on spins as a function of their resonant frequency, νo, that is to say the
position of a resonance within the spectral window.

8.2 THE EFFECT OF OFF-RESONANCE PULSES ON NET
MAGNETIZATION

In the acquisition of a simple 1D spectrum, our goal is to excite all of the spins of a
certain type (e.g., 1H) in the sample, regardless of chemical shift, at the same time. This
requires a radio frequency pulse of very high power and short duration. The frequency of
the pulse is adjusted to correspond to the resonance frequency at the center of the spec-
tral window, so that it will be close to the resonance frequency of all of the spins in the
sample.

8.2.1 On-Resonance Pulses

For a spin whose chemical shift is exactly at the center of the spectral window, we call the
pulse an “on-resonance” pulse because the pulse (or “carrier”) frequency is exactly equal to
the resonant frequency (precession frequency or Larmor frequency νo) of the spin. During
the pulse, we can use the vector model to show the B1 field (the pulse) as stationary in
the rotating frame of reference, because the x′ and y′ axes are rotating about the z axis at
exactly the frequency of the pulse. The position of the B1 field in the x′–y′ plane depends
on the phase of the pulse, which is just the place in the sine function (0–360◦) where the
radio frequency oscillation starts at the beginning of the pulse. This can be controlled by
the spectrometer and is written into the pulse sequence by the user:

Code Phase shift Function B1 vector

0 0◦ sin(2πνrt) x ′ axis
1 90◦ cos(2πνrt) y ′ axis
2 180◦ −sin(2πνrt) −x ′ axis
3 270◦ −cos(2πνrt) −y ′ axis

where νr is the frequency of the pulse. In the rotating frame of reference, we compensate for
the physical violation of using an accelerating (rotating) frame of reference by including a
fictitious magnetic field, oriented along the −z axis with magnitude 2πνr/γ , where νr is the
rate of rotation (in hertz) of the x′ and y′ axes of the rotating frame of reference (Fig. 8.1(a)).
If the spins are on-resonance, then the pulse frequency, νr, is equal to the Larmor frequency,
νo. In this case, the fictitious field strength is 2πνo/γ , which is equal to Bo (because νo =
γBo/2π). The fictitious field, which is oriented along −z, exactly cancels the real field Bo,
which is oriented along +z, and there is no field at all in the absence of a pulse (Fig. 8.1(b)).
During the pulse, the only magnetic field experienced by the spins is the B1 field, which is
in the x′–y′ plane.

Thus for an on-resonance pulse, the Bo field does not exist in the rotating frame and the
effective field experienced by the spins is just the B1 field. The magnitude of the effective
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field is Beff = B1, and the Beff vector is oriented in the x′–y′ plane at a position determined
by the pulse phase. The net magnetization vector M has magnitude Mo and, starting from
its equilibrium orientation along the +z axis, precesses counterclockwise (ccw) about the
B1 vector at a rate ν1 = γB1/2π. If the pulse duration, tp, is adjusted so that M precesses
exactly one fourth of a complete rotation (90◦ pulse: ν1tp = 1/4; tp = 1/(4ν1)), then the M
vector ends up in the x′–y′ plane at the end of the pulse. This is the picture we have been
using so far for all pulses.

8.2.2 Off-Resonance Pulses

What happens if a resonance peak is not exactly in the center of the spectrum? In this
case, the pulse is off-resonance (νr = νo). As always, we choose axes x′ and y′ that rotate
around the z axis at a rate equal to νr, the frequency of the pulse (corresponding to the radio
frequency at the center of the spectral window). As before, the B1 field can be described by
a vector that is stationary in the x′–y′ plane, but now the fictitious field, which is required to
correct for the accelerating frame of reference, no longer perfectly cancels the Bo field. If the
resonance peak is downfield (higher frequency) of the center of the spectral window, then
νo > νr and the fictitious field (2πνr/γ) is lower in magnitude than the Bo field (2πνo/γ).
Because the fictitious field is oriented along the −z axis and the slightly stronger Bo field is
oriented along the +z axis, the result is a small residual field (Bres) oriented along the +z
axis (Fig. 8.1(c)).

During the pulse, the spins do not experience the B1 field alone, but rather an effective
field Beff , which is the vector sum of the small residual field along the +z axis (Bres) and
the B1 field in the x′–y′ plane (Fig. 8.2, left). If the resonance is not far from the center of
the spectral window, the Beff vector will “tilt” slightly out of the x′–y′ plane and get slightly
longer than B1.

If the resonance peak is upfield (lower frequency) of the center of the spectral window,
then νo < νr and the fictitious field along −z “wins out” over the Bo field along +z, leaving
a small residual field (Bres) along −z (Fig. 8.1(d)). Now the spins experience an effective
field vector Beff that is tilted slightly below the x′–y′ plane during the pulse (Fig. 8.2, right).
The exact angle of tilt can be calculated using simple trigonometry (tan � = Bres/B1) and
the magnitude of Beff comes from Pythagoras (B2

eff = B2
res + B2

1), but we are concerned
here only with a qualitative understanding: the Beff vector tilts out of the x′–y′ plane and
gets slightly longer than B1, and this effect depends on the relative magnitudes of B1 and
Bres, that is, on how far we are off-resonance and how powerful the pulse is. A very high
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power pulse can “resist” and minimize the off-resonance tilting, but a weak RF pulse will
be more sensitive to resonance offset.

If the B1 field is weak (short B1 vector) or the pulse is far off-resonance (long Bres vector),
the effective field vector Beff will tilt significantly up or down, out of the x′–y′ plane. In this
case, a 90◦ rotation about Beff (“90◦ pulse”) will not really put the net magnetization M into
the x′–y′ plane and a 180◦ rotation (“180◦ pulse”) will not really put the net magnetization
on the −z axis. We can easily compare the magnitudes of B1 and Bres if we think of B1
amplitude in units of hertz: ν1 = γB1/2π. This is analogous to expressing the field strength
of a magnet in terms of its proton resonant frequency: νo = γBo/2π. Thus, we talk about
a “300-MHz magnet” rather than a magnet with Bo = 7.4 T, and we can talk about a
“25-kHz B1 field” for an RF power setting, which gives a 10-�s 90◦ pulse. In this B1
field, the 1H net magnetization rotates one full rotation in 40 �s, so we can say that the
net magnetization vector rotates around the B1 vector at a rate of ν1 = 1/(0.000040 s) =
25,000 Hz.

Be careful to note that ν1 is not the frequency of the pulse. We call that frequency νr (reference
frequency); it is very close to νo, or 300 MHz on a “300-MHz” NMR spectrometer. Think of
ν1 as a measure of the pulse amplitude rather than frequency: it is the rate at which the sample
magnetization rotates around the B1 vector, a measure of the effect of the pulse (length of the
B1 vector).

Now we can directly compare B1 (the magnetic field of the RF pulse) to Bres (what is left
of Bo after subtracting out the pseudofield correction for the rotating frame of reference).
If a resonance in the 1H spectrum is at 10.0 ppm and the center of the spectral window is
at 5.0 ppm on a 300-MHz instrument, we have νo − νr = (10 − 5) 300 = 1500 Hz. This
is how far the pulse is off-resonance and it is proportional to Bres. If the 90◦ pulse width
is 10 �s, we can describe the B1 field strength in hertz (ν1 = γB1/2π) as 1/(4 × tp) =
25,000 Hz. This is proportional to B1 in the same way that νo − νr is proportional to Bres.
Thus, the B1 vector is 16.67 times longer (25,000/1500) than the Bres vector, and the tilt will
be insignificant. We can say that this pulse is strong enough to “cover” a spectral window
10 ppm wide (0–10 ppm) without any significant loss of effectiveness at the edges. The
exact amount of tilt is 3.4◦ and the Beff vector is 0.18% longer than B1. Clearly, we can use
the same simple vector model for all resonances within the 10 ppm (3000 Hz) wide spectral
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window. We will have problems when Bres becomes comparable to B1:

B1 ∼ Bres or ν1 ∼ (νo − νr)

Thus, we can avoid off-resonance effects by making B1 as strong as possible (highest power
pulse possible, shortest duration) and by making νo − νr as small as possible (avoid having
resonances peaks very far from the center of the spectral window).

As an example of how bad it can get, consider a case where B1 = Bres (i.e., ν1 = νo − νr).
In this case, if we apply the pulse on the x′ axis the resultant vector Beff is tilted 45◦ out
of the x′–y′ plane toward the z axis (Fig. 8.3, left). The magnitude of the Beff vector is
1.414 (square root of 2) times B1 so that the net magnetization vector M will rotate about
Beff about 41% faster than it would for an on-resonance pulse. Suppose we want to apply
a 180◦ pulse to this off-resonance peak. We could compensate for the larger magnitude of
Beff by using a pulse that is shorter in duration by a factor of 1.414. This would rotate the
net magnetization M exactly 180◦ around the Beff vector (Fig. 8.3, right). Because Beff is
tilted 45◦ up in the x′–z plane, the M vector rotates around it maintaining the 45◦ angle to
Beff at all times, tracing out a conical path, and landing after a 180◦ rotation right on the x′
axis! Thus, our “180◦ pulse” delivered to an off-resonance peak is really only a 90◦ pulse
in our simple vector model.

This can be a real problem for 13C pulses at high field strengths. Consider a 600-MHz
spectrometer with a 13C spectral window stretching from 0 to 220 ppm. The center of
the spectral window is at 110 ppm and a ketone carbonyl resonance is at 200 ppm. The
strongest 13C pulse you can muster is a 16-�s 90◦ pulse, corresponding to a B1 field
strength of 15.63 kHz (1/0.000064 s). The resonance is 90 ppm or 13.5 kHz (90 × 150 Hz)
from the center of the spectral window. Bres (13.5 kHz) is nearly equal to B1 (15.6 kHz).
You’ve got problems!

8.2.3 Composite (Sandwich) Pulses

There are many tricks to get around the problem, such as sandwich 180◦ pulses (e.g.,
90x–180y–90x) and “broadband” shaped pulses. Figure 8.4 (top) shows the inversion profile
for a simple 180◦ pulse at the highest available power (tp =28.4 �s,γB1/2π =17.6 kHz). The
profile is obtained using an inversion-recovery sequence (180◦

x − τ − 90◦
y) with recovery

time τ = 0. The final 90◦ pulse frequency and the 13C peak (13CH3I) are both at the center
of the spectral window, but the frequency of the 180◦ pulse is moved in 10 ppm (1500 Hz)
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Figure 8.4

steps away from the center right and left, each time printing the spectrum to the left or right
of the previous spectrum. On-resonance the peak is upside down and has maximum intensity
(Sz → −Sz → −Sx ) but as we move off-resonance the intensity diminishes and reaches
zero at about 70 ppm off-resonance. At this point, we are getting a 90◦ pulse rather than a
180◦ pulse. Beyond this we actually see positive peaks, indicating that the z component of
net magnetization after the “180◦” pulse is positive.

A more “robust” way to invert the sample magnetization is the sequence 90◦
y–180◦

x–90◦
y ,

with no space in between the pulses. This is called a composite pulse or sandwich
pulse because a number of pulses are lined up right next to each other, like slices of
cheese and meat in a sandwich. Suppose that what we think is a 90◦ pulse is really an
85◦ pulse due to miscalibration. The first “90◦” pulse on y′ rotates the sample magneti-
zation ccw by only 85◦, leaving it in the x′–z plane just 5◦ short of the x′ axis (Fig. 8.5).

Figure 8.5
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The 180◦
x pulse rotates the M vector around the x′ axis in a very sharp cone, landing at a

point 5◦ below the x′ axis. The final pulse (85◦
y ) rotates M precisely down to the −z axis.

So we have a perfect 180◦ pulse even though it was miscalibrated by over 5%. This is not
entirely true because the 180◦ pulse in the middle of the sandwich is really a 170◦ pulse,
but this introduces a very small error as the sample magnetization is so close to the x′ axis
and rotates in a very narrow cone. The effects of off-resonance pulses are more complex,
but one can see in Figure 8.4 (middle) that this sandwich pulse does a better job of inversion
than the simple 180◦ pulse. The effective “bandwidth” or coverage of the pulse is 150 ppm
compared to about 80 for the 180◦ pulse alone. This is still not wide enough for the en-
tire range of 13C shifts, which extends from 5 to around 220 ppm, requiring a 215 ppm
bandwidth.

We will see that the major application of shaped pulses is to select a narrow region of the
spectrum, thus displaying a narrow bandwidth. But there are also shaped pulses designed
to do just the opposite — to give even excitation over a very wide range of frequencies.
These “broadband” shaped pulses are specialized for inversion (Sz → −Sz ) or refocusing
(Sx → −Sx ). Figure 8.4 (bottom) shows the inversion profile of an “adiabatic” inversion
shaped pulse with maximum B1 field strength of 13.7 kHz (γB1/2π), average B1 field
strength of 8 kHz and total duration 546 �s. No discernible “droop” in inversion efficiency
is seen over a range of 200 ppm, and even over a bandwidth of 260 ppm, only a 15%
loss in efficiency is observed at the edges. This is accomplished with an average B1 field
strength of less than half of that used for the simple 180◦ pulse. We will discuss how
this works later in this chapter after we gain an understanding of shaped pulses and spin
locks.

8.2.4 Precession in the Rotating Frame

What happens after the pulse for an off-resonance spin? Suppose that right after the pulse
the net magnetization M of the sample is on the x′ axis. The B1 field is now turned off, so
that in the rotating frame of reference the only field experienced by the spins is the residual
field along the z axis (Bres = Bo − Bfict). If the resonance is downfield of the center of the
spectral window (νo > νr), then Bo > Bf and the residual field is a small field oriented along
the positive z axis of magnitude 2π(νo − νr)/γ . The net magnetization vector M will precess
about the effective field, which is now Bres, in the counterclockwise direction (viewed from
the +z axis) at a rate equal to γBres/2π, which is simply νo − νr (Fig. 8.1(c), bottom). We
can think of the Bres vector just like the B1 vector during the pulse or the Bo vector in the
laboratory frame: Any magnetic field rotates the sample magnetization counterclockwise
about the field axis. Precession is like a z-axis pulse!

This result is not surprising as the rotating frame of reference simply subtracts νr,
the rate of rotation of the x and y axes in the rotating frame, from the Larmor fre-
quency νo. The same thing goes on electronically in the receiver of the NMR instru-
ment, where the FID (decaying signal of frequency νo) is mixed (mathematically mul-
tiplied at each time point using an analog device) with a reference frequency νr, which
is the same frequency as the RF pulse. The result of this mixing consists of two signals
added together, one with frequency νo + νr and another with frequency νo − νr. The
first signal is a radio frequency (close to twice the Larmor frequency) and the second is
an audio frequency (in the range 0–10 kHz), so it is easy to block the high frequency
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and pass the audio frequency with an analog filter. The result is the audio FID contain-
ing the frequency νo − νr, which is the precession frequency in the rotating frame of
reference.

If the resonance is upfield of the center of the spectral window (νo <νr), then the fictitious
field is stronger than the Bo field (Bo < Bfic) and the residual field Bres is oriented along
the negative z axis. Under the influence of this effective field, the sample magnetization
M rotates clockwise (viewed from above) at a frequency νr − νo (Fig. 8.1(d), bottom). In
the rotating frame of reference, we consider this a negative frequency as the rotating-frame
frequency is always defined as νo − νr, corresponding to precession in the counterclockwise
direction. Some books use the uppercase omega (�) to represent the rotating-frame angular
velocity: � = ωo − ωr. Angular velocity is just frequency times 2π: ω = 2πν. This angular
velocity (in radians per second) is often referred to as the chemical shift, even though it
has no relation to the δ scale in parts per million. The rotating-frame frequencies (νo − νr
in Hz) or the rotating-frame angular velocities (� in radians per second) depend on the
spectrometer field strength Bo and have zero value at the center of the spectral window.
The chemical shift (δ in parts per million) is independent of Bo and is zero at the resonance
position of tetramethylsilane (TMS).

If the peak is on-resonance (νo = νr), there is no residual field and the magnetization
vector stands still in the x′–y′ plane after the pulse (Fig. 8.1(b), bottom). This is to be
expected as in the laboratory frame the magnetization vector is precessing counterclockwise
at frequencyνo, and in the rotating frame we are rotating the axes at exactly that rate (νr = νo),
so relative to the rotating x′ and y′ axes the vector is not moving.

8.3 THE EXCITATION PROFILE FOR RECTANGULAR PULSES

A simpler way to look at the effectiveness of an off-resonance pulse is to calculate the
excitation profile, which is just a graph of the effective pulse rotation delivered by a pulse
as a function of the resonance frequency in the rotating frame (νo − νr). This graph can be
superimposed on the spectral window to view the effectiveness of the pulse with respect
to each of the peaks in the spectrum (Fig. 8.6). It is actually quite simple to calculate this
function, as the excitation profile is just the Fourier transform of the pulse. The pulse shape
is rectangular as it is simply turned on at the beginning and held on for a time tp, which is
the duration of the pulse (also called the pulse width), and then turned off. The height of
this rectangular function is the pulse amplitude B1 (square root of the pulse power). We can
also describe pulse amplitude using the effect of the pulse: the rotation rate of the sample
magnetization around the B1 vector (ν1 = γB1/2π). This is expressed in hertz and is equal
to 1/(4 × tp(90◦)). Using the B1 “field strength” in hertz as the height of the pulse, we
see that the area of the pulse (height × width) is just the pulse rotation in cycles (0.25 for
a 90◦ pulse). All three pulses in Figure 8.6 are 90◦ pulses, with the same area but different
pulse widths tp.

The Fourier transform of a rectangular function turns out to be something called the
“sinc” function: sin(x)/x. This function reaches a maximum at x = 0 and goes to zero on
either side, with “wiggles” gradually dying out sort of like an FID in both the +x and −x
directions (Fig. 8.6). Notice how the experimental result for inversion efficiency (Fig. 8.4,
top) closely resembles this sinc function. The function first passes through zero at rotating-
frame frequencies of −1/(2tp) and +1/(2tp), so we can say that the pulse excites a range
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of frequencies corresponding to a “bandwidth” of 1/tp. Of course, if we superimpose this
function on our spectral window with 1/tp = sw (spectral width), we will be getting very
poor excitation (rotation much less than 90◦ for a 90◦ pulse) near the edge of our spectral
window (Fig. 8.6, top), going down to zero at the edge (νo − νr = +sw/2 or −sw/2). We
could take this even further by using a longer pulse with smaller B1 amplitude (Fig. 8.6,
bottom) to get “selective excitation” of the peaks at the center of the spectral window.
This is just the opposite strategy, using low-power (“soft”) pulses to rotate only the spins
corresponding to one peak in the spectrum.

To get nearly equal excitation all across our spectral window, we need to expand the
excitation profile horizontally so that the zero points are far outside the spectral window
and the function “droops” only slightly at the edges of the window (Fig. 8.6, center). This
can be accomplished by using a shorter duration pulse, as the frequency domain has an
inverse relationship to the time domain: squeezing the pulse in (shorter tp) has the effect of
horizontally expanding the excitation profile (wider coverage or bandwidth 1/tp). We would
like to have the “bandwidth” 1/tp much greater than the spectral width sw. Of course, if
we use a shorter duration pulse, we must compensate by using a higher amplitude pulse
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so that the pulse rotation is not changed. For example, if we cut the duration tp of a 90◦
pulse in half, we will get a 45◦ rotation of the sample magnetization M, unless we also
double the pulse amplitude (four times the pulse power) to compensate. To get nearly “flat”
coverage of the entire spectral window, we want a very short duration pulse (on the order
of tens of microseconds) with very high power (on the order of 50–300 W). This is a lot
of radio frequency power to put into the small volume (about 300 �l) of the NMR sample
covered by the probe coil, so that we must be very careful to limit the pulse width to the
microsecond range. Pulses of hundreds of milliseconds to seconds at this power level will
boil the sample, fry the probe, and burn out the power amplifiers of the spectrometer. Pulse
amplitude, which is the square root of pulse power, is limited not only by the maximum
power output of the amplifiers, but also by the tendency of the probe coil to spark or “arc”
at very high RF amplitudes. It is usually the arcing limit that sets a maximum on the B1
amplitude we can use.

A typical 90◦ pulse might have a duration of 10 �s. Thus, 1/tp, the width of the main
peak of the sinc function excitation profile, is 1/(10 �s) = 100,000/(1 s) = 100 kHz.
A typical spectral width for proton is 12 ppm or 12 × 300 = 3600 Hz on a 300-MHz
(7.05-T) instrument. Thus, the “bandwidth” is 28 times (100,000/3600) wider than the
spectral window, and we will have minimal “droop” of the excitation profile between the
center and the edges of the spectral window. This pulse will deliver very close to a 90◦
pulse to all of the peaks in the spectrum. Problems arise with low-γ nuclei because the
rotation generated by the pulse is much slower (ν1 = γB1/2π) and the 90◦ pulse width
is, therefore, much longer even at the highest B1 amplitude (highest power) available. The
longer pulse width corresponds to a narrower “coverage” (1/tp) in the frequency domain.
This is compounded by the fact that many low-γ nuclei have very wide ranges of chemical
shifts, thus requiring very wide spectral windows. For example, 57Fe has a γ that is 3.2%
of γH (i.e., its nuclear magnet is only 3.2% of the strength of the proton nuclear magnet),
and its range of chemical shifts is around 30,000 ppm. In terms of spectral width in hertz,
this is about 1000 times wider than the typical proton spectral window. In these cases, it
is often necessary to acquire several spectra with adjoining spectral windows in order to
“cover” the entire range of chemical shifts.

8.4 SELECTIVE PULSES AND SHAPED PULSES

Because the excitation profile is the Fourier transform of the time course of the pulse,
and because of the inverse relationship between time domain and frequency domain, a
long enough pulse will lead to a very narrow sinc function. Figure 8.7 shows actual FT
calculations done on rectangular pulse shapes. If we use a 90◦ pulse that is very long (e.g.,
35 ms) and has very low power (3500 times lower amplitude or 12.3 × 106 times lower power
than a 10 �s 90◦ pulse), we will get a very narrow excitation profile (1/tp = 28.6 Hz). If we
adjust the reference frequency so that one peak of interest in the spectrum is on-resonance
(νo = νr), we could excite only the spins corresponding to this peak without affecting any
of the other spins in the sample. This is called a selective pulse. The problem with the sinc
function excitation profile is that there are many “wiggles” in the function that extend out
quite far from the center of the spectral window. If another peak in the spectrum falls on the
maximum of one of these wiggles, it too will be excited by the pulse, although the excitation
will be weak.
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Figure 8.7

How can we eliminate the wiggles? We could try other functions for the pulse other than
the rectangular shape and think about what the Fourier transform is for these functions. A
Gaussian function (general form e−x2

) has the useful property that its Fourier transform is
also a Gaussian function (Fig. 8.8, top). The Gaussian is symmetrical and goes smoothly
to zero quickly without wiggles, so it is an ideal shape for a selective pulse. We can adjust
the selectivity of the Gaussian pulse by adjusting its pulse duration tp, just as we do with
rectangular pulses. A long, low-power Gaussian pulse corresponds to a narrow (highly
selective) excitation profile and a faster, higher-power Gaussian pulse leads to a wider
Gaussian excitation profile. We can even create a rectangular excitation profile, exciting
a precise region of the spectrum with flat response throughout the region, by using a sinc
function for our pulse shape (Fig. 8.8, bottom). Just as the Fourier transform of a rectangular
pulse is a sinc function excitation profile, the Fourier transform of a sinc-shaped pulse is a
rectangular excitation profile.

Figure 8.8
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The ability to produce pulses with amplitude variation during the pulse according to
a precise mathematical function became commonly available in the 1990s as a result of
new hardware technology, called waveform generators (Varian) or amplitude setting units
(Bruker). These nonrectangular pulses are called shaped pulses, and they are put together
not with a continuous function but rather as a “sandwich” of short rectangular pulses. For
example, a 35-ms Gaussian pulse might be put together by executing a long string of 350
rectangular pulses, each one 0.1 ms (100 �s) in duration. The amplitudes are set from a
list of amplitudes calculated from the mathematical Gaussian function. This list can also
contain RF phases (0–360◦) that also vary in a precise predetermined fashion during the
course of the long pulse.

Because nonselective pulses use high power, they are sometimes called “hard” pulses,
whereas the low-power selective pulses are called “soft” pulses. Thus, for selectivity we use
low-power (soft), long-duration shaped pulses and when we want to excite all of the signals
in the spectral window equally, we use high-power (hard), short-duration rectangular pulses.
Pulse power can vary over an enormous range, so we use a logarithmic scale to measure it.
In the decibel scale, the pulse power in decibels is ten times the logarithm (base 10) of the
pulse power:

dB = 10 log (power) = 10 log [(amplitude)2] = 20 log (amplitude)

To double the pulse power, simply increase the power by 3 dB, as log(2) = 0.3. Because
pulse power is the square of pulse amplitude B1, to double the amplitude we need to multiply
pulse power by a factor of 4, which corresponds to increasing power by 6 dB, as log (4) = 0.6.
This leads to a simple rule of thumb: Every time you increase the pulse power by 6 dB, you
will cut the 90◦ pulse (tp) in half (because B1 is doubled). Likewise, each 6 dB decrease
in pulse power will double the 90◦ pulse width. This is a good rule of thumb, but as the
actual power settings are not precise, you will normally have to calibrate the 90◦ pulse at
the new power setting to be sure. To make matters worse, Bruker uses the dB scale to
describe power attenuation rather than power itself, so that the higher the dB value the
lower the power. This is the opposite of Varian’s system. Be careful whenever you are
setting power levels! If you get it wrong, you can burn up the probe, the amplifiers, and your
sample!

As good as shaped pulses sound, they have some unpleasant features. The phase proper-
ties of the pulse are often less than ideal, leading to phase distortions of the resonance peak
being excited. These problems can be eliminated by using pulsed field gradients (PFGs) to
“clean up” the selective excitation. PFGs can effectively scramble any undesired excitation,
leaving only the absolutely clean pure-phase excitation at the desired resonance in the
spectrum. When these two new technologies, shaped pulses and pulsed field gradients, pair
up, we get a truly powerful new way to pick apart the spectrum and establish connectivities
within a molecule through space and through bonds.

8.5 PULSED FIELD GRADIENTS

Field gradients were developed for magnetic resonance imaging, which is an NMR technique
that encodes spatial information (x, y, and z axes) rather than chemical shift information in the
FID. The resulting pictures of “slices” of the human body have provided a revolutionary new
tool for medicine. More recently, this technology has been applied to NMR spectroscopy,
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with dramatic results. Pulsed field gradients make it possible to automatically optimize
all of the shims simultaneously in a few minutes (Section 12.3). More importantly, with
adequate sample concentration the total time required for a 2D experiment can be reduced
from many hours to 15–45 min. Gradients make possible water suppression in 90% H2O
that is far superior to the old presaturation method. Finally, many artifacts in 2D spectra
can be eliminated and sensitivity can be further improved by selecting only the signals that
you are interested in and suppressing all others.

8.5.1 What is a Gradient?

Normally, we go to great efforts to assure that the magnetic field is homogeneous throughout
the sample volume. This means that the strength of the magnetic field, or Bo, is exactly the
same everywhere in the sample leading to sharp peaks for each resonance in the spectrum.
The gradient intentionally destroys this homogeneity in a linear and predictable way. For
example, a z-axis gradient alters the magnetic field so that the magnetic field strength is
reduced in the lower part of the sample and increased in the upper part in a linear fashion.
In other words, the magnetic field strength is now a function of the position of a molecule
in the NMR tube along the z axis:

Bg(z) = Bo + Gz × z

where Bg is the magnetic field strength with the gradient turned on, Gz is the strength of
the field gradient (usually given in gauss per centimeter, where 1 G is 10−4 T) and z is
the position of the molecule along the z axis. We choose the zero of the z axis to be at the
center of the sample, so molecules above the center experience a slightly increased magnetic
field and molecules below the center experience a slightly decreased magnetic field. The
relative magnitude of this change is very small; for example, a maximum gradient strength of
50 G/cm in a Bo field of 117,440 G (11.744 T, 500 MHz 1H). The gradient can be turned
on and off very rapidly, so that typically the gradient is “pulsed” on for a period of 1–2 ms
and then turned off.

8.5.2 Effect of Gradients on NMR Signals

What happens to the sample magnetization during a pulsed field gradient? Because the res-
onance frequency of a nucleus is always proportional to the magnetic field (νo = γB/2π),
if we have a net magnetization vector in the x′–y′ plane (e.g., after a 90◦ pulse), the magne-
tization vector will rotate in the x′–y′ plane at a different rate depending on the molecule’s
position in the NMR tube (we can assume that diffusion is slow, so the molecule’s position
does not change). Magnetization in the upper part of the tube will precess faster than normal,
and magnetization in the lower part will precess slower than normal. The result is that a
“twist” or helix of magnetization will exist in the sample, so that at the end of the gradi-
ent period the magnetization rotates as a function of z coordinate throughout the sample
(Fig. 8.9).

Assuming an on-resonance peak, spins at the center of the tube are unaffected by the
gradient and do not move (Bg = Bo). Spins above the center experience a stronger magnetic
field during the gradient (Bg > Bo), so they rotate counterclockwise in the x′–y′ plane.
As we move further up in the tube, this rotation is faster and the total angle of rotation
during the gradient pulse is proportionally greater. To show this “twisting,” we use an
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Figure 8.9

open square to indicate magnetization pointing back into the page (−x′ axis) and a filled
square to indicate magnetization pointing out toward us (+x′ axis). Moving up from the
center, the net magnetization at each level progresses from +y to −x, to −y, to +x, and
back to +y. All of the spins underwent precession in the x′–y′ plane for the same amount
of time (τ) but at different rates (γGz z/2π) depending on their vertical distance from the
center. The rotation is counterclockwise and is more pronounced as we move up. Moving
down from the center, the field during the gradient pulse is slightly weaker (Bg < Bo)
and the on-resonance spins now begin to fall behind the rotating frame, precessing in the
clockwise direction. At the end of the gradient pulse, we have net magnetization on +y,
+x, −y, −x, and back to +y as we move down. The result is a “phase twist” or a helix of
coherence. This is shown in cartoon fashion as a spring or spiral of coherence (Fig. 8.9,
right).

There may be many hundreds of revolutions of the vector in the full vertical distance
of the sample volume. If we try to acquire a spectrum at this point, after the gradient is
turned off, we will not have any observable signal because the vectors point in all possible
directions in the x′–y′ plane equally throughout the sample volume and the net magnetization
vector is zero (Fig. 8.9, bottom). When viewed from the top, we see magnetization vectors
pointing equally in all directions in the x′–y′ plane, leading to a net magnetization of zero
throughout the whole sample. Figure 8.10(a) shows a 1H spectrum of sucrose in D2O at
500 MHz, and Figure 8.10(b) shows the same spectrum with a 1 ms gradient applied between
the 90◦ excitation pulse and the start of the FID. So, a gradient can completely annihilate
an NMR signal! Why would we want to do that? The signal might be an artifact, a solvent
signal, or some other feature of the spectrum that we do not want to see. In this way, gradients
can be used to “clean up” or remove unwanted NMR signals. Compared to the older method
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of removing unwanted signals, subtraction using a phase cycle, the gradient technique is
far superior because it accomplishes the cleanup in one scan. The receiver never sees the
artifacts so we do not have to turn down the receiver gain, and we are not dependent on
perfect stability to give good subtraction.

8.5.3 Refocusing with Gradients—The Gradient Echo

We can not only kill coherence but also bring it back from the dead! The twisted
magnetization in the sample can be “untwisted” by applying another gradient pulse of the
same magnitude and duration but of opposite sign. This gradient decreases the magnetic
field strength above the center of the sample and increases it below the center. During the
second gradient pulse, the magnetization vectors rotate in the x′–y′ plane clockwise in the
upper part of the sample and counterclockwise in the lower part. The vectors which rotated
counterclockwise in the first gradient pulse are now rotating clockwise at the same rate, and
vice versa, so that at the end of the second gradient pulse all of the magnetization vectors are
lined up again throughout the sample (Fig. 8.11). If we start the acquisition of the FID at this
point, we will get a normal NMR spectrum, except for the phase “twist” that results from
chemical shift evolution during the gradients. This result is shown for sucrose in Figure
8.10(c). Another way of saying this is that the first gradient pulse encoded the position of
each molecule into its magnetization, scrambling the net magnetization of the whole sample,
and the second gradient pulse decoded this information, unscrambling the net magnetiza-
tion. So we can destroy with gradients, but we can also reverse the process and regenerate
signals that were completely destroyed! All of this assumes that the molecules do not change
their “level” in the tube between the time of the first gradient and the time of the second
gradient. To the extent that the molecules undergo diffusion, which is faster for smaller
molecules, there will be a loss of some signal. In fact, the gradient echo can be used as a way
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of measuring diffusion rates or to distinguish between small molecules and large molecules.
In order to minimize “stirring” of the sample, we do not use spinning during gradient
experiments.

If this sounds a lot like a spin echo, you are right. In the spin echo, various factors affect the
precession rate of the spins in a sample: chemical shift differences for nonequivalent spins
or differences in Larmor frequencies for identical spins in a nonhomogeneous magnetic
field (bad shimming). In either case, a time delay leads to a “fanning out” of phases in
the x′–y′ plane as they do not precess at exactly the same rates. A 180◦ pulse “flips” all
the spins to the opposite side of the x′–y′ plane, and as long as they continue at the same
frequency for the second half, they will all line up again at the end. Each spin “remembers” its
precession frequency, either due to its position within a molecule (chemical shift) or due to
its physical location in the NMR tube (inhomogeneous field), and by repeating this behavior
exactly in the second half, it ends up back where it started. In the gradient echo, we create
the differences in frequency by applying a gradient pulse. This is just an inhomogeneous
magnetic field. The spins “fan out” in phase during the time of the gradient, depending
on where they are physically located within the NMR tube. The second gradient actually
reverses the inhomogeneity of the field, so that the accumulated error in phase during the
first gradient is exactly reversed during the second for each spin in the sample.

If the spins are not on-resonance, they will still undergo chemical shift evolution in the
gradient echo. For a resonance in the downfield half of the spectral window, the spins in the
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upper part of the sample will precess faster in the counterclockwise direction and the spins
in the lower part will precess slower during the first gradient. During the second gradient,
the spins in the upper part will precess slower and the spins in lower part will precess faster.
At the end of the second gradient, these two perturbations will exactly cancel out for each
spin at each level in the sample, and all the magnetization vectors will point in the same
direction, as if the gradients had just been simple delays.

We can look at this more precisely using the product operator formalism, even though it
is more important to focus on the conceptual picture rather than the math. For a resonance
with Larmor frequency νo, we have during the first gradient

ν′
o = γ(Bo + zGz)/2π = γBo/2π + γzGz/2π = νo + νg

where νg is the change in precession frequency due to the gradient. If the peak is on-
resonance (νo = νr), we have a rotating-frame precession frequency of ν′

o − νr = νo + νg −
νr = νg. Starting with magnetization on the y′ axis, we have at the end of the first gradient

Iy → Iy cos (2πνgτ) − Ixsin (2πνgτ)

As νg is proportional to the z coordinate of the spin within the sample tube (νg = γzGz/2π),
we see that this is a helical coherence spinning around in the x′–y′ plane as we move up
or down the z axis. The net magnetization throughout the whole sample, summed over a
large range of values of z, is zero. The second gradient will modify the Larmor frequency
to ν ′

g = −γzGz/2π = −νg, and precession at this frequency for a time τ will convert the
pure Iy and Ix operators to

Iy → Iycos (−2πνgτ) − Ixsin (−2πνgτ) = Iycos (2πνgτ) + Ixsin (2πνgτ)

Ix → Ixcos (−2πνgτ) + Iysin (−2πνgτ) = Ixcos (2πνgτ) − Iysin (2πνgτ)

Plugging these expressions for Ix and Iy into the product operator representation for the
spin state at the end of the first gradient, we get

Iycos (2πνgτ) − Ixsin (2πνgτ) → [Iycos (2πνgτ) + Ixsin (2πνgτ)]cos (2πνgτ)

− [Ixcos (2πνgτ) − Iysin (2πνgτ)]sin (2πνgτ)

= Iycos2� + Ixsin�cos� − Ixcos�sin� + Iysin2�

= Iy(cos2� + sin2�) = Iy

where � = 2πνgτ and we make use of the trigonometric identity cos2� + sin2� = 1. We
see that the spin state starts as Iy and ends as Iy regardless of the position (z) of the spin in
the sample. The math is considerably more complicated if we do not assume that the peak
is on-resonance, but the conclusion is that we would have the same result as if the gradients
were just simple delays: chemical shift evolution for a period of time 2τ (Fig. 8.10(c)).
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Figure 8.12

8.5.4 The Pulsed Field Gradient Spin Echo (PFGSE)

We saw in Figure 8.10(c) the phase “twist” that results from chemical shift evolution, during
the relatively long (ms) time of the two gradients. To refocus this chemical shift evolution,
we place a 180◦ pulse at the center of the sequence, between the two gradients. This makes
the gradient echo into a spin echo (τ–180◦–τ) with gradients during the two delay times.
But we have to consider what the 180◦ refocusing pulse does to the helix (the “twist”) of
coherence created by the first gradient. Figure 8.12 shows the effect that a 180◦ pulse on
the x′ axis has on the coherence helix: The sense of the twist is reversed, giving the mirror
image of the original helix. Before the 180◦ pulse, we have coherence that moves from x
to −y to −x to y (clockwise viewed from above) as we move down in the tube, but after
the pulse the coherence moves the from x to y to −x to −y (counterclockwise viewed from
above) as we move down. What kind of gradient do we need to untwist this coherence?
We need a gradient identical to the first one, which will rotate coherence ccw in the upper
part of the tube and cw in the lower part, exactly canceling the twist imparted by the first

Figure 8.13
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Figure 8.14

gradient (Fig. 8.13). Without the 180◦ pulse, this second identical gradient would simply
reinforce the effect of the first, twisting the helix twice as tightly (Fig. 8.14). This sequence
(Gz–180◦–Gz ) is called PFGSE, and we will see that it forms the basis of many selective
excitation experiments. The key to its utility is in the 180◦ pulse: If it truly flips the sample
magnetization to the opposite side of the x′–y′ plane, reversing the sense of the helix twist,
the sample magnetization is lined up at the end (Fig. 8.10(d)). If the pulse does not give
a 180◦ rotation, the sample magnetization is completely destroyed. We will see how this
reinforces the selectivity of a shaped pulse in the next section.

8.6 COMBINING SHAPED PULSES AND PULSED FIELD GRADIENTS:
“EXCITATION SCULPTING”

We saw that the PFGSE acts as a spin echo if the central pulse is a 180◦ pulse, and as a
gradient-based coherence annihilator if the central 180◦ pulse is absent. What happens if we
put a 180◦ shaped pulse at the center of the PFGSE (Gz–180◦(sel.)–Gz )? This pulse should
deliver a 180◦ pulse to the selected resonance (peak) in the spectrum and have no effect
(0◦ pulse) on all the other peaks. At the end of this sequence, we expect to have aligned
coherence for the selected spins (Fig. 8.13) and completely scrambled coherence for all of
the other spins (Fig. 8.14). As we started with a 90◦ pulse, we have no z magnetization and
for the nonselected spins we end up with no net coherence either. So overall we have excited
the selected resonance with a 90◦ pulse and we have destroyed all net magnetization on all
other resonances in the spectrum. This is a very radical kind of selectivity, as nothing is left
at all but the net magnetization of the desired spins in the x′–y′ plane. A 90◦ shaped pulse
will rotate the selected spins into the x′–y′ plane, but the other spins will still have their full
equilibrium net magnetization on the +z axis. This strategy was developed by A.J. Shaka,
who dubbed it “excitation sculpting” because we start by exciting all the spins equally and
then we cut away all the magnetization we do not want using the gradients, just as a sculptor
reveals the desired shape by cutting away marble from a formless block.

Figure 8.15(b) shows the spectrum of sucrose with a 90◦ Gaussian pulse applied to the
triplet at 3.99 ppm, compared to a normal 1H spectrum (Fig. 8.15(a)). This is done by
moving the reference frequency to place the 3.99 ppm triplet at the center of the spec-
tral window (on-resonance), which is the center of the Gaussian-shaped excitation profile
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resulting from the shaped pulse. We can see some distortion of the peak shape as well as some
undesired excitation, particularly of the two strong singlets (CH2OH peaks) and the HOD
peak at 4.73 ppm. In Figure 8.15(c), we see the same spectrum using a PFGSE with a 180◦
Gaussian pulse at the center. The peak shape is improved and we see absolutely none of the
nonselective peak intensity. This can be improved even further by repeating the PFGSE with
a different gradient strength (Ga

z − 180(sel.) − Ga
z − Gb

z − 180(sel.) − Gb
z) for an overall

double pulsed field gradient spin-echo or DPFGSE (Fig. 8.15(d)). We can select other peaks
in the spectrum by simply moving the reference frequency (νr) to place the desired peak
on-resonance. For example, with the double doublet at 3.51 ppm on-resonance we see only
this peak in the DPFGSE spectrum (Fig. 8.15(e)). The normal spectrum (Fig. 8.15(a)) has
narrower lines because the sample is spinning.

We can actually measure the excitation profile of the Gaussian pulse in a DPFGSE
sequence by selecting a peak (putting it on-resonance) and then repeating the experiment
with the peak moved off-resonance in equal steps both upfield and downfield. The spectra
are superimposed to give a series of peaks that map out the shape of the excitation. This
is shown in Figure 8.16 for the HOD peak of sucrose in D2O, changing the reference and
pulse frequency (νr) by 6 Hz for each successive spectrum. We see that the profile from a
Gaussian-shaped pulse is indeed Gaussian, with a bandwidth at half-height of about 36 Hz.
The bandwidth is inversely proportional to the pulse width (duration of the shaped pulse),
so if we used a 70-ms Gaussian pulse (with half the maximum B1 field strength to maintain
a 180◦ rotation), we would see a Gaussian excitation profile with a bandwidth of 18 Hz at
half-height. Stretching the pulse squeezes the excitation profile and vice versa.

8.6.1 Frequency-Shifted Laminar Pulses

It is rather tedious to move the spectral window every time we want to select a peak with
a shaped pulse, but it is necessary as the center of the Gaussian excitation profile is at
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the center of the spectral window. One way to get around this is to change the phase of
the individual rectangular pulses that make up the shaped pulse. If we consider a 35-ms
Gaussian pulse made up of 35 rectangular pulses of 1 ms each, we could increase the phase
of each pulse relative to the last one by an angle of 10◦. This is easy to do because the shaped
pulse is created from a list of 35 lines, each line specifying a pulse amplitude and a pulse
phase. The first pulse would be delivered with B1 on the x′ axis, the 10th pulse with B1 on
the y′ axis, the 19th pulse with B1 on the −x′ axis, the 28th pulse with B1 on the −y′ axis,
and so on (Fig. 8.17). We see that the B1 vector is no longer stationary in the rotating frame
of reference—it is moving counterclockwise (in jerks) at a rate of one cycle every 36 ms,
which is a frequency of 1/(0.036 s) or 27.78 Hz. The effective frequency of the pulse is
27.78 Hz higher than νr, its nominal frequency, so the center of the excitation profile is shifted
downfield by 27.78 Hz from the center of the spectral window. Until now, the pulse frequency
has always been the same as the reference frequency, at the center of the spectral window.
We are using the phase “ramp” as a way of tricking the spins into seeing the excitation pulse
at a different position within the spectral window. Now we can place the Gaussian excitation

Figure 8.17
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profile anywhere in the spectrum we want. Figure 8.18 shows a stacked plot of spectra of
sucrose in D2O with different effective frequencies of the shaped pulse, using the phase
ramp (frequency-shifted laminar pulse) to move the center of the excitation profile. The
reference frequency and pulse frequency (νr) are the same in all of these spectra. We can
cleanly select any of the resolved peaks in the spectrum, with no excitation of other peaks.
Only in the case of crowded regions (d–f) do we see any excitation of neighboring peaks.

8.6.2 Selective Annihilation: Watergate

We have seen that the key to selectivity in the PFGSE is whether the spins in question receive
a 180◦ pulse at the center of the spin echo. If they do not, all magnetization (including
z magnetization) is destroyed. This can be applied as a strategy for getting rid of unwanted
peaks in a spectrum. The most unwanted peak in all of NMR spectroscopy is the water peak
in a 90% H2O/10% D2O sample. We saw in Chapter 5 how presaturation can be used to
selectively saturate the water protons with a long, low-power irradiation at exactly the water
resonance frequency. The problem with presaturation is that these saturated H2O protons can
exchange with amide NH positions, carrying their lack of magnetization along with them.
This “bleaches” these signals, reducing or even removing them from the spectrum. What if
we had a shaped pulse that provides a 180◦ pulse everywhere except the center of the spectral
window, where the water peak is positioned? All the peaks of the spectrum will survive the
PFGSE, but the water peak will be destroyed by the gradients because its coherence helix
is not reversed in the middle of the spin echo. This is better than presaturation because the
water magnetization is destroyed quickly at the end of the pulse sequence, just before the
start of the FID. Furthermore, the water at any level of the NMR tube still has its full net
magnetization—it is only at the level of summing the water magnetization at all levels of
the tube that we get cancellation and a zero net magnetization.
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The only problem is that we need to find this magic selective pulse that delivers a 180◦
rotation everywhere but the center of the spectral window. There are shaped pulses that do
this, but it turns out that the simplest solution is a series of six hard pulses separated by equal
delays. If we divide the 90◦ rotation into 13 small rotations of equal angle, the sequence is

3 − τ − 9 − τ − 19 − τ − 19 − τ − 9 − τ − 3

where the numbers are multiples of 90/13 = 6.92◦ and the bar over the number means that
the pulse phase is reversed from that of the first three pulses (e.g., −x instead of x). The
actual pulse rotations are 20.77◦ (“3”), 62.31◦ (“9”), and 131.54◦ (“19”), and their durations
are calculated from the calibrated 90◦ pulse width.

To understand this sequence, let’s start with a very simple set of two pulses separated by
a delay. The sequence 90◦

x–τ–90◦−x is called a “jump-return” or 1 − 1 sequence and can
be used as a selective 90◦ pulse on everything but the water. The water resonance, which
is placed at the center of the spectral window, does not undergo chemical shift evolution
during the τ delay. So it is rotated from +z to −y, sits motionless on the −y axis during the
τ delay, and then returns to +z. It receives no excitation at all (Fig. 8.19). Now consider a
resonance with an offset (νo − νr) of 1/(4τ ) Hz. Just like the water magnetization, it moves
from +z to −y during the first pulse. But during the τ delay, it precesses ccw in the x ′–y ′
plane by an angle 1/(4τ ) × τ = 1/4 cycle or 90◦, from the −y ′ axis to the x ′ axis. The final
90◦ pulse has no effect, as the magnetization is on the same axis as the pulse. At the end of
the sequence, we have delivered an overall 90◦ excitation pulse to the spins at this offset.
In general, for an offset of � rad/s (� = 2π(νo − νr)) we have

Iz

90◦
x−−→ −Iy − τ → − Iycos�τ + Ixsin�τ

90◦−x−−→ Izcos�τ + Ixsin�τ

The excitation profile is just a sine function, with positive peaks to the left of the center of
the spectral window rising to a peak at an offset of � = π/(2τ) and then falling to another
null at � = π/t. To the right of the center of the spectral window, we see the same thing
except that the peaks are negative. At the center (� = 0), there is no excitation. This is quite
a radical distortion of our spectrum, a high price to pay for destroying the water signal.

Now let’s return to the “3–9–19” sequence. For the water peak, it’s simple. As there
is no evolution during the τ delays, it is just a sequence of six pulses whose rotation is
exactly balanced between ccw rotations (3–9–19) and cw rotations (19 − 9 − 3). The net
rotation is zero and the water magnetization ends up on the +z axis, where it started.
Water is not affected by the pulse train. The same is true if the offset is νo − νr = 1/τ
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Figure 8.20

or −1/τ (� = 2π/τ or −2π/τ ) as the evolution of the x–y component will be 360◦ during
each τ delay, returning the vector to where it started before the τ delay. What if the offset
is right between these two extremes, at νo − νr = 1/(2τ )? The x–y component of the
magnetization vector will rotate exactly 180◦ during the τ delay. If the pulses are on the x ′
axis (or the −x ′ axis), the net magnetization stays in the y ′–z plane and each delay flips it to
the opposite side (reversing the y ′ component). The chemical shift evolution can be thought
of as a 180◦ rotation around the z axis: a “+z pulse.” If we divide the 360◦ rotation around
the x ′ axis in the y ′–z plane into 52 equal angles (13 for each 90◦ rotation), we can describe
the position of the net magnetization by a number between 0 and 52 (Fig. 8.20). Now we
can “narrate” the effect of the 3–9–19 sequence. Starting from position 13 (the +z axis)

13
3→ 16

τ→ 10
9→ 19

τ→ 7
19→ 26

At the center of the sequence the net magnetization is on the −y ′ axis, and the central τ

delay rotates it 180◦ in the x ′–y ′ plane to the +y ′ axis: 26
τ→ 0. For the second half:

0
19→ 33

τ→ 45
9→ 36

τ→ 42
3→ 39

Note that rotations about +x ′ simply add to the number, whereas rotations about −x ′
(equivalent to cw rotations about +x ′) subtract from the number. The τ delays are 180◦
rotations about +z (13) or −z (39), so they move the vector to the opposite side (13 − x
becomes 13 + x, 39 + x becomes 39 − x, etc.). At the end of all this gyrating, we end
up at the −z axis, for a net rotation of 180◦ around the x ′ axis! This is our magic pulse: It
gives no rotation to water and a 180◦ rotation to the peaks we are interested in. If we start
at −y (26), we end up on −y (26):

26
3→ 29

τ→ 49
9→ 6

τ→ 20
19→ 39

τ→ 39
19→ 20

τ→ 6
9→ 49

τ→ 29
3→ 26

and if we start on +y (0) we end up on +y (0):

0 → 3 → 23 → 32 → 46 → 13 → 13 → 46 → 32 → 23 → 3 → 0
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What if we start on +x? The pulses have no effect, but each τ delay rotates 180◦ in the
x–y plane from +x to −x and vice versa:

x → x
τ→ −x → − x

τ→ x → x
τ→ −x → − x

τ→ x → x
τ→ −x → − x

As there is a odd number (5) of τ delays, we end up on the opposite axis. If we start on
−x, we end up on +x:

−x → − x
τ→ x → x

τ→ −x → − x
τ→ x → x

τ→ −x → − x
τ→ x → x

So for that exact offset (1/2τ in hertz) we have a true 180◦ pulse on the y ′ axis:

Iz → − Iz, Ix → − Ix, Iy → Iy

The same is true for the opposite side of the spectral window (−1/2τ ) as a 180◦ rotation
gives the same result whether it is cw or ccw. If we put this 6-pulse sequence at the center
of our PFGSE, it will reverse the sense of the coherence helix for the resonance 1/2τ away
from the center, and it will maintain the sense of the coherence helix for the on-resonance
water peak and for peaks 1/τ away from the center. The resonance 1/2τ away will be
“unwound” under the influence of the second gradient, whereas the on-resonance (water)
peak will be wound twice as tightly, leading to zero net magnetization when summed over
the whole sample (Fig. 8.21).

What happens between these two extremes? With so many pulses and delays it becomes
impossible to draw simple diagrams, and we need to do some calculations. Pulse rotations
are simple sine and cosine calculations and they can be simulated on a simple spread-
sheet. Figure 8.22 shows the simulated “extinction profile” of the Watergate sequence us-
ing the 3–9–19 strategy. For the simulation, the delay τ is set to 217.4 �s, which gives a
maximum signal (180◦ rotation during τ ) at an offset of±2300 Hz (3.833 ppm on a 600-MHz

Figure 8.21
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Figure 8.22

spectrometer) from the center. If we put the center of the spectral window on the water peak
(4.755 ppm), we see a maximum at 4.755 + 3.833 = 8.588 ppm and at 4.755 − 3.833 = 0.922
ppm. The nulls occur at the water frequency (4.755 ppm) and at twice the optimal offset:
4.755 + 2(3.833) = 12.421 ppm and 4.755 − 2(3.833) =−2.911 ppm. The advantage of Wa-
tergate is the flatness of the curve around the optimal frequency (7–11 ppm and −1 to 3 ppm),
where there is little or no loss of signal. The 7–11 ppm region for proteins and peptides corre-
sponds to the amide NH region and most of the aromatic region, and the −1 to 3 ppm region
covers most of the aliphatic side chain resonances. The problem is the Hα proton region,
which gets really “slammed” in the process of knocking down the water signal. Compared
to presaturation, Watergate cuts a very wide “swath” around the water peak and there is a lot
of collateral damage done to the Hα resonances. Generally, for experiments that focus on the
amide NH resonances, we use Watergate because it avoids “bleaching” these signals, and
for looking at the Hα resonances we use presaturation or prepare a sample in D2O, which
removes the amide NH peaks but makes water suppression much easier. We will come back
to the unique properties of 90% H2O and other methods to suppress water in Chapter 12.

Figure 8.23
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Figure 8.24

Figure 8.23 shows the Watergate sequence applied to a sample of sucrose in D2O. When
the HOD peak is put on-resonance (Fig. 8.23, center) the HOD peak disappears with some
loss of intensity for the peaks closest to HOD. When we move the reference frequency
to the triplet at 3.99 ppm, we see that nearby peaks such as the doublet at 4.15 ppm are
almost completely destroyed, whereas the faraway g1 peak at 5.36 ppm is restored to its
original intensity because it is now in the “plateau” region of the Watergate extinction profile
(Fig. 8.22). We can map out the extinction profile of Watergate by applying it to a sample
of H2O alone and moving the reference frequency in small steps (0.1 ppm), repeating the
experiment and plotting the spectra side by side. Figure 8.24 shows the results using a τ

delay of 240 �s. The two additional nulls occur close to the calculated null points of 11.70
and −2.19 ppm (1/τ = 4166.7 Hz = 6.94 ppm), and we see the wide swath cut out around
the water resonance (3.4–6.2 ppm). We have a relatively flat response from 6 to 10 ppm,
which includes the majority of amide NH protons and aromatic protons.

8.7 COHERENCE ORDER: USING GRADIENTS TO SELECT
A COHERENCE PATHWAY

How sensitive is a particular spin state to being twisted by a pulsed field gradient? For
example, Iz is completely unaffected by a PFG because it has no coherence. Without
magnetization in the x ′–y ′ plane, there is no precession and the gradient has nothing to
“twist.” The same goes for 2IzSz , as neither Iz nor Sz is affected by a gradient. In fact,
this is a common strategy for “cleaning up” coherence transfer by INEPT: The INEPT
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Figure 8.25

transfer is separated into two parts with 2IzSz as an intermediate state and between the
two pulses a gradient is applied to “scramble” any magnetization that is in the x ′–y ′ plane
(Fig. 8.25):

2IySz

90◦
x(1H)−−−−→ 2IzSz

Gzτ−−→ 2IzSz

90◦
y(13C)−−−−→ 2IzSx = 4[2SxIz]

Any coherences that did not make it to the 2IzSz state will be killed by the
gradient.

We know that Iy is twisted by a gradient. How much is Sy (I = 1H, S = 13C) twisted?
The change in Larmor frequency during the gradient is νg = γ zGz /2π , and the amount
of “twist” or phase change at any given level of the gradient is determined by νg times
the duration of the gradient, τ . So the twist resulting from a given gradient strength and
duration is proportional to γ , the strength of the nuclear magnet. We know that γ H is about
four times as large as γ C, so we can say that 1H single-quantum coherence (SQC) is about
four times more sensitive to twisting by a gradient than 13C SQC. We could exploit this dif-
ference in sensitivity to gradients in an INEPT experiment by using a gradient to “twist” the
1H SQC spin state 2IySz before the coherence transfer, and then using a gradient of opposite
sign and four times the magnitude to “untwist” the 13C SQC (2SxIz ) after the coherence
transfer (Fig. 8.26). This “gradient selection” would destroy any coherence that is not
1H SQC before the transfer and 13C SQC after the transfer! We can have an amazingly
“clean” INEPT transfer using gradients to enforce the pathway 1H SQC → 13C SQC.
Twisting of antiphase coherences is just like chemical shift evolution (Fig. 7.8): The double
arrow pointing in opposite directions in the x′–y′ plane just rotates as a unit, without chang-
ing the 180◦ angle between them. For example, 2IySz is twisted by a gradient of intensity
Gz and duration τg into 2IySz cos(γ HzGzτg) − 2IxSz sin(γ HzGzτg), ignoring the chem-
ical shift evolution that would occur during τ if the I (proton) peak is not on-resonance.
Just like with chemical shift evolution, the Sz part is not affected because it is on the z
axis.

In general, the sensitivity to twisting of a particular spin state can be classified by some-
thing called its coherence order. Thus an ordinary magnetization vector in the x ′–y ′ plane
has coherence order of 1 (single-quantum coherence, p = 1) and a magnetization vec-
tor along the z axis has coherence order zero (p = 0). Only the coherence order of 1
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Figure 8.26

can be observed during the FID. There is also double-quantum coherence, which corre-
sponds to a transition in a J-coupled system of two spins (e.g., Ha and Hb), where both
spins flip together in the same direction: αα to ββ (Hα

a Hα
b to Hβ

a Hβ
b ) or ββ to αα. This

coherence for the homonuclear (two protons) system has a coherence order of 2 (p = 2).
Zero-quantum coherence results from a transition where both spins flip together but in op-
posite directions (e.g., αβ to βα or βα to αβ). Like magnetization along the z axis, it has a
coherence order of zero (p = 0) for a homonuclear system. It turns out that the “twisting”
effect of a gradient pulse depends precisely on the coherence order. For example, during a
gradient a double-quantum coherence (p = 2) rotates twice as fast in the x ′–y ′ plane as a
single-quantum coherence (p = 1) and will acquire twice as many “turns” of twist during
the gradient. We saw in Chapter 7 that DQC precesses in the x ′–y ′ plane at a rate equal to
the sum of the two offsets (�I + �S); this applies equally to twisting in a gradient—the
twist is equal to the sum of the twists that would result for each of the nuclei alone. For
z-magnetization and homonuclear zero-quantum coherence (both p = 0), the gradient has
no effect.

In heteronuclear experiments, we need to consider that different types of nuclei have
different “magnet strengths” or magnetogyric ratios γ . For example, the magnetogyric
ratio of proton (1H) is about four times as large as the magnetogyric ratio of carbon
(13C). This means that in a gradient the proton magnetization rotates (and accumulates
a helix twist in the x–y plane) four times faster than the carbon magnetization under the
influence of the same gradient. This is extremely useful when we want to select only
proton or only carbon coherence (SQC) at a particular point in a pulse sequence. We
can put all of this together by including the magnetogyric ratio as part of the coherence
order. Thus, for single-quantum coherence we can use p = 1 for 13C and p = 4 for 1H.
For heteronuclear double-quantum coherence (1H, 13C pair), we have p = 5 (pH + pC)
and for zero-quantum coherence we have p = 3 (pH − pC). This means that in addition
to z magnetization (p = 0), there are four separate things we can select with a gradient
pulse.

A simple way to view a pulsed field gradient experiment is to add up the “twist” acquired
by the sample magnetization in each gradient pulse and make sure they add up to zero for
the desired pathway. If the “twist” is not zero at the beginning of acquisition of the FID,
there will be no observable signal. For example, in the INEPT experiment (Fig. 8.26)
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we have

p Gz p Gz

+4(1) +1(−4) = 0;
∑

(pi × Gi) = 0
1H SQC 13C SQC

In Section 7.9, we saw how phase cycling can be used to remove the 13C coherence that
comes from the original 13C z magnetization (Sz ), so that only the coherence transferred
from 1H z magnetization (Iz ) is observed. This is a subtraction process that requires more
than one scan to accomplish. With gradients we can do it in one scan alone:

2IySz + Sz

90◦
x

1H/90◦
y

13C→ 2[Iz][Sx] + Sx

The pathway Sz → Sx is unaffected by the first gradient (Fig. 8.26) because z magnetiza-
tion does not precess, so the 13C SQC (Sx ) is only “twisted” by the second gradient and
arrives at the FID in a coherence helix that adds to zero over the whole sample. There
is no need to subtract it out—it never reaches the receiver. We can add up the “twists”
imparted by the two gradients using the fact that coherence order (p) equals zero for z
magnetization:

p Gz p Gz

0(1) +1(−4) = −4;
∑

(pi × Gi) = −4
13C z magnetization 13C SQC

Because the sum is not equal to zero, we end up with twisted coherence and no signal
in the receiver. We call this a “gradient-selected” experiment because the gradients are
being used to specifically refocus coherence in the desired coherence transfer pathway
(1H SQC → 13C SQC) and to reject all others. In Chapter 10, we will develop the idea of
coherence order in a more precise manner, and we will see that coherence order can be
either positive or negative.

8.8 PRACTICAL ASPECTS OF PULSED FIELD GRADIENTS
AND SHAPED PULSES

8.8.1 Gradient Hardware

The gradient coils are located in the NMR probe, surrounding the sample. Only the RF
send–receive coil is closer to the sample. Gradient amplifiers in the console provide direct
currents up to 10 A to create the gradient magnetic field. A heavy cable attached to the
probe delivers these currents to the gradient coils. It is important to keep in mind that the
gradients are driven by direct currents (DC), not the MHz oscillating signals (RF) that we
use for pulses. When not actually producing the gradient, the amplifiers must be either
“blanked” (blocked from introducing any current into the gradient coils) or adjusted to a
zero current value with very low noise. Some spectrometers have the capability to deliver
pulsed field gradients in all three directions: x, y, and z (the NMR tube and the Bo field
are aligned with the z axis). This is achieved with three separate gradient coils in the
probe, each driven by a separate current source. This is standard in MRI, but for NMR the
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three-axis gradient capability is used mainly for improved water suppression in DQF-COSY
of biological (proteins and nucleic acids) samples, and the crowded three-coil design actually
sacrifices some sensitivity.

The gradient not only “twists” the magnetization of the observed nucleus (1H, 13C, etc.),
but also twists the 2H magnetization of the lock channel. You will see that the lock signal
drops sharply when a gradient pulse is executed, and then recovers gradually to its former
level. This is evident with the dipping down and bouncing back of the lock level on the
meter in the Varian remote status unit or the graphic display in the lock window of the
Bruker. This gives a convenient “heartbeat” of the gradient experiment, so you know what
is going on. The Bruker lock system has a “sample-and-hold” feature that allows it to sample
the lock signal before the gradient pulse and then hold onto this value until the lock has
recovered fully. During a gradient experiment, you will see the message “Lock Sample and
Hold Activated” on the LED display of the shim keyboard.

8.8.2 Gradient Parameters

Gradient pulses can be simply turned on and off like high-power RF pulses (“rectangular
pulses”) or they can be shaped so that they turn on and off more gradually. The shaped
gradient pulses are less troublesome because they do not create a big transient response
from the sharp rise and fall times of rectangular gradient pulses. Bruker uses almost ex-
clusively the “sine”-shaped gradient pulse, which has the shape of the first 180◦ of the
sine function. Varian generally uses rectangular (simple on/off) gradients. Parameters re-
lated to pulsed field gradients include the (z axis) gradient strength (Bruker gpz1, gpz2,
etc., in percent of maximum gradient current, and Varian gzlvl1, gzlvl2, etc., in arbitrary
units −32,768 to +32,767), the time duration of the gradient pulse (gt1, gt2, etc. for
Varian and p16 for Bruker, typically 1–5 ms), the shape of the gradient pulse (Bruker
gpnam1, gpnam2), and the duration of the recovery delay, which allows the magnetic field
to go back to homogeneous after the gradient pulse (Varian gstab, Bruker d16, typically
200 �s).

8.8.3 Shaped Pulse Hardware and Software

Shaped pulses are created from text files that have a line-by-line description of the amplitude
and phase of each of the component rectangular pulses. These files are created by software
that calculates from a mathematical shape and a frequency shift (to create the phase ramp).
There are hundreds of shapes available, with names like “Wurst”, “Sneeze”, “Iburp”, and
so on, specialized for all sorts of applications (inversion, excitation, broadband, selective,
decoupling, peak suppression, band selective, etc.). The software sets the maximum RF
power level of the shape at the top of the curve, so that the area under the curve will
correspond to the approximately correct pulse rotation desired (90◦, 180◦, etc.). When
an experiment is started, this list is loaded into the memory of the waveform generator
(Varian) or amplitude setting unit (Bruker), and when a shaped pulse is called for in the
pulse sequence, the amplitudes and phases are set in real time as the individual rectangular
pulses are executed.

For each shaped pulse you must select the pulse width (duration in �s: Bruker p12, p13,
etc., or Varian selpw), the name of the text file that contains the shape function (Bruker
spnam1, spnam2, etc., Varian selshape), the maximum power (B1 amplitude) at the top of
the pulse shape (Bruker sp1, sp2, etc., or Varian selpwr), and the offset frequency in hertz
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if you want to excite a peak that is not at the center of the spectral window (Bruker spoffs1,
spoffs2, etc., in hertz relative to the center of the spectral window, or Varian selfrq in hertz).

8.9 1D TRANSIENT NOE USING DPFGSE

We are finally able to apply our fancy selective excitation building block, DPFGSE, to a real
experiment that can give us structural information. Remember that a 90◦ nonselective (hard)
pulse followed by the DPFGSE (containing 180◦ shaped pulses) is just a 90◦ excitation pulse
for the resonance we are selecting. For all other peaks in the spectrum, it totally destroys all
net magnetization. How can we use this to make an NOE experiment? We will add a 90◦ hard
pulse at the end of the DPFGSE to flip the selected resonance magnetization down from the
x ′–y ′ plane to the −z axis. This is the largest perturbation of populations (z magnetization)
possible, and if we now wait a while (the mixing time τm), we will see that this perturbation
from equilibrium propagates to nearby (<5 Å away) protons in the molecule. As all the
other protons in the molecule have no net magnetization at all at the end of the DPFGSE,
they are unaffected by the 90◦ hard pulse and have no z magnetization at all at the start of the
mixing time. Any z magnetization that is transferred from the selected spin via NOE during
the mixing time will then show up as positive z magnetization (−Ia

z → Ib
z) and we can “read”

it out with a final 90◦ hard pulse at the end of the mixing time. The full sequence is shown
in Figure 8.27 (omitting the repeat of the PFGSE) with the magnetization vectors shown at
various levels within the NMR tube for the selected and nonselected spins. The spectrum
will show a very large upside-down peak for the inverted peak, which is selected (Ha),
and very small in-phase positive peaks for the resonances which receive z magnetization
transfer from the selected peak. We have done an NOE experiment in a single scan, with
no subtraction of spectra!

This technique differs from the old NOE difference experiment we looked at in
Chapter 5, where we selectively saturate one resonance (make Mz = 0) over a long period
of time (the mixing time) whereas other spins are perturbed and reach a steady-state level of

Figure 8.27
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z magnetization, which is slightly enhanced over the equilibrium value Mo. The PFGSE
method introduces a sudden perturbation (inversion of the selected resonance) and then
waits for this perturbation to propagate to nearby protons. During the mixing time there is
no RF; we just are waiting for the NOE to develop. Furthermore, because the PFGSE kills
all magnetization on the nonselected spins, any z magnetization that we “read” with the
final 90◦ pulse has to be an NOE, transferred from the selected proton.

8.9.1 Transient NOE

The rapid perturbation method is called the “transient NOE.” Let’s look at the process in
detail. At thermal equilibrium in a strong magnetic field, there is a slight excess of population
of nuclei in the lower energy (aligned with the magnetic field) state and a slight depletion
of nuclei in the higher energy state (opposed to the magnetic field). If this equilibrium
is perturbed for one group of nuclei (corresponding to a peak in the 1H spectrum), this
perturbation is propagated to nearby nuclei in the molecule due to the NOE. Because the
intensity of a peak in an NMR spectrum is directly proportional to this population difference,
the perturbation can be measured by simply recording a spectrum.

The traditional 1D NOE experiment (Section 5.12) involves irradiating with low-power
radio frequency at the resonant frequency of one peak in the 1H spectrum in order to
equalize the populations of the two states (“saturation”). This saturated state is maintained by
continued irradiation until the perturbation of populations of nearby nuclei in the molecule
reaches a steady state and does not change any further. Then a 90◦ pulse is applied and
an FID is recorded to measure the amount of perturbation on the nearby nuclei. As the
enhancement of signals is quite small (a few percent), it is necessary to record a control
spectrum with irradiation away from any peaks in the spectrum, and then subtract the control
spectrum from the NOE spectrum. There are a number of disadvantages to this approach:

1. In any difference spectrum, the conditions (temperature, RF power, sensitivity, mag-
netic field, and vibration) must be identical in the two experiments in order to get
perfect subtraction of the signals that are not affected. This subtraction is always
imperfect as the two spectra are recorded at different times, so there are always big
subtraction artifacts in the difference spectrum.

2. The magnitude of the NOE is proportional to the inverse sixth power of the distance
between two nuclei only for very short times between the perturbation and the mea-
surement of the effect on other nuclei. The magnitude of the steady-state NOE is
dependent on many other competing relaxation processes, so it cannot be used as an
accurate measure of distance. To accurately measure distances, you need to measure
the transient NOE with a number of different times between perturbation and mea-
surement (“mixing times”) and measure the initial slope of the curve as the effect
increases with time.

3. The selectivity of continuous-wave (CW) irradiation is limited, and in crowded regions
of the spectrum nearby peaks are also affected. This sometimes makes the results
ambiguous.

With shaped (selective) pulses, we specifically invert (overall 180◦ pulse) a single peak in
the spectrum. This is the most dramatic perturbation you can create, as the excess population
in the lower energy level is now in the higher energy level and the depleted population is
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now in the lower energy level. If we then wait a short time for this perturbation to propagate
to nearby nuclei, a 90◦ pulse will “read” the effect on the other nuclei in the form of a
spectrum with enhanced peak areas. We can avoid having to subtract two spectra, as the
gradients in the PFGSE kill all magnetization on the other nuclei at the same time that we
invert the desired peak. Thus, the only thing that will be detected with the 90◦ “read” pulse
is the perturbation due to the NOE (i.e., the transferred magnetization).

8.9.2 Populations After a Selective Inversion Pulse

We saw the effect of cross-relaxation (DQ relaxation for small molecules) after a selective
saturation of one resonance in Chapter 5 (Figs. 5.24–5.26) by analyzing the four-state
population diagrams. A selective inversion of one resonance (Ha) is twice the perturbation
of saturation, reducing Mz from Mo (equilibrium) to −Mo (inverted) rather than to zero
(saturated). The resulting population diagram is shown in Figure 8.28, with all of the N/4
+ 2δ spins originally in the αα state (Fig. 5.24) now in the βα state (Ha = β, Hb = α) and
all of the N/4 spins originally in the βα state now in the αα state (Fig. 8.28, lower right).
Remember that inversion (a 180◦ pulse) affects every single spin in the ensemble (in this
case all of the Ha spins), switching spins in the α state to β and spins in the β state to α. The
other Ha transition is affected in the same way, moving the N/2 − 2δ spins in the ββ state
to the αβ state and the N/4 spins in the αβ state to the ββ state (Fig. 8.28, upper left). After
the selective 180◦ pulse, the population difference across the Hb transitions is unaffected
(�P = 2δ) and the population difference across the Ha transition is inverted (�P = −2δ).
We can say that the z-magnetization of Hb is Mo (equilibrium) and the z-magnetization of
Ha is −Mo (inverted). If we acquire a spectrum at this point (90◦ pulse and FID), we will
see a normal peak for Hb and an upside-down peak for Ha, both with 100% of normal peak
height (Fig. 8.28, right).

Instead of acquiring an FID, we wait for a period of time τm (the mixing time) and
allow relaxation to occur, dominated (for small molecules) by the DQ relaxation pathway:
ββ → αα. What is the equilibrium population difference between these two states? From
Figure 5.24, we see that �P = (N/2 + 2δ) − (N/2 − 2δ) = 4δ, or counting the circles

Figure 8.28
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Figure 8.29

we have 2 − (−2) = 4. This makes sense because the energy difference is twice that of a
single-quantum transition, so the population difference should be twice as large according
to the Boltzmann distribution. After the selective inversion pulse (Fig. 8.28), there is no
population difference between ββ and αα, so the molecules want to drop down across that
transition. If we let δ molecules drop down, we will have one open circle (N/2 − δ) in the
ββ state and one closed circle (N/2 + δ) in the αα state, for a population difference of 2δ

(two circles). To reach the equilibrium population difference, we let another δ molecules
drop down, leaving two open circles in ββ and two filled circles in αα (Fig. 8.29). This is the
equilibrium population difference, so no more molecules will drop down. In the real world,
you would not allow enough time to reach the equilibrium population difference, and you
would also have competition from other relaxation pathways: ZQ (αβ ↔ βα) and SQ (Ha
and Hb transitions). For simplicity, we are allowing relaxation to proceed to completion via
the DQ pathway, and we are blocking any relaxation by any other pathway—this will give
a greatly exaggerated NOE effect but will simplify the explanation. At this point, we can
take stock of the population differences (Fig. 8.29): for the Ha transitions we have �P = 0,
corresponding to Mz = 0, and for the Hb transitions we have �P = 4δ (2 − (−2) = 4 circles),
corresponding to Mz = 2Mo. We have enhanced the z magnetization on the Hb spins by a
factor of 2 (100% NOE), increasing it from the equilibrium value of Mo to 2Mo. At this
point, a 90◦ nonselective pulse will lead to no peak at all for Ha and a peak of twice the
normal height for Hb (Fig. 8.29, right). Overall, the effect of reducing Ha’s z magnetization
by 2Mo (from Mo to −Mo) has increased Hb’s magnetization by Mo (from Mo to 2Mo).
Using the product operator notation, we can describe the experiment as follows:

Ia
z + Ib

z

(selective 180◦ on Ha)−−−−−−−−−−−→ − Ia
z + Ib

z

(τm)→ Ib
z + Ib

z = 2Ib
z

By writing the result, 2Ib
z , as Ib

z + Ib
z we can see what happened during the mixing period:

−Ia
z was converted into Ib

z , a transfer of magnetization! The cross-relaxation that occurs in
an NOE experiment can be described as transfer of z magnetization from one spin (Ha) to



1D TRANSIENT NOE USING DPFGSE 325

another (Hb). Note that the sign changes when magnetization transfers: this is characteristic
of small molecules, a direct result of the dominant pathway being DQ relaxation. Although
the effect on Hb is enhancement of its z magnetization, the NOE can be described as negative
because the effect on Hb (increase in Mz ) is opposite to the original perturbation of Ha
(decrease of Mz ). The “negative” NOE is clearly seen in the product operator representation
of cross-relaxation: Ia

z → − Ib
z .

Exercise: Go through the same thought experiment for large molecules, allowing only
ZQ relaxation (αβ ↔ βα) during the mixing time. What is the equilibrium pop-
ulation difference between these two states? Allow complete relaxation to this dif-
ference during τm. What is the effect on the final spectrum? Describe the experi-
ment using product operators and show the net effect of cross-relaxation (transfer of
z magnetization) in terms of Ia

z and Ib
z . Would you call this a positive or negative NOE? Now try

the experiment for large molecules and for small molecules with relaxation during the mixing
time (ZQ or DQ, respectively) proceeding only half of the way to the equilibrium population
difference. How does this affect the percent change in z magnetization at the end? This is a
slightly more realistic thought experiment.

8.9.3 The Heat Flow Analogy

As we did for the steady-state NOE (Chapter 5), we can look at the transient NOE using the
heat flow analogy (Fig. 8.30). As before, we have two beakers filled with water, immersed in a
tub of water at 25◦C. The beaker on the left (A) represents the selected proton, and the beaker
on the right (B) is a nearby proton. A shared glass wall between them allows heat flow (NOE
transfer of z magnetization) between the two beakers. The transient perturbation (inversion
of Ha) is represented by dropping a hot stone into beaker A. The temperature immediately
rises from 25 to 50◦C. Heat begins to flow out of beaker A into the surrounding tub of
water at 25◦C (self-relaxation of Ha through T1 relaxation), bringing the temperature back

Figure 8.30



326 SHAPED PULSES, PULSED FIELD GRADIENTS, AND SPIN LOCKS

Figure 8.31

toward the equilibrium value (25◦C). But some heat flows through the partition to beaker B,
and its temperature begins to rise slightly, in a linear fashion at first because the heat flow
is constant. But as beaker A begins to cool down, the rate of heat flow to beaker B slows
and the rise in temperature begins to occur at a slower rate. In addition, as beaker B is now
above the temperature of the surroundings, it begins to lose heat to the tub of water (self-
relaxation of Hb through T1 relaxation). At some point, the temperature in beaker B reaches
a maximum (30◦C) and begins to fall as the heat flow out to the environment exceeds the
heat flow in from beaker A. After a long time, both beakers return to the temperature of the
surroundings (25◦C).

From the standpoint of NMR z magnetization, the experiment is diagramed in
Figure 8.31. For simplicity, we use a 180◦ shaped pulse alone, rather than a PFGSE. At equi-
librium Mz = Mo for both Ha and Hb. Immediately after a selective inversion of Ha, Mz =
−Mo for Ha and Mo for Hb. The z magnetization of Ha recovers in an exponential fashion
with a time constant slower than T1 as it is donating some of its z magnetization to Hb, at the
same time it is gaining it by T1 relaxation. The z magnetization of Hb is increasing above
Mo because magnetization transfer by NOE for small molecules is in the opposite sense
of the heat analogy: Ia

z → − Ib
z . “Heating up” Ha leads to a “cooling down” of Hb. This

happens in a linear fashion at first, and the slope of this line is the rate of z-magnetization
transfer from Ha, which is proportional to 1/r6, where r is the distance between the two
protons. This rate of increase falls off until Mz reaches a maximum for Hb and begins to
fall. The optimal mixing time depends on what you are trying to measure: for accurate dis-
tance measurements you will need to repeat the experiment a number of times with various
short values of τm in order to measure the initial rate of increase of Mz for Hb. This “NOE
buildup study” is the only way to get accurate distances from an NOE experiment. More
commonly, however, we just want to know if there is a NOE or not, and the mixing time is
set to correspond to the maximum of the NOE buildup curve.
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8.9.4 Simulation of the Transient NOE Experiment

Both the heat flow analogy and the NMR experiment can be represented by a pair of linked
differential equations:

d�Ma
z /dt = −Raa�Ma

z − Rab�Mb
z

d�Mb
z /dt = −Rab�Ma

z − Rbb�Mb
z

where �Ma
z = Ma

z − Mo is the “disequilibrium” or perturbation of the z magnetization
of Ha from equilibrium and �Mb

z = Mb
z − Mo is the “disequilibrium” of Hb. Raa is the

self-relaxation rate of Ha and Rbb is the self-relaxation rate of Hb, whereas Rab is the cross-
relaxation rate or the rate at which Ha “disequilibrium” is propagated to Hb and vice versa.
Rab is actually proportional to 1/r6, the “Holy Grail” of NOE experiments. So all this says
is that the rate of change of Hb’s “disequilibrium” depends on its own “disequilibrium” (the
self-relaxation or T1 process) and on the “disequilibrium” of Ha (the NOE process). It will
pick up z magnetization from Ha to the extent that Ha is out of equilibrium, and it will tend
to recover from any disequilibrium of its own and move back to Mo.

Figure 8.32 shows a simulation of these equations starting right after the selective
180◦ pulse that inverts Ha: at this moment Ma

z = −Mo and Mb
z = Mo. The T1 value is

set to 0.7 s and the rates are Raa = Rbb = 0.95 s−1 and Rab = −0.45 s−1 (negative because
it is a small molecule). The behavior is very much like the cartoon of Figure 8.31; Mb

z rises
at an initial linear rate of 0.7 Mo/s, which is just Rab times the initial perturbation (−2Mo)
of Ha: −0.45 s−1 × −2Mo. This eventually slows down and Mb

z reaches a maximum after
1.125 s with an NOE enhancement of 36.7%. Ma

z passes through zero after 0.8 s, slower
than predicted by its T1 value alone (t1/2 = ln 2T1 = 0.693T1 = 0.485 s). Note that the
sum of Ma

z and Mb
z recovers from 0 (−Mo + Mo) to 2Mo (Mo + Mo) in the same way as

it would if there were no cross-relaxation: a simple exponential curve based on a T1 value
of 0.7 s (2Mo e−t/T1:� symbols in Fig. 8.32), passing through the halfway point (Mo) at

Figure 8.32
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exactly 0.485 s. Any z magnetization transferred from Ha to Hb is invisible in the sum
Ma

z + Mb
z ; the slower recovery of Ma

z is exactly compensated by the growth of the NOE for
Mb

z . Transfer of magnetization can be accounted for precisely: whatever z-magnetization
Ha loses is exactly gained by Hb.

8.9.5 DPFGSE-NOE

Instead of using a simple 180◦ shaped pulse for inversion of the selected resonance, we will
use a double PFGSE to excite the selected spins and “destroy” the others. The pulse sequence
is as follows (Fig. 8.27): A nonselective 90◦ pulse rotates all of the sample magnetization
onto the −y axis. Then a gradient “twists” the magnetization into a helix. The selective
(shaped) 180◦ pulse is applied to invert the magnetization of the peak of interest, so that its
“twist” is now in the reverse direction. A second gradient of equal intensity and duration to
the first now unwinds the twist for the peak of interest. But all the other peaks in the spectrum
are just twisted twice as far, as their magnetization helix was not reversed by the selective
180◦ pulse. This destroys this magnetization and leaves only one thing in the sample:
the peak of interest with its magnetization aligned along the y axis. A second nonselective
90◦ pulse is now applied to rotate this magnetization from the y axis to the −z axis. Thus, we
have accomplished two things: the peak of interest has been inverted (population inversion)
and the rest of the peaks have been destroyed. During the mixing time, the perturbation of
populations for the selected resonance (inverted at the start of mixing) propagates to nearby
nuclei and perturbs their populations (enhancement of z magnetization, Mz > 0). Finally,
a 90◦ pulse rotates this transferred magnetization into the x–y plane where it precesses and
is recorded as an FID. Any signal other than the selected one is an NOE.

8.9.6 Transient NOE of Fumarate–Cyclopentadiene Adduct

Figure 8.33 shows the 1H spectrum and a series of transient NOE spectra for a rigid bicy-
clo[2.2.1] system formed in a Diels–Alder reaction of dimethyl fumarate and cyclopenta-
diene. Assignment of the 1H spectrum depends primarily on through-space (NOE) interac-
tions. The molecule is chiral (racemic) and has no symmetry elements, so all the protons
are unique. In this discussion, we will refer to positions in the structure by number and to
peaks in the spectrum by letters. In the 1H spectrum (Fig. 8.33, top), we can immediately
assign the olefinic protons (H6 and H7) to the two downfield resonances at 6.03 (Hi) and
6.24 ppm (Hj) from their chemical shifts, but we do not yet know which is which. The two
three-proton singlets at 3.62 (Hg) and 3.68 (Hh) can be assigned to the two methyl groups
H10 and H11. The most upfield signals are due to the protons farthest away from the olefin
and ester functional groups: Ha and Hb form an AB system (with one additional small
coupling to Ha), corresponding to the geminal pair of protons on C2. By chemical shift
arguments, we can tentatively assign the upfield peak Ha to the proton lying directly above
the olefin (H2o): The area above and below the olefin is shielded by the “ring current” of
the loosely attached π electrons of the double bond. The remaining four peaks, Hc–Hf , are
intermediate in chemical shift and will have to be assigned by looking at J couplings and
NOEs.

Although this is strictly an NOE experiment, we see strong J-coupling artifacts. Selection
of Hj, for example, gives a strong antiphase peak at the Hi resonance due to the vicinal
H6–H7 coupling in the olefin functional group. This “zero-quantum” artifact comes from
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Figure 8.33

coherence transfer via the intermediate ZQC state:

Iz
90◦
→ Ix

J evol.→ 2IySz
90◦
→ 2IySy(DQ/ZQ)

90◦
→ 2SyIz

where I represents the selected proton and S is a proton J-coupled to I. A gradient can be
used during the mixing time to kill the DQC portion (coherence order p = 2) of 2IySy ,
but the ZQC part (p = 0) is insensitive to gradients and contributes to the final antiphase
state. These ZQ artifacts are common in 2D NOE (“NOESY”) experiments as well. Because
INEPT transfer is very efficient and NOE transfer occurs only to the extent of a few percent,
these J-coupling artifacts appear very strong next to the NOE peaks (in Fig. 8.33 they are
cut off to avoid messing up the stack of spectra).

Looking at the right-hand side of Figure 8.33, we see that selection of either Hd or He
gives equally strong NOEs to Ha and Hb, the geminal pair at C2. This identifies Hd and He
as the bridgehead positions H1 and H3. In contrast, selection of Hf gives an NOE to Hb
only and selection of Hc does not give an NOE to either Ha or Hb. Looking at the structure,
we see that the C2 proton that points toward the ester side (H2e) is close to H5 (“up”) and
farther from H4 (“down”). Thus, we can assign Hf as the H5 proton that points “up”, toward
H2e (Hb), and Hc as the H4 proton that points “down”, away from H2e. Remember that Ha
was assigned by chemical shift arguments to the C2 proton (H2o) that lies over the olefin
and away from H4 and H5.

Although both Hd and He are close to the bridgehead protons Ha and Hb, how can we
tell which one corresponds to H1 and which to H3 in the structure (Fig. 8.33, upper left)?
Note that selection of He gives a strong ZQ artifact (antiphase peak) at Hf , and the reverse is
also true. This places He in a vicinal relationship to Hf , so we can assign it to H1. The other
bridgehead proton, Hd, can then be assigned to H3. It is interesting that no such coupling is
observed between Hd and Hc (no antiphase peak at Hd when Hc is selected, nor vice versa).
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Instead, we see a strong mutual NOE. Apparently, the H3–C3–C4–H4 dihedral angle is very
near the minimum in the Karplus curve (90◦ angle) so that the vicinal coupling constant is
very small.

Now we can assign the olefinic pair Hi and Hj and the methyl singlets Hg and Hh. The
bridgehead proton H3 (Hd) shows a strong NOE to Hj and not to Hi, so we can assign Hj
to the olefinic proton H7, next to H3. The other bridgehead proton H1 (He) gives a strong
NOE to Hi but not to Hj. Selection of Hj gives NOEs to Hd (H3) and Hc (H4) on the same
side of the molecule as H7, as well as to Ha (H2o). Likewise, Hc (H4) “talks” to Hj (H7),
Hf (H5), and Hd (H3). Finally, weak NOEs can be used to assign the Hg/Hh pair. Selection
of Hb (H2e) or Hd (H3) gives a very weak NOE to Hh, but only a subtraction artifact at
the Hg chemical shift, and selection of Hh gives a very weak NOE to Hj (not shown). This
identifies Hh as H10. Likewise, selection of He (H1) or Hf (H5) “lights up” the Hg singlet
and not the Hh singlet, so we can assign Hg to H11. This completes the assignments, which
are shown on the structure at the upper right-hand side in Figure 8.33.

In contrast to the NOE evidence, the J couplings are rather confusing. Hf appears as a
triplet, coupled to He and Hc, but Hc appears as a broad doublet, with resolved coupling
only to Hf . The absence of a vicinal Hc–Hd coupling was already noted above. Although
we see mostly NOE to Hi and Hj when selecting Ha (H2o), selection of Hb (H2e) gives
ZQ artifacts to both olefinic protons, suggesting a long-range J coupling (“W” coupling).
Likewise, four-bond “W” couplings can be deduced from ZQ artifacts between Hd and He,
Hd and Hi, He and Hj and between Hf and Hi.

8.9.7 NOE Buildup Curve for Sucrose

A study of the NOE intensity as a function of mixing time is called an NOE buildup
experiment. The NOE should build up initially at a constant rate (Figs. 8.31 and 8.32) and
then level off and eventually decrease to zero as the mixing time is increased. In Chapter 5,
we saw the effect of steady-state irradiation of the fructose-1 (CH2OH singlet at 3.62 ppm)
resonance of sucrose (Fig. 5.30): strong NOEs are observed to H-g1 (5.36 ppm) and to
H-f3 (4.15 ppm). Figure 8.34 shows the NOE buildup curve for selective transient NOE
(DPFGSE) of sucrose, selecting the fructose-1 resonance. The upper curve (�) shows the

Figure 8.34
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peak height of the H-g1 peak, and the lower curve (�) shows the peak height of the H-f3
peak as a function of mixing time. The solid curves are simulations of the transient NOE. An
accurate measure of the linear buildup rate in the initial phase (proportional to 1/r6) would
require a number of data points in the 0–300 ms range of τm. The maximum NOE would
be obtained at about 0.7 s mixing for H-g1 and 0.9 s for H-f3. Usually, we set the mixing
time of an NOE experiment based on the size of the molecule: longer for smaller molecules
and shorter for larger molecules. Because the NOE is a relaxation experiment, the T1 value
can give us a rough estimate of the optimal mixing time. The T1 values for sucrose can be
estimated from the 1H inversion-recovery experiment (Fig. 5.17), which gives T1 = 120 ms
for H-f1, 280 ms for H-g1, and 1.08 s for H-f3. The range of T1 values is very large for these
three protons, but the order of magnitude (0.1–1 s) is not far off for setting the mixing time
of the transient NOE experiment (Fig. 8.34). As a first guess, use an NOE mixing time of
350 ms for small molecules (200–400 Da), 200 ms for “medium-sized” organic molecules
(400–1000 Da), and 100 ms for “large” molecules (1–10 kDa).

8.9.8 A Demonstration of Selectivity: Cholesterol

To show the selectivity of the DPFGSE-NOE experiment, consider the H4ax and H4eq
protons of cholesterol (Fig. 8.35). Because C4 is flanked on both sides by downfield-
shifting functional groups (C3–OH and C5 C6), the two H4 protons are pulled downfield to
2.2–2.4 ppm, away from the “pack” of overlapped resonances in the 1H spectrum. At
500 MHz, the H4ax and H4eq protons are just barely resolved from each other, with H4eq
(downfield) appearing as a “doublet” (plus two small couplings) and H4ax (upfield) ap-
pearing as a “triplet” (actually a double doublet plus three small, nearly equal long-range
couplings to H6, H7eq, and H7ax). If we focus on the large couplings only, we see that H4eq
has only one: the geminal coupling to H4ax. This gives it the “doublet” appearance. H4ax
has two large couplings: the geminal coupling back to H4eq and the axial–axial coupling to
H3. This gives it the “triplet” appearance. The “doublet” and “triplet” lean strongly toward
each other due to their strong coupling (�ν in hertz similar in magnitude to J). H4ax is close
in space to the angular methyl group (C19) at the A–B ring juncture, and H4eq is close to
the H6 olefinic proton in the equatorial plane. So if we could selectively excite mostly H4ax,
we would expect a strong NOE (H4ax to H19 = 2.39 Å) to the H19 methyl peak (singlet)

Figure 8.35
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Figure 8.36

and a weak NOE (H4ax to H6 = 3.32 Å) to the H6 peak. Likewise, selective excitation of
mostly H4eq would give a strong NOE to the H6 peak (2.32 Å) and a weak NOE to the H19
methyl peak (3.89 Å).

These distances come from an X-ray crystal structure of cholesterol hydrate, with hydrogen
positions added. Because cholesterol is a rigid molecule with the four rings locked in place by
the trans ring junctures, energy minimized model structures also give fairly accurate distances.
The distance to H19 is measured to the nearest of the three hydrogens in the C19 methyl
group. The NOE intensity will actually be the sum of the NOEs from the three protons of the
methyl group, but because of the 1/r6 dependence it will be dominated by the closest proton.

Figure 8.36 shows the results of these two experiments, using a mixing time of 350 ms.
In the insets, we see the inverted H4 peaks: in the top spectrum, we have excited mostly the
H4eq peaks (“doublet”) along with the downfield part of the H4ax peak, and in the bottom
spectrum we see mostly the H4ax peaks (“triplet”) with some intensity due to the upfield
half of the H4eq peak (“doublet”). This is not bad for selectivity considering how close the
two chemical shifts are to each other. In the rest of the spectrum we see the NOE peaks,
integrated relative to an integral value of −100 for the inverted H4 peak. Selecting H4eq
gives NOEs of 2.83% for H6 and 0.27% for H19-Me, whereas selecting H4ax gives values of
1.38% for H6 and 0.88% for H19-Me (integral values are divided by the number of protons
represented by each peak). These numbers are strictly qualitative, but they are consistent
with our expectations based on the structure. They also confirm our assignments of H4ax
and H4eq, and allow us to assign which of the two CH3 singlet peaks is H19-Me.
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8.9.9 Details, Details, Details

The DPFGSE-NOE experiment is a very elegant demonstration of excitation sculpting using
the combined power of shaped pulses and gradients. The DPFGSE allows us to destroy all
magnetization on the other, nonselected spin, so that any signal that we observe in the
spectrum has to derive from NOE transfer from the selected spin. In the NOE difference
experiment, our result is the difference of two very similar numbers: 103% minus 100%,
for example. In the transient NOE experiment using DPFGSE, we see only the 3%. This is
however, only a first approximation and now it is time to face up to the nitty-gritty details.

First of all, although it is true that at the end of the DPFGSE sequence there is no overall
net magnetization on the nonselected spins, if we look at the sample in detail, we see that
the net magnetization alternates between Iz and −Iz as we move up in the tube (Fig. 8.27,
bottom). At this moment they all cancel perfectly, but during the mixing time the −Iz levels
begin to recover whereas the Iz levels remain at equilibrium. They no longer cancel and we
begin to see net magnetization (Iz ) overall for the nonselected spins. So at the end of the
mixing time, our 90◦ “read” pulse will rotate this recovered z magnetization into the x–y
plane, producing peaks in the spectrum that have nothing to do with the NOE. Furthermore,
although the selected peak is perturbed radically by inversion (Iz → −Iz ), the nonselected
peaks are perturbed half as much on average by inversion for half of the levels. So we would
expect the levels that were inverted to generate NOEs to their nearest neighbors, although
the unperturbed levels would not generate any NOEs. This would create a whole bunch of
signals in the final spectrum, coming from the nonselected spins (one-half as strong) and
from the selected spins.

The solution to both problems—recovery of z magnetization of the nonselected spins and
NOEs developed from these same spins—is to phase-cycle (−x, x) the 90◦ pulse at the end of
the DPFGSE, the one that flips the selected spin’s magnetization down to the −z axis. If we
reverse the phase of this pulse, it flips the selected spin’s magnetization up, back to +z. There
will be no NOE from the selected spin, but the nonselected spins will experience exactly
the same perturbations, with the levels that were previously inverted now at equilibrium
and the levels that were previously at equilibrium now inverted. Overall, the same artifact
signals (recovery and NOE) will be generated from the nonselected spins. If we alternate
the phase of this pulse and alternate the receiver phase with it (add, subtract, add, subtract,
. . . ), we are essentially running a control experiment on every other scan and subtracting
out any signals that come from nonselected spins, either from recovery or from NOE. The
nonselected spins behave the same either way (half are inverted and half are unaffected),
so any signals they give directly will subtract out. Thus, the only signals we see will be
NOE signals deriving from the selected spin. Are we fibbing then when we say it is not a
difference experiment? Technically, yes, but the signals we are subtracting out are of similar
magnitude (actually smaller) than the ones we end up with, so the errors of subtraction are
negligibly small. There are a lot of details involved in optimizing this experiment, but the
results are absolutely stunning in terms of clarity and lack of artifacts. This is important
as NOEs are generally weak and can be ambiguous if the experiment is not really clean.
Anyone still doing the old steady-state difference NOE experiment is living in the dark ages!

8.10 THE SPIN LOCK

A spin lock is a relatively long (1–400 ms), low-power (usually 12–33% of the B1 amplitude
of a hard pulse) radio frequency pulse applied on the same axis as the desired sample
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Figure 8.37

magnetization. It can be either continuous wave or a long series (“train”) of pulses of
varying length and phase. It can be used to remove artifacts, to “grab and drag” the sample
magnetization, and to get transfer of magnetization (either by NOE or by J couplings). First,
we will look at the continuous-wave spin lock.

8.10.1 Locking the Sample Magnetization

In the rotating frame of reference for an on-resonance peak, the Bo field is exactly canceled
by a fictitious field created by the rotation of the axes, so that for nuclei that are on-resonance
the only field present is the B1 field during the spin lock (Beff = B1). If we place the sample
magnetization on the y ′ axis of the rotating frame with a 90◦ hard pulse (phase –x), the spin
lock can be placed on the y′ axis (phase y). While the spin lock is on, the sample magneti-
zation is “locked” on the y axis and will not undergo precession, as the only field present is
the B1 field and the sample magnetization is on the same axis as the B1 field (Fig. 8.37).

8.10.2 Fate of Magnetization Perpendicular to the Spin Lock: Purge Pulses

If instead we start by putting the sample magnetization on the x axis (90◦ hard pulse on y)
and then apply the spin lock on the y axis, the sample magnetization will rotate around the
spin lock axis (y axis) at the rate ν1 = γB1/2π . For typical spin-lock power levels this rate
is between 3000 and 9000 Hz. The rotation occurs in the x–z plane (from x to −z to −x to
z, and back to x). As the vector rotates, the individual spins that contribute to it began to
“dephase” because different parts of the sample experience different B1 amplitudes and the
sample magnetization from each region rotates at a slightly different rate. Although the Bo
field is carefully shimmed to be homogeneous to parts per billion (10−9) variation through-
out the sample, the B1 field is quite inhomogeneous and varies significantly in amplitude
in different parts of the sample. So this “fanning out” occurs rapidly and all components
of the net magnetization that are not on the spin-lock axis rapidly decay to zero. We can
see this “fanning out” effect by doing a pulse calibration and continuing far beyond the
360◦ point (Fig. 8.38). This is a measure of B1 field homogeneity, usually expressed as
the ratio of signal intensity for an 810◦ pulse to the intensity for a 90◦ pulse. Even though
probe designers strive for the best B1 homogeneity possible, you can see that after 100 or
200 cycles there will be no more signal left. If the pulse calibration data are fit to an expo-
nential decay (Fig. 8.38, inset) we get a half-life of 116 �s for the magnetization rotating
around the spin-lock axis. This means that after a 1 ms spin lock at this power level (high
power), the net magnetization has rotated 31.25 times around B1 (1000 �s/(4 × 8 �s))
and has been cut in half 8.6 times (1000 �s/116 �s). After eight half-lives the net
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Figure 8.38

magnetization vector is 1/256 of its original magnitude, and after nine it is 1/512. A “trim
pulse” or “purge pulse” is a short (1–2 ms) spin lock with high power (∼25 kHz, the same
as a hard pulse) placed on the axis of the desired magnetization to destroy all magnetization
that is not on that axis. A simple application would be the INEPT sequence, where we allow
in-phase 1H magnetization to undergo J-coupling evolution into antiphase: Ix → 2IySz .
This conversion is perfect only if the delay is exactly equal to 1/(2J). Because we just set
the delay to our best guess, there will be residual in-phase signals at the end of the delay:

Ix → Ixcos (πJτ) + 2IySzsin (πJτ) πJτ = π/2

At this point, a purge spin lock on the y axis would preserve the antiphase term 2IySz and
destroy the in-phase term Ix . We then proceed to the coherence transfer step (simultaneous
90◦ pulses on 13C and 1H) with pure antiphase 1H coherence.

8.10.3 Effect of the Spin Lock on Locked Magnetization

The locked magnetization is parallel to the only magnetic field that is present in the rotating
frame: the B1 field. This is analogous to z magnetization in the Bo field in the laboratory
frame during a delay, when there is no B1 field. If we follow this analogy further, we see
that the spin lock axis is like the z axis and the B1 field is like the Bo field, except very much
weaker (e.g., 8 kHz vs. 600 MHz, or 75,000 times smaller!). Thus, we can think of the spin
lock as a way of temporarily “turning down” the Bo field to a vastly lower value. This has two
effects: First, the tumbling rates required to stimulate SQ and DQ relaxation are very low (on
the order of ν1 and 2ν1 instead of νo and 2νo), and second, the “chemical shift” differences
(�ν1 instead of �νo) are extremely small when compared to the J values. The first effect
means that the NOE in the spin-lock world (the “rotating-frame” NOE) will always be
dominated by DQ cross-relaxation, which leads to negative NOEs (NOE enhancement),
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regardless of the size of the molecule. In other words, “all molecules are small molecules”
in the spin lock. This is because the DQ and ZQ frequencies are now accessible to even
the slowly tumbling biological molecules through dipole–dipole interactions. This is the
basis of the ROESY experiment, which transfers magnetization along the spin-lock axis via
through-space (NOE) effects, while making all molecules behave like small molecules in
terms of their NOE behavior. The second effect means that the chemical shift differences
between different protons within a molecule are almost completely eliminated, leading to
“strong coupling” and “virtual coupling” within a spin system. In other words, the protons
within a spin system behave like each one is J coupled to every other one, even if there
is no direct J coupling between them. This is the basis of the TOCSY experiment, which
transfers magnetization along the spin-lock axis from one proton to all other protons in the
same spin system.

8.10.4 Off-Resonance Effects

So far we have assumed that the spin-locked nucleus is on-resonance or at the center of the
spectral window (νo = νr). If the nucleus is off-resonance, the effective field in the rotating
frame, Beff , is the vector sum of the B1 field vector along the axis of the spin lock (e.g., y ′)
and the residual field along the z axis (Bres = 2π (νo − νr)/γ = Bo − 2πνr/γ ). This means
that the spin-lock axis tilts out of the x ′–y ′ plane by an angle that increases as νo moves
farther away from the reference frequency, or as the B1 field strength is decreased. Each
proton in the molecule thus has a different spin-lock axis and must be considered separately.
The length of the Beff vector is greater than B1 due to the vector sum: Beff (the magnitude
of the Beff vector) is equal to (B2

1 + B2
res)

1/2. The rate of precession about the spin lock
axis is ν1 = γBeff /2π , so the rotation of any magnetization that is not on the spin-lock axis
around it becomes faster as we move off-resonance.

What does this mean for the effect of the spin lock on sample magnetization? If the sample
magnetization starts on the y′ axis, for example, the tilted spin-lock axis will destroy the
component that is perpendicular to the spin-lock axis and retain the component that is on
the spin-lock axis. This preserved component is “locked” because it is on the axis of the
effective field and has no “reason” to precess around the z axis. So even if the spin is off-
resonance, its magnetization does not precess around the z axis during the spin-lock period.
Instead, the component that is not on the tilted spin-lock axis precesses around the spin-lock
axis until it is destroyed by B1 inhomogeneity, and the component that is on the spin-lock
axis is retained.

8.10.5 Moving the Spin-Lock Axis

What would happen to the spin-locked sample magnetization if we moved the spin-lock
axis? Would the spins follow, as the name “spin lock” implies, or would the magnetization
vector be left behind, rotating around the spin-lock axis until the B1 field inhomogeneity
“spins it out of existence”? The answer is: It depends on how fast we move the spin-lock
axis. If we move it slowly enough (the “adiabatic” condition), the sample magnetization
vector will get dragged along with it without any loss of intensity. How do we move the
spin-lock axis? We can change the pulse frequency, moving it away from the resonance so
that, in the rotating frame defined by the pulse frequency, the spins are off-resonance. This
makes the Beff vector tilt out of the x ′–y ′ plane. By a combination of adjusting the pulse
amplitude (B1) and the resonance offset (νo − νr), we can put the Beff field vector anywhere
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Figure 8.39

we want and give it any magnitude we want. Suppose, for example, that we start with the
Beff field vector tilted 15◦ away from the +z axis in the y ′–z plane and turn it on long enough
to get a 180◦ rotation of the sample net magnetization, which starts on +z (a, Fig. 8.39). The
magnetization will rotate to a point 30◦ away from the +z axis (b, Fig. 8.39). Now we move
the Beff field vector to an angle of 45◦ with the +z axis and apply another 180◦ rotation.
The sample magnetization will move around the Beff vector to a point 60◦ away from the
+z axis (c). We could continue this process, placing the Beff vector at angles of 75◦, 105◦,
135◦, and 165◦ from the +z axis until the last 180◦ rotation moves the sample magnetization
down to the −z axis (g). We have inverted the sample magnetization by picking it up at +z
and “shepherding” it around in a series of steps down to −z, always keeping the Beff vector
close to the M vector. Imagine now that we decrease the increment of angle of the Beff
vector and do the inversion in many more steps. Eventually, we would have a continuous
RF irradiation with the Beff vector moving smoothly from +z to −z. What we have is a spin
lock that “grabs” the sample net magnetization at +z and “drags” it down to −z physically,
without doing any finite rotations. This can be accomplished by constructing a shaped pulse
with a phase ramp that moves rapidly at first (large frequency shift in one direction) and
slows down and stops at the center of the pulse, and then reversing the direction of the
phase ramp, speeding it up continuously until the end of the pulse. The effective frequency
of the pulse starts way downfield of the Larmor frequency, moves upfield until it equals the
Larmor frequency at the center of the pulse, and then moves off upfield to a point far upfield
of the Larmor frequency. At the same time, the magnitude of the B1 field is adjusted to be
small at the start and end, to allow the Bres field (on +z or −z) to dominate and tilt the Beff
vector up close to +z (start) or −z (end), and maximal at the center of the pulse to give a
strong spin lock with no tilt out of the x–y plane. The classical adiabatic-inversion shaped
pulsed is called “WURST” and there are many, many variations with equally cute names.
Why go to all this trouble? If we consider a series of resonances widely spaced throughout
a wide spectral window (like a 13C spectrum on a high-field spectrometer), as the effective
frequency of the pulse “sweeps” from far downfield to far upfield, we will see the spins
invert one at a time because the spin-lock axis depends on how far away the pulse effective
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frequency is from the Larmor frequency. As the pulse frequency passes through each peak
in the spectrum, these spins are spin locked in the x–y plane halfway through their journey
from +z to −z. It really does not matter where the spins are in the wide spectral window;
they will be picked up on +z and dragged down to −z when their turn comes, like dominos
falling in a row. If we sweep from downfield to upfield, the only difference will be that the
spins on the downfield edge of the spectrum will be inverted a little earlier than the spins
on the upfield edge of the spectrum. We saw an impressive example of this for inversion of
the 13CH3I 13C signal using a “cawurst” adiabatic inversion pulse called “ad180” (Fig. 8.4,
bottom). The bandwidth of this shaped pulse is far superior to hard pulses or hard pulse
sandwiches. Decoupling schemes based on WURST are very effective, covering the wide
bandwidth needed for 13C decoupling with much lower power than rectangular pulse trains
like waltz-16. The spin-lock field is just swept back and forth across the spectral window,
inverting the spins over and over again as the Beff vector shuttles from +z to −z and back
to +z. Rapid and continuous inversion gives good decoupling because the coupling partner
(e.g., 1H) sees a spin (e.g., 13C) that is moving rapidly back and forth between the α state
and the β state, blurring the difference in magnetic field experienced by the coupling partner
into a single, constant field on the NMR time scale.

8.11 SELECTIVE 1D ROESY AND 1D TOCSY

The use of a relatively long, low-power spin lock to effect transfer of magnetization is the
basis of two modern two-dimensional experiments: ROESY for through-space transfer and
TOCSY for through-bond transfer. We will deal with these 2D experiments in Chapters 9
(TOCSY) and 10 (ROESY), but for now our interest is in using the spin lock in a selective 1D
experiment. Using the DPFGSE, we will put the magnetization of one selected resonance in
the x ′–y ′ plane, apply a spin lock on the same axis for a long enough time to get magnetization
transfer to other spins, and then record the FID. First, we need to understand what goes on
during the long spin-lock period and how we can get transfer of magnetization. For the first
time, a thorough theoretical understanding of the process is out of reach for the level of this
book and we will have to resort to giving a “feel” for the process. By using analogy and
looking at it from a number of points of view, we will try to give the experimental result
some plausibility and make sense of this remarkable phenomenon.

8.11.1 ROESY Mixing

The transfer of magnetization within a spin lock by NOE (through-space) interaction is
called ROESY mixing. We are already familiar with NOE transfer of magnetization; the
only difference is that ROESY transfer happens on the spin-lock axis (Ia

y → − Ib
y) viewed

in the rotating frame, rather than in a simple delay (Ia
z → − Ib

z) viewed in the laboratory
frame. In either case, transfer occurs between protons that are close in space (<5 Å), with
the “disequilibrium” of one proton gradually transferring to create disequilibrium in the
opposite sense on a nearby proton. In fact, the same pair of linked differential equations in
Section 8.9.4 that governs z-magnetization transfer also applies to transfer of spin-locked
magnetization in the x ′–y ′ plane, except that the “disequilibrium” is defined as �Ma

y = Ma
y .

This is because the equilibrium state for magnetization in the x ′–y ′ plane is always zero
(T2 relaxation), so any nonzero spin-locked net magnetization is “out of equilibrium” and
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will lead to NOE transfer to nearby protons. The rate of cross-relaxation in the spin lock is
more closely related to T2 than to T1. In fact, the self-relaxation of spin-locked magnetiza-
tion (to zero) is governed by the time constant T1ρ , where the Greek letter ρ (rho) refers to the
rotating frame. When the spins are on-resonance, T1ρ = T2 because the spin-lock axis is in
the x ′–y ′ plane. As the spin-lock axis tilts out of the x–y plane for off-resonance spins, T1
begins to contribute to T1ρ . As with NOE transfer on the z axis, the ROE is an inefficient
transfer, with ROEs of a few percent typical for nearby protons. The ROE builds up twice
as fast as the NOE, so ROESY mixing times are usually set at half the value of optimal
NOE mixing times.

8.11.2 Spin Systems and TOCSY Magnetization Transfer

Transfer of spin-locked magnetization by J-coupling interaction (through bonds) is called
TOCSY mixing. We have seen in the INEPT experiment how a single transfer can be
achieved from one spin to its J-coupling partner. TOCSY mixing can achieve multi-
ple transfers through J couplings. For example, in a linear string of coupled protons
CHa–CHb–CHc–CHd–CHe, selective excitation of the Ha resonance followed by the
INEPT sequence 1/(2J) − 90◦ would lead to transfer of coherence (antiphase to antiphase)
from Ha to Hb. In this homonuclear INEPT experiment, the 90◦ pulse hits both Ha and Hb
equally, so we can call it a “simultaneous 90◦ pulse” on both spins, meeting the requirement
for INEPT transfer. In the spectrum, we would see the peak for the selected resonance, Ha,
as well as the peak for Hb. We could go through the spectrum, selecting each of the peaks
in turn (Ha, Hb, Hc, etc.) and observing which peaks are J-coupled to the selected peak. But
if we use a TOCSY spin lock instead of the INEPT sequence for transfer of magnetization,
we will see multiple jumps through J couplings. Magnetization from the selected resonance
(Ha) transfers to Hb (in-phase to in-phase transfer) via the vicinal coupling Jab, and then
some of the Hb magnetization transfers to Hc via Jbc, and so on. During the course of the
spin lock (typical mixing time 70 ms), the magnetization gradually “diffuses” or “smears
out” through the string of protons until eventually we have some magnetization on all of the
spins in the “spin system.” If there are no other J couplings to other parts of the molecule,
magnetization cannot escape from this system. At the end of the mixing period, we record
the FID and in the spectrum we will see the Ha, Hb, Hc, Hd, and He peaks in decreasing
intensity according to their order along the carbon backbone of the molecule. The rest of the
1H spectrum, representing other parts of the molecule, will be absent. We have a spectrum
of this one “spin system” alone.

A spin system is a group of spins (usually 1H) in a molecule that are connected together
by J couplings. Specifically, each member of the group has at least one J coupling with
another member of the group. For example, n-propyl benzoate (Fig. 8.40) has two proton
spin systems: the CH3 and two CH2 groups form one spin system and the five aromatic
protons form the other. As there is no J coupling between the CH3 or CH2 protons and any of

Figure 8.40



340 SHAPED PULSES, PULSED FIELD GRADIENTS, AND SPIN LOCKS

Figure 8.41

the aromatic protons, these are two distinct spin systems. TOCSY is a technique that spreads
NMR magnetization from any one member of a spin system to all the other members of a
spin system. Thus, if you selectively excite one member of the spin system (e.g., the CH3
protons), the TOCSY mixing sequence will transfer that magnetization first to its J-coupled
partners (the next CH2 group) and then to their J-coupled partners (the CH2 group next to
oxygen) until all of the members of the spin system are excited in the same way. If the FID
is recorded at this time, a spectrum will be observed that contains only the peaks due to the
spin system that was excited (in this case, the CH3–CH2–CH2 group). Peaks from other spin
systems in the molecule (the aromatic protons) would not appear in this selective spectrum.

For biological molecules, the definition of a spin system is simple: Each residue of a
peptide, protein, nucleic acid or oligosaccharide is a separate spin system. There is no
1H–1H coupling through a peptide bond, phosphate ester, or glycosidic linkage, so TOCSY
transfer will not occur between residues. In peptides and proteins, the amide NH is the
beginning of a continuous series of J couplings to the Hα proton, to the Hβ and Hβ ′ pro-
tons, to the Hγ and Hγ ′ protons, to the Hδ and Hδ ′ protons, and so on, of the side chain
(Fig. 8.41, right). The aromatic protons in the side chains of aromatic amino acids are sepa-
rate spin systems from the HN and aliphatic (Hα, Hβ, Hβ ′ ) protons. In oligosaccharides, the
anomeric proton (proton bound to carbon with two bonds to oxygen) is the start of a spin
system that includes the whole monosaccharide unit: C1H–C2H–C3H–C4H–C5H–C6H2 for
pyranose sugars (Fig. 8.41, left). For selective 1D TOCSY experiments on relatively simple
peptides and oligosaccharides, we can access these spin systems by selective excitation of
the downfield “handles”: amide NH protons (7–11 ppm) for peptides, and anomeric protons
(5–6 ppm) for sugars. Because there is only one of these protons per residue and they are
in a different chemical shift range from all the other protons, it is common to find them well
resolved as single peaks.

8.11.3 TOCSY Mixing

How do we get these multiple jumps of magnetization within a spin system? We could use a
series of INEPT transfers: 1/(2J)–90◦–1/(2J)–90◦–1/(2J)–90◦· · ·, but this would be a very
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long mixing sequence as for a typical 1H–1H J coupling (7 Hz) the delay 1/(2J) is 71 ms.
We could shorten the delays, and if we continue this process, we eventually end up with a
continuous string of RF pulses. This is essentially what the TOCSY mixing sequence is: A
continuous string of pulses, but with varying pulse width and phase in a precise repeating
program.

Like ROESY mixing, the TOCSY mixing sequence is a spin lock. The choice of NOE
or J-coupling transfer depends on various practical aspects of the spin lock: a low-power
(ν1 = γB1/2π ∼3000 Hz) continuous-wave spin lock favors magnetization transfer via NOE
(through-space) interactions, whereas a higher-power (∼8000 Hz) pulsed spin lock with
a specific optimized sequence of pulse durations and phases favors magnetization transfer
via J-coupling (through-bond) interactions within an entire spin system. For example, the
MLEV-17 TOCSY mixing sequence consists of a repeating pattern of pulses based on the
building blocks 90◦

x–180◦
y–90◦

x (A) and 90◦−x–180◦−y–90◦−x (B) repeated in the series
ABBA–BBAA–BAAB–AABB, followed by a 60◦

y pulse. Note that A and B are just our
sandwich pulses designed to give improved bandwidth for inversion (Fig. 8.4, center). This
“train” of 17 pulses is then repeated as many times as necessary to complete the mixing
time of 35–75 ms. A more efficient sequence than MLEV-17 is the DIPSI family of mixing
sequences. The basic repeating unit of DIPSI is

320◦
x−420◦

−x−290◦
x−285◦

−x−30◦
x−245◦

−x−375◦
x−265◦

−x−370◦
x.

There is no obvious theoretical basis for this sequence; it was arrived at by computer
simulation and found to give the most efficient through-bond transfer of magnetization
with the least sample heating. The goal of these complex strings of pulses is to create an
environment in which the chemical shift differences of the protons within a spin system
disappear completely, leaving only the J-coupling interactions. This ultimate extreme of
“strong coupling” and “virtual coupling” (�ν << J) gives rise to magnetization transfer
to all members of the spin system. Computer simulation has been used to improve these
mixing sequences even further with the goal of a perfect “isotropic mixing” (J coupling
only) sequence.

8.11.4 The Hartmann–Hahn Match

If we used a continuous-wave spin lock (ROESY mixing scheme) for TOCSY mixing, the
only way efficient transfer could occur via J couplings within a spin system would be if the
two protons have opposite resonance offsets (νo − νr), where νr is the carrier or reference
frequency. This is a special case of the Hartmann–Hahn match:

γABeff (A) = γBBeff (B)

where Beff is the magnitude of the effective field vector Beff in the rotating frame
(Beff = [B2

1 + B2
res]

1/2, Bres = 2π (νr − νo)/γ) and A and B are any two spins, for exam-
ple, 1H and 13C. This was originally developed by Hartmann and Hahn for heteronuclear
coherence transfer in the solid state, with simultaneous continuous-wave irradiation at both
the 1H frequency and the 13C frequency, with the intensity ratio tuned precisely to give
the “match.” When TOCSY was originally developed for 1H–1H coherence transfer, it was
called “HOHAHA” or homonuclear Hartmann–Hahn. When spins A and B are both pro-
tons, the Hartmann–Hahn match requires that Beff (A) = Beff (B), as γ A = γ B. Because B1
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is the same for A and B (they are both protons), this means that both A and B have the same
resonance offset (Bres(A) = Bres(B)) or opposite resonance offsets (Bres(A) = −Bres(B)) as
Bres depends on resonance offset (Bres = 2π(νr − νo)/γ ). The cw spin lock is not effective
for TOCSY transfer because transfer would only occur between pairs of resonances equally
disposed on opposite sides of the center of the spectral window (νA − νr = −(νB − νr).
This can produce artifacts in 2D-ROESY spectra because transfer by J coupling (TOCSY
transfer) does occur in this special case. The purpose of the complex TOCSY pulse trains at
higher power is to generalize the TOCSY transfer to include any pair of resonance offsets
within the spectral window, including where the Hartmann–Hahn condition is not met.

In both ROESY mixing and TOCSY mixing, the transfer is from in-phase net magneti-
zation on the spin-lock axis to in-phase net magnetization on the spin-lock axis; for exam-
ple, Ia

y → Ib
y (TOCSY) or Ia

y → − Ib
y (ROESY). This is analogous to the NOESY transfer,

Ia
z → − Ib

z for small molecules and in contrast to the INEPT transfer 2Ia
xIb

z → 2Ib
xIa

z, which
is antiphase to antiphase.

8.11.5 Strong Coupling, Virtual Coupling, and TOCSY Transfer

TOCSY mixing is achieved by creating an environment where chemical shift differences are
reduced to zero or near zero and J-coupling interactions are preserved. For liquid samples,
these two interactions define the energy of a pair of spins in NMR: the interaction of
each spin’s magnet with the external magnetic field (the “Zeeman” energy giving rise
to the α, β energy gap) and the interaction of the two spins’ magnets with each other
(J coupling). The first energy term is dependent on the strength of the external field and
small, structure-dependent differences in this energy define the chemical shift. The second
term is independent of field strength and so we measure it in units of hertz. If both spins
are aligned in the same way with respect to the external field (αα or ββ state), the energy is
slightly lower, and if they are aligned opposite to each other (αβ or βα state), the energy is
slightly higher. The goal of the TOCSY mixing sequence is to eliminate the chemical shift
(Zeeman) term and leave only the J-coupling interaction. This would be like turning off
the Bo field completely. We know that a simple homonuclear spin echo can eliminate the
chemical shift evolution while allowing the J-coupling evolution, so it is not surprising that
the right kind of spin lock can also do it, as the spin lock is similar to a very rapid series of
spin echoes: [τ–180◦–τ ]n . This ideal situation where the only interaction left is J coupling
is called “isotropic mixing.”

Consider an intermediate case where chemical shift differences are not eliminated com-
pletely, but are small compared to the J couplings. This is the so called “non-first order” or
“strong coupling” situation, which is commonly encountered in low-field (e.g., 60 MHz)
instruments but can show up at any field strength. In Chapter 2 (Section 2.8.1), we saw
that even weak coupling to a group of protons that are strongly coupled to each other leads
to “virtual coupling”—the appearance of coupling to all the members of the strongly cou-
pled group, including those too far away to be directly J coupled. This sounds a little like
TOCSY mixing: coherence transfer among a “spin system”—a group of protons connected
by J couplings—as if each proton in the spin system were coupled to all of the other
members of the group.

Now consider what happens during the ideal TOCSY mixing scheme. There are no
chemical shift differences but the J couplings are still active, so all protons in a spin system
are extremely strongly coupled, like the CH2 groups in a long, straight-chain hydrocarbon.
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Any one proton behaves as if it is coupled to all protons of the spin system as it is coupled
to at least one member of the group and all the other protons are strongly coupled to
each other. This way of understanding the TOCSY scheme comes closest to the actual
theoretical explanation, so hopefully it will give you a feeling for what goes on in the
TOCSY experiment.

8.12 SELECTIVE 1D TOCSY USING DPFGSE

A selective TOCSY experiment starts with putting the net magnetization of just one reso-
nance in the x′–y′ plane and locking it with the TOCSY mixing spin lock. After an appro-
priate mixing time, the spin lock field is turned off and we simply start acquiring the FID.
These steps can be summarized as follows:

1. Preparation: Selectively excite the peak of interest to place its magnetization on the
y axis.

2. Mixing: Apply the TOCSY mixing sequence (spin lock) on the y axis for a period of
time between 30 and 85 ms.

3. Detection: Record the FID.

Any coherence that we observe in the FID must have come from the selected resonance
by TOCSY transfer and therefore must belong to the same spin system. The best selective
90◦ pulse is DPFGSE, the same building block used as the front end of the selective NOE
experiment: A 90◦ hard pulse followed by a gradient, and then a selective 180◦ pulse
followed by another gradient of the same magnitude and sign as the first (Fig. 8.42). The
first gradient twists all the sample magnetization and the shaped 180◦ pulse refocuses only
the selected spins, whereas all other spins are unaffected. The second gradient “unwinds”
the coherence helix of the selected spins and doubles the twist of all the other spins. At the
end, we have only the selected net magnetization aligned on the y ′ axis and all other

Figure 8.42
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magnetization is destroyed. The PFGSE sequence is repeated to reinforce the selectivity
(not shown in Fig. 8.42), and then the spin-lock mixing sequence is started with phase on the
y ′ axis. Unlike the NOE experiment, we do not need a 90◦ pulse at the end of the DPFGSE
because we already have the selected resonance’s net magnetization right where we want
it: in the x ′–y ′ plane. At the end of mixing we have positive, in-phase magnetization on
y ′ for the selected spin and all other spins in the spin system that received the transferred
magnetization. As it is already in the x ′–y ′ plane, we just turn on the ADC and collect the
FID data. The 1D proton spectrum will have in-phase peaks for the selected resonance and
for any other resonance to which magnetization was transferred during the spin lock. The
intensity of each peak (integral area) will depend on the efficiency of TOCSY transfer from
the selected spins. A small coupling constant (e.g., a fixed gauche relationship for vicinal
couplings or a long-range (>3 bond) coupling) will lead to a “bottleneck” in TOCSY
transfer, reducing the intensity of the destination peak and the peaks of all other protons
after it in a linear spin system.

8.12.1 Factors That Affect TOCSY Mixing Efficiency

In the real world, complete mixing throughout the spin system is not observed. Magneti-
zation transfer is a stepwise process starting from the selected proton, so protons near the
selected proton in the spin system usually give more intense signals, and protons farther
away give weaker peaks in the 1D spectrum. The simplest case, where there are only two
protons (Ha and Hb coupled with Jab) in the spin system, has been analyzed precisely. If
we start with magnetization on Ha along the y ′ axis at the beginning of the TOCSY mixing
sequence, the magnetization will oscillate between Ha and Hb:

Ia
y → [Ia

y(1 + cos (2πJτ)) + Ib
y(1 − cos (2πJτ))]/2

where τ is the mixing time (Fig. 8.43). Note that at time zero we have pure Ia
y, at time

τ = 1/(2Jab) we have pure Ib
y and none of the starting magnetization (100% transfer), and

at time τ = 1/Jab we are back to pure Ia
y (no transfer). So we can conclude that when

magnetization hits the end of a spin system, it “bounces back” and we see oscillatory
behavior as a function of mixing time. For a typical vicinal coupling (J = 7.0 Hz), a mixing

Figure 8.43
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time of 71 ms gives complete transfer. For a small coupling constant such as Jab = 2.0 Hz,
you would get only 4% transfer and with Jab =0.5 (long range) you would get 0.24% transfer.
This is why small coupling constants cause a “bottleneck” in transfer of magnetization and
most of the magnetization remains on the starting nucleus.

In long spin systems such as flexible chains of CH2 groups, magnetization transfer is
more of a diffusion-like process. The signal is strongest on the starting spin and weaker as
you move farther away along the chain. With longer mixing times, magnetization spreads
farther along the chain. For example, with a mixing time of 70 ms it is usually possible to
reach the ε position of the lysine side chain (five jumps) starting with magnetization on the
amide NH in a peptide or protein:

HN−CHα−CHβ
2−CHγ

2−CHδ
2−CHε

2−NH+
3

Short mixing times (e.g., 30 ms) lead to INEPT-type spectra (or COSY-type 2D spectra),
where transfer is mostly limited to a single jump over one J coupling. Unlike INEPT and
COSY, however, the transfer results in an in-phase rather than antiphase signal. This is
a significant advantage as the peaks have the same shape and pattern as they do in a 1D
spectrum.

Figure 8.44 shows two selective 1D TOCSY spectra of sucrose in D2O, with 70 ms of
MLEV-17 mixing. Selecting the anomeric H-g1 (glucose) proton as a downfield “handle,”
we can see the spin system of the glucose unit, without any peaks from the fructose unit
(Fig. 8.44, center). Because of the α-glycosidic linkage, H-g1 is in an equatorial position
and has a small (3.8 Hz) coupling to H-g2. This “bottleneck” accounts for the inefficient
transfer to H-g2 and H-g3. The triplet at 3.71 ppm is much larger than the distorted triplet

Figure 8.44
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Figure 8.45

at 3.42 ppm, so we can assign the former to H-g3 and the latter to H-g4. No transfer is
observed beyond H-g4 (three jumps). Selecting the H-f3 doublet (fructose unit: Fig. 8.44,
bottom), we see the fructose spin system in a 1D proton spectrum, with none of the glucose
peaks. The triplet at 3.99 must be H-f4 as we expect more complex splitting for H-f5 and
H-f6. The multiplet at 3.83 ppm can be assigned to H-f5 (three couplings) and the tall peak
at 3.77 ppm is H-f6. We can assign the two-proton singlet at 3.62 to H-f1, so the entire
fructose system is assigned. In this way, we can “light up” one unit (residue) of a biological
polymer and see only the peaks due to spins in that residue.

Figure 8.45 shows two selective 1D TOCSY spectra of cholesterol. Between the two
spectra at the right-hand side is shown the very crowded and heavily overlapped upfield
region of the 1H spectrum of cholesterol for comparison. Selecting the H3 multiplet at
3.54 ppm (Fig. 8.45, top), we can follow the spin system clockwise around the A ring to
H2ax and H2eq and on to H1ax and H1eq (Fig. 8.46). The completely resolved H1ax peak
is shown in the inset (Fig. 8.45, top); this peak is hopelessly overlapped in the normal 1H
spectrum. The dt coupling pattern is due to large coupling constants to H1eq (geminal)
and H2ax (axial–axial) and a small coupling to H2eq (axial–equatorial). We are now at
a dead end because we run into the quaternary carbon, C10, at the A–B ring juncture.
Moving counterclockwise around the A ring from H3 we see H4ax and H4eq, the peaks
we selected in the 1D NOE experiment (Fig. 8.35), and then there is a jump through a
long-range (“allylic”) coupling to H6 (Fig. 8.46). The H6 peak is very small due to this
TOCSY transfer “bottleneck” of a small long-range coupling. Then we see transfer from
H6 to H7ax and H7eq. These peaks are small primarily because the peak they derive from,
H6, is small.
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Figure 8.46

Selecting the H6 peak at 5.35 ppm (Fig. 8.45, bottom) gives a relatively weak transfer
to H7ax and H7eq, and these efficiently give magnetization to H8 (Fig. 8.47). The inset
(Fig. 8.45, bottom) shows the resolved H7eq “doublet” peak, which has one large coupling
(geminal coupling to H7ax) and a number of small couplings (to H8, H6, and H4ax). In the
other direction (Fig. 8.47), we see weak transfer from H6 to H4ax and H4eq and from these
we are just beginning to get transfer to H3 (Fig. 8.47). Note that technically cholesterol is a
single spin system (if we count the allylic H4 to H6 coupling), but in reality magnetization
does not spread indefinitely. The bottleneck (H4 to H6) confines magnetization to some
extent to the A ring, but even without this the spread of magnetization seldom goes more than
five jumps (J couplings) in the extreme. Eventually, we “run out of time” for magnetization
transfer, and the spins farther away from the selected spin give very weak peaks or none at
all. The peak assignments in Figure 8.45 are derived from 2D NMR analysis and are not
obvious, based only on the 1D selective TOCSY experiment shown here. We can get some
ideas of axial and equatorial from the number of large couplings (“doublet” vs. “triplet”
patterns) and we might be able to sort it out completely using a short mixing time (τm =
30 ms) to see the direct “one-jump” relationships only.

Comparing Figure 8.45 (TOCSY) to Figure 8.36 (NOE), we can see that TOCSY transfer
is very efficient. Compared to the selected peak, the transfer peaks are of comparable
intensity. NOE transfer is very inefficient and, for small molecules, of opposite sign. In the
NOE spectrum, the selected peak is negative and enormous compared to the very small
(around 1%) positive transfer peaks. This is an important factor in the design of NMR

Figure 8.47
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experiments: Through-space transfer is very inefficient, whereas J-coupling transfer is very
efficient. TOCSY transfer can be so efficient (even 100%, see Fig. 8.43) that the selected
peak may be small or even missing in the spectrum!

8.13 RF POWER LEVELS FOR SHAPED PULSES AND SPIN LOCKS

The amplitude of an RF pulse can be expressed in units of telsa (B1). This corresponds to
the magnitude (length) of the B1 vector in a rotating-frame vector diagram. Pulse amplitude
is most commonly expressed in terms of the frequency of rotation of sample magnetization
as it precesses around the B1 vector (for on-resonance pulses) during the pulse.

Pulse amplitude = B1(tesla) ∝ γB1/2π(Hz) = 1/(4 × t90)

The inverse of this frequency of rotation (2π/γB1 in seconds) is the time it takes for the
sample magnetization to rotate one full cycle under the influence of the B1 field. This is
simply the duration of a 360◦ pulse, and one fourth of this time is the 90◦ pulse duration, t90.

For example, a 10 �s hard pulse at a B1 field strength of 25 kHz will rotate the sample
magnetization by � = 10 × 10−6 s × 25 × 103 cycle/s = 0.25 cycle = 90◦. So this pulse
is a 90◦ pulse. A 10-ms soft pulse at a B1 field strength of 25 Hz will rotate the sample
magnetization by � = 10 × 10−3 s × 25 cycle/s = 0.25 cycle = 90◦. So this is also a
90◦ pulse (Fig. 8.48). The “area” of the rectangular pulses is the same:

“Area” = width × height = 10 �s × 25 kHz = 10 ms × 25 Hz = 0.25

Figure 8.48
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The soft pulse is 1000 times lower in amplitude compared to the hard pulse, but it is
1000 times longer than the hard pulse. Although both pulses deliver a 90◦ rotation when
on-resonance, they have very different behavior off-resonance. The excitation profile of
both pulses is a “sinc” function:

sinc(x) = sin (x)/x

but the width of the main “hump” of the sinc function is different:

Excitation bandwidth = 1/tp = 1/10 �s = 100 kHz for the hard pulse

Excitation bandwidth = 1/tp = 1/10 ms = 100 Hz for the soft pulse

Pulse power is the square of the pulse amplitude:

Power = (amplitude)2 ∝ (γB1/2π)2 = (1/(4 × tp))2

In the laboratory we can measure RF power in watts, but when we set up NMR experiments
we use a relative power scale that is logarithmic: the decibel scale. For comparison of power
levels, we compare to a standard power level Po that corresponds to zero on the decibel
scale:

Power in decibels = 10 log(P/Po)

Every time the power is increased by a factor of 2, we are adding 3 dB to the power level
in decibels: log(2) = 0.301, 10 log(2) = 3.01. Because the decibel scale is logarithmic,
multiplying power by a factor corresponds to adding to or subtracting from the power level
in decibels.

We can also compare pulse amplitudes using the decibel scale, as we know that power
is the square of pulse amplitude:

�dB = 10 log(Pa/Pb) = 10 log(Ba
1/B

b
1)2 = 20 log(Ba

1/B
b
1)

where Ba
1 is the B1 amplitude at one power setting and Bb

1 is the amplitude at another setting,
�dB decibel units lower in power. As the 90◦ pulse width is inversely proportional to B1
amplitude, �dB = 20 log(tb

90/ta
90), where ta

90 is the 90◦ pulse width at one power level and
tb
90 is the 90◦ pulse width at a power level �dB decibel units lower in power. Thus to cut the

90◦ pulse width in half, we need to double the B1 amplitude (quadruple the pulse power),
which requires a 6 dB increase in power: 20 log (2) = 6.021 dB. Likewise, to double the
90◦ pulse width would require a 6 dB decrease in pulse power. This “6 dB rule” is very
useful to keep in mind.

Bruker and Varian not only use different zero points for their decibel scales, but also
use the opposite sign: Varian considers decibel to be a power level as described above,
but Bruker sees the decibel setting as an attenuation—higher decibel values correspond to
lower power. As long as you know this, you will not have any problem, but be very careful
because setting the wrong power level can fry equipment!
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Vendor Parameters Minimum Maximum Definition

Bruker pl1, pl2 120 dB −6 dB “dB of attenuation”
Varian tpwr, dpwr 0 dB 63 dB “dB of power”

When you calibrate a 90◦ “hard” 1H pulse, you can estimate the power levels for other
uses. The most convenient way to express a power level is by the duration of the 90◦ pulse
at that power level:

Application 90◦ γB1/2π

TOCSY mixing (MLEV-17) 30 �s 8333 Hz
ROESY mixing (cw) 75 �s 3333 Hz
1H decoupling (waltz-16) 90 �s 2778 Hz

You can then use the decibel scale to estimate power settings. For example, suppose you
calibrated the 90◦ pulse on a Bruker 500 to be 17.6 �s for 1H at a power setting of 3 dB,
and you want to know the power setting that will give a 30 �s 90◦ pulse (γB1/2π = 1/(4 ×
30 �s) = 8333 Hz). Just plug in the ratio of pulse widths:

�dB = 20 log(tb
90/ta

90) = 20 log(30/17.6) = 4.6 dB

As our point of comparison (ta
90) was at 3 dB, we add this number �dB to 3 to get the

correct power setting: 7.6 dB. This calculation gives us an estimate of the power setting; to
get an accurate value you would have to calibrate the 90◦ pulse (on resonance) using this
value as a starting point. Because in this case we want a 90◦ pulse of 30 �s, you would start
with a 60 �s pulse and adjust the pulse power (Bruker parameter pl1) until you get a null
(180◦ pulse). When you are calibrating pulse widths and pulse power, at low power, it is
extremely important to be on-resonance for the peak you are observing during the calibra-
tion. When γB1/2π is small, the effect of being off-resonance by even a small amount can
be dramatic. For example, for a 75-�s 90◦ pulse, γB1/2π is 3333 Hz and on a 600-MHz in-
strument you would tilt the Beff vector out of the x ′–y ′ plane by 45◦ if you are off-resonance
by the same amount (3333 Hz = 5.56 ppm for protons). Also, keep in mind that near the
maximum setting of pulse power, the dB settings do not give as much power as you expect:
they begin to “droop” in a process called “amplifier compression.” This occurs in the top
6 dB or so of available pulse power. The dB calculations work much better below this range.

Exercise: Estimate the Varian power level settings for TOCSY mixing (8333 Hz), for ROESY
mixing (3333 Hz), and for 1H decoupling (2778 Hz) if the 90◦ pulse is 21.3 �s at a power
setting of 59 dB.

8.13.1 Calibrating a Shaped Pulse

Starting from a “first guess” of power level, a shaped pulse should be calibrated to get
exactly the correct pulse rotation. Calibration of a rectangular pulse involves changing the
pulse duration (pulse width) while maintaining the power level (pulse height) constant with
a peak on-resonance. We look for a null in the spectrum at the 180◦ or 360◦ pulse width.
For a shaped pulse, the selectivity depends on the pulse width, so we keep that constant
and adjust the pulse power, increasing or decreasing the vertical scale of the pulse shape to
change the area under the curve. When the maximum amplitude is changed, the shape of the
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Figure 8.49

pulse is maintained so that all the short pulses that make up the shaped pulse are adjusted in
amplitude according to the same ratio. Because pulse power is set using a logarithmic scale
(dB), the envelope of a pulse calibration will not be a simple sine wave as it is for varying the
duration of rectangular pulses. For example, for a Gaussian pulse we see a maximum for the
90◦ pulse power and then decreasing intensity to a null for the 180◦ pulse power (Fig. 8.49,
top). When the null point is located (180◦ pulse at 61.5 dB), we can decrease the maximum
power by 6 dB (67.5 dB on Bruker) to get a 90◦ pulse, rather than dividing the pulse duration
by two as we do for hard pulses. These power levels represent the power of the highest
amplitude in the shape, which is at the center of a Gaussian pulse. Often it is better to
calibrate a shaped pulse in the context of how it is used in the pulse sequence. For example,
a 180◦ Gaussian pulse used in a PFGSE is calibrated for the strongest signal of the selected
peak using a PFGSE sequence (Fig. 8.49, bottom). Even though we think of a 180◦ pulse
producing a null, in the context of a PFGSE it produces the maximum refocusing and allows
the second gradient to perfectly unscramble the twisted coherence produced by the first.

To estimate a starting point for the maximum power of a shaped pulse, we need to come
up with a rectangular pulse that has the same “area” as the shaped pulse. This can be done
by mathematically integrating the function used for the pulse shape, for example, the Gaus-
sian function. The Bruker software does this in the PulseTool program, and Varian does
it in Pandora’s Box (PBox). For example, a 35-ms Gaussian 180◦ pulse that is truncated
at 5% of the maximum amplitude takes up an area that is 50.4556% of the corresponding
rectangular pulse with the same duration and the same maximum amplitude as the shaped
pulse (Fig. 8.50). Thus, a rectangular pulse of duration 17.66 ms (0.504556 × 35 ms) with
the same amplitude as the maximum of the shaped pulse would rotate the sample magneti-
zation the same amount (180◦) as the Gaussian pulse, if both pulses are on-resonance. This
corresponds to a full rotation in 2 × 17.66 = 35.32 ms, and a γB1/2π of 1/(35.32 ms) =
28.31 Hz. This is a very weak pulse! Suppose we have calibrated the 90◦ hard pulse at 3 dB
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Figure 8.50

on the Bruker to be 15 �s, corresponding to a 180◦ pulse width of 30 �s. We need to know
the pulse power in decibels that will give us a 180◦ rectangular pulse of duration 17.66 ms:

�dB = 20 log(17660�s/30�s) = 55.40 dB

We use common sense to find the correct power level: We know we want lower power, and
for Bruker that means a larger number. So we add this to 3 dB to get a power setting of
58.4 dB. As this power level corresponds to the maximum power of the Gaussian shaped
pulse, we can set this power level for our shaped pulse and get a 180◦ rotation. This would
be the starting point for the pulse calibration.

Further Reading

1. Bauer C, Freeman R, Frenkiel T, Keeler J, Shaka, AJ. Gaussian pulses. J. Magn. Reson.
1984;58:442–457.

2. Bothner-By AA, Stephens RL, Lee J-M. Structure determination of a tetrasaccharide: transient
nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 1984;106:811–813.

3. Braunschweiler L, Ernst, RR. Coherence transfer by isotropic mixing: application to proton cor-
relation spectroscopy. J. Magn. Reson. 1983;53:521–528.

4. Hurd RE. Gradient-enhanced spectroscopy. J. Magn. Reson. 1990;87:422–428.
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9
TWO-DIMENSIONAL NMR
SPECTROSCOPY: HETCOR, COSY,
AND TOCSY

9.1 INTRODUCTION TO TWO-DIMENSIONAL NMR

We are now ready to discuss the most exciting and most powerful technique in NMR, a
simple idea that led to an explosion of NMR applications, extending the power of NMR be-
yond organic chemistry to become a powerful tool in structural biology. Until now, we have
looked at an NMR spectrum as a simple graph of intensity (vertical scale) versus frequency
(horizontal chemical-shift scale). In a simple one-dimensional (1D) NMR spectrum, we get
structural information from the chemical shift and peak area, and in 1H spectra we can learn
about near neighbors in the bonding network by examining the coupling patterns of resolved
multiplets. We can gain more specific information about interactions between protons (NOE
and J coupling) by using low-power irradiation or shaped-pulse selective excitation of spe-
cific resonances in the 1D spectrum. But we are severely limited by the chemical shift
“space” available for resolution of many resonances in a single frequency scale and by the
need to examine relationships one at a time in separate selective experiments. In 2D NMR
we have two frequency scales: the familiar direct measurement of frequency by Fourier
transformation of the FID on the horizontal scale and an indirect second frequency scale on
the vertical scale. This second dimension is created by recording a series of hundreds of 1D
spectra, each time lengthening a delay in the pulse sequence, just as we sample the FID at
discreet intervals in real time using the analog-to-digital converter. This incremented delay
becomes a second (indirect) time domain, and Fourier transformation of this time domain
yields the second frequency scale. Intensity is a third axis coming out of the paper, usually
represented by color coding (intensity plot) or a contour (topographic) map. Depending on
the way we do the experiment, we can map out specific kinds of interactions between spins.
For example, if we are looking at NOE interactions, we will see a “spot” of intensity at
the frequency of Ha on the horizontal chemical-shift scale and the frequency of Hb on the

NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and
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vertical chemical-shift scale, if Ha and Hb are less than 5 Å apart. All of the information
for all possible NOE interactions is contained in this single “map” produced by a single
NMR experiment! 2D NMR essentially allows us to selectively excite each of the chemical
shifts in one experiment and gives us a matrix or two-dimensional map of all of the nuclei
affected by each perturbation.

Let’s look at the overall strategy for a 2D pulse sequence. There are four steps to any 2D
experiment:

1. Preparation: Excite nucleus A, creating magnetization in the x–y plane.

2. Evolution: Indirectly measure the chemical shift of nucleus A.

3. Mixing: Transfer magnetization from nucleus A to nucleus B (via J or NOE).

4. Detection: Measure the chemical shift of nucleus B.

Of course, all possible pairs of nuclei in the sample go through this process at the same
time. Preparation is usually just a 90◦ pulse that excites all of the sample nuclei of a given
type (e.g., 1H, 13C, etc.) simultaneously. Detection is simply recording an FID and finding
the frequency of nucleus B by Fourier transformation. A simple 1D spectrum is just steps
1 and 4. To get a second dimension, we have to measure the chemical shift of nucleus A
before it passes its magnetization to nucleus B. This is accomplished by simply waiting for
a period of time (called t1, the evolution period) and letting the nucleus A coherence rotate
in the x–y plane. The experiment is repeated many times (e.g., 512 times), recording the FID
each time with the delay t1 incremented each time by a fixed amount. The time course of
motion of the nucleus A magnetization as a function of t1 (determined by its effect on the
final FID) is unraveled by a second Fourier transform, defining how fast it rotates during the
t1 delay and giving us its chemical shift. Mixing is a combination of RF pulses and/or delay
periods that induce the magnetization to jump from A to B as a result of either a J coupling
or an NOE interaction (close proximity in space). Different 2D experiments (e.g., NOESY,
COSY, HETCOR, etc.) differ primarily in the mixing sequence because in each one we
are trying to define the relationship between A and B within the molecule in a different
way. We now have quite an array of tools for transfer of magnetization: transient NOE (z-
magnetization transfer via NOE), INEPT transfer (antiphase to antiphase coherence transfer
via J-coupling), TOCSY transfer (multiple in-phase to in-phase coherence transfers via J
coupling), and ROESY transfer (NOE transfer in the x′–y′ plane in a spin lock). Each of
these can be applied to create a specific 2D experiment (COSY, HETCOR, HSQC, HMBC,
NOESY, ROESY, TOCSY, etc.).

9.2 HETCOR: A 2D EXPERIMENT CREATED FROM THE 1D
INEPT EXPERIMENT

Let’s pick a concrete example we are familiar with: the INEPT transfer from 1H to 13C. The
simplest INEPT sequence is just 90◦(1H) − τ − 90◦(1H)/90◦(13C), where the τ delay is for
J-coupling evolution of the 1H doublet into antiphase and the simultaneous 90◦ pulses give
coherence transfer from 1H to 13C. Normally, we would set this delay to 1/(2 J) to get com-
plete conversion from in-phase to antiphase 1H coherence (Ix → 2IySz ), and we would put
simultaneous 180◦ pulses on 1H and 13C in the center of the delay to refocus 1H chemical-
shift evolution. But for a 2D experiment we want 1H chemical-shift evolution, so we make
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Figure 9.1

the delay τ into the simple evolution delay t1. During the t1 delay, the required antiphase
component 2IySz is oscillating due to chemical-shift evolution of the Iy part (Fig. 9.1). The
frequency of this oscillation is just the offset of this proton (Ha) in the 1H spectrum: �a.
At some point in this oscillation, we execute the simultaneous 90◦ pulses and transfer this
magnetization to antiphase 13C coherence (2SyIz ), which oscillates at the frequency in the
13C spectrum of the 13C (Cb) that is bonded to Ha: �b. This oscillation is recorded in the
13C FID, and Fourier transformation gives a 13C spectrum with a peak at frequency �b.
At this particular value of t1, the 1H coherence is at a positive maximum, and coherence
transfer starts the 13C FID at a positive maximum, leading to a positive peak of maximum
intensity in the 13C spectrum (Fig. 9.1, top). Now we repeat the experiment with a slightly
longer value of t1, so that the moment of coherence transfer happens when the 1H coherence
is zero. No 13C coherence is produced, and the FID is just noise. Fourier transform gives
no 13C peak in the 13C spectrum (Fig. 9.1, middle). A third experiment is done with the t1
value incremented a bit further, and this time the 1H coherence is at a negative maximum.
Coherence transfer gives a negative maximum of 13C coherence at the start of the 13C FID,
and Fourier transformation gives an upside-down 13C peak in the 13C spectrum (Fig. 9.1,
bottom). In this way, the peak intensity in the 13C spectrum oscillates in a way that exactly
follows the oscillation of 1H coherence during the evolution (t1) delay. The intensity of the
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Figure 9.2

13C peak can be plotted as a 1H FID with t1 as the timescale (the “indirect time domain”).
Understanding this is the core of understanding the genius of the 2D idea—creating a “fake”
time domain with a delay that allows us to generate a second “indirect” frequency scale.
Fourier transformation of this 1H FID (Fig. 9.2, put together from peak heights of a large
number of 13C spectra) gives a 1H spectrum with a peak at the frequency of the original
1H (�a). The second Fourier transform traces backward from the intensity variation of the
13C peak to the history of the 1H as it undergoes chemical-shift evolution during t1. We
can say that during t1 we “encoded” the chemical shift of Ha, and this encoded information
turns up in the peak height dependence of the Cb peak on the value of the incremented delay
t1. The second Fourier transform “decodes” this information and gives us the chemical
shift of Ha. The experiment provides a correlation between the chemical shift of Ha (�a)
and the chemical shift of Cb (�b), proving that they are directly bonded to each other
(J coupled). In 2D NMR, we do not correlate spins or positions within a molecule; we can
only make connections between chemical shifts (frequencies). It is our job in interpreting
the 2D spectrum to try to convert this information into structural conclusions.

In Figure 9.1 we show only one component of the proton magnetization (2IySz ) undergo-
ing chemical-shift evolution during the t1 delay, and it is the magnitude of this component
at the moment of magnetization transfer that determines the magnitude of the 13C FID
obtained at the end. This is true because magnetization transfer always selects only one
component of magnetization. For INEPT transfer we can ignore in-phase 1H coherence (Ix ,
Iy ) because it cannot undergo coherence transfer, so let’s look only at the chemical-shift
evolution of 2IySz :

2IySz
t1→ 2IySzcos(�at1) − 2IxSzsin(�at1)

The simultaneous 90◦ pulses on 1H and 13C give INEPT transfer only for the first term:

2IySzcos(�at1) − 2IxSzsin(�at1)
90◦

x(1H)/90◦
y(13C)−−−−−−−−−→

2SxIzcos(�at1) − 2IxSxsin(�at1)
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Figure 9.3

The second term gives 2IxSx , a mixture of DQC and ZQC which is not observable in the
FID. The INEPT transfer term, 2SxIz , is multiplied by cos(�a t1), which is the amplitude
modulation of our 13C FID according the “history” of the 1H (I spin) chemical-shift evolution
during the t1 delay. This is how the “encoding” of the chemical shift of the proton comes
out in precise mathematical terms.

We can diagram this experiment in a way that summarizes the flow of magnetization
(Fig. 9.3). First draw the two nuclei that are being correlated, and indicate the relationship
that will lead to a crosspeak: a 1H bonded to a 13C. The “relationship” is a single bond,
which leads to a large J coupling (∼150 Hz). We start the flow with excitation of the
proton (step 1: preparation). Next we measure the chemical shift of the proton indirectly
during the t1 delay (step 2: evolution, shown by a dotted circle around the 1H and the
label “t1”). Then we transfer the coherence from 1H to 13C via INEPT transfer (step 3:
mixing, indicated by an arrow from 1H to 13C labeled “1JCH”). Finally, we measure the
chemical shift of the 13C directly by recording a 13C FID (step 4: detection, shown by a
solid circle around the 13C labeled “t2”). We call the time domain of the directly detected
FID t2 because it comes after t1 in the sequence. This leads to the name F2 for the directly
detected frequency domain (horizontal axis of the 2D spectrum) and F1 for the indirectly
detected frequency domain (vertical axis in the 2D spectrum). We will use these diagrams
throughout our discussion of 2D NMR as a quick way of showing how the experiment
works.

Now let’s consider a situation where we have three different carbon resonances in our
13C spectrum, each with one proton attached: -C1H1–C2H2–C3H3-. We do the same INEPT
experiment with the variable delay t1 and record a series of 13C spectra. Starting with the
first FID, obtained with t1 = 0, we Fourier-transform each FID and load the resulting 13C
spectra (with three peaks) into successive rows moving up in a 2D matrix of data. This
gives us a stack of 13C spectra starting with the t1 = 0 spectrum at the bottom and moving
upwards as we increment t1: 1, 2, 3 ms, and so on (Fig. 9.4). This intermediate 2D matrix,
after the F2 Fourier transform, is sometimes called an interferogram. The height of each
13C peak oscillates (+, 0, −, 0, etc.) at the frequency �H of its attached proton, and decays
due to T2 relaxation of the attached proton, as we look at successive spectra with increasing
t1 delay values (moving up in the data matrix). Carbon C1 oscillates at a high frequency
because proton H1 has a downfield chemical shift. Carbon C3 oscillates slowly in t1 because
its attached proton, H3, has an upfield (lower frequency) chemical shift. In Figure 9.4 the
trace of data in each of the three columns is shown to the side of the data column—in each
case we have a decaying sinusoidal signal: a t1 FID. It may have taken several minutes in
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Figure 9.4

real time to acquire the FID for one point of this column (e.g., 16 scans of 13C acquisition),
but in the reconstructed time domain of t1 the time difference is only the t1 increment (e.g.,
1 ms) between successive data rows.

The second Fourier transform is performed on each of the columns of the data matrix,
starting with the first one on the left side and moving to the right side. Most of the columns in
Figure 9.4 contain noise, but when we reach the column at the chemical shift of C1 we load
the t1 FID (shown to the left side of the data column) and Fourier-transform it to obtain a 1H
spectrum with a peak at the frequency of H1. This spectrum is put back into the data column,
replacing the t1 FID. Likewise, when we pass through the 13C shift of C2 we transform its
t1 FID and obtain the 1H spectrum of H2, and so forth. The completed data matrix (the 2D
spectrum) is shown in Figure 9.5. Now for each data column corresponding to a peak in
the 13C spectrum we have a 1H spectrum (shown to the side of the data column) of just
the one proton attached to that carbon. We have a two-dimensional map that correlates the
1H spectrum (on the vertical or F1 axis) with the 13C spectrum (on the horizontal or F2
axis).

Figure 9.6 shows a 2D HETCOR spectrum with the 1D 13C spectrum displayed at the top
(horizontal or F2 dimension) and the 1D 1H spectrum displayed vertically on the left side
(vertical or F1 dimension). From any peak (resonance) in the 1H spectrum, we can follow
a horizontal line until we encounter a spot or blob of intensity in the 2D data matrix. These
clusters of intensity represent correlations in the 2D spectrum and are called crosspeaks.
From the crosspeak we move up along a vertical line and run into the 13C peak in the 1D
13C spectrum corresponding to that proton’s personal carbon atom (the one it is directly
bonded to). In this way we can pair up each proton peak in the 1H spectrum with a carbon
peak in the 13C spectrum—a process called chemical-shift correlation.
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Figure 9.5

Figure 9.6
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Figure 9.7

Figure 9.7 shows the HETCOR spectrum of sucrose. In Chapter 8 we were able to assign
nearly all of the 1H resonances of sucrose using the selective 1D TOCSY experiment,
using the H-g1 and H-f3 doublets as unambiguous starting points. Now we can “transfer”
these 1H assignments to the 13C spectrum using the one-bond correlations mapped out in
the HETCOR spectrum. All 10 protonated (nonquaternary) carbons give clearly resolved
crosspeaks, leading us from each 13C peak to a precise chemical shift in the 1H spectrum,
even if the 1H resonance is overlapped in the 1D 1H spectrum. Although the C-g3 and
C-g5 peaks are very close to each other in the 13C spectrum, we can clearly connect the
downfield peak of the pair to the H-g3 triplet. Because all of the other protons except H-
g5 have been assigned, the upfield peak of the pair must “point” to H-g5, an overlapped
resonance between the H-f5 multiplet and the large, broad singlet representing H-g6 and
H-f6. All three CH2OH crosspeaks (f1, f6, and g6) appear in a tight triangle at the right
side, consistent with the upfield location of CH2 groups relative to CH groups with the same
inductive (electron-withdrawing) factors. The steric effect on 13C shifts gives us general
locations of 50–60 ppm for CH3–O, 60–70 for CH2–O, 70–80 for CH–O and 80–90 for
Cq–O. The top peak of the triangle can be assigned to f1, since the H-f1 singlet (integral area
2) was identified by an NOE across the glycosidic linkage from H-g1. The two other peaks
have nearly identical 1H shifts (the peak on the left is slightly lower, or downfield on the 1H
shift scale) and we cannot assign them unambiguously. Note that the C-f2 quaternary carbon
does not give any crosspeak in the HETCOR spectrum because it is not directly connected
to a proton. Only one-bond relationships between 1H and 13C lead to a correlation in this
experiment (Fig. 9.3).
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9.2.1 Designing a HETCOR Pulse Sequence

Let’s apply the general design principles of 2D NMR to the one-bond correlation of 13C
(in F2) to 1H (in F1). The specific steps for the HETCOR experiment are as follows:

1. Preparation: a 90◦ nonselective 1H pulse rotates 1H z magnetization into the x–y
plane.

2. Evolution: the 1H magnetization precesses in the x–y plane for a period t1, encoding
its chemical shift as a function of t1.

3. Mixing: an INEPT sequence converts the 1H magnetization into antiphase magnetiza-
tion with respect to its attached 13C nucleus, and then transfers the 1H magnetization
to 13C magnetization by simultaneous 90◦ pulses on both 1H and 13C channels.

4. Detection: The 13C FID is recorded.

The simplest possible pulse sequence would involve a 90◦ 1H pulse followed by a t1
delay, and then an INEPT sequence (Fig. 9.8). Now we need to make refinements, thinking
carefully about what we want to happen during various delays and what we want to prevent
or suppress. During the evolution (t1) period, we only want chemical-shift evolution. We
would like to refocus the J-coupling (1JCH) evolution, and it would be nice if we could also
refocus the homonuclear (1H–1H) J-coupling evolution. That way the only information
that will be encoded during the evolution period is the information that we want to show
up in the F1 (�H) dimension of the 2D spectrum: the 1H chemical shift. Suppressing the
1JCH coupling is accomplished simply by inserting a 13C 180◦ pulse into the center of

Figure 9.8

Figure 9.9
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the t1 period (Fig. 9.9). This reverses the J-coupling evolution so that it refocuses during
the second half of t1. The 1H chemical shifts continue to evolve because there is no 1H 180◦
pulse. This is the reverse of the strategy used in Chapter 6 to refocus J-coupling evolution
during a 13C evolution period (Fig. 6.33). Refocusing of homonuclear (1H–1H) J-coupling
evolution is a bit more complicated and will be discussed last.

Next, we need to examine the 1/(2J) period of the INEPT sequence. In an INEPT ex-
periment we usually allow only the J-coupling evolution, which is required to generate
antiphase magnetization, to occur during the 1/(2J) delay. The chemical-shift evolution is
suppressed so that the phase of detected peaks is not screwed up by off-resonance chemical-
shift effects. We could accomplish this by inserting simultaneous 180◦ pulses on 1H and
13C in the center of the 1/(2J) delay. But in this experiment, we will not worry about phase.
The data will be looked at in “magnitude mode,” which calculates a single number for each
data point from the real and imaginary parts of the spectrum:

magnitude =
√

(real)2 + (imag)2

Because chemical-shift evolution just rotates the magnetization vector in the x′–y′
(real–imaginary) plane without affecting its magnitude, the phase of the detected 13C mag-
netization is not important. So we can live with a simple 1/(2J) delay.

As our sequence stands so far, the detected signals will be fully coupled antiphase peaks.
This could be messy since CH groups will appear as antiphase doublets (intensity ratio 1,
−1), CH2 groups as antiphase triplets (1, 0, −1), and CH3 groups will appear as antiphase
quartets (intensity ratio 1, 1, −1, −1) in the F2 (13C) dimension. We need to use proton
decoupling during the FID acquisition (“detection”) period. This will collapse all of the 13C
multiplets into single peaks. But as we saw in the simple INEPT experiment (Chapter 7),
the intensities of the antiphase multiplets add up to zero. So turning on the proton decoupler
will lead to a complete loss of all 13C signals in F2. This is not good. The solution is
to allow the antiphase magnetization to undergo J-coupling evolution for an additional
delay period so that the individual multiplet components come back together into normal
(in-phase) multiplets. The optimal refocusing period is 1/(2J) for the CH carbons, 1/(4J) for
the CH2 carbons, and about 1/(5J) for the CH3 carbons. The best compromise that allows
observation of all three kinds of carbons (Fig. 9.10) is a delay of 1/(3J). Again, we do not
worry about 13C chemical-shift evolution during this delay because we will display the data
in magnitude mode.

Figure 9.10
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Figure 9.11

Finally, we will deal with the question of 1H–1H coupling during the evolution period.
This is frosting on the cake, and I only bring it up to show the beautiful things you can
accomplish with pulse sequence building blocks. The only protons we are interested in are
those bonded to a 13C, because these are the only ones that can transfer magnetization to
13C. If we consider the other 1H nuclei that have homonuclear coupling to the (13C-bound)
1H that is undergoing chemical-shift evolution during the t1 period, we see that they have
a 99% chance of being bonded to a 12C, since the abundance of 13C is only 1%. The only
exception is the case of geminal coupling (2JHH), where the proton is attached to the same
carbon, which has to be a 13C. The trick is to apply a “magic” selective 180◦ pulse that only
affects protons bonded to 12C, at the same time as the 13C 180◦ pulse in the middle of the t1
period (Fig. 9.10). From the point of view of the proton we are observing in F1, it is under-
going chemical-shift evolution during the t1 period. The 180◦ 13C pulse in the center of t1
reverses the 1JCH coupling evolution from its directly bound 13C, and the 180◦ 1H “magic
pulse” on the 12C-bound protons reverses its J-coupling evolution from the vicinal 1H
coupling.

How do you generate a 180◦ 1H pulse that only hits 12C-bound protons? This magic is
accomplished by a spin-echo sequence called bilinear rotation decoupling (BIRD), which
takes advantage of the different J-coupling evolution of the 13C-bound protons and the
12C-bound protons (Fig. 9.11). For the 12C-bound 1H magnetization, this is just a 180◦
inversion pulse (two 90◦ pulses with a spin echo sandwiched in between). The spin-echo
part is effectively invisible because the 180◦ 13C pulse has no effect and the 1/J delay does
not lead to any J-coupling evolution (J refers to 1JCH as before). Starting with Iz, we rotate
the magnetization to −y′, and the spin-echo returns it to −y′, reversing any chemical-shift
evolution. The final 90◦

x pulse rotates it from −y′ down to −z. This is just what we want
because we wish to reverse any J-coupling evolution due to this proton. For the 13C-bound
1H magnetization, however, the spin echo leads to 1JCH evolution for a total of 1/J s, rotating
the magnetization from −y′ to +y′, just as it does in the APT experiment (Chapter 6).The
final 90◦

x pulse rotates it back up to +z, so the 13C-bound 1H nuclei are not affected by this
sequence. We can use product operators to verify that for the 13C-bound protons the BIRD
sequence is equivalent to a simple 180◦ 13C pulse, just like the center of the t1 delay in
Figure 9.10:

Iz −90◦
x(1H)→ −Iy −1/(2J)→ 2IxSz −180◦

y(1H)/180◦(13C)→ 2IxSz −1/(2J)→ Iy −90◦
x(1H)→ Iz

Ix → Ix → 2IySz → −2IySz → Ix → Ix

Iy → Iz → Iz → −Iz → −Iz → Iy

2IxSz → 2IxSz → Iy → Iy → −2IxSz → −2IxSz

2IySz → 2IzSz → 2IzSz → 2IzSz → 2IzSz → −2IySz
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Figure 9.12

Every possible component of 13C-bound 1H net magnetization is affected the same
way it would be affected by a simple 180◦ 13C inversion pulse. For the 12C-bound net
magnetization:

Iz → −Iy → −Iy → −Iy → −Iy → −Iz

Ix → Ix → Ix → −Ix → −Ix → −Ix

Iy → Iz → Iz → −Iz → −Iz → Iy

The sequence is exactly like a 180◦
y pulse on the 1H channel. Throughout we are ignoring

1H chemical-shift evolution during the 1/(2J) delays, because the 180◦ proton pulse in the
center will refocus it. We will see other variants of this strategy later. By reversing the
phase of the final 1H 90◦ pulse, we can do just the opposite: deliver a 180◦ 1H pulse to the
13C-bound protons while leaving the 12C-bound protons alone. If we change the 90◦ pulses
to 45◦ pulses, we can selectively deliver an overall 90◦ 1H pulse to the 13C-bound protons
alone or to the 12C-bound protons alone. This variant is called TANGO.

So the BIRD sequence is effectively a selective 180◦ 1H pulse that applies only to 12C-
bound protons. The final version of our HETCOR pulse sequence is shown in Figure 9.12.
This is beginning to look pretty complicated, but most of the details just have to deal with
controlling what is refocused and what is allowed to evolve during the t1 period. The resulting
spectrum will show only single peaks in F1 for each proton chemical shift, and single peaks
in F2 for each 13C chemical shift (Fig. 9.7). This leads to a remarkable simplification
of heavily overlapped regions of the proton spectrum. We will see in Chapter 11 that the
HETCOR experiment is largely obsolete, replaced by the more sensitive inverse experiment
HSQC, which correlates 1H to directly bound 13C by transferring in the reverse direction,
from 13C (F1) to 1H (F2).

9.3 A GENERAL OVERVIEW OF 2D NMR EXPERIMENTS

9.3.1 Display of 2D NMR Data

The 2D data matrix is just an array of numbers (intensities) arranged in rows and columns:
2048 columns and 1024 rows is typical. The numbers themselves can be positive or negative
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Figure 9.13

and are typically very large (e.g., −2 × 109 to +2 × 109). How can we represent this
“third dimension”—the intensity values—on a two-dimensional piece of paper or computer
screen? We could use a stacked plot of 1D spectra (Fig. 9.13), with a horizontal offset to
keep peaks from one spectrum from falling on top of the same peak in the next spectrum.
Software can even “whitewash” the spectra behind a peak to make the peak stand out like
a three-dimensional object. The nice thing about a stacked plot is that we can see the noise
level, but for any degree of complexity it is not practical. An intensity plot is just a color
code of each data element (“pixel”) according to a color key at the side of the spectrum.
Typically red and yellow colors are used for positive values and blue colors are used for
negative values. This is very fast for a computer to display (Varian dconi command) but
when we look at the details of a crosspeak it is difficult to see the fine structure. The standard
for display of 2D spectra today is the contour map or contour plot. If you are a hiker, you are
familiar with the topographic maps that show elevation as a “third dimension” of the map.
If you imagine that the world is flooded to the level of 1000 ft. above sea level, for example,
the shoreline is drawn on the map as the 1000 ft. contour. A mountain is represented as
a series of concentric circles, successive shorelines around the “island” that would be left
if the area were flooded. We can do the same thing to describe an NMR crosspeak, with
contours showing positions of equal intensity. For example, we might connect all “pixels”
or data cells that have intensities of 2 with the “2” contour line. All data values of 4 would be
connected to create the next higher contour, and data values of 8 would be used for the next
(Fig. 9.13). Because data values are digitized in discreet “boxes,” we need to interpolate
if we cannot find the exact value we are looking for. In topographic maps we use even
intervals of elevations (e.g., 40 or 80 ft contour intervals), but in NMR we use a geometric
series (e.g., 2, 4, 8, 16, 32) because it fits the Lorentzian lineshape better. A Lorentzian
mountain would be a real challenge for hikers! For an NMR contour plot, we need to decide
on a contour threshold (everything below this value is ignored), a number of contours and
a contour interval or multiplier. If the threshold is 100 and the multiplier is 1.5, we have
contour levels of 100, 150, 225, 338, 506, and so on, up to the number of contours. For
some 2D data, negative values are important, so we might choose to show both negative
and positive contours. On the computer screen, a typical display consists of 10 positive and
10 negative contours, with a multiplier of 1.20 between levels. If the threshold is 1000, we
have contour levels of:

In white: 1000 1200 1440 1728 2074 2488 2986 3583 4300 5160
In red: −1000 −1200 −1440 −1728 −2074 −2488 −2986 −3583 −4300 −5160

A contour plot hides many evils. Because we can set the threshold as high as we want,
we can eliminate impurities and artifacts without being accused of fraud! To be honest (and
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avoid missing important details) it is best to move the threshold down until a little bit of
noise is visible. It’s like trying to see a boat in a choppy ocean: a supertanker is easy to
see without showing any of the waves, but if you want to find a canoe you’d better bring
your threshold down until you see just the tops of the waves. Beginners in the world of
2D NMR always want to print out their 2D data on paper, but this is difficult because you
really need to look at each part of the spectrum at several different contour thresholds, first
displaying only the most intense peaks and then moving down until the noise is visible.
Aligning peaks and comparing different 2D experiments is extremely difficult on paper.
I remember a protein NMR lab in 1990 that had a room full of full-sized drafting tables,
with researchers working on table-sized printouts of 2D NMR data using very sharp pencils
to align crosspeaks. Soon afterward all of this was replaced with computer programs with
sophisticated graphic displays that allow side-by-side display of different regions of the
same 2D spectrum or corresponding regions of two different experiments, with correlated
crosshairs that move simultaneously in both spectra under mouse control. Although the
NMR instrument manufacturers all have software for 2D NMR data processing and analysis,
a number of “third party” (neither Bruker nor Varian) programs are available that are far
superior to software on the spectrometers: Felix (Accelerys, Inc.), MestRec, NUTS (Acorn
NMR), and NMRpipe/NMRview (freeware) are examples.

9.3.2 2D Data Acquisition and Processing in General

The raw data from a 2D experiment consist of a series of FIDs, each acquired with a slightly
longer t1 delay than the previous one. Varian creates an array of FIDs, with the t1 delay
(parameter d2) arrayed (e.g., d2 = 0, 0.001, 0.002, 0.003, and so on). Bruker puts the
FIDs together in a “serial file” (filename ser) and uses the parameter d0 (d-zero) for the
t1 delay in the pulse sequence, increasing it by the increment in0 with the pulse program
command id0 (increment d-zero). Keep in mind that the heart of the 2D experiment is the
transfer of magnetization from nucleus A to nucleus B during the mixing step. The first
step in processing a 2D dataset is to Fourier-transform each of the FIDs in the array. The
resulting spectra are loaded into a data matrix (like a spreadsheet) with the rows representing
individual spectra in order of t1 value, with the smallest t1 value as the bottom row. The
horizontal axis is labeled F2, which is the chemical shift observed directly in each FID, and
the vertical axis is t1, the evolution delay. Each row in the 2D matrix represents a spectrum
acquired with a different t1 delay, and each column in the matrix represents either noise (if
the F2 value of that column is in a noise region of the spectrum) or, if F2 is the frequency
of nucleus B (�b), the column is a t1 “FID” with maximum intensity at the bottom and
oscillating in a decaying fashion as we move up to higher t1 values (Fig. 9.14). The frequency
of this oscillation is just the chemical shift (�a) of nucleus A. Of course, a real sample has
more than one peak in its spectrum, so there would be other columns containing different
t1 FIDs.

The second step in processing the 2D data is to perform a second Fourier transform
on each of the columns of the matrix. Most of columns will represent noise, but when we
reach a column which falls on an F2 peak, transformation of the t1 FID gives a spectrum in
F1, with a peak at the chemical shift of nucleus A (Fig. 9.15). The final 2D spectrum is a
matrix of numerical values that has a pocket of intensity at the intersection of the horizontal
line F1 = �a and the vertical line F2 = �b and has an overall intensity determined by
the efficiency of transfer of magnetization from nucleus A to nucleus B. This efficiency
tells us something about the relationship (J value or NOE intensity) between the two nuclei
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Figure 9.14

within the molecule. Simultaneously with the process we described, other pairs of nuclei are
undergoing the same evolution, mixing and detection process resulting in other crosspeaks at
the intersections of the appropriate chemical-shift lines and with characteristic intensities
representing the efficiency of transfer of magnetization. The 2D spectrum thus represents a
complete map of all interactions that lead to magnetization transfer, with the participants in
the interaction addressed by their chemical shifts.

The important concept here is the “labeling” of the magnetization with the chemical shift
of nucleus A during the evolution period, and the subsequent unraveling of this information
to link nucleus A to nucleus B. Let’s look at this process in more detail. Each FID of the
2D experiment samples a single point in the indirect time domain t1, in the same way that
the ordinary 1D FID is sampled at discreet, evenly spaced time points by the analog to
digital converter (ADC) during a direct (real-time) acquisition. During the evolution (t1)
period, the x′ component of the nucleus A magnetization is a cosine or sine function with
amplitude A and angular frequency �a that decays due to dephasing of individual nuclei
with time constant T ∗

2 :

Ma
x(t) = A cos (�at) × exp(−t/T ∗

2 )

Figure 9.15
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Now assume that the x component of nucleus A magnetization is transferred to nucleus
B by the mixing sequence (most mixing schemes can only transfer one component of the
magnetization). The transferred component might be z magnetization or antiphase magne-
tization or even DQC, but for simplicity we will use Mx. Magnetization transfer gives B
magnetization whose intensity is modulated by the factor Ma

x(t1) that depends on the offset
�a of nucleus A and the value of t1 at the moment of magnetization transfer. This B mag-
netization then precesses during the directly observed FID, inducing a signal in the probe
coil. This signal is the normal FID of nucleus B, multiplied by the modulation (nucleus A)
factor and the efficiency of transfer factor:

FID = Ma
x(t1) × Gab × FID(B)

FID = A cos (�at1) exp (−t1/T a
2 ) × Gab × cos (�bt2) exp (−t2/T b

2 )

where Gab is the efficiency of magnetization transfer (a function of Jab or rab, depending
on the type of experiment), and t2 is the direct time domain of the FID. It is this function
of �a multiplying the directly observed FID that “labels” the nucleus B information with
the chemical shift of the original nucleus, A. If we sample the t1 values in the same way we
sample the t2 values, starting with zero and incrementing by a “dwell time” short enough to
distinguish all of the frequencies expected, we have all the information needed to determine
�a and �b, the chemical shifts of nuclei A and B. This is all of the information we can
expect to obtain from a 2D NMR experiment: the chemical shifts of each pair of nuclei
involved and the intensity of their interaction. To get the information out we need to do two
Fourier transforms: the first in t2, the second in t1.

Each individual FID is an oscillating and decaying function of t2, with the first two terms
above equal to a constant. Fourier transformation gives a spectrum of B multiplied by the
same constant:

Spectrum(t1, F2) = A cos (�at1) exp (−t1/T a
2 ) × Gab × Spectrumb(F2)

We have a different spectrum of B for each t1 value, differing only in the value of the
first term. For each column in the data matrix, we have a function of t1 for a fixed value of
F2 (Fig. 9.14, right). Now the first term is the variable (function of t1) and the last term is a
constant. Fourier transformation of the column converts the t1 FID into a spectrum of A in
the indirect frequency domain F1:

Spectrum(F1, F2) = Spectruma(F1) × Gab × Spectrumb(F2)

For the data matrix, this means pulling out each column of the matrix in succes-
sion, treating it as an FID in t1, performing a Fourier transform and putting the re-
sulting F1 spectrum back into the matrix at the same column position. When all the
columns of the matrix (all the t1 FIDs indexed by the frequency F2) have been trans-
formed into A spectra, we have a 2D spectrum, which is a function in F1 and F2. If
we fix F2 at the offset (chemical shift) of B (F2 = �b), we are looking at a vertical
slice through the crosspeak, which is Spectruma (F1) (Fig. 9.15, right). If we fix F1 at
the offset of A (F1 = �a), we have a horizontal slice through the crosspeak, which is
SpectrumB (F2). The intensity of the crosspeak is determined by the efficiency of mag-
netization transfer Gab. Depending on the mixing scheme used (i.e., sequence of pulses
and/or delays between evolution and detection) the selected relationship (interaction) might
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be a proximity in space (NOE) or a small number of bonds separating the two nuclei
(J coupling).

9.3.3 Taxonomy of 2D NMR Experiments

By now you should be in the habit of thinking of a 2D NMR experiment as a transfer
(“jump”) of magnetization from nucleus A (the F1 frequency on the vertical axis) to nu-
cleus B (the F2 frequency on the horizontal axis). All of the 2D experiments in use can be
classified by the two types of nuclei detected in the direct (F2) and indirect (F1) dimen-
sions and the criteria for magnetization transfer during the mixing step. The mixing pulse
sequences are designed to select for certain types of interactions between nuclei and can
be divided into two categories: magnetization transfer based on a J-coupling interaction
and magnetization transfer based on an NOE interaction. We can further divide the 2D
experiments into homonuclear (experiments that transfer magnetization from one nucleus
to another nucleus of the same type, usually 1H to 1H) and heteronuclear (experiments that
transfer magnetization between two different types of nucleus, e.g., 1H and 13C).

Homonuclear Experiments (1H–1H)

Name F1 Nucleus Mixing F2 Nucleus
COSY 1H J (single transfer) 1H
TOCSY 1H J, J, J, . . . (multiple transfers) 1H
NOESY 1H NOE 1H
ROESY 1H ROE (spin-lock NOE) 1H

Heteronuclear Experiments (1H–13C)

Name F1 Nucleus Mixing F2 Nucleus
HETCOR 1H 1JCH

13C
HSQC 13C 1JCH (13C SQC during t1) 1H
HMQC 13C 1JCH (1H–13C MQC during t1) 1H
HMBC 13C 2,3JCH (long-range couplings) 1H

Homonuclear experiments are characterized by a diagonal defined by F1 = F2 and by
pairs of crosspeaks at symmetrical positions across the diagonal: F1 = �a, F2 = �b and
F1 = �b, F2 = �a. This is because both magnetization transfer pathways, 1Ha → 1Hb
and 1Hb → 1Ha, can be observed. Heteronuclear experiments lack a diagonal and diagonal
symmetry. The range of J values can be selected in mixing schemes: for 1H–13C couplings,
1JCH (the one-bond or direct coupling) is very large (125–180 Hz) whereas the long-range
2,3JCH (two and three-bond coupling) is small (2–12 Hz). Some mixing sequences can allow
multiple “jumps” of magnetization: the TOCSY experiment allows for many jumps based
on J coupling—the first from the F1 nucleus (A) to an intermediate (undetected) nucleus
(C). Other jumps may transfer the magnetization to other undetected nuclei (e.g., D and E)
and a final jump carries it to the F2 nucleus (B), thus spreading the magnetization out over
an entire “spin system” or group of protons interconnected by J couplings.

From these basic experiments have grown many variants. The COSY has been extended
to DQF-COSY (reduced diagonal intensity and improved phase properties) and COSY-35
(simplified crosspeak structure for J-value determination). A common variant of NOESY is
the ROESY, which gives better results for molecules in the size range of peptides, oligosac-
charides and large natural products. HSQC gives the same results as HMQC but has better
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relaxation properties for large molecules such as proteins. All 2D experiments and even 3D
and higher dimensional experiments are based on the above list of basic 2D experiments.

In all this complexity of acronyms it is easy to forget that all 2D experiments do the
same thing: they allow you to correlate two atoms (nuclei) in a molecule based on an
interaction that is either through bond (J coupling) or through space (NOE). The two nuclei
are identified by their chemical shifts, and the correlation appears in the 2D spectrum as
a crosspeak at the F1 chemical shift (“y coordinate”) of the nucleus where magnetization
starts and the F2 chemical shift (“x coordinate”) of the nucleus to which the magnetization is
transferred. Thus the basis of all 2D experiments is the “jump” or transfer of magnetization.
The information (J value or NOE intensity) can be used to define structural relationships
(dihedral angle or distance) but is only useful if we can unambiguously assign the two
chemical shifts (F1 and F2) to specific positions within the molecule.

9.4 2D CORRELATION SPECTROSCOPY (COSY)

COSY is the first and the simplest 2D experiment. It correlates one proton (Ha) to another
(Hb) via a single J coupling that may be 2-bond (geminal), 3-bond (vicinal) or in rare
cases 4-bond or 5-bond (long range). The pulse sequence is simply 90◦ – t1 – 90◦ – FID
(Fig. 9.16). Consider the interaction of two J-coupled protons, Ha and Hb (Fig. 9.17).
The preparation pulse rotates the Ha magnetization from the z axis into the x–y plane.
During the evolution (t1) period, Ha magnetization precesses in the rotating frame at a rate
dependent upon its chemical-shift offset, �a. At the same time, J-coupling evolution occurs
to produce Ha magnetization that is antiphase with respect to its J coupling with Hb. As
with the INEPT transfer in the HETCOR experiment, simultaneous 90◦ pulses applied to Ha
and Hb transfer antiphase Ha magnetization to antiphase Hb magnetization (this is actually
accomplished with a single nonselective 90◦ 1H pulse). During the detection period (FID),
Hb magnetization precesses at its characteristic rate (�b) in the rotating frame, inducing a
voltage in the probe coil, which is digitized as the FID. Fourier transformation in F2 and then
in F1 leads to a 2D data matrix with a crosspeak at F1 = �a, F2 = �b (Fig. 9.18). This basic
COSY sequence is not used much any more—everyone uses the double-quantum filtered
COSY or DQF-COSY sequence. Until we get to the actual DQF-COSY pulse sequence and
understand how it works, however, we will treat these two experiments as equivalent.

The appearance of a homonuclear 2D spectrum is different from what you have seen
for HETCOR, the 1H–13C correlation. Because both frequency scales, F2 and F1, are 1H
chemical-shift scales, we can observe the transfer of coherence from Ha to Hb as a crosspeak
at F1 = �a, F2 = �b (Fig. 9.18, lower right), as well as the opposite sense of transfer from
Hb to Ha, a symmetrically disposed crosspeak at F1 =�b, F2 =�a (upper left crosspeak). In
HETCOR we observe 13C coherence (in F2) that was transferred from the attached proton,
whose chemical shift appears in F1. Transfer in the opposite sense (13C to 1H) is not possible

Figure 9.16
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because the pulse sequence starts with 1H excitation and the detector is set up to observe
only signals at the radio frequency of 13C. Furthermore, if transfer of magnetization “fails”
(i.e., if some coherence remains on the 1H after the mixing step), the 1H coherence is not
detected and cannot be displayed in the 2D spectrum. But in a homonuclear experiment
like COSY, “failed” coherence transfer from Ha means that we encode the frequency of Ha
during t1 and then observe the same frequency in t2. The FID has the form:

cos(�at1) × cos(�at2)

which leads to a peak in the 2D spectrum at F1 = �a and F2 = �a. We call this a diagonal
peak because it falls on the diagonal line defined by F1 = F2, running from the lower
left corner to the upper right corner of the 2D data matrix (Fig. 9.18). Because coherence
transfer is never 100% complete at the end of the mixing sequence, we will always see a
diagonal peak for each resonance in the 1H spectrum. That means that if we trace along the

Figure 9.18
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diagonal line from lower left to upper right we will trace out the 1D proton spectrum. Keep
this in mind because you do not always have the luxury of a 1H spectrum displayed along
the top and side of the 2D spectrum. After a while you can wean yourself away from this
crutch and begin to view the diagonal as your 1D spectrum.

Figure 9.19 shows a COSY spectrum of a molecule with two simple spin systems sep-
arated by a quaternary carbon: -CHa–CHb–CHc–Cq–CHd–CHe-. One can “walk” through
each spin system by moving from diagonal to cross-peak vertically, back to the diagonal
horizontally, and repeating this process. Note that either of the two symmetrical crosspeaks
can be used for this “walk”. The Hb–Hc crosspeak (upper left) shows how the Hb peak
in the 1D spectrum at the top is correlated to the Hc peak in the 1D spectrum on the left
side. This crosspeak represents coherence on Hc that transferred to Hb in the mixing step.
We will always label crosspeaks as shown, with the F2 assignment on the top or bottom
and the F1 assignment to the left or right of the crosspeak. This process of “walking”
(diagonal–crosspeak–diagonal) is especially useful when each carbon has only one proton,
or group of equivalent protons, so that each crosspeak is a jump from a proton on one
carbon to a proton on the next carbon (a vicinal coupling), a common occurrence in car-
bohydrates. The walk sometimes doubles back on itself, since the chemical shift changes
can reverse direction as we move through a spin system (Fig. 9.20). In this case we walk
from the crosspeak to the diagonal peak, passing over the crosspeak for the next jump. The
biggest problem occurs when two adjacent (vicinal) protons have identical or nearly identi-
cal chemical shifts: then the crosspeak connecting them is on the diagonal or very near the
diagonal. Consider the molecular fragment -CH1–CH2–CH3–Cq

4–CH5–CH6–CH7- with
two spin systems separated by the quaternary carbon C4. Suppose that the Ha resonance
can be assigned to H1 and the Hf resonance can be assigned to H7 (Fig. 9.21) based on
chemical shifts or coupling constants. Using the COSY data, we can connect both Ha (H1)
and Hf (H7) to the overlapped two-proton peak Hd/e. So we know that this peak contains



2D CORRELATION SPECTROSCOPY (COSY) 373

Figure 9.20

H2 and H6. But where do we go from here? The Hd/e peak connects to Hb and to Hc, but
we cannot tell which is H3 and which is H5 because we lost the specific trails of the two
spin systems when they “crossed” at Hd/e.

We can resolve this ambiguity with a TOCSY spectrum. This is just a homonuclear 2D
(1H–1H) experiment with the TOCSY spin lock as the mixing portion of the pulse sequence.
With the fragment CH1–CH2–CH3–Cq

4–CH5–CH6–CH7 we expect to see H1 correlated

Figure 9.21
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to H2 as it was in the COSY spectrum, but we will also see H1 correlated to H3 because
the TOCSY spin lock transfers coherence in multiple J-coupling jumps. Likewise, H7 will
correlate to H6 but also to H5 (Fig. 9.22). Thus there is no ambiguity and we can directly
“read off” the two spin systems. Starting with Ha on the diagonal at the lower left, we can
extend a line up or to the right and pass through the Hc and the Hd/e crosspeaks. Starting
with Hf on the diagonal at the upper right, we can move down or to the left and pass through
the Hd/e and Hb crosspeaks. We can assign peak c to H3 and peak b to H5. The “new”
crosspeaks that represent multiple J-coupling jumps are shown in gray. The disadvantage
is that we lose the information about the order of protons in the spin system: without the
COSY data, we don’t know if the order is CHa–CHd/e–CHc or CHa–CHc–CHd/e. We saw
in Chapter 8 that to some extent the intensity of TOCSY transfer peaks can help us to
put them in order because in long spin systems the “smearing” of coherence tends to be
a diffusion-like process, giving less intensity to peaks that result from larger numbers of
jumps. But to be certain of the exact order of protons in a spin system requires a COSY
spectrum, which is limited to single “jumps” through J couplings.

9.4.1 Examples of 2D COSY Spectra

Figure 9.23 shows the 600 MHz DQF-COSY spectrum of 3-heptanone. As a starting point,
we will use the two CH2 groups closest to the ketone carbonyl. These protons should be
shifted downfield to the region of 2–2.5 ppm (compare to acetone at 2.1 ppm). There are two
overlapped peaks on the diagonal (lower left) that can be identified as separate peaks because
their crosspeaks do not line up: the downfield peak lines up vertically and horizontally with
crosspeaks at 0.90 ppm, whereas the upfield peak lines up with crosspeaks at 1.42 ppm.
Following the spin system from the downfield diagonal peak (2.30 ppm), we can move
to the right and up (or up and to the right) to the diagonal peak at 0.90 ppm. This “box”
(dotted lines) is a dead end: there are only two resonances in the spin system. So we can
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assign it to H2 (2.30 ppm) and H1 (0.90 ppm). This spin system represents the ethyl group:
CH2–CH3. By process of elimination, the upfield peak of the overlapped pair (2.27 ppm)
must be H4 on the other side of the ketone carbonyl. Following the crosspeaks on either
side of the diagonal (dotted lines) we move to H5 (1.42 ppm), then to H6 (1.18 ppm), and
finally to the methyl group H7 (0.77 ppm). The dotted lines show how this spin system of
four resonances (n-butyl group) is distinct from the spin system of two resonances (ethyl
group). Note how the methyl groups are the most upfield, both because they are farthest
from the carbonyl group and because there is an inherent upfield shift as we move from CH
to CH2 to CH3 (δ1.6, 1.2, and 0.85 in a saturated hydrocarbon).

For comparison, the 600 MHz TOCSY spectrum of 3-heptanone is shown in Figure 9.24.
The first thing you notice is that there are a lot more crosspeaks! This does lead to more
clutter but now instead of having to “walk” from diagonal to crosspeak to diagonal, you can
move horizontally or vertically and spell out the entire spin system along one line. The top
line, starting at the right with the H7 peak on the diagonal, moves left through crosspeaks
for H6, H5, and H4 (it is only coincidence that they are in order). Because the crosspeaks
are in-phase, we can even read off their splitting patterns: triplet for H7, quartet for H6,
quintet for H5, and triplet for H4. This fine structure is only visible in the F2 (horizontal)
direction; in F1 the resolution is poor because we collect far fewer data points in the t1
FID. Along this top horizontal line the magnetization started with the H7 methyl group
(F1 = 0.77 ppm), transferring in one J-coupling “jump” to give the crosspeak at F2 = H6,
two “jumps” of TOCSY transfer to give the H5 crosspeak, and three “jumps” to reach H4.

There are typically two kinds of artifacts in COSY spectra: t1 noise (vertical streaks)
and DQ artifacts. The t1 streaks extend up and down from the most intense and sharpest
peaks along the diagonal. These result from any instability that can cause random variations
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between different FIDs in the 2D acquisition (different t1 values). If after the first Fourier
transform the peak heights in the interferogram (Fig. 9.2) are not exactly reproducible from
spectrum to spectrum, this introduces random “noise” in the t1 FID and after the second
Fourier transform we have noise in the F1 spectrum which is inserted back into the data
column. This “noise” only shows up in the columns which correspond to peaks in the spec-
trum, so it looks like vertical streaks in the 2D spectrum. Because they are truly random
variations in intensity, however, there are no “tricks” of smoothing or subtraction that can
remove them. We can only try to reduce any source of variation (unstable electronics, tem-
perature variation, sample spinning, building vibration, etc.) during the 2D data acquisition.
For this reason, we never spin the sample during a 2D acquisition. The DQ artifacts show
up along two lines extending from the lower left and lower right corners of the 2D spectrum
to a point on the top in the exact center in F2 (Fig. 9.25), at the F2 frequency of each peak
on the diagonal. Again, the stronger peaks in the diagonal tend to give the most intense
artifacts. These can be distinguished from crosspeaks because they are not symmetrically
disposed about the diagonal. If you have any doubt about a crosspeak, always check for its
partner on the other side of the diagonal.

A portion of the 600 MHz DQF-COSY spectrum of 15-β-hydroxytestosterone (Fig. 9.26)
is shown in Figure 9.27. As before, F1 assignments are written to the left side or right side
of a crosspeak and F2 assignments are written above or below the crosspeak. The amount of
information packed into this single experiment is amazing! The assignments were obtained
by using this data along with other 2D experiments that connect 1H to 13C (Chapter 11).
There are several overlapped groups on the diagonal; for example, at the lower left side we
see two overlapped peaks on the diagonal. The downfield one is H6β alone and the larger
upfield one is H2β and H16α. We can see that H2β is slightly downfield of H16α by looking
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at the H2β – H1α crosspeak (center left), which is slightly to the left of the H16α – H16β

crosspeak just above it. You can also see that the H2β resonance is wider and appears as
a triplet in F2, whereas the H16α resonance is narrower. In this way, we can see resolved
crosspeaks even when they are badly overlapped or even precisely the same chemical shift
on the diagonal. This is one of the huge advantages of 2D NMR.

For resolved peaks we can easily move along a horizontal or vertical line to identify
all of its coupling partners. Starting at the right with the H8 resonance (F1 = 2.03 ppm),
we can see COSY magnetization transfer (moving left) to H14, H9, H7α and then, passing
through the diagonal, to H7β. All of these are vicinal relationships involving a single J
coupling to H8. Starting at the center left side we can follow the F1 = H1α line to the right,
passing the H2β, H2α, and H1β crosspeaks, then going through the diagonal peak to a very
narrow crosspeak with H19, the angular methyl group singlet. How can we have a COSY
crosspeak to a singlet? There is a small “W” coupling between the axial H1α proton and
the H19 methyl group due to the anti relationship of H-1α and C19 (Fig. 9.26, bottom). At
least one of the C19 methyl protons is in a “W” relationship with H1α, and this leads to a
COSY crosspeak even though the coupling is not resolved in the 1D 1H spectrum.

Figure 9.28 shows the 300 MHz DQF-COSY spectrum of sucrose in D2O. For conve-
nience, the 1H spectrum is shown at the top and on the left side. To analyze the COSY
spectrum you always need a starting point: a 1H resonance that is resolved and can be

Figure 9.26
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unambiguously assigned on the basis of its coupling pattern and/or chemical shift. The su-
crose structure (Chapter 8, Fig. 8.44) predicts only two doublet resonances: H-g1 because
it is coupled only to H-g2, and H-f3 because it is coupled only to H-f4. H-g1 is bonded to
an anomeric carbon, with two bonds to oxygen, so it should be downfield of H-f3. So we
can assign H-g1 to the doublet at 5.36 ppm (J = 3.8 Hz) and H-f3 to the doublet at 4.2 ppm
(J = 8.8). Starting at 5.36 ppm (d, J = 3.8) with H-g1 on the diagonal (Fig. 9.28, lower
left) we can move to the right to a prominent crosspeak (lower right) and then straight up
passing through a crosspeak (rectangular box) and returning to the diagonal at 3.5 ppm
(dd, J = 10.0, 3.8). This diagonal peak can be assigned to H-g2. Moving either left or back
down from the H-g2 diagonal peak we encounter a crosspeak (rectangular boxes) that leads
us back to the diagonal at 3.7 ppm (t, 10 Hz). This diagonal peak corresponds to H-g3.
Before continuing our walk, let’s take a closer look at the H-g1 to H-g2 crosspeak.

9.4.2 Fine Structure of COSY Crosspeaks

So far we have looked at the COSY crosspeaks as “blobs” of intensity which correlate one
resonance (Ha in F1) with another (Hb in F2) at the intersection of their chemical-shift
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positions (F1 = �a and F2 = �b). But we know that the resonances Ha and Hb are not
single lines: at the very least we would have doublets for the Ha and Hb resonances if they
are coupled only to each other. If we extend the four individual lines of the two doublets into
the 2D spectrum, we see that there will be four peaks in each crosspeak and four peaks in
each diagonal peak (Fig. 9.29). Positive intensities are shown as closed circles and negative
intensities are shown as open circles. The crosspeak arises from a transfer of antiphase
coherence to antiphase coherence by the mixing sequence (a single 90◦ pulse), so the peak
intensities are antiphase (+/−) in each dimension. The upper left crosspeak (F2 = �a, F1 =
�b) gives an antiphase doublet if we display a horizontal slice or a vertical slice through
the peak. It often happens that the crosspeaks are “out in the open”—not overlapped with
other crosspeaks—whereas the corresponding peaks in the 1D spectrum are overlapped and
cannot be analyzed to extract J couplings. By making a slice through the crosspeak, we can
measure the J coupling and assign it clearly to the coupling between the two resonances
that give rise to the crosspeak (in this case, Jab between Ha with frequency �a and Hb with
frequency �b). When analyzing a 1D spectrum one can determine J couplings accurately in
resolved multiplets, but it is not always clear which of the other peaks in the spectrum is the
coupling partner for each of the couplings. The 2D COSY clearly shows us which resonances
are coupled, and the fine structure of the crosspeak can give us the exact coupling constant
value.

In the inset of the sucrose COSY spectrum (Fig. 9.28, upper left), the H-g2 (F1) to H-g1
(F2) crosspeak is enlarged to show its fine structure. In the 1D spectrum the H-g1 peak
is a doublet (J = 3.8 Hz) because it is the anomeric proton (at the “end of the line”) and
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only has one coupling: to H-g2. If we make a horizontal slice of this crosspeak we get
an antiphase doublet with J = 3.8 Hz. The symmetry-related crosspeak (Fig. 9.28, lower
right inset) represents transfer of magnetization from H-g1 (F1) to H-g2 (F2). The H-g2
resonance in the 1D spectrum is a double doublet (J = 10.0, 3.8) because it is coupled to
H-g1 (3.8 Hz, axial–equatorial) and to H-g3 (10.0 Hz, axial–axial). The horizontal (F2)
slice through this crosspeak shows the double-doublet structure, but it is antiphase (+,−)
with respect to the 3.8 Hz coupling and in-phase (+,+ or −,−) with respect to the 10.0
Hz coupling. The antiphase H-g1 coherence,2I1yI

2
z , undergoes coherence transfer to give

the antiphase H-g2 coherence, 2I2yI
1
z , but because H-g2 is also coupled to H-g3 we see this

coupling as well. Any coupling that does not appear as a multiplier (× Iz) in the operator
product must be in-phase. This is recorded in the FID and after the F2 Fourier transform we
see that any pair of lines separated by the “passive” coupling J23 will have the same sign
(+,+ or −,−) and any pair of lines separated by the “active” coupling J12 will have the
opposite sign (+,− or −,+). The “active” coupling is simply the coupling that gave rise to
the crosspeak. If the crosspeak is located at the intersection of the H-g1 chemical shift and
the H-g2 chemical shift, the active coupling in its fine structure will be J12, the coupling that
led to the H-g1/H-g2 antiphase state and allowed coherence transfer to occur. The passive
coupling (J23) does not appear at all in the F1 dimension of this crosspeak because the F1
resonance is H-g1, which is only coupled to H-g2.

Figure 9.30 shows the upfield region of the 300 MHz DQF-COSY spectrum of sucrose.
Starting at the upper left, we follow horizontally from the H-g2 (F1)/H-g1 (F2) crosspeak
(from Fig. 9.28, upper left) to the right along the dotted line, passing through a crosspeak
and on to the H-g2 diagonal peak. From here we go straight down to a crosspeak and then to
the left back to the diagonal: this is the H-g3 diagonal peak. From here we reverse direction,
moving horizontally to the right and passing the H-g2/H-g3 crosspeak to stop at another
crosspeak, enclosed in a rectangular box. From here we move straight up, returning to the
diagonal at the most upfield peak of the spectrum. We can assign this peak to H-g4 (a triplet
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in the 1D spectrum). From here we move to the left, passing the H-g3/H-g4 crosspeak to a
faint crosspeak just beyond it (rectangular box labeled “g5”). Moving up to the 1H spectrum
at the top of the COSY we can pinpoint the chemical shift of H-g5 in the overlapped region.
This completes our walk through the glucose spin system. H-g6 (two protons) is too close in
chemical shift to H-g5 to provide any useful crosspeak, but we can guess that its resonance
is in the tall peak just upfield of H-g5.

Starting again with the H-f3 diagonal peak (Fig. 9.30, lower left), we move up and then
right to the H-f4 diagonal peak, and then up again and right to the H-f5 diagonal peak (“X”
shape). If we strain our eyes a bit, we can see a blob of intensity above the H-f5 diagonal peak
(rectangular box) that leads us to the right side to the H-f6 diagonal peak. This corresponds
to the same tall, overlapped peak in the 1D spectrum that we assigned to H-g6. This confirms
the assignments we made in Chapter 8 based on selective 1D TOCSY experiments, and it
also confirms our 13C assignments made through the HETCOR correlations. Sucrose is
assigned!

In the 300 MHz DQF-COSY spectrum of sucrose the crosspeaks appear very large
because the chemical-shift range is small, particularly for the nonanomeric protons. One
way to “shrink” the size of the crosspeaks is to move to a higher-field instrument. We saw
in Chapter 2 how the “footprint” of a 1H resonance (multiplet) gets smaller on the ppm
scale as we increase the field strength. Figure 9.31 shows the upfield region of the 600 MHz
DQF-COSY spectrum of sucrose. Comparing to Figure 9.30, all of the splittings have been
cut in half and the crosspeaks and diagonal peaks are one half the size in both dimensions.
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This is because 1 ppm now corresponds to 600 Hz rather than 300 Hz and the coupling
constants in hertz have not changed. It is now much easier to follow the spin system from
H-g2 to H-g5 and from H-f3 to H-f6 (Fig. 9.31, arrows). At 600 MHz the H-f5 resonance
is completely resolved (a ddd coupled to H-f4 and the two H-f6 protons) and the H-f5 to
H-f6 crosspeak is clearly visible.

In Chapter 5 we looked at the presaturation 1H spectrum of a cyclic peptide in 90%
H2O/10% D2O (Fig. 5.20). Figure 9.32 shows a portion of the DQF-COSY of the same
cyclic peptide in D2O, also using presaturation of the HOD resonance. The Hα resonances
are seen on the diagonal in the region 3.9–5.4 ppm, with connections to the Hβ protons
shown by dotted lines. One Hα resonance in particular is labeled with crosspeaks to two β

protons. This type of spin system is typical of a large number of amino acids and is called
“three-spin” or “AMX”: ND–CHα−CHβ

2−Y, where Y is either a heteroatom or a quaternary
carbon (aromatic ring or carbonyl). Note that the amide NH is exchanged with deuterium
in D2O so it is no longer part of the spin system. Another AMX spin system is found at Hα

= 4.77 ppm, slightly downfield of the HOD streak. Notice that the Hα peak is missing on
the diagonal for this spin system, and there are no symmetry-related Hα → Hβ crosspeaks
below the diagonal. In this case, the presaturation of HOD “wiped out” (saturated) the Hα

proton so it could not transfer magnetization to Hβ or Hβ′ . This kills the Hα diagonal peak
(failed transfer from Hα) and the F2 = Hβ, Hβ′ crosspeaks (transfer from Hα). But the F1
= Hβ, Hβ′ crosspeaks are fine because they are far from HOD and are not affected by the
presaturation. They transfer magnetization to Hα (F2 = Hα), which is observed in the FID.
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It might be possible to measure the side-chain dihedral angle χ1 (chi-1), defined by the
N–Cα–Cβ–Y angle, if we can measure the Hα–Hβ J-coupling constants. In the AMX spin
system, there are three protons and each appears as a double doublet: Hα is split by Hβ and
Hβ′ ; Hβ is split by Hβ′ and Hα; and Hβ′ is split by Hβ and Hα. Assuming that Hβ and Hβ′ have
significantly different chemical shifts, we can diagram the expected crosspeak fine structure
in the COSY spectrum (Fig. 9.33, left). For example, in F2 we have the Hα resonance with
a double doublet defined by Jαβ and Jαβ′ . The Hα–Hβ crosspeak (bottom) will have the Jαβ

couplings antiphase (active coupling) and the Jαβ′ couplings in-phase (passive coupling).
The Hα–Hβ′ crosspeak (top) will have the Jαβ′ couplings antiphase (active coupling) and the
Jαβ couplings in-phase (passive coupling). In all, each of the two crosspeaks will have 16
peaks in the fine structure (double doublet in F1 and dd in F2). We could make a horizontal
(F2) slice through one of the rows and try to extract the active and passive couplings, but
usually this is difficult due to crowding and the complexity of the pattern. A modified COSY
experiment, called COSY-35, greatly reduces the intensity of every other peak in the fine
structure, leaving only eight peaks in each crosspeak (Fig. 9.33, right). This is accomplished
by simply reducing the pulse width of the final pulse in the COSY sequence from 90◦ to
35◦ (Fig. 9.34), reducing 8 of the peaks to an intensity of 10% ((1 − cos �)/(1 + cos �))
of the other 8. Now an F2 slice gives a simple antiphase doublet pattern representing the
active coupling, or a direct measurement in F2 can be made between peaks of the same
sign (+ to +, or − to −) to measure the passive coupling (Fig. 9.33, right). Figure 9.35
shows an expansion of the F1 = Hβ, Hβ′ /F2 = Hα crosspeak highlighted with a rectangle
in Figure 9.32. The left side is the DQF-COSY spectrum, with 16 peaks in each crosspeak,
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and the right side is the COSY-35 spectrum, with only eight peaks in each crosspeak. The
contour threshold is set high enough to completely reject the other eight peaks that are much
lower in intensity. An F2 slice of the upper (Hβ′ ) crosspeak yields the active coupling Jαβ′ ,
which can be accurately measured by simulation and curve fitting. An F2 slice of the lower
(Hβ) crosspeak shows an antiphase doublet with the active coupling Jαβ. Alternatively, direct
measurement from peaks of like sign gives us the passive coupling Jαβ from the upper (Hβ′ )
crosspeak and the passive coupling Jαβ′ from the lower (Hβ) crosspeak.

Figure 9.36 shows Newman projections of the three low-energy conformers for the
Cα–Cβ bond of an “AMX” amino acid residue within a peptide or protein. The gauche
relationship should give a small coupling (<6 Hz) and the anti relationship should give a

Figure 9.34
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large coupling (>8 Hz). If both couplings (Jαβ and Jαβ′ ) are small, we have conformer (a). If
one is large and one is small, we have either (b) or (c). Since we do not know which β proton
resonance is the pro-R and which is the pro-S (i.e., the β and β′ labels could be swapped
in Fig. 9.36), we cannot distinguish between these two possibilities. If the couplings are
intermediate (6–8 Hz) we have a flexible molecule with averaging over more than one
conformation. The example in Figure 9.35 is averaged J couplings (Jαβ′ = 8.65, Jαβ = 6.7
Hz) with a slight preference for conformations (b) and (c).

When measuring J couplings, one should keep in mind that the simple distance between
peak maxima for a doublet is not always an accurate measure of the J coupling, especially
if the peak width is similar to the J coupling. In-phase doublets “creep” together as peak

Figure 9.36
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width increases, leading to an underestimate of the J value, whereas antiphase doublets
move apart, leading to an overestimate. Figure 9.37 shows two calculated Lorenztian peaks
with linewidth of 10 Hz, separated by a coupling of 7.5 Hz with one peak inverted. The sum
is an antiphase doublet with a separation of 8.63 Hz, which would be mistakenly interpreted
as an anti relationship (>8 Hz) instead of an average of conformers (actual J = 7.5 Hz). An
in-phase doublet with the same 10 Hz linewidth and 7.5 Hz J value would give a separation
of 5.63 Hz (Fig. 9.38).

9.5 UNDERSTANDING COSY WITH PRODUCT OPERATORS

9.5.1 Analyzing the Homonuclear “Front End”

Most homonuclear 2D (1H–1H) experiments have the same “front end”: they start with the
sequence 90◦ − t1 − 90◦. Let’s follow the net magnetization of a single proton, Ha, with
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offset �a and a single J coupling to Hb. The preparation pulse is just a 90◦ pulse on the x′
axis, which rotates the Ha z magnetization onto the −y′ axis. This magnetization undergoes
both chemical shift and J-coupling evolution during the t1 delay. This is a complex motion
that involves the two components of Ha magnetization (Hb = α and Hb = β) separating,
spreading until they are opposite each other (antiphase), and then coming back together
again (in phase). At the same time, the center between the two components is rotating
with angular frequency �a (the chemical-shift offset, corresponding to the center of the Ha
doublet). The two components may rotate into antiphase and back again many times during
the t1 period, and where they end up at the end of the t1 period will vary with t1, consisting in
general of some fraction of the magnetization being in-phase and some fraction antiphase.
In addition, the chemical shift �a is encoded into the phase of the magnetization at the
end of the t1 period. As we saw in the INEPT experiment, antiphase magnetization can be
transferred to the other J-coupled nucleus by simultaneous 90◦ pulses on both nuclei. This
is just what the second 90◦ pulse in the COSY sequence does, since it is a nonselective pulse
that affects both Ha and Hb equally. The portion of the Ha magnetization that is antiphase
at the end of the t1 delay is transferred to Hb antiphase magnetization and contributes to a
crosspeak at F1 = �a, F2 = �b. The portion of the Ha magnetization that is in-phase does
not undergo transfer, and contributes to a diagonal peak at F1 = F2 = �a.

In product operator notation:

Iaz − 90◦
x → − Iay

During the evolution (t1) period, the Ha magnetization rotates with angular frequency
�a in the x′–y′ plane, and the doublet components (Hb = α and Hb = β) separate from
this center position with angular frequency Jab/2 in Hz, or πJab in radians. In contrast to
the INEPT experiment, we have no control over these two kinds of evolution and both
will happen at the same time. A spin echo will not help because pulses do not distinguish
between Ha and Hb: both would receive a 180◦ pulse and we would have no chemical-shift
evolution, only J-coupling evolution. Without chemical-shift evolution we cannot create a
second dimension!

This is a complicated motion to describe with vectors, but with product operators it is
relatively simple, if you are not afraid of a little algebra and trigonometry. First we consider
the chemical-shift evolution, which causes the Ha magnetization to rotate through an angle
� = �at1 radians after t1 s:

−Iay → −Iay cos(�at1) + Iax sin(�at1)

Since counterclockwise rotation leads from the −y′ axis to the +x′ axis, the x component has
a plus sign. Now consider the effect of the coupling Jab. The pure x′ and y′ magnetization
will rotate into and out of the antiphase condition with angular frequency πJ:

Iax → Iax cos(πJt1) + 2IayI
b
z sin(πJt1)

Iay → Iay cos(πJt1) − 2IaxI
b
z sin(πJt1)

Verify for yourself that this makes sense: at t1 = 0 you have the starting magnetizations. At
t1 = 1/(2Jab) you have the pure antiphase magnetization. At t1 = 1/Jab you have the starting
in-phase magnetizations with the opposite sign, that is, rotated by 180◦ in the x′–y′ plane.
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At t1 = 2/Jab you are back to the starting magnetization. With product operators we do not
need to draw vector diagrams, because we treat the vectors as pure in-phase (Iax, I

b
y) and

antiphase (2IaxI
b
z, 2IayI

b
z) components. Now plug these results in wherever you see Iax or Iay

as a result of chemical-shift evolution:

−Iay
(chemical−shift evolution)−−−−−−−−−−−−−→ −Iay cos(�at1) + Iax sin(�at1)

(J−coupling evolution)−−−−−−−−−−−−→ [−Iay cos(πJt1) + 2IaxI
b
z sin(πJt1)] cos(�at1)

+[Iax cos(πJt1) + 2IayI
b
z sin(πJt1)] sin(�at1)

= −Iay cos(�at1) cos(πJt1) + 2IaxI
b
zcos(�at1) sin(πJt1)

+Iaxsin(�at1) cos(πJt1) + 2IayI
b
zsin(�at1) sin(πJt1)

We can abbreviate a bit by using s and c for sin(�at1) and cos(�at1), respectively, and s′
and c′ for sin(πJt1) and cos(πJt1), respectively:

−Iayc c′ + 2IaxI
b
zc s

′ + Iaxs c′ + 2IayI
b
zs s

′

It still looks pretty messy, but there are only four terms: the x′ and y′ components of Ha in-
phase magnetization (first and third terms), and the x′ and y′ components of Ha magnetization
that is antiphase with respect to the spin state (α or β) of the coupled Hb spin (second and
fourth terms). This is a full description of what happens to the Ha magnetization that started
on the −y′ axis at the beginning of the t1 period, and it can be applied to all homonuclear
2D NMR experiments.

There is only one more thing to do: consider the effect of the mixing portion of the 2D
experiment, which is just a 90◦ pulse applied along the x′ axis of the rotating frame. Each
component of the product operators can be treated separately and rotated just as the vectors
rotate under the influence of a pulse. All of the individual components behave as follows:

Iay
(90◦pulse on x′axis)−−−−−−−−−−→ Iaz

Iax
(90◦pulse on x′axis)−−−−−−−−−−→ Iax (not affected)

Ibz
(90◦pulse on x′axis)−−−−−−−−−−→ −Iby

Applying these results to the products in our four terms:

−Iay
(90◦pulse on x′axis)−−−−−−−−−−→ −Iaz

2IaxI
b
z

(90◦pulse on x′axis)−−−−−−−−−−→ 2(Iax)(−Iby) = −2IaxI
b
y

Iax
(90◦pulse on x′axis)−−−−−−−−−−→ Iax

2IayI
b
z

(90◦pulse on x′axis)−−−−−−−−−−→ 2(Iaz)(−Iby) = −2IbyI
a
z (coherence transfer!)

So the final expression for the detected magnetization is:

−Iazc c′ − 2IaxI
b
yc s

′ + Iaxs c′ − 2IbyI
a
zs s

′

The first term represents inverted z magnetization, the starting point for a transient NOE
experiment. All we have to do is add a mixing period (simple delay τm) and a 90◦ read
pulse, and we have a 2D NOE experiment: NOESY. For the COSY experiment, we start
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acquiring the FID immediately and Iz is not observable, so this term is not important. The
second term represents a mixture of ZQC and DQC, which is also not observable. We will
use this term in the double-quantum filtered (DQF) COSY experiment as an intermedi-
ate state in coherence (INEPT) transfer, but in the simple COSY we can ignore it. The
third term represents in-phase Ha magnetization that is labeled with the chemical shift of
Ha (s = sin(�at1)) and with the J coupling (c′ = cos(πJt1)). This will be our diagonal peak
in the 2D spectrum: since it is Ha coherence that will be observed in the FID, it will give an
in-phase doublet at chemical-shift position �a in F2. Since it is labeled with the Ha chemical
shift in t1, the second Fourier transform will place it at chemical-shift position �a in F1.
This is the Ha peak on the diagonal. The fourth term is the important one: it represents
coherence transfer (INEPT transfer) from Ha to Hb. It will be observed in the FID as Hb
antiphase coherence, leading to an antiphase peak at the position �b in F2. But this peak is
modulated in F1 according to the chemical shift of Ha (s = sin (�aJt1)), so it carries along
the information about the spin it came from. The second Fourier transform places the peak
at the chemical shift �a in F1, so it is the crosspeak at F1 = �a, F2 = �b. Now we see in
detail how 2D NMR works!

9.5.2 Untangling the J-Coupling Patterns in F1

Understanding how the chemical shift and J-coupling modulation in t1 works (s s′ for the
crosspeak and s c′ for the diagonal peak) takes a bit of mathematical manipulation. The
sin(�at1) sin(πJt1) term (s s′) can be written as a sum rather than a product using the
trigonometric identity cos(α+β) = cosα cosβ−sinα sinβ:

cos((�a + πJ)t1) = cos(�at1)cos(πJt1) − sin(�at1)sin(πJt1)
cos((�a − πJ)t1) = cos(�at1)cos(−πJt1) − sin(�at1)sin(−πJt1)

= cos(�at1)cos(πJt1) + sin(�at1)sin(πJt1)

Subtracting the second equation from the first,

cos((�a + πJ)t1) − cos((�a − πJ)t1) = −2sin(�at1)sin(πJt1)

s s′ = sin(�at1)sin(πJt1) = 0.5 [−cos((�a + πJ)t1) + cos((�a − πJ)t1)]

Thus Fourier transformation in F1 will yield two peaks: a positive peak at F1 = �a − πJ
and a negative peak at F1 =�a +πJ. This is an antiphase doublet in F1 centered at frequency
�a and separated by 2πJ rad or J Hz. So we have a crosspeak that is an antiphase doublet
in F2 (−2IbyI

a
z observed in the FID) and an antiphase doublet in F1 (sin(�at1)sin(πJt1)),

with both doublets showing a separation of Jab. This is the crosspeak fine structure shown
in Figure 9.29.

For the diagonal peak F1 fine structure, we have the t1 modulation s c′ = sin(�at1)
cos(πJt1). We start with the trigonometric identity: sin(α + β) = sin α cos β + cos α sin β,
applied to the sum and difference frequencies:

sin((�a + πJ)t1) = sin(�at1)cos(πJt1) + cos(�at1)sin(πJt1)
sin((�a − πJ)t1) = sin(�at1)cos(−πJt1) + cos(�at1)sin(−πJt1)

= sin(�at1)cos(πJt1) − cos(�at1)sin(πJt1)
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Since we are looking for s c′, we add the two equations together to get:

sin((�a + πJ)t1) + sin((�a − πJ)t1) = 2 sin(�at1)cos(πJt1)
s c′ = sin(�at1)cos(πJt1) = 0.5 [sin((�a + πJ)t1) + sin((�a − πJ)t1)]

Fourier transformation in F1 will yield two peaks, both of them positive: one at F1 = �a
− πJ and one at F1 = �a + πJ. This is an in-phase doublet in F1 centered at frequency
�a and separated by 2πJ rad or J Hz. So we have a 2D peak that is an in-phase doublet
at frequency �a in F2 (+Iax observed in the FID) and an in-phase doublet at frequency �a
in F1 (s c′ = sin(�at1) cos(πJt1)), with both doublets showing a separation of Jab. The
diagonal peak has a fine structure of four peaks in a square pattern, all with the same phase.
How does its phase compare to the crosspeak? It is 90◦ out of phase with the crosspeak in
F2 (Ia

x vs. −2IbyI
a
z) and it is 90◦ out of phase with the crosspeak in F1 (0.5 [−cos((�a +

πJ)t1) + cos((�a − πJ)t1)] for the diagonal peak vs. 0.5 [sin((�a + πJ)t1) + sin((�a −
πJ)t1)] for the crosspeak. Note that a sine function in time is always 90◦ out of phase with a
cosine function. This is a significant conclusion because it means we cannot phase correct
the whole 2D spectrum: either we have absorptive crosspeaks and dispersive diagonal peaks
or vice-versa. The dispersive lineshape does not go to zero quickly as we move away from
the center of the resonance (Fig. 9.39) as the absorptive shape does, so this will lead to large
streaks extending above and below and to the left and right of the diagonal peaks.

An exponentially decaying FID gives a Lorentzian lineshape upon Fourier transformation. The
general form of the absorptive Lorentzian line is Iabs = 1/(1 + ν2), whereas the dispersive line
has the form Idisp = ν/(1 + ν2), where I is the intensity at each point in the spectrum. Far from
the peak maximum (ν2 >> 1), we have Iabs ∼ 1/ν2 and Idisp∼ 1/ν. This is the reason that the
dispersive lineshape extends much further from the peak maximum.

The COSY phase differences can be eliminated by presenting the data in “magnitude
mode,” as we did for the HETCOR spectrum. But we lose useful information such as
the distinction between active and passive couplings, and more importantly the magnitude
mode peaks are broader and extend farther outward at their bases (Fig. 9.39), again leading

Figure 9.39
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to streaks extending up and down, and to the left and right from each diagonal peak or
crosspeak. We will see that the DQF-COSY experiment avoids this problem since the phase
of the diagonal is the same as that of the crosspeaks.

The magnitude mode lineshape is just:

Imagn =
√

I2
abs + I2

disp =
√

1/(1 + ν2)2 + ν2/(1 + ν2)2

=
√

(1 + ν2)/(1 + ν2)2 = 1/
√

1 + ν2

Far from the peak maximum (v2 >> 1) we have Imagn ∼ 1/ν, just like the dispersive
lineshape.

9.5.3 COSY-35: Simplifying Crosspeak Fine Structure

What about the COSY-35 experiment (Fig. 9.34)? We can now show with product operators
why it simplifies the crosspeak fine structure. Consider again the AMX spin system of a
peptide residue in D2O: ND–CHα–CHβHβ′–Y. For the crosspeaks shown in Figure 9.33
(left) let’s focus on the lower one: F1 = Hβ/F2 = Hα (Hβ → Hα coherence transfer). We

start the t1 period with −Iβy and write down the terms that result from J coupling, keeping
in mind that there are two J couplings affecting Hβ: Jαβ and Jββ′ :

−Iβy
t1→ −Iβy cc′ +2IβxIαz sc′ +2IβxI

β′
z cs′ +4IβyIαz I

β′
z ss′ (J evolution)

A B C D

where c and s are cosine and sine of π Jαβ t1 and c′ and s′ are cosine and sine of πJββ′ t1.
As before, we advance the phase by 90◦, multiply by 2Iz and change the cosine term to sine
for each coupling that undergoes evolution from in-phase to antiphase. Only terms B and D
above represent Hβ coherence that is antiphase with respect to Hα, so we can ignore the A
and C terms because they cannot give us coherence transfer from Hβ to Hα. Now consider
the effect on terms B and D of chemical-shift evolution of Hβ coherence, which multiplies
the starting terms by cos(�β t1) and then adds new terms with the phase of Hβ coherence
advanced by 90◦ and multiplying by sin(�βt1):

−t1 → 2IβxI
α
z s c′ c′′

E
+4IβyI

α
z I

β′
z s s′ c′′

F

+2IβyI
α
z s c′ s′′

G

−4IβxI
α
z I

β′
z s s′ s′′

H
(shift evolution)

where s′′ or c′′ refer to sin(�β t1) or cos(�β t1), respectively. Terms E and G above come
from the singly antiphase term B and terms F and H above come from the double antiphase
term D. The final pulse is on x′, so the E and H terms (Hβ coherence on x′) cannot give us
coherence transfer. We only need to consider the F and G terms:

4IβyI
α
z I

β′
z s s′ c′′
F

+2IβyI
α
z s c′ s′′

G

−� pulse on x′ →

Now we do the coherence transfer with our final 90◦ pulse on x′, but we allow the pulse
to be any rotation angle � (90◦ for COSY, 35◦ for COSY-35). This would generate two
terms for each operator, for a total of 12 terms (!), but we need to worry only about those
terms that represent coherence transfer from Hβ to Hα. For this to happen, we need to have
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Figure 9.40

Iβ move from y′ to the z axis and Iα move from z to the x′–y′ plane (antiphase to antiphase
INEPT transfer). The “�” pulse on x′ converts Iz to [Iz cos � − Iy sin �] and Iy to [Iy cos
� + Iz sin �]. Just like with evolution, the cosine term goes with the unchanged operator
and the sine term goes with the � = 90◦ result. Each term in the product is affected by
the pulse, but we need only consider the results that have the Iα operator in the x′–y′ plane
and all others on z. Any terms with more than one operator in the x′–y′ plane represent
unobservable ZQC/DQC. Term G gives the standard INEPT coherence transfer result:

2IβyI
α
z

�x→ 2(Iβycos � + Iβz sin �)(Iαz cos � − Iαysin �)

= −2IαyI
β
z sin2� + 3 other terms

Only the sin2 � term represents coherence transfer; the three others can be ignored. The F
term can give coherence transfer to Hα also, as long as Iα is the only operator in the x′–y′
plane:

4IβyI
α
z I

β′
z

�x→ 4(Iβz sin �)(−Iαysin �)(Iβ
′

z cos �) + 8 other terms

= −4IαyI
β
z I

β′
z sin2� cos �
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None of the other eight terms represents Hβ → Hα coherence transfer. We also
ignore the s s′c′′ and s c′s′′ multipliers since they carry the F1 chemical shift and
J-coupling information—we are only interested in the F2 slice. What do these two
terms look like in F2? Remember that the Hα resonance (Iαy ) is a doublet of doublets

(Fig. 9.40 A). 2IαyI
β
z is antiphase with respect to Hβ only, so we get the pattern 1, −1, 1, −1

(if Jαβ < Jαβ′ ) (Fig. 9.40 B). 4IαyI
β
z I

β′
z is antiphase with respect to both Hβ and Hβ′ , so we get

an antiphase doublet on the left side (antiphase with respect to Jαβ) and another antiphase
doublet on the right side that is opposite in phase (antiphase with respect to Jαβ′ ): the pattern

is 1, −1, −1, 1 (Fig. 9.40 C). Now if we consider that the first pattern (2IαyI
β
z ) is multiplied

by sin2 � (0.329 for � = 35◦) and the second pattern (4IαyI
β
z I

β′
z ) is multiplied by sin2 �

cos � (0.269 for � = 35◦), we see that when we add them together there are two kinds
of lines (Fig. 9.40 D): the first and second where the two add together (0.329 + 0.269 =
0.598) and the third and fourth where they are subtracted (0.329 − 0.269 = 0.060): an
absolute value of sin2 � + sin2 � cos � for lines 1 and 2 and sin2 � − sin2� cos� for
lines 3 and 4. If we look at the intensity ratio between these two types of lines we get:

Ratio = (sin2� − sin2� cos �)/(sin2� + sin2� cos �) = (1 − cos �)/(1 + cos �)

For � = 90◦, this ratio is 1 and we see all four lines equally in each row (16 peaks in all in
the crosspeak, Fig. 9.33, lower left). For � = 35◦, the ratio is 0.1 (1 to 10): lines 3 and 4
are only 10% of the intensity of lines 1 and 2 (eight intense peaks in all in the crosspeak,
Fig. 9.33 lower right). Some people use a 45◦ pulse (“COSY-45”), for a ratio of 0.17
(1 to 5.8). As we make � smaller, we pay a price in overall intensity since both types of
line are multiplied by sin2 �; although the ratio gets better as the overall sensitivity goes
down. This analysis illustrates the power of product operators as well as the need to look
ahead and anticipate which terms will be important to avoid an explosion of complexity.

9.6 2D TOCSY (TOTAL CORRELATION SPECTROSCOPY)

In Chapter 8 we saw how the TOCSY spin lock, a continuous string of medium-power pulses
with carefully designed widths and phases, can transfer coherence in multiple jumps along
a chain of J-coupled protons: a “spin system”. In the selective 1D TOCSY experiment, the
DPFGSE (a combination of shaped pulses and gradients) is used to selectively excite one
resonance in the spectrum with the equivalent of a 90◦ pulse, and this coherence is then
transferred to other protons in the spin system with the TOCSY mixing sequence (pulsed
spin lock). To make this sequence (Fig. 8.42) into a 2D TOCSY (Fig. 9.41), we simply
replace the selective 90◦ pulse (the DPFGSE) with a non-selective 90◦ pulse and insert a t1
delay (evolution period) between this preparation pulse and the mixing sequence (Fig. 9.42).
We already know how the 90◦ − t1 sequence produces four terms:

−Iaycc′ + 2IaxI
b
zcs

′ + Iaxsc′ + 2IayI
b
zss

′

If we apply the TOCSY spin lock at this point on the x′ axis, we will destroy the first
and fourth terms (B1 field inhomogeneity) and “lock” the second and third terms. Because
the TOCSY mixing sequence transfers coherence from in-phase to in-phase, only the third
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Figure 9.41

term, Iaxsc
′, leads to a crosspeak at F1 = �a/F2 = �b:

Iaxsc
′ − TOCSY spin lock → Ibxs c

′

We also saw that the s c′ encoding in t1 (sin(�a t1) cos(πJt1)) represents an in-phase doublet
at the Ha chemical shift in F1. So the crosspeak is in-phase in both dimensions.

We saw in Chapter 8 that a continuous-wave spin lock is not effective for TOCSY transfer,
giving efficient transfer only when the Hartmann-Hahn match is satisfied: �a = ±�b. This
corresponds to the diagonal and the “antidiagonal”—a line extending from the lower right
corner of the 2D matrix to the upper left corner. In fact, TOCSY transfer crosspeaks do
appear as artifacts in 2D ROESY spectra along the antidiagonal. To get efficient TOCSY
transfer we use a specific sequence of medium-power pulses such as MLEV-17 or DIPSI-2.
The holy grail of TOCSY mixing sequences is the “ideal isotropic mixing” sequence that
completely eliminates the chemical shifts and leaves only the J-coupling interactions, just
as if the Bo field were reduced to zero. In this ideal case if we start with Ha magnetization
on the x′ axis, we get conversion to Hb magnetization on the x′ axis as follows:

Iax → 0.5Iax(1 + cos) + 0.5Ibx(1 − cos) + 0.5(2IayI
b
z − 2IbyI

a
z) sin

where cos = cos(2π J τm), sin = sin(2π J τm), and τm is the mixing time. The derivation
of this result will be shown in Chapter 10. The first two terms represent the transfer of
in-phase coherence from Ha to Hb: after a time τm = 1/(4J) the cosine term equals zero
and we have 0.5 Iax and 0.5 Ibx, i.e., 50% conversion. But we also have a combination of
antiphase Ha coherence and antiphase Hb coherence (sin = 1)! This term decreases again
and becomes zero when τm = 1/(2J). At this time we have complete conversion of Iax to Ibx
since the cosine term equals −1. We saw this oscillation in Figure 8.43 but the antiphase
terms were ignored at that time. These terms lead to distortion of peak shape unless the

Figure 9.42
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Figure 9.43

sine term is zero (τm = 0, 1/(2J), 1/J, etc.). This distortion is shown in Figure 9.43 (left)
for a simulation of the Ha − Hb spin system with Jab = 7.5 Hz. You might think that the
antiphase terms would disappear since they are perpendicular to the spin-lock axis and B1
field inhomogeneity should cause them to “fan out” over time. But these terms are actually
immune to pulses on the x′ axis:

2IayI
b
z − 2IbyI

a
z − 90◦

x → 2Iaz(−Iby) − 2Ibz(−Iay) = 2IayI
b
z − 2IbyI

a
z

2IayI
b
z − 2IbyI

a
z −180◦

x → 2(−Iay)(−Ibz) − 2(−Iby)(−Iaz) = 2IayI
b
z − 2IbyI

a
z

Many tricks have been applied (trim pulses, z filters, gradients, etc.) to remove these an-
tiphase terms, leaving only the pure phase Iax and Ibx terms (Fig. 9.43, right). For example,
a “z filter” is a 90◦−y − � − 90◦

y sequence that puts the desired magnetization on the z axis
and then allows a bit of evolution to occur for the undesired terms:

−90◦
−y → 0.5Iaz(1 + cos) + 0.5Ibz(1 − cos) + 0.5(−2IayI

b
x + 2IbyI

a
x) sin

The last term is now ZQC on the y′ axis, which undergoes chemical-shift evolution during
the delay � at a rate of �a − �b. The second 90◦ pulse puts the desired terms back on x′ and
returns the undesired term to antiphase SQC on y′. If we repeat the acquisition with different
values of the delay � the antiphase terms will tend to cancel out due to different amounts
of evolution during �. A variable delay for evolution of undesired ZQC terms can also be
used in NOE mixing to remove ZQ artifacts. The strategy of “storing” desired terms on the
z axis while taking care of other components of magnetization is also a common strategy
we will encounter again later. Still, distortion of peak shape is commonly encountered in
both 1D and 2D TOCSY spectra. In 2D TOCSY this appears as negative intensity in the
center of a crosspeak or negative “ditches” on the sides of a crosspeak.



396 TWO-DIMENSIONAL NMR SPECTROSCOPY: HETCOR, COSY, AND TOCSY

The MLEV-17 mixing sequence falls far short of achieving the “holy grail” of isotropic
mixing, and the more complex DIPSI-2 sequence (Chapter 8) is superior in its tolerance of
large resonance offsets (νo − νr) while avoiding high power and sample heating. But most
people still use MLEV-17 out of blind tradition. For large biological molecules, there is a
“clean” or “relaxation compensated” version of the DIPSI sequence (DIPSI-2rc) in which
there are short delays separating all of the pulses. The magnetization is on the z axis for the
delays, and this allows an NOE to develop that is opposite in sign to the ROE that develops in
the spin lock along with TOCSY transfer. This positive NOE (for large molecules) cancels
the negative ROE and leaves pure coherence transfer (TOCSY) mixing.

We saw a 2D TOCSY spectrum in Figure 9.22 and compared it to a COSY spectrum:
in the TOCSY spectrum, we have more peaks because starting from any proton in the spin
system we can see correlations to all other members of the spin system, not just to the
protons connected by a single J coupling. We saw the same thing in a real example by
comparing the COSY spectrum of 3-heptanone (Fig. 9.23) with the TOCSY spectrum of
the same sample (Fig. 9.24).

9.6.1 Examples of 2D TOCSY

The 600 MHz 2D TOCSY spectrum of cholesterol (Chapter 8, Fig. 8.35) is shown in
Figure 9.44. Note that all peaks (diagonal and crosspeaks) are positive (black) and in-phase.

Figure 9.44
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Figure 9.45

The t1 noise streaks can be seen extending downward from the two singlet methyl peaks
on the diagonal (H-18 and H-19) and to a lesser extent from the methyl doublet peaks
between them. An F2 slice at the H6 resonance (5.35 ppm) on the diagonal shows efficient
TOCSY transfer to H7ax and H7eq and then on to H8, and weak transfer to H4ax and H4eq
(long-range coupling) and on to H3. Another F2 slice at the H3 resonance (3.5 ppm) on
the diagonal shows transfer to H4ax, H4eq and then on weakly to H6 and H7eq, as well as
strong crosspeaks to H2ax, H2eq, H1ax, and H1eq. These F2 slices are almost identical to the
two separate selective 1D TOCSY experiments shown in Figure 8.45. The advantage of 2D
TOCSY is that we only have to do one experiment to get all possible TOCSY correlations,
and we do not rely on selecting resolved peaks in the 1D spectrum.

Figure 9.45 shows the amide NH region of the TOCSY spectrum of the glycopeptide
Tyr-Thr-Gly-Phe-Leu-Ser(O-Lactose) in 90% H2O/10% D2O. In F2, we see the amide
proton (HN) resonances in the range of 8–8.5 ppm, and in F1 we see the entire region from
the water resonance upfield. We can see the entire spin system of each amino acid residue
stretching upwards from its HN chemical-shift position on the horizontal (F2) ppm scale.
Coherence was transferred to the HN proton by TOCSY mixing from the Hα proton, the Hβ

protons, the Hγ protons, and so on, and each of these was labeled during t1 with its proton
chemical shift. Just by looking at the patterns of chemical shifts in each vertical line, we can
identify the amino acid or at least narrow it down to a group of amino acids. The farthest left
spin system (HN = 8.42 ppm) is a threonine (side chain CHβOH–CHγ

3), since the Hα and
Hβ shifts are close together and the γ-methyl is far upfield (∼1.0 ppm). The next residue
(HN = 8.33 ppm) has only one crosspeak, so it must be a glycine (no side chain) with only
the H� peak. Note that these two HN protons exchange more rapidly with water, leading
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to an exchange crosspeak at the H2O resonance (F1 = 4.6 ppm). Moving to the right, the
next system (HN = 8.25 ppm) is a leucine (side chain CHβ

2–CHγ (CHδ
3)2). The Hγ signal

is overlapped with the Hβ′ , and we see two different δ-methyl crosspeaks due to the chiral
environment. Just upfield of this system is a serine (side chain CHβ

2–OH), with both Hβ

and Hβ′ close to Hα in chemical shift. So far every one of these patterns of crosspeaks is
unique, leading to the identification of a single amino acid among the 20 naturally occurring
possibilities. The farthest upfield HN (8.01 ppm) is a classic AMX (“three-spin”) system:
Hα plus two Hβ signals in the 2.5–3.5 ppm region. There are many possible amino acids
that give this pattern (side chain CHβHβ′–Y): all of the aromatic amino acids (Phe, His,
Trp, Tyr) plus Cys, Asp, and Asn. In this case, however, there are only two residues left:
Phe and Tyr. Because the tyrosine is at the unprotected N terminus, there is no amide HN.
The H3N+ protons at the amino terminus are exchanging so rapidly with water that they are
never observed in NMR. That leaves phenylalanine (side chain CHβ

2–C6H5) for the most
upfield HN. Note that TOCSY mixing does not penetrate the aromatic ring because there is
no J coupling between the Hβ protons and the aromatic ring protons: these are two separate
spin systems.

9.7 DATA SAMPLING IN T1 AND THE 2D SPECTRAL WINDOW

The hardware and data-processing details of 1D NMR data were discussed in Chapter 3:
data sampling in the ADC, quadrature detection, the spectral window, weighting (window)
functions, and phase correction. We will have to revisit each of these topics in the second
(t1, F1) dimension and some of them will take on added significance.

The evolution delay (t1) is usually started at zero for the first FID and increased by the
same amount, the t1 increment �t1, for each successive FID. We are trying to describe
the evolution of the nucleus A magnetization as it precesses during t1, so the same digital
sampling limitations (Nyquist theorem) apply as they do in direct (analog-to-digital con-
verter) sampling of the t2 FID. The rule is that we need to have a minimum of two samples
per cycle to define a frequency: we can think of it as a sample in each crest and a sample
in each trough of the wave. This fundamental limitation defines the maximum frequency
that we can observe without aliasing. Before the advent of quadrature detection (real and
imaginary FIDs), the audio frequency scale ran from zero on the right side edge to the
maximum frequency (sw) on the left side edge of the spectral window. The spectral window
is still defined by this maximum frequency, which is determined by the sampling rate. The
sampling delay �t1 is half of the time of one full cycle (1/sw) of the maximum frequency
since we have to have two samples per cycle:

�t1 = 1/(2 × sw1) where sw1 = the spectral width in F1 in Hz

In 2D NMR the spectral window is now a rectangle (Fig. 9.46), with horizontal width sw
defined by the sampling rate in t2 (the dwell time of the ADC, �t2) and the vertical “width”
defined by the sampling rate in t1 (the t1 increment �t1). Any F1 frequency greater than
sw1 (above the upper edge or below the lower edge of the rectangle) will alias, folding back
vertically into the rectangle.

Quadrature detection in t2 gives us two FIDs (real and imaginary) by sampling both the
Mx component and the My component of the net magnetization as it precesses. This allows
us to put zero audio frequency in the center of the spectral window and defines the left side
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edge of the window as sw/2 and the right side edge as −sw/2. The maximum detectable
frequency is now sw/2, but the width of the spectral window is still sw. Recall that there
are two ways to sample the real (Mx component) and imaginary (My component) audio
channels: the “Bruker” or alternating method (real – �t2 – imag. – �t2 – real –�t2 – imag.
– �t2, etc.) or the “Varian” or simultaneous method (real & imag. – 2�t2 – real & imag. –
2�t2, etc.). As long as we define the sampling delay in this way (acquisition time divided
by the total number of samples) we can say in either case that the width of the spectral
window is 1/(2 �t2), based on the need for 2 samples per cycle. The radio frequency center
of the spectral window in F2 is the reference frequency νr, which is subtracted out by analog
mixing in the detector of the NMR receiver to give zero audio frequency at the center of
the spectral window.

9.7.1 Phase-Sensitive 2D NMR: Quadrature Detection in F1

In phase-sensitive 2D NMR, the same kind of strategy is used. To create an imaginary
data point in t1, the phase of the preparation pulse is advanced by 90◦ and the FID is
recorded again. This means that the magnetization component of interest, the one that will
be transferred in the mixing step, is evolving during t1 according to a sine function instead
of a cosine function. For example, if only the y′ component Iy can be transferred (e.g., in a
2D TOCSY with the spin lock on y′), we have:

“real” FID : Iz −90◦
x → −Iy → −Iycos(�at1) + Ixsin(�at1) → →−cos(�at1) × FIDb(t2)

“imag.” FID : Iz − 90◦
y → Ix → Ixcos(�at1) + Iysin(�at1) → → sin(�at1) × FIDb(t2)

Both FIDs are acquired with the same t1 value, and both are encoded with the same
frequency �a in t1, but they are 90◦ out of phase (cosine vs. sine modulation in t1), just
as the real and imaginary channels of the receiver (Mx and My) are 90o out of phase. This
gives us our quadrature detection in F1, allowing us to put zero F1 audio frequency in the
center of the F1 spectral window.

There are two methods of encoding the phase information, just as there are for 1D spectra
in t2—alternating and simultaneous—except that the alternating method is done a little
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differently in the indirect dimension (Fig. 9.47). The “simultaneous” method is called States
or States-Haberkorn after the inventor(s), and the “sequential” or “alternating” method is
called TPPI, for time proportional phase incrementation. Instead of an ADC choosing
between sampling of the real receiver channel or the imaginary receiver channel, the real
FID is created with a preparation pulse with phase “x” and the imaginary FID is created with
a preparation pulse with phase “y”. There is a difference between TPPI and the alternating
1D method: the second pair of data points is recorded with opposite sign of the pulse phase.
This means that the preparation pulse has phase 0◦, 90◦, 180◦, 270◦ (x′, y′, −x′, −y′) for the
first four t1 values, and then repeats this pattern. TPPI data is processed in the F1 dimension
with another Fourier transform algorithm called the “real Fourier transform.” The end result
is the same, and peaks which alias (“fold”) in F1 will alias (vertically) from the same side
of the spectral window, just as they do in a 1D alternating (“Bruker”) spectrum. The States
method is not really “simultaneous” in t1, since t1 is not a direct or “real-time” variable.
You simply repeat the acquisition with the preparation pulse on the y′ axis using the same
t1 value, and record this FID as an “imaginary” FID in t1. Then you increment t1 by twice
the sampling delay (2�t1, where �t1 = 1/(2 × sw1)) and repeat the process, first with an
x′ pulse and then with a y′ pulse. The data is processed with a standard complex Fourier
transform, just like 1D simultaneous (“Varian”) data, and peaks outside the spectral window
in F1 will alias vertically from the opposite side of the 2D spectrum.

Figure 9.47
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Although these methods are not spectrometer specific, Varian’s software (VNMR) is
biased toward States mode. The States method is implemented in VNMR by setting the
parameter phase to an array of two integers: 1,2. This means that for each value of t1 you
acquire two FIDs, one with the preparation pulse applied along the x′ axis (phase = 1) and
one with the pulse applied along the y′ axis (phase = 2). This array is in addition to the t1
array (using d2 as the t1 delay), which has ni values starting with zero and incrementing by
1/sw1 (or 2 × �t1) each time. This can be confusing, because the actual number of FIDs
acquired will be twice the value of ni in States mode. If you want to acquire 512 FIDs, for
example, you will set ni to 256 if phase is set to 1,2. TPPI mode is accomplished by setting
phase to the single value of 3. Bruker uses the parameter MC2 to define the phase encoding
method in F1: it can be set to States or TPPI. In either case, the number of FIDs acquired
will be equal to td(F1) so there is no confusion.

Bruker uses an odd parameter called nd0 (number of d-zeroes) to calculate the t1 incre-
ment �t1. Technically, nd0 is 1 if t1 is a single delay and 2 if t1 is split into two delays
of t1/2 each (usually by a 180◦ pulse in the middle of t1). But if we use TPPI mode these
numbers are 2 and 4, respectively, so that the increment in d0 can be calculated as:

in0 = 1/(nd0 × swh(F1)), where swh(F1)is theF1spectral width in Hz

Thus if there is in fact only one d0 in the pulse sequence (d0 = t1), we have an increment
of 1/swh(F1) for States and 1/(2 × swh(F1)) for TPPI. If there are two d0’s in the sequence
(d0 = t1/2) the increment of d0 is cut in half. Setting nd0 wrong will completely mess up
the experiment!

Because this “sampling” is just the incrementation of a delay and changing the phase of
a pulse, we have complete control at the software level of how we want to sample the real
and imaginary data in t1.

9.7.2 Weighting (Window) Functions and Zero-Filling in t1

Massaging the FID with multiplier functions and increasing the digital resolution with zero
filling take on much more importance in 2D NMR because we typically sample the FID
for a much shorter time (the acquisition time). In t2, acquisition times are usually cut from
1–2 s for 1D spectra to 100–400 ms for 2D spectra to limit total experiment time and file
size (we are collecting hundreds of FIDs) and because resolution is not as important in a
crosspeak “blob.” In t1, we are even more parsimonious with acquisition time because each
data point in the t1 FID represents a complete 1D acquisition, which may involve many
scans (transients). Consider a 2D COSY with a 1H spectral width in F1 of 6 ppm on a 600
MHz spectrometer: to cover the spectral width of 3600 Hz we need a sampling delay �t1 of
139 μs (1/(2 × sw1)), and if we acquire 512 FIDs the final t1 value will be 512 × 139 μs =
71 ms. If we consider that T2 for a typical proton might be 0.5 s, we have only lost about
13% of our FID intensity by the time we stop collecting data (Fig. 9.48). If we do a Fourier
transform of this FID, we will have two big problems. First, the digital resolution of our
spectrum will be very low. With only 512 data points in the FID, we have 256 data points in
our real spectrum and 256 data points in our imaginary spectrum. After phase correction,
we discard the imaginary spectrum and keep the real (absorptive) spectrum, which now has
only 256 data points to cover a range of 6 ppm (3600 Hz). That is one data point every 14.1
Hz or 0.023 ppm. The details in the spectrum will be lost since even a large J coupling is
smaller than the distance between two data points. To solve this problem we simply extend
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the FID by adding zeros at the end (sort of like extending soup by adding water). If we
extend our FID of 256 complex data points to 1024 by adding 768 pairs of zeros, we will
have 1024 complex pairs in our spectrum after the Fourier transform and 1024 data points in
our real spectrum after phase correction. The digital resolution is now 3.5 Hz (0.006 ppm)
per data point; not as good as a 1D spectrum but plenty of detail for showing crosspeaks and
even some of the larger J couplings. The amount of zero filling is determined by the Varian
parameters fn (Fourier number) and fn1 (Fourier number in F1) and the Bruker parameters
si(F2) and si(F1) for “size.” In either case, the FID is zero filled from the original number
of complex data points acquired (Bruker: td/2; Varian: np/2 in F2 and ni in F1) to the final
matrix size (Bruker: si/2; Varian fn/2 in F2 and fn1/2 in F1). By now you can see that Bruker
usually uses the same parameter names for F2 and F1 and identifies them by placing them
in different columns of a parameter display; Varian adds a “1” to the F2 parameter name to
generate the F1 parameter name.

The second problem is that the t1 FID makes a large “jump” from a finite signal at
71 ms to zero because we ran out of time (or patience) sampling it. This sudden discontinuity
in the time domain data can be viewed as multiplying our FID by a rectangular window
function that is one while we are sampling the FID and falls suddenly to zero after 71 ms.
The effect on the spectrum, in frequency domain, is that our peaks get “wiggles” at the
base that extend far out in either direction, upfield and downfield from the peak. In a 2D
spectrum, these wiggles will appear as intense streaks of alternating positive and negative
intensity extending above and below the crosspeaks and diagonal peaks (Fig. 9.49). The
sinc artifacts extend far away from the crosspeak because the sinc function (sin ν/ν) decays
as 1/ν, just like the dispersive peak and the magnitude mode peak. The Fourier transform
does not like sudden and radical changes in time domain!

We can understand this effect precisely by applying the convolution theorem, which says
that multiplying the FID by a function has the effect of “convoluting” the spectrum with
the Fourier transform of that function. Convolution is the process of moving a multiplier
function from left to right through a digital dataset, stopping at each alignment of the data
points, multiplying the data by the multiplier function and adding up all the products to
get a single number at each stop. This set of numbers is the result of the calculation: the
“convolution” of the multiplier function and the data (Fig. 9.50). The multiplier function
in this case is the Fourier transform of a rectangular “pulse” function (“on” from t1 = 0 to
t1 = 71 ms). We saw in Chapter 8 that the result is a “sinc” function (sin ν/ν) that has a
separation of 1/0.071 s = 14 Hz at the base of the central peak. Now we slide this function
by our spectrum, which might be a single NMR peak. As the wiggles pass by the peak,
we will get alternating positive and negative intensities that increase as the central peak of
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the sinc function approaches the NMR peak. As it passes through the NMR peak we get a
large positive intensity, and after that we get alternating positive and negative intensity of
decreasing amplitude (Fig. 9.48).

What we need to do is to smooth the transition from a finite FID to zero, which will have
the effect of “calming down” the wiggles in frequency domain. For this purpose we need a
multiplier function that goes smoothly to zero at the end of the FID data. Two commonly
used window functions that accomplish this are the sine-bell and the cosine-bell functions
(Fig. 9.51). The cosine-bell (or “90◦-shifted sine-bell”) function starts at the maximum
(sine of 90◦) at the beginning of the FID and goes smoothly to zero (sine of 180◦) at the
end of the acquired data. This window function is commonly used for 2D experiments
with low-intensity crosspeaks that require sensitivity enhancement such as NOESY and
ROESY. Because the function gives greater weight to the beginning of the FID where the
signal-to-noise ratio is greater, the sensitivity is enhanced at the expense of the resolution.
The sine-bell (or “unshifted sine-bell”) function starts at the zero point of the sine function
(sine of 0◦) at the start of the FID data, reaches a maximum halfway through the FID
(sine of 90◦) and falls back smoothly to zero by the end of the acquired FID data (sine of

Figure 9.50
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180◦). Because data later in the FID (in the center) is emphasized over data early on in the
FID, this window function leads to resolution enhancement at the expense of sensitivity
(signal-to-noise ratio). It is commonly used for COSY data where the peaks are antiphase
and will “self-cancel” if they are broad (Fig. 9.37). This radical resolution enhancement
was encountered in Chapter 2 for 1D spectra, where we saw the resulting “ditches” on
either side of the peaks (Fig. 2.9). In the DQF-COSY spectrum of sucrose these ditches are
clearly visible in the F2 slices (Fig. 9.28). In Figure 9.35 the DQF-COSY spectrum was
processed with an unshifted sine-bell (left side), but the COSY-35 was processed with a
simple exponential multiplier to facilitate accurate curve-fitting (right side). The difference
in peak resolution is clearly visible in the 2D spectra, and in the F2 slices of the COSY-35
we see no ditches. Less radical resolution enhancement can be achieved by shifting the sine
bell by 30◦ or 45◦ (Fig. 9.51), always keeping the 180◦ point of the sine function at the end
of the FID. These window functions are commonly used for 2D experiments with strong
crosspeaks (efficient magnetization transfer) such as 2D TOCSY.

The size of the window must be carefully fit to the FID being processed. Varian uses
the parameter sb to describe the width (in seconds) of the sine-bell window from the 0◦
point to the 90◦ point. Thus for an unshifted sine-bell function, we want the 0◦ to 180◦
portion of the sine function (2 sb) to just fit over the time duration of the FID (at). This is
accomplished by setting the value of sb to one-half the acquisition time: sb = at/2. Since
the sine-bell is not shifted, the “sine-bell shift” (sbs) is set to zero. For a cosine-bell or 90◦
shifted sine-bell window, we want the portion of the sine function from 90◦ to 180◦ (or sb,
since the 0◦ to 90◦ portion is of the same duration as the 90◦ to 180◦ portion) to just fit over
the FID (duration at): sb = at. In addition, the whole sine function is shifted to the left side
by the duration of the FID, so we set the parameter sbs (sine-bell shift) equal to −at (left
shift corresponds to a negative number). In F1 we do not have a parameter for acquisition
time (at) in t1, but we know that the maximum t1 value is just the number of data points
times the sampling delay:

t1(max) = (ni × 2) × �t1 = (ni × 2) × (1/(2 × sw1)) = ni/sw1
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So you can just set sb1 = ni/sw1 and sbs1 = −sb1 for a 90◦-shifted sine-bell, and sb1 =
ni/(2 × sw1) and sbs1 = 0 for an unshifted sine-bell. Bruker uses the parameter wdw (in
both F1 and F2) to set the window function (SINE = sine-bell, QSINE = sine-squared,
etc.) and ssb for the sine-bell shift. For example, if ssb = 2, the sine function is shifted 90◦
(180◦/ssb) and we get a simple cosine-bell window. For an unshifted sine-bell, use ssb = 0.

9.7.3 Phase Correction in Two Dimensions

Phase errors appear in 2D spectra as “streaks” with negative intensity on one side and positive
intensity on the other side. Vertical streaks correspond to F1 phase errors and horizontal
streaks to F2 phase errors (Fig. 9.52). For example, if positive intensity is color-coded red
and negative intensity blue, an F2 phase error will appear as a crosspeak or diagonal peak
with a red streak extending out to the left side and a blue streak extending out to the right
side, or vice versa. Sometimes there are severe phase errors in both dimensions, leading to
a pattern of horizontal and vertical streaks (Fig. 9.52, upper right).

The complex FID, consisting of real and imaginary parts, is converted by a complex
Fourier transform to a complex spectrum, consisting of a real spectrum and an imaginary
spectrum. Phase correction involves “rotating” the complex spectrum in the complex plane
until the real spectrum is absorptive and the imaginary spectrum is dispersive (Chapter 3, Fig.
3.38). The imaginary spectrum is then discarded and we use the real (absorptive) spectrum.
In 2D processing there are two Fourier transforms: one in t2/F2 and one in t1/F1. Each
one generates two spectra, so we can potentially end up with four 2D matrices (Fig. 9.53).
Phasing a 2D matrix would then involve forming a linear combination of all four final 2D
spectra to get absorptive lineshape in both dimensions. Regardless of the software you are
using, you are looking for four numbers: the phase correction parameters in F2 (zero-order
and first-order) and the phase correction parameters in F1 (zero-order and first-order). The
zero-order correction is applied equally to all peaks in the spectrum and the first-order
parameter is a linear function of chemical shift, going through zero at the “pivot peak.” The
process is based on phase correction of 1D “slices”: make an F2 (horizontal) slice through
a peak (diagonal or crosspeak) in the 2D spectrum and phase correct it as a 1D spectrum to
generate the F2 phase correction parameters (Fig. 9.52). Then make an F1 (vertical slice)
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through a peak and phase correct that 1D spectrum to get the F1 phase correction parameters.
This works well for 2D experiments with strong crosspeak intensity, such as TOCSY, but
for others we may see only one peak in a given 1D slice. How do you come up with a
chemical-shift dependent (first-order) phase correction of a spectrum with only one peak?
The solution is to use more than one slice to generate multiple 1D spectra with peaks in
different parts of the spectrum. Bruker software uses a display with three 1D windows, all
controlled by the same two phase parameters (phc0 and phc1). Three different slices of the
same type (e.g., rows) are loaded into the windows, the pivot peak is selected in one of the
windows and the two phase parameters are adjusted, with all three 1D slices responding in
real time to the adjustments. When the optimal parameters are found, this phase correction
is applied to all rows of the data matrix. Varian software will only do horizontal slices
(“traces”) so the matrix has to be turned on its side (command: trace = “f1”) in order to
load an F1 slice. The phase correction parameters (rp and lp) are determined by treating
the slice as a 1D spectrum. If you need more than one slice, you can adjust rp with one
slice (with a peak on the right) and lp with another (with a peak on the left side). Other
software packages (e.g., Felix) construct a 1D spectrum as a sum of several slices from the
2D matrix. For example, three columns (F1 slices) can be selected and summed to give a 1D
spectrum with three peaks, which is then phase corrected and the parameters are applied to
all the columns of the 2D matrix. Regardless of the software used, it can be tricky if there
are significant phase errors in both dimensions because the F1 phase errors can “flip” peaks
upside down in the F2 slices. When making multiple F2 slices (rows) of the 2D matrix,
select a row just above or below the center of a peak (Fig. 9.52, upper right) if there is a
significant F1 phase error. Try to be consistent in making all slices on the same side (e.g.,
all rows just above the center or all columns just to the left of the center) to keep the phase
errors in the other dimension from interfering.

2D spectra with very weak crosspeak intensities (e.g., NOESY) require very careful phase
correction because dispersive “tails” (Fig. 9.39) can extend far outwards from the intense
diagonal peaks to obscure weak crosspeaks. Sometimes you will also have to “flatten” the
baseline to be able to lower the contour threshold enough to see the weak crosspeaks. If
there is curvature in the baseline (in two dimensions that would be like a rug held up at the
corners and sagging in the middle) you cannot see the weak peaks because the threshold
plane cuts through the noise in some places. Baseline errors appear as streaks extending in
both directions (up/down or left/right) from a peak with the same sign (same color code)
on both sides. There are many techniques to do 1D baseline flattening. The most common
method is to generate a 1D spectrum and manually set up a series of baseline “points” which
represent specific chemical-shift positions where there is only baseline noise and no peaks.
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The program fits the intensity at these point values to a polynomial (up to 5th order) function
and then subtracts the polynomial function from the whole dataset. This is repeated for each
1D slice (row or column) of the 2D data matrix. More sophisticated methods calculate the
baseline points automatically and use functions other than polynomials. For example, a
program called FLATT (by Kurt Wüthrich) is very effective at removing horizontal or
vertical streaks resulting from baseline curvature in rows or columns of the data matrix.
Especially with NOESY and ROESY data baseline correction is essential to getting “clean”
2D displays and plots.

The following table summarizes the 2D parameters for Bruker and Varian.

Direct (F2) Indirect (F1)
Varian Bruker Varian Bruker

Acquisition Parameters:
np td ni × 2 td Number of data points (real + complex).
sw swh sw1 swh Spectral width in Hz.
at aq ni/sw1 td/(2swh) Acquisition time in seconds.
tof o1 tof o1 Transmitter offset (homonuclear).
tof o1 dof o2 Transmitter offset (heteronuclear).

Processing Parameters:
fn/2 si/2 fn1/2 si/2 Number of complex pairs after zero-filling.
sb — sb1 — Span of sine-bell function in seconds (0◦ to 90◦).
sbs — sbs1 — Amount of right shift of sine-bell function in seconds.
— wdw — wdw Window function (SINE, QSINE, etc).
— sbs — sbs Sine-bell shift: degrees = 180/sbs (zero if sbs = 0).



10
ADVANCED NMR THEORY: NOESY AND
DQF-COSY

The purpose of this book is to provide a deep and satisfying understanding of how NMR
experiments work, while maintaining the practical perspective of an NMR user (organic
chemist or structural biologist) rather than a theoretical approach, which would be more
appropriate for an analytical chemist, physical chemist, or physicist. The simple vector
model for net magnetization, along with the energy diagrams with open and filled circles to
represent population differences, has provided a strong conceptual basis for understanding
the NOE (nuclear Overhauser enhancement) and many of the complex tricks of evolution
of single-quantum coherence (spin echoes, APT, BIRD, TANGO, gradients, etc.). In order
to describe coherence transfer (INEPT), we needed the additional theoretical tools of the
product operators (Ix , 2IySz , etc.): a simple mathematical approach that is firmly tied to
the visual representation of the vector model. We have touched upon the idea of multiple
quantum coherences (ZQC and DQC) and defined them in terms of product operators (2IxSx ,
2IySx , etc.), but many things had to be taken on faith. Why we multiply the operators together
(2IySz , 2IySx , etc.) in a particular way to represent certain coherences (DQC, antiphase
SQC, etc.) has been until now just a set of rules.

In this chapter, we will introduce a new level of theoretical tools—the density matrix—
and show by a bit of matrix algebra what the product operators actually represent. The
qualitative picture of population changes in the NOE will be made more exact, the precise
basis of cross-relaxation will be revealed, and a new phenomenon of cross-relaxation—
chemical exchange—will be introduced. With these expanded tools, it will be possible to
understand the 2D NOESY (nuclear Overhauser and exchange spectroscopy) and DQF-
COSY experiments in detail.

The tricks of selecting desired coherences and rejecting unwanted (artifact) peaks by
phase cycling or gradients will be formalized by introducing the spherical product operators
and defining the coherence order precisely. This gives us a very simple way of describing an
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NMR pulse sequence without getting tied up in the details of pulse phases and a mountain
of sine and cosine terms: only the essential elements of the sample net magnetization will be
described at each point. Finally, the formal Hamiltonian description of solution-state NMR
will be described and applied to explain two related phenomena: strong coupling (“leaning”
of multiplets) and TOCSY mixing (the “isotropic” mixing sequence).

10.1 SPIN KINETICS: DERIVATION OF THE RATE EQUATION FOR
CROSS-RELAXATION

In Chapter 5, we demonstrated qualitatively how DQ relaxation alone (ββ → αα) leads to
a negative NOE (saturation or inversion of Ha leads to enhancement of Hb’s z magneti-
zation), and ZQ relaxation alone (αβ ↔ βα) leads to a positive NOE (reduction of Hb’s
z magnetization). We also showed how the distribution of tumbling rates changes as molecu-
lar size is increased, leading to a change from relaxation dominated by DQ transitions (small
molecules) to relaxation dominated by ZQ transitions (large molecules). We will now con-
sider more quantitatively how this happens by looking at the “kinetics” of molecules (or
proton pairs Ha and Hb) moving among the four homonuclear spin states αα, αβ, βα, and ββ.

For simplicity, we assume that Ha and Hb are close to each other in a molecule (rab <

5 Å) but have no J coupling. We will use Pββ, Pαβ, Pβα, and Pαα to represent the populations
of the four spin states ββ (Ha = β, Hb = β), αβ (Ha = α, Hb = β), βα (Ha = β, Hb = α),
and αα (Ha = α, Hb = α), respectively. At equilibrium, Pββ = N/4 − 2δ, Pαβ = N/4, Pβα

= N/4, and Pαα = N/4 + 2δ, where N is the total number of molecules and δ is a very small
fraction of N determined by the Boltzmann condition (Fig. 10.1).

Because z magnetization is the result of population differences between spin states, we
can equate z magnetization with population difference (actually it is proportional, but for
simplicity the proportionality constant is omitted):

Ma
z = Pαβ − Pββ = Pαα − Pβα (Ha(2) and Ha(1) transitions)

Mb
z = Pαα − Pαβ = Pβα − Pββ (Hb(1) and Hb(2) transitions)

Ma
z + Mb

z = (Pαβ − Pββ) + (Pαα − Pαβ) = Pαα − Pββ (DQ transition)

Figure 10.1
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Ma
z − Mb

z = (Pαβ − Pββ) − (Pβα − Pββ) = Pαβ − Pβα (ZQ transiton)

Mo = 2δ (equilibrium)

Note that in each case we subtract the population of the higher energy (less populated at
equilibrium) state from the population of the lower energy (more populated at equilibrium)
state. We can also define the amount of “disequilibrium” as the difference between the
actual z magnetization and the equilibrium z magnetization.

�Ma
z = Ma

z − Mo = Pαβ − Pββ − 2δ = Pαα − Pβα − 2δ

�Mb
z = Mb

z − Mo = Pαα − Pαβ − 2δ = Pβα − Pββ − 2δ

Note that �Ma
z and �Mb

z both tend toward zero (�P = 2δ) as the nuclei relax.
Now consider the “kinetics” of the flow of spins between spin states. For each pair of spin

states, we calculate the difference in population and compare it to the equilibrium difference.
If these two are not the same, there will be a flow of spins from the “overpopulated” state
to the “underpopulated” state at a rate that is proportional to the “rate constant” for that
transition and to the amount by which the transition is out of equilibrium. The rate constants,
or relaxation rates, for each transition are determined by

1. the distance r between protons Ha and Hb in the molecule (1/r6 effect);

2. the number of molecules in solution that are tumbling at a rate corresponding to the
frequency (ν) of that transition: νa and νb for the SQ transitions, νa + νb for the DQ
transition, and νa − νb for the ZQ transition.

The four single-quantum transitions relax at a rate W1, or more specifically Wa
1 for the Ha

transitions and Wb
1 for the Hb transitions. The double-quantum transition (αα ↔ ββ) relaxes

with rate W2 and the zero-quantum transition (αβ ↔ βα) relaxes at a rate Wo (Fig. 10.2). For
small organic molecules in nonviscous solvents (e.g., cholesterol in CDCl3), the molecule
tumbles rapidly compared to the Larmor frequency and the ratio of W1:Wo:W2 is about

Figure 10.2
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3:2:12, meaning that double-quantum relaxation is the fastest pathway. For a protein with a
molecular weight of 13,690 Da (Ribonuclease A) in H2O, the ratio W1:Wo:W2 is 1:28:1 on
a 500-MHz spectrometer. Thus, for large molecules, the zero-quantum pathway is fastest.

Consider first the single-quantum transition between the αβ and ββ states (Ha(2)
transition, Fig. 10.1). This is an Ha transition with relaxation rate Wa

1 . The equilibrium
difference in population for this transition is Pαβ − Pββ = 2δ. If this equality does not
hold, then the “overpopulation” of the ββ state is given by Pββ − Pαβ + 2δ, and the rate
of spins dropping down from the ββ state to the αβ state is Wa

1 (Pββ − Pαβ + 2δ). If this
were the only transition available (i.e., if there were no double-quantum or zero-quantum
pathways), we could write down the rate of change of population as

dPαβ/dt = −dPββ/dt = Wa
1 (Pββ − Pαβ + 2δ)

We can calculate from this the rate equation for the relaxation of the Ha spins:

d�Ma
z /dt = d(Ma

z − Mo)/dt = dMa
z /dt = d(Pαβ − Pββ)/dt

= dPαβ/dt − dPββ/dt = 2Wa
1 (Pββ − Pαβ + 2δ) = −2Wa

1�Ma
z

The overall equation is a simple first-order decay with rate constant 2Wa
1 . This corresponds

to the longitudinal relaxation rate for Ha in the absence of cross-relaxation: Ra
1 = 1/T a

1 .
Looking at the other Ha transition, αα state to βα state, gives the same result, and the Hb
transitions yield the analogous result Rb

1 = 1/T b
1 = 2Wb

1 . These self-relaxation times, T a
1 and

T b
1 , will decrease when we introduce the cross-relaxation pathways (DQ and ZQ relaxation).

Now let’s look at the more interesting situation where the cross-relaxation pathways
(single quantum and double quantum) are available. Spins in the ββ state can relax by any
of three pathways: they can drop down to the αβ state (rate Wa

1 ), drop down to the βα state
(rate Wb

1 ), or follow the double-quantum pathway down to the αα state (rate W2). All of
these pathways will contribute to the change in population of the ββ state as a function of
time (Fig. 10.3). Considering all three pathways leading away from the ββ state, we can

Figure 10.3
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write the three terms contributing to the rate of loss of spins from this state:

Wa
1 (Pββ − Pαβ + 2δ) via the Ha SQ (single quantum) transition

Wb
1 (Pββ − Pβα + 2δ) via the Hb SQ transition

W2(Pββ − Pαα + 4δ) via the DQ (double quantum) transition

Note that the equilibrium difference across the DQ transition (Pαα − Pββ) is 4δ because the
energy separation is twice that of an SQ transition. Combining all three terms,

dPββ/dt = −Wa
1 (Pββ − Pαβ + 2δ) − Wb

1 (Pββ − Pβα + 2δ) − W2(Pββ − Pαα + 4δ)

The minus signs reflect the fact that all three pathways remove spins from the ββ state when
the spins flow “downhill” to the more stable states αβ, βα, and αα. Likewise for the other
three spin states

dPαβ/dt = Wa
1 (Pββ − Pαβ + 2δ) − Wb

1 (Pαβ − Pαα + 2δ) − Wo(Pαβ − Pβα)

dPβα/dt = Wb
1 (Pββ − Pβα + 2δ) − Wa

1 (Pβα − Pαα + 2δ) + Wo(Pαβ − Pβα)

dPαα/dt = Wb
1 (Pαβ − Pαα + 2δ) + Wa

1 (Pβα − Pαα + 2δ) + W2(Pββ − Pαα + 4δ)

Note that the equilibrium population difference for the zero-quantum transition is zero
because the two states have (essentially) the same energy. Now we can substitute the (indi-
rectly) measurable quantities Ma

z and Mb
z for the population differences. For the “disequi-

librium” of Ma
z we have

d�Ma
z /dt = d(Ma

z − Mo)/dt = dMa
z /dt = d(Pαβ − Pββ)/dt = dPαβ/dt − dPββ/dt

Substituting the expressions above for the “flow” toward and away from the αβ and ββ

states

d�Ma
z /dt = Wa

1 (Pββ − Pαβ + 2δ) − Wb
1 (Pαβ − Pαα + 2δ) − Wo(Pαβ − Pβα)

+Wa
1 (Pββ − Pαβ + 2δ) + Wb

1 (Pββ − Pβα + 2δ) + W2(Pββ − Pαα + 4δ)

= 2Wa
1 (Pββ − Pαβ + 2δ) − Wb

1 (Pαβ − Pαα − Pββ + Pβα)

+W2(Pββ − Pαα + 4δ) − Wo(Pαβ − Pβα)

= 2Wa
1 (−Ma

z + Mo) − Wb
1 (−Mb

z + Mb
z )

+W2(−Ma
z − Mb

z + 2Mo) − Wo(Ma
z − Mb

z )

= −2Wa
1�Ma

z − W2(�Ma
z + �Mb

z ) − Wo(�Ma
z − �Mb

z )

= −�Ma
z (2Wa

1 + W2 + Wo) − �Mb
z (W2 − Wo) (10.1)
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Likewise for �Mb
z ,

d�Mb
z /dt = d(Mb

z − Mo)/dt = dMb
z /dt = d(Pβα − Pββ)/dt = dPβα/dt − dPββ/dt

Substituting the expressions above for the “flow” toward and away from the βα and ββ

states

d�Mb
z /dt = Wb

1 (Pββ − Pβα + 2δ) − Wa
1 (Pβα − Pαα + 2δ) + Wo(Pαβ − Pβα)

+Wa
1 (Pββ − Pαβ + 2δ) + Wb

1 (Pββ − Pβα + 2δ) + W2(Pββ − Pαα + 4δ)

= 2Wb
1 (Pββ − Pβα + 2δ) − Wa

1 (Pβα − Pαα − Pββ + Pαβ)

+W2(Pββ − Pαα + 4δ) + Wo(Pαβ − Pβα)

= 2Wb
1 (−Mb

z + Mo) − Wa
1 (−Ma

z + Ma
z )

+W2(−Ma
z − Mb

z + 2Mo) + Wo(Ma
z − Mb

z )

= −2Wb
1 �Mb

z − W2(�Ma
z + �Mb

z ) + Wo(�Ma
z − �Mb

z )

= −�Mb
z (2Wb

1 + W2 + Wo) − �Ma
z (W2 − Wo) (10.2)

The two results can be written together as a system of two linked (coupled) first-order
differential equations. This means that the return of Ma

z to equilibrium depends on how far
Mb

z is from equilibrium, and vice versa.

d�Ma
z /dt = −Raa�Ma

z − Rab�Mb
z from (10.1)

d�Mb
z /dt = −Rab�Ma

z − Rbb�Mb
z from (10.2)

where the self-relaxation rates Raa and Rbb are the longitudinal relaxation rates for Ha and
Hb, respectively, and the cross-relaxation rate Rab depends on the competition of the DQ
and ZQ pathways:

Raa = 2Wa
1 + W2 + Wo self-relaxation for Ha

Rbb = 2Wb
1 + W2 + Wo self-relaxation for Hb

Rab = W2 − Wo cross-relaxation

For a small organic molecule, W2 is about six times as fast as Wo, so Rab is positive. This
means that if we start at equilibrium (�Mb

z = 0) and saturate Ha (�Ma
z = −Mo) the z

magnetization of Hb is enhanced:

d�Mb
z /dt = −Rab�Ma

z − Rbb�Mb
z = −Rab(−Mo)

positive
(initial)

This is because the cross-relaxation term (−Rab�Ma
z ) becomes positive and makes Mb

z

grow initially and become greater than Mo. This leads to enhancement of the Hb signal in a
1D NOE experiment, and the initial rate of growth as a function of time (“mixing time”) is
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a direct measure of Rab, which is proportional to 1/r6. This is the “classical” NOE familiar
to the organic chemist. Note that inversion of the Ha spins (�Ma

z = −2Mo) has the same
effect but twice as strong. We call this a negative NOE because decreasing Ma

z has the
effect of increasing Mb

z ; for this reason the crosspeaks in a 2D NOESY spectrum of a small
organic molecule are negative with respect to the positive diagonal.

For a large molecule such as a protein, Wo is much faster than W2, so Rab is negative.
This means that if we saturate Ha (�Ma

z = −Mo) when the Hb spins are at equilibrium
(�Mb

z = 0), the z magnetization on Hb will begin to decrease:

d�Mb
z /dt = −Rab�Ma

z − Rbb�Mb
z = −Rab(−Mo)

negative

This is because the cross-relaxation term (−Rab�Ma
z ) becomes negative (−negative ×

negative) and makes Mb
z decrease initially below Mo. This leads to reduction of the Hb

signal in a 1D NOE experiment, and an NOE “buildup” study using a series of different
mixing times can be used to measure Rab as the initial rate. We call this a positive NOE
because decreasing �Ma

z has the effect of decreasing �Mb
z ; for this reason the crosspeaks

in a 2D NOESY spectrum of a large molecule are positive with respect to the positive
diagonal.

There is a molecular size in between these extremes for which W2 and Wo are the same.
In this case Rab = 0 and there is no NOE. For an ideal spherical protein in water at 27 ◦C
on a 500-MHz instrument, this occurs at a molecular weight of 2370 Da, or a typical 20-
residue peptide. Fortunately, there is another 2D experiment called ROESY (rotating frame
nuclear overhauser effect spectroscopy) that carries out the NOE transfer in a weak B1 field
(typically γB1/2π ∼ 3000 Hz) rather than in the Bo field (e.g., γBo/2π = 500 MHz). Under
these conditions, the SQ and ZQ transition frequencies are so low (3000 and 6000 Hz) that
even large molecules such as proteins have significant populations tumbling at these rates.
This means that all molecules, regardless of size, have W2 > Wo and a positive Rab; that
is, all molecules behave like small molecules. For small and large molecules alike the NOE
effect (“ROE”) is an enhancement of Mz , and the crosspeaks in the 2D ROESY experiment
are negative with respect to the positive diagonal.

10.2 DYNAMIC PROCESSES AND CHEMICAL EXCHANGE IN NMR

So far we have assumed that a nucleus exists in a stable chemical environment; that is, that
its chemical shift does not change with time. The chemical shift is a result of the effective
field at the nucleus, and this is sensitive to inductive effects (electron withdrawal or donation
through bonds), through-space effects (magnetic anisotropy due to nearby π-bonds), and
steric effects. A nucleus can change its chemical environment, and therefore its chemical
shift, by a chemical reaction (bond breaking and bond breaking) or by a conformational
change (bond rotation). The effect this has on the NMR spectrum depends on the rate of
the exchange process, compared to a time commonly referred to as the NMR timescale.
There are actually a number of different timescales that can be studied using NMR, but
the commonly used NMR timescale is that of direct observation of chemical shifts—the
timescale of recording an NMR spectrum. The NMR timescale is essentially the “shutter
speed” of taking an NMR picture of the molecule, and is of the order of magnitude of
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Figure 10.4

milliseconds. This is a very slow timescale compared to optical spectroscopies, which
operate on a nanosecond to picosecond or faster timescale. In fact, most molecular motions
(molecular tumbling, bond rotation of methyl groups, etc.) and many chemical reactions
(e.g., acid–base reactions) are much faster than the NMR “shutter” and we see only a single
chemical shift that is the time average of the chemical shifts of the individual environments
that the nucleus visits.

The simplest effect occurs when a given nucleus in a molecule changes its magnetic
environment, and thus its chemical shift, as a result of a simple molecular motion. For
example, the methyl groups in N,N-dimethylformamide (DMF) change places as a result
of the relatively slow rotation about the amide bond (Fig. 10.4). The protons of the methyl
group closer to the carbonyl oxygen have a larger chemical shift (2.94 ppm) than the other
site (2.79 ppm) so that the resonant frequency of a given nucleus is bouncing back and forth
between these two chemical shifts as the bond rotates. A “shutter time” can be defined for
the NMR experiment, which is inversely proportional to the difference in chemical shift
(in Hz!) between the two environments. On a 200-MHz instrument:

“shutter time” =
√

2/(π�ν) = 1/(2.22�ν) = 1/(2.22 × 0.15 ppm × 200 Hz/ppm)

= 1/(2.22 × 30 Hz) = 0.015 s = 15 ms

If the average lifetime in one state (τex) is longer than the shutter speed, we will see two
distinct peaks in the spectrum. If the average lifetime is shorter than the shutter time we
will only see one averaged peak. This shutter time is formally called the coalescence time,
τc, for the exchange process, or simply the “NMR timescale”.

Slow exchange (τex � τc) means that each nucleus is, on average, entirely in one en-
vironment during the shutter time, so that the motion is “frozen” and two sharp peaks are
observed for different nuclei in the two environments (Fig. 10.5, top). Heating the sample
speeds up the exchange so that a blur is observed (Fig. 10.5, center) as nuclei move back
and forth between chemical environments during the shutter time (τex ∼ τc). At even higher
temperature, the average nucleus moves back and forth so many times during the shutter
time that a single sharp peak is observed (Fig. 10.5, bottom) at the average of the two chem-
ical shifts (fast exchange, τex � τc). Study of this behavior as a function of temperature
allows determination of the rate constant and the energy barrier for the bond rotation.
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Figure 10.5

The DMF bond rotation can be considered as a dynamic equilibrium with equilibrium
constant of 1 (k1 = k−1):

Ha
k1�
k−1

Hb

The average time spent in the Ha state (δ(CH3) = 2.94 ppm)) before jumping to Hb is 1/k1,
as the k1 rate defines the end of its lifetime in the Ha state. The average time spent in the
Hb state is likewise equal to 1/k−1, as the k−1 process defines the end of its life. Figure 10.6
shows a simulation of the DMF bond rotation starting with slow exchange (top) and raising
the temperature to increase the average time spent in each state (τex = 1/k1 = 1/k−1 = 1.5
s, 0.15 s, 15 ms, 1.5 ms, and 0.15 ms). In the simulation, an equal amount of noise has been
added to each spectrum and the spectra are scaled vertically to the tallest peak. Comparing
the average lifetime τex to the coalescence lifetime (shutter time) τc, we see sharp lines at
the two chemical shift positions when τex (1.5 s) is 100 times longer than τc (Fig. 10.6, top).

Figure 10.6
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The exchange process is much slower than the “shutter time,” which means that the nucleus
spends much more time on average than the NMR timescale in each environment. In this
slow exchange limit, the intensity (integral area) of each peak will reflect the fraction of
time that the nucleus spends in that environment (1/(Keq + 1) for Ha, Keq/(Keq + 1) for Hb),
in this case a 1:1 ratio (Keq = 1). When the temperature is increased to the point where τex
(0.15 s) is only 10 times longer than τc, the peaks begin to broaden and the peak maxima
begin to “creep” inwards each other. This “exchange broadening” can be used to measure
the rate constants k1 and k−1 (see below). When the temperature is raised further until τex
is equal to the coalescence time (Fig. 10.6, center), there is no longer a “dip” between the
two peaks and we see one single, very broad peak. Because the same peak area (two CH3
groups) is now spread over a very broad peak, the peak height is much lower and the noise
appears larger in comparison. It is not uncommon for peaks to be broadened out of existence
(into the noise) by exchange!

Continuing to raise the temperature, we arrive at a point where τex (1.5 ms) is 10 times
shorter than τc. The single peak is now much sharper but still broadened relative to the
natural linewidth in the absence of exchange. This is a case where we might see one peak in
the spectrum broader and shorter than the others and start thinking about the possibility of
an exchange process. Finally, at the high temperature limit where τex is 100 times or more
shorter than τc, we see a single sharp peak at the average chemical shift position (Fig. 10.6,
bottom), with no broadening and a peak area representing the total of both environments
(in this case 6H).

Note that on a 200-MHz instrument, �ν is 30 Hz (0.15 ppm × 200 Hz/ppm) and
the NMR timescale τc is 15 ms (1/(2.22 × 30)), but the “shutter speed” is faster as we
go to higher field instruments because the chemical shift difference �ν is measured in
hertz, not ppm. Thus, moving to higher field shortens the shutter time τc in a way that is
inversely proportional to Bo. Figure 10.7 shows simulated spectra of the DMF sample at the
same temperature that gives τex = 15 ms, analyzed on three different spectrometers with
γHBo/2π = 60, 200, and 600 MHz. At 60 MHz (top), we have an exchange-broadened fast

Figure 10.7
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exchange spectrum (τex = τc/3.33); at 200 MHz (middle), we are at the coalescence point
(τex = τc); and at 600 MHz (bottom), we have an exchange-broadened slow exchange
spectrum (τex = 3 τc). In terms of its effect on the spectrum, going to higher field is like
cooling down the sample and going to lower field is like heating it up. If you simply want
to verify if a broadened peak is due to exchange it might be much simpler to try a different
field strength instead of doing a variable temperature study.

If the nucleus is farther away in the molecule from the site of chemical change, its
chemical shift may be affected less so that �ν is small or even zero. We can have as many
NMR timescales as there are distinct nuclei within a molecule. Thus, the NMR timescale
is not an absolute time, but rather it depends on field strength and on the significance of the
chemical exchange in terms of its effects on the chemical shift of a particular nucleus.

10.2.1 Slow Exchange

Let’s consider in more detail what happens in slow exchange as we increase the exchange
rate and the single NMR peak begins to broaden. A simple 1D NMR spectrum is recorded
by rotating the sample magnetization into the x–y plane with a pulse and then observing
the precession of this sample magnetization in the x–y plane as it induces a sinusoidal
signal in the probe coil. As the sample magnetization rotates during the recording of the
FID, individual Ha spins become Hb spins, keeping the same spin state they had before,
but changing their resonant frequency (chemical shift) from νa to νb. Each individual spin
undergoes the jump from one chemical environment to another at random intervals, so that
the phase coherence is rapidly lost as it switches its precession frequency from νa to νb and
back again (Fig. 10.8). The process is random (“stochastic”) from the point of view of any
one nucleus, but we can say that on average the nucleus will spend half its time in the Ha
state and half its time in the Hb state (if Keq = 1). We can also say that on average a nucleus
will remain in the Ha state for τa = 1/k1 s and it will remain in the Hb state for τb = 1/k−1
s. Phase coherence is lost because after one spin changes to a different frequency for a brief
period, it cannot jump back into the original frequency at the same position in the x–y plane
(the same phase) that it would have occupied if it had stayed at the original frequency for
the whole time. So now it has lost phase coherence with other spins that did not make the
“jump.” This randomization of individual phases leads to a “fanning out” of the individual
vectors that make up the Ha net magnetization, and the net magnetization vector for the
population of Ha spins rapidly decays to zero magnitude as it rotates. This is similar to the
T2 relaxation process, and it adds to the loss of coherence resulting from T2 relaxation:

Ha slow exchange linewidth = �ν1/2 = 1/(πT2) + 1/(πT i
2) + 1/(πτa)

Figure 10.8
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where T i
2 is the line broadening due to magnetic field inhomogeneity (Chapter 6, Section 6.9)

and τa is the average lifetime in the Ha chemical environment (τa = 1/k1, τb = 1/k−1). Note
that the lifetime in the Ha environment is not affected by the reverse rate constant k−1; once
we have a nucleus in environment Ha, the clock starts and the only thing that removes this
nucleus from the Ha environment is the rate process represented by k1. The k−1 process
produces a different nucleus in the Ha environment and simply restarts the clock for that
nucleus. Likewise the lifetime of a particular nucleus in the Hb environment is affected
only by the reverse rate constant k−1, which puts an end to its life as Hb. This equation for
linewidth applies only in the slow exchange regime, where the time constant for exchange is
longer than the coalescence time τc. In this regime, we have separate peaks in the spectrum
for each chemical environment and the rate constants can be obtained from measuring the
linewidths and comparing to “pure” linewidths that are not broadened by exchange. The
integrated areas of these peaks give the relative amounts of the different species involved in
the exchange. For example, in the simple two-site example (Ha ↔ Hb), the area of the Hb
peak divided by the area of the Ha peak gives the equilibrium constant for the exchange, Kex.

The anomeric carbon of reducing sugars undergoes ring opening and reclosing, inter-
changing the α and β diastereomers (anomers) slowly at room temperature (Chapter 1,
Fig. 1.12). Figure 10.9 shows the structure of lactose, a disaccharide that exists as a mixture
of two anomeric forms, differing in the stereochemistry of the anomeric position (1) of the
glucose ring. In the 1H spectrum (Fig. 10.10, top), separate, sharp peaks are observed for
the glucose-1 proton of α-lactose (5.11 ppm, doublet, J = 3.8 Hz) and the glucose-1 proton
of β-lactose (4.54 ppm, doublet, J = 7.5 Hz). The smaller coupling is due to the equatorial
orientation of the glu-1 proton in α-lactose. The equilibrium constant for the conversion
α-lactose � β-lactose can be calculated from the ratio of integral areas: Keq = 0.657/0.363
= 1.81. The broad triplet at 3.15 ppm (J = 7.7 Hz) has an integral area equal to that of
the β-glu-1 peak, so it must come from β-lactose. The doublet at 4.32 ppm (J = 7.7 Hz)
is an anomeric proton with an integral area equal to the sum of the α-glu-1 area and the
β-glu-1 area (0.363 + 0.657 ∼= 1.00). The large coupling suggests a β-orientation of the
anomeric oxygen, with the anomeric proton in an axial position. This is the galactose H-1
proton, which is not affected by the exchange process because it is far enough away in

Figure 10.9
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Figure 10.10

the molecule that both forms (α-lactose and β-lactose) give identical peaks. The area of
complex overlapped peaks from 3.3–3.9 ppm must contain 12 protons from α-lactose and
11 from β-lactose, as there are 14 carbon-bound protons in all in each form. We predict the
area of this region to be 0.363 (12) + 0.624 (11) = 11.22, which is close to the measured
area of 11.44. Because the two forms are present in different concentrations, an area of
0.363 corresponds to one proton for α-lactose and an area of 0.624 corresponds to one
proton for β-lactose. The OH protons are in fast exchange with residual HOD (large peak at
4.7 ppm) and resonate at the average chemical shift, which is the HOD position because the
vast majority of protons in this large “reservoir” are on the much more concentrated HOD
at any one time.

Even with slow exchange it is possible to detect the exchange by an NOE experiment.
During the mixing time of the NOE, the perturbed z magnetization on Ha becomes perturbed
z magnetization on Hb in an exchange event:

−Ia
z →−Ib

z

The spin state has not changed; we just changed the label on the proton when it passed into
a new chemical environment with a different Larmor frequency.

The formal analysis of this exchange process as it affects the longitudinal relaxation
of two resonances Ha and Hb leads to the following equations, similar to those for cross-
relaxation by the NOE:

d�Ma
z /dt = (−Raa − k1)�Ma

z + k−1�Mb
z

d�Mb
z /dt = k1�Ma

z + (−Rbb − k−1)�Mb
z
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Consider the first equation: every time an Ha spin becomes an Hb spin, it takes its disequi-
librium away from the Ha category with a rate of k1, speeding up the self-relaxation of Ha.
More importantly, every time an Hb spin becomes an Ha spin, it carries its disequilibrium
(�Mb

z ) into the Ha category, with a rate of k−1. This is the term that replaces the cross-
relaxation term Rab in the corresponding equations for the NOE. For Hb, the rate constant
k1 describes the rate at which Ha’s disequilibrium (�Ma

z ) is converted into disequilibrium
of the z magnetization of Hb. In a transient NOE experiment, if we invert Ha (180◦ selective
pulse) while leaving Hb at equilibrium, the rate equation for Hb becomes

d�Mb
z /dt = dMb

z /dt = k1�Ma
z = k1(−2Mo)

for the initial rate. Note that the z magnetization of Hb is decreasing, opposite to the
“enhancement” of z magnetization observed for small-molecule NOEs. Solving for k1,
we have

k1 = −[dMb
z /dt]/2Mo

This can be measured by equating the (negative) peak area of the inverted Ha peak at τm =
0 with −Mo and measuring Mb

z as the peak area of the Hb peak relative to “−Mo”.
Figure 10.10 (bottom) shows the result of a 1D selective NOE (DPFGSE) experiment on

the mixture of lactose anomers, selecting the glucose-1 peak of α-lactose at 5.11 ppm. We
see a strong exchange peak at 4.54 ppm representing the glucose-1 peak of β-lactose. Note
that this peak is the same sign as the selected peak (negative), as exchange does not change
the spin state. A strong NOE peak is observed at 3.44 ppm for the glucose-2 proton of
α-lactose. This peak is positive, opposite in sign to the selected peak, as for small molecules
the NOE is negative:

−Ia
z → Ib

z

Exchange peaks correlate one molecule with a different molecule, whereas NOE peaks
correlate through space within the same molecule. The NMR timescale for this exchange
(�δ = 5.11– 4.54 = 0.57 ppm; �ν = 0.57 × 500 = 285 Hz) can be calculated as 1/(2.22
× �ν) = 1.58 ms. Because we see sharp peaks for the glucose-1 resonances of both forms
of lactose, the lifetime of each state must be much longer than 1.58 ms.

Figure 10.11 shows the results of a buildup study, varying the mixing time from 5 to
350 ms and measuring the relative areas of the NOE and exchange peaks. The vertical
scale is peak area in percent of the inverted α-glu-1 peak at τm = 0. We already know that
the lifetime of either state (α-lactose or β-lactose) is much greater than 1.58 ms, but we
can see that as the mixing time is increased, the number of molecules “jumping across”
from α-lactose to β-lactose during the time “window” of τm increases steadily. The NOE
experiment gives us another timescale to observe exchange: the much longer timescale of
the mixing time, which is limited only by T1 (∼2 s) relaxation. In this case, the rate of
conversion α-lactose → β-lactose can be estimated from the initial rate (1.4% in 150 ms)
of exchange buildup: k1 = 0.046 s−1. The average lifetime in the α-lactose state is 1/k1 =
21.6 s! This is extremely slow, 13,600 times longer than the coalescence lifetime (chemical
shift time scale) of 1.58 ms. As we know the equilibrium constant, we can calculate the
reverse rate (β-lactose → α-lactose): k−1 = k1/Keq = 0.046 s−1/1.81 = 0.026 s−1. The
average lifetime in the β-lactose state is 1/k−1 = 39.1 s.
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Figure 10.11

There are many other examples of slow exchange at room temperature, including
hindered rotation about single bonds, where the energy barrier may be due to partial
double-bond character (amide N–CO rotation, aniline N-aromatic ring rotation) or to steric
crowding. Amide bonds in peptides (except proline) do not usually show exchange, but
simple amides used for protecting groups (benzoyl, benzyloxycarbonyl, etc.) can give
doubling of many peaks. Some sigmatropic rearrangements can bring about reversible
carbon–carbon bond breaking and formation that is slow at room temperature and fast at
high temperatures. There are many examples of exchange in inorganic complexes, which
can adopt different geometries. For example, pentavalent phosphorus interchanges the two
axial ligands with the three equatorial ligands in a process called pseudorotation, which has
been studied extensively by 31P and 19F NMR. In many cases, the process of coalescence
from slow exchange to fast exchange can be studied without changing the temperature, by
the addition of different concentrations of a catalyst.

10.2.2 Fast Exchange

In the fast exchange regime, where kex � kc (τex � τc), we have only one peak for all of
the chemical environments (“sites”) involved in the exchange process. The chemical shift
position of this peak is the weighted average of the individual site chemical shifts, weighted
by the “population” (equilibrium concentration) of each site. In the simplest case of two
sites with an equilibrium constant of 1 (e.g., N,N-dimethylformamide), the chemical shift
will be the simple average (νa + νb)/2. If the equilibrium constant is not 1, we have the
weighted average

νav = (νana + νbnb)/(na + nb)

where na and nb are the populations (or concentrations) of the Ha and Hb sites, respectively,
with Keq = nb/na. Exchange can cause line broadening in this regime without splitting
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the resonance into more than one peak. This can show up as a broad peak in a spectrum
of otherwise sharp peaks, as �ν may be small for nuclei that are farther away from the
focus of a conformational change. This may show up in the 13C spectrum but not in the 1H
spectrum, as 13C chemical shifts are more sensitive to differences in the steric environment
and generally have a larger range of chemical shifts in the ppm scale, even though the �ν in
Hz is four times larger for a proton spectrum if the chemical shift difference is the same in
ppm. Sometimes peaks in a spectrum can be so broad as to be missing altogether. As a peak
becomes very broad, its integral area remains the same and the peak height must become
very low, sometimes lower than the noise level. The same applies for crosspeaks in a 2D
spectrum: a peak that is strongly affected by exchange may disappear entirely whereas the
other peaks, for which �ν is much less than the exchange rate, are sharp and unaffected.
The missing or broad peaks can be verified as exchange effects by raising the temperature
(faster exchange) or lowering the Bo field (slower shutter speed) until the peak becomes
sharp. Alternatively, one can lower the temperature or go to higher field in order to observe
splitting of the peak into more than one peak (slow exchange).

Typical systems that show fast exchange at room temperature include most rotations
around single bonds in acyclic molecules (methyl groups always show a single chemi-
cal shift with sharp peaks), acid–base reactions, and cyclohexane chair interconversions.
Protons on electronegative atoms, such as alcohol oxygens, are typically in fast exchange
with other OH groups in the sample due to the presence of trace amounts of acid or base
catalysts:

ROHa + Hb
+ �RO+(Ha)Hb �ROHb + Ha

+

The effect of this fast exchange is to decouple the OH proton from other spins in the
molecule. If an OH proton is in the α state (spin “up”) on a particular molecule, it will soon
exchange with another proton in the β state (spin “down”), so that other spins in the molecule
will see a rapid “blur” of α and β state protons on the oxygen. The NMR timescale is just
1/(2.22 J) (J is difference in resonant frequency, �ν, between the two states for the spin that
is coupled to the OH proton) and the exchange is usually much faster than this. Coupling
to an OH proton is observed only with aprotic solvents that are hydrogen bond acceptors
(DMSO-d6) or in cases where the molecule itself provides an intramolecular hydrogen bond
acceptor. Hydrogen bonding greatly reduces the exchange rate and allows the J coupling to
be observed. The NH protons of an amine or aniline are also in fast exchange, but in an amide
(peptide) bond the NH exchanges slowly enough to allow the observation of J coupling.
This amide NH exchange is pH dependent in aqueous solution (e.g., 90% H2O/10% D2O)
and reaches a minimum exchange rate at around pH 3. Decoupling itself is an exchange
process, in which we repeatedly invert one spin (e.g., 1H) very rapidly by RF irradiation,
leading to averaging of the Larmor frequencies for the coupled spin (e.g., 13C) between the
H = α and H = β chemical shift positions. Thus, the doublet is collapsed to a sharp singlet
as long as the protons are jumping back and forth between α and β states at a rate much
faster than 1/(2.22 1JCH) during the acquisition of the FID.

Acid–base reactions are of particular interest because one can titrate the NMR sample
and observe a titration curve of chemical shifts. This is because the two forms (protonated
and unprotonated) usually show chemical shift differences at one or more sites near the



424 ADVANCED NMR THEORY: NOESY AND DQF-COSY

basic atom:

B:
νa

+H+ � BH+
νb

For example, the imidazole ring of a histidine residue in a protein shows significant pH
dependence of the 13C chemical shift at all three of the carbon positions. Although the
fast-exchange chemical shift observed is the weighted average of the two chemical shifts
(B and BH+), the basic form chemical shift is observed at high pH and the acidic form
chemical shift is observed at low pH. As the pH is gradually decreased (by removing the
NMR tube from the magnet, adding aliquots of acid and replacing it), the chemical shift
changes from the basic form shift value to the acid form shift value in the form of a classical
titration curve, with a midpoint at the pKa value for the acid–base equilibrium. The peaks
in the NMR spectrum are sharp at each step of the titration because the acid–base reaction
is very fast on the NMR timescale at all pH values. This technique has been used to identify
the pKa values of specific active-site amino acid side chains in proteins, using 2D NMR to
determine the chemical shift values at each pH.

10.2.3 Variable Temperature Operation

Most spectrometers control the sample temperature by passing a constant flow of gas (air or
nitrogen) by a heater and then past the NMR tube, with a thermocouple just below the NMR
tube to sense the temperature of the gas. A feedback loop compares the gas temperature
to the set temperature and adjusts the current in the heater coil accordingly to maintain a
constant temperature (Fig. 10.12). The gas supply must be 10 ◦C or more colder than the set
temperature to get good regulation. Air chillers are commonly used to access temperatures
of 0–25 ◦C. Below 0◦C requires more drastic cooling, usually with liquid nitrogen (77 K,
−196 ◦C). Varian uses a heat exchanger that passes room temperature nitrogen gas through
a coil of tubing in a bucket of liquid nitrogen, then into the probe. Bruker generates the
nitrogen gas directly from the liquid nitrogen by placing a heater coil in the dewar and
boiling off the nitrogen directly into the probe. For high temperature work, you may need to

Figure 10.12
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use nitrogen for prolonged experiments to avoid oxidation of the probe electronics. Every
probe has a rated temperature range, so check the probe manual! Prolonged low temperature
work can actually cool and shrink the rubber O-ring vacuum seals at the bottom of the
magnet, leading to a quench (violent loss of superconductivity). To avoid this, a heater can
be placed between the probehead and the bottom of the magnet. Most VT units include a
safety feature that shuts down the heater if there is any interruption of the gas flow. This
is important because without gas flow the heat produced in the heater is not transferred to
the thermocouple and the heater never turns off—the probe can melt! The VT unit senses
gas flow in the console only, so if the gas does not reach the probe for any reason, such as
a disconnected air line at the probe, the same hazardous situation arises.

One practical aspect that may seem obvious, but many people overlook with disastrous
results: you must operate in the temperature range between the freezing point and the boiling
point of the solvent! Freezing can break the NMR tube and boiling can send your sample
spewing all over the probe and the bore. At low temperatures you can also encounter highly
viscous solvents, which will lead to slow molecular tumbling and broad peaks due to short
T2. Some solvents are ideal for low temperature because of their low boiling points and low
viscosity: for example, dichoromethane (mp −95 ◦C). Keep in mind that the temperature
reading on an NMR variable temperature unit can be quite inaccurate; you should calibrate
using an internal standard of chemical shift difference (methanol for low temperature and
ethylene glycol for high temperature) or a thermocouple directly introduced into solvent in
an NMR tube. The variable temperature unit measures the air (or nitrogen) temperature in
the stream just before it reaches the NMR tube, not the temperature of the sample, so you
need to allow ample time for equilibration even after the temperature reading has stabilized.

10.3 2D NOESY AND 2D ROESY

NOESY and ROESY (Fig. 10.13) correlate protons with other protons via their homonuclear
NOE interactions. A NOESY spectrum looks very much like a COSY, except that the
crosspeaks correspond to pairs of protons that are close in space (<5 Å) and not necessarily
close in the bonding network. The intensities of crosspeaks are roughly proportional to
1/r6, where r is the direct through-space distance between the two protons correlated by
the crosspeak.

10.3.1 The Transient Nuclear Overhauser Effect

In Chapter 5 we observed NOE interactions by 1D NOE difference, measuring the
steady-state NOE resulting from a long (several seconds), low-power continuous-wave
irradiation of one nucleus. The modern selective (DPFGSE) 1D NOE experiment

Figure 10.13
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Figure 10.14

(Chapter 8) uses the transient NOE, in which a selective 180◦ pulse is applied to one
nucleus and then the enhancement of z magnetization on a nearby nucleus is measured
after a mixing delay (Fig. 10.14: the DPFGSE—90◦ sequence is replaced by a single
selective 180◦ pulse for simplicity). For two nuclei Ha and Hb that are nearby in space,
interaction of their magnetic dipoles leads to the phenomenon of cross-relaxation. This
means that any sudden perturbation of the Ha populations away from the Boltzmann
distribution will lead to a relaxation process that perturbs the Hb populations away from the
Boltzmann distribution temporarily. The effect will build up during the relaxation process,
but eventually a Boltzmann distribution for both nuclei is reestablished and the effect on
Hb goes away. For “small” molecules, this effect enhances the z magnetization of Hb up
to a few percent above Mo at the optimum mixing time.

In product operator terms, we can say that the inverted z magnetization on Ha leads to
the generation of additional z magnetization on Hb:

−Iaz
(τmdelay)−→ Ibz

Consider now the common “front end” of the homonuclear 2D experiments: 90◦—t1—90◦.
If we put it in place of the selective 180◦ pulse of the transient NOE experiment (Fig. 10.14),
it will give us the following terms:

−Iazcos(�at1) + Iaxsin(�at1) (if Ha and Hb are not J coupled)

The first term, which is not observable in the COSY experiment, is now exactly what we
need for a transient NOE experiment. We have “inverted” the Ha magnetization in a way
that carries the information of its chemical shift encoded in the cos(�a t1) term. Depending
on the value of t1, sometimes Ha will be completely inverted (cosine = 1), leading to a
maximum NOE transfer to Hb, and sometimes it will not be inverted at all (cosine = −1),
leading to no NOE transfer to Hb. Thus, the transferred magnetization will also carry the
chemical shift information of Ha:

−Iazcos(�at1)
(τmdelay)−→ Ibzcos(�at1)

The final “read” pulse rotates the Hb z magnetization into the x′–y′ plane and the FID is
recorded with the frequency �b. Fourier transformation of the FIDs gives in each one a
peak at F2 = �b whose amplitude is oscillating as a function of t1 at the frequency �a.
Fourier transformation of the t1 FID gives a crosspeak at F2 = �b, F1 = �a. Because
for small molecules, the transferred z magnetization is opposite in sign from the original



2D NOESY AND 2D ROESY 427

Figure 10.15

perturbation of Ha (−Iaz → Ibz), the crosspeaks will be of negative intensity if we phase the
diagonal peaks (coming from untransferred −Iaz) to positive intensity.

10.3.2 The NOESY Pulse Sequence

The NOESY is a simple extension of the COSY pulse sequence, with one additional delay
and one additional 90◦ pulse added (Fig. 10.15). The mixing part of the 2D pulse sequence
now consists of two 90◦ pulses separated by a delay. The first 90◦ pulse converts magne-
tization in the x′–y′ plane into z magnetization (population difference). To the extent that
this z magnetization differs from Mo, it will undergo cross relaxation during the mixing
delay τm, altering the population difference and thus the z magnetization of nearby nuclei.
The final pulse converts the transferred z magnetization into observable x′–y′ magnetization
on the nearby nuclei, which precesses during t2 and induces the FID signal in the probe
coil. As with all 2D experiments, magnetization transfer is the basis for the appearance of
crosspeaks in the spectrum (cf. Chapter 9, efficiency of transfer Gab), but in this case it is z
magnetization that is transferred and the intensity of crosspeaks will depend on the cross-
relaxation rate for that pair of nuclei. As in the transient NOE experiment, the intensity
of the crosspeak will increase with increasing mixing time τm, but will eventually reach a
maximum and then drop off to zero.

A simple way to gradient enhance the NOESY experiment is to add a single gradient
during the mixing delay (Fig. 10.16). This will destroy any SQC present during the mixing
time (p = 1) as well as any DQC (p = 2), as there is no other gradient to “untwist” the
coherence. z magnetization and ZQC (p = 0) are not affected. Phase cycling is also used
to remove artifacts. Because we are only interested in z magnetization during the mixing
delay, we can use any phase we want for the final pulse as long as the receiver phase is
the same as the pulse phase. So usually this final pulse is cycled as x, y, −x, −y with the
receiver making the same cycle: x, y, −x, −y. We can also phase cycle the second 90◦ pulse
(x, −x), which will reverse the perturbation of z magnetization at the start of the mixing
delay: −Iazcos(�at1) for an x′ pulse and +Iazcos(�at1) for a −x′ pulse. This reverses the
sign of the final detected Hb magnetization:

−Iazcos(�at1)
NOE→ Ibzcos(�at1)

90◦
x→ −Ibycos(�at1)

−Iaz[−cos(�at1)]
NOE→ Ibz[−cos(�at1)]

90◦
x→ −Iby[−cos(�at1)]

If we then reverse the phase of the receiver we will get addition of the desired Hb magne-
tization with each scan and cancellation of any magnetization that was not affected by that
pulse.
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Figure 10.16

10.3.3 The 2D NOESY Spectrum

The NOESY spectrum (Fig. 10.17) looks very much like the COSY spectrum, except that
we will see additional crosspeaks that are not present in the COSY or TOCSY spectra. These
are the interesting ones—pairs of protons that are close in space but not close enough in
the bonding network to be J coupled. Classic examples of this are 1,3-diaxial relationships
in rigid cylcohexane chairs, 1,3-diaxial relationships between a proton and a methyl group
(e.g., H4ax and H19 in cholesterol: Chapter 8, Fig. 8.35), CH–O–CH across a glycosidic
linkage, CHα–CO–NH (observed in β sheets and β turns), and NH–Cα–CO–NH (observed
in an α-helix) across a peptide bond. When there is a large J coupling between two protons,
we can see zero-quantum artifacts, just as we noticed in the selective 1D NOE experiment.
These result from ZQC that is produced by the “front end” sequence 90◦

x–t1–90◦
x:

−Iaz cc′
Crosspeak

−2IaxI
b
y cs′

ZQ artifact

+Iax sc′
Diagonal

−2IbyI
a
z ss′

Not observed

where c, s, c′ and s′ are as defined in Chapter 9. The second term is a mixture of ZQC
and DQC. The DQC part can be removed by phase cycling or by gradients, but there is no
simple way to remove ZQC because it has coherence order zero, just like z magnetization.
During the mixing delay τm, it undergoes chemical-shift evolution at a rate determined by
the chemical-shift difference �a − �b, and the third 90◦ pulse completes the coherence

Figure 10.17
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transfer from Ha to Hb:

−2IaxI
b
y c s

′ c′′
90◦

y→ 2IbyI
a
z c s

′ c′′

where c′′ is cos((�a − �b) τm). So this is a COSY-like antiphase crosspeak resulting
from antiphase-to-antiphase INEPT coherence transfer with an intermediate ZQC state.
The mixing time τm can be randomly varied to try to average the artifacts to zero, taking
advantage of the cosine dependence on τm, but this will also introduce t1 noise. The artifacts
are easily recognized in the 2D spectrum because they have equal amounts of positive and
negative intensities, usually in a star-like pattern (Hb–Hc, Fig. 10.17). Sometimes you will
see NOE crosspeaks that are distorted in shape because the in-phase negative intensity of
the NOE crosspeak is added to the twisted antiphase shape of the ZQ artifact at the same
position (Hd–He, Fig. 10.17).

Pure NOE crosspeaks in a NOESY spectrum are in-phase (normal multiplets) where
there is J coupling. The transferred magnetization is on the z axis, and the “read” (third)
90◦ pulse produces in-phase magnetization in the x′–y′ plane at the start of the acquisition
period. The lack of a sin(πJt1) term in the observed crosspeak magnetization means that
peaks will also be in-phase in the F1 dimension. Integration of NOESY crosspeaks will
give nonzero peak areas (actually volumes, as we are dealing with 2D crosspeaks) that are
representative of the intensity of the NOE interaction. The crosspeaks in a phase-sensitive
COSY experiment are antiphase and have a zero net volume because equal areas are found
in the positive and negative components. Thus, the NOESY and TOCSY experiments lead
to net transfer of magnetization and the COSY experiment does not.

The sign of NOESY crosspeaks relative to the diagonal depends on the sign of the
NOE interaction. Magnetization that does not transfer during the mixing period (τm) will
have opposite sign to transferred magnetization as long as the cross-relaxation rate Rab is a
positive number:

−Iazcos(�at1)
(τm)→ −Iazcos(�at1)

Diagonal peak
+ RabτmI

b
zcos(�at1)

Crosspeak

where Rab is the cross-relaxation rate and we are looking at short mixing times where
the NOE buildup is still linear as a function of mixing time. This is true for small organic
molecules (molecular weight less than about 2000 Da) in nonviscous solvents for which ωτc
� 1, where ω is the Larmor frequency in the laboratory frame (e.g., 2π × 600 MHz) and τc is
the correlation time for tumbling of the molecule. The double-quantum relaxation pathway
dominates and we see an increase in z magnetization on nearby spins. If the diagonal peaks
are phased to be positive absorptive peaks, the crosspeaks will be negative (upside down)
absorptive peaks. This is called a “negative NOE” because the cause (perturbation of Ha’s
z magnetization by reducing it) is opposite in sign to the effect (enhancement of Hb’s z
magnetization). For large molecules, such as proteins, the tumbling rate is much slower
(i.e., τc is long) and ωτc � 1. In this case, the zero-quantum relaxation pathway dominates
over the double-quantum pathway, so Rab (W2−Wo) becomes negative. The crosspeaks will
then be the same sign as the diagonal peaks. As the initial perturbation on Ha (reducing its
z magnetization) results in the same type of perturbation on Hb during the mixing period
(reduction of z magnetization), we call this a “positive NOE.”
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Figure 10.18

10.3.4 ROESY: Rotating-Frame Overhauser Effect Spectroscopy

For “medium-sized” molecules where ωτc ∼= 1, zero-quantum and double-quantum relax-
ation rates are nearly the same and the NOE cross-relaxation rate approaches zero. This
size depends on the field strength of the NMR instrument and the viscosity of the solvent:
it is around 2000 Da for spherical polypeptides in water at 500 MHz. This can happen for
peptides, oligosaccharides, and large natural products. Even if the NOE is not zero, it can
be too small to conveniently measure with a NOESY experiment. In these cases we have
an alternative experiment, originally called CAMELSPIN, which gives negative crosspeaks
regardless of molecular size. Instead of the NOESY mixing sequence, which consists of
putting the magnetization on the z axis and waiting a period of time for the z magneti-
zation perturbations to propagate to nearby nuclei, ROESY puts the magnetization on a
specific axis in the x′–y′ plane and “locks” it there for a period of time (the mixing time)
using a continous-wave spin lock. The pulse sequence (Fig. 10.18) is almost identical to the
2D TOCSY: We start with the standard homonuclear 90◦

x–t1 sequence and then select the
in-phase coherence on the x′ axis by executing a long, low-power radio frequency pulse.

Iax s c
′ ROESY spin lock(x′)−−−−−−−−−−−−−−−−−−−→ −Ibx s c′

We saw in Chapter 8 that the spin lock causes magnetization to transfer in a through-space
manner very similar to the NOE, except that now it is x′ magnetization on Ha transferring
to x′ magnetization on Hb (if the spin lock is applied on the x′ axis): Iax → −Ibx. The main
difference is that the effective field felt by the spins is reduced from the static field (Bo)
to the radio frequency field strength (Beff ), which is typically five orders of magnitude
(10−5 times) lower. It is as if we could use our normal magnetic field strength (e.g., 500
MHz) for the preparation, evolution, and detection periods, but switch the field to a very
low field strength (e.g., 3300 Hz) for the mixing period. In this low field environment, the
SQ frequency is 3300 Hz and the DQ frequency is 6600 Hz. The dominant pathway for
relaxation is now Ha(β)Hb(β) → Ha(α)Hb(α) (double quantum relaxation), regardless of
the molecular size. So we see negative NOE crosspeaks relative to the positive diagonal for
large, medium, and small molecules.

The ROESY used to be a bit difficult to set up because the low power spin-lock RF
had to come from a different source than the hard pulse RF. Now rapid solid-state power
switching is so routine that all 1H RF comes from the same source, with no variation of phase
or frequency. ROESY tends to replace the NOESY experiment for NOE measurements,
especially for small molecules where T2 is relatively long. Because the NOE builds up
about twice as fast in the x′–y′ plane as it does on the z axis, ROESY mixing times are set
to about half of what would be the NOESY mixing time. There is one additional parameter
to set up: the power level (“B1 field strength”) of the spin lock pulse. This is typically
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Figure 10.19

calibrated to give a 1H 90◦ pulse of 75 �s (γB1/2π = 3333 Hz) to “cover” a spectral width
of about twice that amount (6666 Hz). At this power level, the spin-lock axis is tilted out
of the x′–y′ plane by an angle of 45◦ for peaks at the edges of the spectral window.

10.3.5 Examples of NOESY and ROESY

The upfield region of the 600-MHz NOESY spectrum of cholesterol (τm = 300 ms) is
shown in Figure 10.19. Positive contours are shown in black and negative contours in gray.
Note that the diagonal peaks are positive and extremely strong at the contour threshold
used to show the weak negative crosspeaks. Streaks of t1 noise can be seen extending down
from the singlet methyl peaks (H18 and H19) on the diagonal. The cholesterol structure is
shown in Figure 10.20 with some of the NOE interactions indicated with double arrows.
The distances in angstrom, taken from the X-ray crystal structure, are shown in Figure 10.20
next to the arrows. Along the NOESY diagonal at the lower left side are the H4eq (doublet)
and H4ax (triplet) peaks around 2.2 ppm, followed (moving up and to the right side) by the
H12eq and H7eq diagonal peaks (Fig. 10.19). Moving up vertically from the H4ax peak on
the diagonal, we see a ZQ artifact at F1 = H7eq (long range J-coupling CH–C C–CH) and
NOE peaks at F1 = H2ax and F1 = H19 methyl. Both of these are 1,3-diaxial relationships
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Figure 10.20

in the A ring of the steroid. Moving to the right on the F1 = H19 methyl line, we encounter
H1eq (1,2-cis relationship) and then H11ax and H8 (1,3-diaxial). Moving up from the H12eq
peak on the diagonal, we encounter H12ax (ZQ artifact), H21 methyl of the C-17 side chain,
and the angular methyl group H18 (1,2-cis). Moving to the right on the F1 = H18 methyl
line, we see a number of NOE interactions: H8 (1,3-diaxial), H20 of the C-17 side chain,
H15β and H16β in the five-membered D ring, and H21 methyl of the C-17 side chain. The
NOE crosspeaks from the angular methyl groups are partially obscured by t1 noise streaks
below the diagonal. As t1 noise is always a vertical streak (along the F1 dimension), if a
crosspeak is obscured by the streak, we can always look to the other side of the diagonal to
find an equivalent crosspeak that is not in the path of a t1 noise streak.

Moving to the right from the H7eq diagonal peak, we see strong ZQ artifacts at the F2
= H7ax and F2 = H8 positions. An especially strong pair of ZQ artifacts appears (center)
due to the H15α–H16β coupling. These can be seen clearly as star-shaped antiphase peaks
in the expanded region shown in Figure 10.21. The center of the peak as well as four spots
extending diagonally from the center are negative; four spots above, below, right, and left
of the center are positive.

The 600 MHz ROESY spectrum of cholesterol is shown in Figure 10.22 (τm = 200 ms,
spin-lock γB1/2π = 3333 Hz). The strong positive diagonal, weak negative crosspeaks, and
t1 noise streaks coming down from the methyl diagonal peaks are all similar to the NOESY
spectrum (Fig. 10.19), but the spectrum is cleaner overall with fewer ZQ artifacts. Cross-
peaks can be identified from the olefinic proton H6 to H4eq (strong) and H4ax (weak) as
well as to H7eq and H7ax (Fig. 10.22). From H3 we see crosspeaks to H1ax (1,3-diaxial rela-
tionship) and to the J-coupled protons H2eq, H4ax, and H4eq. The expanded upfield region
of the ROESY spectrum (Fig. 10.23) can be directly compared to the NOESY (Fig. 10.19)
with most of the same correlations identified corresponding to the distances shown on the
structure (Fig. 10.20). Figure 10.24 shows three enlarged strips of the ROESY with F2 slices
at F1 = 0.68 (H18), 1.01 (H19), and 5.35 (H6) ppm. In the slices you can clearly see the
“triplet” structure of H4ax (middle slice) and the “doublet” structure of H4eq (bottom slice).
Even the smaller coupling from H4eq to H3 is resolved in the bottom slice. The H4ax cross-
peak dominates in the F1 = H19 slice, whereas the H4eq crosspeak is much larger in the F1
= H6 slice, similar to the results we saw in the selective 1D NOE experiment (Chapter 8,
Fig. 8.36). In the F1 = H6 slice (bottom), the H7eq crosspeak clearly has doublet structure
and the H7ax crosspeak has double-doublet structure. These multiplets are low resolution
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Figure 10.21

and show only the large couplings—in general, only the large axial–axial and geminal
(2JHH) couplings are well resolved. From the H18 methyl group (top slice), we see a strong
ROE to H8 but only a weak ROE to H11ax; from the other angular methyl group H19 (middle
slice), we see strong ROEs to both of these β-axial protons. The methyl groups also “see”
equatorial protons H12eq (from H18) and H1eq (from H19), which appear as doublets. From
H18 we see a “quartet” structure for H16β and a sharp doublet for the H21 methyl group. A
crosspeak to H18 in the F1 = H19 slice may be due to spin diffusion through H8 or H11ax.

Figure 10.22
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Figure 10.23

In cholesterol we can see nearly all of the 1,3-diaxial and 1,2 axial–equatorial NOE
interactions, whether they are H–H or H–CH3 relationships. One should take great care,
however, in establishing regiochemistry or stereochemistry by NOE experiments. Even in
a small ring (4–6 members), the difference in the H–H distance between a cis 1,2 (vicinal)
relationship and a trans relationship is small. For an ideal cyclohexane chair conformation,
for example, the vicinal distances are 2.54 Å for equatorial–equatorial (trans), 2.48 Å for

Figure 10.24
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Figure 10.25

equatorial–axial (cis), and 3.09 Å for axial–axial (trans). The close 1,3 diaxial (cis) distance
is characteristic for cyclohexane: 2.77 Å compared to 3.89 for ax–eq and 4.35 for eq–eq.
NOE interactions across the ring (1,4) are rarely observed, with distances of 4.27 (cis), 4.15
(trans diaxial), and 5.04 (trans diequatorial).

The 200-ms 600 MHz ROESY spectrum of the glycopeptide Tyr-Thr-Gly-Phe-Leu-
Ser(Lactose) in 90% H2O/10% D2O is shown in Figure 10.25. Crosspeaks that are also
found in the TOCSY spectrum (i.e., which are within the same amino acid residue: Fig. 9.45)
are enclosed in rectangles. Negative peaks are shown in gray, and positive peaks in black.
We saw in Chapter 9 how the spin systems corresponding to each amino acid residue can
be identified in the 2D TOCSY spectrum from the HN resonance in F2. Now looking at the
same region of the ROESY spectrum, we can see numerous NOE connections between one
residue and its neighbor in the primary sequence. These are called sequential (or i → i + 1)
NOEs because they connect across one peptide bond to the next residue in the sequence.

Starting with the F1 chemical shift of the Tyr-1 Hα proton (Fig. 10.25, right side, F1 =
4.32 ppm), we can “walk” through the peptide backbone by using the proximity of the Hα

proton of residue i to the HN proton of residue i + 1: CHi
α − COi − NHi+1. There is no HN

chemical shift for Tyr-1 because it is the N-terminal residue and its amine group protons
(not an amide) are in very fast exchange with water. Moving all the way to the left side
on the F1 = Hα of Tyr-1 line, we encounter a negative crosspeak that is not found in the
TOCSY spectrum: a sequential NOE to HN of Thr-2. Moving up from the NOE crosspeak
leads to two weak ZQ artifacts at the same positions as the Hα and Hβ shifts of Thr-2 in
the TOCSY spectrum (rectangles). Moving to the right from these crosspeaks leads to two
strong sequential NOE crosspeaks at the F2 chemical shift of the HN of Gly-3. In this case,
both the Hα proton and the Hβ proton of residue 2 are close to the HN of residue 3. Moving
up, we come to a messy ZQ artifact at the Hα shift of Gly-3 in F1. From here, we move all
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the way to the right to a nice, fat sequential NOE peak at F2 = 8.01 ppm, the HN proton
of Phe-4. Below this is the ZQ arifact-distorted Hα peak and above this are the Hβ and Hβ′
peaks of the Phe-4 spin system. From any of these three “intraresidue” crosspeaks, one can
move to the left and run into a sequential NOE peak at the HN chemical shift of Leu-5 in F2.
Again, not just the Hα proton of Phe-4 but also the Hβ and Hβ′ protons are all close enough
in space to the HN of Leu-5 to give ROESY crosspeaks. Looking along this vertical line
(F2 = HN of Leu-5), we find the ZQ artifact corresponding to F1 = Hα of Leu-5 (rectangle)
and moving to the right a very short distance there is a strong sequential NOE crosspeak at
the chemical shift of HN of Ser-6 in F2. Above this crosspeak are the intraresidue F1 = Hβ

and F1 = Hβ′ of Ser-6 crosspeaks, and below this is the F1 = Hα intraresidue crosspeak of
Ser-6. This completes our “walk” along the backbone. In this case, the assignments can be
made from the TOCSY alone because each spin system has a unique pattern of chemical
shifts that makes it easy to identify in the known primary sequence. But in more complex
peptides and proteins, this “walk” is a way to make sequence-specific assignments even
when there may be several examples of each of the 20 amino acids in the sequence.

10.3.6 Distance Measurement From NOESY

Ideally, the initial rate of increase of the NOE intensity as a function of mixing time is
directly proportional to 1/r6

ab, where rab is the distance between Ha and Hb. There are a
number of caveats for those who wish to measure distances using crosspeak intensities in
a NOESY spectrum. First, the crosspeak intensities (volumes) are in arbitrary units so that
we must calibrate them with a pair (or better yet several pairs) of protons with an accurately
known distance within the molecule. This can be done with a geminal pair, a vicinal pair
on an aromatic ring, or a 1,3-diaxial pair in a clearly-defined cyclohexane chair structure.
Second, the above discussion assumed that there are only two nuclei, Ha and Hb, related
by an NOE interaction. This is called the isolated spin-pair hypothesis. In reality, it is very
rare to find two protons that have no other neighbors within 5 Å. Usually this distance
includes other protons, which are related to still others by NOE interactions. The result is a
process called spin diffusion, where perturbation of the populations (z magnetization) of one
nucleus affects the populations of nearby nuclei, which in turn perturb the populations of
their neighbors in an expanding process. Spin diffusion can lead to crosspeaks between pairs
of nuclei that are not directly related by an NOE interaction and may be considerably more
than 5 Å apart in space. Because for small molecules the NOE transfer leads to a reversal
of sign of the z magnetization, spin diffusion involving two steps will give crosspeaks that
are positive with respect to the diagonal, so that these can be spotted easily. The best way
to avoid spin diffusion, however, is to choose as short a mixing time (τm) as possible. This
also increases the accuracy of distance measurements because only for short mixing times
is the crosspeak intensity truly proportional to the cross-relaxation rate and thus to 1/r6.
Sometimes a series of NOESY spectra is acquired using a number of different mixing times,
and the crosspeak intensities are plotted as function of τm. This NOESY buildup study allows
the initial slope of the NOE buildup curve to be measured directly as the cross-relaxation
rate. Spin-diffusion crosspeaks can be identified in a buildup study because they will always
show a lag (sigmoidal shape) before crosspeak intensity starts to climb.

All of these considerations would indicate that a short mixing time is good. Unfortunately,
short mixing times also mean weak crosspeaks that are near the noise level. Larger numbers
of transients will be required for short mixing times, which means longer overall experiment
times. If you are not doing quantitative distance measurements, the mixing time is usually
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set somewhere near the T1 value (characteristic time for simple self-relaxation). For these
routine experiments, we are shooting for a maximum NOE intensity so that intensity is not
strictly proportional to 1/r6 and spin diffusion has to be considered as a possible complicating
factor in the interpretation of crosspeaks. In this case, we should classify NOE crosspeaks
as “weak,” “medium,” or “strong” and not make any attempt to measure accurate distances.

Because of all of the above pitfalls, NOE is probably the most misinterpreted experiment
in organic chemistry. In my experience, J-coupling measurements, both homonuclear and
heteronuclear, give far more reliable information than NOE measurements in the determi-
nation of small-molecule stereochemistry. To use NOE measurements for stereochemical
determinations, it is always best to do the NOESY experiment on both isomers and compare
the crosspeak intensities (relative to the diagonal peak intensities) and measure distances
on both isomers using an energy-minimized computer model of the structures. If the dif-
ferences in distance and NOE intensity are small between the two isomers, the experiment
cannot be conclusive.

10.3.7 Baseline Correction

Just as a rolling baseline will affect the integral area of a peak in a 1D spectrum, baseline
errors (or “baseplane errors”) in a 2D spectrum will render crosspeak volumes inaccurate.
For any quantitative distance determinations, the baseline must be very flat with no streaks
or artifacts passing through the crosspeak. One way to check for baseline errors is to measure
the volume of two crosspeaks that are symmetry-related across the diagonal—they should
be of similar intensity. Another way is to measure the volume within a rectangle in the noise
(with no crosspeaks) and compare it to a similar rectangle (“footprint”) on a crosspeak. The
noise volume should be very small compared to the crosspeak volume. Another way is to
display a 1D slice (row or column) from the 2D data matrix and display a zero data set on
top of it in a contrasting color. When the vertical scale is increased, you will see where the
baseline (noise level where there are no peaks) deviates from the zero line.

10.3.8 EXSY: Chemical Exchange in 2D NMR

Crosspeaks in a NOESY spectrum can also arise from exchange. Even if exchange is
slow on the NMR timescale (τc = √

2/(π�ν)), we can observe it in a longer timescale,
the mixing time of the NOESY experiment. If you see positive crosspeaks (relative to a
positive diagonal) in the NOESY spectrum of a small molecule (as always, “small” means
ωτc � 1), these crosspeaks represent exchange rather than an NOE interaction. Exchange
means that a nucleus in one environment physically moves to another environment with
a different chemical shift. If the rate is much less than the coalescence time τc = 1/(2.22
× �ν), two sharp lines will still be observed in the 1D spectrum at the two chemical-
shift positions (“slow exchange”). If, for example, half of the Ha nuclei in a 2D NOESY
experiment undergo exchange to the Hb position during the mixing time τm, we have

−Iazcos(�at1)
(τm)→ −0.5 Iazcos(�at1)

Diagonal
−0.5 Ibzcos(�at1)

Crosspeak

where Iaz and Ibz represent z magnetization in the two environments. Effectively, the Ha
nucleus has changed into an Hb nucleus (changed its chemical shift from �a to �b), and
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because the chemistry did not affect the nuclear spin, it will have exactly the same nuclear
spin state when it becomes Hb magnetization. When a Ha nucleus “turns into” an Hb
nucleus, it “drags” its spin state over from chemical shift �a to chemical shift �b. In the
slow exchange case, we may still be able to observe the exchange in a NOESY spectrum
because the proton changes its environment during the much longer timescale of the mixing
time (typically hundreds of milliseconds versus a few milliseconds for τc). This term will
lead to a crosspeak at F1 = �a, F2 = �b, which has the same sign as the diagonal. For small
molecules, exchange peaks stand out clearly because they are opposite in sign to the NOE
peaks. Because both NOE and exchange crosspeaks show up in this experiment, NOESY was
named nuclear Overhauser and exchange spectroscopy. Sometimes if a NOESY experiment
is run solely for the purpose of studying exchange, it is called “EXSY” in the literature
(Exchange Spectroscopy), but the experiment is identical to a NOESY experiment. For
large molecules, exchange will not stand out in the NOESY spectrum as NOE crosspeaks
are also positive. In this case, a ROESY spectrum will allow us to differentiate exchange
from NOE because the NOE crosspeaks are all negative in a ROESY spectrum and the
exchange crosspeaks are positive.

Figure 10.26 shows the 300-ms NOESY spectrum of lactose (Fig. 10.9) in D2O/NaOD.
Negative contours are shown in gray and positive contours in black; the diagonal is phased

Figure 10.26
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to positive intensity. In the lower left corner, we see the diagonal peak for the H-1 pro-
ton of the glucose portion of α-lactose (α-glu-1). Moving up on the vertical line, we
encounter at F1 = β-glu-1 (4.54 ppm) a positive, in-phase crosspeak. This is the ex-
change peak for conversion of the β-glu-1 proton to an α-glu-1 proton during the mixing
time. The inset above the crosspeak shows the 1D horizontal slice through this cross-
peak. Moving to the right along the F1 = β-glu-1 horizontal line, we pass the diagonal
peak and move to the right to a pair of negative (NOE) crosspeaks around F2 = 3.5 ppm.
These are NOE peaks from β-glu-1 (axial proton) to H-3 and H-5 of the glucose por-
tion of β-lactose (Fig. 10.9), representing 1,3-diaxial relationships. The inset below the
crosspeaks shows a horizontal slice: the peaks are clearly in-phase and negative. Moving
farther to the right on the F1 = β-glu-1 line we come to the β-glu-2 crosspeak (F2 =
3.15 ppm), which is distorted by the ZQ (J-coupling) artifact. Similar NOE crosspeaks
are seen starting from gal-1 on the diagonal, but no exchange peak is observed because
the galactose anomeric position is locked in the β-orientation by the glycosidic linkage
to the glucose-4 position. On the F1 = α-glu-1 horizontal line, we see the positive ex-
change peak with β-glu-1 and the (ZQ artifact-distorted) NOE crosspeak with α-glu-2.
Because the α-glu-1 proton is equatorial, we do not see any NOE crosspeaks to α-glu-3 or
α-glu-5.

10.4 EXPANDING OUR VIEW OF COHERENCE: QUANTUM MECHANICS
AND SPHERICAL OPERATORS

10.4.1 Double-Quantum and Zero-Quantum Coherence

Single-quantum coherence (SQC) can be easily defined in terms of the vector model. In
a population of identical spins, each individual spin precesses in the laboratory magnetic
field at the same frequency, the Larmor frequency νo. At equilibrium, the orientation of
the spins on the “cone” of precession is random: they are spread out evenly around the
cone at any instant in time. Thus the x and y components of their magnetization cancel
perfectly leaving no net magnetization in the x–y plane: Mx = 0 and My = 0. After a 90◦
pulse, the spins become “organized” such that they are now rotating “in phase”—at any
instant in time they are all at the same orientation on the cone. Because their phases are
coherent instead of random, we call this phase coherence or simply coherence. Now the
individual x and y components of magnetization add together instead of canceling, resulting
in a net magnetization in the x–y plane that rotates at the Larmor frequency. It is this net
magnetization (coherence) that induces a sinusoidal voltage in the probe coil, which is
recorded by the spectrometer as the FID.

There are, however, other kinds of coherence that play an important role in many NMR
experiments, such as DEPT, DQF-COSY, HMQC, and HMBC. Coherences other than
SQC are called multiple-quantum coherences (MQC), including zero-quantum and double-
quantum coherences (ZQC and DQC). When we are talking about SQC, we are referring to
NMR transitions that involve only one spin, changing its orientation with respect to the Bo
field. For example, in a two-spin system (1H–13C) we can talk about a transition from αHαC
to βHαC in which the proton changes from the α to the β state whereas the carbon remains
in the α state. This transition corresponds to SQC, as only the proton undergoes a change
in orientation. It is an observable transition, giving rise to one of the two components of the
proton doublet in the proton spectrum.
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Suppose that we are talking about a double-quantum transition in which both the proton
and carbon change from the α state to the β state. This transition is thus from the αHαC state
to the βHβC state of the two-spin, four-state system. This transition corresponds to DQC.
Likewise, if the proton flips from β to α while the carbon simultaneously flips from α to
β, we have a zero-quantum transition (βHαC to αHβC) because the total number of spins
in the excited (β) state has not changed. This transition corresponds to ZQC. What can we
say about these mysterious coherences? In Section 7.10, we encountered ZQC and DQC as
intermediate states in coherence transfer, created with pulses from antiphase SQC:

2IxSz

90◦
xon13C−→ −2IxSy

Note that in the product operator −2IxSy we have both spins, I and S (1H and 13C) in the
x–y plane, with the operators multiplied together. This means that both spins are undergoing
transitions at the same time, so we have ZQC and DQC. We can convert ZQC and DQC
back into observable SQC with a second pulse

−2IxSy

90◦
yon1H−→ 2IzSy = 4[2SyIz]

(The factor of 4 reflects the change from observing 1H to observing 13C, a change in our stan-
dard of comparison for magnitude). The net effect of these two steps is to convert antiphase
proton SQC into antiphase carbon SQC, an overall coherence transfer with ZQC/DQC as
an intermediate state. In Section 7.11 the product operator representations of pure ZQC and
DQC were introduced, and we saw that pure DQC rotates in the x–y plane just like SQC,
but at a frequency that is the sum of the frequencies of the two spins involved:

{DQ}x → {DQ}y → − {DQ}x → − {DQ}y → {DQ}x

frequency of precession = νH − νC

For example, on a 600-MHz spectrometer 1H SQC precesses at 600 MHz, 13C SQC pre-
cesses at 150 MHz, and {1H–13C} DQC precesses at 750 MHz. This makes sense because
we are talking about a transition in which both 1H and 13C change from the α to the β state.
Zero quantum coherence behaves in a similar way, but the precession rate is the difference
between the two SQ precession frequencies:

{ZQ}x → {ZQ}y → − {ZQ}x → − {ZQ}y → {ZQ}x

frequency of precession = νH − νC

Thus on the same 600-MHz spectrometer, {1H–13C}ZQC precesses at 450 MHz (600–150).
The good news is that there is no J-coupling evolution due to the active 1H–13C J coupling.
Because both spins are undergoing transitions, the interaction between the magnetic dipoles
of the two spins does not change: If they are aligned (αα or ββ), they remain aligned in
DQC; if they are opposite (αβ or βα), they remain opposite in ZQC. Passive couplings
(coupling to nuclei other than these two, e.g., I′ or S′) will lead to J-coupling evolution and
multiplication by Iz

′ or Sz
′ operators.
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The pairwise products of the operators Ix , Iy , Sx , and Sy can be expressed in terms of
pure ZQC and DQC as follows:

2IxSx = 0.5({DQ}x + {ZQ}x) 2IySy = 0.5({ZQ}x − {DQ}x)

2IxSy = 0.5({DQ}y + {ZQ}y) 2IySx = 0.5({DQ}y − {ZQ}y)

Now you can see why the conversion of antiphase 1H SQC with a 90◦ pulse results in a
mixture of DQC and ZQC:

2IxSz

90◦
xon13C−→ −2IxSy = −0.5({DQ}y + {ZQ}y)

These multiple quantum coherences cannot be visualized with the vector system, even
though we can talk about them as being on the x axis or the y axis. So what do they
represent and how can we think about them?

10.4.2 Coherence: The Quantum View

To understand any coherence other than SQC, we need a new and more general definition
of coherence. Coherence arises from the quantum mechanical mixing or overlap of spin
states (“superposition”). In the two spin system (I, S = 1H, 13C) we have four spin states
(αα, αβ, βα, and ββ), which are all stable states of defined energy. Let’s talk about a single
1H–13C pair (one molecule). It is possible for this pair to be in any one of the four energy
states, but it is also possible for the pair to be in a mixture or overlap or superposition of
two states. This is one of the fundamental tenets of quantum mechanics: Sometimes you
cannot be sure which energy state a particle is in. Let’s say that this particular pair is in a
mixture of states αα and ββ:

� = c1αα + c4ββ

The spin state (or “wave function”) of this pair is a linear combination of the states αα and
ββ, with coefficients c1 and c2. These coefficients are actually complex numbers, with real
parts (a) and imaginary parts (b):

c1 = a1 + b1i c4 = a4 + b4i

where i is the square root of −1 (i2 = −1). We cannot say which energy state the pair is in,
but we can talk about probabilities. The probability of the pair being in the αα state is

P(αα) = c∗
1c1 = (a1 − b1i)(a1 + b1i) = a2

1 − b2
1i

2 = a2
1 + b2

1

where c∗
1 is the complex conjugate of c1. Note that P(αα) is a positive real number, and if the

coefficients are properly normalized, it will be between 0 and 1. Likewise, the probability
of this spin pair being in the ββ state is

P(ββ) = c∗
4c4 = (a4 − b4i)(a4 + b4i) = a2

4 − b2
4i

2 = a2
4 + b2

4
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which is also a positive real number between 0 and 1, such that P(αα) + P(ββ) = 1. That
is, it has to be in either the αα or the ββ state because the coefficients for the other states
(αβ and βα) are zero. If we had a enormous number N of spin pairs (like a mole) in the
exact same spin state �, we could say that there are N·P(αα) spin pairs in the αα state and
N·P(ββ) spin pairs in the ββ state, but we still could not be sure which state any individual
spin pair is in.

Now we get to the interesting part that leads to our expanded definition of coherence.
We would like to describe the degree of overlap of the αα and ββ spin states for a particular
individual spin pair. Consider the product

c∗
4c1 = (a4 − b4i)(a1 + b1i) = degree of mixing or overlap

Note that if c1 = 1 and c4 = 0 (pure αα state), this product is zero; and if c1 = 0 and c4
= 1 (pure ββ state), the product is also zero. So only if there is mixing of the two states
for this spin pair will the product be nonzero. Consider the real and imaginary parts of this
product, and let’s call them x and y:

c∗
4c1 = x + yi = (a4a1 + b4b1) + (a4b1 − a4b1)i

If we associate the real part with the x axis and the imaginary part with the y axis, we can
think of the “degree of mixing” parameter (c∗

4c1) as a vector with the property of phase: It
points in a particular direction in the x–y plane. In fact, this is not a stable (“stationary”)
energy state and it “precesses” in the x–y plane (the “complex plane”) at a rate of νDQ =
νH + νC. If we average together the degree of mixing between the αα and ββ states for all
of the identical spin pairs in the sample, we have coherence:

<c∗
4c1> av = Coherence between the ββ and the αα states = DQC

This is analogous to adding up the individual magnetic dipole vectors of individual single
spins to get the net magnetization; the part of this net magnetization that is in the x–y plane
is what we called coherence, actually SQC. Just like with SQC, if the phase of the individual
degree of mixing parameters (c∗

4 c1) is random over the population of spin pairs, they will
average to zero and there will be no coherence (no DQC). It is only when these phases are
coherent or tend to have the same phase over the entire population of spin pairs that we
have coherence (DQC in this case).

So, in general, in order to have coherence the individual spins or spin pairs have to have
mixing or overlap or superposition of two energy states. Because two different energy states
define a transition, we can say that coherence is associated with a particular NMR transition
between energy states. Furthermore, in order to have coherence this mixing or overlap has
to add together in a phase coherent manner over all of the spins or spin systems in the
sample. The coherence is this sum (actually an average) of the degree of overlap of two
energy states over the entire sample. As long as we associate the real and imaginary parts of
the overlap product (c∗

i cj) with the x and y axes, we can talk about the phase of this product
and whether these phases are coherent in a population (“ensemble”) of spin systems.

Just for completeness, let’s define all of the coherences for a two-spin (1H–13C) system.
If we consider the most general spin state for this system

� = c1 αHαC + c2 αHβC + c3 βHαC + c4 βHβC
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We can describe the populations of the four stable energy states:

N(c∗
1c1) = Population in αα state N(c∗

2c2) = Population in αβ state

N(c∗
3c3) = Population in βα state N(c∗

4c4) = Population in ββ state

The coherences are as follows:

<c∗
3c1> av = 1H SQC(13C = α) <c∗

4c2> av = 1H SQC(13C = β)

<c∗
2c1> av = 13C SQC(1H = α) <c∗

4c3> av = 13C SQC(1H = β)

<c∗
4c1> av = DQC <c∗

3c2> av = ZQC

Note that each of these coherences corresponds to a transition between two energy levels
(e.g., c∗

3c1 corresponds to the βHαC to αHαC transition) in the two-spin energy diagram. The
four SQCs correspond to the four peaks in the 13C and 1H spectra (two doublets), and the
MQCs are not observable. Later, we will see that all of these numbers (the four populations,
the four single-quantum coherences, and the ZQC and DQC) can be fit into a 4 × 4 matrix
that provides a succinct summary of everything we could ever want to know about the spin
state of this ensemble of N spin pairs. This matrix is called the density matrix.

10.4.3 Raising and Lowering Operators

The “Cartesian” operators (Ix , Iy , Iz , Sx , Sy , Sz ) are easy to use because they relate to the
vector model and we can easily figure out what happens to them with a pulse of a particular
phase or a delay. For example, Iy will become Iz under the influence of a 90◦ pulse on the
x′ axis on the 1H channel, and Iy will become −Ix after chemical-shift evolution for τ =
π/(2 �H). But when we talk about DQC and ZQC, the Cartesian operators become more
cumbersome:

{ZQ}y = 2IxSy − 2IySx

90◦
x(1H)−→ 2IxSy − 2IzSx = 0.5({DQ}y + {ZQ}y) − 2SxIz

{ZQ}y = 2IxSy − 2IySx
τdelay−→ 2(Ixcos + Iysin)(Sy cos′ − Sx sin′)

−2(Iycos − Ixsin)(Sx cos′ + Sy sin′) → so on.

Furthermore, the coherence order (sensitivity to twisting of a coherence by a gradient) is
ambiguous, at least with respect to the sign

Ix, Iy p = ±4 Sx,Sy p = ±1
{DQ}x, {DQ}y p = ±5 (ZQ}x, (ZQ}y p = ±3

We can define another type of operator that describes the spin state without reference to the
x and y (Cartesian) axes. These are the raising and lowering operators that refer to coherence
in terms of the transitions between spin states. For example, I+ refers to the transition of
spin I from the α to the β state, while the S spin does not change state. For the 1H, 13C spin
system, this is a transition from the αHαC state to the βHαC state, or from the αHβC state
to the βHβC state (Fig. 10.27). Likewise, the S− coherence refers to the transition from
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Figure 10.27

αHβC to αHαC or from βHβC to βHαC. These are the S (13C) single-quantum transitions in
the energy diagram. The double-quantum transitions give rise to the coherences I+S+ (αα

to ββ) and I−S− (ββ to αα), and the zero-quantum transitions give rise to the coherences
I−S+ (βHαC to αHβC) and I+S− (αHβC to βHαC).

The effect of the spherical operators on individual spin states is actually opposite to this:
for example I+ |β > → |α > . It is the magnetic quantum number that is “raised” by
the operator: −1/2 (β state) to +1/2 (α state). In this book, we will reverse the definition
for convenience so that the operators make intuitive sense: I+ “raises” the spin state
from α to β.

Note that these are product operators just like 2IxSz ; they are two single-spin operators
multiplied together. We can also have antiphase SQC states such as I+Sz , S−Iz , and so on.
The formal definition of I+ and I− is

I+ = Ix + iIy I− = Ix − iIy
By adding and subtracting them, we get the definition of Ix and Iy in terms of the raising
and lowering operators

Ix = 1
2 (I+ + I−) Iy = 1

2i (I
+ − I−)

These are extremely useful for the math but they do not give us any feel for their physical
meaning. We are sacrificing the comfort level of visualizing operators in terms of the vector
model in order to focus on the transitions that are associated with a coherence. The phase
of pulses and careful tracking of the location of vectors in the x–y plane will be ignored
completely, freeing us to focus on the overall processes of coherence transfer, evolution,
and so on.

The most important thing about the raising and lowering (or “spherical”) operators is
the way they react to gradients, which is to say their coherence order. The coherence order
is no longer ambiguous. For the heteronuclear system

I+ : p = 4; I− : p = −4; S+ : p = 1; S− : p = −1
I+S+ : p = +5; I−S− : p = −5; I+S− : p = +3; I−S+ : p = −3
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Note that the coherence orders simply add in the product operators: I+S−, which represents
heteronuclear ZQC, has a coherence order of 3 (+4 −1). The 1H SQC corresponds to p
= ±4 because the 1H nuclear magnet is four times as strong as the 13C nuclear magnet
(γH/γC = 4) and this makes its precession rate four times as sensitive to changes in the
magnetic field (�νo = γ �Bo). As gradients are simply a position-dependent change in
the magnetic field (Bg = Bo + Gz ·z), this means that 1H coherence is twisted four times as
much as 13C coherence by the same strength and duration of gradient. For a homonuclear
two-spin system (I = Ha, S = Hb), we use p = ±1 for SQC for both of the protons because
they are equally sensitive to gradients. Thus, the coherence order is context dependent and
the 1H SQC coherence order reflects the relative magnetogyric ratio (γH/γX) in comparison
to the other nucleus (X) in the spin system.

The effect of a 180◦ pulse on spherical operators is very simple: it reverses the coherence
order of the affected spin. For example, a 1H 180◦ pulse converts I+ to I−, I− to I+, and
I+S+ to I−S+ (S = 13C). This is easy to prove using the definitions

I+ = Ix + iIy
180◦

x→ Ix − iIy = I−

I+ = Ix + iIy
180◦

y→ − Ix + iIy = −I−

Note that the phase of the pulse does have an effect: It introduces a “phase factor” (in this
case 1 or −1) in front of the operator, but it does not change the coherence order. Most of
the time, we will be ignoring these phase factors.

The effect of delays is even simpler: the coherence order does not change during a delay.
For example, I− remains I− after a delay τ:

I− = Ix − iIy τ→ [Ixcos + Iysin] − i[Iycos − Ixsin]
= (Ix − iIy)cos + i(Ix − iIy)sin = (Ix − iIy)ei�Hτ = I−ei�Hτ

where sin = sin(�Hτ) and cos = cos(�Hτ) and ei� = sin � + i cos �. The important thing
is that we get back I− multiplied by a phase factor. Chemical-shift evolution in the x–y plane
has been reduced to the rotation of a unit vector (ei�τ) in the complex (real, imaginary)
plane.

We can also have J-coupling evolution from I+ to I+Sz or from I−Sz to I−, but the
coherence order (1 and −1, respectively) does not change. Because ZQC and DQC do not
undergo J-coupling evolution, I+S+ will stay as I+S+ and I+S− will stay as I+S− during
a delay (times a phase factor for DQ or ZQ chemical-shift evolution) and the coherence
order (5 and 3, respectively) will not change.

This allows us to diagram the coherence order pathway of an NMR experiment in a very
simple way. For example, in an INEPT experiment with intermediate DQC we have

Iz
0

90◦1H→ I+
4

1
2J→ I+Sz

4

90◦13C→ I+S+
5

90◦1H→ S+Iz
1= p

We can add gradients to this pulse sequence for selection of the coherence pathway outlined
above by applying a gradient of relative strength 5 during the I+ → I+Sz delay (p = 4) and
another gradient of strength −4 during the I+S+ period (p = 5). The amount of coherence
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“twist” (position-dependent phase shift) produced by the two gradients is 20 (5·4) and −20
(−4·5) for an overall twist of zero for the desired coherence pathway. Other pathways will
lead to nonzero twist and will be scrambled during the acquisition of the FID, so they will
not give any signal in the probe coil.

The coherence order p can be understood precisely if we consider the effect of a gradient
on one of the spherical operators. A gradient is just like chemical-shift evolution except that
the amount of evolution depends on the position in the tube (z coordinate) rather than the
chemical shift.

I− = Ix − iIy Gz(τ)→ [Ixcos + Iysin] − i[Iycos − Ixsin]

= (Ix − iIy)cos + i(Ix − iIy)sin = (Ix − iIy)eiγzGzτ = I−eiγzGzτ

where sin = sin(γ z Gz τ), cos = (γ z Gz τ), and ei� = sin� + i cos�. The gradient
preserves the coherence order but it is now multiplied by a phase factor that depends on the
position within the NMR tube. A similar analysis shows that I+ is twisted in the opposite
direction

I+ = Ix + iIy Gz(τ)→ I+e−iγzGzτ

where e−i� = sin� − i cos�. Notice that the exponent is now negative, so that coherence is
twisted in the opposite direction as a function of position (z). If we associate the imaginary
term with the y′ axis, we see that the helix is reversed because the imaginary term is
reversed in sign. In general, if we focus on the exponent � in ei� as the “twist” induced by
the gradient, we have

“twist” = � = −pγozGzτ

where γo is the smallest γ in the system analyzed. For example, in the heteronuclear (13C,
1H) system I− has p = −4 and we get � = 4γc z Gz τ = γH z Gz τ. The phase factor is
ei�=eiγzGzτ , exactly as derived above. For an operator product like I+S−, each operator
undergoes twisting by the gradient and gains its own phase factor

I+S− Gz(τ)→ I+[e−iγHzGzτ]S−[eIγCzGzτ] = I+S−e−i(γH−γC)zGzτ

The resulting “twist” is � = −(γH − γC) z Gz τ = −(4 − 1) γC z Gz τ = −3 γo z Gz τ.
Because we defined the twist as � = −p γo z Gz τ, it is clear that p = 3 for the coherence
I+S−. Because exponents add when we multiply the terms, the coherence orders of each
term in the product simply add together. The conclusion is simple and we never have to look
into the detailed math again: the sensitivity to gradient twisting is precisely defined, right
down to the direction of twisting, by the coherence order p. The phase factors accumulate
as we apply more and more gradients, and the “twists” add up according to the sum of p
Gz (assuming that all gradients have the same duration τ). We can only observe coherence
at the end if the twist is zero: �piGi = 0.

One more thing we can do with spherical operators: We can easily derive the expressions
given in Chapter 8 for pure ZQC and DQC. Start with the spherical product I+S+ and
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express it in terms of the “Cartesian” (Ix , Iy , etc.) operators

I+S+ = (Ix + iIy)(Sx + iSy) = IxSx − IySy + iIySx + iIxSy

= [ 1
2 (2IxSx − 2IySy)] + i[ 1

2 (2IySx + 2IxSy)] = {DQ}x + i{DQ}y

The final step uses the analogy with I+ = Ix + i Iy to define pure {DQ}x and {DQ}y . From
this we have: {DQ}x = 1/2(2IxSx − 2IySy) and {DQ}y = 1/2(2IySx + 2IxSy). Starting
with I+S−, we get

I+S− = (Ix + iIy)(Sx − iSy) = IxSx + IySy + iIySx − iIxSy

= [ 1
2 (2IxSx + 2IySy)] − i[ 1

2 (2IxSy − 2IySx)] = {ZQ}x − i{ZQ}y

by analogy to S− = Sx − i Sy . Equating the real and imaginary parts, this gives us: {ZQ}x

= 1/2(2IxSx + 2IySy) and {ZQ}y = 1/2(2IxSy − 2IySx). If you are not convinced yet, you
can try to show that {ZQ}x turns into {ZQ}y after evolution for a time τ, for which (�H −
�C)τ = π/2 and that {DQ}x turns into {DQ}y after evolution for a time τ, for which (�H
+ �C)τ = π/2. The skeptic will be rewarded after a few happy hours and many pages of
paper.

10.5 DOUBLE-QUANTUM FILTERED COSY (DQF-COSY)

10.5.1 The Double-Quantum Filter

We saw in Chapter 9 that the homonuclear “front end” 90◦
x–t1–90◦

x gives us four terms for
the Ha–Hb system:

−Iaz c c′ − 2IaxI
b
y c s

′ + Iax s c′ − 2IbyI
a
z s s

′

One problem with the simple COSY sequence is that the crosspeak term (−2IbyI
a
z) is on the

y′ axis whereas the diagonal term (Iax) is on the x′ axis of the rotating frame. This means
that there is no way to phase the crosspeaks to absorption in the F2 dimension without
having the diagonal peaks in dispersion mode. The same is true in the F1 dimension, as the
crosspeak has cosine modulation in t1 and the diagonal peak has sine modulation (Chapter 9,
Section 9.5.2). These strong dispersive signals on the diagonal extend out much farther than
absorptive peaks and give rise to long streaks stretching out in both F1 and F2, interfering
with the observation of crosspeaks.

In the DQF-COSY experiment, a third 90◦ pulse is added immediately after the
90◦–t1–90◦ COSY sequence (Fig. 10.28). Instead of transferring the antiphase Ha
magnetization directly into antiphase Hb magnetization with the second pulse, it is first
converted into DQC (Hα

a , Hα
b ↔ Hβ

a , Hβ
b ) as an intermediate state in coherence transfer.

This is “filtered” by destroying all other coherences (ZQC, Iz , SQC) with a phase cycle,
and then the DQC is immediately converted into antiphase Hb magnetization by the third
pulse and the FID is recorded. The filter assures that only magnetization that passes briefly
through the double-quantum state between the second and third pulse can be observed in
the FID. The “filtration” is accomplished by varying the phase of the third pulse by 90◦ on
each successive transient (e.g., x′, y′, −x′, −y′, etc.) and varying the receiver phase (i.e.,



448 ADVANCED NMR THEORY: NOESY AND DQF-COSY

Figure 10.28

the reference axis) to select only magnetization that is converted from DQC to SQC by
the final pulse.

The DQ filter destroys all terms from the homonuclear front end except for the one with
both operators Ia and Ib in the x–y plane: the second term −2IaxI

b
y c s′. This term will become

the diagonal and the crosspeak in the DQF-COSY spectrum. To understand its fate we will
express it in terms of pure ZQC and DQC

−2IaxI
b
y = −{DQ}y − {ZQ}y

Now we apply the final 90◦ pulse, but in four consecutive scans we cycle the phase of the
pulse as follows: x, y, −x, −y. The receiver phase is cycled in the reverse sense: x, −y,
−x, y. This is the essence of the DQ filter: We will see that only the DQ part of the −2IaxI

b
y

term will survive this phase cycle. The other three terms from the homonuclear front end,
as well as the ZQC portion of the third term, will be canceled in the phase cycle. Let’s write
out the result of the phase cycle for the DQ term first

2{DQ}y = 2IayI
b
x + 2IaxI

b
y →

first scan: 90◦
x → 2IbxI

a
z + 2IaxI

b
z (crosspeak and diagonal peak)

second scan: 90◦
y → −2IayI

b
z − 2IbyI

a
z (diagonal peak and crosspeak)

third scan: 90◦−x → −2IbxI
a
z − 2IaxI

b
z (crosspeak and diagonal peak)

fourth scan: 90◦−y → 2IayI
b
z + 2IbyI

a
z (diagonal peak and crosspeak)

Note that both the diagonal peak and the crosspeak are antiphase and that they have the
same phase (x′ or y′), unlike in the simple COSY where the diagonal peak is antiphase on y′
and the crosspeak is in-phase on x′. Also, note the effect of the phase cycle on the phase of
the crosspeak: x′, −y′, −x′, y′ (examining the left term, right term, left term, and right term
above). If we cycle the receiver phase so that the reference axis is x′, then −y′, −x′, and
finally y′ for the four scans above, the crosspeak terms will all add together in the receiver.
Now focus on the diagonal peaks: their phase is also x′, −y′, −x′ and y′ for the four scans
of the phase cycle. So with the receiver phase set to x′, −y′, −x′, and y′ these terms will
also add together in the receiver.

Another way to view the receiver phase is as a shifting of the reference axes. With re-
ceiver phase set to x′ we do not alter anything in the result, but with the receiver phase
(reference axis) set to y′ we read an Iy operator as Ix (retarding its phase by 90◦). All
the other operators are retarded in phase accordingly: −Ix becomes Iy , −Iy becomes
−Ix , and Ix becomes −Iy . The effect of all four receiver phase settings are summarized
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below:

Receiver phase Ix Iy −Ix −Iy
x′ : Ix Iy −Ix −Iy
y′ : −Iy Ix Iy −Ix

−x′ : −Ix −Iy Ix Iy
−y′ : Iy −Ix −Iy Ix

For example, a final result of Ix (first column) will be received as Iy if the receiver phase
is set to −y′ (fourth row). Now we can “convert” our results for the final 90◦ pulse, taking
into account the effect of the receiver phase cycle x′, −y′, −x′, y′:

90◦
x : → 2IbxI

a
z + 2IaxI

b
z → 2IbxI

a
z + 2IaxI

b
z (receiver phase x′)

90◦
y : → −2IayI

b
z − 2IbyI

a
z → 2IaxI

b
z + 2IbxI

a
z (receiver phase − y′)

90◦
−x : → −2IbxI

a
z − 2IaxI

b
z → 2IbxI

a
z + 2IaxI

b
z (receiver phase − x′)

90◦
−y : → 2IayI

b
z + 2IbyI

a
z → 2IaxI

b
z + 2IbxI

a
z (receiver phase y′)

Adding up all eight terms we get: 4[2IbxI
a
z]+4[2IaxI

b
z]. This represents the crosspeak (Hb

antiphase coherence) and the diagonal peak (Ha antiphase coherence), respectively. Both
have the same phase in F2 (x′) and the same phase in F1 (cs′ modulation in t1) because they
both derive from the same term: −2IaxI

b
ycs′.

Now let’s examine the ZQC term and see how it fares in the phase cycle:

2{ZQ}y = 2IaxI
b
y − 2IayI

b
x →

90◦
x : → 2IaxI

b
z − 2IbxI

a
z → 2IaxI

b
z − 2IbxI

a
z (receiver phase x′)

90◦
y : → −2IbyI

a
z + 2IayI

b
z → 2IbxI

a
z − 2IaxI

b
z (receiver phase − y′)

90◦
−x : → −2IaxI

b
z + 2IbxI

a
z → 2IaxI

b
z − 2IbxI

a
z (receiver phase − x′)

90◦
−y : → 2IbyI

a
z − 2IayI

b
z → 2IbxI

a
z − 2IaxI

b
z (receiver phase y′)

As before, we use the table to adjust the phase according to the reference axis for each
scan. Now we see that the 2IaxI

b
z terms alternate sign and cancel as we move from first scan,

first term to second scan, second term to third scan, first term and finally to fourth scan,
second term. Likewise, the 2IbxI

a
z terms alternate sign and cancel as we move down. So the

ZQC, which exists between the second and third pulses of the DQF-COSY pulse sequence
(Fig. 10.28) does not contribute anything to the observed FID after four scans. Just for
completeness, we can show that all of the other terms present at the end of the 90◦

x–t1–90◦
x

sequence are also destroyed by the phase cycle

−Iaz → 1. Iay → Iay; 2. − Iax → − Iay; 3. − Iay → Iay; 4. Iax → − Iay
sum = Iay − Iay + Iay − Iay = 0

+Iax → 1. Iax → Iax; 2. − Iaz; 3. Iax → − Iax; 4. Iaz

sum = Iax − Iax = 0 (Iaz is not observable in the FID)
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−2IbyI
a
z → 1. 2IayI

b
z → 2IayI

b
z ; 2. − 2IbyI

a
x; 3. 2IayI

b
z → − 2IayI

b
z ; 4. 2IbyI

a
x

sum = 2IayI
b
z − 2IayI

b
z = 0 (−2IbyI

a
x and 2IbyI

a
x are not observable)

So the filter gets rid of everything except the two terms (one diagonal and one crosspeak)
that come from the DQC portion of the second term −2IaxI

b
ycs′. The results carry along

the c s′ = cos(�a t1)sin(π J t1) term, which makes both peaks antiphase in F1 as well as
in F2. Singlet signals (including solvent), which cannot exist as DQC because there is no J
coupling, are eliminated altogether. Furthermore, both diagonal peaks and crosspeaks have
the same phase in a DQF-COSY spectrum, so that both can be phase corrected to be pure
absorption mode.

10.6 COHERENCE PATHWAY SELECTION IN NMR EXPERIMENTS

An NMR experiment (pulse sequence) consists of a precisely defined series of radio fre-
quency pulses and delays. Pulses create coherence from z magnetization or convert one
coherence into another. They usually lead to multiple changes in coherence order (p), so
that after a number of pulses there can be a bewildering array of different coherences. De-
lays cause coherences to undergo evolution, resulting from either chemical shift differences
or J couplings. During a delay, a single coherence can lead to as many as four different
components depending upon whether chemical-shift evolution, J-coupling evolution, both
or neither has occurred during the delay. Delays can also lead to relaxation (T1 and T2) and
cross relaxation (NOE). Of the myriad coherences present at the end of the pulse sequence
(beginning of the FID), we are only interested in one. This coherence gives us the infor-
mation we want from the experiment: specific relationships between spins that we have
selected with the pulse sequence. All other coherences are artifacts: They will lead to false
crosspeaks, ugly streaks that interfere with the desired information, or phase distortions in
the desired peaks. The desired coherence follows a specific pathway throughout the pulse
sequence, defined by the coherence order (p) at each stage of the experiment. In general,
delays conserve the coherence order, whereas 180◦ pulses change its sign and 90◦ pulses
cause coherences to split into several different coherence orders. To select the desired co-
herence pathway and to eliminate the many artifacts resulting from alternative pathways,
we use coherence pathway selection.

Two methods are available for coherence pathway selection: phase cycling and
pulsed field gradients. We can also use both methods working together to get even bet-
ter suppression of artifacts. Phase cycling focuses on the effect of pulses on the coherence
order. By changing the phase of the RF pulse, which corresponds to the orientation of the
B1 field vector in the x′–y′ plane in the rotating frame of reference, we can cause the desired
coherence in the FID to add together in the sum-to-memory with each successive transient
or scan. The undesired signals (artifacts) can be made to cancel in the sum-to-memory with
a series of scans. Gradients operate in a different way: the “twist” (position-dependent phase
shift) that a gradient pulse gives to a coherence depends on its coherence order (p). A series
of gradient pulses placed at strategic places within the pulse sequence leads to a combined
“twist” that depends on the coherence order at each stage of the pulse sequence. If the
gradient strength is properly adjusted for each gradient in the sequence, only the desired
coherence can arrive at the beginning of the FID with no “twist.” All other coherences (the
artifacts) will be “twisted” and therefore not contribute to the FID.
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Figure 10.29

10.6.1 The Coherence Level Diagram

Below the pulse sequence we can show the desired coherence level, p, at each stage of the
pulse sequence. This diagram defines the coherence pathway that is desired for a particular
NMR experiment. Coherence order is mixed for Cartesian product operators

Ix, Iy p = ±1; {DQ}x, {DQ}y p = ±2 (homonuclear)

but it is pure for the spherical (raising and lowering) operators

I+ p = 1; I− p = −1; I+S+ p = 2 (homonuclear)

The Cartesian operators have mixed coherence order because they are linear combinations
of the spherical operators

Ix = 1
2 (I+ + I−) p = ±1

Iy = 1
2i (I

+ − I−) p = ±1

Using spherical operators we can see that a 90◦ pulse can “explode” the coherence order
into several different levels. For example, a 90◦

x pulse converts the pure coherence level
p = +1 into three different coherences, at coherence levels of +1, 0, and −1 (Fig. 10.29).
After several pulses and delays there can be a very large number of coherences, each
of which has traveled a different coherence order pathway through the experiment. The
ideal coherence pathway selection will choose only one of the coherence levels after each
pulse, thus defining the events of the experiment clearly and producing a clearly inter-
pretable result in the FID. After all, the purpose of every NMR experiment is to make
the spins “dance” in a particular way that reveals to us clearly their relationships and in-
teractions: J couplings, distances, and so on. As this information can be very complex
and overlapping, it is very important to select only certain pieces of information in each
experiment to make the data interpretation simple. Coherence pathway selection is the
editing process by which we get clean and simple results. The coherence pathway dia-
gram summarizes the sequence of events we are interested in for the spins according to
the information we want. The task of coherence pathway selection, whether by phase cy-
cling or by gradients, is to select this desired pathway and to block all other coherence
pathways.
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10.6.2 Coherence Order Pathway Selection by Phase Cycling

There is a key observation that makes coherence pathway selection possible by phase
cycling. Starting with a pure I+ (p = 1) coherence, consider the effect of changing the
phase of a 90◦ pulse on the phases of the resulting coherences:

�p : 0 − 2 −1

I+ 90◦
x → 1

2 I
+ + 1

2 I
− +iIz

I+ 90◦
y → 1

2 I
+ − 1

2 I
− −Iz

I+ 90◦−x → 1
2 I

+ + 1
2 I

− −iIz
I+ 90◦−y → 1

2 I
+ − 1

2 I
− + Iz

(these can all be calculated using the definitions I+ = Ix + i Iy , I− = Ix − i Iy and the
relations Ix = 1/2 I+ + 1/2 I−, i Iy = 1/2 I+ − 1/2 I−) Note that as we increment the phase
of the pulse by 90◦ (x, y, −x, −y), the phase factor multiplying the resulting I+ component
(�p = 0, no change in coherence order from the original I+ spin state) does not change,
whereas the phase of the I− component (�p = −2) is shifted by 180◦ each time. The Iz

(sometimes written as Io) component (�p = −1) is shifted in phase by 90◦ each time if
we use the complex plane (x′ = real, y′ = imaginary) to represent the phase (i, −1, −i, 1
correspond to the y′, −x′, −y′ and x′ axes, respectively, in the rotating frame). In general, the
effect of a change in pulse phase ��p on the phase of the resulting coherence �c depends
on the change in coherence order �p caused by the pulse

��c = −�p× ��p

In the above example, ��p = 90◦ and ��c = 0◦, 180◦, and 90◦ for �p = 0, −2, and −1,
respectively.

We could select the I+ coherence if the experiment was repeated four times, with the
signal added to the sum-to-memory each time at the receiver. The I− coherence (and any
coherence derived from it in a longer, more complex pulse sequence) would cancel out
because we would have 1/2 I− −1/2 I− + 1/2 I− − 1/2 I− for the four scans. The Iz part
would not be observable, but even if it were converted to an observable coherence later
in the pulse sequence, this coherence would carry along the phase factors i, −1, −i, and
1, which add together to give a zero signal after four scans. If instead we alternately add
and subtract the FID signals from successive scans in the sum-to-memory, the I+ signal
would cancel (1/2 I+ − 1/2 I+ + 1/2 I+ − 1/2 I+), the I− signal would accumulate (+
1/2 I− − (−1/2 I−) + 1/2 I− − (−1/2 I−)), and the Iz component would cancel (+iIz

− (−Iz ) − i Iz − (+Iz )). The net result is that we would select the I− component and
destroy all other components in a four-scan phase cycle. To select the Iz component (or
some observable coherence derived from it), we would advance the receiver phase by 90◦
with each successive scan. This is accomplished by adding the “real” (x′ axis) signal from
the ADC to the “imaginary” sum in the sum-to-memory and subtracting the “imaginary”
(y′ axis) signal coming from the ADC from the “real” sum in the sum-to-memory. In effect,
we have rotated our reference frame by 90◦ because the x′ axis is being detected as the y′
axis and the y′ axis has been moved to the −x′ axis. For a four-scan phase cycle with ��r
(receiver phase change) of 90◦, the signal would be routed as follows:



COHERENCE PATHWAY SELECTION IN NMR EXPERIMENTS 453

Scan Sum-to-memory
Real Imag. Reference axis

1 X Y “x”
2 Y −X “y”
3 −X −Y “−x”
4 −Y X “−y”

Where X and Y are the real and imaginary FIDs coming out of the ADC. Thus, we can
speak of the “receiver phase” as the point of view from which we view the FID signal in
the rotating frame of reference. If the receiver phase is shifted by 90◦ (from x′ to y′ axis),
we mean that the “real” channel has been shifted counterclockwise by 90◦ from the x′ axis
to the y′ axis, and the “imaginary” channel has been shifted counterclockwise by 90◦ from
the y′ axis to the −x′ axis. With this 90◦ shift, for example, a coherence of Iy would be
observed as Ix , and in a four-scan phase cycle with ��r = 90◦, we would observe a four-
scan sequence of coherences Ix , Iy , −Ix , −Iy as 4Ix in the sum-to-memory. To keep track
of these phase shifts, a shorthand notation is often used where 0 stands for a 0◦ phase shift
(real part of receiver on the x′ axis), 1 stands for a 90◦ phase shift (receiver on the y′ axis), 2
stands for a 180◦ phase shift (receiver on the −x′ axis), and 3 stands for a 270◦ phase shift
(receiver on the −y′ axis). In this notation, the four-scan receiver phase cycle with ��r =
90◦ would be written: 0 1 2 3.

In general, the receiver phase should follow the phase shifts that result from a shift in
the phase of a pulse

��r = −�p× ��p

For a series of pulses (a pulse sequence), we can select the change in coherence or-
der �p resulting from each of the pulses if we phase cycle all of the pulses and then
calculate the effect of the desired coherence pathway on the final phase. If we dia-
gram the coherence pathway, we can note the change in coherence order �p caused
by each pulse and then calculate the receiver phase change necessary to make the
desired combination of �p’s add together at the receiver while all other pathways
cancel:

��r = �(−�p× ��p)

where ��p is the phase increment for each pulse and the sum is taken over all pulses that
are phase cycled. The phase cycling of pulses must be done independently for this selection
to work; which means that if the first pulse has a phase shift of 180◦ (x, −x or 0 2) and the
second pulse has a phase shift of 90◦ (x, y, −x, −y or 0 1 2 3), it would be necessary to
have eight scans in our phase cycle:

Pulse 1: 0 0 0 0 2 2 2 2
Pulse 2: 0 1 2 3 0 1 2 3

How selective can we be in terms of �p? If we cycle the phase of a pulse by 360◦/N, then
with N scans in the phase cycle we are effectively putting up a “mask” that permits every
Nth value of �p to get through the mask. For example, if N = 2 (pulse phase x, −x or 0 2),
and we set the receiver phase to ��r = −�p × ��p = −(−1) (180◦) = −180◦ = 180◦,
we would permit �p = −1 as planned, but we would also allow �p = −3, −5, −7 and so
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on as well as �p = 1, 3, 5, and so on. That is, the “holes” in our mask are spaced every
second value of �p. To block �p = 1 and permit �p = −1, we would need a four-scan
phase cycle (N = 4, ��p = 90◦) and the “mask” would have holes every fourth value of
�p, allowing �p = −5, −1, 3, and so on. This is a much more effective phase cycle, but
it takes twice as many scans to complete it:

Pulse: 0 1 2 3
Receiver: 0 1 2 3

To summarize, the strategy for phase cycling is to select pulses at crucial points in the pulse
sequence where the coherence order change �p is different for the desired and undesired
coherence pathways. Then decide how selective the mask must be for each pulse (N-fold
mask) and construct a phase cycle so that all of the selected pulses are independently stepped
through their N-fold phase progressions. Finally, the receiver phase is calculated by adding
the phase shifts for the desired coherence pathway that would result from the phase cycle
you have constructed for the pulses, using the rule

��r = �(−�p× ��p)

The effect of setting the receiver phase cycle is to position each N-fold mask so that it passes
the desired coherence order change �p resulting from that pulse.

As an example, consider the 2D DQF-COSY experiment. Except for the length of the
delay between pulse 2 and pulse 3, the NOESY pulse sequence is identical to the DQF-
COSY pulse sequence, so that in this case it is only the coherence pathway selection that
makes it a DQF-COSY experiment! The coherence order diagram is shown in Figure 10.30,
with the undesired NOESY pathway diagramed with dotted lines. The convention for 2D
experiments is to always have the observed coherence in F2 (observed in the FID) be
negative and the observed coherence in F1 (during the t1 delay) be positive. This is called
the “echo” pathway because we have opposite sign of coherence in the two dimensions.
The desired pathway has �p = 1 for the first pulse, 1 or −3 for the second and −3 or 1
for the third, whereas the NOESY path has �p = 1, −1, and −1 for the same pulses. We
saw in detail how phase cycling the final pulse of the DQF-COSY experiment (N = 4) kills
everything except DQC (p = 2 or −2) existing between pulse 2 and pulse 3. In that case
we used ��p = + 90◦ and N = 4 (x, y, −x, −y). As we want to select �p = −3 or �p =
+ 1 for that pulse, we need to cycle the receiver as follows:

��r = −�p× ��p = −(−3) (90◦) = 270◦ or − (+1)(90◦) = −90◦

Figure 10.30
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We see that these are the same, corresponding to a receiver phase increment of −1 or +3
in the 0, 1, 2, 3 system:

Pulse 3: 0 1 2 3 = x, y,−x, −y

Receiver: 0 3 2 1 = x, −y, −x, y

Moving backward from 0 you go to 3 (270◦ = −90◦). Every fourth coherence change is
let through: �p = −7, −3, 1, 5, and so on. The NOESY pathway (−Iazcc′ term from the
homonuclear “front end”) goes from p = 0 to p = −1, with �p = −1 in the final pulse. This
is blocked by the fourfold mask of the phase cycle (�p = −3 or +1). The ZQC part of the
ZQ/DQ term is also blocked because it has the same �p as the NOESY pathway (p = 0 to
p = −1) in the final pulse. The COSY crosspeak and diagonal terms (+Iaxsc′ − 2IbyI

a
zss

′)
are SQC (p = 1 or −1) and would have to undergo a change of �p = 0 or �p = −2 (p =
−1 to −1 or p = + 1 to −1) in order to be observed in the FID. These are also blocked by
the phase cycle, which allows only �p = −3 and �p = + 1.

To select the NOESY pathway, we use exactly the same pulse sequence but change the

phase cycle of the final pulse. We want to select the pathway Iaz
90◦
→ I+a 90◦

→ − Iaz
τm→ Ibz 90◦

→ I−b ,
which has �p = −1 for the final pulse (Fig. 10.31). Using the same phase cycle x, y, −x,
−y (�� = 90◦) for the final pulse, we can calculate the receiver phase increment:

��r = −(�p)(��p) = −(−1)(90◦) = 90◦

So instead of retarding the receiver phase by 90◦ with each scan, we will advance it by
90◦: x, y, −x, −y. This will allow �p of −5, −1, +3, and so on, and reject the DQF-COSY
pathway (�p = −3 or +1).

Better coherence pathway selection is achieved by cycling more than one of the pulses
in the sequence. For a DQF-COSY sequence, we could set N to 2, 2, and 4 for the three 90◦
pulses, thus making the last pulse the most selective so that we can allow both �p = −3
and �p = 1 while blocking the NOESY �p = −1. So we need to cycle the first two pulses
with 180◦ phase shifts (360◦/2) and the final pulse through a 90◦ phase shift (360◦/4). To do
all of these phase shifts independently will require 16 scans (2 × 2 × 4) because it requires
two steps to sample all possible 180◦ phase shifts and four steps to sample all possible 90◦
phase shifts. Because these must be sampled independently, the number of scans required

Figure 10.31
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is the product of the N’s for each pulse. Here is one way to do it:

Pulse 1: 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 (N = 2)
Pulse 2: 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 (N = 2)
Pulse 3: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 (N = 4)

where 0, 1, 2, and 3 correspond to phase shifts of 0◦, 90◦, 180◦, and 270◦, placing the
B1 vector of the pulse on the x′, y′, −x′, and −y′ axes of the rotating frame of reference,
respectively. Note that the goal of quadrature image elimination is also accomplished as
the final pulse is cycled through all four axes in the rotating frame. If we acquire 16 scans
for each FID in the 2D experiment, we will accomplish the full selectivity of the phase
cycle. If we have a high concentration of sample so that we do not need 16 scans for signal
averaging, we could use eight or 4 scans per FID. If we use only eight scans, the selectivity
of pulse 2 is eliminated; with only four scans per FID, we lose the selectivity of the pulse
1 and have only the “mask” created by pulse 3. Clearly, the decision to cycle pulse 3 more
rapidly (0 1 2 3. . . ) than the others means that its selection is more important than the others
because it will be present even for the minimum number of scans (4).

The next step is to calculate the receiver phases. Each time we change the phase of a
pulse, the receiver phase must be advanced by the appropriate amount so that the desired
coherence (resulting from the selected coherence level change �p) is summed in the receiver
and not canceled. For more than one pulse, we can add together the phase shifts required at
the receiver according to

��r = �(−�p× ��p)

The easiest way to do this is to calculate the receiver phase �r for each pulse independently
and then add these receiver phase shifts together. For the first pulse, �p is +1 and for the
second pulse it is either +1 or −3 (Fig. 10.30), whereas in both cases ��p is 180◦ (N =
2). We calculate ��r = −(1) × 180◦ = 180◦ for �p = 1 and ��r = −(−3) × 180◦ =
540◦, which is the same as 180◦ for �p = −3. Thus, every change of 180◦ in pulse phase
results in a change of 180◦ in the desired receiver phase. For the third pulse, �p is –3 (or
+1) and ��p is 90◦ (0 1 2 3), so ��r = −(−3) × 90◦ = 270◦ = −90◦. So every time we
advance the phase of the third pulse by 90◦, we must also retard the phase of the receiver
by 90◦. Considering each pulse individually, the receiver phases are as follows:

Pulse phase Receiver phase
Pulse 1: 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 → 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
Pulse 2: 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 → 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
Pulse 3: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 → 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1
�r (total): 0 3 2 1 2 5 4 3 2 5 4 3 4 7 6 5
�r (corrected): 0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1

The receiver phase is obtained simply by adding the phase shifts for the three pulses in each
column. The total receiver phase can be simplified as we can subtract 360◦ from any phase
greater than 360◦ to obtain a value between 0◦ and 360◦. Thus, a phase of “4” is really 0, “5”
is really 1, “6” is really 2, and “7” is really 3. If the receiver phases are calculated wrong,
all or part of the desired signal will be eliminated by cancelation in the sum-to-memory. I
have more than once experienced the unhappy result when a long 2D experiment results in
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a perfect 2D spectrum of noise! In this case, the elimination of artifacts is so efficient that
even the desired signals are removed.

Now consider the 2D NOESY experiment. If we use the same selectivity for the three
pulses, we could use the same pulse phases as we used for the DQF-COSY experiment, and
only the receiver phases will be different:

Pulse phase Receiver phase
Pulse 1: 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 → 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
Pulse 2: 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 → 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
Pulse 3: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 → 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
�r (total): 0 1 2 3 2 3 4 5 2 3 4 5 4 5 6 7
�r (corrected): 0 1 2 3 2 3 0 1 2 3 0 1 0 1 2 3

The first two pulses give the same result: pulse phase of 0 2 and receiver phase of 0 2,
selecting �p = +1, −1, −3, and so on. For the third pulse, �p is −1 and ��p is 90◦, so
��r = −(−1) × 90◦ = 90◦. So every time we advance the phase of the third pulse by 90◦,
we must also advance the phase of the receiver by 90◦. Note that we have done exactly the
same experiment as the DQF-COSY, but we have changed the receiver phase cycle slightly
from 0 3 2 1 2 1 0 3 2 1 0 3 0 3 2 1 to 0 1 2 3 2 3 0 1 2 3 0 1 0 1 2 3, thus letting the NOESY
signals accumulate in the sum-to-memory whereas the DQF-COSY signals cancel out.

For heteronuclear experiments, changing the phase of a pulse will only affect that part of
the coherence that is sensitive to the pulse. For example, in the stepwise INEPT with 2IzSz

as in intermediate step in coherence transfer

Iz
90◦1H→ I+

1
2J→ I+Sz

90◦1H→ 2IzSz

90◦13C→ S+Iz

the second 1H 90◦ pulse converts I+Sz into 2IzSz , so that �p(I) = −1. If instead we used a
simultaneous 1H 90◦ pulse and 13C 90◦ pulse to convert I+Sz directly into S+Iz , we would
have �p(I) = −1 for purposes of phase cycling the 1H 90◦ pulse (I+ → Iz ) and �p(S) =
+1 for purposes of phase cycling the 13C 90◦ pulse (Sz → S+). For calculating gradients,
we “inflate” the 1H coherence order by the ratio of magnetogyric ratios γH/γo, where γo
is the magnetogyric ratio of the lowest frequency nucleus in the experiment, but for phase
cycling we always consider the different nuclei separately because a pulse is delivered on
a specific channel and affects only that nucleus. Thus, for I = 1H, I+ has p = 1, Iz has
p = 0, and I− has p = −1 regardless of the definition of S (S = 1H, 13C, 15N, 31P, etc.).
Although a pulse can only affect one type of nucleus (e.g., 1H or 13C), we will see below
that gradients affect all coherences, and each coherence is affected according to its type of
coherence (SQC, DQC, ZQC, etc.) and its magnetogyric ratio.

10.6.3 Coherence Pathway Selection with Pulsed Field Gradients

A pulsed field gradient is a distortion of the normally homogeneous magnetic field in the
region of the sample that leads to a linear gradient of Bo along a single direction, usually
the z axis, which is along the length of the NMR tube. This distortion is very small relative
to Bo and is typically turned on for a period of around 1 ms and then turned off, returning
the field to its homogeneous state. During the gradient, the Bo field depends on the position
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of a molecule within the NMR sample tube:

Bg = Bo + Gzz

where z is the position along the z axis. The effect of the gradient on an SQC is to produce
a position-dependent phase shift or “twist” that scrambles the coherence so that its net
value, averaged through the whole sample volume, is zero. This comes about because the
precession frequency of an SQC is proportional to Bo:

νo = γBo/2π

During the gradient pulse

ν(gradient) = νg = γ(Bo + Gzz)/2π = νo + γGzz/2π = νo + �ν

For a gradient of duration τ, the phase of the coherence will have changed by

��(in radians) = 2πνoτ + γGzzτ

The first part, which is not position dependent, is just the chemical-shift evolution that would
be expected for a delay of duration τ, but the second part is the result of the gradient. This is
the position-dependent twist that results from the gradient pulse and is proportional to the
gradient strength Gz and the gradient duration τ. Usually, the gradient duration is the same
for all of the gradients applied in a pulse sequence, and the gradient strength Gz is varied.

To see the power of gradients in coherence pathway selection, consider the effect of
a gradient on a homonuclear DQC I+a I+b . The DQC undergoes evolution during a delay
according to the sum of the two precession frequencies for the two protons Ha and Hb:

νDQ = νa + νb

During a gradient, Bo is changed by the gradient field Gz z, leading to the following double-
quantum precession rate during a gradient

νDQ(gradient) = ν′
a + ν′

b = [νa + γHGzz/2π] + [νb + γHGzz/2π]
= νDQ + 2γHGzz/2π

After a gradient pulse of duration τ, the phase shift for this DQC will be

��DQ = 2πνDQτ + 2γGzzτ

The first term is the evolution that would have occurred in the absence of the gradient, and
the second term is the position-dependent phase twist. Note that the twist is twice as much
as that experienced by a SQC in the same gradient. Thus, the coherence order (in this case
p = 2) is encoded in the twist, and this gives us a way to select the coherence at any point
during the pulse sequence by simply applying a gradient pulse.

When the same reasoning is applied to a homonuclear ZQC, we see that the gradient has
no effect:

νZQ(gradient) = ν′
a − ν′

b = [νa + γGzz/2π] − [νb + γGzz/2π]
= νZQ
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The effect of gradients is especially simple to understand if we consider spherical oper-
ators. A Cartesian operator, such as Ix or Iy , will precess during a gradient according to

Ix → Ixcos(γGzzτ) + Iysin(γGzzτ)

Iy → Iycos(γGzzτ) − Ixsin(γGzzτ)

This is the position-dependent phase shift expressed in terms of the x and y components of
the magnetization. Here, we assume that the I spin chemical shift is on-resonance, so that
ordinary chemical-shift evolution can be ignored during the gradient. Now we can look
at the effect of a gradient on the spherical operators by expressing them in terms of the
Cartesian operators:

I+ = Ix + i Iy → Ixcos(γGzzτ) + Iysin(γGzzτ) + i Iycos(γGzzτ) − i Ixsin(γGzzτ)
= Ix[cos(γGzzτ) − i sin(γGzzτ)] + i Iy[cos(γGzzτ) − i sin(γGzzτ)]
= I+[cos(γGzzτ) − i sin(γGzzτ)]
= I+e−i(γGzzτ)

In general, the effect of a gradient pulse on any operator is to multiply it by a phase factor
that represents the position-dependent phase twist:

Phase factor = e−i(pγoGzzτ)

where p is the coherence order of the operator and γo is the lowest magnetogyric ratio in
the spin system. For a homonuclear (1H) DQC

I+a I
+
b → I+a e−i(γHGzzτ)I+b e

−i (γHGzzτ) = I+a I+b e−i(2γHGzzτ)

Note that the phase factor fits the general pattern e−i(pγoGzzτ), with coherence order p =
+2 and γo = γH. For a homonuclear ZQC:

I+a I
−
b → I+a e−i(γHGzzτ) I−b e

+i(γHGzzτ) = I+a I−b
As expected, homonuclear ZQC is not affected by a gradient as it has coherence order p
= 0. For heteronuclear MQC, we need to consider the difference in magnetogyric ratio γ .
For example, if I = 1H and S = 13C

I+S+ → I+e−i(γHGzzτ)S+e−i(γCGzzτ) = I+S+e−i((γH+γC)Gzzτ)

For heteronuclear systems, it is convenient to redefine the coherence order p so that it
includes the relative magnetogyric ratio γ/γC (or γ/γo in the general case):

pH = γH/γC = 4 and pC = γC/γC = 1

Thus, I+ has p = 4, I− has p =−4, S+ has p = 1 and S− has p =−1. Using these definitions,

I+S+ → I+S+e−i((γH+γC)Gzzτ) = I+S+e−i((γH/γC+γC/γC)γCGzzτ)

= I+S+e−i((4+1)γCGzzτ) = I+S+e−i(5γCGzzτ)
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This is consistent with the rule if we define p = pH + pC = 4 + 1 = 5 for I+S+. Following
this rule, we have p = 3 for I+S−, p = −5 for I−S−, and p = −3 for I−S+. For nuclei
other than 13C, we factor out the lowest magnetogyric ratio of the two; for example, if I
= 1H and S = 31P, we can define for this case, pH = 2.5 and pP = 1 so that p = 3.5 for
I+S+ and 1.5 for I+S−. This may seem sloppy because the coherence order of proton
SQC depends on the context, but it is quite convenient and easy to use. In this way, we can
define the effect of a gradient on any kind of coherence, and we see that the degree of twist
or the tightness of the helix formed by the position-dependent phase shift is proportional
to the coherence order p at the time of the gradient pulse.

For several gradients applied at different points during the pulse sequence, the position-
dependent phase shift accumulates:

Phase factor = e−i(p1γoG1zτ)e−i(p2γoG2zτ)e−i(p3γoG3zτ) . . .

= e−i[(p1G1+p2G2+p3G3...)(γozτ)]

where p1, p2, p3, . . . are the coherence orders at the time of the gradients of strength G1, G2,
G3, . . . , respectively, for the desired coherence pathway. At the end of the pulse sequence
(beginning of the FID), we want the phase to be the same at all levels of the NMR sample
so that the signals will combine and induce a coherent signal in the probe coil. This will be
the case if the exponent is zero, so that the phase factor equals 1, regardless of the position
(z) in the NMR tube:

p1G1 + p2G2 + p3G3 + · · · = �(piGi) = 0

This is the rule for selecting a coherence pathway: The gradient strengths Gi are adjusted
so that the sum of coherence order times gradient strength over all of the gradients is equal
to zero. In this case, the last gradient will have

pNGN = −(p1G1 + p2G2 + p3G3 + · · · , +pN−1GN−1)

and will impart a helical twist exactly equal and opposite to that accumulated so far, effec-
tively “unwinding” the position-dependent phase twist to yield an observable coherence in
the FID. The artifacts will not unwind at this point because they did not follow the same
coherence pathway and will not satisfy the magic formula

�(piGi) = 0

These coherences will have a helical phase twist in the NMR sample tube and will add to
give a net signal of zero in the probe coil during the FID.

Let’s apply the gradient coherence pathway selection technique to the DQF-COSY pulse
sequence. Using a phase cycle to select the coherence pathway that passes through DQC
between the second and third pulses, it is required that we acquire at least four transients
for each FID in the 2D acquisition. If we have sufficient sample concentration to get a good
signal-to-noise ratio in a single scan, the experiment takes four times as long as is necessary
based purely on sensitivity considerations. Using pulsed field gradients to select the desired
coherence pathway, the experiment time could be reduced by a factor of 4!

Instead of focusing on pulses as we did for phase cycling, we will focus on the delay
periods between pulses where we can insert gradient pulses. First, a gradient during the
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Figure 10.32

evolution (t1) period “twists” the observable single-quantum magnetization into a helix
oriented along the z axis. A second gradient is applied during the short period between
the second and third pulses (Fig. 10.32) to untwist the coherence. Because the desired
magnetization component during this period is DQC, the twist accumulates twice as fast as
it did during the first gradient. This is due to the fact that the DQ evolution occurs at a rate
that is the sum of the two resonance frequencies:

�DQ = �a + �b

Each of these frequencies is shifted the same amount by the gradient, so the total position-
dependent change in frequency is twice as large for the DQ coherence:

��DQ = ��a + ��b

For the second gradient to undo the twisting caused by the first, it needs to be of opposite
sign and half the gradient strength of the first: G2 = −1/2 G1. For example, we could use
relative gradient strengths of G1 = 2 and G2 = −1 (Fig. 10.32). The sensitivity to twisting
by gradients is p = 1 during t1 (SQC) and p = 2 during the short delay between pulses 2
and 3 (DQC). To get zero twist at the end, we use gradients G1 and G2 such that

�piGi = p1G1 + p2G2 = 1 × 2 + 2 × (−1) = 0

In terms of spherical operators, the DQF-COSY experiment looks like this

Ioa
90◦
→ I+a

t1→ I+a I
o
b

90◦
→ I+a Ib

+ 90◦
→ I−b I

o
a

Ha magnetization starts on z (equilibrium, p = 0) and is excited to I+a (SQC, p = 1) and I−a
(p = −1) by the first 90◦ pulse. Following just the I+ term, during the t1 delay we generate a
mixture of I+a and the antiphase term I+a Iob (still p = 1), which is the only term that can lead

to coherence transfer. The second 90◦ pulse generates DQC (I+a I+b ) with coherence order
p = 2 (along with five other undesired coherences!). The final 90◦ pulse “knocks down” Ha

from I+a (p = 1) to Ioa (p = 0) and Hb from I+b (p = +1) to I−b (p = −1) to generate the
crosspeak I−b I

o
a . Here, we use Io = Iz for consistency with our spherical operators. In each

step, we drop the phase factors (we do not bother specifying them) that accumulate because
of pulse phases and evolution during delays. We are only interested in the general form
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of the coherence and its coherence order. This frees us from a lot of tedious bookkeeping!
For example, each time an I+ or I− term is hit with a 90◦ pulse, we get three coherences:
I+, Io, and I− (Fig. 10.29). So a product like I+a I+b can generate nine different product
operators (nine different coherences) with p ranging from −2 to +2! As long as we know the
precise coherence order we want at each step, we can design the gradient strengths needed to
select that “pathway” (sequence of coherences desired). We use the term “gradient selected”
for any experiment where the gradients actually select the desired coherence pathway as
opposed to “gradient enhanced” if they just clean up artifacts. The common feature of
gradient selected experiments is the need for a precise ratio of gradient strengths (twist,
untwist). In “gradient enhanced” experiments (e.g., gradient enhanced NOESY, Fig. 10.16)
any old gradient strength will do because we are just “spoiling” coherences we do not want
(twist, forget), rather than “selecting” the coherences we do want.

With the sequence of Figure 10.32 we would have to use magnitude mode to present the
data because the gradients take up considerable time during which evolution is going on.
As a typical gradient is 1–2 ms long, the t1 period cannot start at t1 = 0 but is forced to
start at t1 = 1 ms or t1 = 2 ms, leading to large chemical-shift dependent (first-order) phase
errors in F1. Remember, it is the phase of each spin at the start of the FID that determines
the phase of the peak after Fourier transformation. If we delay the start of the FID, different
peaks end up with different phases because they have “fanned out” due to chemical shift
differences before the FID starts. Furthermore, DQ evolution (�a + �b) is going on during
the second gradient, leading to large phase errors in F2. We could use magnitude mode
to “band-aid” these phase errors but then we lose all the advantages of phase-sensitive 2D
NMR. The solution is to construct a spin echo whenever we need some time for a gradient.
The gradient fits into one of the delays of the spin echo and the other delay refocuses the
evolution that goes on during the gradient. The improved sequence is shown in Figure 10.33.
A spin echo is built onto the end of the evolution delay, with echo delay � just long enough
for a gradient (plus a short delay for recovery of field homogeneity). Now the first t1 value
can truly be set to zero because no net chemical-shift evolution occurs during the spin echo.
A second spin echo is built into the short delay between the second and third pulses, with
the gradient “tucked in” to the second delay of the spin echo.

In terms of spherical operators, the improved DQF-COSY experiment looks like this

Ioa
90◦
→ I+a

t1→ I+a I
o
b

180◦
→ I−a I

o
b

90◦
→ I−a I

−
b

180◦
→ I+a I

+
b

90◦
→ I−b I

o
a

Figure 10.33
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Figure 10.34

The 180◦ pulses in the center of the spin echoes invert the spherical operators, with I+
becoming I− and I− becoming I+. We have to take this into account when designing
gradients: now p1 = −1 (I−a Iob) and p2 = +2 (I+a I+b ), so we need gradient strengths of G1
= 2 and G2 = 1 to select this coherence pathway.

We might also want to have a third gradient applied after the final 90◦ pulse, so that we
would “cover” the SQC period (Ha), the DQC period (Ha − Hb), and the SQC period (Hb)
just before the FID (Fig. 10.34). We will have a huge phase twist in F2 if we simply delay
starting the acquisition of the t2 FID, so we insert a spin echo between the third 90◦ pulse
and the FID acquisition. In this case, one solution for gradient selection is G1 = 1, G2 = 1,
and G3 = 3, selecting p = −1, p = −2, and p = +1, respectively. The accumulated “twist”
at the end of each gradient is −1 (after G1), −3 (after G2), and 0 (after G3) for the selected
pathway. Note that the alternative pathway p = −1, p = 2, and p = 1 (Fig. 10.34, dotted
line) will lead to a twisted coherence and will not be observed:

�(piGi) = (−1 × 1 + 2 × 1 + 1 × 3) = +4

This pathway is permitted in the phase cycled experiment, but the data from this pathway is
lost in the gradient version. In this sense, gradients are sometimes too selective because they
generally allow only one coherence level even when two or more pathways are equivalent
in terms of the signal we want to see.

We have been annotating the pulse sequence to indicate what kind of evolution is going
on at each stage: νH, −νC, J, and so on. Another way to diagram what is happening during
the pulse sequence is to show the spherical operators at each stage for the coherence we are
selecting with the gradients. This is shown in Figure 10.35 for the DQF-COSY sequence
with gradients and spin echoes. The best way to do this is to start at the end with the FID:
We always detect negative coherence, and as we are talking about a crosspeak at F1 =
Ha, F2 = Hb, we will be detecting Hb SQC in the FID. Because there is no refocusing in
the DQF-COSY, we will start the FID with antiphase Hb coherence: I−b I

o
a with p = −1.

Moving backward, the 180◦ pulse will always convert I− to I+ and vice versa, so before
the final 180◦ pulse we have I+b I

o
a with p = +1. Moving farther back in time, we encounter

a 90◦ pulse. Many things happen to SQC with a 90◦ pulse (Fig. 10.29): The coherence
order splits into three parts: it stays the same, goes to zero, or reverses sign. It is up to the
gradients (or phase cycle) to select which of these three pathways is selected. A product
operator with two operators such as I+b Ioa can come from many different levels: I+b can

come from I+b , Iob, or I−b by a 90◦ pulse, and Ioa can come from I+a or I−a . Taken together,
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Figure 10.35

the coherence level before the 90◦ pulse could be −2, −1, 0, +1, or +2! Fortunately, we
know what coherence level we want to select for a DQF-COSY experiment: the coherence
pathway diagram shows p = +2 at this point, and any other level will not survive the
gradients. So we know that before the 90◦ pulse, we have I+b I+a with p = 2. From I+b the

90◦ pulse creates I+b , Iob, and I−b , but the gradient ratio selects only I+b . Likewise, from I+a
we select Ioa after the 90◦ pulse. It is important to keep in mind the big picture: DQF-COSY
accomplishes coherence transfer from Ha antiphase SQC to Hb antiphase SQC by going
through the obligatory intermediate state of {Ha, Hb} DQC.

Moving back further, we come to another 180◦ pulse at the center of the second spin
echo. This is easy: I+b comes from I−b and I+a comes from I−a , so we have I−b Ia

− before
the 180◦ pulse and p = −2. Before this we have another 90◦ pulse, the one that converts Ha
antiphase SQC into {Ha, Hb} DQC. I−b has to come from Iob because the starting Ha SQC
is antiphase with respect to Hb, but I−a can come from either I−a or I+a , both of which are
Ha SQC. To decide which one, we look at the coherence pathway diagram (p = −1) or we
look further back to the evolution delay t1, where we have to have positive coherence order
for Ha SQC. This is the rule: negative coherence order during t2 and positive coherence
order during t1 for the “echo” pathway. Because there is a 180◦ pulse between our
state and the t1 period, we have to have negative coherence order here: I−a Iob. We can
complete the sequence by moving back before the 180◦ pulse: I+a Iob (Ibz → −Ibz , but we drop
the “phase factor” of −1) and then we know that during t1 we have to get from in-phase
Ha SQC to antiphase Ha SQC (i.e., selecting the sin(πJt1) term) so that we can move back
to I+a just after the first (preparation) pulse. The whole concept here is very different from
our analysis using Cartesian (Ix, Iy, etc.) operators: We ignore the phase factors that result
from evolution and we focus on the coherence order only, letting the gradients do the work
of choosing the pathway we desire. As an added bonus, we can just add up the superscripts
of the spherical operators at each step to obtain the coherence order: for example, I−a Iob has
p = −1 + 0 = −1. We are definitely focusing on the big picture here, and we have come
a long way from the laborious and meticulous analysis of vector rotations.

10.6.4 Quadrature Detection in F1 Using Gradients

In Chapter 9, we saw that phase sensitive 2D NMR requires that we change the phase
of the coherence observed in t1 (Fig. 9.47) using either the States technique (analogous
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Figure 10.36

to simultaneous sampling of real and imaginary channels in t2) or the TPPI method
(analogous to alternate sampling in t2). In either case, the phase of the t1 FID is changed by
changing the phase of the preparation pulse, the pulse just before the t1 delay, for each new
FID in the 2D acquisition. With the advent of coherence pathway selection by gradients, it
was discovered that the same phase shifting can be obtained by merely changing the sign
of the gradient that selects coherence order during t1. If we select positive coherence order
during t1 (Fig. 10.36, top, and solid lines), we have the so-called “echo” pathway: positive
coherence order during t1 and negative coherence order during t2. The term “echo” refers
to the reversal of sign of coherence order that occurs in the second half of a spin echo.
If we select negative coherence order during t1 (Fig. 10.36, center, and dotted lines),
we have the “antiecho” pathway: negative coherence order during both t1 and t2. The
method (“echo–antiecho”) is similar to the States method—for each t1 value, two FIDs are
acquired: one selecting the echo pathway (G1 = 1) and one selecting the antiecho pathway
(G1 = −1). The t1 delay is then incremented by 2 �t1 = 1/sw(F1) and the process is
repeated, acquiring two more FIDs.

The data are processed in a different way, combining the echo and antiecho FIDs for
each t1 value to regenerate the real and imaginary (cosine modulated and sine modulated)
FIDs. Then the data is processed just like States data. How this is done can be seen if we
examine the phase factors that result from evolution during t1

I+a → I+a Iobe−i�at1 sin(πJt1) echo
I−a → I−a Iobei�at1sin(πJt1) antiecho

The same phase factors attach themselves to the final spin state observed at the start of the
FID:

I−b I
o
ae

−i�at1 sin(πJt1) echo
I−b I

o
ae

i�at1 sin(πJt1) antiecho

Now consider the signal recorded during t2, ignoring the J-coupling evolution for simplicity:

E(t1, t2) = e−i�at1ei�bt2 echo FID
A(t1, t2) = ei�at1ei�bt2 antiecho FID
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The chemical-shift evolution during the FID is taken care of by the exponential term in
�b t2, with a positive exponential because it is the I−b that is evolving. In this complex
arithmetic, the real part corresponds to the real FID in t2 (Mx component in the rotating
frame) and the imaginary part is the imaginary FID in t2 (My component). We can substitute
sines and cosines for the imaginary exponentials as

E(t1, t2) = [cos(�at1) − i sin(�at1)][cos(�bt2) + i sin(�bt2)] echo FID
A(t1, t2) = [cos(�at1) + i sin(�at1)][cos(�bt2) + i sin(�bt2)] antiecho FID

Multiplying and substituting −1 for i2

Real part Imaginary part

E(t1, t2) = [cos cos′ + sin sin′] + i [cos sin′ − sin cos′] echo FID
A(t1, t2) = [cos cos′ − sin sin′] + i [cos sin′ + sin cos′] antiecho FID

where sin and cos have the argument �at1 and sin′ and cos′ have the argument �bt2. Now
we combine the data from these two FIDs, swapping around the real and imaginary FIDs
that are stored in the computer:

Real part Imaginary part

R(t1, t2) = [−Im(A) − Im(E)] + i [Re(A) + Re(E)] real FID
I(t1, t2) = [Re(A) − Re(E)] + i [Im(A) − Im(E)] imaginary FID

where Im(A) is the imaginary part of the antiecho FID, Re(E) is the real part of the echo
FID, and so on. Plugging in the real and imaginary parts from the echo and antiecho FIDs
above

Real part Imaginary part

R(t1, t2) = [−cos(�at1) sin(�bt2)] + i [cos(�at1) cos(�bt2)] real FID
= [−sin(�bt2) + i cos(�bt2)] × cos(�at1)

I(t1, t2) = [−sin(�at1) sin(�bt2)] + i [sin(�at1) cos(�bt2)] imaginary FID
= [−sin(�bt2) + i cos(�bt2)] × sin(�at1)

Now we have exactly the same kind of data we have with States mode acquisition: cosine
modulation in t1 for the real FID and sine modulation in t1 for the imaginary FID. In t2 we
can equate Mx with the real part and My with the imaginary part, so that in each case we
have Mx = −sin(�bt2) and My = cos(�bt2). This represents a vector starting on the y′ axis
at t2 = 0 and rotating counter clockwise (positive offset �) at the rate of �b rad s−1. Once
these rearrangements have been made in the computer, the data is processed just like States
data, with a complex Fourier transform in t1.

10.6.5 Disadvantages of Phase Cycling Compared to Gradient Selection

Phase cycling operates by acquiring both the desired signals and the artifact signals in the
FID. Then by accumulating a number of FIDs in the sum-to-memory of the spectrometer,
the desired signals add together and the artifact signals subtract and cancel. Gradients
destroy the artifacts by twisting their coherences spatially in the NMR sample. These artifact
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coherences never reach the receiver because their vector sum is zero at the probe coil. This
accounts for the fundamental advantage of gradient pathway selection: it does not depend on
mathematical subtraction of signals that have already been digitized; the subtraction occurs
in the NMR sample. Thus phase cycling as a method suffers from a number of drawbacks:

1. Many Scans are Required for Each FID. To apply an N-fold mask at each crucial
pulse (P1, P2, P3, . . . ) in the sequence requires a phase cycle of N1 × N2 × N3 × · · ·
scans to completely cancel the blocked pathways. If the sample concentration is low,
you might need 32 or 64 scans per FID in a 2D experiment just to get enough signal-
to-noise ratio. In that case, a long phase cycle is not a disadvantage. But if you have a
high sample concentration, as is often the case in small-molecule NMR, a single scan
per FID might give you sufficient signal-to-noise in a 2D experiment. In that case,
every additional scan required by the phase cycle will greatly increase the experiment
time. For example, a 16 scan phase cycle will multiply the experiment time by 16 for
a concentrated sample, making an 8 min experiment (with gradient selection) into a
more than 2 h acquisition. This is the area where gradients give the most dramatic
advantages: in time savings for 2D experiments on concentrated samples (10 mg or
more of an organic molecule).

2. The Receiver Gain Must be Reduced to Avoid ADC Overflow From Artifact Signals.
In many cases, the artifact signals are many times more intense than the desired
signals. The large artifact signal would overflow the ADC if we set the receiver gain
to be appropriate for the desired signal, so we have to reduce the gain by a large factor
to make the FID “fit” in the input of the ADC. Since some of the noise observed in
the digitized FID originates in the later stages of amplification, this means we are
adding a smaller (less amplified) signal to this noise and therefore our signal-to-noise
ratio is reduced as we decrease the receiver gain. Amplification is good! We do not
want to turn it down, but we have to because of these large artifact signals. In a
gradient-selected experiment, the artifacts never appear in the FID signal and the
receiver gain can be dramatically increased, leading to higher sensitivity.

3. Dynamic Range Problems. Dynamic range is the complete range of signal intensities
that can be observed in an NMR spectrum. The largest signal will almost fill the ADC
if the receiver gain is adjusted properly, and the smallest detectable signal is then
limited by the accuracy (number of bits) of the ADC, since no signal smaller than a
single bit can be digitized. If the artifact signal is 100 times larger than the desired
signal, then we are wasting 6.6 (26.6 = 100) bits of our 16-bit ADC digitizing a signal
that will simply be canceled out in the sum-to-memory by the phase cycle. Now the
smallest signal that can be digitized is only 328 times smaller than the largest desired
signal, rather than 32,768 times smaller. In a gradient-selected experiment, the entire
16 bits of the digitizer are used to measure the desired signal, since the artifact never
appears in the receiver.

4. Subtraction Artifacts. Any time you cancel an artifact signal by subtraction, you are
assuming that the signal is exactly the same with each scan so that perfect cancella-
tion will occur. If the frequency (chemical-shift position) of the signal changes very
slightly, subtraction will lead to a large “dispersive” artifact because the negative
(subtracted) peak is offset slightly to the left or right of the positive peak. If the in-
tensity is not exactly equal, there will be a residual positive or negative peak. Many
things can change slightly in a spectrometer from one scan to the next: temperature
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may be varying slightly; pulse frequency, intensity, or phase may not be perfectly
reproducible; and vibration from air flow, building equipment, trains, and so on may
reach the probe. Spinning of the sample is also a source of irreproducibility—for this
reason, most experiments with a critical phase cycle are run without sample spinning.
In a gradient experiment there is no subtraction of two or more separate measurements
so none of these sources of irreproducibility can lead to artifacts.

10.6.6 Disadvantages of Gradient Selection

You might think that gradients are an endlessly beneficial technology, but in fact there are
a few minor disadvantages of gradient coherence pathway selection:

1. Cost of Gradient Controllers, Amplifiers and Probes. Gradient technology is not in-
expensive, and is simply not available on older NMR spectrometers. The hardware re-
quired consists of a gradient controller (digital timing control plus signal generation),
a gradient amplifier (very stable source of large currents that can be accurately con-
trolled) and a gradient probe that has gradient coils surrounding the active volume of
the sample. The currents produced by the gradient amplifier run through these coils
and produce the magnetic fields that add a gradient to the Bo field. In spite of this
additional cost, the advantages of gradients are so powerful even for routine work that
nearly all new NMR spectrometers are now purchased with gradient capability.

2. Diffusion. The primary assumption of the gradient approach to pathway selection is
that a spin will be in the same physical location in the sample tube throughout the
pulse sequence. Each spin receives a position-dependent phase shift with each gradient
pulse, and if the spin changes its position it will not receive the correct “unwinding”
Bo field in the last gradient. The distance between positive and negative phase in the
“twisted coherence” can be on the order of microns (1 �m = 10−6 m, smaller than
a typical eukaryotic cell) so that diffusion will occur, especially for small molecules,
and will lead to a reduced signal. This can be put to use to distinguish small molecule
signals from large molecule signals, but in general it means that there will be some
loss of sensitivity. If you look closely at gradient-selected pulse sequences, you will
see that there is an attempt to place gradients as close to each other in time as possible
to minimize the distance traveled as a result of molecular diffusion in solution.

3. Sensitivity Loss Due to T2 Relaxation. A typical gradient requires about 1 ms of time,
usually followed by 200 �s of recovery time to allow the field homogeneity to be
reestablished. Unless the gradient can be placed in a fixed delay period (e.g., 1/(4J )
in an INEPT), a spin echo will be required to refocus any evolution that occurs during
the gradient, doubling the total time required for a gradient. For small molecules an
additional delay of 2.5 ms per gradient does not lead to a large signal loss since T2 is
relatively long. For large biological molecules (proteins and nucleic acids), however,
or for paramagnetic molecules, the T2 values can be quite short and the extra delays
may be intolerable because of the drastic loss of signal. In these special cases it may be
necessary to use the old phase-cycled experiments or to use shorter, stronger gradient
pulses without refocusing delays.

4. Loss of Sensitivity Due to Overselectivity. Gradient selection means that only a single
coherence level can be present at the time of each gradient. With phase cycling we
apply a mask with “holes” at regular intervals, so that more than one coherence level
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can be permitted. For example, in the DQF-COSY experiment with phase cycling
we can have double-quantum coherence between the second and third pulses with
coherence order +2 or −2. Both pathways are preserved and add together in the sum-
to-memory since the mask (N = 4) used in the final pulse allows both �p = −3 and
�p = +1. With gradient selection, we can allow p = 2 during the DQ filter or we can
allow p = −2, but we cannot permit both pathways. Thus there is a loss of sensitivity
in the gradient-selected experiment corresponding to a factor of

√
2.

10.7 THE DENSITY MATRIX REPRESENTATION OF SPIN STATES

The density matrix is based on the description of all NMR spin states as linear combinations
or superpositions of the basic spin states or energy levels. For a system of identical spins,
there are only two spin states: α and β. At equilibrium, there is a slight excess of population
in the lower energy (α) state and a slightly depleted population in the higher energy (β)
state. This can be represented as a 2 × 2 matrix with the diagonal elements corresponding
to the populations of the α and β states:

α β

σeq =
[

(N/2)(1 + ε) 0
0 (N/2)(1 − ε)

]
α

β

where N is the total number of identical spins and ε (<<1) is a very small dimensionless
number. This equilibrium state is broken down into two parts: the equal populations that
play no role in NMR (identity matrix) and the population differences. The identity matrix
and the factor Nε/2 will be ignored from now on since they will be the same in all spin
states.

σeq = N/2

[[
1 0
0 1

]
+ ε

[
1 0
0 -1

]]

The effect of a radio frequency pulse is to “mix” the α and β states so that a superposition
of states is obtained:

� = c1α + c2β “wave function”

For a single spin, the probability of finding it in a given “pure” energy state is found by
multiplying the coefficient of that state by its complex conjugate: the probability of finding
the spin in the α state is thus c1·c∗

1, and the probability that the spin will be in the β state
is c2·c∗

2. Since a spin can only be in either the α or the β state, the sum of these two
probabilities (c1·c∗

1 + c2·c∗
2) is 1 (a certainty that it will be in one state or the other). When

these probabilities are averaged over the entire population of spins we have the populations
of the α and β states. The “cross products” c1·c∗

2 and c2·c∗
1 represent the amount of mixing

or superposition of the α and β states. When these are averaged over the entire population
of spins we have the single-quantum coherence of the sample, which is the measurable
magnetization that we represent as a vector in the x′–y′ plane in the vector model. The state
of the entire system can be described by the averages of these four products over the whole
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sample, and these are conveniently represented as a matrix:

α β

σ =
[

(c1c
∗
1)av (c1c

∗
2)av

(c2c
∗
1)av (c2c

∗
2)av

]
α

β

The diagonal terms will always be real numbers, and the α → β term ((c1c∗
2)av) will always

be the complex conjugate of the β → α term ((c2c∗
1)av). Now we can show the density

matrix representations of the three single-spin product operators:

Ix = 1
2

[
0 1
1 0

]
Iy = 1

2

[
0 -i
i 0

]
Iz = 1

2

[
1 0
0 -1

]

In all cases, the identity matrix and the factors N/2 and ε have been omitted for simplicity.
Note that the distinction between the x′ and y′ axes is made by using real and imaginary
numbers for the off-diagonal terms. This is similar to the use of “real” and “imaginary” to
represent the two parts of the FID signal (Mx and My ) in the NMR spectrometer. A pulse
can be represented by a matrix as well, so that the effect of any pulse can be calculated by
“simple” matrix multiplication. For a general pulse of pulse angle �, the rotation matrices
are

Rx(�) =
[

cos(�/2) isin(�/2)
isin(�/2) cos(�/2)

]
Ry(�) =

[
cos(�/2) sin(�/2)

−sin(�/2) cos(�/2)

]

For the 90◦ pulses this becomes

Rx(90◦) = 1√
2

[
1 i

i 1

]
Ry(90◦) = 1√

2

[
1 1

-1 1

]

And for the 180◦ pulses

Rx(180◦) =
[

0 i

i 0

]
Ry(180◦) =

[
0 1

-1 0

]

For example, starting from equilibrium (Iz), the effect of a 90◦ pulse on the y axis is

σ = (R90
y )

−1
σeq R90

y = 1√
2

[
1 -1
1 1

]
× 1

2

[
1 0
0 -1

]
× 1√

2

[
1 1

-1 1

]

σ = (R90
y )

−1
σeq R90

y = 1√
2

[
1 -1
1 1

]

A

× 1
2
√

2

[
1 1
1 -1

]

B

= 1
4

[
0 2
2 0

]

C

= 1
2

[
0 1
1 0

]
=Ix

The pulse is applied mathematically by multiplying the spin state matrix σ by the rotation
matrix R and then multiplying this result by the inverse matrix R−1 (the product R−1 R
is the identity matrix 1). For rotation (pulse) operators, the inverse matrix is simply the
rotation in the opposite direction (�′ = −�). Note that the final result is the same as the
representation of the product operator Ix given above.

Matrix multiplication involves forming a sum of products of matrix elements. For ex-
ample, in the final multiplication above, the upper right-hand element of the product matrix
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(C) is formed from the sum (1 × 1 + (−1)×(−1)) = 2. The first 1 and −1 came from the
first row of the left-hand matrix (A) and the second 1 and −1 came from the second column
of the second matrix (B). The 2 was then factored out of the entire product matrix to change
the 1/4 to a 1/2. In general, the element in the ith row and the jth column of the product
matrix is formed from the ith row of the first matrix and the jth column of the second matrix
by forming a sum of products of elements: ai1b1j + ai2b2j + · · · + ainbnj , where ai1 is the
first element in the ith row of the first matrix and b1j is the first element in the jth column
of the second matrix. Matrix multiplication does not generally give the same result if the
order of the two matrices being multiplied is reversed; for this reason the order is important.
The identity matrix (1) is a square n × n matrix with a 1 for each diagonal element 1ii and
a zero for each off-diagonal element 1ij (i = j).

What is the effect of a time delay on the density matrix? Each off-diagonal element gets
multiplied by a phase factor that depends on the length of time of the delay and the energy
difference between the two energy levels that are connected by that transition:

phase factor = eiωt, where ω = 2πνo

The exponent of an imaginary number is a shorthand for two trigonometric functions:

eiωt = cos ωt + isin ωt

Note that ω is just the Larmor frequency and, because real numbers are associated with
the x axis and imaginary numbers with the y axis, time evolution is simply rotation in the
x–y plane at the offset frequency. For double-quantum transitions, ω = ωI + ωS, and for
zero-quantum transitions ω = ωI − ωS. For example, a 90◦ pulse on the y′ axis followed
by a delay τ would give

1
2

[
1 0
0 -1

]
90◦

y→ 1
2

[
0 1
1 0

]
τ delay→ 1

2

[
0 e−iωτ

eiωτ 0

]

Matrix elements above the diagonal get the phase factor e−iωt because their energy difference
is opposite in sign (downward transition). The factor eiωt is 1, i, −1, −i, and 1 for ωτ = 0,
π/2, π, 3π/2, and 2π. It can be represented as a vector in the complex plane of unit length
rotating with angular velocity ω. The phase factor e−iωt rotates in the opposite direction with
values of 1, −i, −1, i, and 1 for ωτ = 0, π/2, π, 3π/2, and 2π. Thus the final matrix would be

ωt = 0 π/2 π 3π/2
1
2

[
0 1
1 0

]
→ 1

2

[
0 -i
i 0

]
→ 1

2

[
0 -1

-1 0

]
→ 1

2

[
0 i

-i 0

]

Ix Iy -Ix -Iy

depending on the value of ωτ. Note that these matrices correspond to the product operators
Ix , Iy , −Ix , and −Iy , which is the expected progression for chemical-shift evolution. If you
focus on the numbers at the lower left of each matrix you can “read” the product operators
if you associate 1 with x and i with y. This is a lot of work to carry out the equivalent of

Iz
90◦

y→ Ix
(τ=π/(2ω))→ Iy, but properly programed computers just love this sort of thing and

have no trouble keeping track of it all.
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For a two-spin system (e.g., 13C–1H, 13C = S, and 1H = I) each pair of spins can be
represented by a superposition of the four “pure” states αIαS, αIβS, βIαS, and βIβS. In the
heteronuclear case the energy difference for the S transitions (αIαS → αIβS and βIαS →
βIβS) will be different from the energy difference for the I transitions (αIαS → βIαS and
αIβS → βIβS). The wave function for one spin pair is thus

� = c1 αIαS + c2 αIβS + c3 βIαS + c4 βIβS

and the probabilities and coherences can be represented by a 4 × 4 matrix:

�⊗�∗ =

αIαS αIβS βIαS βIβS

αIαS
αIβS
βIαS
βIβS

⎡
⎢⎢⎣

c1c
∗
1 c1c

∗
2 c1c

∗
3 c1c

∗
4

c2c
∗
1 c2c

∗
2 c2c

∗
3 c2c

∗
4

c3c
∗
1 c3c

∗
2 c3c

∗
3 c3c

∗
4

c4c
∗
1 c4c

∗
2 c4c

∗
3 c4c

∗
4

⎤
⎥⎥⎦

If the average is taken over all of the spin pairs in the sample for each term in the matrix, we
have the density matrix σ that describes the state of the whole system. The superpositions
(or coherences) between states can be described as follows:

αIαS αIβS βIαS βIβS

αIαS
αIβS
βIαS
βIβS

⎡
⎢⎣

N(αα) SQ∗(S1) SQ∗(I1) DQ∗
SQ(S1) N(αβ) ZQ∗ SQ∗(I2)
SQ(I1) ZQ N(βα) SQ∗(S2)
DQ SQ(I2) SQ(S2) N(ββ)

⎤
⎥⎦

where N represents the population of an energy state, SQ represents single-quantum (observ-
able) coherence, DQ represent double-quantum coherence, and ZQ represents zero-quantum
coherence. For example, SQ*(I2) is the complex conjugate of the coherence for the αIβS
↔ βIβS transition, with spin I changing state and spin S remaining in the β state. The
spectrum (observable SQ transitions only) consists of four lines (two doublets): I1, I2, S1,
and S2.

For a 13C–1H system at equilibrium, we have

σeq =

⎡
⎢⎣

(N/4)(1 + 5ε) 0 0 0
0 (N/4)(1 + 3ε) 0 0
0 0 (N/4)(1 − 3ε) 0
0 0 0 (N/4)(1 − 5ε)

⎤
⎥⎦

corresponding to the energy diagram shown in Figure 10.37 (units of radians/s). For I = 1H
and S = 13C, the energy separation for the 1H transitions is about four times as large as the en-
ergy separation for the 13C transitions. As before, we factor out the N/4, separate out the iden-
tity matrix, and factor out the ε. Omitting the identity matrix and the Nε/4 factor, this gives

σeq = 1
2

⎡
⎢⎣

5 0 0 0
0 3 0 0
0 0 -3 0
0 0 0 -5

⎤
⎥⎦
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Figure 10.37

Note that the population differences across the I (1H) transitions are 4 (0.5[5 − (−3)] and
0.5[3 − (−5)]) and the differences across the S (13C) transitions are 1 (0.5[5 − 3] and
0.5[−3 − (−5)]). For a homonuclear system (e.g., 1Ha, 1Hb) the populations (diagonal
elements) would be 2, 0, 0, and −2.

The density matrix representations of the 16 product operators for a heteronuclear two-
spin system are given below.

Iz = 1
2

⎡
⎢⎣

4 0 0 0
0 4 0 0
0 0 -4 0
0 0 0 -4

⎤
⎥⎦ Sz = 1

2

⎡
⎢⎣

1 0 0 0
0 -1 0 0
0 0 1 0
0 0 0 -1

⎤
⎥⎦

The factor of 4 corresponds to the (nearly) four times greater population difference for 1H
compared to 13C, which is a direct result of the (nearly) four times larger magnetogyric
ratio of 1H. Note that the equilibrium state for this two-spin system is σeq = Iz + Sz, so
that the sum of the two matrices above equals the matrix σeq.

In-phase single-quantum coherence (SQC) is represented by nonzero values for the
matrix elements that correspond to the single-quantum transitions. For example, I spin (1H)
SQC corresponds to a superposition of the αIαS and βIαS states (row 1 and column 3), and
the αIβS and βIβS states (row 2 and column 4). Real numbers are used for magnetization
on the x′ axis, and imaginary numbers are used for magnetization on the y′ axis. Notice that
the “downward” transition βIαS → αIαS has a matrix element that is the complex conjugate
of the “upward” transition αIαS → βIαS.

1
2

⎡
⎢⎣

0 0 4 0
0 0 0 4
4 0 0 0
0 4 0 0

⎤
⎥⎦

Ix

1
2

⎡
⎢⎣

0 0 -4i 0
0 0 0 -4i

4i 0 0 0
0 4i 0 0

⎤
⎥⎦

Iy

1
2

⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦

Sx

1
2

⎡
⎢⎣

0 -i 0 0
i 0 0 0
0 0 0 -i
0 0 i 0

⎤
⎥⎦

Sy

1
2

⎡
⎢⎣

0 0 4 0
0 0 0 -4
4 0 0 0
0 -4 0 0

⎤
⎥⎦

2IxSz

1
2

⎡
⎢⎣

0 0 -4i 0
0 0 0 4i

4i 0 0 0
0 -4i 0 0

⎤
⎥⎦

2IySz

1
2

⎡
⎢⎣

0 4 0 0
4 0 0 0
0 0 0 -4
0 0 -4 0

⎤
⎥⎦

2SxIz

1
2

⎡
⎢⎣

0 -4i 0 0
4i 0 0 0
0 0 0 4i

0 0 -4i 0

⎤
⎥⎦

2SyIz

Notice that the antiphase density matrix differs from the in-phase representation only in that
the sign of the two transitions (e.g., I1 (αIαS → βIαS) and I2 (αIβS → βIβS) for the 1H or
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I transitions) is opposite. That is the same as saying that the I transition α → β (S = α) is
180◦ out of phase with the I transition α → β (S = β). You can “read” the coherences if you
focus on the terms below the diagonal. These matrices are in fact the matrix multiplication
products of their individual components; for example, 2IxSz is just twice the matrix product
of the Ix and Sz matrices.

The products of the x and y operators give the following four matrices:

1
2

⎡
⎢⎣

0 0 0 4
0 0 4 0
0 4 0 0
4 0 0 0

⎤
⎥⎦

2IxSx

1
2

⎡
⎢⎣

0 0 0 -4
0 0 4 0
0 4 0 0

-4 0 0 0

⎤
⎥⎦

2IySy

1
2

⎡
⎢⎣

0 0 0 -4i

0 0 4i 0
0 -4i 0 0
4i 0 0 0

⎤
⎥⎦

2IxSy

1
2

⎡
⎢⎣

0 0 0 -4i

0 0 -4i 0
0 4i 0 0
4i 0 0 0

⎤
⎥⎦

2IySx

Clearly all four of these matrices represent linear combinations of zero-quantum and double-
quantum coherences, since the “antidiagonal” terms near the center are ZQ terms and the
ones on the outside are DQ terms:

αIαS αIβS βIαS βIβS

αIαS
αIβS
βIαS
βIβS

⎡
⎢⎣

N(αα) SQ∗(S1) SQ∗(I1) DQ∗
SQ(S1) N(αβ) ZQ∗ SQ∗(I2)
SQ(I1) ZQ N(βα) SQ∗(S2)
DQ SQ(I2) SQ(S2) N(ββ)

⎤
⎥⎦

Appropriate linear combinations of the four matrices above can generate the pure ZQ and
DQ matrices:

1
2

⎡
⎢⎣

0 0 0 0
0 0 4 0
0 4 0 0
0 0 0 0

⎤
⎥⎦

1
2 (2IxSx + 2IySy)

{ZQ}x

1
2

⎡
⎢⎣

0 0 0 4
0 0 0 0
0 0 0 0
4 0 0 0

⎤
⎥⎦

1
2 (2IxSx − 2IySy)

{DQ}x

1
2

⎡
⎢⎣

0 0 0 0
0 0 -4i 0
0 4i 0 0
0 0 0 0

⎤
⎥⎦

1
2 (2IySx − 2IxSy)

{ZQ}y

1
2

⎡
⎢⎣

0 0 0 -4i

0 0 0 0
0 0 0 0
4i 0 0 0

⎤
⎥⎦

1
2 (2IySx + 2IxSy)

{DQ}y

The density matrix representation is actually simpler than the product operator formalism
for dealing with zero and multiple quantum coherences. Note that the type of multiple
quantum coherence can be “read” from the lower left elements of the “antidiagonal.”

The final two product operators are the longitudinal spin order operator (2IzSz) and the
identity operator (1):

1
2

⎡
⎢⎣

4 0 0 0
0 -4 0 0
0 0 -4 0
0 0 0 4

⎤
⎥⎦

2IzSz

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

1

By the way, all of the products commute, so the order is not important: 2IySy = 2SyIy . If
only one of the operators in a product is observable, it is always written first: 2SxIz .
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The rotation matrices corresponding to pulses are 4 × 4 matrices of the following form:

RI
x(�) =

⎡
⎢⎣

cos(�/2) 0 i sin(�/2) 0
0 cos(�/2) 0 i sin(�/2)

i sin(�/2) 0 cos(�/2) 0
0 i sin(�/2) 0 cos(�/2)

⎤
⎥⎦

This matrix corresponds to pulses that only affect the I spins (1H). Note that the i sin (�/2)
term appears for all of the I (1H) transitions and the cos (�/2) term appears for all of the
diagonal elements. The rotation matrix for S (13C) pulses has the i sin (�/2) terms in matrix
elements corresponding to the S (13C) transitions:

RS
x (�) =

⎡
⎢⎣

cos(�/2) i sin(�/2) 0 0
i sin(�/2) cos(�/2) 0 0

0 0 cos(�/2) i sin(�/2)
0 0 i sin(�/2) cos(�/2)

⎤
⎥⎦

The corresponding rotation matrices for pulses on the y axis are formed by simply replacing
the i sin (�/2) terms with sin (�/2) above the diagonal and −sin (�/2) below the diagonal.
A simultaneous pulse on both the I and S spins can be formed from the product of the
rotation matrices for the individual pulses:

RI,S
x (�) = RI

x(�)RS
x (�)

=

⎡
⎢⎣

cos(�/2) 0 i sin(�/2) 0
0 cos(�/2) 0 i sin(�/2)

i sin(�/2) 0 cos(�/2) 0
0 i sin(�/2) 0 cos(�/2)

⎤
⎥⎦

×

⎡
⎢⎣

cos(�/2) i sin(�/2) 0 0
i sin(�/2) cos(�/2) 0 0

0 0 cos(�/2) i sin(�/2)
0 0 i sin(�/2) cos(�/2)

⎤
⎥⎦

=

⎡
⎢⎣

cos2 isincos isincos -sin2

isincos cos2 -sin2 isincos
isincos -sin2 cos2 isincos
-sin2 isincos isincos cos2

⎤
⎥⎦

= 1
2

⎡
⎢⎣

1 i i -1
i 1 -1 i

i -1 1 i

-1 i i 1

⎤
⎥⎦

for

a

90◦
pulse
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where the argument of the sin and cos functions is �/2 in each case. Similarly for the y axis
rotation matrix for a pulse that affects both the I and S spins:

RI,S
y (�) = RI

y(�)RS
y (�)

=

⎡
⎢⎣

cos(�/2) 0 sin(�/2) 0
0 cos(�/2) 0 sin(�/2)

-sin(�/2) 0 cos(�/2) 0
0 -sin(�/2) 0 cos(�/2)

⎤
⎥⎦

×

⎡
⎢⎣

cos(�/2) sin(�/2) 0 0
-sin(�/2) cos(�/2) 0 0

0 0 cos(�/2) sin(�/2)
0 0 -sin(�/2) cos(�/2)

⎤
⎥⎦

=

⎡
⎢⎣

cos2 sincos sincos sin2

-sincos cos2 -sin2 sincos
-sincos -sin2 cos2 sincos

sin2 -sincos -sincos cos2

⎤
⎥⎦

= 1
2

⎡
⎢⎣

1 1 1 1
-1 1 -1 1
-1 -1 1 1
1 -1 -1 1

⎤
⎥⎦

for

a

90◦
pulse

A short example will illustrate the usefulness (and complexity) of density matrix notation.
Consider the INEPT sequence for a 13C–1H (S–I) spin system. The pulse sequence is simply

σeq
Iz+Sz

90◦
x(1H)→ σ1

−Iy+Sz

τ=1/(2JCH)→ σ2
2IxSz+Sz

90◦
y(1H,13C)→ σ3

4[−2SxIz]+Sx

(FID)

where σeq, σ1, σ2, and σ3 represent the spin state of the system at each stage of the pulse
sequence. The product operator notation is shown above for each spin state. First a 90◦
proton pulse on the x axis generates observable single-quantum I coherence:

σ1 = 1√
2

⎡
⎢⎣

1 0 -i 0
0 1 0 -i

-i 0 1 0
0 -i 0 1

⎤
⎥⎦

R
xH (90◦)−1

× 1
2

⎡
⎢⎣

5 0 0 0
0 3 0 0
0 0 -3 0
0 0 0 -5

⎤
⎥⎦

σeq

× 1√
2

⎡
⎢⎣

1 0 i 0
0 1 0 i

i 0 1 0
0 i 0 1

⎤
⎥⎦

R
xH (90◦)

= 1√
2

⎡
⎢⎣

1 0 -i 0
0 1 0 -i

-i 0 1 0
0 -i 0 1

⎤
⎥⎦

R
xH (90◦)−1

× 1
2
√

2

⎡
⎢⎣

5 0 5i 0
0 3 0 3i

-3i 0 -3 0
0 -5i 0 -5

⎤
⎥⎦

σeqR
xH (90◦)

= 1
2

⎡
⎢⎣

1 0 4i 0
0 -1 0 4i

-4i 0 1 0
0 -4i 0 -1

⎤
⎥⎦

σ1=−Iy+Sz
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The intermediate product of the last two matrices is shown to illustrate the matrix mul-
tiplication. Along the diagonal of the resultant matrix σ1 you can still see the carbon z
magnetization, but the proton z magnetization is gone (compare to Sz). The off-diagonal
elements correspond to in-phase proton magnetization on the −y axis (compare Iy).

To calculate the effect of the 1/(2J) delay we need to know the energy differences among
the four spin states αIαS, αIβS, βIαS, and βIβS so that the phase factors eiωt and e−iωt can
be applied to the off-diagonal elements of the density matrix. The frequencies for the αIαS
→ βIαS(1,3) and αIβS → βIβS (2,4) transitions differ only by the coupling constant 1JCH:

ω13 = ωI + πJ ω24 = ωI − πJ

and the phase factors are ei(ωI+πJ)τ for the (1,3) transition and ei(ωI−πJ)τ for the (2,4)
transition (Fig. 10.37). With a delay of τ = 1/(2J) and for an on-resonance peak (ωI = 0),
these factors become eiπ/2 and e−iπ/2 or simply i and −i, respectively. The elements above
the diagonal have phase factors of e−i(ωI+πJ)τ for the (1,3) transition and e−i(ωI−πJ)τ for
the (2,4) transition, which become e−iπ/2 and eiπ/2 or simply −i and i. Thus the density
matrix becomes:

σ2 = 1
2

⎡
⎢⎣

1 0 4i(-i) 0
0 -1 0 4i(i)

-4i(i) 0 1 0
0 -4i(-i) 0 -1

⎤
⎥⎦ = 1

2

⎡
⎢⎣

1 0 4 0
0 -1 0 -4
4 0 1 0
0 -4 0 -1

⎤
⎥⎦

2IxSz+Sz

Note that the populations are unchanged (we are neglecting relaxation) and the proton
magnetization, which was in-phase on the −y′ axis before the delay, is now antiphase on
the x′ axis.

Finally, a 90◦ pulse on the y′ axis is applied simultaneously to both 1H and 13C:

σ3 = 1
2

⎡
⎢⎣

1 -1 -1 1
1 1 -1 -1
1 -1 1 -1
1 1 1 1

⎤
⎥⎦

R
yH,C (90◦)−1

× 1
2

⎡
⎢⎣

1 0 4 0
0 -1 0 -4
4 0 1 0
0 -4 0 -1

⎤
⎥⎦

σ2

× 1
2

⎡
⎢⎣

1 1 1 1
-1 1 -1 1
-1 -1 1 1
1 -1 -1 1

⎤
⎥⎦

R
yH,C (90◦)

= 1
2

⎡
⎢⎣

1 -1 -1 1
1 1 -1 -1
1 -1 1 -1
1 1 1 1

⎤
⎥⎦

R
yH,C (90◦)−1

× 1
4

⎡
⎢⎣

-3 -3 5 5
-3 3 5 -5
3 3 5 5
3 -3 5 -5

⎤
⎥⎦

σ2R
yH,C (90◦)

= 1
2

⎡
⎢⎣

0 -3 0 0
-3 0 0 0
0 0 0 5
0 0 5 0

⎤
⎥⎦

σ3=4[−2SxIz]+Sx

The resulting matrix, σ3, has single quantum (observable) S (13C) coherence (x axis) with
relative peak heights of −3 and +5 for the two components of the doublet. Compare this
to the result of a single 13C 90◦ pulse on the equilibrium matrix:

σ′ = 1√
2

⎡
⎢⎣

1 -1 0 0
1 1 0 0
0 0 1 -1
0 0 1 1

⎤
⎥⎦

R
yC (90◦)-1

× 1
2

⎡
⎢⎣

5 0 0 0
0 3 0 0
0 0 -3 0
0 0 0 -5

⎤
⎥⎦

σeq

× 1√
2

⎡
⎢⎣

1 1 0 0
-1 1 0 0
0 0 1 1
0 0 -1 1

⎤
⎥⎦

R
yC (90◦)

= 1
2

⎡
⎢⎣

4 1 0 0
1 4 0 0
0 0 -4 1
0 0 1 -4

⎤
⎥⎦

σ′ = Iz+Sx



478 ADVANCED NMR THEORY: NOESY AND DQF-COSY

In this case the result is also single-quantum (observable) S (13C) magnetization on the x axis,
but the intensity is lower because the magnetization came only from the 13C z magnetization
of the equilibrium state. Note that the 1H z magnetization (population differences between
the αIαS and βIαS states, 1–3, and between the αIβS and βIβS states, 2–4) still remains along
the diagonal of the density matrix σ′. The INEPT sequence has no z magnetization left in the
final density matrix σ3, as shown by the zero values on the diagonal. The final 90◦ pulse
of the INEPT sequence converts not only the 1H antiphase magnetization to 13C antiphase
magnetization but also the 13C z magnetization to in-phase observable 13C magnetization:

1
2

⎡
⎢⎣

0 -3 0 0
-3 0 0 0
0 0 0 5
0 0 5 0

⎤
⎥⎦

σ3

= 1
2

⎡
⎢⎣

0 -4 0 0
-4 0 0 0
0 0 0 4
0 0 4 1

⎤
⎥⎦

4[−2SxIz]

+ 1
2

⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎦

Sx

The resulting density matrix σ3 is just the sum of the enhanced (by a factor of 4) and
antiphase 13C single quantum coherence and the normal in-phase 13C SQC.

10.8 THE HAMILTONIAN MATRIX: STRONG COUPLING AND IDEAL
ISOTROPIC (TOCSY) MIXING

I have done everything I can to avoid using the “H word,” but now that we have learned
how to represent product operators in a matrix form it is a short step to working with
the Hamiltonian. The Hamiltonian is a representation of the environment the spins find
themselves in—it contains the energies of all of the interactions of spins with the Bo field,
the B1 field, and with each other.

The symbols we have been using to represent spin states (Ix , Sy , 2IySz , etc.) of the entire
ensemble of spins are actually operators: they can “operate” on a spin state (of a single spin
pair in our Ha, Hb system) and spit out another spin state. We already saw this with the
raising and lowering operators:

I+|α > → |β > I−|β > → |α >

The raising operator I+, acting as an operator, raises the α state of a single spin to the β

state. All of these operators can be represented as matrices. In the case of the homonuclear
two-spin system (Ha and Hb), these are 4 × 4 matrices. For example, the raising operator
I+a can be represented by the following matrix, which acts on the “vector” that describes
the αα state to give a new vector that describes the βα state:

⎡
⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎦×

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ =

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦

αα

βα

αβ

ββ

These vectors are just a column of numbers representing the coefficients of the four pure
spin states: c1, c2, c3 and c4. They do not describe the whole ensemble of spins, just one
Ha − Hb pair.
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The Hamiltonian is an operator that represents the energies of all of the interactions in
the system. In quantum mechanics, the classical energy terms are replaced by the analo-
gous operators to generate the Hamiltonian. For NMR, the classical energy can be written
as

E/� = [−γ(Bo · Ia) − γ(Bo · Ib)] + J[Ia · Ib] (in units of Hz)

Where Bo is a vector representing the external magnetic field, J is the coupling constant,
Ia and Ib are the vectors representing the nuclear magnets of Ha and Hb and the products
are vector dot products. The first part represents the energy of interaction of the spins
with the Bo field and the second part represents the energy of interaction of the spins with
each other. Since the Bo vector has only a z component, we can write the vector products
as

E/� = [−γBoI
a
z − γBoI

b
z ] + J[Ia

xI
b
x + Ia

yI
b
y + Ia

z I
b
z ]

where Bo is now just the magnitude of the Bo vector. Only the z component of the nu-
clear magnet contributes to its interaction with the Bo field. Now we replace the classical
components Ix , Iy , and Iz of the nuclear magnet’s vector with the corresponding quantum
mechanical operators:

H = [−νaI
a
z − νbI

b
z] + J[IaxI

b
x + IayIby + IazIbz] = Hz + HJ

Here we also account for the slightly different Beff fields experienced by Ha and Hb lead-
ing to their individual Larmor frequencies νa and νb. The first part, called the Zeeman
Hamiltonian, again represents the interaction of the spins with the Bo field. The second
part, called the scalar coupling Hamiltonian, represents the energy of interaction of Ha
with Hb, independent of the Bo field. The J-coupling interaction is isotropic: it happens
in all possible directions of space depending on the relative orientation of the two nuclear
magnets.

There are many other terms to the Hamiltonian but for spin-1/2 nuclei in liquids they
can all be ignored. The dipole–dipole (dipolar or direct coupling) Hamiltonian is important
in solids and partially oriented liquids, and the quadrupolar Hamiltonian is important for
spins greater than 1/2. The dipolar interaction contains a multiplier of

(3cos2� − 1)

where � is the angle between the Ha − Hb vector and the Bo field (z axis). This factor
averages to zero for random isotropic (equal in all directions in space) molecular tumbling,
and if the motion is rapid the dipolar term can be ignored. This is what defines NMR in
liquids: rapid isotopic reorientation of the molecules.

From our study of product operators and the density matrix we know what these operators
Ix, Iy and Iz do and we know how to represent them in matrix form. So we can write out
the Hamiltonian matrix for the Ha, Hb system:

Hz = −νa/2

⎡
⎢⎣

1 0 0 0
0 -1 0 0
0 0 1 0
0 0 0 -1

⎤
⎥⎦− νb/2

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

⎤
⎥⎦
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= 1
2

⎡
⎢⎣

-νa-νb 0 0 0
0 νa-νb 0 0
0 0 -νa + νb 0
0 0 0 νa + νb

⎤
⎥⎦

HJ = J/4

⎡
⎢⎣

⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦

⎡
⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎦ +

⎡
⎢⎣

0 -i 0 0
i 0 0 0
0 0 0 -i
0 0 i 0

⎤
⎥⎦

⎡
⎢⎣

0 0 -i 0
0 0 0 -i
i 0 0 0
0 i 0 0

⎤
⎥⎦

+

⎡
⎢⎣

1 0 0 0
0 -1 0 0
0 0 1 0
0 0 0 -1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

⎤
⎥⎦

⎤
⎥⎦

HJ = J/4

⎡
⎢⎣

⎡
⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎦ +

⎡
⎢⎣

0 0 0 -1
0 0 1 0
0 1 0 0

-1 0 0 0

⎤
⎥⎦ +

⎡
⎢⎣

1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 1

⎤
⎥⎦

⎤
⎥⎦

= J/4

⎡
⎢⎣

1 0 0 0
0 -1 2 0
0 2 -1 0
0 0 0 1

⎤
⎥⎦

Note that the only off-diagonal terms of HJ are the H32 and H23 terms (both equal to 2)
that come from the IaxI

b
x and IayI

b
y parts.

Combining the Zeeman and scalar coupling Hamiltonians,

Hz+HJ =1/2

⎡
⎢⎣

-νa-νb+J/2 0 0 0
0 νa-νb-J/2 J 0
0 J -νa + νb-J/2 0
0 0 0 νa + νb + J/2

⎤
⎥⎦

αα

βα

αβ

ββ

The diagonal terms are just twice the energies of the four spin states αα (top), βα, αβ and
ββ (bottom) given in hertz. Here we are using the convention that aligned pairs of spins (αα

and ββ) are higher in energy, meaning that the “β” components of doublets are downfield
of the “α” components. Up till now in this book we have used the opposite convention,
effectively assuming that the J value is negative. We will drop the 1/2 factor for simplicity,
and bring it back when we need to calculate energies.

To find the stationary states (“eigenfunctions”) and the energies (“eigenvalues”) of the
Hamiltonian we need to solve the Schrödinger equation:

H� = E�

This would be easy except for the off-diagonal terms. If the chemical-shift difference in
hertz, �ν = νb − νa, is much larger than the coupling constant J, we can ignore the
off-diagonal terms because they are very small compared to the diagonal terms. Then the
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energies are just the diagonal terms and the stationary states are just the αα, βα, αβ and ββ

states. This “weak coupling” assumption is what we have been working under for most of
this book:

�ν(in Hz) > >J “weak coupling”

10.8.1 Strong Coupling: The AB System

We saw in Chapter 2 that when the chemical-shift difference in Hz, �ν, decreases and
approaches the order of magnitude of J we get distortions of the peak heights (“leaning”)
and of the line positions. We are now in a position to derive this effect precisely for the AB
system (Ha, Hb). The H11 and H44 terms of the Hamiltonian are enormous compared to the
central portion of the matrix: for a 600-MHz spectrometer νa + νb is around 1200 MHz!
So we can assume that these diagonal terms are the correct energies and that the αα and
ββ states are true stationary states. We only need to look at the central 2 × 2 matrix in the
Schrödinger equation:

[
-�ν-J/2 J

J �ν-J/2

] [
c2
c3

]
= E

[
c2
c3

]

where c2 and c3 are the coefficients of the βα and αβ states, respectively, in the wave
function �, with c1 = c4 = 0. This can be written differently if we express E as a matrix
(the identity matrix 1 times the number E):

[
-�ν-J/2 J

J �ν-J/2

] [
c2
c3

]
=

[
E 0
0 E

] [
c2
c3

]

Then we subtract the right side of the equation from both sides to get

[
-�ν-J/2-E J

J �ν-J/2-E

] [
c2
c3

]
= 0

This is just a pair of simultaneous linear equations. To solve for E we set the determinant
(product of diagonal terms minus product of antidiagonal terms) to zero:

(−�ν − J/2 − E)(�ν − J/2 − E) − J2 = 0

E2 + JE + (−�ν2 − J2 + J2/4) = 0; E2 + JE + (−�ν2 − 3J2/4) = 0

The solution to this quadratic equation in E is

E = −J/2 ±
√

�ν2 + J2 = −J/2 ± �ν′

We can visualize �ν′ as the hypotenuse of a right triangle with sides equal to J and �ν

(Fig. 10.38, left). If �ν > J (weak coupling limit), �ν′ becomes nearly equal to �ν and
the energies are just the diagonal elements H22 and H33 of the Hamiltonian. If �ν = 0,
we have �ν′ = J and the two energies are +J/2 and −3J/2. The line positions are just
the transition frequencies or the energy differences between the pairs of energy levels
involved in the transition, so we can diagram the effect of strong coupling on the spectrum
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Figure 10.38

(Fig. 10.38, right). The doublets retain their separation of J Hz but they move apart from
the positions we would expect based on the weak coupling assumption. �ν′ is the distance
between lines 1 and 3 (or between lines 2 and 4). �ν′ can be viewed as the hypotenuse of a
right triangle with sides of length �ν and J, and the angle 2� opposite J. As �ν decreases
relative to J, �ν′ approaches J and 2� approaches 90◦. In the extreme case of �ν = 0, �ν′
= J and the two central lines (lines 2 and 3) coincide in the spectrum. In this case, the outer
lines at ν + J and ν − J have zero intensity.

Once we have the energies we can solve for the wave functions; that is, for the coefficients
c2 and c3. First try the solution E = �ν′ − J/2, which in the weak coupling limit is the
energy of the αβ state (c3 coefficient). We know that the probability of being in the βα

state plus the probability of being in the αβ state has to be 1, since c1 and c4 are zero. This
means that c2

2 + c2
3 = 1. If we restrict c2 and c3 to real numbers, we can set c3 = cos� and

c2 = sin � and we know that cos2 � + sin2 � = 1. Now we only have one variable, which
along with E makes two variables to extract from our two linear equations. Setting E to the
solution �ν′ − J/2 we can solve for the “angle” �,

[
-�ν-J/2 J

J �ν-J/2

] [
c2
c3

]
= E

[
c2
c3

]
βα

αβ

Multiplying the bottom row of the matrix by the column vector, we have

Jc2 + (�ν − J/2)c3 = Ec3

Jsin� + (�ν − J/2)cos� = (�ν′ − J/2)cos�

Jsin� = (�ν′ − J/2 − �ν + J/2)cos�

tan� = sin�/cos� = (�ν′ − �ν)/J

In the weak coupling limit, �ν′ becomes �ν, the ratio on the right side becomes zero and
the angle � goes to zero. The wave function becomes simply αβ since c3 = cos � = 1 and
c2 = sin � = 0. As �ν gets smaller and approaches J, the difference �ν′ − �ν gets larger
relative to J and the angle � becomes positive. The wave function starts to be a mixture of
αβ and βα. When �ν reaches zero (νa = νb), �ν′ = J and we have tan � = 1 and � =
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45◦. The wave function is now an equal mixture of βα and αβ:

�3 = sin � βα + cos � αβ = (1/
√

2)(βα + αβ)

with energy +J/2. Like αα and ββ, this wave function is symmetric: if we switch the labels
on Ha and Hb the wave function is the same.

A similar method shows that the other energy solution, −�ν′ − J/2, gives a wave function
� = cos � βα − sin � αβ with � defined in the same way in terms of �ν′, �ν and J. With
�ν > J, the angle is close to zero and we have � ∼ βα. As �ν gets smaller we get more of
the αβ state mixed into the wave function, but now with a negative coefficient. When �ν

= 0 we have the wave function

�2 = cos � βα − sin � αβ = (1/
√

2)(βα − αβ)

with energy −3J/2. This wave function is antisymmetric: switching the labels on Ha and
Hb makes the βα state into the αβ state and vice-versa, and this changes the sign of the
wave function. The two outer lines of the spectrum (lines 1 and 4) involve transitions from
this antisymmetric state �2. The frequencies are

line1: E4 − E2 = 1
2 [(2ν + J/2) − (−3J/2)] = ν + J

line4 : E2 − E1 = 1
2 [(−3J/2) − (−2ν + J/2)] = ν − J

The inner lines (lines 2 and 3) involve transitions from the symmetric state �3,

line3 : E4 − E3 = 1
2 [(2ν + J/2) − (J/2)] = ν

line2 : E3 − E1 = 1
2 [(J/2) − (−2ν + J/2)] = ν

A rule of quantum mechanics states that transitions between states of opposite symmetry
are forbidden; this is why the intensity of the outer lines falls to zero in the limit of �ν = 0.
In between, in the strong coupling “zone,” the outer lines are diminished in intensity and
this gives the “leaning” or “house shape” of the AB system.

The intensity of the lines turns out to be: [�n(Iax+Ibx)�m]2 for a transition between state
m and state n, so we can calculate them using matrix math. For line 1 (�2 → �4 transition)
we have for [�4(Iax + Ibx)�2]:

[ 0 0 0 1 ] ×

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦×

⎡
⎢⎣

1
cos�
-sin�

0

⎤
⎥⎦ = [ 0 0 0 1 ] ×

⎡
⎢⎣

cos�-sin�

0
0

cos�-sin�

⎤
⎥⎦

= cos�-sin�

Squaring this we get cos2 � − 2cos � sin � + sin2 � = 1 − 2cos � sin � = 1 − sin2 �.
From weak coupling to �ν = 0 the angle � goes from 0 to 45◦ and the intensity of the
outer lines goes from 1 to 0. The same result is obtained for line 4, the other “outer” line of
the AB system.
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For line 2 ((�1 → �3 transition) we have for [�3(Iax + Ibx)�1]:

[ 0 sin� cos� 0 ] ×

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦×

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ = [ 0 sin� cos� 0 ] ×

⎡
⎢⎣

0
1
1
0

⎤
⎥⎦

= cos� + sin�

Squaring this we get cos2 � + 2cos � sin � + sin2 � = 1 + 2cos � sin � = 1 + sin2 �.
From weak coupling to �ν = 0 the angle � goes from 0 to 45◦ and the intensity of the
inner lines goes from 1 to 2. The same result is obtained for line 3, the other “inner” line of
the AB system. These intensities are shown in Fig. 10.38.

10.8.2 The Commutator and the Evolution of Non-Stationary States

Consider the effect on Ha and Hb of the B1 field placed on the x′ axis during a pulse. The
Hamiltonian can be represented as γB1 (Iax + Ibx); using the matrix operators and adding
them together:

γB1

⎡
⎢⎣
⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦ +

⎡
⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎦
⎤
⎥⎦ = γB1

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦

Now what can we do with it? We put a spin state (A) into this environment and find out
what happens to it. The way to find out is to calculate the commutator, which is the matrix:

{H, A} = HA − AH

Because matrix multiplication is often different depending on the order of the matrices in
the product, the commutator is a measure of whether the two matrices commute. If they
commute, the order of multiplication does not matter and the commutator is zero. This
means that the spin state A is a stationary state: it is happy in the environment described by
the Hamiltonian and it does not change. If the commutator is not zero, then the spin state
A is not stationary and will oscillate between state A and a new state B described by the
commutator:

{H, A} = HA − AH = iB

where i is the imaginary number,
√−1. The oscillation is described by our familiar sine

and cosine terms: A → A cos + B sin, where the argument of the cos and sin functions is
the quantity in front of the Hamiltonian multiplied by τ, the time variable—in this case,

σ(τ) = Acos(γB1τ) + Bsin(γB1τ)



THE HAMILTONIAN MATRIX 485

Let’s find out what the spin state B is if we start with A=Iaz + Ibz , the equilibrium state:

{H, A} = (γB1/2)

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦

H

×

⎡
⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 -1

⎤
⎥⎦

A

−

⎡
⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 -1

⎤
⎥⎦

A

×

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦

H

⎤
⎥⎥⎥⎥⎦

= (γB1/2)

⎡
⎢⎣

⎡
⎢⎣

0 0 0 0
1 0 0 -1
1 0 0 -1
0 0 0 0

⎤
⎥⎦ -

⎡
⎢⎣

0 1 1 0
0 0 0 0
0 0 0 0
0 -1 -1 0

⎤
⎥⎦

⎤
⎥⎦

= (γB1/2)

⎡
⎢⎣

0 -1 -1 0
1 0 0 -1
1 0 0 -1
0 1 1 0

⎤
⎥⎦

The commutator can be written as i (γB1)[−Iay − Iby].

−Iay − Iby = 1
2

⎡
⎢⎣

0 i 0 0
-i 0 0 0
1 0 0 i

0 0 -i 0

⎤
⎥⎦ + 1

2

⎡
⎢⎣

0 0 i 0
0 0 0 i

-i 0 0 0
0 -i 0 0

⎤
⎥⎦ = 1

2

⎡
⎢⎣

0 i i 0
-i 0 0 i

-i 0 0 i

0 -i -i 0

⎤
⎥⎦

So the time course can be written as:

[Iaz + Ibz]
�xpulse→ [Iaz + Ibz]cos� + [−Iay − Iby]sin�

Since γB1 τ = �, the pulse rotation in radians.
That is a lot of work to find out what we already knew, but it establishes a general method

to figure out what happens to a spin state when it finds itself in an environment described
by a particular Hamiltonian. Here are a few Hamiltonians for common time-dependent
situations we have looked at

γB1[Iay + Iby] RF Pulse on y′ axis

�aI
a
z + �bI

b
z Chemical shift evolution

πJ2IazI
b
z J-Coupling evolution (�ν >> J)

In each case, τ times the multiplier in front of the Hamiltonian becomes the argument (in
radians) of the sine and cosine functions when we write out the time course of the spin state.
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10.8.3 The Ideal Isotropic Mixing (TOCSY Spin-Lock) Hamiltonian

Now let’s look at something we do not know the answer to: the ideal isotropic mixing
Hamiltonian. This is the ideal TOCSY mixing sequence that leads to in-phase to in-phase
coherence transfer. The ideal sequence of pulses creates this average environment expressed
by the Hamiltonian. The “Zeeman” Hamiltonian that represents the chemical shifts goes
away and we have only the isotropic (i.e., same in all directions) J-coupling Hamiltonian:

H = HJ = J[IaxI
b
x + IayIby + IazIbz] (units of Hz)

We already put together the matrix representation of HJ :

HJ = J/4

⎡
⎢⎣

1 0 0 0
0 -1 2 0
0 2 -1 0
0 0 0 1

⎤
⎥⎦

Now let’s try it on our spin-locked magnetization Iax + Ibx:

{H, A} = (J/8)

⎡
⎢⎣
⎡
⎢⎣

1 0 0 0
0 -1 2 0
0 2 -1 0
0 0 0 1

⎤
⎥⎦×

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦-

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦×

⎡
⎢⎣

1 0 0 0
0 -1 2 0
0 2 -1 0
0 0 0 1

⎤
⎥⎦
⎤
⎥⎦

= (J/8)

⎡
⎢⎣

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦-

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦

⎤
⎥⎦ = 0

The commutator is zero; in other words, the spin state commutes with the Hamiltonian
so it is a stationary state. The spin-lock simply preserves this combination of Ha and Hb
coherence on the x′ axis. Let’s try another starting state: Iax − Ibx:

{H, A} = (J/8)

⎡
⎢⎣

⎡
⎢⎣

1 0 0 0
0 -1 2 0
0 2 -1 0
0 0 0 1

⎤
⎥⎦×

⎡
⎢⎣

0 1 -1 0
1 0 0 -1

-1 0 0 1
0 -1 1 0

⎤
⎥⎦

−

⎡
⎢⎣

0 1 -1 0
1 0 0 -1

-1 0 0 1
0 -1 1 0

⎤
⎥⎦×

⎡
⎢⎣

1 0 0 0
0 -1 2 0
0 2 -1 0
0 0 0 1

⎤
⎥⎦

⎤
⎥⎦

= (J/8)

⎡
⎢⎣

⎡
⎢⎣

0 1 -1 0
-3 0 0 3
3 0 0 -3
0 -1 1 0

⎤
⎥⎦−

⎡
⎢⎣

0 -3 3 0
1 0 0 -1

-1 0 0 1
0 3 -3 0

⎤
⎥⎦

⎤
⎥⎦

= J/2

⎡
⎢⎣

0 1 -1 0
-1 0 0 1
1 0 0 -1
0 -1 1 0

⎤
⎥⎦
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The commutator is not zero; it can be written as:

{H, A} = i(J/2)

⎡
⎢⎣

0 -i i 0
i 0 0 -i

-i 0 0 i

0 i -i 0

⎤
⎥⎦

= i(J)

⎡
⎢⎣ 1

2

⎡
⎢⎣

0 -i 0 0
i 0 0 0
0 0 0 i

0 0 -i 0

⎤
⎥⎦− 1

2

⎡
⎢⎣

0 0 -i 0
0 0 0 i

i 0 0 0
0 -i 0 0

⎤
⎥⎦

⎤
⎥⎦

The two matrices on the bottom represent antiphase coherence on the y′ axis:

{H, A} = iJ[2IayI
b
z − 2IbyI

a
z] = iJB

where B is the “destination” state. Thus the spin state �x = Iax − Ibx will move towards the
spin state �yz = 2IayI

b
z − 2IbyI

a
z:

�x → �xcos(2πJτ) + �yzsin(2πJτ)

In this weird environment, the individual spins states Iax and Ibx are not important. The
“collective spin mode” �x = Iax+Ibx is stable and the “collective spin mode” �x = Iax − Ibx
moves to �yz and back to itself in an oscillatory manner. It is these collective spin modes
that characterize TOCSY mixing, as opposed to the individual (independent) spin modes
we normally deal with. Note that the off-diagonal terms of the Hamiltonian, which are
important in strong coupling, are completely dominant in isotropic mixing. Not only is
chemical shift missing from the central 2 × 2 region of the Hamiltonian (�ν = 0), but it
is also gone from the H11 and H44 elements (ν = 0). In this case we can look at individual
spin states as a linear combination of the collective spin modes:

Iax = 1
2 (�x + �x) = 1

2 [(Iax + Ibx) + (Iax − Ibx)]

If we start with Iax, for example, in a selective 1D TOCSY, it will evolve in the spin lock to
give:

�x + �x → �x + [�xcos(2πJτ) + �yzsin(2πJτ)]

since �x is stationary (commutes with the Hamiltonian). Substituting the individual oper-
ators, we have:

Iax → 1
2 (Iax + Ibx) + 1

2 (Iax − Ibx)cos(2πJτ) + 1
2 (2IayI

b
z − 2IbyI

a
z)sin(2πJτ)

= 1
2I

a
x(1 + cos(2πJτ)) + 1

2I
b
x(1 − cos(2πJτ)) + 1

2 (2IayI
b
z − 2IbyI

a
z) sin(2πJτ)

This is the result that we showed without proof in Chapter 9. In-phase Ha coherence on x′ is
completely converted into in-phase Hb coherence on x′ after τ = 1/(2J), with the antiphase
term reaching a maximum in the middle of this period at τ = 1/(4J).
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FURTHER READING

You will find that many of the sources do not use exactly the same matrix representations
for some of the product operators and rotation matrices. The exact form of the density
matrix depends on the numbering of the spin states and on certain conventions that are not
consistent in the literature. In the above examples, the definitions are consistent with the
product operator methods and with themselves.

1. Bax A. Two-Dimensional Nuclear Magnetic Resonance in Liquids. Delft University Press, D.
Reidel Publishing Co; 1982 (especially pp. 12–23, introduction, pp. 129–153, multiple quantum
coherence, and pp. 188–200, density matrix).

2. Subramanian C. Modern Techniques in High Resolution Fourier Transform NMR. Springer-Verlag;
1987.

3. Feynman RP, Leighton RB, Sands M. The Feynman Lectures on Physics, Volume III. Addison
Wesley; 1971, Chapters 6–11.

4. Bothner-By AA, Stephens RL, Lee J-M, Warren CD, Jeanloz RW. Structure determination of
a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc.
1984;106:811–813.

5. Braunschweiler L, Ernst RR. Coherence transfer by isotropic mixing: application to proton corre-
lation spectroscopy. J. Magn. Reson. 1983;53:521–528.

6. Davis AL, Keeler J, Laue ED, Moskau D. Experiments for recording pure-absorption heteronuclear
correlation spectra using pulsed field gradients. J. Magn. Reson. 1992;98:207–216.



11
INVERSE HETERONUCLEAR 2D
EXPERIMENTS: HSQC, HMQC,
AND HMBC

This chapter examines three two-dimensional (2D) experiments that correlate 13C nuclei
with 1H nuclei within a molecule. Unlike the HETCOR experiment, in which 1H magnetiza-
tion is indirectly detected (F1) and converted to 13C magnetization that is directly detected
(F2), in these “inverse” experiments the F1 dimension is 13C and the F2 dimension is 1H.
They are called “inverse” experiments because historically the 13C-detected experiments
were done first and therefore were considered “normal.” There are numerous advantages
to these experiments over the traditional HETCOR experiment, including increased sen-
sitivity (a 0.5-mg sample is sufficient) and the ability to see long-range (two and three
bond) interactions between 13C and 1H. The combination of HSQC and HMBC consti-
tutes the most powerful method available for tracing out the carbon skeleton of an organic
compound.

HSQC stands for heteronuclear single quantum correlation, meaning that two different
types of nuclei (usually 1H and 13C) are correlated in a 2D experiment by the evolution and
transfer of single-quantum (SQ) coherence, the simple magnetization that can be represented
by vectors in the x′–y′ plane. HMQC stands for heteronuclear multiple quantum correlation
and does the same thing as HSQC except that it uses double-quantum (DQ) and zero-
quantum (ZQ) coherence during the evolution (t1) period. These mysterious states involve
the DQ (αα ↔ ββ) and ZQ (αβ ↔ βα) transitions that cannot be directly observed but
evolve in the x′–y′ plane during the t1 period and are then converted back to observable
(SQ) coherence. HMQC and HSQC are equivalent in the appearance of the spectra and the
processing of data. HMBC stands for heteronuclear multiple bond correlation, which is the
same thing as HMQC except that the J value selected for coherence transfer is much smaller
(10 Hz for HMBC versus 150 Hz for HMQC) so that the two- and three-bond relationships
are detected (2,3JCH ∼ 10 Hz) and the one-bond relationship is rejected (1JCH ∼ 150 Hz).

NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and
Structural Biology, by Neil E Jacobsen
Copyright © 2007 John Wiley & Sons, Inc.
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11.1 INVERSE EXPERIMENTS: 1H OBSERVE WITH 13C DECOUPLING

Because heteronuclear NMR started with the observation of 13C and decoupling of 1H,
this is considered the “normal mode” for the two nuclei. Probes were originally designed
with two concentric coils: an inner “observe” coil tuned to the 13C frequency and an outer
“decouple” coil tuned to the 1H frequency (Chapter 4, Fig. 4.9). The inner coil was used for
13C because 13C is a far less sensitive nucleus to observe, so the coil needs to be as close as
possible to the sample. The opposite experiment is called an “inverse” experiment for purely
historical reasons: 1H is observed on the inner coil whereas 13C pulses and decoupling are
applied to the outer (13C) coil. This arrangement is called an “inverse” probe. The obvious
advantage of observing 1H rather than 13C is sensitivity: Of the three “gammas” (Chapter
1, Section 1.4) that contribute to the amplitude of the NMR signal of a nucleus, two are
involved in the observation of the FID: the strength of the nuclear magnet (γ) and the rate
at which it precesses in the x–y plane (γBo). These together determine the intensity of the
FID signal induced in the probe coil. Because γH is four times larger than γC, this means
that observation of 1H gives a signal 16 times larger than observation of 13C.

The other gamma comes from the population difference at equilibrium; we saw in
Chapter 7 how 13C can be observed using the population difference of 1H, so this disadvan-
tage can be overcome by coherence transfer. This is the strategy used in the 2D HETCOR
experiment (Chapter 9). The low natural abundance of 13C, 1.1%, is also irrelevant here—
whether we observe 1H or 13C in a 2D correlation experiment we are still dependent upon
the number of 13C–1H pairs in the sample, and this is limited by the natural abundance of
13C. In this analysis we have ignored the intensity of the noise; to describe the sensitivity
of an NMR experiment we also have to consider the noise amplitude. It turns out that noise
amplitude is roughly proportional to the square root of the frequency being detected (νo),
so this reduces S/N by a factor of

√
γBo. So the advantage of inverse detection in a 1H-13C

2D experiment is actually a factor of 8 in signal-to-noise ratio (4 × 4/
√

4).
Another advantage of 1H observation is that a proton can only be attached to one 13C.

We saw in Chapter 7 the complexities of refocusing of 13C antiphase coherence: different
times are optimal for CH, CH2, and CH3 groups. A proton coupled to 13C will always
be a doublet—never a triplet or quartet—and will evolve into antiphase or refocus from
antiphase to in-phase in a time of exactly 1/(2J).

There is one disadvantage to the observation of 1H. With the observation of 13C, the
99% of carbon nuclei that are 12C are invisible in the NMR experiment and so they do
not interfere in any way. In contrast, when we observe 1H we are trying to see the 1.1%
of protons that are associated with 13C in the presence of the 98.9% of protons that are
associated with 12C. Both will give a signal in the 1H FID unless we use special techniques
to destroy the “12C artifact.” In a 1D 1H spectrum, the peaks we normally see are due to the
12C-bound protons, which constitute the vast majority of protons (∼99%, neglecting the
protons bound to oxygen and nitrogen). The 13C-bound protons appear as tiny “satellites,”
which are very wide doublets (1JCH ∼ 150 Hz or 0.5 ppm on a 300-MHz spectrometer)
centered on the 12C-bound proton signal and 0.55% of its peak intensity (Fig. 11.1). In
this chapter we will focus on these satellite peaks, around 150 Hz apart, and do our best to
destroy the 100 times larger 12C-bound 1H signal in the center.

We saw in Chapter 2 (Fig. 2.18) that the intensities of these two peaks (singlet for 1H–12C
and doublet for 1H–13C) are reversed for 13C-labeled compounds: The wide doublet domi-
nates, and the residual 12C shows up as a tiny central singlet. Not only are the protons directly
attached to 13C “split” into doublets, but also those two or three bonds away (13C–CH and
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Figure 11.1

13C–C–CH) are split by couplings to 13C similar in magnitude to the homonuclear 2JHH
(geminal) and 3JHH (vicinal) couplings (Fig. 11.2). These “long range” (>1 bond) het-
eronuclear couplings can be transmitted through oxygen and nitrogen as well as carbon:
13C–O–CH and 13C–N–CH. As long as the coupled proton is not exchanging too rapidly
to be observed, it can even be bound to nitrogen or oxygen: 13C–C–OH or 13C–C–NH. The
three-bond couplings even show a Karplus dependence (Chapter 2, Fig. 2.11) on dihedral
angle very similar to the vicinal 3JHH coupling: Maximum 3JCH coupling occurs in the anti
configuration of 13C–X–Y–1H, with H and C opposite each other. All of these heteronuclear
couplings are in addition to the homonuclear J couplings that determine the “multiplicity”
of a 1H resonance: double doublet, ddd, dt, and so on. For example, a ddt 1H peak will have
identical ddt peaks about 75 Hz upfield and downfield of the central 12C peak, 0.55% of the
intensity of the central peak.

Figure 11.3 shows the downfield portion of the 1H spectrum of sucrose (g1 doublet,
JHH = 3.8 Hz) with normal vertical scaling and with the vertical scale increased by a
factor of 100 to show the 13C satellites. The satellites show the same doublet JHH coupling
observed in the 12C-bound proton signal (J = 3.8 Hz), with an additional 169.6 Hz coupling
to the 13C nucleus (1JCH). The peak height is roughly half (actually half of 1% because
the vertical scale is 100 ×) of the central peak because they are part of a doublet with
concentration about 1% of the concentration of the 12C species. If you look closely you
will see that the center of the 1H–13C double doublet is not exactly the same chemical shift
as the center of the 1H–12C doublet. There is a small isotope effect on chemical shift, so
we do not expect them to be exactly the same. Figure 11.4 (top) shows the 1H spectrum of

Figure 11.2
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Figure 11.3

Figure 11.4
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glucose labeled with 13C in the C-1 (anomeric) position. Glucose exists as an equilibrium
mixture of α and β anomers (Chapter 1, Fig. 1.12) in slow exchange. The α anomer (H-1
equatorial) gives a wide, 170 Hz doublet for the H-1 proton, which is directly bonded to
13C. The smaller doublet coupling (3.8 Hz) is the homonuclear (3JHH) coupling to H-2,
which is small because it is a gauche (equatorial–axial) relationship. This is just like the
13C satellites observed for H-g1 of sucrose (Fig. 11.3). The β anomer (H-1 axial) gives a 161
Hz doublet for the H-1 proton, with a homonuclear coupling of 7.7 Hz. This vicinal (H–H)
coupling (7.7 Hz) is relatively large because H-1 in the β form has an axial–axial (anti)
relationship to H-2. Anomeric protons (protons on doubly oxygenated sp3 carbons) give
larger 1JCH couplings (160–170 Hz) than protons on singly oxygenated carbons (140–150
Hz). In addition, in six-membered ring sugars the α anomer tends toward the upper end
of this range (∼170 Hz) and the β anomer tends toward the lower end (∼160 Hz). These
one-bond C–H coupling constants can be useful in structure analysis in other ways as well,
and we will see how they can be obtained from 2D HSQC (or HMQC) spectra.

11.1.1 Isotope Filtering: Fun With BIRDs

We saw in Chapter 9 how the BIRD building block (Fig. 9.11) can be used as a selective
180◦ pulse that affects only the 12C-bound protons and has no effect on the 13C-bound
protons. We can change the selectivity by changing the phase of the central 180◦ 1H pulse
from y to −x (Fig. 11.5). For a 12C-bound proton, there is no net evolution during the two
delays, so we can see it as three rotations about the x′ axis: 90◦, −180◦, and 90◦, adding up
to zero. For a 13C-bound proton, if we start with Iz the first 90◦ pulse rotates to −Iy , and the
spin-echo results in J-coupling evolution from −Iy to 2IxSz and on to Iy , with the central
180◦ pulse on −x changing this to −Iy . The final 90◦ pulse rotates −Iy to −Iz , so overall
we have an inversion (180◦ pulse).

We saw in Chapter 8 how a selective 180◦ pulse can be placed between two gradients
of the same sign and duration to give a pulsed field gradient spin echo (PFGSE) that not
only selects the desired coherence but also destroys any other coherences. First, we use
a hard 90◦ pulse to create coherence on all spins, and then the first gradient twists the
coherence into a helix (Fig. 8.21). The selective 180◦ pulse reverses the direction of twist in

Figure 11.5
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the helix for the selected spins only, and then the second gradient “untwists” the helix for the
selected spins and doubles the twist for all other spins. We can put our selective 180◦ pulse
(BIRD: 13C-bound 1H only) between two gradients and get the same effect: all 12C-bound
1H coherence is “double-twisted” and all 13C-bound 1H coherence is “rescued” by the
second gradient (Fig. 11.5). The sequence is repeated to give a double PFGSE (DPFGSE)
with a 180◦ 1H pulse in the center to reverse J coupling evolution that happens during the
gradients: 1H 90◦–G1–BIRD–G1–1H 180◦–G2–BIRD–G2–FID. This overall sequence is
called “G-BIRD.” After the first gradient, we have magnetization in the x′–y′ plane in all
directions, depending on the position along the z axis in the NMR tube. The effect of the
BIRD element on the 12C-bound coherence is as follows:

Ix
1H 90◦

x→ Ix
τ−180−τ→ Ix

1H 90◦
x→ Ix

Iy
1H 90◦

x→ Iz
τ−180−τ→ −Iz

1H 90◦
x→ Iy

The effect on the 13C-bound proton coherence in the x–y plane is:

Ix
1H 90◦

x→ Ix
τ−180−τ→ −Ix

1H 90◦
x→ −Ix

Iy
1H 90◦

x→ Iz
τ−180−τ→ −Iz

1H 90◦
x→ Iy

In the case of Ix , the central spin echo (τ−180−τ) leads to 1JCH evolution for a total
time of 1/J, which moves Ix to 2IySz and on to −Ix . The central 180◦ pulse on 1H must be
taken into account, but we consider it as if it happened at the beginning of the evolution,
when we have Ix , so it has no effect. Thus, the overall effect of the BIRD element is exactly
the same as a 180◦ pulse on the y′ axis for the 13C-bound protons, and it has no effect on the
12C-bound protons. This will reverse the sense of the coherence helix in the NMR tube for
the 13C-bound protons only, allowing the second gradient to “straighten them out” while it
further scrambles the 12C-bound protons.

Figure 11.4 (center) shows the result of the G-BIRD sequence on 1-13C glucose with the
spin-echo delay (1/(2J)) set to 2.94 ms (i.e., for 1JCH = 170 Hz). The HOD peak is gone, as
are all of the glucose peaks that are not due to the H-1 position, the position that is labeled
with 13C. We only see the 13C-bound protons. This is an example of isotope filtering, a class
of NMR experiments in which only those protons that are bound to 13C (or 15N) show up in
the experiment. Filtering can work either way: We can also set it up to see only the protons
not bound to 13C (or 15N). This is a very powerful and sophisticated tool for biological
NMR. For example, an unlabeled small molecule can be bound to a 13C-labeled protein
and only those NOE interactions between a 13C-bound proton and a 12C-bound proton pass
through the isotope filter. This allows observing only the interactions between the protein
and the ligand, without interference from the intramolecular NOEs.

We can change the delay time of the G-BIRD to “tune” the isotope filter to different
1JCH values. The crucial J-coupling evolution for the time 1/J must give an inversion (180◦
rotation in the x′–y′ plane from in-phase to antiphase and back to in-phase) in order for the
coherence to survive the G-BIRD gradients. What happens to 13C-bound 1H coherence if
the delay is not exactly tuned to the JCH coupling? We can use product operators to predict
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the result:

Ix
1H 90◦

x→ Ix
τ→ Ix cos(πJτ) + 2IySz sin(πJτ)

1H 180◦−x−−−−→
13C180◦

Ixcos(πJτ) + 2IySz sin(πJτ)

τ→ Ix cos2 + 2IySz(2 sin cos) − Ixsin2
1H 90◦

x−−−−→ Ixcos2 + 2IzSz(2sin cos) − Ix sin2

The first term is just like 12C-bound 1H coherence: It has not experienced a 180◦ pulse,
and it will be destroyed by the second gradient. Only the last term will survive because it
has experienced the equivalent of a 180◦

y pulse. In the complete G-BIRD there are two
PFGSE elements, so the term becomes sin4(πJτ). In the example of Figure 11.4 (center),
τ was set to 2.94 ms, so the effect on various 1JCH values can be predicted, as well as on
long-range 2J and 3J values:

J: 170 160 142 125 250 8
sin4(πJτ): 1.0 0.98 0.87 0.70 0.30 0.00003

The filter is fairly tolerant of the range of 1JCH values normally encountered (142 is
a typical singly oxygenated carbon, 125 is a saturated hydrocarbon environment, 250 is
a terminal alkyne, and 8 is the maximum for long-range 2,3JCH couplings). This is the
assumption built into all of the heteronuclear coherence transfer experiments, from DEPT
to HETCOR to the inverse experiments HSQC and HMQC: that the one-bond CH coupling
is around 150 Hz and the range of variation is not that large.

Figure 11.4 (bottom) shows the result of the G-BIRD experiment with the τ delay set
to 62.5 ms (1/(2J) for J = 8 Hz). We see many signals now in the 12C-bound 1H region of
the spectrum because many of these have long-range couplings to C-1. We expect a 2JCH
coupling from C-1 to H-2 in both forms and a 3JCH coupling from C-1 to H-3 and H-5. The
most prominent peak is the β-glucose H-2 peak at 3.1 ppm (compare the lactose β-glu-2
peak in Fig. 10.10). We still see the H-1 peaks because these are spinning around in the
x′–y′ plane many, many times during the long 62.5 ms τ delay and where they land is more
or less random. For example, H-1 of α-glucose has a J coupling of 170 Hz to C-1 and moves
from Ix to 2IySz by J coupling evolution (1/(2J)) in 2.94 ms, so in 62.5 ms it has made 5.3
complete cycles from Ix to 2IySz to −Ix to −2IySz and back to Ix . The term sin4(πJτ) is
0.73 for 170 Hz, but it is zero if Jτ is an integer; that is, if J is any multiple of 16 Hz (1/τ).
A JCH value of 128, 144, 160, or 176 Hz would give a null whereas J values of 136, 152,
168, or 184 would give a maximum signal. We will see how this long evolution delay leads
to the same effects in the HMBC experiment.

Finally, if we observe 1H we will have to consider how to remove the 13C coupling
during the recording of the FID; otherwise, we will have these very wide (150 Hz) doublets
centered on the 1H chemical shift. 13C decoupling requires more power because of the
much larger range of chemicals shifts (∼ 200 ppm 13C on a 600-MHz instrument is 200 ×
150 = 30,000 Hz, whereas ∼ 10 ppm 1H corresponds to 10 × 600 = 6000 Hz) that must
be “covered” by a broadband decoupling scheme. In addition, the B1 field strength (or B2
as it is called for decoupling) needs to be four times greater (16 times greater power) to
achieve the same rate of rotation (γB2/2π) of the sample’s 13C magnetization because γ is
only one fourth as large for 13C. These problems have been solved by new, more efficient
composite pulse decoupling sequences and by limiting the “duty cycle” (percent time the
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decoupler is on during the pulse sequence) to avoid heating the sample and overtaxing the
amplifiers.

13C decoupling was not a standard feature on spectrometers until the mid-1990s, so
many of the inverse experiments (HSQC and HMQC) were done without 13C decou-
pling, simply living with the wide doublets due to 1JCH. Now this technique is routine
on modern spectrometers. Computer optimization of the WALTZ-16 decoupling sequence
(Chapter 4, Section 4.4) led to the GARP sequence, which uses seemingly arbitrary pulse
widths: 30.5◦, 55.2◦, 257.8◦, 268.3◦, 69.3◦, 62.2◦, 85.0◦, 91.8◦, 134.5◦, 256.1◦, 66.4◦, 45.9◦,
25.5◦, 72.7◦, 119.5◦, 138.2◦, 258.4◦, 64.9◦, 70.9◦, 77.2◦, 98.2◦, 133.6◦, 255.9◦, 65.5◦, and
53.4◦, with phase alternating x, −x, x, −x, and so on. This sequence of 25 pulses is executed
four times with the phases reversed (−x, x, −x, x, etc.) in cycles three and four. The 100-
pulse supercycle is repeated throughout the acquisition of the 1H FID. Figure 11.6 (top)
shows the results of a 13C decoupling test on the β-anomeric proton (β-glu-1) of 1–13C-
glucose using GARP decoupling at a power level corresponding to γCB2/2π = 5320 Hz
(1/(4 × 47 �s)). The decoupler offset is started at the 13C resonance of C-1 of β-glucose
and then moved 10 ppm farther off-resonance each time the experiment is repeated. This
is exactly the reverse of the WALTZ-16 decoupler test (13C observe, 1H decouple) shown
in Figure 4.7. Excellent decoupling is obtained for offsets up to 80 ppm on either side of
the on-resonance 13C frequency, representing a bandwidth of 160 ppm. This is adequate
to “cover” all protonated carbons (0–150 ppm) except the carbonyl carbon of an alde-
hyde (∼200 ppm). At 90 ppm off-resonance, we see the doublet (3JHH = 7.7 Hz) split
into two doublets due to the 1JCH coupling that is not completely removed. In Chapter 8
(Section 8.10) we briefly touched on the use of a moving spin lock as an efficient broad-
band method for inversion (“adiabatic inversion”) using a shaped pulse. The frequency of
the spin lock is “swept” from far upfield to far downfield, which has the effect of starting
the spin-lock axis on the +z axis and slowly (i.e., on a timescale of ms) tilting it down to
the x′–y′ plane and on down to the −z axis, maintaining the sample magnetization spin

Figure 11.6
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locked at all times. If this process is repeated over and over (+z to −z, −z to +z, etc.)
during the acquisition of the FID, we have a decoupling sequence that can “cover” a very
wide range of 13C shifts with relatively low power output. After all, decoupling is just the
process of “confusing” the protons by showing them an attached 13C that is rapidly flip-
ping between the α and β states. The effectiveness of adiabatic decoupling (WURST-40) is
shown in Figure 11.6 (bottom). With less than half of the average B2 amplitude used for the
GARP (rectangular pulse) decoupling scheme, we see good decoupling over a bandwidth of
200 ppm. For modern instruments with the capability of generating rapid strings of shaped
pulses on the second (decoupler) channel, this is clearly the method of choice.

A look at direct (1JCH) and long-range (2,3JCH) heteronuclear couplings of glucose in the
1D 1H spectrum will prepare us for the direct (HSQC, HMQC) and long-range (HMBC) 2D
experiments. Figure 11.7 shows the downfield region of the 1H spectrum of 1-13C-glucose
in D2O, without 13C decoupling (top) and with GARP 13C decoupling (bottom). The large
(160–170 Hz) 1JCH couplings are collapsed in the lower spectrum and only the homonuclear
(3JHH) couplings remain. In the upper spectrum the small amount of residual 12C-bound
1H is seen at the center of the wide 13C-bound 1H doublet. The upfield region of the 1H
spectrum is shown in Figure 11.8. On the right-hand side, the β-glu-2 proton shows up as a
ddd (J = 9.4, 7.9, 6.2 Hz) without 13C decoupling (top) and as a dd (J = 9.4, 7.9 Hz) with
13C decoupling. The 6.2 Hz coupling can be assigned to the 2JCH coupling between H-2
and C-1 in β-glucose. This is a relatively large CH coupling that would give rise to a strong
crosspeak in a 2D HMBC spectrum. In the center portion two CH couplings are evident:
a 2.3 Hz coupling on the right side (C-1 to H-5 of β-glucose) added to the ddd pattern of
H-5β and a barely resolved 1.3 Hz coupling in the middle (C-1 to H-3 of β-glucose) added
to the triplet pattern of H-3β. In the left portion a 1.9 Hz CH coupling can be identified (C-1
to H-5 of α-glucose). All of these are 3JCH couplings—relatively small because the protons
are in axial positions and have a gauche relationship to C-1. These would probably show up
as weak HMBC crosspeaks or would be lost in the noise if the proton already has complex
splitting like H-5α. The arrows indicate peaks that are broadened by coupling to 13C with
couplings too small to be resolved: C-1 to H-2 of α-glucose (middle section) and C-1 to
H-3 of α-glucose (left). These couplings are probably too small to show up as crosspeaks
in a 2D HMBC spectrum.

Figure 11.7
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Figure 11.8

11.2 GENERAL APPEARANCE OF INVERSE 2D SPECTRA

11.2.1 2D HETCOR versus 2D HSQC/HMQC

We saw in Chapter 9 that the INEPT experiment can be extended to a 1H–13C 2D correlation
experiment (“HETCOR”) by simply adding an evolution (t1) delay. The coherence flow
diagram (Fig. 9.3) shows that 1H coherence is created and evolves during t1 and then
is transferred to 13C coherence, which is observed in t2. To create the equivalent inverse
experiment, we simply reverse the roles of 13C and 1H: 13C coherence is created and evolves
during t1, encoding its chemical shift, and then “reverse” INEPT transfer (mixing) moves
it to 1H where it is observed in the FID. This would give us a factor of 16 increase in signal
strength in recording the FID, but we would lose a factor of 4 because now we are starting
with the population difference of 13C rather than that of 1H. For this reason we use a more
complex preparation step: The proton is excited with the first pulse, and then this coherence
is immediately transferred to 13C. These two parts of the preparation step can be labeled as
step 1a and 1b (Fig. 11.9).

Both experiments yield a 2D spectrum that has 13C chemical shifts on one axis and 1H
chemical shifts on the other axis, with crosspeaks representing the one-bond relationship
between 13C and 1H. The main difference is that the HSQC spectrum has the 13C chemical
shifts on the indirect (F1) axis whereas the HETCOR spectrum has the 13C chemical shifts
in the directly detected (F2) dimension. Thus, an HSQC spectrum looks like a HETCOR
spectrum turned on its side (90◦). We saw in the last section the consequences of detecting
the 1H signal directly: We have a much stronger signal (16 ×) and better resolution (complex
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1H multiplets observed in F2), but we have to solve the technical problems of removing the
12C-bound 1H artifact (100 times larger than the desired signal), and we would like to be
able to decouple 13C. Thus, there are two important differences between HETCOR and the
inverse one-bond experiments HSQC and HMQC:

1. In HMQC/HSQC, the crosspeaks appear in pairs separated in the F2 (horizontal)
dimension by the large one-bond CH coupling (∼ 150 Hz) and centered on the 1H
chemical shift. This coupling can be eliminated by turning on a 13C decoupler during
the acquisition of the FID, which operates just like the 1H decoupler in a 13C-detected
experiment. In many cases, however, this coupling gives useful information because
the exact value of 1JCH gives us structural information.

2. Between these pairs there will be a vertical streak (parallel to the F1 axis) that rep-
resents the 12C-bound proton signal. Because the 12C-bound proton signal is not
modulated in t1, the 13C evolution period, it has no F1 frequency, and so it just ap-
pears at all F1 frequencies; that is, as a vertical streak. This problem can be solved by
coherence pathway selection using phase cycling or gradients.

11.2.2 One-Bond (HSQC/HMQC) Versus Multiple-Bond (HMBC) 2D Spectra

Consider the molecular fragment HaCa–O–CbHb: In some portion of the molecules (about
1.1%), we will have Ca = 13C and Cb = 12C, giving rise to an F1 = Ca, F2 = Ha crosspeak
in the HSQC (or HMQC) spectrum due to 1JCH, and an F1 = Ca, F2 = Hb crosspeak in
the HMBC spectrum due to 3JCH (Fig. 11.10, upper dotted line). The HSQC crosspeak will
be a wide doublet separated by the large 1JCH coupling (∼150 Hz), and the HMBC peak
will be a single “blob.” In another portion of the molecules (again ∼ 1.1%), Ca will be 12C
and Cb will be 13C, giving rise to the F1 = Cb, F2 = Hb crosspeak in the HSQC (HMQC)
spectrum and a crosspeak at F1 = Cb, F2 = Ha in the HMBC spectrum (Fig. 11.10, lower
dotted line). It is important to keep in mind that these are two different experiments, and the
data are superimposed on the same 2D spectrum for comparison only. With these two 2D
spectra, we can establish that Ha is three bonds or less distant from Cb, and likewise Hb is

Figure 11.10
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Figure 11.11

three bonds or less away from Ca. We can conclude that Ca and Cb are either directly bonded
(Ca–Cb) or are separated by one intervening atom (Ca–C–Cb, Ca–O–Cb, Ca–N–Cb, etc.).

Now consider the homonuclear couplings of Ha and Hb. Let’s expand the fragment to
–CH2–CaHa–O–CbHb–CH- so that Ha appears in the 1H spectrum as a triplet and Hb appears
as a doublet (Fig. 11.11). These multiplicities also show up in the 13C satellites on either
side of the main (1H–12C) peaks. In the one-bond inverse correlation spectrum (HSQC or
HMQC, in black), these satellite peaks appear at the F1 position of the corresponding 13C
resonance: Ha satellite peaks at F1 = Ca and Hb satellite peaks at F1 = Cb. In fact, the F2
slice at F1 = Ca is a double triplet, with the doublet coupling being the large 1JCH coupling,
and the F2 slice at F1 = Cb is a double doublet, with one of the doublet couplings being the
large coupling to Cb. The HMBC crosspeaks (in gray and white for positive and negative
intensities) also contain the additional coupling to 13C, but it is much smaller because it
is a long-range (2JCH or 3JCH) coupling, which is of the same order of magnitude as the
homonuclear (JHH) couplings. If the HMBC data are processed in phase-sensitive mode,
the coupling to 13C will appear antiphase, just as the active couplings in COSY spectra
appear. This is because the INEPT transfer is always antiphase to antiphase (Fig. 11.9,
mixing = step 3). In the one-bond experiments (HSQC/HMQC), this antiphase coherence
is refocused, so the large 1JCH coupling appears in-phase, but in HMBC the refocusing
delay (1/(2J)) would be too long, so it is left antiphase.

Let’s move one step farther and consider a real molecule, ethyl acetate (Fig. 11.12). The
cartoon shows a superposition of the HSQC/HMQC spectrum (white) and the magnitude-
mode HMBC spectrum (black). 13C decoupling is not used in the HSQC/HMQC spectrum,
so the one-bond crosspeaks appear as wide doublets centered on the 1H chemical shift
in F2. From center-left to upper-right we see the paired one-bond crosspeaks in roughly
diagonal fashion, displaying the homonuclear splitting pattern in F2: quartet for the CH2
group, singlet for the acetate CH3 group, and triplet for the ethyl CH3 group. The carbonyl
carbon does not show up in the HMQC spectrum because it has no directly attached proton.
In the HMBC spectrum (black), there are two crosspeaks at the 13C position of the ester
carbonyl carbon in F1: A double quartet at the 1H shift of the CH2 group in F2 and a
doublet at the 1H shift of the acetate CH3 group in F2. The additional coupling in each
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case is the long-range JCH, which is comparable to the homonuclear couplings (3JHH) in
magnitude. The crosspeak between the CH2 protons of the ethyl group and the carbonyl
carbon of the acetate portion is especially important: It connects two parts of the molecule
that cannot be connected by homonuclear (COSY or TOCSY) 2D experiments. In other
words, HMBC is one way to connect one spin system to another. The only other way to
do this is with NOE experiments (NOESY and ROESY). Two-bond HMBC correlations
are also predicted between the CH2 carbon and the CH3 proton of the ethyl group (double
triplet, center right) and between the ethyl CH3 carbon and the CH2 proton (double quartet,
upper left). We will see that in the real world, not all predicted HMBC correlations are
observed because some of the couplings are too small to give crosspeaks above noise level.
Another aspect of real HMBC spectra is that one-bond artifacts (the wide doublets observed
in the HSQC/HMQC spectrum without 13C decoupling) will often show up as strong peaks
in the HMBC spectrum. In the worst case, the HMBC spectrum of ethyl acetate would
contain all of the crosspeaks shown in Figure 11.12 (black and white).

11.3 EXAMPLES OF ONE-BOND INVERSE CORRELATION
(HMQC AND HSQC) WITHOUT 13C DECOUPLING

The HMQC spectrum of 3-heptanone is shown in Figure 11.13, with the 1H spectrum shown
at the top. The assignments come from the COSY analysis (Chapter 9). Note the prominent
vertical streaks of noise at the F2 frequencies of the most intense 1H peaks: 0.78 ppm (H-7),
0.93 ppm (H-1), and 2.30 ppm (H-2 and H-4). Because this is not a gradient experiment,
the 12C-bound 1H artifact is removed by subtraction using a phase cycle, and these are
subtraction artifacts. The signal we are removing by subtraction is 100 times larger than
the signal we are selecting in the phase cycle, so the artifacts are similar in magnitude to
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Figure 11.13

the crosspeaks. The contour threshold is set high to minimize the artifacts, so we see only
the most intense peaks: triplets for H-1, H-7, and H-4, but only the central doublets of the
H-6 sextet and the H-2 quartet and the central triplet of the H-5 quintet. The one-bond
couplings (1JCH) can be readily measured from the crosspeak separations in F2; all are in
the range 125–128 Hz, typical for sp3-hybridized carbon with no bonds to electronegative
atoms. Notice the quasi-diagonal pattern of crosspeaks, extending from lower left to upper
right, even for the relatively narrow range of chemical shifts represented. This is because
the factors that shift protons downfield (in this case proximity to the slightly positive C-3)
have a similar effect on the attached carbons.

The HMQC spectrum of sucrose in D2O is shown in Figure 11.14. The glucose-1 cross-
peak is found in the lower left because the two bonds to oxygen (anomeric position) lead
to downfield shifts in both 1H and 13C relative to the more typical (for a sugar) singly
oxygenated carbon. The “pack” of CH–O positions appears at the center right side, with the
CH2OH positions in a tight group at the upper right. The effect of substitution on 13C shifts
was mentioned in Chapter 1, Section 1.3: Every time an H is replaced by C, we get a down-
field shift of about 10 ppm. Thus, for singly oxygenated sp3-hybridized carbons, CH3–O is
roughly 50–60, CH2–O is 60–70, CH–O is 70–80, and Cq–0 is 80–90 ppm. The “upward”
shift in the HMQC spectrum from CH–O to CH2–O is thus a result of the sensitivity of 13C
shifts to steric crowding, which is not observed in 1H chemical shifts. Any time there is a
significant deviation from the roughly diagonal appearance of the HSQC/HMQC spectrum,
it is due to different sensitivities of 1H and 13C to the chemical environment, and this can
be very valuable information in structure determination.

The anomeric position (g1) shows a much larger 1JCH (170 Hz) than the rest of the
protonated carbons, which fall in a tight range 141–149 Hz. Oxygen substitution tends to
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increase the one-bond coupling: We see typical values of 125–128 Hz with no bonds to
oxygen (e.g., 3-heptanone), 140–150 Hz for one bond to oxygen and 160–170 Hz for two
bonds to oxygen. As we saw with lactose and glucose, the anomeric 1JCH is 160–170 Hz
with α orientation falling near 170 and β orientation near 160. The g1 position in sucrose is
in the α orientation (170 Hz). Comparing to the HETCOR spectrum of sucrose (Fig. 9.7),
rotating the HETCOR counterclockwise by 90◦ and then flipping it left-for-right gives the
basic pattern seen in the HMQC (Fig. 11.14), except that in the HMQC the 1JCH couplings
expand each crosspeak into a wide doublet in F2 because we are not decoupling 13C in this
experiment.

Figure 11.15 shows the upfield (CH3) region of the HMQC spectrum of cholesterol.
In general, because inverse experiments are 1H detected, methyl groups give much more
intense signals than CH or CH2 groups because there are three equivalent protons. It is almost
always possible to increase the contour threshold to a point where only the crosspeaks due to
CH3 groups are observed. This is very useful, but the corollary is that CH3 crosspeaks from
impurities can sometimes be as strong as the CH and CH2 crosspeaks from the compound
being studied. Ignoring the wide 1JCH couplings, one can see that two of the CH3 crosspeaks
are singlets; that is, they have no homonuclear couplings. This means that the CH3 group is
attached to a quaternary carbon: CH3–Cq (the possibilities of CH3–O or CH3–N can be ruled
out because of the upfield 1H and 13C chemical shifts). These singlet methyl groups are very
useful in structure determination because of their unambiguous interpretation in the HMBC
spectrum. The crosspeak with a 13C shift of 18.7 ppm shows a clear doublet structure in
F2: It is a methyl group attached to a CH carbon. Two more “doublet” methyl groups can
be seen at F1 = 22.58 and 22.80 ppm, partially overlapped. The “diagonal” shape of the
crosspeaks (see insets) makes it clear that the upfield 13C (22.58 ppm) is connected to the
upfield 1H signal, even though these two doublets are not resolved in the 1H spectrum (top).
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11.4 EXAMPLES OF EDITED, 13C-DECOUPLED HSQC SPECTRA

We have already seen the effect of 13C decoupling on 1D 1H spectrum of a 13C-labeled
compound. In 2D HSQC or HMQC spectra, we can just add 13C decoupling (e.g., GARP)
during the acquisition of the 1H FID. The wide pair of crosspeaks collapses into a single
crosspeak at the 1H chemical shift in F2, with twice the intensity. The main practical
consideration is to limit the duty cycle (percent time on) of the 13C decoupling. Duty cycle
is defined as AQ/(recycle delay) where AQ (acquisition time) is the length of time for
acquiring the FID and the recycle delay is the total time for a single scan or transient,
including the relaxation delay, the pulse sequence, and the acquisition of the FID. The duty
cycle can be limited by setting a minimum relaxation delay (e.g., 1.0 s) and a maximum (e.g.,
220 ms) setting for the acquisition time (Bruker: aq; Varian: at). This way the duty cycle can
never exceed 0.22/1.22 = 0.18 or 18%. The acquisition time of the t2 FID depends on the
spectral width in F2: td(F2) = 2 × swh × aq (Bruker) or np = 2 × sw × at (Varian). Here
swh is used for the Bruker parameter “spectral width in hertz” because the sw parameter
refers to spectral width in parts per million on the modern (AMX, DRX) Bruker instruments.
After setting the spectral width in F2, the aq/at parameter is checked, and if it exceeds the
safe limit (e.g., 220 ms) for 13C decoupling, the number of points (td(F2)/np) is reduced
until aq/at is within the limits. As we saw with INEPT and DEPT, refocusing of the initially
antiphase transferred coherence is required if we are to apply decoupling: Decoupling of
an antiphase coherence puts the positive and negative lines on top of each other, resulting
in a signal of zero.

Another very useful technique is to “edit” the HSQC data just like an APT or DEPT spec-
trum, so that the sign of the crosspeaks gives us information about the number of protons
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attached to each carbon: CH3 crosspeaks are positive, CH2 crosspeaks are negative, and
CH crosspeaks are positive. We saw how CH3 crosspeaks can usually be distinguished by
their intensity, so this gives us a complete identification of the type of carbon (quaternary
carbons are absent in one-bond correlations). Spectral editing is accomplished just like it
is in the APT experiment: by a delay of 1/J during which we have 13C SQC undergoing
J-coupling evolution. Starting with in-phase coherence on the x′ axis, the CH 13C coher-
ence moves from Sx to −Sx ; CH2 coherence moves one full cycle for the outer lines of
the triplet and not at all for the inner line, landing back at Sx ; and CH3 coherence moves
1 1

2 full cycles for the outer peaks and 1
2 cycle for the inner peaks, ending up in-phase on

the −x axis (−Sx ). The important thing is that the CH and CH3 coherences are now op-
posite in sign to the CH2 coherences. The phase is corrected in data processing to make
the CH3 and CH crosspeaks positive and the CH2 crosspeaks negative. CH2 crosspeaks
are often obvious by their “pairing” (two crosspeaks with different 1H shifts and the same
13C shift) along horizontal lines for chiral molecules, but with spectral editing even “de-
generate” CH2 groups (both protons equivalent or coincidentally having the same chemical
shift) are clearly identified as such by their negative sign. This places a heavier burden on
the user in data processing: You have to be very light on the first-order phase correction,
just like in the processing of DEPT spectra, so that you do not destroy the phase infor-
mation by phase “correction.” Usually some crosspeaks are known to be CH3, CH2, or
CH from their chemical shift, intensity, or “pairing”, and this knowledge helps with phase
correction. Another useful trick is to watch for “waves” in the baseline when phase cor-
recting a row or column of the matrix. Usually if the first-order phase correction is way
off, the baseline will take on a slight sinusoidal “wobble,” which will have more cycles the
farther off the first-order phase correction becomes. Try for a flat baseline and then “touch
up” the phase without making large changes to the chemical-shift dependent (first-order)
correction.

Figure 11.16 shows the decoupled, edited HSQC spectrum of 3-heptanone. Positive
intensity is shown in black and negative intensity in gray. With 13C decoupling, the cross-
peaks now line up in F2 with the “normal” (12C-bound) 1H peaks in the proton spectrum.
Crosspeaks are also twice the intensity relative to noise because they are no longer divided
into two peaks by the wide 1JCH coupling. The editing feature makes all of the CH2 cross-
peaks negative and the CH3 crosspeaks positive. The decoupled, edited HSQC spectrum of
cholesterol in CDCl3 is shown in Figure 11.17. Positive contours are shown in black and
negative contours are shown in gray. The overall appearance of the spectrum is roughly
diagonal from lower left to upper right, with the olefinic position (6 = z) in the lower left,
the alcohol position (3 = y) in the center, and the “hydrocarbon” bulk of the molecule in
the upper right. The carbons have been labeled according to the 13C spectrum (Chapter
1, Fig. 1.26), using letters from the most upfield to the most downfield peak. In crowded
regions, it is useful to compare expansions of the 13C and DEPT spectra (Fig. 11.18). Al-
though a single peak of twice the intensity is observed at 31.9 ppm in the 13C spectrum of
cholesterol, a slightly upfield CH peak (l) and a slightly downfield CH2 peak (m) can be
resolved in the DEPT-135 spectrum. In the tight group n-o-p-q in the 13C spectrum, peak
p can be identified as a quaternary carbon because it is missing in the DEPT spectrum.
Likewise, in the very tight pair t-u (too close to be resolved in the F1 dimension of 2D
spectra), we see that the downfield peak u is quaternary. These observations will help us to
correctly label the crosspeaks in the HSQC spectrum. In peak lists and assignment tables,
use the precise chemical-shift values from the 1D 13C spectrum if it is available, because
the 1D spectrum has much higher resolution.
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Figure 11.16

Figure 11.17
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Figure 11.18

The methyl crosspeaks a, b, c, e, and f (Fig. 11.17) have such high intensity that they
appear with “holes” in the center. This is because we only display a small number of contours
starting with the contour threshold (in this case 10) with a constant ratio between intensity
levels (in this case 1.25). So the highest contour level is 7.5 times more intense than the
threshold (1.25 to the 9th power) and any intensity higher than that is not shown, leaving
“holes” in the center of the most intense crosspeaks. Other peaks with positive intensity
(black) include the olefinic (z) and alcohol (y) CH groups (insets) and six other CH peaks
(i, l, n, v, w, and x). The general appearance is roughly diagonal from the lower left to
the upper right, with the notable exception of crosspeaks v, w, and x, which are about
20 ppm below (downfield in 13C shift) the other “hydrocarbon” CH groups i, l, and n.
This is an example of the sensitivity of 13C shifts to steric crowding: These are the CH
positions next to the bridgehead quaternary carbons in the steroid framework (positions
9, 14, and 17). Their steric environment is similar to a neopentyl position (e.g., neopentyl
alcohol HO–CH2–C(CH3)3) that is known to be extremely hindered in organic chemistry
(Fig. 11.19). The other three upfield CH groups in cholesterol are relatively open positions
(8, 20, and 25), and their HSQC crosspeaks fall in with the rest of the “pack” (i, l, and n).

Figure 11.19
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For most of the CH2 groups, we see two distinct 1H chemical shifts, leading to two
negative crosspeaks lying on a horizontal line at the 13C shift in F1. In some cases (e.g., q
and s) the difference is quite dramatic, nearly 1 ppm difference in 1H chemical shift for the
geminal pair. These large separations usually result from a highly anisotropic environment
in a rigid molecule due to a nearby unsaturation. For a number of CH2 groups (k, m, q, and s)
we can see a doublet homonuclear splitting on the left side and a triplet pattern on the right
side. This is a common pattern in steroids and triterpenes due to the rigid cyclohexane chair
structure. In 2D spectra the F2 dimension gives higher resolution than the F1 dimension
because we typically acquire 512–2048 complex pairs in t2 (direct detection of the FID) and
only 256–375 complex pairs (512–750 FIDs) for the best spectra in t1 (indirect dimension).
But resolution in F2 is still poor compared to a 1D spectrum (typically 8192 or 16,384
complex pairs), so we will not see J couplings smaller than 7 Hz resolved. This has the
advantage of simplifying the 1H spectrum: We only see the large couplings, and these are
generally the geminal (13–16 Hz) and anti vicinal (9–15 Hz) couplings on saturated carbons.
The doublet–triplet pattern is the result of one equatorial (one large coupling—geminal)
and one axial (two large couplings—geminal and anti vicinal) proton on the same carbon.
We saw this with the H4ax–H4eq pair in cholesterol in Chapter 8 (Fig. 8.35), which can be
assigned to peak t in the HSQC due to its unique 1H chemical shift. Even in cyclohexane
itself the equatorial positions are downfield of the axial positions by about 0.5 ppm, so it
is not surprising that in these six examples (j, k, m, q, s, and t) the equatorial proton is
downfield of the axial proton. There are exceptions to this doublet–triplet pattern when the
carbon has axial protons on both sides: for C11 we predict a “doublet” for the equatorial
proton but a “quartet” (geminal plus two anti vicinal couplings to H12ax and H9) for the
axial proton.

Figure 11.20 shows three F2 slices of the HSQC spectrum, at the F1 shifts of carbons
j, q, and s. For q and s we see the classic doublet–triplet pattern, but for j there is a broad,

Figure 11.20
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unresolved signal downfield and a quartet pattern upfield. The slices are impressive because
they show good resolution in F1 between j and i (13C shift difference 0.23 ppm), and
between r and s (difference of 0.27 ppm), with none of the i or r patterns “leaking” into
the F2 slices at j and s, respectively. The “quartet” pattern in slice j has been seen before
in the F2 slice of the ROESY spectrum (Chapter 10, Fig. 10.24, top, assigned to 16β)
at the F1 shift of methyl-18. All three of these slices have negative intensity because of
the editing feature (1/1JCH delay just before mixing) that turns all CH2 crosspeaks upside
down.

Some of the CH2 crosspeaks are degenerate, meaning that the two protons have the same
1H chemical shift (d and r). This can be a coincidence, but it is more likely to happen in a
flexible chain, so we would suspect carbons 22–24 in cholesterol, although 22 is less likely
because it is next to a chiral center.

11.5 EXAMPLES OF HMBC SPECTRA

HMBC is just an HMQC experiment with the 1/(2J) delay for evolution into antiphase
“tuned” for a much smaller JCH value: typically 8–10 Hz rather than around 150 Hz. This
optimizes the experiment for observation of 2D crosspeaks between a 13C and a “remote”
1H nucleus two or three bonds away in the covalent structure: 13C–XH or 13C–X–YH
where X and Y can be 12C, O, S, N, and so on. Tuning to a much smaller J coupling means
that the 1/(2J) delay will be much longer: 50–62.5 ms rather than around 3.3 ms. Loss of
coherence through T2 relaxation becomes significant with these longer delays, so the 1/(2J)
refocusing delay at the end is left out. To mimimize T2 losses the 1/(2J) delay is set as short
as possible, so for routine work the optimal J value is usually set to the highest expected
JCH, or even a bit higher: 8–10 Hz. The FID records a 1H signal that is antiphase with
respect to the 13C it correlates with in the 2D spectrum, and 13C decoupling cannot be used
because the antiphase lines would cancel each other, leading to no signal at all. This does
simplify things a bit because we do not have to worry about the decoupler duty cycle, and
we can use a longer acquisition time (aq/at) if we want. The relative span of J-coupling
values is much greater for 2JCH and 3JCH, ranging typically from 0 to 8 Hz, compared to the
more predictable 1JCH (125–175 Hz). This means that for smaller JCH values the crosspeak
intensity is even weaker because evolution into antiphase occurs to the extent of sin(πJτ).
All of this contributes to HMBC being one of the less sensitive experiments, perhaps more
sensitive than NOESY but much less sensitive than COSY, TOCSY, or HSQC/HMQC. With
a few milligrams of a small molecule (“organic”) sample on a 600-MHz instrument, a good
HSQC spectrum can be obtained in 30 min or 1 h, but a good HMBC will take 3–4 h of
acquisition.

The HMBC also incorporates a “low-pass” filter that tries to reject the one-bond correla-
tions seen in HSQC/HMQC. “Low pass” means that only the low values of JCH (0–10 Hz)
are allowed to pass through and produce crosspeaks in the 2D spectrum. Because there is
no 13C decoupling, the one-bond correlations appear as wide doublets (J ∼ 150 Hz) cen-
tered on the 1H peak position in F2 (Fig. 11.10—squares). They obscure the weak HMBC
crosspeaks and can easily be misinterpreted as long-range correlations, especially if one of
the two components of the doublet happens to fall at the position of another peak in the
1H spectrum. The low-pass filter is set to reject a particular J value, typically 135 Hz for
molecules dominated by saturated hydrocarbon (e.g., 3-heptanone, menthol, cholesterol),
142 Hz for sugars, and 170 Hz for molecules dominated by aromatic carbons. The same
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Figure 11.21

sin(πJτ) dependence applies to the rejection process, so any 1JCH values that do not match
the filter setting will “leak” through and show up in the HMBC spectrum as wide doublets
centered on the position of the 13C-decoupled HSQC (HMQC) crosspeak. Because a one-
bond 2D spectrum (HSQC or HMQC) is almost always acquired along with the HMBC, it
is a good idea to superimpose them and find and label the one-bond artifacts right away, so
you will not mistake them for true HMBC crosspeaks.

HMBC spectra have traditionally been processed and displayed in magnitude mode, but
more recently HMBC sequences have been developed that permit a phase-sensitive dis-
play mode. To avoid “phase twists” the sequence is designed to refocus all but the desired
chemical-shift evolution: 13C in F1. In this case, the HMBC crosspeaks appear as “candy-
canes”: alternating positive and negative intensities along F2 due to the relatively small JCH
coupling in antiphase. This makes them easy to distinguish from noise and from one-bond
artifacts, which are also antiphase but with respect to the very wide 1JCH coupling. An
HMBC crosspeak is shown in Figure 11.21 for the traditional HMBC experiment (magni-
tude mode) and an experiment designed to allow phase-sensitive display. Note the much
sharper peaks in F2 and the greater contrast with noise in the phase-sensitive (right side)
spectrum. The crosspeak is a rare four-bond (4JCH) correlation observed for the natural
product andrographolide (Fig. 11.22). Horizontal (F2) slices from phase-sensitive HMBC
spectra can also be analyzed by curve fitting to extract the exact coupling constant 3JCH
from the antiphase splitting, for conformational or stereochemical studies using the Karplus
relation.

Figure 11.22
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Figure 11.23

11.5.1 HMBC Spectrum of 3-Heptanone

Figure 11.23 shows the HMBC spectrum of 3-heptanone, presented in phase-sensitive mode
with positive intensities shown in black and negative intensities in gray. Note that the F1
spectral window is much wider (0–220 ppm) than in the HSQC (Fig. 11.16: 5–45 ppm)
because long-range correlations can be seen to quaternary carbons, including the carbonyl
carbon at 212 ppm. Strong one-bond artifacts (indicated by squares) centered on the HSQC
peak positions are observed for the “strong” 1H peaks: H-1 and H-7 CH3 triplets and
H-2 and H-4 CH2 triplets. The H-5 and H-6 proton signals have more complex splitting
patterns that reduce their 1H peak height. This same splitting effect will reduce the peak
heights of the HMBC correlations from H-5 and H-6. The one-bond artifacts could have
been minimized if the low-pass filter were “tuned” to reject the narrow range of 1JCH
values (125–128), but instead it was set to a more “generic” natural product value of 135
Hz. The ketone carbonyl carbon C-3 has a weak crosspeak to H-2 (bottom left, 2JCH)
and a strong crosspeak to H-1 (bottom right, 3JCH). When counting the number of bonds
between a 1H and a 13C, do not forget to count the C–H bond! There appears to be a
weak crosspeak between C-3 and H-7 (bottom right), but closer examination reveals this
to be part of a vertical streak at the F2 frequency of H-7. The strong methyl triplets in
the 1H spectrum give these subtraction artifact streaks. In phase-sensitive spectra look for
crosspeaks with alternating positive and negative intensity—even one tiny positive spot at
the side of a negative spot, at the intersection of a known 1H shift and a known 13C shift,
can be unambiguously assigned. No correlation is observed from C-3 to H-4 or H-5, even
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though these are two-bond and three-bond relationships, respectively. Many crosspeaks will
be missing in HMBC spectra due to the lack of sensitivity and sometimes very small J values.
Lack of a crosspeak should never be used to rule out a possible structure, but the presence
of a crosspeak that is more than three bonds distant in the proposed structure is a serious
problem.

Moving up to the C-2 frequency in F1, we see a strong HMBC crosspeak to H-1 (2JCH). At
the F1 = C-1 horizontal line, in addition to the one-bond artifacts, there is a weak correlation
to H-2 at the far left. This is complementary to the C-2/H-1 crosspeak. Moving to the other
side of the carbonyl group, start with the F1 = C-4 (42 ppm) horizontal line: There is a
strong crosspeak to H-5 (2JCH) and a very weak crosspeak (arrow) to H-6 (3JCH). Close
examination of the H-6 crosspeak shows a negative spot just to the right side of the positive
spot (inset). On the F1 = C-5 horizontal line, there is a weak crosspeak to H-4 (left side)
and a strong crosspeak to H-7 (right side). The F1 = C-6 line also has a strong crosspeak
to H-7, just above the C-5/H-7 crosspeak. Often you will see these crosspeaks “stretched”
in the vertical (F1) dimension because they are spanning two nearby 13C chemical-shift
positions. Be careful not to interpret them as a single crosspeak at an intermediate F1 shift
value. Finally, on the F1 = C-7 line there are no true HMBC crosspeaks, only the one-bond
artifacts.

A table of predicted and observed HMBC correlations confirms that many crosspeaks
are missed, even in a fairly concentrated sample:

H-1 H-2 H-4 H-5 H-6 H-7
C-1 art. 2(m)
C-2 2(s) art. 3
C-3 3(m) 2(w) 2 3
C-4 3 art. 2(s) 3(w)
C-5 2(m) 2 3(s)
C-6 3 2 2(s)
C-7 3 2 art.

In the table, the predicted crosspeaks are indicated with 2 for 2JCH and 3 for 3JCH,
and the intensity is indicated in parentheses: s for strong, m for medium, and w for weak.
The strong 1H methyl signals (H-1 and H-7) virtually never fail to give crosspeaks, and
usually these are strong. The worst performance is seen for the most “split” proton reso-
nance: H-6, which is a sextet. The more splittings there are, the smaller each individual line
appears, so the multiplet tends to “fall” into the noise and disappear. In rigid molecules,
the 3JCH depends on the stereochemical relationship of 13C and 1H (Fig. 11.24) with an
anti relationship giving a near maximum J value (∼ 8 Hz) and a gauche relationship giv-
ing a small J value (∼ 2–3 Hz). Because of the low sensitivity of HMBC, the gauche
relationships give weak crosspeaks or no crosspeak at all. In 3-heptanone the molecule is
flexible and the 3JCH values are probably conformationally averaged to a “medium” value
(∼ 4 Hz).

In this example, we had already assigned all of the carbon peaks in the 13C spectrum, so
there was no mystery. In the most difficult case of a complete unknown, the peaks in the 13C
spectrum are numbered arbitrarily from upfield to downfield, and the protons are numbered
correspondingly according to the carbon they correlate to in the HSQC/HMQC spectrum.
Then the HMBC correlations are tabulated (e.g., C-5–H-16a) and the puzzle solving begins.
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Figure 11.24

11.5.2 HMBC Spectrum of Cholesterol

The HMBC spectrum of cholesterol, displayed in phase-sensitive mode, is shown in
Figure 11.25 with positive contours black and negative contours gray and with a portion of
the HSQC spectrum at the left side for reference. The full HMBC spectrum has a very large
number of crosspeaks, so for simplicity we show here only the upper right portion at a very
high contour threshold. The most intense crosspeaks occur at the 1H chemical shifts of the
methyl groups in F2, for the same reason that these are the most intense peaks in the HSQC
spectrum: We are directly observing proton and the methyl groups have three equivalent
protons. The protons of a methyl group can be correlated to no more than four carbons in
an HMBC, and these are always observed due to their high intensity (Fig. 11.26). If the
methyl group is attached to a carbonyl group, it can only correlate to two carbons (one if
it is an ester or amide). If it is a methoxy group, it can only correlate to one carbon. If it is
attached to a saturated carbon, that carbon can be a methylene (leading to a maximum of

Figure 11.25
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Figure 11.26

two correlations), a methine (maximum of three correlations), or a quaternary carbon (four
correlations). The latter case is the most interesting, the case of a singlet methyl group. From
the 1H shift in F2 of a singlet methyl group, we look along the vertical line in the HMBC
spectrum and identify the four carbons. From the DEPT or edited HSQC, we can put them
into categories: CH3, CH2, CH, or Cq. If only one of the four is quaternary, we know it has
to be the one attached to our methyl group, and we know that the HMBC crosspeak is due
to a 2JCH relationship. This means that the other three are attached to the Cq, giving 3JCH
crosspeaks to our methyl protons. The beauty of this special case (singlet methyl group
with only one correlation to a quaternary carbon) is that the three-bond versus two-bond
ambiguity is removed: We can construct a molecular fragment consisting of five carbons
from one vertical line in the HMBC spectrum (Fig. 11.26, lower right).

In Figure 11.25 the HSQC spectrum is aligned with the HMBC spectrum for comparison.
In practice, this is done with NMR software in which two or more 2D spectra can be
displayed simultaneously with crosshair cursors in each spectrum, controlled by the mouse
and coordinated to be at the same chemical-shift position in F2 and F1 in all of the frames
displayed. Another way to analyze the HMBC spectrum is with a printed list of chemical
shifts taken from the HSQC spectrum. In this case, two lists are used: One in order of 1H
chemical shift and one in order of 13C chemical shift (including the quaternary carbons).
Both lists use the same arbitrary numbering (or lettering) system for the carbons. In this way
the F1 (13C) and F2 (1H) shifts of an HMBC crosspeak can be searched in both lists, and the
“nearest neighbor” shifts can be checked to see if there is any ambiguity in the assignment.
If another resonance is very close, the assignment is made as a choice of possibilities, for
example, H-5a/H-11b. These ambiguities can be resolved later as the structure becomes
clear. The juxtaposition of the HSQC and HMBC spectra in Figure 11.25 will give you
a feel for using correlated cursors in the NMR software. In this case, we use the HSQC
spectrum itself as a “lookup table” for chemical shifts.

Because they are so intense, the methyl signals give strong one-bond artifacts in the
HMBC spectrum. These are indicated by rectangles and have the same pattern as the methyl
crosspeaks (a, b, c, e, and f) in the HSQC spectrum (left side) but with the additional
1JCH coupling in F2. They are identical to the nondecoupled HMQC pattern for methyl
groups (Fig. 11.15). Starting with methyl group a (upper right), the vertical line extending
downward from the center of the one-bond artifact goes through four intense, antiphase
doublet crosspeaks. Using the precise alignment with the HSQC spectrum, we can assign
them as s (CH2), t/u (CH2/Cq), w (CH), and x (CH). Carbons t and u are too close in
chemical shift to be distinguished in the F1 dimension (0.05 ppm difference), although
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Figure 11.27

we could look for other HMBC crosspeaks that are very slightly higher or lower than this
one to make the assignment. In this case we can use logic: Because methyl group a is a
singlet in the 1H spectrum, it must be bonded to a quaternary carbon. The other three HMBC
crosspeaks are not quaternary, so this crosspeak has to be to carbon u, the quaternary carbon.
This gives us an unambiguous five-carbon fragment: CaH3–Cu

q–(CsH2, CwH, CxH). In the
cholesterol structure, this has to be C-18, the angular methyl group at the C-D ring juncture
(Fig. 11.27). Focus on the top of the figure and pencil in the resonances (a–aa) as we go
through the assignment process. So we can assign a = 18, s = 12, and w,x = 14,17. Carbons
w and x are ambiguous because both C14 and C17 are CH carbons. Note that this confirms
our assessment of w and x as two of the “crowded” CH carbons 9, 14, and 17. Methyl group
a cannot be C19, the other singlet methyl group, because it has no HMBC correlation to a
quaternary olefinic carbon (C5).

Starting again with the other singlet methyl group, c, we have HMBC correlations to
carbons q (CH2), v (CH), and aa (olefinic Cq) (Fig. 11.25). The crosspeak at F1 = 36.47 ppm
(just below carbon o), however, does not line up exactly with any of the HSQC crosspeaks.
Careful examination of the DEPT and 13C spectra (Fig. 11.18) identifies this correlation
as the quaternary carbon p. Because there are two correlations to quaternary carbons, there
might be an ambiguity in how to arrange them, but one is olefinic (140.74 ppm) and cannot
be directly connected to the methyl group (CH3–C(=C)–C) because then there would be
only three HMBC correlations. The fragment is thus CcH3–Cp

q–(Caa
q, CvH, CqH2), and

we can assign c = 19, p = 10, aa = 5, v = 9, and q = 1 using the structure-based numbering
system (Fig. 11.27). This confirms the observation from both 1D selective NOE and 2D
NOESY and ROESY spectra of a strong NOE from H4ax to the singlet methyl peak at 1.01
ppm (peak c in the HSQC).

Now we move to the doublet methyl groups. These have to be connected to a CH carbon
because they appear as doublets in the 1H spectrum, and all three are on the side chain:
C-21, C-26, and C-27. Moving down from the methyl b one-bond artifact in the HMBC
spectrum (Fig. 11.25), we encounter a “stretched” HMBC crosspeak at 36 ppm that is much
“fatter” in the vertical (F1) direction than the others. This is a correlation to two nearby
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carbons that is not resolved in F1. These correspond to peaks n (CH) and o (CH2) in the
HSQC spectrum. A third and final crosspeak is observed to peak w (CH) at the bottom (a
doublet methyl group can have only three correlations). Because there are correlations to
two CH groups, it is not immediately clear which is directly bonded to the methyl group
(of course, the COSY spectrum would tell us). But we have already assigned w and x to
positions 14 and 17 (or 17 and 14) from carbon a (C-18). So it is clear that the fragment
is CbH3–CnH–(C◦H2, CwH), and we can assign b = 21, n = 20, o = 22, and w = 17
(Fig. 11.27). This also clears up the w/x ambiguity: x = 14.

The remaining two doublet methyl groups must be C-26 and C-27 of the isopropyl group.
If you look closely at the center of the one-bond artifact for peaks e and f in the HMBC
(Fig. 11.25), you will see a strong crosspeak that has a diagonal shape running from upper
left to lower right, opposite to the direction (lower left to upper right) of the overlapping one-
bond artifacts (and the overlapped HSQC crosspeaks). These are the HMBC correlations
from C-26 to H-27 and from C-27 to H-26. Even when two carbons are exactly equivalent
in an isopropyl group, there will be an HMBC correlation at the center of the one-bond
artifact. Similarly, the pair of equivalent ortho or meta positions in a monosubstituted or
p-disubstituted benzene ring will show three-bond HMBC crosspeaks at exactly the position
of the 13C-decoupled HSQC crosspeak. We know this is not a one-bond artifact because
it would be widely separated by the 1JCH coupling. Moving down along the F2 = He and
F2 = Hf vertical lines, there are two “double-wide” crosspeaks corresponding to carbons
i (CH) and r (degenerate CH2). These can be assigned to C-25 and C-24, respectively.
The suspicion that degenerate CH2 groups might correspond to the flexible side chain is
confirmed at least in the case of C-24.

Figure 11.28 shows the HMBC correlations from the olefin and alcohol portions of the
molecule: H-6 (z) in F2 and C-3, C-6, and C-5 (y, z, and aa, respectively) in F1, aligned
with a portion of the HSQC spectrum. The olefinic proton H-6 (left side) correlates to
carbons l/m, p (Cq), and t/u. Carbons p = C10 and u = C13 are already assigned from
the methyl groups, so these three correlations can be assigned to p = C10 (Cq) and t =
C4 (CH2), with l and m remaining ambiguous (l = C8 and/or m = C7, Fig. 11.27). From
the olefinic carbons (Fig. 11.28, bottom), correlations can be seen from C-3 (y), C-5 (aa),
and C-6 (z) to the proton of HSQC peak t (H-4ab). C-5 = aa (but not C-6 = z) shows a
correlation to a proton position that intersects peaks q (C-1), k, and j (all at the downfield
or equatorial proton of the geminal pair). This must be q: H-1eq, which bears an anti rela-
tionship to C-5 and is too far away (four bonds) from C-6 to give an HMBC correlation.
Although four- and even five-bond correlations are common for JHH when a double bond
is in the path, more than three-bond correlations are very rare in HMBC spectra. Both
C-5 (aa) and C-6 (z) show another correlation to a proton position that intersects the i,
k′ and m′ crosspeaks in the HSQC (k and m at the upfield or axial positions). Peak i has
already been assigned (C-25, too far away), and the alignment is best with peak m′ (see
enlargement, Fig. 11.28, upper left), so the correlation can be assigned to the axial pro-
ton on Cm: H-7ax. Finally, the alcohol carbon y (C-3) shows correlations to proton peaks
t and q (already assigned to H-4eq, H-4ax, and H-1eq) and to an F2 position a bit upfield
of the one already assigned to m′ (H-7ax). This aligns perfectly with peak k′, which is
offset to the right side and above peak m′ (see enlargement, Fig. 11.28, upper left side).
Because C-1 and C-4 are already assigned, the only remaining CH2 proton “within reach”
of C-3 is H-2ax (k′). This example serves to illustrate how precise alignment and consider-
ation of a number of overlapping possibilities are essential to the interpretation of HMBC
spectra.
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Figure 11.28

The assignments for cholesterol obtained just from these most intense HMBC crosspeaks
are summarized in Figure 11.27. Seventeen of the 27 carbons of cholesterol were assigned
from methyl group HMBC correlations alone. The one remaining “uncrowded” aliphatic
CH group, l, can be assigned to position 8 by the process of elimination, and z = 6, y = 3,
and t = 4 have already been assigned from chemical-shift arguments alone. From the olefin
and alcohol functional groups, we assigned k = 2 and m = 7. With the HSQC data, including
the “doublet” and “triplet” method for stereospecific assignment, we can precisely assign
most of the proton resonances, even those that fall in heavily overlapped regions of the 1H
spectrum. This leaves only four unassigned positions: methylene groups d, g, h, and j for
positions 11, 15, 16, and 23. COSY data would be the best way to finish the assignments
and to confirm those already made. You might also look for protons that are “in the clear”
(resolved) in the HSQC and look for correlations from these F2 positions: j′ and h have
unique 1H chemical shifts to search the HMBC and COSY spectra.

11.6 STRUCTURE DETERMINATION USING HSQC AND HMBC

11.6.1 Testosterone Metabolites

HMBC is a powerful tool for locating the position of a functional group within a known
carbon skeleton. Oxidation of testosterone with the enzyme cytochrome P-450 (Fig. 11.29)
leads to a number of hydroxylation (C–H → C–OH) and di-hydroxylation products. One
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Figure 11.29

of the purified products (“Product 2”) shows two 1H resonances in the “alcohol” region
(CH–OH, 3–4.5 ppm), each with an integral of one proton. Because testosterone itself has
one triplet resonance in this region (H-17), this indicates that one CH2 carbon was oxidized
to CH–OH to give Product 2. There are eight positions that could have been oxidized: 1, 2,
6, 7, 11, 12, 15, and 16. The “new” CH–OH resonance at 4.15 ppm is a ddd (J = 7.5, 5.8,
2.4 Hz), so we can test whether this coupling pattern is consistent with oxidation at each
of these positions. The ddd resonance is “new” because H-17, the existing CH–OH group
in testosterone, cannot have more than two vicinal 1H coupling partners. C-16 is ruled out
because oxidation would remove one of the couplings to H-17, which appears as a triplet.
To be a ddd, the CHOH must be between a CH and a CH2 carbon. This rules out C-1, C-2,
C-6, and C-12 because they are next to quaternary carbons. Only positions 7, 11, and 15
are possible: Each is between a CH and a CH2 group.

Figure 11.30 shows a portion of the HMBC spectrum of Product 2, including the “al-
cohol” region in both dimensions (3.2–4.4 in F2 = 1H and 67–85 ppm in F1 = 13C). The
HSQC peaks are superimposed and shown in parentheses, and the 1H resonances are shown
above or below these peaks with an expansion of the ddd at 4.15 ppm. One-bond artifacts
are clearly visible in the HMBC spectrum as wide doublets centered on the position of
the 13C-decoupled HSQC crosspeaks (compare to the diagram in Fig. 11.11). In addition
a “fat” HMBC crosspeak is observed between the “new” 1H resonance at 4.15 ppm in F2
and the C-17 13C resonance at 82 ppm in F1 (Fig. 11.30, lower left side). This means that
the CH–OH proton at the position of oxidation is two or three bonds away from C-17: Of
the three possibilities (7, 11, and 15), it must be H-15. H-11 would be four bonds away and

Figure 11.30
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H-7 would be five bonds away, so an HMBC crosspeak would be impossible. Note that the
corresponding crosspeak between H-17 and C-15 (F2 = 3.48 ppm, F1 = 70 ppm, upper
right side) is not observed; this is because the H–C17–C16–C15 dihedral angle is different
from the C17–C16–C15–H dihedral angle, leading to a small 3JCH for the former and a large
3JCH for the latter. HMBC does not exhibit the same symmetry as the COSY spectrum
because the relationships are not equivalent.

Having established the position of hydroxylation (the regiochemistry), the stereochem-
istry is the next important question. The orientation of the activated oxygen species in the
enzyme with respect to the plane of the steroid is expected to lead to hydroxylation on one
side only, and determining which side could lead to an understanding of the geometry of
substrate binding at the enzyme active site. Although we normally think of NOE experi-
ments to determine stereochemistry, it is actually more useful to look at dihedral angles
and J couplings. Two energy-minimized models of this relatively rigid molecule, one for
oxidation at C-15 on the α face and one for oxidation on the β face, give the following
dihedral angles:

15α-OH 15β-OH Result
H–C15–C16–C17: 110◦ (0.8 Hz) 124◦ (2.5 Hz) HMBC Observed
H–C17–C16–C15: −96◦ (−0.4 Hz) −94◦ (−0.5Hz) No HMBC
H–C14–C15–H15: −162◦ (8.3 Hz) −37◦ (5.1 Hz) JHH = 5.8
H–C15–C14–C13: 84◦ (−0.7 Hz) −150◦ (6.3 Hz) HMBC Observed
H–C15–C14–C8: −44◦ (2.5 Hz) 79◦ (−0.6 Hz) No HMBC

J values in parentheses are predicted from the dihedral angles using the Karplus rela-
tion, modified in the case of C–H couplings for the smaller 3JCH range. The “fat” HMBC
crosspeak observed in Figure 11.30 between H-15 and C-17 is more consistent with β hy-
droxylation (predicted 3JCH = 2.5 Hz) than with α hydroxylation (0.8 Hz), while in neither
case would we expect to see the corresponding H-17 to C-15 crosspeak (3JCH = −0.4 or
−0.5 Hz). The observation of an H-15 to C-13 crosspeak and the absence of an H-15 to
C-8 crosspeak both support the assignment of β stereochemistry for the hydroxyl group.
Even the observed 3JHH coupling of 5.8 Hz is consistent with the predicted coupling (5.1
Hz) from the β isomer and too small for the predicted coupling (8.3 Hz) for the α isomer.
NOE intensities would not be useful in this case: The H-17 to H-15 distance in the models
is 3.91 Å for the α isomer (trans relationship) and 3.48 Å for the β isomer (cis relationship).
Both are within the range (< 5 Å) to give a measurable NOE—the simple 1/r6 relationship
predicts an NOE twice as large for the cis relationship. The simple notion that cis-related
protons will have large NOEs and trans-related protons will not show NOEs at all is clearly
false. Only by isolating both isomers and carefully comparing the NOE intensities could
we attempt to assign the stereochemistry based on NOE data alone.

11.6.2 Oxidation of β-Carotene

To mimic the metabolism of β-carotene (Fig. 11.31), a sample was oxidized with
m-chloroperbenzoic acid (mcpba) and a product with biological activity was partially
purified. Due to higher molecular weight impurities, the 1D 1H spectrum was overlapped
and difficult to interpret, but a small molecule component was easily identified in the
HMQC spectrum due to its narrow linewidths. Figure 11.32 shows four crosspeaks from
the downfield (lower left) region of the 500 MHz HMQC spectrum of the oxidation product
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Figure 11.31

(insets) with an F2 slice through each crosspeak at the indicated 13C chemical shift in F1.
The HMQC was acquired without 13C decoupling over a 24-h period, and the component
that gives rise to these crosspeaks was estimated to be about 0.7 mg. In addition to the
large (∼ 154–160 Hz) one-bond JCH couplings, the larger homonuclear (JHH) couplings
can also be measured from the F2 slices. From these alone, a spin system can be identified
in which one proton is coupled to two others with coupling constants of 14 Hz and 18 Hz:
CH–CH–CH. Because the 1H and 13C shifts (5.5–7.4 ppm and 115–139 ppm, respectively)
are in the olefinic region these large couplings suggest a trans olefin or an anti relationship
between protons on two sp2-hybridized carbons connected by a single bond. Because the
spin system is isolated (no other homonuclear J couplings), we can “cap” the spin system
on either end with a quaternary carbon: Cq=CH–CH=CH–Cq. Another spin system can
be deduced from the olefinic CH with a 4 Hz coupling to another proton (Fig. 11.32, top).
An HMQC crosspeak at F2 = 4.67 ppm, F1 = 82.1 ppm also shows a single 4 Hz JHH
coupling (not shown). These chemical shifts are in the region of an alcohol (CH-OH)
group, shifted downfield by its proximity to the olefinic CH. Again we can “cap” the spin
system at both ends: Cq=CH–CH(OH)–Cq. These fragments are shown in Figure 11.33,
with the corresponding parts of the β-carotene structure from which they could be derived
indicated by circles (C6–C9 and C9–C13). This would indicate that oxygen was introduced
at C8, with the double bond moving from C5–C6 to C6–C7.

Figure 11.32
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Figure 11.33

An HMBC spectrum with phase-sensitive data presentation was acquired on a purer
sample over a 60-h period to tie these fragments together and complete the structure. At
an F1 chemical shift of 198.4 ppm three crosspeaks were observed (Fig. 11.34: insets
and F2 slice). The F1 chemical shift indicates a ketone carbonyl carbon, and one of the
crosspeaks, an antiphase doublet (J = 5 Hz) at F2 = 2.27 ppm, is at the right 1H shift
for a methyl ketone: CH3–CO. The lack of any homonuclear couplings in addition to the
5 Hz active (2JCH) coupling is consistent because the methyl ketone would be a singlet
in the 1H spectrum. The crosspeak at F2 = 6.17 ppm (Fig. 11.34, left of center) has an
active (antiphase) coupling of 3.4 Hz and a passive (in-phase) coupling of 18 Hz. This is
the doublet CH proton found in the HMQC spectrum at F2 = 6.17, F1 = 130.4 (Fig. 11.32)
corresponding to the right-hand CH of the five-carbon fragment (Fig. 11.33). The crosspeak
at F2 = 7.44 (Fig. 11.34, left) has a more complex coupling indicating more than one passive
(JHH) coupling. This is the CH proton found in the HMQC spectrum at F2 = 7.44, F1 =
139.1, corresponding to the middle CH of the five-carbon fragment. So the ketone carbonyl
of the CH3–CO fragment must be the quaternary carbon at the right side of the five-carbon
fragment (Fig. 11.33), with two-bond correlations from the CO carbon to the CH3 proton
and the right side CH proton (6.17 ppm) and a three-bond correlation to the middle CH
proton (7.44 ppm). The downfield shift of this center CH (139.1 ppm 13C, 7.44 ppm 1H)
relative to typical olefin values (120–130 ppm 13C, 5–6 ppm 1H) is explained by its β

position in an α,β-unsaturated ketone (–Cβ
+–Cα = C–O− resonance structure).

Figure 11.34
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Figure 11.35

Thus it appears that in addition to oxidation at C8 and shifting of the C6–C7 double
bond, we have cleaved the β-carotene structure at C13–C14, with oxidation of C13 to a
ketone. Another quaternary carbon was identified in the HMBC spectrum at F1 = 79.8 ppm,
with correlations to the proton at 5.56 ppm next to the CHOH (Fig. 11.33) and to a methyl
group at 1.59 ppm. This corresponds to C5 of β-carotene, which must be oxygenated and
sp3-hybridized because its 13C chemical shift (near 80 ppm) is characteristic of Cq–OH
rather than an olefinic carbon. Analysis of many more crosspeaks in the HMBC spectrum,
as well as a mass spectrum with molecular ion (M+) of nominal mass 290 (C18H26O3, 6
unsaturations) led to the cyclic peroxide structure shown in Figure 11.35. The mass spectral
data was inconsistent with a diol structure (predicted m/z 292) so the cyclic peroxide was
proposed. In all, 30 HMBC correlations were identified (arrows), making the structural
assignment quite solid, and all 1H and 13C positions were assigned chemical shifts. All
of this was accomplished on an impure sample without enough material for a simple 13C
spectrum.

11.7 UNDERSTANDING THE HSQC PULSE SEQUENCE

Now that we know most of the basic building blocks of NMR pulse sequences, we should
be able to use the coherence flow diagram (Fig. 11.9) to design an HSQC pulse sequence.
It needs to accomplish the following steps:

1a. Create 1H magnetization in the x′–y′ plane (preparation).

1b. Transfer this magnetization from 1H to 13C via the one-bond JCH (preparation).

2. Let the 13C magnetization rotate in the x′–y′ plane for a period t1, allowing us to
indirectly measure the 13C chemical shift (evolution).

3. Transfer the 13C magnetization back to 1H magnetization (mixing).

4. Observe the 1H magnetization directly (t2) so that the 1H chemical shift can be deter-
mined (detection).
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Note that we do not start directly with 13C magnetization because we want to take
advantage of the larger (by a factor of 4) equilibrium population difference of 1H compared
to 13C, as well as the shorter T1 (faster relaxation) of 1H, which will permit shorter relaxation
delays. We now know a lot of tricks, and the main one we need here is the heteronuclear
INEPT transfer:

1a. 90◦ pulse on the 1H channel (e.g., 500 MHz).

1b. INEPT transfer: A delay of 1/(2J) to generate an antiphase 1H doublet, followed by
simultaneous 90◦ pulses on both the 1H and 13C channels (e.g., 500 and 125 MHz,
respectively).

2. Evolution period: simply insert a delay of t1 s and repeat the experiment many times
with increasingly larger t1 delays. Increment t1 each time by �t1 = 1/(2 × sw1), where
sw1 is the spectral width in the 13C dimension in hertz.

3. Mixing: INEPT transfer (“back” transfer). Assuming that 13C magnetization is still
antiphase with respect to the directly bound proton, simultaneous 90◦ pulses on both the
1H and 13C channels will convert the antiphase 13C coherence back into antiphase 1H
coherence. This signal differs from that at the end of the first 1/(2J) delay (step 1b) in that
its intensity has been modulated by the chemical-shift evolution that occurred during
step 2. In other words, the 13C chemical shift has been encoded within the 1H signal.

4. Acquisition: simply turn on the analog-to-digital converter and record a 1H FID.
Fourier transformation of this signal will give an antiphase doublet whose amplitude
is modulated by a factor cos(�c t1).

This pulse sequence is diagrammed in Figure 11.36. Below the pulse sequence are
shown the spectra that would be obtained if an FID were acquired at each stage of the pulse
sequence, with 1H spectra above and 13C spectra below. The antiphase 13C signal is shown
with a phase shift of 180◦, for example, resulting from evolution of the 13C chemical shift
during t1.

Now that we have the basic concept of the pulse program written down, we can start
to customize and enhance it, and to consider details of making it work correctly. First of

Figure 11.36
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all, we have to consider the fact that the evolution periods 1/(2J) and t1 serve for very
different purposes: during the 1/(2J) delay we want the 1H doublet to evolve from in-
phase to antiphase under the influence of the one-bond {1H–13C} J coupling. During the t1
period, however, we only want to see rotation of the 13C magnetization vector in the x′–y′
plane under the influence of the 13C chemical shift. In other words, we want J-coupling
evolution to occur during the first delay and chemical-shift evolution during the second
delay. As the pulse program is designed so far, both kinds of evolution will occur during
both delays, leading to lots of complications. The way to prevent certain kinds of evolution
while allowing others to occur is to make each delay period into a spin echo by dividing the
delay time into two equal parts separated by a 180◦ pulse. How we apply the 180◦ pulse
(i.e., on which nucleus or nuclei) will determine which type of evolution is allowed and
which type is refocused.

We spent a lot of time in Chapter 6 (Section 6.10) using the vector diagrams to understand
the effect of 180◦ pulses in the center of a spin echo. This is easy to understand now that
we have the product operator tools. In general, consider the effect of a 180◦ pulse on the
in-phase and antiphase 1H and 13C operators:

Ix → -Ix
1H 180◦

y: refocus 1H chemical-shift evolution.
Sx → -Sx

13C 180◦
y: refocus 13C chemical-shift evolution.

2IxSz → -2IxSz
1H 180◦

y or 13C 180◦: refocus J-coupling evolution.
2IxSz → 2IxSz

1H 180◦
y and 13C 180◦: no effect on J-coupling evolution.

Reversing the sign of these operators in the center of a spin echo leads to refocusing of
the evolution. This is an easy way to remember how to design a heteronuclear spin echo:
use a 1H 180◦ pulse alone to refocus all but 13C chemical shift evolution; use a 13C 180◦
pulse alone to refocus all but 1H chemical-shift evolution; use simultaneous 1H and 13C
180◦ pulses to refocus all but JCH evolution. You can go through the full product operator
analysis of each kind of spin echo, and you will find that the sign changes shown above
are the crucial differences that control what refocuses and what continues to evolve in the
second half of the spin echo.

For the first delay of 1/(2J) in Figure 11.36, we insert simultaneous 180◦ pulses in the
center on both 1H and 13C (Fig. 11.37). The 1H chemical-shift evolution “sees” the 1H 180◦
pulse in the middle and reverses direction (νH in the first half, −νH in the second half).
The J coupling evolution “sees” the simultaneous 180◦ pulses on both channels and their
effects cancel out (2IySz → 2 [−Iy ] [−Sz ]) so the J-coupling evolution continues unabated
in the second half (J in the first half, J in the second half). We used the same strategy in
the INEPT experiment (Chapter 7). At the end of the 1/2J period we have antiphase 1H
coherence, which is transferred to antiphase 13C coherence by the simultaneous 90◦ pulses
on 1H and 13C (2IySz → −2SyIz ).

Figure 11.37
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Figure 11.38

You can probably guess how we can control the evolution during the t1 delay. We start this
period with antiphase 13C magnetization, and we want to have 13C chemical-shift evolution
during t1 without any J-coupling evolution. The solution is to convert the t1 delay into a
spin-echo. We divide the t1 delay period into two delays of t1/2 each, with a 180◦ 1H pulse
in the middle (Fig. 11.37). The J-coupling evolution “sees” the 180◦ 1H pulse in the middle
and turns around (2SyIz → 2 [Sy ] [−Iz ]), but the 13C chemical shift continues because the
Sx and Sy terms are unaffected by the 1H pulse. Now this sequence will do what our original
design was supposed to do, even in the real world where peaks are not on-resonance.

One final refinement we might want to add: a refocusing delay of 1/(2J) to allow the
antiphase 1H signals to come back together into in-phase signals. This makes all of our
crosspeaks positive in the 2D spectrum. This is essential if we plan to use 13C decoupling,
because the doublet collapses into a singlet that will have no intensity at all if the doublet
is antiphase. Of course, we will need to use the spin echo 1/(2J) delay as we did at the
beginning of the sequence (Fig. 11.38). We can call the first 1/(2J) period “defocusing”
because the 1H SQC goes from in-phase to antiphase. Then we transfer from 1H SQC to
13C SQC and let the 13C SQC evolve under the influence of the 13C chemical shift. After
transferring back to 1H SQC, we “refocus” for a period of 1/(2J) to bring the 1H SQC
from antiphase back to in-phase. The arrows at the bottom of the diagram indicate the type
of coherence (magnetization in the x′–y′ plane) that we have at each stage of the pulse
sequence. The pulse sequence uses single-quantum coherence (SQC) throughout, which is
why it is called HSQC (heteronuclear single quantum correlation).

11.7.1 Product Operator Analysis of the HSQC Experiment

This is quite simple if we take into account only the type of evolution that is not refocused
during each stage of the pulse sequence. Starting with 1H z magnetization:

Preparation: Iz
90x

1H→ − Iy1/(2J)→ 2IxSz

90y
1H,90x

13C→ 2[−Iz][−Sy] = 2SyIz

Evolution: 2SyIz
t1→ 2SyIzcos(�ct1) −2SxIzsin(�ct1)

Mixing: 2SyIzcos(�ct1)
90y

1H,90x
13C→ 2IxSzcos(�ct1)

−2SxIzsin(�ct1)
90y

1H,90x
13C→ −2SxIxsin(�ct1)

Detection: 2IxSzcos(�ct1)
1/(2J)→ Iycos(�ct1) (observed in FID)
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In the mixing step the cosine term is transferred back from 13C SQC to 1H SQC, but the
sine term is converted to a mixture of DQC and ZQC, which is not observable and can be
ignored from here on. Refocusing of the cosine term gives in-phase 1H SQC modulated as
a function of t1 and the 13C shift because of the cos(�c t1) multiplier. During the recording
of the FID we use 13C decoupling so the 1H SQC remains in-phase and simply rotates in
the x–y plane at the rate �H in the rotating frame.

11.7.2 Cancelation of the 12C–H Signal

As already mentioned, the 1H signal from the protons bound to carbon-12 is about 200
times as intense as the 13C-bound proton signals (satellites), so we need a way of removing
this artifact. As always we have a choice of phase cycling or gradients (or both!) to remove
the undesired signals. Phase cycling is a subtraction method, so the whole mess is recorded
in the FID (12C-bound 1H and 13C-bound 1H signals) and by recording multiple FIDs
(scans or transients) and subtracting them we remove the 12C-bound 1H signal. Gradients
kill the undesired signal by “twisting” its coherence and leaving it twisted during the FID
acquisition. The 12C-bound 1H signal never reaches the receiver so it is removed in a single
scan.

The phase cycling method works like this: the phase of the second 90◦ 13C pulse is
alternated between x (B1 field aligned along the x′ axis) and −x (B1 field aligned along
the −x′ axis) with each signal-averaged acquisition. Because this pulse is essential for the
transfer of magnetization (mixing) from 13C back to 1H, inverting its phase will have the
effect of inverting the detected FID signal. In terms of product operators (I = 1H, S = 13C):

2SyIz
90x

13C,90y
1H→ 2[Sz][Ix] = 2IxSz

1/(2J)→ Iy

2SyIz
90−x

13C,90y
1H→ 2[−Sz][Ix] = −2IxSz

1/(2J)→ − Iy
If we alternately add and subtract FID signals as the signal averaging progresses, these
signals will reinforce and build up as we acquire a number of scans for each t1 value. The
12C-bound proton signal, however, is not affected by the 13C pulses, and it gives rise to
observable signals that do not alternate in sign:

Iz
90x

13C,90y
1H→ Ix

1/(2J)→ Ix first scan(add)

Iz
90−x

13C,90y
1H→ Ix

1/(2J)→ Ix second scan(subtract)

Iy
90x

13C,90y
1H→ Iy

1/(2J)→ Iy first scan(add)

Iy
90−x

13C,90y
1H→ Iy

1/(2J)→ Iy second scan(subtract)

As these signals are alternately added and subtracted into the summed FID, they cancel
as long as we are careful to acquire an even number of scans for each t1 increment. This
method depends for its success on precise subtraction of a very large signal, so it is sensitive
to any instability (temperature change, vibration, variation in pulse widths, etc.) that occurs
between one scan and the next.

To use the more formal analysis of phase cycling developed in Section 10.6, we first need
to describe the coherence pathway in terms of spherical operators (I+, S−, etc). Starting at
the end and working backward and using the convention of positive coherence order during
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Figure 11.39

t1 and negative coherence order during t2 (Fig. 11.39), we have I− at the start of the FID
(in-phase 1H SQC with p = −4) and I+S◦ (= I+Sz ) before the refocusing period (antiphase
1H SQC with p = +4). The change in sign of coherence order is a result of the 1H 180◦
pulse in the center of the refocusing delay. The mixing step (simultaneous 1H and 13C 90◦
pulses) converts S+I◦ to I+S◦, so we have S+I◦ throughout the evolution (t1) delay. The
first coherence transfer step converts I+S◦ to S+I◦, and so we start with I− just after the
initial 90◦ pulse.

In the mixing step where we apply the phase cycle (13C SQC → 1H SQC), the desired
coherence pathway is S+I◦ → I+S◦. Considering the 90◦ 13C pulse, the effect it has on
coherence order is �p = −1 because the 13C operator goes from S+ (p = 1) to S◦ (p =
0) as a result of the pulse. So if we alternate the phase of this pulse (��p = 180◦) we will
have to alternate the phase of the receiver:

��r = −�p��p = −(−1)(180◦) = 180◦

The 12C-bound 1H signal cannot be affected by the 13C 90◦ pulse, so �p = 0 regardless
of where it is (Iz , Iy , or Ix ) when the pulse is executed. ��r = 0 for this signal, and thus it
will be canceled if we alternate the receiver phase.

The same phase cycle can be used for the first coherence transfer step (1H → 13C) by
alternating the phase of the first 90◦ 13C pulse. For example, we could use x, x, −x, −x
(0 0 2 2) for the first 90◦ 13C pulse and x, −x, x, −x (0 2 0 2) for the second 90◦ 13C pulse
in a four-step phase cycle. The receiver phase must follow the sum of the phase changes of
the signal:

�r(1st pulse alone) : x, x,−x, −x (0022) �p = +1

�r(2nd pulse alone) : x, −x, x,−x (0202) �p = −1

�r(both pulses) : x, −x, −x, x (0220)

Of course, the experiment will take four times as long to acquire the same number of FIDs
(the same number of t1 values) and this time is wasted if there is enough sample to get the
desired signal-to-noise ratio with one scan per FID.

11.7.3 Gradient Coherence Pathway Selection

The disadvantage of using a phase cycle to cancel the 12C-bound 1H signal is that you have
to do a minimum of two or four transients for each FID collected in the 2D experiment.
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Figure 11.40

Furthermore, since the FID observed in each scan contains the large 12C-bound 1H signal
as well as the weak 13C-bound 1H signal, the receiver gain must be turned down to prevent
this signal from overloading the digitizer, even though 99% of the signal will be canceled
when the second FID is added to the sum in memory. Less amplification of the FID can
result in lower signal-to-noise in the spectrum. Finally, subtraction of two FIDs is not always
perfect, and subtraction artifacts will give vertical streaks in the spectrum (see Fig. 11.13).
The solution to all of these problems is to use gradients in place of a phase cycle to eliminate
the 12C-bound 1H signal. Because the “twist” imparted by a gradient is proportional to the
magnetogyric ratio, a 1H SQC signal is twisted four times as much by a given gradient pulse
as a 13C SQC signal. Thus if a gradient of relative strength 4 is applied during the evolution
time (t1), the 13C SQC signal (p = 1) will acquire a twist down the gradient axis (usually
z) of 4 units (Fig. 11.40). A second gradient of relative strength −1 is applied after this 13C
magnetization is transferred back to 1H SQC (p = 4) by the INEPT sequence, imparting an
additional twist of −4 units, leading to a total of 0 units of twist:

�piGi = 1(4) + 4(−1) = 0

Thus the signal will be perfectly “untwisted” and will be observed in the FID. The 12C-bound
1H signal cannot transfer from 13C SQC to 1H SQC during the INEPT sequence, so it will
end up with a net twist at the beginning of the FID and will not be observed. With gradient
selection of the coherence pathway, no 12C-bound 1H “streaks” are observed even with a
single scan per FID. There is no harm in combining methods, so the phase cycle is always
included even in the gradient experiment if you want to use more than one scan per FID.

11.7.4 Gradient-Selected HSQC with Phase-Sensitive Data Presentation

We saw with the gradient DQF-COSY experiment that the relatively long gradients (∼ 1
ms) allow chemical shift evolution that will produce large chemical-shift dependent phase
errors in the final spectrum. In the sequence of Figure 11.40, the gradient placed in the
second half of the t1 period will set a minimum value for t1 of twice the gradient time (and
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Figure 11.41

recovery delay). Any time an FID is “started late” there will be chemical-shift evolution
before it starts, leading to huge chemical-shift dependent phase errors (“phase twists”). In
this case the phase errors will show up in F1, since we are starting the t1 FID late. The
solution, as always, is to build a spin-echo with the gradient in one of the spin echo delays
(Fig. 11.41). Because we have 13C SQC during the t1 delay, we use a 13C 180◦ pulse in the
center of the spin echo to refocus both 13C shift evolution and J-coupling evolution. The
second gradient is already contained in a spin echo, so there is a big enough “gap” (1/(4J) =
1/(4 × 150 Hz) = 1.67 ms) to fit a typical gradient pulse (1 ms) and its recovery delay
(200 �s). Using the spherical operators to describe the coherence pathway, it becomes clear
that the gradients must now be of the same sign to select the desired (echo) pathway. If
echo-antiecho phase encoding is used in t1, the first gradient (relative strength +4) would
alternate sign to select S+I◦ during t1 for the first FID (G1 = +4, echo signal) and to select
S−I◦ during t1 for the second FID (G1 = −4, antiecho signal) acquired for each value of t1.

A different approach to destroying the 12C-bound 1H artifact is to use the gradient in a
simpler way—as a “spoiler” that just kills all of the magnetization in the x′–y′ plane while
our desired signal is “stored” briefly on the z axis. To do this we go back to our discussion
of intermediate states in INEPT coherence transfer (Section 7.10) and recall that instead
of using simultaneous 90◦ pulses on 1H and 13C to effect coherence transfer, we can start
with the 1H 90◦ pulse and then, after a short delay, complete the INEPT transfer with the
13C 90◦ pulse:

2IxSz

90◦
y

1H→ −2IzSz

90◦
x

13C→ 2SyIz

(again we omit the factor of 4 reflecting our change to 13C Mo as a standard of comparison
because coherence will be transferred back to 1H in the end). The −2IzSz product operator
will not be affected by a gradient, nor will it undergo any evolution during the time of the
gradient. 12C-bound 1H coherence cannot achieve this spin state, so any coherence it has
at this point (Ix or Iy) will be destroyed. We call this a “spoiler” (or homospoil) gradient
because the twist it produces is never untwisted in the pulse sequence—we are just getting
rid of stuff. The same strategy can be used in the back transfer (Fig. 11.42), usually with a
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Figure 11.42

different gradient strength to prevent any kind of untwisting from occuring. The advantage
of this approach is that no spin echoes are required to refocus evolution that happens during
the gradients. The disadvantage is that echo-antiecho phase encoding cannot be incorporated
because there is no selection of coherence order during the t1 period.

11.7.5 Edited HSQC

Editing (modification of the sign of crosspeaks based on the type of carbon—CH3, CH2,
or CH) is easily accomplished by allowing a period of 1JCH-coupling evolution of time 1/J
while we have 13C SQC. We saw in Chapter 6 (Section 6.8) how the in-phase 13C coherence
of a CH or CH3 group reverses sign after a 1/J delay while a CH2 group does not. This is the
strategy of the APT experiment. Adding a spin echo that allows only J-coupling evolution
at the end of the t1 period will accomplish this without interfering in any other way with the
pulse sequence (Fig. 11.43). The fact that we are starting with antiphase rather than in-phase
coherence does not change the effect of the 1/J delay. For example, for a CH carbon:

2SyIzcos(�ct1)
1/(2J)→ −Sxcos(�ct1)

1/(2J)→ −2SyIzcos(�ct1)

For a CH2 group we have to consider coupling to both protons–H1 and H2:

2SyI
1
z

1/(2J)→ −2SyI
2
z

1/(2J)→ 2SyI
1
z

Figure 11.43
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omitting the cosine multiplier and considering only coherence that transferred from H1 in
the first coherence transfer step. For the first delay, the antiphase relationship to H1 refocuses
from antiphase to in-phase (2SyI

1
z −→J1 − Sx) and the in-phase relationship to H2 defocuses

from in-phase to antiphase (−Sx −→J2 − 2SyI
2
z). During the second delay they reverse roles

again: −2SyI
2
z −→J2 Sx −→J1 2SyI

1
z . As always, each time we change from antiphase to in-

phase or vice versa as the phase of the observable operator (13C in this case) advances by
90◦ in the counterclockwise direction. Finally, for a CH3 group we consider coupling to
H1, H2, and H3:

2SyI
1
z

1/(2J)→ 4SxI
2
zI

3
z

1/(2J)→ −2SyI
1
z

For each delay there is a phase advance of 270◦ because there are three J couplings that
are active: J1, J2, and J3 (all equal). In the first step the 13C coherence refocuses with
respect to H1 and defocuses with respect to H2 and H3 as the S operator rotates by 90◦ three
times: Sy → − Sx → − Sy →Sx. The normalization factor of 4 is used because we are
multiplying by two Iz operators, each of which carries a factor of 1/2 in the density matrix
representation. Overall we see the editing effect:

CH : 2SyIz
1/(J)→ −2SyIz (reversed)

CH2 : 2SyI
1
z

1/(J)→ 2SyI
1
z (unchanged)

CH3 : 2SyI
1
z

1/(J)→ −2SyI
1
z (reversed)

This editing is carried through the rest of the sequence and shows up in the sign of the
observed in-phase 1H coherence. In the 2D data processing we phase the CH and CH3
crosspeaks positive, which makes the CH2 crosspeaks negative.

11.7.6 Sensitivity Enchancement by Preservation of Equivalent Pathways

In every 2D experiment we have looked at, the chemical-shift evolution during the t1 delay
produces two terms—sine and cosine—and in each case only one of them survives the
mixing step to reach the FID as observable magnetization. The HSQC experiment is no
exception:

Evolution : 2SyIz
t1→ 2SyIzcos(�ct1) − 2SxIzsin(�ct1)

Mixing : 2SyIzcos(�ct1)
90y

1H,90x
13C→ 2IxSzcos(�ct1) (observable1H SQC)

−2SxIzsin(�ct1)
90y

1H,90x
13C→ −2IxSxsin(�ct1) (nonobservable ZQC/DQC)

The second (sine) term produced by the evolution delay has all the information we need—it
is antiphase 13C coherence labeled with the 13C chemical shift in t1—but it is lost because
its phase (Sx ) causes it to be unaffected by the 90◦

x
13C pulse at the end of t1. Effectively

we are throwing away half of our signal at this point. A new method was developed to
“save” this wasted signal and boost the sensitivity of HSQC and many other experiments.
These modified pulse sequences are called “sensitivity enhanced” or “sensitivity improved”
(Bruker adds “si” to the pulse sequence name) and the strategy is called “preservation of
equivalent pathways” (PEP) because the two terms are equivalent except for their phase.
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The strategy is quite simple: after the mixing step, the cosine term is refocused as before
with a spin echo of duration 1/(2J) whereas the sine term “sits out” the refocusing delay on
the sidelines because ZQC and DQC do not undergo J-coupling evolution with respect to
the active coupling (1JCH):

2IxSzcos(�ct1)
1/(2 J)→ Iycos(�ct1)

−2IxSxsin(�ct1)
1/(2 J)→ −2IxSxsin(�ct1)

Then the cosine term is flipped to the z axis where it “sits out” another 1/(2J) refocusing delay
while the sine term, converted by the same pulse to antiphase 1H coherence (completing
the coherence transfer), is refocused to in-phase 1H coherence:

Iycos(�ct1)
90x

1H,90y
13C→ Izcos(�ct1)

1/(2J)→ Izcos(�ct1)

−2IxSxsin(�ct1)
90x

1H,90y
13C→ 2IxSzsin(�ct1)

1/(2J)→ Iysin(�ct1)

Finally, a 90◦ 1H pulse flips the cosine term back to the x′–y′ plane:

Izcos(�ct1)
90y

1H→ Ixcos(�ct1)

Iysin(�ct1)
90y

1H→ Iysin(�ct1)

Now we have observable in-phase 1H coherence coming from both terms. This is some
pretty fancy footwork in the world of spin choreography: taking one partner for a spin
while the other sits out, then reversing the roles. The complete pulse sequence is shown
in Figure 11.44. Note that each of the 1/(2J) delays is a spin echo with simultaneous 1H
and 13C 180◦ pulses in the center to prevent any chemical-shift evolution and permit only
J-coupling evolution. Some fancy phase-cycling tricks are required to get the desired pure
cosine and sine terms with the same phase in t2. This is equivalent to acquiring two FIDs
in which one has the opposite sign for the second (sine) term. Adding the two FIDs gives
the pure cosine term: 2 Ix cos(�c t1), and subtracting with a 90◦ shift in receiver phase
gives the pure sine term: 2 Ix sin(�c t1). Thus we have the same two FIDs we would
get with a States mode experiment acquiring the “real” and “imaginary” FIDs for each t1
value. Because we also acquire noise in the two FIDs we have increased the noise by

√
2

(because it is random), and the increase in sensitivity (S/N) is 2/
√

2 = √
2 or 1.414. An

increase in sensitivity of 41% is worth a little bit of trouble!

Figure 11.44
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11.8 UNDERSTANDING THE HMQC PULSE SEQUENCE

The HMQC experiment gives exactly the same result as the HSQC, and the data is processed
in the same way. There are some differences in sensitivity and peak shape that depend on
the size and complexity of the molecule, and the pros and cons of the two experiments
are the subject of some debate in the literature. Because it relies on double-quantum and
zero-quantum coherences (DQC and ZQC) during the evolution (t1) period, the HMQC is
more difficult to explain and understand than HSQC, which uses only the familiar single-
quantum transitions that can be diagramed and analyzed using vectors. We discuss it here
because it forms the basis of the HMBC (multiple-bond) experiment.

The sequence is similar to the HSQC sequence, but much simpler—there are only four
pulses (Fig. 11.45). The preparation period is the same, except that we do not bother to
refocus chemical-shift evolution—this ends up being corrected by the final (refocusing)
delay. Neglecting chemical-shift evolution, we have 1H magnetization at the end of the first
1/(2J) delay which is antiphase with respect to the directly bound 13C. Instead of subjecting
this to simultaneous 90◦ pulses on both 1H and 13C channels, which would cause INEPT
transfer of magnetization to antiphase 13C single-quantum coherence, we have a single
90◦ pulse on 13C only. We saw before that this leads to an intermediate state in coherence
transfer, a combination ZQC and DQC:

2IxSz

90◦
x

13C→ −2IxSy = −0.5({DQ}y + {ZQ}y)

Now we have both the 13C and the 1H magnetization in the x′–y′ plane, not as independent
magnetization vectors but tied up together in a product of operators. This is a combination
of ZQC and DQC called collectively multiple-quantum coherence (MQC). In the HMQC
experiment, the 1H–13C DQC and ZQC precess in the x′–y′ plane at rates of νH + νC and
νH − νC, respectively, during the evolution (t1) delay (Fig. 11.46). Note that this coherence
cannot be called “1H” or “13C” coherence—it involves the entanglement of both nuclei in
a mutual dance. The effect of the 180◦ 1H pulse in the center is to convert DQC into ZQC
and vice versa:

{ZQ}x = 2IxSx + 2IySy

180◦
x

1H→ 2IxSx − 2IySy = {DQ}x

{ZQ}y = 2IxSy − 2IySx

180◦
x

1H→ 2IxSy + 2IySx = {DQ}y

Figure 11.45
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Figure 11.46

because only the Iy operator is affected by the 180◦
x

1H pulse. Thus, for the second half of
the t1 period, the ZQC that was evolving at a rate of νC − νH is now evolving at a rate of
νC + νH, for a total evolution of (νC − νH) × (t1/2) + (νC + νH) × (t1/2) = νC × t1. The
net evolution depends only on t1 and νC, so the t1 delay serves the same purpose as the t1
delay in HSQC: to indirectly measure the 13C chemical shift and encode this information
as a modulation of intensity of the 1H SQC that is detected in the FID. Even though we
only go “halfway” in the process of coherence transfer from 1H SQC to 13C SQC, we still
accomplish the goal of labeling the final 1H SQC with the chemical shift of the 13C.

The second 90◦ 13C pulse converts the ZQC and DQC back into antiphase 1H SQC,
which is refocused by the final 1/(2J) delay just as it is in the HSQC experiment. This
is an important theme that occurs in many of the more sophisticated NMR experiments:
multiple-quantum coherences (DQC and ZQC) cannot be directly observed, but they can
be created from SQC, allowed to precess, and converted back to measurable SQC. The
multiple-quantum coherences can be detected then, but only indirectly. Multiple quantum
coherence is essential to the DQF-COSY and DEPT experiments as well, so even though it
is difficult to understand it is very important in modern NMR and cannot be ignored.

The spherical operator description of the HMQC experiment is shown in Figure 11.47,
along with a diagram of the coherence order. As always, we observe negative coherence
order during t2 and positive coherence order during t1 (echo pathway). Because only the
13C chemical-shift evolution is observed during t1, we choose S+ in the DQC/ZQC product
operators. Working backward from I−, we have I−S◦ (antiphase 1H coherence) at the start

Figure 11.47
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Figure 11.48

of the refocusing period and I−S+ just before the second 90◦ 13C pulse. Because there is
only a pulse on 13C, the 1H coherence order cannot change. In the center of the evolution
period, the 1H 180◦ pulse converts I+S+ (DQC, p = 5) to I−S+ (ZQC, p = −3). The first
90◦ 13C pulse converts I+S◦ (antiphase 1H coherence) to I+S+ (DQC). Again, because
there is no 1H pulse at this point the I+ operator does not change. During the first 1/(2J)
delay, I+ undergoes J-coupling evolution to the antiphase product I+S◦. The coherence
order at each stage can be easily determined by adding the coherence order contribution of
each operator in the product, with +4 for I+, −4 for I−, +1 for S+, −1 for S−, and so on.
For example, I−S+ has coherence order −3: −4 (I−) +1 (S+). The chemical-shift evolution
can also be easily predicted from the operators: I+S+ will evolve at the rate νH + νC and
I−S+ will evolve at the rate −νH + νC (Fig. 11.46, top).

Once we have diagramed the desired coherence order pathway, it is easy to add gradients
to select that pathway. One simple solution is to use the 3, 4, 5 relationship of a right triangle:
3 × 3 + 4 × 4 = 5 × 5. Put a gradient in the first half of t1 of relative amplitude G1 = 5,
another in the second half with amplitude G2 = 3, and a third in the refocusing delay with
amplitude G3 = 4. As the coherence order p is 5, −3, and −4, respectively, during these
three periods, we have a total twist of:

�piGi = 5 × 5 + (−3) × 3 + (−4) × 4 = 25 − 9 − 16 = 0

The pulse sequence is shown in Figure 11.48. The net twist will be zero only for the
desired pathway: DQC → ZQC → 1H SQC. Of course, we have created a new problem:
the minimum t1 delay is now twice the time required for a gradient and its recovery. This
will lead to a very large phase twist in F1, so we can either present the data in magnitude
mode, where phase is not an issue, or insert the appropriate spin echoes to refocus the
chemical-shift evolution that occurs during the gradients.

11.9 UNDERSTANDING THE HETERONUCLEAR MULTIPLE-BOND
CORRELATION (HMBC) PULSE SEQUENCE

The HMBC experiment is just an HMQC experiment with the 1/(2J) delay set for a J
value of about 10 Hz (typical for two- and three-bond JCH) rather than 150 Hz (typical
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for one-bond JCH). This corresponds to a much longer 1/(2J) delay of 50 ms for remote
(multiple-bond) couplings compared to the 3.33 ms used for HMQC and HSQC (direct or
one-bond couplings). The protons we are interested in observing are two or three bonds
away from a 13C, and the carbon they are directly bonded to is very likely (99%) to be a
12C. The pulse sequence differs from the HMQC sequence in two ways:

1. Because of the signal loss due to T2 relaxation during the long 1/(2J) defocusing
delay, the 1/(2J) refocusing delay is omitted and we observe antiphase coherence in
the FID just as we do in the COSY and DQF-COSY experiments. One consequence
of this is that we cannot use 13C decoupling during the acquisition of the FID because
the antiphase lines in the F2 spectrum would cancel and there would be no signal.

2. To suppress the one-bond (HMQC) cross peaks, which would lead to wide doublets
in F2 centered on the position of the crosspeaks in the (13C-decoupled) HMQC or
HSQC spectrum, a simple trick is applied. After the first 1H 90◦ pulse a delay of
1/(2 1JCH) (or ∼3.33 ms) is followed by a 90◦ pulse on 13C. This is identical to the
start of the HMQC sequence, right down to the length of the 1/(2J) delay. This converts
the 1H magnetization from the proton directly attached to the 13C into ZQC and DQC,
but the 90◦ 13C pulse is phase-alternated (+x, +x, −x, −x) whereas the receiver is
not (individual FIDs from the first two scans are added to, not subtracted from, the
FIDs from the second two scans). This means that any observable 1H magnetization
that shows up in the FID due to this pathway will be canceled out by the phase cycle.
The 1H magnetization from protons that are two or three bonds away from the 13C,
however, is separating into antiphase much more slowly (1/(2 2,3JCH) ∼ 50 ms) so that
after 3.33 ms, it is essentially still in-phase 1H magnetization and is not affected by
the 90◦ 13C pulse (cos(πJτ) = 0.995, so only 0.5% of the signal is lost). What follows
is a much longer (50 ms) delay to allow these protons that are two or three bonds
away from the 13C to evolve into antiphase with respect to the 13C. Then a 90◦ 13C
pulse converts this 1H magnetization into ZQC and DQC that continues through the
pulse sequence as it does for the HMQC. This second 90◦ 13C pulse is phase cycled
with the receiver so that the coherences it generates are ultimately added together and
appear in the final FID. The pulse sequence is diagramed in Figure 11.49.

The refocusing delay just before acquisition has been eliminated, so the peaks in F2 will
be antiphase doublets separated by the long-range JCH (2–15 Hz). This splitting is in addition
to any 1H–1H splitting pattern already present in the 1D proton spectrum (Fig. 11.11). The
second 13C 90◦ pulse is phase cycled as before to make sure that only 1H magnetization

Figure 11.49
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Figure 11.50

that is converted to ZQC/DQC by that pulse is detected. Each FID coming into the receiver
is alternately added to and subtracted from the sum in memory. Another way to say this
is that the receiver phase is x, −x, x, −x in this scheme, and the desired signals, which
are also modulated in this way, will combine and add in memory. The first 13C 90◦ pulse,
which is a trap put there to “spoil” the signal of protons directly bound to 13C (the one-bond
signals) is phase cycled x, x, −x, −x for each set of four scans. Because the receiver phase
cycle is x, −x, x, −x, which does not match this pattern, the signals that arise from 1H
magnetization following this pathway are canceled by subtraction and eliminated from the
sum FID in memory. We can call this dual-purpose phase cycle a “four step” phase cycle;
the number of transients (Bruker: ns, Varian: nt) will have to be a multiple of four in order
for the cancelation of undesired signals to work.

Because the 1H chemical-shift evolution during the long (∼50 ms) 1/(2J) defocusing
delay is not refocused as it is in HMQC, HMBC data is normally presented in magnitude
mode. To make the data suitable for phase-sensitive presentation, it is necessary to insert spin
echoes to allow for refocusing of all unwanted shift evolution. For example, one can insert
simultaneous 180◦ pulses on 1H and 13C in the center of the long 1/(2J) delay, refocusing the
1H chemical-shift evolution (Fig. 11.50). To eliminate the 13C-bound 1H signal a different
strategy can be used: a variant of the BIRD sequence called TANGO delivers a 90◦ pulse to
the 13C-bound protons without exciting the 12C-bound protons (Fig. 11.51). The resulting
13C-bound proton coherence is then destroyed with a “spoiler” gradient, which has no
effect on the 12C-bound proton magnetization which is on the z axis. As long as we are
adding gradients, we can do coherence pathway selection by adding gradients during the two
halves of the evolution delay. Now we have a sequence that blocks the one-bond artifacts and
eliminates the “streaks” due to 1H coherence that is not correlated to any 13C, all in a single
scan. But the gradients during t1 create a new problem: again we can not start with t1 = 0 in

Figure 11.51
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Figure 11.52

our experiment; the minimum t1 value is twice the gradient time. This can be remedied by
introducing two 13C spin echoes in the center of the evolution delay to “make room” for the
two gradients (Fig. 11.52). Note that all chemical-shift evolution during the four � delays
cancels, for 1H and for 13C. This is just one example of how you can get creative with pulse
sequences: there are many ways to design an HMBC sequence and this is a very active area
of research (e.g., “CIGAR,” “ACCORDION,” “ADEQUATE,” “HSQMBC,” etc.). Some
sequences are designed for accurate measurement of long-range (2,3JCH) heteronuclear
coupling constants, and there are many different strategies for getting rid of the one-bond
artifacts (“low-pass filters”). Two big problems remain to be solved: removing the ambiguity
of two-bond and three-bond correlations, and eliminating homonuclear (JHH) J-coupling
evolution during the long (∼50 ms) 1/(2J) delay. The complex logic of puzzle solving in
interpreting HMBC data would be vastly simplified if we knew for each crosspeak whether
it is a two-bond or a three-bond relationship. The homonuclear J evolution distorts the peak
shapes by introducing antiphase terms, and this makes it difficult to accurately measure the
long-range JCH coupling.

11.10 STRUCTURE DETERMINATION BY NMR—AN EXAMPLE

A case study of covalent structure deterimation by 2D NMR will help to illustrate the cen-
tral importance of HSQC and HMBC, used in conjunction with the homonuclear COSY
and ROESY experiments. Oxidation of the natural product Pristimerin with DDQ in diox-
ane gave four products which were separated and purified (Fig. 11.53). The third fraction
(LGJC3, 4.1 mg) was dissolved in 0.5 mL of deuterated chloroform (CDCl3) and analyzed
by one-dimensional (1H and 13C) and two-dimensional (HSQC, HMBC, TOCSY, COSY
and ROESY) NMR using a Bruker DRX-600. In this case, we have a great deal of informa-
tion about the sample since we know its origin and we can imagine that most of the carbon
skeleton of Pristimerin is conserved in the product. In the following discussion, however,
the problem will be approached initially as a “white powder” unknown to show how much
we can conclude from NMR alone.

Carbon resonances in the 13C spectrum were numbered 1–32 in order of chemical shift
from the farthest upfield (c1) to the farthest downfield (c32). Using the HSQC spectrum,
the protons were named according to the carbon to which they are correlated, using “a” and
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Figure 11.53

“b” to indicate the downfield and upfield resonances of a geminal pair (CH2 group): h1,
h6a, h6b, and so on. To avoid confusion between this arbitrary numbering system and the
structure-based numbering system of Pristimerin (Fig. 11.53), lower case “c” and “h” will
be used for the arbitrary, chemical-shift based numbering (e.g., h23, c16, etc.) and upper
case “C” and “H” will be used for structure-based references (C-5, H-8, etc.). The advantage
of arbitrary numbering is that it does not bias us toward any particular structure and it does
not have to be revised as our structural model evolves.

11.10.1 1D 1H spectrum (Fig. 11.54)

There are clearly three one-proton olefinic peaks (6.1–6.6 ppm), two coupled to each other
with a 6.7 Hz coupling and a third coupled to one of the first two with a long-range coupling

Figure 11.54
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of 1.7 Hz. These might correspond to the original H-1, H-6, and H-7 of Pristimerin, with
the cis vicinal H-6 to H-7 coupling being the large coupling (6.7 Hz) and the long-range
coupling (1.7 Hz) being between H-1 and H-6, a 5-bond coupling through the extended
π system of the transoid diene (C1–C10–C5–C6). There are two OCH3 singlets, one at
3.30 ppm, typical of a methyl ether, and one at 3.58 ppm, closer to the typical chemical
shift for a methyl ester. A methyl ether is unexpected, and in fact for the first 1H spectrum,
run on a less pure sample at 200 MHz, this peak was ignored. In the cleaner sample at
600 MHz it is clear that both peaks integrate to around three protons. In the upfield region
(0.6–1.6 ppm) there are six methyl singlets, corresponding to the six methyl groups in the
triterpene skeleton of Pristimerin, attached at carbons 4, 9, 13, 14, 17, and 20. Most of the
other peaks are complex and overlapped.

11.10.2 1D 13C spectrum (Fig. 11.55)

Ignoring the TMS peak and the three CDCl3 peaks, there are 32 peaks in the 1H-decoupled
13C spectrum. One of these peaks, c22 at 77.23 ppm, was eventually assigned to the CHCl3
resonance (residual CHCl3 in the deuterated solvent and possible CHCl3 solvent left over
from extraction and purification), leaving 31 carbons in the compound of interest. Of these
31 peaks, nine are in the downfield region typical for olefinic, aromatic or carbonyl carbons.
Four of these nine peaks are in the typical olefinic region (116–131 ppm). Six are “short”
peaks, indicating that they are quaternary carbons, including one of those in the olefinic
region. Pristimerin would be expected to have ten downfield 13C peaks (sp2 carbons), nine
from the A-B ring system (C-1–C-8 and C-10) and one from the methyl ester carbonyl

Figure 11.55
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(C29), so it appears that one is missing. Perhaps one of these olefinic/aromatic/carbonyl
carbons was converted by DDQ oxidation to an sp3-hybridized carbon that appears in the
upfield (< 100 ppm) region (Fig. 11.55). LGJC3 (C31) has one more carbon than Pristimerin
(C30H40O4), consistent with the observation of an extra methyl group (methyl ether) in the
proton spectrum. Combined with the observation of one fewer sp2-hybridized carbon in
LGJC3, this suggests the addition of methanol to one of the sp2-hybridized carbons in the
extended π system (C-1–C-8 and C-10) of Pristimerin. A carbon peak observed at 86.6 ppm
in LGJC3 is typical for an oxygenated sp3-hybridized carbon, and this could be the carbon
in the triterpene backbone where the methoxy group is attached. If so, the chemical shift
puts it in the range of quaternary, singly oxygenated carbons as opposed to CH–O (70–80
ppm) or CH2–O (60–70 ppm).

11.10.3 2D HSQC Spectrum (Upfield Region: Fig. 11.56; Center and Downfield
Regions: Fig. 11.57)

This is an edited, 13C-decoupled HSQC spectrum with negative intensities (CH2/methylene
groups) shown in gray and positive intensities (CH/methine and CH3/methyl groups) in
black. The carbons with no hydrogens attached (quaternary carbons) do not show up in this
spectrum. A broad CH2 crosspeak was observed at δH = 1.26, δC = 29.7 due to long-chain
hydrocarbon grease ((CH2)n ), a common contaminant in solvents used for extraction and
chromatography. The methyl carbon crosspeaks (c1, 2, 3, 9, 10, and 13) can be easily
distinguished from the methine carbon crosspeaks because they are much more intense.
Thus 8 CH3 peaks (6 upfield and 2 methoxy), 7 CH2 peaks (one degenerate and 6 in “pairs”
at the same 13C shift), and 4 CH peaks (three olefinic and one aliphatic) were observed
in the HSQC spectrum, leaving 31 −8 −7 −4 = 12 quaternary carbons. By comparison
with the 1D 13C spectrum, the 12 quaternary carbons can be identified and fall into three
categories: five sp3-hybridized carbons without oxygen (30–45 ppm); one sp3-hybridized
carbon with one oxygen (86.6 ppm); and six sp2-hybridized carbons (130–196 ppm: the
“short” ones in the downfield region of the 13C spectrum). Primisterin has 7 CH3, 7 CH2, 4

Figure 11.56
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CH, and 12 quaternary carbons, of which five are sp3-hybridized carbons without oxygen
and seven are sp2-hybridized carbons.

Pristimerin LGJC3

CH3 7 8
OCH3 (1) (2)

CH2 7 7
CH 4 4
Cq: 12 12

sp3 (C) (5) (5)
sp3 (O) (0) (1)
sp2 (7) (6)

Total 30 31

Thus the HSQC data confirm that, compared to Pristimerin, LGJC3 has one additional
CH3 group (a methoxy) and one oxygenated quaternary sp3-hybridized carbon that corre-
sponds to a sp2-hybridized carbon in Pristimerin.

The only upfield (sp3-hybridized without oxygen) CH group in the spectrum (Fig. 11.56)
is the positive peak c18/h18. This would correspond to the aliphatic CH group C-18/H-18
at the D/E ring juncture in the Pristimerin structure. In the mid- and downfield regions
(Fig. 11.57), we see the methoxy CH3 groups 20 and 21 and the olefinic CH groups 24, 25,
and 26, all as positive crosspeaks.

The primary value of the HSQC spectrum is that it provides us with an accurate list of all
1H and 13C chemical shifts. This would not be possible from 1D data alone. This list (Table
11.1, columns 1, 2, and 4) is then our reference for assigning correlations from other 2D
spectra: HMBC (2–3 bond C to H), DQF-COSY (2-3 bond, occasionally longer, H to H),
and ROESY (< 5 Å in space, H to H).We can use this list by sorting it into two lists: one in
order of 1H chemical shift and one in order of 13C chemical shift. If, for example, we have an
HMBC correlation with F1 = 30.9 ppm, we would look down the list of 13C shifts until we
find something close to this value: c8. This is easy if the list is sorted by 13C shift, and we can
then look to the “neighbors” in the list to see if there is any ambiguity in the assignment.
If there are other carbons very near to 30.9 ppm (e.g., c7 at 30.6 ppm), we will have to
consider them as possible assignments as well; for example, we might assign the crosspeak
“c8/c7.” Keep in mind that the resolution of 2D spectra is considerably lower than that of

Figure 11.57
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1D spectra—especially in the F1 dimension. Two peaks may be clearly resolved in the 13C
spectrum but the corresponding crosspeaks in the HMBC spectrum may be too close to be
distinguished. Another way to use the HSQC spectrum is as a graphical “list” of chemical
shifts: many modern 2D data processing software packages allow the user to display more
than one 2D spectrum and align them so that a crosshair can be used to precisely compare
peak positions in the horizontal (F2) and vertical (F1) dimensions. To get a feel for this
capability a number of the figures below show a portion of the HSQC spectrum above or
to the side of the 2D spectrum (HMBC, COSY, ROESY, etc.) of interest so that the peaks
can be visually aligned. This makes it clear when there is overlap or near overlap so we can
determine if an assignment is unique (only one resonance at that chemical shift) or if we
need to put down multiple possible assignments. Accurate referencing is essential and all
spectra need to be acquired with the same temperature, solvent and concentration.

The assignment list (Table 11.1) includes lots of other information that will be discussed
as we come to the other correlation spectra. Carbon shifts come initially from the HSQC but
are then replaced by the more accurate values from the 1D 13C spectrum. Multiplicity, where
indicated other than “m” (multiplet) or “s” (singlet), comes from 1D slices of the HSQC
peaks along F2, so it only picks up the large (>4 Hz) couplings. The only exceptions are the
olefinic protons and h8a and h6a, which are resolved in the 1D 1H spectrum (Fig. 11.54).

11.10.4 2D HMBC spectrum (Fig. 11.58)

The figure is an expansion of the lower right corner of the full spectrum. Note that quaternary
carbons will show up in the HMBC spectrum, as long as there is a hydrogen within two
or three bonds of the carbon. Using our two chemical-shift lists, the HMBC crosspeak at
δH = 3.30, δC = 86.6 (Fig. 11.58 center left) can be assigned to h21 and c23, indicating that
the CH3O group (ether methoxy) is connected to the oxygenated quaternary carbon (three
bonds from the CH3O hydrogen to the quaternary carbon):

H3C − O − Cq

This quaternary carbon (c23) also correlates to the singlet methyl group h3 (1.53 ppm),
which correlates to two other downfield quaternary carbons: c27 (Fig. 11.58, center right)
and c32 (Table 1). One of the singlet methyl groups of Pristimerin (C-23) is unique in that it
is bound to an sp2-hybridized carbon and should give a 1H peak around 2.1 ppm (compare
to acetone, toluene, etc.). None of the carbon-bound singlet methyl groups of LGJC3 gives
a 1H peak downfield of h3 (1.53 ppm), so it appears that the “missing” sp2-hybridized
carbon in LGJC3 is derived from C-4 of Pristimerin (Fig. 11.53), which was changed
into the sp3-hybridized c23. This is consistent with the downfield quaternary carbons ex-
pected in the A ring (c27, c32 = C-3, C-5) that are correlated to the singlet methyl group
C-23/c3.

For a more systematic approach to solving the puzzle, a large number of these correla-
tions was tabulated and are included in the chemical-shift table from the HSQC spectrum
(Table 11.1, column 6). Using the HMBC data we can now begin to construct structural
pieces of the molecule. Since we have a very good idea of the general type of structure,
this is an easy process, but for the sake of illustration we will proceed at first without con-
sidering the Primisterin skeleton, as if we were dealing with a true unknown. The 1D 1H
spectrum (Fig. 11.54) shows eight singlet methyl groups, six of them in the upfield region.
These are excellent “handles” to start our analysis because they give very strong HMBC
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Table 11.1. Chemical shift assignments for LGJC3 in CDCl3

No. 1H (ppm) Mult. 13C (ppm) Type HMBC Carbons COSY Protons

1 0.60 s, 3H 18.4 CH3 5, 15, 18, 19
2 1.24 s, 3H 22.5 CH3 4, 15, 19, 28
3 1.53 s, 3H 27.1 CH3 23, 27, 32
4a 1.63 m 28.6 CH2

4b 1.54 m ” ”
5a 1.80 m 29.6 CH2 19
5b 1.65 m ” ” 11a
6a 2.21 br. d, 13.5 29.9 CH2 6b, 12a
6b 1.39 m ” ” 30 12b, 6a, 12a
7 — — 30.6 Cq

8a 2.42 d, 15.7 30.9 CH2 8b
8b 1.70 dd, 16, 8 ” ” 15, 30 18, 8a
9 1.10 s, 3H 31.6 CH3 7, 12, 14, 18
10 1.18 s, 3H 32.7 CH3 6, 8, 16, 30
11a 2.02 dd, 14, 5 33.4 CH2 5b, 11b/5a
11b 1.81 m ” ” 17 11a
12a 2.06 dt, 4, 14 34.8 CH2 12b, 6b, 6a
12b 0.98 br. dt, 14, 3 ” ” 6b, 12a
13 1.50 s, 3H 36.1 CH3 11, 17, 28, 29
14a 1.87 dt, 6, 14 36.4 CH2

14b 1.49 m ” ” 4b
15 — — 38.3 Cq

16 — — 40.5 Cq

17 — — 42.9 Cq

18 1.56 br. d, 8 44.2 CH 7, 15, 16 8b
19 — — 44.8 Cq

20 3.58 s, 3H 51.6 CH3 30
21 3.30 s, 3H 54.1 CH3 23
23 — — 86.6 Cq

24 6.17 d, 6.7 116.2 CH 17, 19, 27 26
25 6.45 d, 1.7 123.1 CH 17, 27 (26)
26 6.50 dd, 6.7, 1.7 127.3 CH 23, 28, 29 24, (25)
27 — — 131.0 Cq

28 — — 163.1 Cq

29 — — 175.2 Cq

30 — — 178.8 Cq

31 — — 182.0 Cq

32 — — 196.0 Cq

crosspeaks (three equivalent protons in a singlet) and must be attached to a quaternary car-
bon (singlet pattern in 1H spectrum). For example, h9 (CH3) shows HMBC crosspeaks to
c7 (Cq), c12 (CH2), c14 (CH2), and c18 (CH) (Table 11.1). This CH3 group (1H singlet)
must be connected to c7 (quaternary carbon) and this carbon must be attached to c12, c14,
and c18 (Fig. 11.59). Note that the correlation to c7 (Cq) is a two-bond relationship and
the correlations to c12, c14, and c18 are three-bond relationships. Because we know the
methyl group has to be attached to a quaternary carbon, the ambiguity (2 versus 3 bonds)



STRUCTURE DETERMINATION BY NMR—AN EXAMPLE 545

Figure 11.58

does not cause any confusion. In a similar way, the bonding networks can be constructed
for h1, h2, h3, h10, and h13 (Fig. 11.59). In the case of h1 and h2 there is clearly a shared
carbon since both CH3 proton signals are correlated to c15 and c19. Since both c15 and
c19 are quaternary, however, it is not possible to determine which one is connected to CH3
(h1) and which is connected to CH3 (h2). Note that c18 is shared by the h1 network and
the h9 network, and c28 is shared by the h2 network and the h13 network. In the case of
h3, there are only three HMBC correlations: CH3 (h3) is attached to c23 (Cq), which is
attached to c27 and c32 and an oxygen atom. This is the same quaternary carbon that is
connected to the OCH3 (methyl ether) group (see above). The h3 methyl group could also
have been connected to either c27 or c32, since these are also quaternary, but other HMBC
evidence shows that the structural fragment in Figure 11.59 is correct. Other ambiguities

Figure 11.59
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can be easily resolved: CH3 (h13) must be connected to c17 (Cq) since this is the only
sp3-hybridized quaternary carbon correlated to h13. If CH3 (h13) were connected to c28 or
c29 it could only show three HMBC correlations since c28 and c29 are sp2-hybridized and
can only be bonded to two carbons in addition to CH3 (h13). Likewise, CH3 (h10) must be
bonded to c16 for the same reasons (Fig. 11.59). In this fragment, we can add a methyl ester
since h20 (CH3) shows an HMBC correlation to c30, which has a chemical shift (178.8
ppm) consistent with an ester carbonyl group.

11.10.5 2D COSY Spectrum

Figure 11.60 shows a portion of the DQF-COSY spectrum of LGJC3 with part of the
HSQC spectrum aligned above it and, turned sideways, to the left side. There are cor-
relations from h18 (1.56 ppm) to h8b (1.70 ppm, strong) and h8a (2.42 ppm, weak).
Since these cannot be geminal couplings, we can assume that c8 is attached to c18 and
the relationship is vicinal (three bonds) between h18 and h8b and between h18 and h8a.
We can now connect the h1/h2 fragment to the h10 fragment (Fig. 11.61). Likewise, the
h6a COSY crosspeak to h12a (Fig. 11.60) allows us to connect the h9 fragment to the
h10 fragment. Because of the shared HMBC correlations from h1 (CH3) and h9 (CH3) to

Figure 11.60
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Figure 11.61

c18, the connection of c6 to c12 completes a six-membered ring: ring E of the triterpene
(Fig. 11.62).

Some crosspeaks are ambiguous due to overlap of chemical shifts. For example, a COSY
crosspeak is observed at 2.02 ppm (h11a) and 1.80 ppm (Fig. 11.60). Since h5a is in the
list at 1.80 ppm, we might assume that c5 is connected to c11. But h11b has a chemical
shift of 1.81 ppm, so the crosspeak could also be a geminal (two-bond) correlation between
h11a and h11b. Sometimes these ambiguities can be resolved by careful alignment and
comparison of the COSY and HSQC spectra, but in this case the ambiguity can be easily
resolved since another crosspeak is observed at 2.02 ppm (h11a) and 1.65 ppm (h5b). Since
h5b is a unique chemical shift, not overlapped with any other proton, we can safely conclude
that c5 is connected to c11. This completes another six-membered ring due to the shared
HMBC correlation from h2 (CH3) and h13 (CH3) to c28 (Fig. 11.63). COSY crosspeaks
between h14a and h4b, and between h14b and h4a (Fig. 11.60) close the D ring of the
triterpene (Fig. 11.64).

Finally, let’s examine the olefinic/aromatic fragment starting with the three olefinic pro-
tons in the 1D 1H spectrum, identified from the HSQC spectrum as h24, h25 and h26. There
is a 6.7 Hz coupling between h24 and h26, confirmed by a COSY crosspeak and consis-
tent with a vicinal coupling in a cis olefin. The long-range coupling between h26 and h25
(1.7 Hz) is confirmed by a weak COSY cross peak and indicates that h25 is located farther
away than three bonds from h26 on the h26 side of the olefin. In six-membered ring aro-
matic systems, we usually see strong three-bond HMBC correlations and weak or missing
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Figure 11.63

Figure 11.64

two-bond correlations. Thus from h24, h25, and h26 the fragment shown in Figure 11.65
can be deduced from the HMBC correlations, which are shown as arrows.

Many of the aliphatic fragments are now connected to this olefinic/aromatic portion,
including the h13 (CH3) fragment and the quaternary carbon c19 shared by h1 (CH3) and
h2 (CH3). The important methyl ether fragment identified from h3 (CH3) is connected, and
the correlation from h3 to c32 is particularly interesting since the chemical shift of c32
(196.0 ppm) is typical for a ketone carbonyl group. Comparison with Pristimerin, using

Figure 11.65
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Figure 11.66

Figure 11.67

Figure 11.68
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the h24, h25, h26 system for alignment, shows that this same carbon (C-3 of Pristimerin
numbering) is bonded to a phenolic OH group. Thus, it appears that the C-3–C-4 double
bond of Pristimerin has undergone addition of methanol and oxidation to the C-3 ketone
(Fig. 11.66). If this were the only change between Pristimerin and LGJC3, the mass would
increase by 30 mass units (methanol = 32, oxidation removes H2). In fact, the mass spectrum
of LGJC3 does show m/z 494 as the parent ion, 30 mass units heavier than the nominal
mass of Pristimerin (C30H40O4 = 464 Daltons). Thus, we can complete the structure of
LGJC3 by inserting c31 (the only fragment not accounted for so far) as an α,β unsaturated
ketone carbonyl (182.0 ppm) between c25 and c32 (Fig. 11.67). The ROESY spectrum
(Fig. 11.68) confirms the location of h25 close to h11a and h11b and h24 close to h4a
and h4b (Fig. 11.67). The crosspeaks are negative relative to the positive diagonal (negative
NOE). The presence of correlations to both members of a geminal pair is a good confirmation
of an NOE assignment.
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BIOLOGICAL NMR SPECTROSCOPY

12.1 APPLICATIONS OF NMR IN BIOLOGY

NMR initially grew from a curiosity for physicists into an essential tool for organic chemists,
but the more recent explosion in NMR technology and applications has been driven by the
use of NMR for structural biology. The drive for higher field strength and greater sensitivity,
as well as new technologies (such as gradients and shaped pulses) has made possible the
study of ever larger and more complex molecules, breaking the barrier from “small” organic
molecules (natural products, peptides, oligosaccharides, etc.) into the realm of proteins,
DNA, and RNA: the “informational” biomolecules. The precise three-dimensional (3D)
structure of these molecules and the geometry of their noncovalent interactions with small
molecules and with other biomolecules are the keys to understanding how biology functions
on the molecular level. Formerly the exclusive realm of X-ray crystallography, this structural
information is increasingly derived from NMR experiments without the need for crystals.
This field is extremely demanding and has not only pushed the development of NMR
hardware but also created an explosion of new NMR pulse sequences and techniques.

Biological NMR is a very broad field and we will attempt here only to list some of the
applications and then focus on just one: protein NMR spectroscopy in solution. Solid-state
NMR has been a very active area for biological molecules—either using fixed samples
such as multiple aligned sheets of lipid bilayers to study membrane-bound biomolecules,
or using very rapid spinning of powder samples tilted at the “magic angle” (54.74◦) to the
Bo field. This magic angle spinning (MAS) technique mimics the rapid, isotropic motion
of small molecules in solution to give narrow lines similar to solution-state NMR spectra.
Isotopic labeling of specific positions in a biological molecule, for example, with one
13C nucleus in one position and one 15N nucleus in another, allows very precise direct
through-space distance measurements. NMR imaging is a very active area of research in the
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medical field as well as in animal, plant, and materials studies. Applying gradients during
the acquisition of the FID replaces the chemical-shift scale with a distance (position within
the sample) scale, so that a physical map of H2O concentration in the human body can be
constructed. New methods give contrast in these images from not only water concentration
but also flow rate and direction, diffusion, relaxation (T1 or T2), and targeted injectable
contrast agents that can “light up” the locations of specific biomolecules in the body. By
synchronizing a fast imaging experiment to the patient’s heartbeat, a real time sequence of
images can be constructed for each stage of the heart’s cycle. Microimaging is made possible
by very strong field gradients, so that an ordinary wide-bore vertical NMR spectrometer
can be used for microscopy of plant or animal tissues. Imaging can also be combined with
spectroscopy, so that a separate NMR spectrum (e.g., 31P spectrum) can be obtained for
each volume unit (“voxel”) of the brain. Dispensing entirely with the imaging component,
in vivo spectroscopy can be used to study metabolism in cell cultures. Special NMR tubes and
infusion systems have been developed to grow cell cultures directly in the NMR tube, using
microimaging to monitor cell growth. Specifically labeled compounds can be introduced
and their conversion to metabolites monitored by 13C or 31P NMR spectroscopy.

In the solution state, NMR allows us to study molecular motion in detail. Pulsed-field
gradients allow the measurement of diffusion along any of the three axes (x, y, or z) as well
as the direction and speed of flow. Rotation of the entire biomolecule can be observed by
its effect on the relaxation parameters (T1, T2, and NOE) of any of the nuclei within the
molecule. By focusing on specific pairs of nuclei that are oriented in a fixed relationship
to the entire molecule (e.g., 15N–1H), we can measure the rotational diffusion rate about
any of the molecular axes. These random rotational motions are on the timescale of μs
to ns, but we can also look at internal motions that are faster than the overall molecular
motion (ns and faster). Because we can measure this for every pair (15N–1H or 13C–1H)
in the molecule, this “flexibility” can be mapped onto the three-dimensional structure of a
molecule to locate disordered regions or regions that become ordered upon binding of other
molecules. Slower motions (ms timescale) can also be detected and mapped to specific
regions, and these usually correspond to conformational changes that are essential to the
function of a biomolecule. In this sense, biological NMR is about biochemical function as
much as it is about three-dimensional structure.

In the 1980s the foundations were laid for a series of solution NMR techniques that
allow the determination of three-dimensional structure (conformation) of biomolecules
in solution. These methods were pioneered by Kurt Wüthrich at ETH in Zürich, using
small proteins such as bovine pancreatic trypsin inhibitor (BPTI). This approach has been
applied to increasingly more complex proteins and nucleic acids (DNA and RNA) and
more recently to the structure of molecular complexes (protein–protein, protein–DNA,
drug–DNA, etc.). Because NMR relies on local “reporters” (specific 1H, 13C, and 15N
nuclei within a molecule) it can be used to “map” the binding of small molecules or other
biomolecules onto the surface of a protein by observing perturbations of chemical shifts.
This technique, called “SAR by NMR” (structure-activity relationships by NMR), is now
used for screening of large libraries of small molecules in the drug discovery process. In
this book, we will be limited to outlining the general process of structure determination of
proteins, starting with small proteins at natural abundance and moving to newer techniques
involving uniformly 15N- and/or 13C-labeled proteins.

There are two kinds of solution-state NMR problems and up to now we have been
concerned entirely with the first: determining the covalent structure or bonding network of
a molecule. We are confronted with an unknown or incompletely known covalent structure
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of a “small” molecule, and we need to find out which atoms are connected to which and
in what stereochemical orientation (trans, cis, E, Z, equatorial, axial, α, β, etc.). These
problems come up in organic synthesis (confirmation of an expected product structure),
synthetic methods (ratios of products with different regiochemistry and stereochemistry),
in the oxidation or metabolism of natural products or drugs (known starting materials), and
in the “blue sky” or “white powder” pursuit of new natural products isolated from plants
and microorganisms. The tools for this pursuit are the experiments we have discussed in the
previous chapters: HSQC, HMBC, COSY, TOCSY, NOESY/ROESY, and the 1D selective
NOE and TOCSY experiments. From these experiments we get basic information about
chemical shifts, 1, 2, and 3 bond relationships between 1H and 13C, 2-3 bond relationships
between protons, 1H–1H distances, and 1H–1H and 1H–13C dihedral angles.

The second type of structural problem in NMR is the subject of this chapter: determining
the conformation or specific three-dimensional fold of a molecule with a known covalent
structure. The conformation must be relatively rigid, held together by a large number of
noncovalent interactions and hydrophobic forces, and specific with little or no heterogeneity
of structure. While conformation is sometimes of interest with small molecules, this type
of problem is found mostly in the area of biopolymers—large molecules composed of a
specific covalent sequence of unlike monomer building blocks and “folded” into a specific
three-dimensional shape. These systems include carbohydrates, peptides, glycopeptides,
proteins, double-stranded DNA, RNA, and the noncovalent complexes of any pair of these
molecules. The techniques include all of the 2D NMR tools used for small molecules (except
HMBC) and a number of new methods we will describe in this chapter: 1H/2H exchange,
uniform 15N, 13C and/or 2H labeling, 3D NMR expanding our homonuclear 2D experiments
(TOCSY and NOESY) into a third dimension using the 15N or 13C chemical shift, and 3D
and higher-dimensional “triple-resonance” experiments that rely on doubly-labeled (15N
and 13C) protein samples. We will also briefly mention two new techniques that extend
the size limit of molecules we can study (TROSY) and cross the boundary with solid-state
NMR by measuring the direct through-space dipolar (dipole-dipole) interaction, which is
normally averaged to zero by rapid isotropic tumbling in the solution state. The information
we obtain from these experiments includes sequence-specific chemical-shift assignments
for all spins (1H, 15N, and 13C) in the molecule, chemical shift deviations as indicators
of secondary structure (α-helix or β-sheet), degree of protection of amide N–H groups
from solvent, thousands of proton–proton dihedral angles and distances, sequence-specific
dynamics (order vs. flexibility), and in the case of the newest experiments the orientation of
N–H and C–H vectors relative to the rest of the molecule. This vast and heterogeneous store
of information is used in the process of structure calculation, which attempts to arrive at a
single three-dimensional structure (conformation) of the molecule that is most consistent
with all of these measurements.

12.2 SIZE LIMITATIONS IN SOLUTION-STATE NMR

12.2.1 Crystallography

X-ray diffraction (crystallography) has been around for much longer than NMR and has
been used to determine the precise three-dimensional structure of biomolecules as large as
viruses (molecular weight in the tens of millions!). This technique requires a high-quality
crystal and calculates a three-dimensional map of electron density for the molecule. The
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molecular structure (atoms and bonds) is then fit to this electron density map to generate
the precise coordinates of all atoms, which is what we call a “structure.” Because hydro-
gen does not contribute much to the electron density, the X-ray technique effectively only
sees the “heavy” atoms (N, C, O, P, S, etc.). In contrast, NMR determines the molec-
ular structure (conformation) directly in the solution state in the native environment for
biomolecules (water) by detecting primarily the hydrogens and measuring the short-range
distances (<5 Å) and dihedral angles (3-bond relationships) between them. Until recently,
solution NMR did not offer any way to determine global relationships (geometry of the
molecule relative to the outside world).

12.2.2 NMR

In terms of molecular size, NMR is the poor relation of X-ray crystallography. For natural-
abundance proteins we can use only homonuclear techniques (1H–1H J values and NOEs),
and we are limited to proteins of less than about 125 residues or a molecular weight of
around 12,000 amu (12 kiloDaltons or kD). These are very small proteins, and in the
early days of protein NMR there was quite a bit of competition for the relatively small
number of biologically significant proteins that were within the reach of the technique,
especially for those that did not already have an X-ray structure. A suitable NMR sample
must also be soluble and monomeric at a concentration very high compared to physiological
concentrations: a 1 mM sample with a volume of 0.5 mL is desirable, requiring a large
amount of pure protein.

Why are we so limited in the size of molecules we can study? The enemy of NMR
spectroscopy is overlap: we have a finite amount of “turf” to put our NMR peaks in—about
10 ppm for 1H—and we have to fit all the resonances of the molecule into that space. For
a specific type of proton with a particular relationship to electronegative atoms the space
available is even less: for example, an Hα proton in an amino acid residue will fall between
4 and 5 ppm, with an extreme variation of 3–6 ppm. The “footprint” of the resonance is
determined by a combination of the linewidth (width of each line in the multiplet) and the
coupling constants (separation of those lines) and might typically be about 30 Hz for an Hα

in a small protein. With a 600 MHz instrument, that corresponds to 0.05 ppm (30/600), so
we might be able to “fit” 20 of these in each ppm of real estate for a total of 60 in the extreme
“window” of 3–6 ppm for an Hα proton if we are extremely lucky and their chemical shifts
are spread out evenly. More likely the majority will be near the center of this window and
fewer will be near the edges. For a 100 residue protein, with 100 different Hα protons, there
will be overlap. Using 2D NMR techniques is helpful but eventually even in two dimensions
we will have overlap of crosspeaks, and unambiguous assignment of a resolved crosspeak
still requires that the 1D chemical shift be unique.

What happens to these difficulties as we increase the molecular weight of the protein
(Table 12.1)? Clearly, the number of resonances within the same chemical shift range
will increase and inevitably there will be more overlap and ambiguity of assignments. For
example, a NOESY crosspeak at F1 = 3.56 ppm and F2 = 9.28 ppm can be interpreted in
nine different ways if there are three HN protons with chemical shift 9.28 ppm and three
Hα protons with chemical shift 3.56 ppm. But this is not the only problem. As molecular
weight increases, T2 gets shorter and linewidth increases. The FID decays faster and the
Fourier transform of a fast-decaying signal is a broad Lorenztian peak. So the footprint of
each resonance is now larger, and we can fit even fewer unique chemical-shift positions into
the fixed range of chemical shifts for each type of proton (HN, Hα, aromatic, etc.). It’s like
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Table 12.1. Typical proteins and size limits for NMR

Protein MW Residues Chains Mass (1 mM/0.5 mL)

Insulin 5733 51 2 2.9 mg
Heregulin-EGF 7200 63 1 3.6

Approximate Limit with 1H only

RNase 12,640 124 1 6.3
Lysozyme 13,930 129 1 7.0
Myoglobin 16,890 153 1 8.3
Chymotrypsin 22,600 241 1 11

Approximate Limit with 1H, 15N and 13C Labeling

Hemoglobin 64,500 574 4 32
Hexokinase 96,000 ∼800 4 48
Glycogen Phosphorylase 495,000 4100 4 248 mg
Fatty Acid Synthetase 2,300,000 20,000 21 1.15 g
Tobacco Mosaic Virus 40 × 106 336,500 2,130 20 g

we have a fixed area of land, and we not only have more houses to put in it but the houses
are getting larger as well. In addition to the overlap problem, the peak height is reduced
because the intensity is spread out over a larger range of frequencies. Because the “peak
height” of the noise remains the same, the signal-to-noise ratio decreases and eventually
the peak “disappears” in a sea of noise.

12.2.3 Chemical-Shift Anisotropy

Why does linewidth increase with molecular weight? One reason has to do with chemical-
shift anisotropy (CSA, Chapter 2, Section 2.6), which is the dependence of chemical shift
on orientation of the molecule with respect to the Bo field. We saw that chemical shifts in
the benzene ring are particularly sensitive to orientation, but the same applies to the 1H,
15N, and 13C chemical shifts in an amide linkage and to a lesser extent at all positions
in a protein. In the extreme case of a solid sample, the molecules are all fixed in their
orientation and each resonance would be very broad because of the variation of chemical
shift with orientation over the whole ensemble of molecules in the sample. In the solution
state, small molecules are rapidly reorienting (“tumbling”) all the time with no orientational
preference (“isotropic” motion), so we see a single sharp line at the average chemical shift,
just as we saw in fast exchange (Chapter 10, Section 10.2) when different environments are
switched back and forth rapidly. As molecules get larger, though, they tumble more slowly
and the lines begin to broaden due to incomplete averaging of the different orientations,
just like exchange broadening. Because CSA (the range of variation of chemical shift with
orientation) is measured in ppm, the actual variation in hertz gets larger as we go to larger
Bo field. It is the variation in hertz that determines the tumbling rate necessary to average it
to a sharp line: 1/(2.22 �ν) is the NMR timescale for exchange coalescence, where �ν is
expressed in Hz. So if we try to get around the overlap problem by spending millions for
a very high field (e.g., 900 MHz) instrument, we are also broadening our lines due to this
CSA effect!
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12.2.4 Dipole-Dipole Relaxation

Even if we consider only the dipole–dipole interactions, T2 is determined entirely by the
tumbling rate of the molecule (Chapter 5, Fig. 5.14) and always decreases as the molecular
size increases because the tumbling rate decreases. T2 relaxation is dominated by the ZQ
pathway (αβ ↔ βα), and the population of molecules tumbling at this very slow rate gets
larger and larger as the molecular size increases (Chapter 5, Fig. 5.13). Linewidth is inversely
proportional to T2, so that even with perfect shimming the linewidth will increase steadily
with molecular weight:

Molecular weight Typical T2 Minimum �ν1/2 (Hz)

100 1.3 s 0.13
1,000 200 ms 0.80
10,000 50 ms 3.2
100,000 5 ms 32

Thus we cannot escape the depressing reality that T2 will get shorter and linewidth will get
bigger as we increase the size of the protein studied. The reduced T2 is not only a problem
for linewidth, but also causes loss of sensitivity as coherence decays during the defocusing
and refocusing delays (1/(2J)) required for INEPT transfer in our 2D experiments. The only
ray of hope comes in the form of a new technique called “TROSY” (transverse relaxation
optimized spectroscopy), which takes advantage of the cancellation of dipole–dipole relax-
ation by CSA relaxation to get an effectively much longer T2 value; we will briefly discuss
TROSY at the end of this chapter.

12.2.5 Sample Size

Another consideration is the amount of sample (in mg) required for NMR. Because it is
the concentration (mM) of molecules that determines the signal strength in NMR, as the
molecular size increases the desired concentration of around 1 mM corresponds to larger
and larger amounts of protein (Table 12.1). For a small protein (e.g., RNase at 12.6 kD)
the sample size is around 6 mg. Talk to a biochemist or molecular biologist if you think
this is a small amount of pure protein! Now move to chymotrypsin (22.6 kD), which would
require 11 mg of pure protein to be soluble and monomeric in 0.5 mL of water. For fatty
acid synthase, with 20,000 amino acid residues and 21 polypeptide chains, we would need
to dissolve 1.15 g of protein in our 0.5 mL sample volume, clearly an impossibility.

The mention of multimeric proteins brings up another issue: symmetry. As we already
said, the size problem in NMR is due to two factors: the complexity problem (too many res-
onances to fit in a fixed range of chemical shifts without overlap) and the linewidth problem
(decreasing T2 with increasing size). If we have a protein consisting of 10 identical subunits
arranged in a symmetrical fashion, there will only be 1/10 as many unique positions within
the molecule and the complexity problem is reduced by a factor of 10. But the linewidth
problem is still there because the molecule tumbles slowly due to its large physical size.
This is also true if you want to study a peptide or protein bound to a phospholipid micelle,
even if the micelle is fully deuterated and therefore “invisible” to NMR: the linewidth is
determined by the tumbling rate of the entire molecular assembly, in this case the peptide
plus the micelle.
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12.2.6 Uniform Labeling

There are still other tricks available to extend the size limit of protein NMR. Uniform labeling
with 15N allows us to bring in another chemical-shift scale—the 15N chemical shift—and to
the extent that different nitrogens in the molecule have a variation or spread (“dispersion”)
of chemical shifts, we can “pull apart” the overlap by introducing a third dimension in
our experiments: 3D NMR. A 3D experiment has the same beneficial effect on overlap
that we saw in going from 1D to 2D NMR, and we can now “cram” more resonances into
our spectra without ambiguity. Labeling both 15N and 13C allows us to transfer coherence
across peptide bonds and into the amino acid side chains with nothing but one-bond INEPT
transfers. Because INEPT transfer requires a delay of 1/(2J), the T2 loss associated with the
delay is greatly reduced if we rely only on the very large (30–150 Hz) one-bond couplings.
This is the basis of the “triple resonance” (1H, 15N, and 13C) experiments. With all of
these improvements we can extend the limit up to around 25–30 kD. Keep in mind that
determining the structure of a 30 kD protein is no picnic even with 15N and 13C labeling.
Research groups that specialize in this sort of thing have one subgroup focused on sample
preparation, one subgroup running NMR experiments, one analyzing the NMR data, and
one doing structure calculations. Even so, the whole process can take well over a year to
complete.

12.2.7 Deuterated Proteins

One of the things that shortens T2 in larger molecules is the dipole–dipole interaction, and
the biggest and most abundant dipole around is 1H. One way to reduce the dipole–dipole
relaxation is to replace the 1H with 2H (i.e., with deuterium, D). The magnet strength
(γ) of deuterium is about one seventh of that of proton, so the dipole–dipole relaxation is
much less. Even partial deuteration (e.g., 50% randomly distributed) will give a significant
improvement. In the extreme case of 100% deuteration we would have no 1H signals, but
even then we can exchange back the “labile” NH protons with H2O and have at least one
proton per residue. This not only radically reduces the complexity of the spectrum, even
within the NH region because aromatic protons are removed, but it does so at the cost of
a great reduction in information content of the NMR data: only NH–NH interactions are
observed in the NOESY.

In 3D experiments where 13C SQC of a Cα carbon is evolving (equivalent to t1 in a 2D
HSQC) we normally “decouple” the attached protons by inserting a 1H 180◦ pulse in the
center of the evolution period to reverse any J-coupling evolution. We could accomplish the
same thing by turning on 1H decoupling (e.g., waltz-16) during the 13C evolution period.
In deuterated proteins, the one-bond 2H–13C coupling, though only about one seventh
(∼20 Hz) of the 1JCH, can lead to significant broadening of the crosspeaks in the 13C
dimension, reducing their signal-to-noise ratio. The situation is even worse for a β-CH2
carbon. The solution is to apply broadband 2H decoupling during the 13C evolution period:
linewidths of Cα and Cβ resonances in the 13C dimension are significantly reduced, bringing
the peak heights up and out of the noise.

12.2.8 Why Bother With NMR?

With so many disadvantages to large-molecule NMR, you might wonder why we all
don’t trade in our magnets and spectrometers for area detectors and start doing X-ray
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crystallography. There are many unique advantages of NMR, the most important being the
lack of crystal packing forces. NMR structures are obtained in the native environment of
biomolecules without the artifacts of neighboring molecules packed together in a crystal
array. In some cases, the NMR structure has been shown to be quite different from the
crystal structure, in a way that provides more relevant insights into biological function.
Another advantage of NMR is that the feasibility of a project is known fairly early: all you
need to do is put it in an NMR tube and record a 1H spectrum. You can see right away if
the linewidth and the spread (dispersion) of chemical shifts is good enough to proceed with
2D experiments, isotopic labeling, and so on. Crystallography requires getting a crystal, a
difficult and time-consuming process, before any data can be obtained. There are also, of
course, “uncrystallizable” proteins that can never be studied by X-ray diffraction. NMR also
is a much more flexible technique, allowing for simple modifications of the medium such
as pH adjustment, temperature changes, and addition of small molecules. For example, an
active site histidine can be titrated to determine its pKa without interference of any of the
other histidine residues in the protein. To study the binding of proteins to other proteins or
to DNA we can just add the other biomolecule to the solution; the crystallographer needs
to start all over and cocrystallize the molecules, usually leading to a completely new and
different problem to solve. Finally, although the size limitations are severe for NMR, more
and more large proteins are being discovered that are covalent combinations of a number
of small, specifically folded polypeptide segments (“domains”) connected by short, flexi-
ble linkers. The linkers can be cut by mild and selective protease digestion, releasing the
domains as biologically active small proteins amenable to solution structure determination
by NMR. More recently new techniques, such as residual dipolar couplings (RDCs), are
being applied to determine the relative orientations of these domains in the whole protein.

NMR and crystallography should be viewed as complementary rather than competing
methods. Different kinds of structural information can be obtained, and information gleaned
from one technique can aid in the process for the other. Still, NMR is the “younger sister” in
the family and must meet a higher standard of proof to justify big spending and job security
in corporate research and development.

12.3 HARDWARE REQUIREMENTS FOR BIOLOGICAL NMR

Because of the demands of complexity and linewidth, the highest possible field strength is
required. Currently a serious biological NMR group will have an 800 MHz spectrometer
and possibly a group of 600s and 800s to accommodate the long experiment times (up to
3.5 days) and large array of experiments required for each sample. Organic chemists are
no longer driving the research and development of NMR spectrometers—it is the more
demanding experiments and deeper pockets of biological NMR research that is pushing the
envelope. Now a few research institutions are investing in 900 MHz spectrometers, which
cost many millions of dollars and require construction of an entire building to contain them,
all for a 0.5 mL solution of a biological molecule!

The simplest hardware requirement is a probe capable of doing water suppression
experiments in 90% H2O samples. “Water suppression” probes have carefully designed
shielding on the wires leading up to the proton coil, eliminating the possibility that these
wires can “pick up” an NMR signal from the solvent. Any solvent signal needs to be
sharp so that it can be effectively suppressed, so this “lead pickup” can be a big problem
because it leads to intense, broad solvent signals. Modern probes for biological NMR are
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“triple-resonance” inverse probes: the 1H coil (also used for 2H lock) is on the inside and
the outer coil is double-tuned to 13C and 15N frequencies (1/4 and 1/10 of the 1H frequency,
respectively). Of course, sensitivity of the probe is critical, and biological researchers
will pay a lot of money to get even a 10 or 20% increase in signal-to-noise. Gradients are
essential, and in some cases “triple axis” gradients (three gradient channels that produce
gradients along the x, y, and z axes) are desirable for optimal water suppression. The
engineering limitations of putting three gradient coils in a probe limit the sensitivity a bit,
so a single (z) axis gradient probe is usually preferred.

12.3.1 Cryogenic Probes

The latest fad in biological NMR is the cryogenic probe, which has a transmit/receive coil
cooled to 25 K. This reduces thermal noise in the coil and leads to an increase of up to 3–4
times in signal-to-noise ratio for 1H detection. The 1H preamplifier is also cooled to 25 K
so that thermal noise is minimized in the first stage of amplification of the FID. The sample
is still around room temperature, so the technical challenge of a distance of a millimeter or
so between the room temperature solution sample (∼25◦C) and the receiver coil at 25 K
(−248◦C) is considerable. This is accomplished by insulation with a high vacuum (∼10−8

torr) between the outside of the probe and the cold inner workings, maintained by a turbo vac-
uum pump that runs continuously. A helium gas refrigerator (two stages of helium compres-
sion and expansion) sits away from the magnet and sends cold He gas (∼10 K) into the probe,
returning warmer He gas. A heater block in the probe maintains the desired 25 K tempera-
ture and is in thermal contact with the probe coil and the preamplifier. One of the problems
with the cryogenic probe is that the advantages are considerably reduced in polar solvents
(such as water!) and particularly if salts are present in the solution. For biological NMR the
increase in signal-to-noise ratio is typically more like 2–2.5 times rather than 3–4 times, but
this is still a major improvement. The main advantage is that we can go considerably lower
than the recommended 1 mM concentration of protein. Sometimes a few hundreds of �M
is all the protein you can obtain, or all that will dissolve and remain in the monomeric state.

The spectrometer console has to have at least three separate channels to accommodate
triple-resonance experiments in which we detect 1H but use pulses on 1H, 15N, and 13C.
This leads to a problem in terminology because the older two-channel instruments have
only two boxes that produce RF energy: the “transmitter” and the “decoupler.” Varian uses
the term decoupler 2 (dec2) for the additional channel, whereas Bruker sticks to F1, F2,
and F3 for naming the three channels (not to be confused with the frequency axes of a 3D
experiment: F1, F2, and F3). Shaped pulse capability on all three channels is desirable. Many
spectrometers have a fourth channel for 2H decoupling (dec3 or F4). 2H decoupling is a
hardware challenge because the deuterium channel of the spectrometer is busy transmitting
and receiving the lock signal in order to stabilize the field strength over time with the
lock feedback loop (Chapter 3, Section 3.3). Spectrometers used for biological research
often have a “lock switch” that allows rapid switching between transmitting 2H pulses and
decoupling sequences and the continuous transmit/receive of the 2H lock feedback loop.

12.3.2 Gradient Shimming

The availability of pulsed-field gradients makes it possible to automatically shim using NMR
imaging techniques. In MRI we rely on the dominance of water in the human body to obtain
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Figure 12.1

a single, very strong 1H NMR signal. By applying a gradient during the acquisition of the
FID, the chemical-shift scale is transformed into a scale of physical position because there is
only one peak in the normal 1H spectrum. Biological NMR samples are similar in that they
have one enormous and dominant peak: the H2O peak. In the absence of water suppression
techniques, this signal can be used for NMR imaging to “map” the inhomogeneity of the
magnetic field along the gradient axis. The software then calculates precisely how much each
shim value will have to be changed and applies these changes to remove the inhomogeneity.
In principle, this would be the end and you would have perfect homogeneity, but in reality, it
takes several rounds of an iterative process: map the inhomogeneity, calculate and apply the
shim changes, and repeat. While gradient shimming is not limited to biological samples, it
is especially useful because the traditional manual shimming method is especially difficult
in D2O or 90% H2O samples. The D2O line in the lock system is broad and the lock level
(height of the 2H peak of D2O) does not respond much when shims are changed. Water
suppression techniques are sensitive to errors in higher order shims (e.g., Z4, Z5), and these
are nearly impossible to shim by hand.

The pulse sequence for gradient shimming is shown in Figure 12.1. This is an imaging
experiment, so the gradient is on during the acquisition of the FID. Consider a single-axis
(z-axis) gradient and a water signal that is precisely on-resonance. A small-angle pulse
creates H2O coherence that is then “twisted” into a coherence helix by the first gradient.
During the delay τ, water coherence will remain stationary in a perfectly homogeneous field
and the phase twist will be preserved exactly as it was at the end of the first gradient. The
second gradient, of opposite sign and twice the amplitude as the first, is applied during the
acquisition of the FID to “untwist” the helix (Fig. 12.2, left). The water molecules at the
top of the tube (z = +8 mm) are experiencing a magnetic field reduced by the gradient so
their magnetization vector is moving clockwise in the rotating frame during the recording
of the FID. The water molecules at the bottom of the tube (z = −8 mm) are in a region of
increased field due to the gradient so their magnetization vector is moving counterclockwise.
So the actual frequencies of these vectors are detected in the FID as distinct chemical-shift
values, each giving a peak at a different part of the 1H spectrum (Fig. 12.3, top). Water
molecules at the center of the tube experience an unaltered Bo field so they give rise to
a stationary magnetization vector during the FID, resulting in a peak at the center of the
spectral window. The helical phase twist caused by the first gradient unravels during the
second gradient and exactly halfway through the second gradient all of the vectors are
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Figure 12.2

exactly aligned again (Fig. 12.2, left). At this moment there is an “echo” because the FID
signal reaches a maximum when all the vectors align and add together from all levels of the
tube. The phase of each peak in the spectrum is determined by the position of the vector
at each level in the tube at this moment, halfway through the FID. Because they are all
aligned on the y′ axis (choosing y′ as the phase reference), all of the peaks in the spectrum

Figure 12.3
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are positive absorptive (Fig. 12.3, top). This tells us that during the delay τ the Bo field was
exactly the same at all levels of the tube and we have perfect field homogeneity.

Consider now what happens if the Bo field is not homogeneous. Let’s assume that there
is a Z1 shim error, which means a linear gradient in Bo along the z axis. During the τ delay
the vectors at each level will precess slightly away from the perfect helix created by the first
gradient because they are not perfectly on-resonance at each level. Suppose that the linear
Z1 gradient leads to an additional 45◦ rotation for each level, relative to the level above
it. This means that at the crucial moment at the center of the FID the H2O magnetization
vectors will not be aligned, but rather will have a helical twist of 45◦ phase change for each
1 mm of vertical distance (Fig. 12.2, right). This twist will lead to phase differences in the
peaks in the spectrum. Because each peak represents one of the levels in the NMR tube,
we see a progression of phase errors from left to right in the spectrum (Fig. 12.3, bottom):
0◦ (absorptive positive), 45◦, 90◦ (dispersive), 135◦, 180◦ (absorptive negative), and so on.
These phases can be directly “read off” the spectrum as a map of the Bo field along the
z axis. We know how long the τ delay is, so we can calculate back from the amount of
rotation (the phase difference) to obtain the deviation in rotation rate (in hertz) at each level.
Assuming that the Z1 shim has been “calibrated” so we know how much field change we
get for a given change in the Z1 setting, we could calculate exactly how much and in which
direction we have to change the Z1 setting to “erase” the difference in Bo field along the z
axis. This is automatic gradient shimming.

If the strength of the gradient used during the acquisition of the FID is 10 gauss/cm
(0.001 T/cm), the Bo field is changed by 1 gauss (0.0001 T) for each mm of distance along
the z axis. We know that a 500 MHz (1H) NMR instrument has a Bo field of 11.7 T, so 0.0001
T corresponds to (0.0001/11.7) × 500 MHz or 4.27 kHz for protons. The entire height of
the NMR receiver coil (16 mm) corresponds to a range of 16 × 4.27 = 68.4 kHz. This is
the width of our NMR signal (Fig. 12.3). A typical proton spectral window is 12.5 ppm
wide, corresponding to 6.25 kHz on a 500 MHz instrument, so for gradient shimming, we
are using a spectral window more than 10 times wider. Note also that it is the length of the
receiver coil, not the depth of the water in the sample tube, that determines the width of
the NMR signal in frequency domain. The water above and below the receiver coil is not
detected so it does not contribute to the spectrum. The amount of “inhomogeneity” at each
level can be calculated from the phase difference: if the delay τ is set to 3 ms (0.003 s), a
45◦ phase error corresponds to a difference in Larmor frequency of

cycles of rotation = 0.125 = �ν (Hz) × τ(s) = �ν (0.003); �ν = 0.125/0.003 = 41.7Hz

Thus we have a linear Bo field difference of 41.7 Hz per mm or 417 Hz/cm along the z axis.
We can describe field differences in hertz because we are talking about 1H frequencies, just
the same way we refer to an 11.7 T magnet as a “500 MHz” magnet. The field differences
along the z axis due to field inhomogeneity (bad shims) create phase differences in the
signals at each level in the NMR tube as a result of the 3 ms delay time, and the imaging
experiment (gradient on during the FID) separates these levels into different frequencies in
the spectrum. The phase differences at these different levels can be converted into a precise
map of the field strength difference (inhomogeneity) as a function of the z coordinate in the
NMR sample.

By now you may have realized that there is a continuum of water molecules in the sample
at all levels, not just at the 17 discreet levels we considered above. We can simulate the
spectrum we expect by adding together a very large number of NMR peaks, starting at the
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Figure 12.4

bottom of the receiver coil (z = −8 mm) and moving in small steps to the top (z = +8
mm), while incrementing the phase as we move up to model the Z1 shim error. The result
is shown in Figure 12.4, with five complete cycles of phase error from the bottom of the
coil to the top. The real spectrum and the imaginary spectrum, as well as the magnitude

(
√

(real2 + imag.2)) spectrum are shown. The phase at any position in the spectrum can be
determined by setting the intensity of the real spectrum (relative to the magnitude value)
equal to sin � and the intensity of the imaginary spectrum (relative to magnitude) equal to
cos �. The angle � is the phase.

I(real)/I(imag.) = sin �/cos � = tan �; � = arctan[I(real)/I(imag.)]

If the arctan (inverse tangent) function is defined to give values between +90◦ and −90◦,
we would have � moving linearly from −90◦ to +90◦ and then suddenly jumping back to
−90◦, but the software can unravel these discontinuities to generate a smooth field map. A
“control” experiment is done with τ = 0, and the control field map is subtracted from the
field map generated with the delay τ.

To calculate the changes in shim settings, we need an accurate “map” of the effect of
each shim on the Bo field as a function of the z coordinate. We need to know how many
Hz difference in field is created at each level of the sample by changing, say, the Z1 shim
by +1 DAC unit (shim units are called “DAC units” because they are integers that drive
the digital-to-analog converter to produce an analog current in the shim coil). The shims
can be mapped by changing each shim by a significant amount (e.g., 100 DAC units) and
remapping the field. By subtracting this field map from the map obtained before changing
the shim value, we know exactly what effect is produced for each 100 units of change in
that shim setting. Figure 12.5 shows an ideal shim map for shims Z1–Z6; from it we could
calculate the change in field at each level for any change in one of these six shim settings. The
mathematical problem is then to determine, for any arbitrary map of field inhomogeneity,
how much we need to change each of the six shims to generate a function exactly opposite
to this inhomogeneity to cancel it out and give us a perfectly homogeneous field. This is a
relatively simple fitting problem and the computer can solve it very quickly, automatically
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Figure 12.5

applying the shim changes to the six shim DACs and changing the currents in the shim coils
to correct for the inhomogeneity.

Some gradient probes have three gradient coils, oriented in the x, y, and z directions. With
a “triple axis” gradient probe and three pulsed-field-gradient amplifiers, one can generate
a 3D map of the field inhomogeneity, and using 3D maps of all of the shims, including
those involving the x and y axes (e.g., X, Y, XZ, YZ, XZ2, YZ2, XY, X2−Y2, X3, Y3,
etc.) corrections can be calculated for all of the shims, not just the Z shims. In a matter
of minutes, a spectrometer with 40 shim settings can be shimmed from zero shim current
in all 40 coils to nearly perfect homogeneity without using any human skill or judgement.
The only thing that is required is a sample with a single, very strong, and dominant peak.
For biological samples in 90% H2O, this single peak is the water peak, but the technique
has now been extended to samples in deuterated solvents (D2O, CDCl3, etc.) by using the
deuterium spectrum. In CDCl3, for example, the deuterium spectrum consists of a single,
very stong, and dominant peak: the 2H peak due to the solvent CDCl3. A bit of switching
hardware is needed to shut off the lock circuit and apply the same pulse sequence (Fig. 12.1)
at the deuterium frequency. Now automatic gradient shimming is routine even for samples
in fully deuterated organic solvents.

12.4 SAMPLE PREPARATION AND WATER SUPPRESSION

Water is the most relevant biological solvent. The amide protons (one for each peptide
linkage -HN–CO-) exchange with solvent water so it is not desirable to use D2O because
the HN becomes DN and can no longer participate in NMR experiments. Usually the solvent
is a mixture of 90% H2O and 10% D2O, with the D2O used for locking and shimming in the
NMR magnet. This requires some very fancy methods of water signal suppression to remove
the enormous H2O peak at 4.8 ppm (about 100 M in H2O protons vs. about 1 mM in protein).
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12.4.1 Buffers and pH

Although the most relevant pH for most biological molecules is near 7, the exchange of
amide protons (“HN”) with solvent H2O is very rapid at neutral pH, leading to exchange
broadening and weak or nonexistent NMR peaks for these protons. If we have fast enough
exchange, the HN protons spend the vast majority of their time in the much larger pool of
H2O protons and the average chemical shift is identical to the water chemical shift. The
minimum exchange rate occurs at pH 2–3, and early protein NMR studies were done at
this pH, but most of the work is now done between pH 4.5 and pH 7. Even at pH 7.5
life is getting difficult and 8.0 is a real challenge. Buffers for NMR include deuterated
acetate (CD3CO2Na + HCl titrated to pH 4.5), sodium phosphate (NaH2PO4/Na2HPO4),
and deuterated tris ((HOCD2)3CNH2 + HCl), typically at concentrations around 50 mM.
Salt (NaCl) sometimes has to be added up to 100 mM in order to provide the proper
ionic strength to solubilize the protein or prevent it from aggregating. Excessive salt is to be
avoided if at all possible because it leads to poor matching of the probe circuit and lengthens
the 90◦ pulse. With cryogenic probes salt is death to the sensitivity advantage you paid so
much for, and special care should be taken to use the best buffer for cryogenic probe work.
Usually sodium azide (NaN3, 1 mM) is added to prevent bacterial growth in the sample.
Samples are stored in a refrigerator (5◦C) and not frozen because freezing can break the
NMR tube and denature the protein. Special tubes (Shigemi tubes) are often used to reduce
the sample volume from 0.5 mL to around 0.3 mL (300 μL) just within the probe coil, filling
the remaining volume above and below the sample with a special glass whose magnetic
susceptibility is matched to that of water.

12.4.2 Referencing

TMS cannot be used in aqueous solution because it is not water soluble. For a chemical-
shift reference, a water-soluble equivalent (such as sodium d4-3-trimethylsilylpropanoate
((CH3)3SiCD2CD2CO2

−Na+, “TSP”)) can be added; the single 1H peak is defined as
zero ppm in water. The water peak itself can also be used as a chemical-shift reference,
but care must be taken to correct for the temperature dependence of its chemical shift.
Referencing of 13C and 15N chemical shifts can be done by using an accurate 1H reference.
If the exact chemical shift is known at the center of the 1H spectral window (usually the
water resonance), the precise radio frequency can be calculated for the zero point of the
1H chemical-shift (ppm) scale. For example, on a 600 MHz spectrometer with a reference
frequency of 600.13231564 MHz and a water chemical shift of 4.755 ppm:

ν(δ= 0, 1H) = νr − 600.13 Hz/ppm × 4.755 ppm

= 600.13231564 MHz − 2853.62 Hz = 600.12946202 MHz

Using the exact values for the magnetogyric ratios of 1H, 13C, and 15N, we can calculate
the frequencies corresponding to 0 ppm 13C and 0 ppm 15N:

ν(δ = 0, 13C) = 600.12946202 MHz × 0.25144953 (γC/γH)

ν(δ = 0, 15N) = 600.12946202 MHz × 0.101329118 (γN/γH)
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It is important to use the most accurate values available for these ratios and to do the calcu-
lation on a computer spreadsheet to avoid truncation errors. Once you have the frequency
corresponding to 0 ppm, the chemical shift at the center of the spectral window (“the car-
rier”) can be calculated from the reference frequency of the 13C or 15N channel as we did
above for the 1H channel.

12.4.3 Radiation Damping

The water signal from a 90% H2O sample is unlike any other NMR peak in that it is incredibly
intense, so intense that the FID signal in the probe coil is strong enough to turn around and
act on the sample as a pulse! This “pulse” then rotates the net magnetization vector of water
back toward the +z axis, effectively accelerating its transverse relaxation and broadening
the water peak. The worst thing you can do to water is to put it on the −z axis: after a 180◦
pulse the water net magnetization is very close to −z, but never exactly on it. It begins to
precess around the −z axis, and the tiny component in the x–y plane induces a strong FID
in the probe coil, which in turn starts to rotate the net magnetization away from the −z axis
(Fig. 12.6). As it rotates away, the component in the x–y plane increases, the FID signal
increases, and the rate of rotation increases as a result. The process accelerates until the water
magnetization reaches the x–y plane, where the FID signal in the probe is at a maximum
and the rotation rate is the greatest. It continues precessing and rotating until it reaches the
+z axis. If we view it in the rotating frame of reference with the water peak on-resonance,
we see only the rotation part and no precession: the vector starts near the −z axis and rotates
around the x′ axis at a rate that accelerates until it reaches the y′ axis and then slows down as
it approaches the +z axis. Keep in mind that relaxation by the normal T1 and T2 processes
cannot generate coherence: after a 180◦ pulse the z magnetization recovers from −Mo to
+Mo in an exponential fashion, without any rotation of the net magnetization vector. Dilute
solutions of water (e.g., in D2O) behave normally with quite long T1 and T2 times due to
the small size of the H2O molecule (see Fig. 5.17), but pure water (or 90% water) relaxes
very rapidly due to radiation damping, leading to a very broad water peak in the spectrum.

Figure 12.6
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Figure 12.7

Radiation damping is strongest when the probe is matched perfectly and has a very high
“Q” factor (a very sharp tuning “dip”), so one way to minimize it is to detune the probe a bit.

You can use radiation damping to your advantage as a very fast method for 1H pulse
calibration. With the water peak on resonance and the receiver gain set to a minimum, give
a single pulse near 180◦ and watch the FID (separate real and imaginary displays). At least
one of these displays (real or imaginary) will show a bell-shaped curve indicating the slow
rise of Mxy, rapid passage through a maximum and the slowing decay to zero. Figure 12.7
shows a simulation of the FID after a pulse on the −x′ axis, based on the assumption that
the radiation damping rotation rate (equivalent to a pulse on the x′ axis) is proportional to
the FID signal at each point, ignoring the normal T1 and T2 relaxation processes that are
much slower. A pulse less than 180◦ will leave the sample magnetization short of the −z
axis and My will start with a positive value (e.g., a 160◦ pulse). From there it immediately
starts rotating back toward +z, generating an FID that abruptly jumps up at the beginning.
A pulse closer to 180◦ (e.g., a 175◦ pulse) will leave the magnetization very close to −z,
so that the FID will start with a smaller value of My and then increase to the maximum
and fall to zero as the net magnetization rotates to +y and on to +z. A pulse greater than
180◦ (e.g., a 185◦ pulse) rotates the water net magnetization past the −z axis and starts the
FID abruptly with a small negative My value. This signal is of opposite sign, and so it now
rotates the water net magnetization in the opposite direction—toward the −y axis and on
to the +z axis. The FID signal has flipped upside down, with the same abrupt jump at the
beginning as it had for the 175◦ pulse. If the pulse is exactly 180◦, in a perfect world, there
would be no radiation damping and the water signal would very slowly recover from −z to
+z by normal T1 relaxation. But it is not a perfect world because the B1 field is notoriously
inhomogeneous and different parts of the sample experience a bit more than 180◦ and other
parts a bit less. Even in this perfect world, however, a pulse very slightly less than 180◦ (e.g.
179.9◦) leaves the magnetization slightly short of −z and thus starts with a tiny component
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in the x–y plane that generates a tiny FID. This FID acts on the water magnetization and
rotates it slightly, leading to a bigger FID. It takes a while for this to build up, but eventually
the FID becomes large enough to rotate all the way past +y and on to +z. The same lag
period occurs if we rotate just a hair beyond 180◦ (e.g., 180.1◦) except that now the rotation
builds up in the opposite direction and eventually passes −y on its way to +z. For pulse
calibration, we only need to adjust the pulse width to minimize the abrupt jump at the start
of the FID, and when we pass through 180◦ we will see the FID “flip” to the opposite sign.

Pulse calibration and careful probe tuning are important for water samples because the
ionic strength varies from sample to sample and can greatly affect the probe matching and
the pulse widths. You may need to calibrate the 1H pulse at more than one power level:
for example, high power for hard pulses, medium power for TOCSY mixing, low power
for waltz decoupling, and so on. In biological NMR, we invest a great deal of time in
each sample, sometimes acquiring many 2D or 3D datasets for a total experiment time
of many weeks. It is definitely worth the time to tune, match, and calibrate carefully. For
X-nucleus pulse calibration (13C, 15N), you will need to calibrate a hard 90◦ pulse as well
as a decoupling (GARP, WURST, etc.) 90◦ pulse at a lower power level. Usually this is
done on a standard sample, such as 13C-methyl iodide or 15N-benzamide, rather than on
the biological sample itself.

12.4.4 Water Suppression Techniques

The H2O signal is an enormous problem in biological NMR—water protons are about
100 M in concentration whereas the protein sample is about 1 mM, a difference of five
orders of magnitude! Even with good water suppression the water signal usually dominates
the FID, with the protein signal a “fuzzy growth” on the smooth curve of the water signal.
The receiver gain is a good measure of the success of water suppression: the smaller the
water signal in the FID, the more we can amplify the FID without exceeding the digitizer
limits. For simple presaturation (Chapter 5, Section 5.11), a receiver gain of 64 (rg, Bruker)
or 18 (gain, Varian) is about as high as you can get. If the receiver gain is set very low, the
noise that accumulates after the original FID received in the probe coil (including digital
noise in the ADC) dominates and the protein signal-to-noise ratio is drastically reduced.
Most of the water suppression achieved with presaturation is actually achieved in the phase
cycle, in the cancellation of the water signal after a number of scans.

The jump-return or “1, 1” method is a very simple and elegant solution because rather
than destroying the water signal it simply does not excite water in the first place. We saw in
Chapter 8, Figure 8.19 that a null in excitation occurs at the center of the spectral window,
and this can be adjusted to put the water peak exactly on-resonance. A jump-return NOESY
spectrum of a small protein will be shown later in this chapter. Jump-return and some more
complicated variations (“1, 1” - echo” and “binomial”) are not applicable to all experiments,
however, and require some careful tuning and adjustment to work well. They also distort the
peak intensities throughout the spectrum and greatly reduce the intensities near the water
resonance.

The Watergate method (Chapter 8, Section 8.6) uses gradients to “crush” the water signal
very effectively in a single scan. The advantage of Watergate is that the water net magnetiza-
tion is not destroyed until the end of the pulse sequence, so there is not much time for satura-
tion transfer (by exchange) to “bleach” the HN signals in the spectrum. If we fight water as an
enemy, we tend to destroy other signals that exchange with water or have an NOE with water
in the process of destroying the water signal. Watergate can be viewed as a “water-friendly”
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sequence because it leaves water alone until the very end. The disadvantage of Watergate is
that it cuts a fairly wide swath around the water signal (see Chapter 8, Figs. 8.22 and 8.23),
greatly reducing the intensity of Hα signals near the water peak. This may not be a problem
in many experiments where we are only interested in the HN resonances in the F2 dimension.

Another commonly used technique is the water “flip-back” pulse, a shaped pulse designed
to selectively rotate only the water magnetization by 90◦, putting it back on the +z axis
after a “hard” (nonselective) pulse has rotated all of the sample magnetization into the x–y
plane. Water can be viewed as a wild and powerful bucking bronco—it must be tamed and
never allowed to get out of its pen. The best place for water is on the +z axis where it will
not do any harm. This is the rationale behind the flip-back pulse: every time water is moved
from the +z axis, use a selective pulse to put it back there.

Water suppression is not a routine technique or a technique for beginners! Everything has
to be perfect, and it is worth the trouble to make some adjustments and fine tuning. If you
do not do it right, you will get an enormous signal and the most common result is receiver
overflow (exceeding the limits of the ADC). This leads to “clipping” of the FID and terrible
distortions of the baseline of the spectrum. If the receiver gain is turned down to correct for
this, the signal-to-noise ratio can suffer so much that you do not even see the protein signals.

In a 2D experiment, be sure to start the experiment and check that the first scan of the
first FID does not exceed the digitizer limits. Then let the experiment continue until you
see the first scan of the second FID. This may be different because the F1 phase encoding
(TPPI or States) requires that the preparation pulse phase be changed by 90◦ for the second
FID (x′ for FID 1, y′ for FID 2). Especially in spin-lock experiments (TOCSY or ROESY),
the spin-lock axis might be destroying the water signal in the first FID (water magnetization
perpendicular to the spin-lock axis) and preserving it in the second (water magnetization
co-linear with the spin-lock axis). If you optimize the receiver gain only for the first FID
(Bruker rga command; Varian gain = ‘n’), you might end up with a huge ADC overflow in
the second FID (and all subsequent even numbered FIDs) of the 2D experiment. This can
be the cause of complete failure of many experiments.

12.4.5 Other Solvents

Peptides (short polypeptides) often function as important biological ligands, binding to re-
ceptors at a membrane surface. Many are too hydrophobic to be soluble in water at millimolar
concentrations. The argument has been made that molecules that bind to membrane receptors
should be studied in a medium that mimics the hydrophobic membrane environment in order
to obtain the relevant conformation that binds to the receptor. One option is to use d6-DMSO
(CD3SOCD3), an excellent solvent that practically freezes exchange and makes NH and
even OH protons give sharp resonances with J coupling to neighboring protons. Sometimes
trifluoroethanol (TFE) is added to water to increase the strength of intramolecular hydrogen
bonds and increase helicity of peptides for NMR studies of conformation. Another approach
is to add deuterated micelles to 90% H2O in order to provide a “membrane” environment
for a peptide solute. Fully deuterated lipids, such as deuterated dodecylphosphocholine
(DPC-d38), can be added up to a concentration above the critical micellar concentration,
solubilizing the most hydrophobic peptides. Because the molecular weight of a micelle is
quite large, specific tight binding of a peptide at the micelle surface will drastically broaden
the NMR lines. Often the binding is nonspecific, however, simply providing a “drop of
grease” for the peptide, and the NMR lines remain sharp. The biological relevance is limited
because the exact nature of binding to the micelle is seldom determined; in some cases,
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the peptide may simply “steal” a few molecules of detergent from the micelle to become
solubilized.

12.5 1H CHEMICAL SHIFTS OF PEPTIDES AND PROTEINS

Proteins are linear polymers of amino acids, with each amino acid unit (“residue”) chosen
from the 20 natural amino acids, which differ only in the side chains (Fig. 12.8). From the
point of view of NMR, we can describe each amino acid residue spin system as starting with
the proton on the backbone nitrogen (“HN”) and moving to the proton on the α-carbon (Hα)
and out to the side chain (Hβ, Hγ , Hδ, Hε, etc.). Typical regions of proton chemical shifts
are backbone amide HN (peptide linkages, 7–11 ppm), side-chain amide HN (Asn and Gln,
6–7.5 ppm), aromatic protons (6.5–8 ppm), alpha protons (CαH, 3.5–5.5 ppm), side-chain
protons (−0.5 to 3.3 ppm unless close to oxygen), and methyl groups (−0.3 to 1.3 ppm
unless connected to S). Surveying the types of amino acid spin systems, we start with glycine,
which has two nonequivalent Hα protons and no side chain, followed by the “hydrocarbon”
side chains (alanine, valine, leucine, and isoleucine). These all have methyl groups that
give prominent strong upfield peaks in the NMR spectrum. The pair of methyl groups
in valine and leucine is nonequivalent and gives rise to two nearby resonances. Proline is

Figure 12.8
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unique in that it lacks a backbone HN proton—the δ-carbon of the five-membered ring takes
its place. Serine and threonine have alcohols in the β-position, pulling the Hβ resonance
downfield to a position near the Hα resonance. Many of the amino acids have the spin system
CH–CH2 that can be called a three-spin or AMX system (ignoring the HN): serine, aspartate,
asparagine, cysteine, and all of the aromatic amino acids. The two β-protons nearly always
have different chemical shifts (Hβ and H′

β) due to the chiral environment. Another group of
amino acids have the spin system CH–CH2–CH2 known as five-spin (again ignoring HN):
glutamate, glutamine, and methionine. The basic side chains of arginine and lysine lead to
long spin systems: CH–CH2–CH2–CH2–N and CH–CH2–CH2–CH2–CH2–N. These are
complex but can usually be identified by the CH2 next to the side-chain nitrogen, which
is shifted downfield. As the side chains get longer, one generally sees separate resonances
only for the β-protons—the γ and δ CH2 groups often give a single “degenerate” chemical
shift. The aromatic rings of phenylalanine, tyrosine, tryptophane, and histidine form their
own spin systems, separate from the HN–CH–CH2 spin system, as do the side-chain NH2
groups of asparagine and glutamine and the methyl group of methionine.

Figure 12.9 displays graphically the proton chemical shifts of all 20 amino acids in an un-
structured peptide context. These are called “random coil” chemical shifts because they are
not influenced by the through-space effects observed in specifically folded proteins. In this
environment, there is not much chemical-shift dispersion: HN falls between 8 and 9 ppm,
Hα between 4 ppm and the water resonance (∼4.8 ppm), and the side-chain HN resonances

Figure 12.9
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are between 6.5 and 7.6 ppm. Note that the CONH2 groups at the end of the Asn (N) and Gln
(Q) side chains have distinct chemical shifts for the two HN protons due to hindered rotation
of the amide linkage (circles with a cross). As we move outward in the “hydrocarbon”
side chains, the chemical shifts move upfield because the distance to the nearest functional
group (α-amino and carbonyl of the backbone) increases. The methyl groups appear at the
“classic” hydrocarbon positions of about 0.8 ppm. Long side chains of repeated methylene
units show the same behavior, but the trend then reverses when there is a nitrogen at the end:
CH–(CH2)n–N. We see this for Lys (K), Arg (R), and Pro (P), which have shifts of 3–3.6
ppm for the last CH2 before the nitrogen. The most upfield methylene group is the γ-CH2
because it is far from both the backbone functional groups and the nitrogen at the other end
of the chain (backbone N in the case of Pro). Proline lacks an HN but the position of the
δ-CH2 is similar to where the HN would be located, so the same kinds of NOE interactions
can be observed.

We see this effect of the last CH2 group shifting downfield to a lesser extent in the
five-spin systems Glu, Gln, and Met. The carbonyl group (Glu, Gln) or sulfur (Met) “pulls”
the γ-CH2 group downfield to the 2–3 ppm range. Even farther downfield than the final
CH2 of the chains ending in nitrogen are the β-protons of Ser and Thr, which are on an
oxygenated carbon. These Hβ resonances are near the Hα at around 4 ppm, standing out
clearly from the other amino acids.

The first goal of an NMR study is to identify the spin systems present and assign each one
to one of the 20 amino acids or at least to a group of amino acids. In a 2D TOCSY spectrum
in 90% H2O we can observe the entire spin system at the F2 position of the HN proton (see
Chapter 9, Fig. 9.45). Many of these patterns of chemical shifts are unique to one of the 20
amino acids. For example, valine has a β-proton at 2.1 ppm and two diastereotopic methyl
resonances at around 0.8 ppm. This pattern is clearly recognizable in a TOCSY spectrum,
and so we know it is a valine residue. A protein will typically have a number of valines in the
sequence, so at this point we only know that it represents one of these residues. Other spin
systems fall into a group of amino acids. For example, a number of amino acids have the
spin system CHα–CH2–R where R is a “dead end” for J coupling: a quaternary carbon or
a heteroatom (such as oxygen or sulfur). These are called AMX or three-spin systems, and
they include Asp, Asn, Cys, Phe, Tyr, Trp, and His. All have, in addition to the backbone HN
and Hα, two Hβ resonances in the vicinity of 3 ppm (2.6–3.4 ppm). If we observe this pattern
in a TOCSY spectrum along an HN line, we can conclude that it belongs to this “AMX”
group of amino acids. Serine is technically an AMX spin system (CHα–CH2OH), but the
β-protons are shifted farther downfield by the oxygen, closer to 4 ppm and just upfield of the
Hα resonance. This makes Ser a recognizable “unique” spin system rather than part of the
AMX group. Another group can be recognized from chemical shifts as “five-spin” systems
(Fig. 12.9): CHα–CH2–CH2–R, where again R is a “dead end”: Glu, Gln, and Met. The two
β-proton resonances appear around 2 ppm and the γ-protons (which may or may not be
degenerate) are farther downfield (2.3–2.6 ppm). This pattern can usually be distinguished
from the AMX pattern.

12.5.1 Sequence-Specific Chemical Shifts in Structured Proteins

The random-coil chemical shifts shown in Figure 12.9 have very little variation in HN or
Hα chemical shifts among the 20 amino acids. Furthermore, if we have more than one of a
particular amino acid in an unstructured protein, they will be indistinguishable by chemical
shift. Sometimes proteins are observed in an “unfolded” state, and this can be clearly seen
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Figure 12.10

from the COSY or TOCSY spectrum, looking at the “fingerprint region” of F2 = HN and
F1 = Hα. If all of the amino acid residues are showing the random-coil shift values, we
would see all of the HN–Hα crosspeaks in a small region less than one ppm wide in each
dimension (HN 8–9 ppm, Hα 4–4.8 ppm) and there could be no more than 20 crosspeaks
regardless of the size of the protein (Fig. 12.10). Even if a protein has folded only to the
extent of “hydrophobic collapse” (aggregation of the hydrophobic side chains to protect
them from water) we will see this very poor dispersion of chemical shifts. This state is
called the “molten globule” state because these hydrophobic clusters are like drops of oil
in a liquid state—they do not have the very specific packing arrangements of side-chains
characteristic of folded (native) proteins. An unfolded or molten globule form of a protein
can easily be identified by NMR, even from a 1D proton spectrum, because of this very poor
dispersion. If part of a protein is disordered, those residues will fall in the narrow “random
coil” chemical-shift range and will also give much sharper and stronger crosspeaks because
their greater flexibility gives them the long T2 values of a smaller molecule.

In a folded protein, the random-coil chemical shifts are changed slightly by the immediate
environment of the spin system in a protein: the precise orientations of nearby aromatic rings
and peptide bonds lead to specific changes in these chemical shifts due to through-space
effects of unsaturated “ring currents” (anisotropic effects). Thus in a protein there may be
many serine residues but each one will have slightly different chemical shifts for the HN,
Hα, and two Hβ protons. This is illustrated by some of the 1H chemical shifts for a small
(63 residue) globular protein, the Heregulin-α EGF domain (Fig. 12.11). Heregulin-α is a
protein ligand for a membrane receptor associated with breast cancer, and the EGF domain
is a part of this protein “cut out” for structure determination by NMR. The “generic”
chemical shifts for each residue type (e.g., glycine) are shown above the specific residue
chemical shifts for each occurrence of that amino acid in the protein. There are seven
lysine residues, for example, and each one has a unique pattern of chemical shifts similar
to the random coil values (in the same general region of the spectrum) but not identical.
Because the Lys side chain is charged and likely to be exposed to solvent, we do not see
a great deal of variation in the side-chain chemical shifts, but the backbone (Hα and HN)
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shifts are widely separated, ranging from 7.7–9.6 ppm for the HN resonances (random coil
HN is 8.4). Similar variations are seen for each of the amino acids found in the protein (e.g.,
4 Gly, 3 Ala, 4 Leu, 5 Val, 3 Pro, 6 Cys, 3 Phe, and 2 Tyr). This sequence-specific variation
of chemical shifts is what makes protein NMR possible: each residue in the sequence has
its own “address” (set of precise chemical shifts) that allows us to measure distances and
dihedral angles from a vast number of precisely defined positions within the protein. Before
we can use these addresses, however, we need a “phone book” that pairs up the chemical
shifts with the sequence-specific locations within the protein. For example, we need to know
that the resonance in the 1H spectrum at 9.80 ppm (farthest left in Fig. 12.11) is not just an
HN resonance and not just the HN of a phenylalanine residue, but that this resonance is the
HN of Phe 21: a single specific proton in the entire molecule. It’s like looking in the phone
book and finding several pages of “Jones”: we need the address of one particular Jones,
Samuel P. Jones, in order to find his house and make a map of his neighbors. We have already
encountered this process of assignment with natural products, but it is more complicated in a

Figure 12.11
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protein because of the regular repeating units and the multiple copies of identical monomers
in a biopolymer. The chemical-shift dispersion due to specific environments in a protein
makes sequence-specific assignment possible. Some proteins are more difficult than others
due to the lack of chemical-shift dispersion even in a fully folded structure. A sequence
with few or no aromatic amino acids will be a challenge from an NMR perspective because
the aromatic rings are a major source of chemical-shift dispersion. A protein with primarily
α-helix secondary structure is more difficult than a β-sheet protein because the β-sheet
produces larger deviations in chemical shift.

12.5.2 Secondary Structure

The variation in chemical shifts for the multiple copies of a particular amino acid is the result
of two factors: one is the essentially random effect of aromatic rings oriented in a precise
relationship to the proton in question (Chapter 2, Figure 2.15 ), shifting it upfield (shielding
region above and below the ring) or downfield (deshielding region in the plane of the
ring). This is a result of the tertiary structure of the protein: the precise three-dimensional
folding of the polypeptide backbone and all of the side chains. The second factor is the
relative position of the backbone carbonyl groups of the peptide bonds. This is also a
through-space (anisotropic) effect due to unsaturation, but it correlates with certain common
medium-range folding motifs in proteins: the α-helix (Fig. 12.12) and the (antiparallel)
β-sheet (Fig. 12.13). In the figures, hydrogen bonds are shown as dotted lines. These motifs
are called secondary structure, and they constitute the structural building blocks of proteins.
Note that in the β-sheet the carbonyls and the NH groups alternate direction along the strand,

Figure 12.12
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Figure 12.13

whereas in the α-helix all carbonyls point in one direction and all NH groups point in the
opposite direction. These repeating geometric arrangements lead to a correlation between
secondary structure and chemical shift. Both the HN and the Hα chemical shifts move
downfield from their random coil values when the residue is in a β-sheet structure, and
upfield when it is in an α-helix. For example, of the seven Lys residues in Heregulin-α
EGF domain (Fig. 12.11), the HN shift of K35 (9.6) is shifted far downfield from the lysine
random-coil value (8.4) and the HN shift of K11 is shifted far upfield (7.6 ppm). In fact,
K35 is located in a β-sheet and K11 is part of an α-helical portion of the protein structure.
The same patterns are seen for the Hα protons: Hα of F40 (5.6) is shifted downfield from
the phenylalanine random-coil Hα value (4.7), and Hα of F13 (4.1) is shifted upfield. In
the 3D structure, F40 is in a β-sheet and F13 is in the single α-helix. Note that we have
to compare sequence-specific chemical shifts to the random-coil shifts for the same amino
acid because there is some dependence on the amino acid type even when there is no
specific conformation (Fig. 12.9). This predictive tool can be formalized by subtracting
the random-coil shift from the actual shift for each residue to obtain the “chemical-shift
deviation” (CSD) for that residue. For example, the Hα CSD is −0.6 for F14 in Heregulin-
α EGF domain (4.1–4.7 ppm). To simplify the prediction even further, one can define a
“chemical-shift index,” which is +1 if the CSD is greater than or equal to 0.1 ppm, −1 if
CSD is less than or equal to −0.1, and zero if it is between +0.1 and −0.1. A bar graph
of these CSI indicators versus the residue number will show a string of +1 values for a
strand of a β-sheet and a string of −1 values for an α-helix. Thus with nothing more than
sequence-specific assignments and a list of chemical shifts, we can begin to identify the
secondary structure building blocks of the 3D protein structure. Figure 12.14 shows the
CSI values for Heregulin-α EGF domain with the β-strands and α-helix identified from the
final 3D structure. A fairly long “run” of negative CSI values (residues 5–13) even with
a few gaps, identifies an α-helix. Long runs of positive CSI values (residues 19–24 and

Figure 12.14
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32–37) indicate extended strands of a β-sheet. Blank regions (25–31 and 54–61) may be
unstructured or at least lacking in regular secondary structure. Because we are ignoring the
“random” factors—the orientation of nearby aromatic rings—which can significantly affect
chemical shifts and which have no relationship to secondary structure, the CSI is only a
broad indicator and will not correlate perfectly with the final structure. Still, it is extremely
useful and requires nothing more than sequence-specific assignments.

Ideally, every proton in the protein structure would have a unique chemical shift,
different from every other proton. In NMR, we can only identify a proton by its chemical
shift, so if two protons have the same chemical shift all of the information associated with
them—NOE distances and dihedral angles—becomes ambiguous. One way to overcome
this “overlap” problem is to measure the chemical shifts of heavy atoms: nitrogen and
carbon. If we replace every N and C (normally 14N and 12C) with spin-½ 15N and 13C, we
can now distinguish two protons with identical chemical shifts by the (usually) different
chemical shifts of the carbon or nitrogen they are connected to. This has led to the possibility
of studying larger proteins with a complex array of new experiments in which magnetization
is “tossed around” between 1H, 15N, and 13C nuclei. These experiments, mostly 3D, are
called “triple-resonance” experiments because they include pulses on all three of these
nuclei.

12.6 NOE INTERACTIONS BETWEEN ONE RESIDUE AND THE NEXT
RESIDUE IN THE SEQUENCE

Using DQF-COSY and TOCSY we can link all of the protons within a single spin system,
which corresponds to a single amino acid residue. We can classify each spin system as a
pattern of chemical shifts unique to one amino acid or as a member of a class: AMX or five
spin. In order to get sequence-specific assignments, however, we have to have some way to
correlate protons in one residue to protons in the next residue in the sequence. For unlabeled
proteins this is done by NOE interactions: certain protons in one residue are constrained
by the peptide bond to be close in space to certain protons in the next residue. These NOE
correlations are called sequential or “i, i + 1” because they correlate a proton in residue “i”
with a proton in the next residue in the sequence, residue “i + 1.” Specifically, we expect
to see NOE correlations between Hα of residue i and HN of residue i + 1 (Fig. 12.15) and
sometimes between the Hβ protons of residue i and the HN of the next residue. Because
the DQF-COSY and TOCSY spectra correlate protons within a residue, we can move from

Figure 12.15
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Figure 12.16

HN of residue i + 1 to Hα of residue i + 1 via the J coupling. This sets us up for the
next sequential NOE “jump” from the Hα of residue i + 1 to the HN of residue i + 2
(Fig. 12.16). This is similar to the “walk” along a carbon chain using COSY data, except
that now we alternate between NOE interactions (2D-NOESY) crossing the peptide bond
(a dead end for J couplings) and J couplings (2D-COSY) to move to the next residue’s Hα.
Using this strategy we can “walk” along the polypeptide backbone and directly “read off”
the chemical shifts of each Hα and HN, assigning them to specific residues in the protein.
These sequential NOEs, known as “α,N” and “β,N” NOEs, are directional and will not be
seen in the other direction: Hα (i) ↔ HN (i − 1). The geometry of the peptide bond only
brings the Hα into proximity with the next residue’s HN (i → i + 1).

Sequential α,N and β,N NOEs are commonly very strong for extended conformations
such as the extended strand of a β sheet (Fig. 12.16). The Hα of residue i is clearly very
close to the HN of residue i + 1, but the HN of residue i is farther away from HN of residue
i + 1 (the N–H vector points in the opposite direction), so the sequential “N,N” NOE is
weak or missing in this conformation (Fig. 12.15). In contrast, the α-helix conformation
(Fig. 12.17) orients all of the N–H vectors in the same direction so that the HN of residue i
is now close to the HN of residue i + 1 in space. Within an α-helix we can “walk” along the
peptide backbone directly using only the NOESY spectrum, using J-coupling information
(COSY and TOCSY) to link each HN chemical shift to a specific spin system associated
with an amino acid (unique pattern) or amino acid category (AMX or five spin). In the
α-helical conformation the Hα of residue i is farther away from the HN of residue i + 1
(Fig. 12.17), so the α,N (and β,N) sequential NOEs are weak or missing. This is a nice
consequence of the secondary structure: β-sheet regions will give strong sequential α,N
crosspeaks in the NOESY spectrum and weak or missing N, N(Hi

N → Hi+1
N ) crosspeaks,

whereas α-helical regions will give strong sequential N,N crosspeaks and weak or miss-
ing α,N crosspeaks. It is always an added bonus if the primary sequential NOE observed
(e.g., α,N in a β-sheet) can be confirmed with a weak sequential NOE of the other type
(e.g., N,N).

Figure 12.18 shows a portion of the F2 = HN, F1 = Hα region of the NOESY spec-
trum of B. subtilis HPr, a phosphotransferase that uses an active-site histidine side chain
to transfer a high-energy phosphate group. A large number of sequential Hα (i) → HN
(i + 1) NOE crosspeaks are shown. The HN chemical shifts are indicated by vertical dotted
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lines and the Hα shifts are shown as horizontal dotted lines, and in crowded regions the
HN assignments are shown above or below the crosspeaks with the Hα assignments to the
right or left. The protein is mostly β-sheet, as shown in Figure 12.19, with four antiparallel
β-strands forming the “bread” and two α-helices the “sausages” of an open-faced sandwich.
The NOE crosspeaks shown in Figure 12.18 are from the A, D, and B strands (1–10, 60–70
and 30–40, respectively) of the β-sheet. Figure 12.20 shows an expansion of this region of
the NOESY spectrum, with a portion of the β-sheet shown at the right. The three sequential

Figure 12.19
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Figure 12.20

α,N connectivities indicated on the structure (arrows) correspond to the NOE crosspeaks
identified in the spectrum. Of course, when you first obtain a NOESY spectrum, the cross-
peaks do not have names, so before we can interpret the data we must first assign all of the
protein resonances to specific protons in the covalent structure.

12.7 SEQUENCE-SPECIFIC ASSIGNMENT USING HOMONUCLEAR
2D SPECTRA

Figure 12.21 shows the basic strategy for sequential assignment. Consider a sequential pair
of amino acid residues: serine followed by valine (S–V). In the TOCSY spectrum, we see
the characteristic patterns of crosspeaks on the F2 = HN vertical lines for the two residues.
Because both patterns are unique, we know that the one on the left side is a valine residue
and the one on the right side is a serine. In the DQF-COSY spectrum, we see only the
Hα crosspeaks on the vertical lines corresponding to the HN chemical shifts in F2 because
COSY mixing involves only a single “jump” of INEPT transfer via the HN–Hα J coupling.
This region (F2 = HN = 7–10 ppm, F1 = Hα = 3–5 ppm) is called the “fingerprint region” of
the COSY spectrum and can be used to count up the number of crosspeaks, which should be
equal to one fewer than the number of amino acid residues (not counting prolines). The first
residue (N-terminal) will not show up because the amino-terminus is a protonated amine
(H3N+) rather than an amide (HN–CO) and is exchanging with water far too rapidly to be
observed. The COSY crosspeaks have a fine structure that is an antiphase doublet in the F2
dimension because the HN proton is only coupled to the single Hα proton (except for glycine
residues where there are two Hα protons). Each crosspeak can be analyzed by curve fitting
to extract the HN–Hα coupling constant from the antiphase F2 slice (Fig. 12.21, lower left).
Usually the raw 2D data is reprocessed by zero filling and cutting out the relevant regions
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Figure 12.21

of the spectrum (HN region in F2 and Hα region in F1) to generate a 2D matrix including
only the fingerprint region, with much greater digital resolution. Accurate values for the
HN–Hα

3J couplings can be used to determine the dihedral angle (related to the � angle in
biochemistry) defined by the path H–N–Cα–Hα. This angle, along with the N–Cα–CO–N
or � dihedral angle, defines the conformation of the polypeptide backbone and is a crucial
input for NMR structure calculations.

The NOESY spectrum (Fig. 12.21, right) gives the sequential connectivity, the proof that
the Ser residue on the right side is followed in the primary sequence by the Val residue on
the left side. On the vertical HN = Val line we see the intraresidue crosspeaks to the Hα and
Hβ of valine (which also appear in the TOCSY spectrum), but there is a new crosspeak that
connects the Hα of the Ser spin system (in F1) with the HN of the Val spin system (in F2).
This crosspeak lines up with the intraresidue crosspeak on the serine HN line (HN = Ser
in F2 and Hα = Ser in F1) that is in the exact position of a crosspeak in the DQF-COSY
spectrum. These intraresidue HN–Hα crosspeaks may be weak or missing in the NOESY
spectrum, so it may be necessary to mark the position of the COSY crosspeaks in the
NOESY spectrum. With modern NMR software this is usually done by using correlated
cursors (crosshairs) displayed in the separate COSY and NOESY spectra. In Figure 12.21
(right side), we also see sequential crosspeaks on the vertical HN = Val line corresponding
to the β and β′ protons of the preceding (Ser) residue. These β,N NOE crosspeaks are
very useful in confirming the sequential connection, especially if the Hα chemical shift
in F1 falls in a crowded region, overlapped with the Hα shifts of other residues. Finally,
the N,N region of the NOESY spectrum, near the diagonal, can be searched for sequential
connectivities (Fig. 12.21, lower right). Unlike the α,N and β,N correlations, the HN ↔ HN
connections work in both directions, i to i + 1 and i to i − 1. These will be the primary
connections for α-helical regions of the protein, but will be weak for the β-sheet regions.
Because the crosspeaks in a NOESY spectrum are weak relative to the diagonal peaks
(inefficient magnetization transfer), it may be difficult to see the N,N crosspeaks if they are
close to the diagonal.
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In the real world, we do not know beforehand which spin system preceeds the valine spin
system shown in the figure. There may be a number of Val residues in the protein, so we
do not even know which kind of spin system to look for. What we have to do is to identify
the NOE crosspeaks on the valine HN vertical line in the Hα region that are not found in
the TOCSY spectrum. These have to be interresidue NOE crosspeaks. Then we search the
COSY spectrum to find a crosspeak with the exact F1 chemical shift of the interresidue
NOE peak on the valine HN line. There may be more than one candidate due to overlap,
and we can rule some of them out because we know the amino acid sequence. For example,
if none of the valine residues are preceded by an AMX residue in the amino acid sequence,
we can rule out any AMX residue even if it has the right Hα chemical shift. To find the
spin system following the valine, locate the intraresidue Hα crosspeak on the valine HN line
and search horizontally for an NOE crosspeak at the same level (same F1 shift) that is not
found in the TOCSY spectrum. This sequential crosspeak will occur at the HN chemical
shift (in F2) of the next residue in the sequence. The process will inevitably reach a dead
end at some point—especially when you get to a proline residue in the sequence (no HN).
But even before that you may get stuck because of overlap and ambiguity. There are many
starting and stopping points in the sequence and eventually when enough spin systems are
assigned you can assign others by process of elimination.

To illustrate the process with real data, we will assign three segments of Heregulin-α
EGF domain using sequential α,N correlations. Figure 12.22 shows a portion of the 70-ms
TOCSY spectrum of the protein in 90% H2O. The most downfield-shifted HN resonances
(probably in a β-sheet) can be easily classified: AMX, Lys, five-spin, Leu, Thr, AMX,
Val, AMX, and so on, moving from left to right. Figure 12.23 shows the fingerprint region
of the 150-ms jump-return NOESY spectrum. The positions of selected crosspeaks in the

Figure 12.22



SEQUENCE-SPECIFIC ASSIGNMENT USING HOMONUCLEAR 2D SPECTRA 583

Figure 12.23

DQF-COSY spectrum are marked as squares. Starting at the position of the COSY crosspeak
for the leucine residue identified in the TOCSY (Fig. 12.22, HN = 9.44 ppm) we move to
the right to a “fat” sequential crosspeak at HN = 8.84 ppm. This HN shift corresponds to an
AMX spin system in the TOCSY spectrum. Moving down to the position of the COSY peak
for this AMX system (square: Hα = 5.69), we start the search again horizontally for another
sequential NOE crosspeak. This is found on the left side at HN = 9.48 ppm, corresponding
to a lysine spin system in the TOCSY spectrum. Moving up to the Hα position of this
system (square: Hα = 4.69 ppm), we set off again horizontally looking for another nice,
fat, well-resolved sequential crosspeak. Here we run into some regions of overlap and the
going gets rough. So far we have the sequence: Leu–AMX–Lys. Searching the amino acid
sequence (Fig. 12.14), there are four sequences that start with leucine: LVK, LSN, LCK,
and LY. Only LCK (Leu-Cys-Lys) fits the pattern Leu-AMX-Lys, so we can assign this to
the region 33-34-35 in the sequence, which is followed by Cys-36 and Gln-37. An AMX
system at HN = 9.04 has a “stretched” crosspeak corresponding to the sequential peak at
Hα = 4.69 and the intraresidue peak (square) below it at Hα = 4.76 (“AMX”). Moving
to the right from this square we come to an overlapped but strong sequential crosspeak at
HN = 8.68, corresponding to a five-spin system overlapped with an Ala. Because we are
expecting Gln-37, we choose the five-spin system. This completes the assignments for the
stretch LCKCQ from residue 33 to residue 37.

Figure 12.24 shows the same region of the NOESY spectrum with these assignments
written in. Now we begin another “walk,” starting with the well-resolved valine residue in
the TOCSY at HN = 8.49 ppm (Fig. 12.22, top right) and working backward in the sequence.
On this vertical line in the NOESY spectrum (Fig. 12.24) there is a lovely sequential peak
all alone at Hα = 5.08 ppm, corresponding to the Hα chemical shift of a five-spin system
with HN = 9.45 ppm. At the position corresponding to the COSY crosspeak of this five-spin
system (square, left side) there is a “stretched” crosspeak with the interresidue peak at Hα =
5.08 and the sequential peak at Hα = 5.07 ppm, corresponding to an AMX spin system with
HN = 9.68 ppm. Checking the amino acid sequence, there are five Val residues contained
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Figure 12.24

in the tripeptides HLV, FCV, FMV, ENV, and MKV. Only the tripeptide FMV corresponds
to the sequence AMX–five-spin–Val found in the NOESY, so we can assign this to Phe-21,
Met-22, and Val-23. From the AMX (F21) at HN = 9.68, Hα = 5.07 we can move backward
(down) along the HN = 9.68 line to a big sequential crosspeak at Hα = 5.20 ppm, another
AMX system with HN = 8.43 ppm (moving to the square on the right side). The sequence
tells us that this corresponds to Cys-20. Moving up along the HN = 8.43 line leads to a
sequential crosspeak at Hα = 4.43, corresponding to a five-spin system (HN = 8.55) that
we can assign to Glu-19.

A short, three-residue walk through the NOESY spectrum is shown in Figure 12.25.
Although there is a significant overlap in this region, two prominent sequential NOE peaks
connect a Leu to a Val (Hα (Leu) = 4.89 to HN (Val) = 8.88) and the same Val to a Lys

Figure 12.25
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system (Hα (Val) = 4.58 to HN (Lys) = 8.64). The dipeptide LV occurs only once in the
sequence, followed by lysine: LVK at position L3-V4-K5.

Figure 12.26 shows the TOCSY spectrum with all of the sequence-specific assignments
indicated. There are some horrendously overlapped regions in the HN and Hα regions, and
sorting all of this out requires some special tricks. One of these is to vary the temperature.
The main effect of changing the sample temperature is to move the water peak because the
H2O chemical shift is temperature-dependent due to the change in the extent of hydrogen
bonding. The chemical shift of water changes with temperature according to the formula

δ(H2O) = 5.013 − T (◦C)/96.9

This means that the water chemical shift moves downfield by 1/96.9 or 0.0103 ppm, which
is 10.3 parts per billion (ppb) with every decrease in temperature of 1 ◦C. The HN chemical
shift “contains” a certain contribution due to the H2O chemical shift because of exchange
with water: fast exchange leads to a chemical shift that is the weighted average of the
chemical shifts experienced by the spin over time. Some HN protons in the protein exchange
rapidly with water because they are “exposed” to solvent on the surface of the protein; others
exchange slowly because they are “buried” in hydrophobic regions and tied up in stable
hydrogen bonds to protein groups such as backbone carbonyls. If an HN proton is solvent
exposed, it will exchange with water rapidly and its chemical shift will show a large down-
field shift (6–8 ppb/◦C) as temperature is decreased. A “protected” HN proton, however, will
experience much lower temperature shifts, less than 4 ppb/◦C. If an overlapped region has a
mixture of exposed and protected HN resonances, changing the temperature will change the

Figure 12.26
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Figure 12.27

relative HN chemical shifts in a way that may be very helpful in sorting out the assignments.
Figure 12.27 shows a small portion of the TOCSY spectrum of Heregulin-α EGF domain at
20 ◦C (left) and 30 ◦C (right) with the assignments indicated. The HN of E47, for example,
moves only slightly (it is part of a short β-sheet) but the HN of M51 moves almost 0.10 ppm
(it is in the disordered C-terminal region). With NOESY spectra at both temperatures many
ambiguities in the sequential connectivities can be sorted out. The three HN resonances
Q56, M51, and E60 are almost completely overlapped at 20 ◦C, but they are well separated
at 30 ◦C. Keep in mind that a great deal of human effort and judgement is involved in data
interpretation in protein NMR. A week of data acquisition can be followed by a year or two
of tedious, eyesight-destroying analysis in front of a computer screen in a darkened room.
After a while even raindrops on the car windshield begin to look like NOE crosspeaks!

12.8 MEDIUM AND LONG-RANGE NOE CORRELATIONS

So far we have not learned anything from the NOE data except to assign all of the protons.
This is an essential first step, but the real goal is to extract distances between specific pairs
of protons from the NOE data. Sequential NOEs are not very useful because we already
know that an amino acid residue is close in space to its nearest neighbor in the sequence.
The real “mother lode” of the NOESY data consists of the medium-range (i → i + 2, i →
i + 3 and i → i + 4) and long-range connectivities. These define the secondary structure



MEDIUM AND LONG-RANGE NOE CORRELATIONS 587

Figure 12.28

(α-helix and β-sheet) elements and the precise spatial relationships between them, which
constitute the tertiary structure. Figure 12.28 shows the NOESY spectrum of Heregulin-
α EGF domain with the assignments indicated for the three fragments assigned earlier.
The CSI data (Fig. 12.14) predicts these three sections (3–5, 19–23, and 33–37) to be
in an extended or β-strand conformation. Weak long-range crosspeaks are also indicated,
connecting one strand with another (34–21, 20–35, 3–24, 21–4, and 23–4). These long-range
correlations indicate that the strands are antiparallel because increasing the residue number
by one (34 to 35) decreases the residue number on the other strand by one (21 to 20). The
precise alignment of the β-strands can be determined from the Hα to Hα long-range NOE
correlations. Figure 12.29 shows the F2 = Hα, F1 = Hα region of the D2O NOESY spectrum.
To see the Hα protons in the F2 dimension the experiment is performed in D2O because
the Hα chemical shifts are close to the water resonance. The Hα to Hα NOE interactions
are directly across the interface between strands in the β-sheet, so the alignment of strands
in unambiguous: Leu-3 aligns with Val-23 and Cys-20 aligns with Cys-34 (Fig. 12.30).
Now we have a complete 2D picture of the major β-sheet part of the protein. Figure 12.30
summarizes a large body of information that supports the β-sheet structure. A large number
of cross-strand Hα-Hα and Hα-HN NOEs are observed, and hydrogen bonds are implied by a
slow exchange of HN with DN when the protein is dissolved in D2O. Finally, the temperature
coefficient (change in HN chemical shift with a temperature change) measures the degree
of exposure of the HN to solvent. Amide protons with a small coefficient are probably
buried in the protein interior with little access to solvent. In proteins with a well-defined
single conformation this can be used as a criterion for hydrogen bonding. In peptides, it
is not as useful because the equilibrium between a “folded” peptide and a random coil
form is shifted as the temperature is raised, and this also contributes to the temperature
coefficient.

Deuterium exchange is measured by recording a series of fast TOCSY experiments
(30 min each) immediately after dissolving the protein in D2O. As the amide protons
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Figure 12.29

exchange with solvent they are replaced with 2H and disappear from the spectrum. Fig-
ure 12.31 shows the TOCSY spectrum in 90% H2O (left) and the first TOCSY spectrum
acquired in D2O (right). Already the majority of HN–Hα crosspeaks has disappeared and
those that remain are the “buried” HN protons. The rate of loss of the HN–Hα crosspeaks
can be quantified by measuring the crosspeak volume at each time point and plotting against
time (Fig. 12.32). The loss of signal is exponential, and curve-fitting yields the rate constant
(or half-life) for the exchange. In the plots shown, the half-lives range from just slow enough
to observe (Val-4, 19 min) to very long-lived (F21, 7.4 h). These can be compared to the
inherent (random coil) exchange rates for each of the 20 amino acids to obtain a rate ratio or
“protection factor” that indicates the degree of “burial” of the HN proton in the protein core.

Figure 12.30
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Figure 12.31

Figure 12.33 summarizes all of the secondary structure evidence for Heregulin-α EGF
domain. Exchange protection is indicated by black circles (very slow H/D exchange) and
gray circles (slow H/D exchange). 3J coupling between Hα and HN is indicated by an arrow
pointing up (J > 8 Hz, β-strand � angle) or pointing down (J < 6 Hz, α-helical � angle).
Sequential and medium-range NOEs are indicated by bars connecting the two residues
horizontally (short bar: weak NOE, tall bar: strong NOE, gray bar: NOE ambiguous due to
overlap). The chemical-shift index (for Hα protons) is shown at the bottom along with the
secondary structure elements found in the final calculated structure. Strong αN sequential
connectivity is found in the β-sheet regions, with NN connections limited to the helix and
various turns. The rare i → i + 2 NOEs are indicative of turns, which occur between
elements of regular secondary structure. Only two i → i + 3 NOEs are found (K5-E8 and
E8-K11), both within the α-helix. These medium-range (i to i + 3 and i to i + 4) NOEs

Figure 12.32
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Figure 12.33

result from the proximity of one rung of the helix to the next rung in space (Fig. 12.12)
because the helix repeat is about 3.6 residues per turn.

12.9 CALCULATION OF 3D STRUCTURE USING NMR RESTRAINTS

The ultimate goal of most biological NMR studies is to obtain an accurate 3D structure
(conformation) of the molecule. This cannot be done by human judgement and analysis of
individual pieces of evidence; there is far too much data and we need an unbiased method for
finding the best 3D structure that is most consistent with the NMR data. Structure calcula-
tions have been done since computers became available on a variety of organic compounds
and biological molecules. The various forces exerted by covalent bonds (bond lengths, bond
angles, planarity of double bonds, Van der Waals attraction, hard sphere repulsion, etc.) are
summarized in a force field (e.g., Amber or cvff). The goal is to search the “conformational
space” (the total of all possible conformations) to find the minimum of energy as defined by
the force field. This is a big challenge for a linear polymer like a protein because the number
of possible conformations is astronomical, as defined by the various dihedral angles (�,
�, X1, X2, etc.) for each residue resulting from free rotation around single bonds. Even the
most sophisticated structure calculations cannot define a protein’s conformation without
restraints defined by experimental observations. The “folding problem” in proteins is far
from solved: no one can predict the 3D shape of a protein simply by knowing its amino acid
sequence.

12.9.1 NMR Experimental Restraints

The NMR data enter into the structure calculation in the form of “restraints”: limitations
placed on H–H distances and H–N–C–Hα dihedral angles based on the observation of
NOE crosspeaks or J couplings. The specific form of the restraints is a “penalty function”
that adds to the total energy of a conformation if the distance or dihedral angle is outside
the limits defined by the NMR data. For example, a strong NOE between two protons
indicates that the distance should be less than 2.8 Å, so any time that distance is exceeded
we “penalize” the structure by adding to its total energy. Exceeding the restraint distance
is called a “violation,” and the larger the violation the more energy is added. The energy
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gradient behaves like a force, pulling the two protons together. It’s like tying a rubber band
between the two protons: if they are within the restraint distance (in this case 2.8 Å), the
rubber band is slack and there is no force. If the restraint is violated (distance greater than
2.8 Å) the rubber band is taut and exerts an attractive force between the two protons. As
the violation increases the force also increases. A similar torsional force is introduced for
dihedral angles by adding an energy penalty any time the angle gets outside the range of
angles indicated by the measured J coupling. In this way the process of energy minimization
is simultaneously maintaining the bond distances and angles defined by covalent geometry
and trying to satisfy all of the NOE distances and dihedral angles defined by the NMR
data.

NOE distance restraints are determined from the intensities of the NOESY crosspeaks.
There is a theoretical relationship between the initial rate of NOE buildup (as mixing time
is increased) and the inverse sixth power of the distance between two protons. In practice,
it is very difficult to measure accurate distances in protein NMR, so NOESY crosspeaks
are sorted into “bins” representing, for example, very strong (<2.9 Å), strong (<3.3 Å),
medium (<4.0 Å), weak (<5.0 Å), and very weak (<6.5 Å). The dividing points for these
intensity categories are determined by measuring NOE intensities corresponding to well-
known distances such as cross-strand Hα-Hα in a β-sheet or Hα(i) to HN(i + 3) in an α-helix,
a process known as calibration of the NOE intensities. Once a few accurate distances are
associated with specific NOE crosspeak volumes, we can use the 1/r6 rule to calculate
the volume cutoffs for sorting NOEs into the distance bins. Notice that these categories
are merely upper limits of distance between two protons; lower limits are not used. In
the case of overlapped NOE crosspeaks it is best to reduce the restraint to the next bin
(e.g., from strong to medium) or to the least restrictive bin (weak) for severe overlap.
The temptation to define the distance restraints very tightly must be resisted; the molecule
will tie up itself like a tangled ball of yarn if we force the NOE restraints too hard. Keep
in mind that it is not the precision of any one NOE restraint that gives us an accurate
structure, but rather the combination of a very large number (often in the thousands) of
relatively imprecise and loosely enforced measurements that, taken together, can lead to
a very well defined 3D structure. Figure 12.34 shows a typical penalty function for NOE
distance restraints. The penalty is a quadratic function defined by the square of the violation
distance:

E = k(r − ro)2 if r > ro; E = 0 if r < ro

where r is the distance between the two protons and ro is the maximum distance set by the
NOE restraint. The force constant k is the same for all distance restraints and determines
the tightness of the “spring” or “rubber band” connecting the two protons. It is important
to realize that the NOE is not an attractive force! It is an interaction observed by NMR that
allows us to apply an artificial force in the structure calculation.

The nondegenerate geminal pairs are usually named according to their chemical shifts
(e.g., β downfield of β′) rather than their stereochemical relationships (pro-R and pro-S). In
structure calculations, this usually is dealt with by creating a “pseudo-atom” right between
the pro-R and pro-S positions in 3D space. The NOE restraints are applied to the pseudo-
atom and not to the real atoms, and the distance limit is increased a bit to account for the
ambiguity (we do not really know which restraint applies to which of the two positions in
space). Similarly, a pseudoatom is created at the center of the three equivalent protons of a
CH3 group, and the distance restraint is applied to the pseudoatom.
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Figure 12.34

Similar restraints are generated for dihedral angles based on measured J coupling con-
stants using the Karplus relation. The HN–N–Cα–Hα dihedral angle is determined by mea-
suring the HN–Hα J value from the DQF-COSY crosspeak fine structure of each residue.
The HN–Hα dihedral angle is related to the � angle of protein conformational analysis:
for an ideal α-helix the J coupling should be small (3.9 Hz) and for an extended strand
of a β-sheet the J coupling should be large (8.9 Hz). Typically, if the coupling constant
3JHN–Hα is greater than 8 Hz, we assume an extended conformation and the � dihedral
angle is restricted to the range −150◦ to −90◦ (Fig. 12.35, left ↔). If the coupling constant
is less than 6 Hz we assume a helical conformation and the � angle is restricted to the
range −90◦ to −40◦ (Fig. 12.35, right ↔). If the coupling constant is between 6 and 8 Hz
the conformation is probably changing rapidly between these two extremes so that the
J value is averaged over all conformations to an intermediate value. In this case no
restrictions are placed on the � angle. Figure 12.35 shows the energy penalty func-
tion for a “helical” dihedral restraint (�) and for an “extended” or β-sheet dihedral
restraint (�).

The mathematics of computational chemistry is very complicated and we will only
attempt to describe the steps in the process in general terms. The first step is to generate
a group of structures that satisfy the NMR restraints while providing the largest possible
diversity of starting conformations. This process is called “embedding” and uses a technique
called distance geometry. We might generate 50 different structures to ensure a wide variety
of starting points. At this point, we have some very unhappy molecules with bonds stretched
and twisted in bizarre ways. The next step is energy minimization, where we allow each
structure to “relax” under the influence of the total energy function (covalent force field
plus NMR restraint energy) and move down the energy hill (gradient) toward a minimum
of energy. There are many pitfalls in this journey because the molecule might find a “local
minimum” of energy, like a dry lake basin in the desert, such that all directions leading
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Figure 12.35

away from it are uphill. This is not the global miminum (ocean) we are searching for, but it
is easy to get “stuck” in these local minima and move no further. To avoid this, a process of
“simulated annealing” is used, which involves heating up the molecule and cooling it down
again in a number of cycles. The heating gives the molecule more random energy so it can
“bounce out of” these local traps and continue the journey downhill. Gradual cooling then
allows the many conformational degrees of freedom to relax in a smooth fashion down to the
energy minimum. The final stage of NMR structure calculation usually involves restrained
molecular dynamics (rMD), where we actually try to model the motion of the molecule in
real time (picoseconds) by calculating the motion of all atoms moving around under the
limits of the force field and the NMR restraints. This is extremely demanding of computer
capabilities, especially if we try to include the solvent in the calculation.

In a perfect world, all 50 of our calculated structures would be identical conformations
differing only in their orientation in 3D space. To compare them and see how close we
have come to this ideal, the structures are moved around and rotated in space to align them
as much as possible to the same location and orientation in space. Figure 12.36 shows the
10 structures of Heregulin-α EGF domain with the lowest total energy, superimposed by
aligning residues 3–6, 17–24, and 30–37 (the major β-sheet diagramed in Fig. 12.30). Only
the trace of the polypeptide backbone (N–Cα–C′–N–Cα–C′ · · ·) is shown for each structure
and the last 13 residues (disordered region, 51–63) are not shown. The three strands of the
major β-sheet are well defined, with the 10 polypeptide chains nearly on top of each other
(lower center), and the α-helix is fairly well defined (lower left side). The upper portion (a
minor β-sheet) is not well defined relative to the rest of the molecule.

To quantify how well the group of structures fit each other, we calculate the “RMSD.”
For any atom in one of the structures of the “ensemble” of ten structures (e.g., Hα of Phe-
21), the distance to the same atom (Hα of Phe-21) in each of the nine other structures is
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Figure 12.36

measured and the average of the squares of these distances (“deviations”, di ) is calculated.
The square root of this average is called the “root mean square” (RMS) deviation or RMSD
for that particular atom in the structure, measured in Angstroms.

RMSD of Hα(Phe-21) =
[(∑

d2
i

)
/9

]1/2

where di is the distance in Å from structure 1 to structure i, with i running from 2 to 10.
If the RMSD is calculated in the same way for all atoms, or for all atoms of a certain type
(all backbone atoms, or all “heavy” or non-hydrogen atoms, or all atoms in the β-sheet)
we can calculate an average RMSD that describes how well the whole group of structures
(“ensemble” of structures) agree with each other.

average RMSD =
(∑ [(∑

d2
i

)
/9

]1/2
)

/N

where the first sum is taken over all N atoms under consideration. The goal of structure
calculation is to explore as much of the conformational space as possible, minimizing the
energy function and maximizing the RMSD (the diversity of structures that have low energy).
The latter may seem counter-productive because the best calculated ensemble of structures
will have a very low RMSD, but it is necessary to prove that within the experimental restraints
the RMSD can be no larger than this value—any other approach would be dishonest.

In Figure 12.36 the average RMSD for the backbone (N, Cα, and C′) atoms of the major
β-sheet (residues 3–6, 17–24, and 30–37) is 0.42 Å, an excellent fit. If agreement is bad, we
have not done a very good job of determining the 3D structure of the protein. If agreement
is very good, we can say that any one of the structures or the average of all structures is a
good description of the 3D structure (conformation) of the protein in solution. Usually if the
aligned ensemble of structures is viewed together we can see that some regions align very
well (the structures pack closely into a tight multistranded wire) and other regions have poor
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alignment (the structures fan out like spaghetti on a plate). The “disordered” regions may be
truly flexible in solution (usually corresponding to solvent-exposed loops between areas of
defined secondary structure) or we may simply lack the number of restraints needed to define
the conformation because of overlap or other limitations of the NMR method. The only way
to differentiate between these two possibilities is to study the motion (dynamics) of the pro-
tein on different timescales by a detailed study of its relaxation (T1, T2, and NOE) properties.

Structure calculation is an iterative process—it is not over after a single calculation on
an ensemble of structures. After selecting the “best” structures of an ensemble (e.g., the 10
lowest energy structures of the 50 calculated), a careful analysis is made of the violations of
NMR restraints. Let’s say that a certain NOE distance restraint, K5 Hα to T12 HN, is violated
in all 10 of the “best” structures. You have a big problem: the assignment is probably wrong
in the NOESY spectrum. In the calculation this “rubber band” is pulling two parts of the
protein close together that really are not close in the actual 3D structure. This pulls the “bad”
NOE restraint out of its range and into violation, but it also distorts a lot of other “good”
restraints, pulling them up their parabolic energy curves into violation. Even the covalent
connections (bond lengths, planarity of peptide linkages, etc.) will “bend” a little to try
to accommodate the incorrect restraint. The result is that the energy penalty is distributed
among a number of restraints, both covalent and NMR, and it may even be difficult to
see which one is the “bad” restraint. You need to go back to the NMR data and see if the
restraint is ambiguous. For example, if HN of T12 is overlapped with HN of E8, we see that
the assignment was ambiguous and should not have been used for an NOE restraint. Keep in
mind that even though the NOESY is a 2D experiment, the assignment in each dimension is
based only on one dimension: its chemical shift compared to the shifts of all other protons
in the molecule. If it is not ambiguous, continue the process of examining any restraint
that is violated, with special attention to the “habitual” violators that are in violation in a
large proportion of the 10 structures, or which have large violations. It is helpful to consider
NOE distance violations with a cutoff: for example, all violations greater than 0.2 Å above
the restraint limit, then all violations greater than 0.1 Å, and so on. The same applies to
dihedral restraints: those that violate have to be checked by going back to the DQF-COSY

Figure 12.37
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spectrum to see if the J-coupling measurement is correct. Don’t just “throw out” restraints
that violate—you need to find out what is wrong.

Once all the violations have been checked and some corrections have been made, the
process of structure calculation starts all over again with a new, improved restraint list. It
may take more than 20 cycles of calculation and reexamination of NMR data before the
restraint violations are reduced to a minimum. The results of this process after 27 cycles of
calculation are shown in Figure 12.37 for Heregulin-α EGF domain. The average of the 20
lowest energy structures is shown on the left side, and on the right side is the same structure
rotated a bit about the vertical axis. The major β-sheet (3–6, 17–24, 30–37) is clearly visible
but is twisted in the 3D structure. A short α-helix is inserted between two strands of the
β-sheet, and a minor two-strand β-sheet (39–41, 46–49) is seen at the top. Residues 51–63
are disordered and are not shown in the figure.

12.10 15N-LABELING AND 3D NMR

Beyond about 10 kD the complexity (number of resonances) and the linewidth increase to a
point where the homonuclear 1H methods described up to this point are no longer effective.
If the protein can be labeled with 15N by expression (bacterial growth) in a medium that
has 15NH4Cl as the only nitrogen source, the problem can be greatly simplified because
overlapped HN protons can be distinguished by the chemical shift of their attached 15N.
If every nitrogen in the protein is replaced by 15N (“uniformly labeled”), each residue can
now be uniquely identified by its HN proton chemical shift and its backbone nitrogen 15N
chemical shift. It is much less likely that both of these chemical shifts would be the same
for any two residues, so together they provide a unique “address” for each residue.

Protein expression requires that you have the gene that codes for the protein with a
suitable promotor, inserted into the genome of a bacterial cell (e.g., E. coli) that is easy to
grow in cell culture. The cells have to grow well in “minimal media”—a bare-bones food
source that has no nitrogen in it at all until you add the 15NH4Cl. “Good” protein expression
means two entirely different things to an NMR spectroscopist and a biochemist/molecular
biologist. We need milligrams of pure protein, not micrograms! The “bugs” are grown to a
certain density and then the promoter is “switched on” by adding something to the medium
that activates it. Protein is cranked out in huge quantities, and then you “harvest it” from
the cells and purify it. If you are lucky you find it in the soluble fraction, but you may
find it precipitated in “inclusion bodies” of the cell. Then you have to resolubilize it, and if
you have disulfide bonds you hope that they re-form in the correct way. Labeling with 13C
or with both 15N and 13C is similar except that the medium is much more expensive: the
cost of isotopes can exceed $100,000 for a purified NMR sample. 13C is usually supplied
to the bugs from U–13C glucose or U–13C acetate. Again, you cannot use rich media that
have natural abundance carbon—just the bare bones plus your 13C-labeled food source.
Although we boasted earlier about the ease of getting started in biological NMR compared
to biological crystallography, it must be admitted here that people have spent two or three
frustrating years preparing an NMR sample!

Peptides are much harder to prepare with uniform 15N or 13C labeling because they are
normally prepared by solid-phase synthesis rather than by expression in cells. Solid-phase
synthesis uses a very large excess of a protected amino acid at each stage, and the cost of
these reagents in labeled form is prohibitive.
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Figure 12.38

12.10.1 Why Label?

The big advantage of isotopic labeling of proteins is in overcoming the ambiguity of res-
onance overlap. Consider the case of two HN protons with exactly the same 1H chemical
shift: Ha and Hb. In the 2D NOESY spectrum we have a crosspeak at the F1 chemical
shift of Hc, a carbon-bound proton with a unique chemical shift, and the F2 chemical-shift
position shared by Ha and Hb (Fig. 12.38). We cannot use this information in structure
calculations because we do not know whether the distance information applies to Ha or to
Hb. Now consider a 15N-labeled protein sample so that we have Ha–15Na and Hb–15Nb with
different 15N chemical shifts for 15Na and 15Nb. We can expand the 2D-NOESY spectrum
into a third dimension, the 15N chemical-shift scale. Consider the 2D-NOESY spectrum to
be the “floor” of a cube, and each 2D crosspeak is “lifted” above the floor by a distance
corresponding to the 15N chemical shift of the nitrogen of the NH group (Fig. 12.39). Now
the crosspeak is a “chunk” in 3D space, centered vertically at the 15N chemical shift of

Figure 12.39
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Figure 12.40

15Nb, so we can be sure that the NOE correlation is to Hb rather than to Ha. What we have
done is to “explode” the heavily overlapped 2D-NOESY spectrum into a 3D version where
crosspeaks are now indexed by the 15N chemical shift of the nitrogen attached to the HN
proton.

Looking at the front wall of the cube, we have a 2D correlation between the HN chemical
shift (1H shift, horizontal scale) and the 15N shift of its attached nitrogen (15N shift, vertical
scale). This is a one-bond correlation based on the J coupling between 1H and 15N: in
other words, it is a 2D HSQC spectrum. We have seen lots of 2D HSQC spectra correlating
1H with directly attached 13C (Chapter 11), and the same kind of correlation can be made
between 1H and directly attached 15N by using the large (∼90 Hz) 1JNH coupling. We are
not familiar with the 15N chemical-shift scale, but right now it is sufficient to know that
there is chemical-shift dispersion between the various 15N positions in a protein. We cannot
get away with natural abundance 15N the way we used natural abundance 13C because the
abundance is about five times lower, and the protein sample concentration is fairly low
(1 mM). Isotopic enrichment (labeling) is the only way to do these 15N experiments.

The 3D HMQC-NOESY spectrum of E. Coli HPr in 90% H2O is shown in Figure 12.40.
On the left side is the sum of all levels in the cube: this is the view in Figure 12.39 looking
straight down on the cube, equivalent to a 2D NOESY spectrum. The intraresidue HN to
Hα crosspeak of serine 52 is resolved (lowest arrow), but severe overlap at the HN chemical
shift of Ser-52 makes it impossible to assign any other crosspeaks from this residue in the
region displayed. On the right side is just one plane of the 3D data matrix, corresponding to
the 15N chemical shift of the backbone 15N of Ser-52, shown at a lower contour threshold.
This is one floor of the multistory cube in Figure 12.39. Now the intraresidue NOEs are
clearly resolved for the entire Ser-52 spin system—Hα, Hβ, and Hβ′—as well as a long-
range NOE from HN of Ser-52 to the Hα proton of Ala-19. In fact, no other NOE crosspeaks
are observed in the displayed 2D region. The “contact” between Ser-52 and Ala-19 is very
useful, connecting the loop between β-strands C and D with the loop between β-strand A
and the A-helix (Fig. 12.19).
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12.10.2 2D Heteronuclear Correlation Using Nitrogen-15

The 2D {1H–15N} HSQC spectrum of U–15N Heregulin-α EGF domain is shown in
Figure 12.41. This is the view of the 3D spectrum cube (Fig. 12.39) from the front, with
the 1H chemical shift on the horizontal (F2) axis and the 15N chemical shift on the vertical
(F1) axis. The pulse sequence is the same as the {1H–13C} HSQC (Chapter 11, Section
11.7) except that the second (decoupler) channel is set to the 15N frequency (about 1/10 of
the 1H frequency). For gradient selection, the coherence order is calculated using 1 for 15N
and 10 (instead of 4) for 1H. 15N decoupling (GARP) is used during acquisition of the FID
and a 180◦ 1H pulse in the center of the evolution (t1) period provides decoupling in the
F1 dimension. Thus each residue gives a single crosspeak for the backbone 1H–15N pair,
and in addition each residue with a side-chain amide group (Asn and Gln) gives a pair of
crosspeaks at the same 15N shift due to the NH2 group in the side chain. These pairs are seen
on the right side of the spectrum (N16, N28, N55, Q37). Other side-chain NH groups also
show up: NεH of arginine (R31ε and R44ε, lower right side, aliased from above the spectral
window). Four of the residues give no crosspeaks in the {1H–15N} HSQC spectrum: S1
because it has no amide (the N-terminal H3N+ group exchanges much more rapidly with
water and is not observed at all); and P29, P38, and P50 because the backbone 15N of proline
has no 1H attached. Assignments in parentheses indicate that the crosspeak is aliased in
F1—it is common to cut the spectral window narrower in F1 and let the “outliers” alias.
With the proper phase-encoding method in F1 (States-TPPI, a variant of the States method),
these crosspeaks will be opposite in sign (negative intensity) to the rest of the peaks, so it
will be clear that they are aliased.

Figure 12.41
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With >90% abundance (“enrichment”) of 15N, this 2D spectrum can be acquired in about
4 min, so it is the ideal spectrum for measuring H/D exchange. It can also be used as a rapid
measurement of chemical-shift perturbations due to change in pH (sequence-specific pKa
determinations of side-chain acidic or basic groups) or binding of ligands or other proteins.
If a crosspeak “moves” in the 2D HSQC when these conditions are changed, the residue
it repesents must be close to the site of the perturbation (titratable group, ligand binding
site, protein–protein interface, etc.). If the 3D structure of the protein is known, these shift
perturbations can be used to physically map binding sites of other molecules on the surface
of the protein. All that is required is that the 15N and 1H chemical shifts of the backbone
amide NH groups be assigned; the 3D structure can come from an X-ray crystal structure
or by analogy to a homologous protein of known 3D structure. This method has been
called “SAR by NMR” (structure-activity relationships by NMR) and is used extensively
for screening small molecules in drug development.

In the 2D {15N, 1H} HSQC spectrum of Heregulin-α EGF domain, there are a number
of HN protons at or very near 7.64 ppm (Fig. 12.41, vertical line): C45, C14, E10, C6,
and Y63. But of these only the HN of E10 is bonded to a 15N with a chemical shift of
117.07 ppm (Fig. 12.41, horizontal line). This dual “address” (1H = 7.64 ppm, 15N =
117.07 ppm) is unique, with only V15 being anywhere near E10 in the 2D HSQC. In the

Figure 12.42
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2D NOESY spectrum in H2O (Fig. 12.42, left) there are a very large number of overlapped
NOE crosspeaks at or very near the F2 = 7.64 line, and it would be impossible to assign any
of them to a unique HN proton. In the 3D NOESY-HMQC spectrum (Fig. 12.42, right), we
can select the plane corresponding to a 15N chemical shift of 116.83 ppm (close to E10’s
backbone 15N shift of 117.07) and see only the NOE crosspeaks from the HN of E10 on the
F2 = 7.64 vertical line. Because there is no ambiguity in the 3D spectrum, the crosspeak at
F1 = 3.27 ppm can be confidently assigned to one of the β protons of Cys-6, yielding an
important medium-range (i, i + 4) restraint for the α-helix (Fig. 12.37). In the 2D NOESY
this crosspeak is buried by an intraresidue NOE from the HN of C6 to the β proton of C6. But
in the 3D spectrum this interfering crosspeak is in a distinctly different (lower) horizontal
plane of the “cube” (Fig. 12.39) with a 15N shift of 119.3 ppm (Fig. 12.41). Below the
horizontal (1H) chemical-shift scale of both spectra in Figure 12.42, the 1H chemical-shift
positions of all resonances in the range 7.4–7.9 ppm are shown. In this narrow range there
are 16 closely spaced resonances, all contributing to NOE crosspeaks in the 2D NOESY
spectrum, but only two of these (HN of Val-15 and HN of Glu-10) contribute to crosspeaks
in the single plane of the 3D spectrum shown at the right side. Val-15 shows up because it
is close to Glu-10 in both 1H shift and 15N shift (Fig. 12.41), but its NOE crosspeaks can
be clearly distinguished in the 3D spectrum because of the difference in 1H shift (7.73 ppm
for V15 vs. 7.64 ppm for E10).

12.11 THREE-DIMENSIONAL NMR PULSE SEQUENCES:
3D HSQC–TOCSY AND 3D TOCSY–HSQC

2D NMR experiments consist of four steps: preparation, evolution, mixing, and detection.
To create a third dimension we need to add another evolution step and another mixing step:
preparation, evolution(1), mixing(1), evolution(2), mixing(2), and detection. The journey
of the coherence pathway gets a little longer and more complicated, and we need to sample
the chemical shift indirectly (evolution) at one more point in the journey. First, let’s consider
the extra mixing step. Any two 2D NMR experiments can be combined by just adding the
mixing sequence of one experiment between the mixing and detection steps of another.
Consider, for example, the 2D TOCSY and the 2D HSQC experiments (Fig. 12.43). The
TOCSY mixing sequence is a series of low-power pulses (pulsed spin lock), which transfers

Figure 12.43
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Figure 12.44

coherence within a spin system. The HSQC sequence uses an “out and back” pathway: 1H
SQ coherence is transferred to 15N SQC, the 15N chemical shift is recorded indirectly
during the t1 delay, and then 15N SQC is transferred back to 1H SQC, which is refocused
and recorded in the t2 FID. We can add a TOCSY transfer step at the end of the HSQC
experiment to get a “relayed” transfer from 15N to 1H (HN) and then from HN to Hα, Hα

to Hβ, Hβ to Hγ , and so on, within an amino acid residue via the TOCSY mixing step.
Because the HN magnetization is in the x–y plane at this point, it is in the correct place
to be “locked” by the TOCSY spin lock and start the TOCSY mixing process. This 2D
“HSQC–TOCSY” experiment (Fig. 12.43, bottom) will have the backbone 15N chemical
shift in the F1 dimension of the 2D spectrum, and in the F2 dimension on a single horizontal
line we will see the HN proton (failed TOCSY transfer) and the rest of the amino acid spin
system (Hα, Hβ, Hγ , etc.) due to TOCSY transfer from the HN. The coherence flow diagram
is shown in Figure 12.44, for observation of a γ-proton in F2 and the backbone 15N in F1.
Although Hγ is shown as the final destination, any of the protons in the spin system can
be observed in F2 – HN, Hα, Hβ, or Hγ – because TOCSY transfer is not 100% efficient.
This is a useful experiment because the spin systems are separated by 15N chemical shift
(F1) rather than by the 1H shift of the HN as they are in the 2D TOCSY (Fig. 12.26). While
it is still just a 2D experiment, there may be an overlap of certain HN protons that can be
resolved because the 15N shifts are not overlapped. The right side (1H signals upfield of
water) is “wasted space” in the 2D HSQC because only HN protons will appear in the F2
dimension, so the 2D HSQC-TOCSY simply uses this space to “fill out” the 2D matrix with
additional useful information. The only cost is a loss of sensitivity because the intensity of
the HSQC crosspeaks is now divided among a number of TOCSY crosspeaks.

Figure 12.45 shows a portion of the 2D HSQC–TOCSY spectrum of U–15N Heregulin-α
EGF domain in 90% H2O at 30◦C. The left side is the HN region, downfield of the water
resonance, and the right side is the upfield region (Hα and side-chain resonances). The left
side is just like the lower part of the 2D HSQC spectrum (Fig. 12.41), and on the right side
we see the spin system of each amino acid residue spelled out along the horizontal line
corresponding to the 15N shift of the backbone amide nitrogen of that residue.

Figure 12.45
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Figure 12.46

To make this into a 3D experiment we need to create a third time domain, in this case
a time domain that encodes the chemical shift of the HN proton. We simply stop for a
moment on our journey from 15N SQC to HN SQC to Hα and side-chain H coherence, at the
point where we have an HN coherence, and insert an evolution delay to indirectly record
the chemical shift of the HN. The pulse sequence is shown in Figure 12.46 (center) and
the coherence pathway is diagramed in Figure 12.47. The new evolution delay is called
“t2” because it is the second independent time domain, forcing us to rename the direct time
domain of the FID as “t3.” In the center of the t2 evolution delay there is a 15N 180◦ pulse
to reverse the 1JNH coupling evolution so that the HN will not be split by 15N in the F2
dimension, just as the t1 evolution delay includes a 1H 180◦ pulse in the center to “decouple”
the 15N peak in F1. All three time domains must be independent, meaning that for every
value of t1 we use in the first time domain we have to run the experiment and acquire an
FID for each value of t2 in the incremented series. If we choose to have 64 values of t1 (for
indirectly recording the FID of 15N) and 128 values of t2 (for indirectly recording the FID
of 1HN), we will need to repeat the experiment 64 × 128 = 8192 times, generating 8192
separate FIDs. If each FID requires 4 scans (transients), we have in all 32768 scans that
will take 18.2 h to acquire if each scan takes 2 s. You can see that we have to sacrifice a lot
of digital resolution to keep the experiment this short. Many 3D experiments are run for as
long as 3.5 days to get better resolution in the two indirect dimensions.

The experiment can also be run in the other sense, with the TOCSY part first and the
HSQC second (Fig. 12.46, bottom). This 3D experiment is called a TOCSY-HSQC, and
the coherence flow is diagramed in Figure 12.48. Coherence is created on all protons (HN,

Figure 12.47
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Figure 12.48

Hα, Hβ, etc.) and the 1H chemical shift is encoded during the first evolution (t1) delay. The
TOCSY spin lock then transfers coherence to the HN proton. HN magnetization is in the x–y
plane at the end of the spin lock, just right for beginning the HSQC sequence. Essentially, the
first 90◦ 1H pulse of the 2D HSQC sequence has been replaced by the 2D TOCSY sequence.
In either case, TOCSY-HSQC or HSQC-TOCSY, we end up with a 3D data matrix with
1H chemical shift on two of the axes and 15N chemical shift on the third (Fig. 12.49). The
floor of this data “cube” can be compared to the 2D HSQC spectrum, which correlates the
1H shift of each HN proton with the 15N chemical shift of the nitrogen it is connected to.
At the position of each HSQC crosspeak on the “floor,” we extend a vertical line upwards
and find the entire spin system of that amino acid residue along that “vector,” including the
HN resonance itself. Each of these vertical lines is part of a strip, a narrow lane of a 2D
plane parallel to the front face of the cube. These strips can be cut out of the 3D cube and
we can put each one in a category (unique, three-spin, or five-spin) based on the TOCSY
pattern. With sequence-specific assignments we can arrange all of these strips (one for each
residue in the protein) side-by-side in order of residue number to make a strip plot of the
3D HSQC-TOCSY (or 3D TOCSY-HSQC) data (Fig. 12.49, right).

12.11.1 3D Data Processing

The mechanics of addressing the three dimensions of the cube are shown in Figure 12.50.
Because of the vast amount of data in a 3D data matrix, a lower digital resolution is used
compared to a 2D matrix. Whereas a typical 2D data matrix might have 2048 columns and
1024 rows (about 2 million data values), a 3D matrix might have 256 columns, 256 rows

Figure 12.49
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Figure 12.50

and 128 “tiers” (i.e., 128 2D planes) for a total of over 8 million data values or “intensities.”
Some software can actually display the entire 3D cube and manipulate it interactively,
turning it in space, but in fact this is not a useful display. We always look at 2D planes
and display them as contour plots, just as we do for 2D NMR data. These planes can be
orientied in any of the three directions by fixing the column number (to display a vertical
plane parallel to the right face of the cube), the row number (for a horizontal plane), or the
tier number (for a vertical plane parallel to the front of the cube). It is also possible to run a
line through the matrix in any of the three directions by specifying the chemical shifts in two
of the dimensions and plotting the intensities along the third dimension as a 1D spectrum
or “vector.” A more useful way to display a small part of the data, however, is to plot a
2D plane while limiting one of the two dimensions to a narrow range around the crosspeak
of interest. For example, the crosspeak shown in Figure 12.50 is centered at column 59,
row 108, and tier 86. If we select the vertical plane defined by tier 86, we can display the
full height of this 2D plane (row 1–256) but only a narrow width (column 49–69) centered
on column 59. This “strip,” a narrow lane of the 2D plane, can be displayed side by side in
a “strip plot” with other strips cut out of the matrix in order of residue number.

The 3D Fourier transform is performed in three steps, starting with the directly detected
time domain t3. For example, for a 3D TOCSY-HSQC we might have 100 t1 values (200
FIDs: 100 real and 100 imaginary) and 32 t2 values (64 FIDs) for a total of 12,800 FIDs.
The t1 dimension is 1H and the t2 dimension is 15N. The “acquisition order” is the order in
which the evolution delays are incremented; in this example the first delay (t1, 1H evolution)
is incremented first and constitutes the “inner loop.” That means that we go through all
100 t1 values first, keeping the t2 delay fixed at the first value (usually zero). Then we repeat
the whole process with the t2 delay set to the second value, and so forth.

We also have to think about the phase sensitive detection in both indirect dimensions.
For example, if the phase is encoded in States mode in t1 and in echo–antiecho mode (using
gradients) in t2, we have to acquire four FIDs for each combination of t1 and t2 delay values.
States mode real or imaginary is selected by using an x or y phase for the pulse just before
the t1 delay (1H SQC), and echo or antiecho mode is selected by using a negative gradient
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(selecting p = +1, echo mode) or a positive gradient (selecting p = −1, antiecho mode)
during the t2 evolution period (15N SQC). For each combination of t1 and t2 delays, we
could acquire four FIDs in the order real-echo, imaginary-echo, real-antiecho, imaginary-
antiecho. For data processing it is essential to know the acquisition order and the manner
and order in which phase is encoded in the two indirect dimensions.

The first step in data processing is to do a Fourier transform on each of the raw FIDs,
loading them into the appropriate rows of the 3D matrix (Fig. 12.50). For example, we
might tranform all 200 FIDs in order of t1 for the first t2 value, loading the resulting 1H
spectra into rows 1–200 of the first tier of the 2D matrix. Then for the second t2 value
we would transform all 200 FIDs and load them into rows 1–200 of the second tier of the
matrix. When all of the of the 64 sets of 200 are finished (12,800 Fourier transforms), we
will have filled the matrix up to row 200 and back to tier 64. Then we pull out each column
and do the Fourier transform in the t1 time domain, zero filling each FID (100 complex
pairs) to the size of the matrix (256 rows in this example) and discarding the imaginary
spectrum after the FT. The resulting real spectrum is put back into the same column. This
requires 256 columns × 64 tiers = 16,384 Fourier transforms. Finally, when all 256 columns
in each of the 64 tiers containing data is transformed, we proceed to the t2 time domain
Fourier transform. Each vector (1D FID) corresponding to a specific row and column is
pulled out of the matrix, zero filled from 32 complex points to the number of tiers (128),
Fourier transformed and replaced in the same position. This final step requires 256 × 256 =
65,536 Fourier transforms.

Figure 12.51 shows the 2D {1H, 15N} HSQC spectrum of U–15N Rhodobacter capsu-
latus Ferrocytochrome c2 in 90% H2O. The F1 planes of the corresponding 3D TOCSY-
HSQC spectrum are indicated on the left side of the 2D spectrum. Plane 15 (lower dotted
line) corresponds to a 15N chemical shift of 131.59 ppm, very close to the 15N shift of
the backbone nitrogen of Ala-66 (131.66). Plane 16 (upper dotted line) corresponds to

Figure 12.51
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Figure 12.52

F1 = 131.28 ppm and goes through the crosspeak for Ala-21 (131.21), grazing the bottoms
of the Lys-116 (131.03), Lys-29 (131.09), and Tyr-48 (130.96) crosspeaks. Figure 12.52
shows F1–F3 planes number 15 (left, δN = 131.59 ppm) and 16 (right, δN = 131.28 ppm)
of the 3D TOCSY-HSQC spectrum. The 3D data matrix has 512 data points (rows) along
F1 (1H), 128 points (tiers) in F2 (15N) and 256 points (columns) in F3 (the directly detected
dimension, HN). The diagonal (F1 = F3) represents coherence that failed to transfer in the
TOCSY mixing step, causing the HN resonance of each residue to appear in both F1 and
F3. A close look at these two planes will show what kind of resolution can be achieved in
the 3D spectrum. These two planes would be adjacent vertical planes in Figure 12.49, with
plane 15 in front of plane 16. The Ala-66 spin system is very strong in plane 15 on the F3 =
HN = 7.40 ppm vertical line, corresponding to the rightmost vertical line in Figure 12.52
(left). Weak crosspeaks are seen for the two resonances that are nearby in the 15N (F2)
dimension: HN and Hα for Lys-116 (F3 = 7.54) and HN and Hβ for Ala-21 (F3 = 8.69).
In plane 16 (Fig. 12.52, right) the Ala-66 spin system is very weak and the Lys-116 system
appears very strong, along with HN, Hα, and Hβ crosspeaks for Ala-21 and Lys-29. Only
the HN resonance is visible for Tyr-48. The really amazing thing about the 3D planes shown
in Figure 12.52 is how sparse the data is—only one residue shows up in plane 15 with very
faint contributions from two others. As long as the backbone amide H–N pairs are resolved
(single, separated crosspeaks) in the 2D HSQC spectrum, we can expect to find the TOCSY
spin system without overlap in the 3D TOCSY-HSQC along the F1 dimension.

One way to look at these TOCSY spin systems is to draw a vertical line through the 3D
data matrix at the specific column (1HN shift) and tier (15N shift) of a particular residue and
look at the intensities along the rows (1H shift) as a 1D proton spectrum, corresponding to
a vertical line drawn through one string of crosspeaks in Figure 12.49. This is shown for
the cytochrome c2 TOCSY-HSQC in Figure 12.53 for five of the residues. For example,
at the F3 = HN (6.88 ppm) and F2 = 15N (112.61 ppm) shifts of Serine 18 we see along
the F1 dimension a 1D proton spectrum corresponding to the Ser-18 spin system: HN at
6.88 ppm (on the F1 = F3 diagonal), Hα at 4.36 ppm, Hβ at 3.75 ppm, and Hβ′ at 3.28 ppm.

A section of the strip plot (residues 15–31) taken from the 3D TOCSY-HSQC spectrum
is shown in Figure 12.54. Each strip is taken from the nearest F2 (15N) plane to the backbone
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Figure 12.53

amide nitrogen of that residue (Fig. 12.49), and includes a very small range of chemical
shifts near the HN resonance in F3 and the whole spectral width in F1 (1H). Any crosspeaks
that are not centered on the 1H chemical shift of the HN in F3 and the 15N chemical shift
of the backbone N in F2 can be ignored in the strip plot, and for clarity these peaks have
been removed (this would not be done in a research publication, of course!). Note that
Pro-22 has a blank strip because it has no backbone HN. The F2 and F3 chemical shifts
used to obtain each strip are indicated; for example, T15 is found at HN = 6.95 ppm and

Figure 12.54



THREE-DIMENSIONAL NMR PULSE SEQUENCES 609

15N = 113.2 ppm in the 2D HSQC (Fig. 12.51). In practice, the 3D matrix is projected
onto the floor of the 3D cube (Fig. 12.49) and the point values (column and tier num-
bers) are read off of this low-resolution 2D HSQC spectrum for each crosspeak: T15 is
centered at point numbers 189 (column = F3 = HN) and 74 (tier = F2 = 15N). From
this position on the “floor,” the spin system rises up in a vertical line along the F1 (rows)
dimension.

Figure 12.54 shows fairly complete systems for a variety of residues. The HN shifts range
from 6 to 9 ppm (bottom), and coherence is spread to the Hγ protons of valine, isoleucine,
and threonine residues and even to Hδ (CH3) of one isoleucine. Some unusual chemical
shifts are observed for residues 16 and 17, with β-protons of Cys and His appearing in the
0–2 ppm range instead of the normal 3.0–3.5 range. This is undoubtedly due to a location
above or below the heme aromatic system, which has a large ring current (see Chapter 2,
Fig. 2.15). Large differences in crosspeak intensity are seen from residue to residue, with the
side chains that are “flopping in the wind” (exposed to solvent on the outside of the protein)
having longer T2’s and thus holding onto their coherence during the TOCSY spin lock. This
is seen in Figure 12.52, where K116 shows a very strong spin system and Y48 barely shows
its HN resonance. Flexible regions in large proteins always give strong crosspeaks and the
rigid portions (shorter T2) lose a great deal of signal during the long and complicated 3D
pulse sequences.

12.11.2 13C Labeling

Proteins can be expressed in a medium containing U–13C glucose or U–13C acetate as the
sole carbon source. This is quite a bit more expensive than 15N labeling because of the need
for a labeled organic food source. With 13C at every carbon position in the protein, the same
strategies can be used to minimize overlap in NOESY spectra, and the number of protons
attached to the labeled heavy atom is much greater than with 15N, offering a larger number
and variety of unambiguous NOEs.

The complete side-chain 13C and 1H assignments can be obtained by another 3D ex-
periment that uses TOCSY mixing of 13C coherence: the HCCH-TOCSY. Because 13C is
no longer a “dilute” nucleus, there is a continuous chain of 13C nuclei in each residue: Cα,
Cβ, Cγ , and so on, so that an appropriate 13C isotropic mixing spin lock will move 13C
coherence from Cα out to all the carbons of the spin system. The coherence flow is dia-
gramed in Figure 12.55. Starting with any 13C-bound proton (e.g. Hα), an evolution period
(t1) records its chemical shift, coherence transfer occurs via INEPT to its 13C, followed
by a 13C evolution period (t2) that measures the 13C chemical shift of its directly bound
carbon. The TOCSY mixing period spreads this 13C coherence to another carbon in the spin
system, and a final INEPT transfer moves the coherence to the 1H of this last carbon (hence
the name, H→C→C→H). A 1H FID is recorded (t3) to measure the 1H chemical shift of

Figure 12.55
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the last proton. The large 1JCC couplings (∼33 Hz) make this a much more efficient means
of coherence transfer than the H–H TOCSY transfer (3JHH ∼ 7 Hz).

12.11.3 Typical 13C Chemical Shifts in Proteins

The α-carbon (CH), with one bond to nitrogen and a carbonyl group next door, is typically
shifted downfield to the region of 50–60 ppm. Glycine’s α-carbon (CH2) is less substituted
(less crowded) so it appears upfield of this region at around 45 ppm. Amino acids with a
branched β-carbon (Thr, Val, and Ile) or a ring connecting back to the backbone nitrogen
(Pro) have a more crowded environment near the α-carbon and resonate a bit downfield of
60 ppm. The β-carbon is typically found at 30–40 ppm but is more sensitive to the type
of side chain. Alanine (Cβ = CH3) is found around 20 ppm, whereas Threonine (Cβ =
CHOH) and Serine (Cβ = CH2OH) have β-carbon resonances downfield of the α-carbon,
at about 65 ppm (Ser) and 70 ppm (Thr). These are in the range of typical values for CH2OH
(60–70) and for CHOH (70–80). Cystine (Cys with a disulfide linkage) and Leucine have
β-carbon resonances a bit downfield of the typical values at 40–45 ppm. Carbonyl carbons
in proteins are only found in amides (backbone and side chain) and resonate in the range
165–180 ppm, around the typical value for carboxylic acid derivatives (170–175 ppm).

12.11.4 Assignment of 15N- or 13C-Labeled Proteins

Strip plots can only be constructed when the crosspeaks have already been assigned in the
2D HSQC spectrum. In a 15N-labeled protein, sequence-specific assignments come from
sequential NOE (α,N, β,N and N,N) crosspeaks located in the 3D HSQC-NOESY spectrum.
The “walk” through the protein backbone is done in the same way as with unlabeled proteins,
except that overlap in NOESY spectra is greatly reduced by spreading the crosspeaks out
in the 15N dimension of a 3D spectrum.

Assignment by NOE interactions relies on very inefficient (a few percent at most) mag-
netization transfer, and even in a 3D HSQC-NOESY the assignment of each pair of protons
involved in the NOE requires one unique chemical shift. For this reason as molecules get
larger we are inclined to rely more on magnetization transfer based on J coupling (INEPT
and TOCSY transfer) rather than NOE. Of these, the one-bond (large J coupling, short
1/(2J) delays) jumps are preferred to long-range 2J and 3J (smaller J coupling, longer 1/(2J)
delays) relationships. This reasoning leads us to the idea that if 15N labeling is good, why
not replace all (or nearly all) atoms in the protein with NMR-active spin-½ nuclei? Then we
could “walk” along the polypeptide backbone using only one-bond J-coupling relationships
to assign the protein.

12.12 TRIPLE-RESONANCE NMR ON DOUBLY-LABELED (15N, 13C)
PROTEINS

If a protein is produced (expressed) by bacterial growth in a medium with 15NH4Cl as
the sole source of nitrogen and uniformly labeled 13C-glucose or 13C-acetate as the only
source of carbon, it will be uniformly labeled with both 15N and 13C (“double-labeled”).
A vast alphabet soup of NMR experiments has been developed to exploit the possibilities
provided by a continuous path of high-abundance spin-½ nuclei along the peptide back-
bone: 15N–13Cα–13CO–15N–13Cα–13CO-and so on. These are called “triple-resonance”
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experiments because they use pulses on three channels: 1H (e.g., 600 MHz), 13C (150
MHz), and 15N (60 MHz) with appropriate delays to bring about INEPT transfer along the
chain. For 3D triple-resonance experiments, the three dimensions are normally the 1HN,
15N, and 13C chemical shifts, and as before we “index” the 3D data cube using the “address”
of each backbone amide H–N pair: its 1HN and 15N chemical shifts. The third dimension
then gives us a 13C spectrum of carbons associated in a specific way with the H–N pair by
a series of INEPT transfers.

The general strategy for coherence transfer from A to B to C is as follows: for the first
coherence transfer step (A to B), we start with A coherence and have a defocusing delay of
1/(2JAB) (usually with simultaneous 180◦ pulses on both A and B in the center to prevent
chemical-shift evolution) and then simultaneous 90◦ pulses on A and B to bring about the
antiphase-to-antiphase INEPT transfer. Then a period of refocusing (1/(2JAB)) is allowed
for getting the B coherence back into phase with respect to A, and another defocusing delay
(1/(2JBC)) to get the B coherence antiphase with respect to C. Simultaneous 90◦ pulses on
spins B and C bring about the next coherence transfer, resulting in antiphase C coherence.
A, B, and C can be any combination of 15N, 13C, and 1H. Thus the basic HSQC strategy can
be extended to a number of transfers. Each evolution period is just a delay (t1 or t2) with
180◦ pulses in the middle for all nuclei that are coupled to the one whose chemical shift is
being encoded during that period. Sometimes the 180◦ pulse in the middle is replaced by
continuous decoupling during the whole evolution period. The 180◦ pulses (or decoupling)
prevent the J coupling from showing up in the frequency domain (F1 or F2) associated with
that evolution delay (t1 or t2).

Because of the large gaps in 13C chemical shifts between the aliphatic (10–70 ppm)
and carbonyl (160–180 ppm) chemical shifts, one can treat these categories as separate
“channels” by using selective 13C pulses (shaped pulses or low-power rectangular pulses)
that excite only one range (or “band”) of 13C shifts. Thus most triple-resonance experiments
are diagramed with four channels: 1H, 15N, 13Cα,β, and 13C′ (carbonyl), even though there
are only three hardware channels.

12.12.1 3D HNCO

To illustrate how a complex triple-resonance pulse sequence can be understood relatively
easily using the concepts developed in this book, consider the HNCO experiment. The HN
and 15N chemical shifts of one residue are correlated with the chemical shift of the carbonyl
group of the previous residue (Fig. 12.56). This is accomplished by a simple out-and-back
scheme of coherence transfer (Fig. 12.57): 1HN → 15N → 13C′ (t1) → 15N (t2) → 1HN
(t3) (here we use C′ for the backbone carbonyl carbon). The pulse sequence is shown in
Figure 12.58, with the dotted line showing the path of coherence transfer from HN to N to C′
and back again and the letters a–j referring to specific times within the sequence. Separate
channels are shown for Cα and C′ even though there is only one 13C hardware channel.
Rectangular C′ 90◦ pulses can be applied with frequency at the center of the carbonyl
region (175 ppm) and with low power (e.g., γCB1/2π = 4 kHz, 62.5 �s 90◦ pulse) so that
the sinc-shaped excitation profile has a null in the Cα region. The single 180◦ pulse on the
Cα “channel” is applied with frequency at the center of the Cα region (54 ppm) and with
low power (e.g., γCB1/2π = 9 kHz, 55.6 �s 180◦ pulse) to minimize excitation in the C′
region. In the following discussion, N and C will be used instead of S to indicate 15N and
13C′ product operators, respectively.
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Figure 12.56 Figure 12.57

a to b. First, a proton 90◦ pulse creates 1H coherence (I+). This is step 1 of Figure 12.57.
During the 2� delay (1/(2JNH) = 1/(2 × 90 Hz) = 5.6 ms) we have evolution of the JNH
coupling until the proton coherence is antiphase (I−Nz). The simultaneous 180◦ pulses on
1H and 15N in the center of this delay prevent 1H chemical-shift evolution.

b to c. Simultaneous 90◦ pulses on 1H and 15N bring about coherence transfer (INEPT
transfer) from antiphase 1H to antiphase 15N coherence (I−Nz → N−Iz). This is step 2 of
Figure 12.57.

c to d. During the 2� (1/(2JNH) = 5.6 ms) delay, refocusing occurs with respect to
1H coupling (N−Iz → N−), and during the 2τ (1/(2JNC′ ) = 1/(2 × 15 Hz) = 33.3 ms)
delay defocusing occurs with respect to C′ coupling (N− → N+Cz). The simultaneous
15N and C′ 180◦ pulses at the center of the 2τ delay prevent 15N chemical-shift evolution
while still allowing J-coupling evolution with respect to C′. In order to save time (proteins
have short T2 so time is critical), the refocusing with respect to 1H occurs simultaneously

Figure 12.58
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with the defocusing with respect to C′. Because 2� < τ (the drawing is not to scale),
the 1H refocusing is complete before the 180◦ pulses. After the 2� delay proton decou-
pling is started, so that no 1H coupling will be active until we reach a point 2� before
time h.

d to e. Simultaneous 90◦ pulses on 15N and 13C′ bring about coherence transfer (IN-
EPT transfer) from antiphase 15N to antiphase 13C′ (N+Cz → C+Nz). This is step 3 of
Figure 12.57.

e to f. C′ evolution: During the t1 delay, C′ single quantum coherence rotates in the x′–y′
plane at a rate determined by its rotating frame chemical shift (�C′ ), introducing a factor of
exp(−i�C′ t1) into the coherence (C+Nz → C+Nz exp(−i�C′ t1)). This encoded chemical
shift will be decoded during data processing (3D Fourier transform). The simultaneous 15N
and Cα 180◦ pulses in the center of the evolution period refocus J coupling evolution with
respect to 15N (1JNC′ ) or Cα (1JCαC′ ) so that only chemical-shift evolution occurs and these
couplings do not appear in the F1 dimension. This first evolution step corresponds to step
4 in Figure 12.57.

f to g. Simultaneous 90◦ pulses on 15N and 13C′ bring about coherence transfer (INEPT
transfer) back from antiphase 13C′ to antiphase 15N (C+Nz → N+Cz, leaving out the
exp(−i�C′ t1) term). This is step 5 in Figure 12.57.

g to h. 15N SQC evolves during the t2 period, encoding the backbone 15N chemical shift
in the second indirect time dimension. This is carried out in a different way, including a spin
echo with a “moving” pair of 180◦ pulses. This “constant time” evolution will be discussed
further below; for now we just need to know that 15N is allowed to refocus with respect
to C′, its chemical shift is encoded, and it is allowed to defocus (evolve into antiphase)
with respect to its 1HN partner. Continuous 13Cα decoupling during the entire constant
time period (2τ) prevents any J coupling with respect to Cα (1JNCα) from appearing in
the F2 dimension, and a 180◦ pulse on 13C′ in the center of the active t2 evolution period
“decouples” the 1JNC′ coupling in F2. This 15N evolution part corresponds to step 6 in
Figure 12.57.

h to i. Simultaneous 90◦ pulses on 15N and 1H bring about coherence transfer (IN-
EPT transfer) back from antiphase 15N to antiphase 1H (N−Iz → I+Nz, leaving out the
exp(−i�C′ t1 + i�Nt2) term). This is step 7 in Figure 12.57.

i to j. A 2� (1/(2JNH)) delay refocuses 1H coherence with respect to coupling with
15N, with simultaneous 180◦ pulses on 1H and 15N to prevent 1H chemical-shift evolution
(I+Nz → I−).

Detection. The 1H FID of HN (starting with I−) is recorded with decoupling of 15N (1JNH
= 90 Hz). The C′ chemical shift (exp(−i�C′ t1)) and 15N chemical shift (exp(i�Nt2)) terms
are “decoded” in the 3D Fourier transform to display a crosspeak at F1 = δ(C′

i−1), F2 = δ(Ni )
and F3 = δ(HNi ). This is step 8 in Figure 12.57. Gradient selection of the coherence pathway
is provided by two gradient pulses, the first while we have 15N SQC and the second while we
have 1H SQC. Using a definition of coherence order that includes the γ , we would have p = 1
for 15N and p = 10 for 1H, so that p = −1 for N−Iz (immediately after point c) and
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p = −10 for I−Nz/I− just before point j. Thus the total “twist” is:

∑
piGi = − 1(10) + (−10)(−1) = 0

for the desired coherence pathway.

12.12.2 Constant-Time (CT) Evolution

This is a common trick in modern triple-resonance pulse sequences. In order to save time
(and minimize T2 relaxation), evolution occurs within a constant time period corresponding
to the 1/(2J) delay required for refocusing after the previous coherence transfer step (in this
case C′ → N). During this constant delay period of 2τ = 1/(2JNC′ ) = 33.3 ms, J-coupling
evolution with repect to C′ refocuses antiphase 15N coherence to in-phase (N+Cz → N+)
while simultaneous 180◦ pulses on 15N and C′ create a spin echo for part of this time.
The spin-echo blocks 15N chemical-shift evolution while allowing 1JNC′ evolution, so that
only in the remaining time t2 of the constant 2τ delay does 15N chemical-shift evolution
occur. The pair of 180◦ pulses are in the center of the 2τ delay at the start of the experiment
(t2 = 0) and for each increment of t2 these pulses are “moved” to the left within the constant-
time period, shortening the spin echo and “exposing” at the right side a larger t2 period for
15N evolution. Since 1JNC′ is active during the whole constant-time period, we have full
refocusing of antiphase 15N coherence regardless of the t2 value (N+Cz → N− exp(i�Nt2)).
The 1H decoupling is turned off 2� (1/(2JNH) = 5.6 ms) before the end of the constant-time
period, allowing J coupling with repect to 1H so that the 15N coherence ends up antiphase
with respect to 1H (overall N+Cz → N−Iz exp(i�Nt2)). Again, because 2� < τ, the two
180◦ pulses do not interfere with this defocusing. This is amazingly efficient: within a single
constant time period of 2τ we refocus with respect to C′, encode the 15N shift in t2 and
defocus with respect to HN in preparation for the next coherence transfer step.

The 3D HNCO data matrix is very sparsely populated with crosspeaks because there
is only one correlation per residue in the protein (Fig. 12.59). The main purpose of this
experiment is to count residues and make sure all of the peaks can be found and identified.
Once we have the assignments for each H–N pair, the data can be arranged in a strip plot
in order of residue number.

Figure 12.59
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Figure 12.60

We will use a doubly labeled (15N, 13C) sample of a triple mutant of the 66 residue
Cro protein from bacteriophage λ to illustrate the triple-resonance experiments and the
strategy for sequence-specific assignment without NOE experiments. The 2D {1H, 15N}
HSQC spectrum, the road map for analyzing all triple-resonance experiments, is shown
in Figure 12.60. One crosspeak is observed for each backbone amide (HN–N) pair (Met-1,
Pro-57, and Pro-59 lack a backbone amide H–N). In addition, pairs of crosspeaks are
observed for each of the Gln and Asn side-chain NH2 groups (e.g., N45, Q3, and Q16 in
the upper right side), and crosspeaks are also observed for the H–N pairs of Arg, Trp, and
His side chains (e.g., R4ε, R13ε, and R38ε, which are aliased from the region of F1 = ∼85
ppm). To locate the crosspeaks in the 3D HNCO data matrix (Fig. 12.59), the data in all
of the horizontal planes is summed and projected onto the “floor” to give a low-resolution
{1H, 15N} 2D HSQC spectrum similar in appearance to the 2D HSQC shown in
Figure 12.60. The column (HN) and tier (15N) number is recorded for each resolved
crosspeak and this “address” is used to cut out a strip from the 3D data matrix (Fig. 12.59).
Once the assignments are obtained, these strips can be lined up in order of residue number,
but for now they are just counted to make sure we have one for each backbone H–N pair
in the protein.

Figure 12.61 shows a strip plot of the HNCO spectrum of the λ-Cro protein for residues
34–48. The point values in the 3D matrix used to extract each strip are shown at the bottom
of the strip. For example, the Ile-40 H–N pair is found in the matrix at column 321 (F3 =
HN = 7.28 ppm) and tier 111 (F2 = 15N = 123.50 ppm) and shows a crosspeak for the C′
(backbone carbonyl) carbon of Lys-39 at F1 = 13C′ = 171.30 ppm.

12.12.3 3D HNCA and HN(CO)CA

One of the earliest triple-resonance experiments is the HNCA, which correlates the chemical
shifts of HN(i), 15N(i), and either 13Cα(i) (strong crosspeak, Fig. 12.62 major path) or
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Figure 12.61

13Cα(i − 1) (weak crosspeak, Figure 12.62 minor path). The experiment uses the same out-
and-back strategy (Fig. 12.63) starting with 1HN coherence, with INEPT transfer to 15N
and then either to 13Cα(i) via the one-bond coupling 1JNCα (major path, J = 7–11 Hz) or to
13Cα(i − 1) via the two-bond coupling 2JNCα (minor path, J = 4–9 Hz). A t1 evolution period
records the 13C chemical shift and then INEPT transfer moves the coherence back to 15N,
where the 15N shift is recorded in the t2 evolution delay. Finally, coherence is transferred
back to 1HN for recording of the FID (t3). If one extends a 1D vector (line) through the
cube at the “address” of the unique F3 = Hi

N, F2 = 15Ni location, extending along the F1
(13C) dimension, there will be a strong crosspeak at the chemical shift of Cα(i) and a weak
crosspeak at the chemical shift of Cα(i − 1) due to the minor pathway (steps 3, 4, and 5 using

Figure 12.62

Figure 12.63
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Figure 12.64

the smaller J value). Knowing the chemical shift of Cα(i), we can look for a weak crosspeak
at this chemical shift at a different F3 = HN, F2 = 15N vector, and we will have the 1HN,
15N pair from residue (i + 1). In this way we can “walk” through the backbone (until we
encounter a proline) using only coherence transfer (1JNH, 1JNCα, and 2JNCα) steps.

If the hardware is available to distinguish the Cα region (45–75 ppm) from the carbonyl
region (165–180 ppm) of the 13C spectrum, we can treat these as separate radio frequency
“channels” using band-selective pulses that excite only one region or the other. This allows
us to take advantage of the much larger coupling constants 1JCαC′ (∼55 Hz) and 1JNC′
(∼15 Hz), so that the defocusing and refocusing delays are shorter (here we use C′ for the
backbone carbonyl carbon). This experiment goes out and back using only one-bond jumps:
HN(i) to N(i) to CO(i − 1) to Cα(i − 1) and back again (Fig. 12.64). The chemical shift of
the carbonyl carbon is not recorded in an evolution period, so it is shown in parentheses in
the experiment name: HN(CO)CA. This experiment correlates HN to the Cα of the previous
residue in an unambiguous way (Fig. 12.62), so it complements the HNCA experiment,
which primarily correlates HN with the Cα of its own residue. Using these two experiments,
the assignments (sequence-specific chemical shifts of all of the backbone HN, N, and Cα)
can be obtained without using NOEs for a protein of up to 25 kD.

12.12.4 Adding the β-Carbon: HNCACB and CBCA(CO)NH

In a large protein it is dangerous to rely on a single chemical shift (e.g., Cα) shared by
two H–N pairs to make a sequential assignment, especially since Cα shift does not vary
that much among the 20 amino acid types. If we could record the 13C chemical shifts of
both the Cα and Cβ carbons for each residue, the “fingerprint” would be much more likely
to be unique. The range of Cβ shifts (20–70 ppm) is larger than the range of Cα shifts
(45–75 ppm), and having two shifts makes it much less likely to have overlap of both. This

Figure 12.65
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Figure 12.66

is accomplished by adding a simple homonuclear INEPT (i.e., COSY) transfer between
the Cα and Cβ carbons before and after recording the 13C shift (t1) and before transferring
coherence from Cα to N. The experiment exactly analogous to HNCA is called HNCACB
(Fig. 12.65). From a given H–N pair, strong correlations are observed to the Cα and Cβ of the
same residue, and weak correlations are observed to the Cα and Cβ of the previous residue.
Figure 12.65 shows the pathways for observing Cβ in the F1 dimension, but it could just as
well be Cα since the homonuclear INEPT transfer steps (4 and 6) are not directional; they
simply mix the Cα and Cβ coherences. The correlations are shown in Figure 12.66: at the
address of a particular H–N pair we see strong crosspeaks to the Cα and Cβ resonances of the
same residue (intraresidue correlations) and weak crosspeaks to the Cα and Cβ resonances
of the previous residue (interresidue or sequential correlations). If we collect all of the
strips from the 3D matrix (Fig. 12.67), we can match up the weak correlations in each strip
with the strong correlations of another strip to establish sequential connectivity. We have the
additional advantage that Cβ shifts will stand out for Ala residues (∼20 ppm) and for Ser and
Thr residues (∼65 and ∼70 ppm), allowing us to quickly locate a unique series in the amino
acid sequence. The Glycine residues will also stand out due to the lack of a Cβ resonance.

Figure 12.68 (top spectrum, lower trace) shows the 1D vector taken from the HN and 15N
“address” of Ala-66 in the 3D HNCACB data matrix for λ-Cro protein. In this HNCACB
experiment the crosspeaks are edited (cf. Chapter 11, edited HSQC) so that the Cβ resonances
(which had two COSY transfers, steps 4 and 6 in Fig. 12.65) have negative intensity and
the Cα resonances (for which these two transfers “failed”) have positive intensity. This 1D
vector corresponds to the vertical dotted line passing through the crosspeaks in Figure 12.67.
In the 1D vector, strong peaks are seen for the Cα of A66 (positive peak at 54.1 ppm) and
the Cβ of A66 (negative peak at 20.2 ppm) and weaker peaks are seen for the Cα of T65
(positive peak at 61.7 ppm) and the Cβ of T65 (negative peak at 70.2 ppm). If we were in

Figure 12.67
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Figure 12.68

the process of assigning the protein, we would know that this vector represents an Alanine
residue with a preceding Serine or Threonine (Cβ downfield of Cα). In the sequence this
could be T19-A20, S28-A29, or T65-A66. To resolve the ambiguity we could search out a
vector with major peak chemical shifts of Cα = 61.7 (positive) and Cβ = 70.2 (negative),
and look for its minor Cα and Cβ peaks. These could represent either K18, Q27, or T64.
From the chemical shifts we would easily identify T64.

Once we have sequence-specific assignments, the strips from the HNCACB matrix can
be arranged in order of residue number. Figure 12.69 (right) shows the strip plot for λ-Cro

Figure 12.69
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Figure 12.70

protein residues 34–48. Negative peaks are shown in gray and positive peaks in black. Note
that the crosspeaks appear in pairs, with the more intense peak on the left side of each pair. In
each strip, the more intense peaks represent the Cα (positive) and Cβ (negative) resonances
for that residue, and the weaker peaks represent the Cα and Cβ resonances for the previous
residue. From these weak crosspeaks we can move to the left along a horizontal line to the
previous strip and see the major (strong) crosspeak for that strip. For example, the weak
positive peak in the Gly-37 strip (Cα-36, 52.6 ppm) matches the strong positive peak in
the Ala-36 strip (Fig. 12.69, right side, lower ellipse). Likewise the weak negative peak in
the Gly-37 strip (Cβ-36, 19.7 ppm) is exactly aligned with the strong negative peak in the
Ala-36 strip (upper ellipse). The Glycine strips lack a strong negative peak (intraresidue
Cβ) and the strips following Glycines (e.g., R38) lack a weak negative peak (interresidue
Cβ) because Glycine has no β-carbon. The Alanines stand out (Cβ’s at 19.7 and 18.5 ppm)
as does the Threonine (Cβ at 71 ppm). Both Gly-37 and Gly-48 have only one negative (Cβ)
peak, the weak one “carried over” from the previous residue. The only α-carbon resonances
below 60 ppm are I34, T43, and I44, all with branched β-carbons.

In some cases the distinction between “strong” and “weak” peaks may be ambiguous,
or the “weak” peaks may fall into the noise. We need an experiment analogous to the
HN(CO)CA that uses an unambigous path through the C′ carbon to the Cα and Cβ carbons
of the previous residue. There are two such experiments: the out-and-back experiment
directly analogous to HN(CO)CA is called HN(CO)CACB, and another experiment, called
CBCA(CO)NH, starts with the Hα and Hβ protons and moves in one direction to the HN of
the next residue. The simple out-and-back extension of the HN(CO)CA would involve 12
steps, 8 of them INEPT transfers! The alternative one-way ticket (Hα and Hβ → Cα and
Cβ → Cα → C′ → N → HN) is only 9 steps (CBCA(CO)NH, Fig. 12.70). The path is
unambiguous because it involves only one-bond INEPT transfers (1J) and passes through
the carbonyl (CO) carbon on its way to the previous residue. The experiment correlates each
H–N pair to the Cα and Cβ of the previous residue only (Fig. 12.66). Each vector (vertical
line) in the 3D data matrix corresponding to a backbone H–N pair passes through only two
crosspeaks (one if the previous residue is Glycine) representing the 13C chemical shifts of
the previous residue’s Cα and Cβ carbons (Fig. 12.71).

Figure 12.68 (top spectrum, upper trace) shows the 1D vector from the CBCA(CO)NH
3D data matrix corresponding to the Ala-66 H-N pair. There are only two crosspeaks, corre-
sponding to the Cα and Cβ carbon resonances of the previous residue, Thr-65. In this version
there is no editing, so both peaks appear with positive intensity. Also in Figure 12.68 (bottom
spectrum) is the corresponding vector from the HNCO 3D matrix, which has only one cross-
peak corresponding to the C′ (carbonyl) carbon resonance of Thr-65. The CBCA(CO)NH
strip plot for λ-Cro protein residues 34–48 is shown in Figure 12.69 (left). Comparison to
the HNCACB strip plot (Fig. 12.69, right) clearly shows that the crosspeaks found in each
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Figure 12.71

strip of the CBCA(CO)NH correspond to the minor crosspeaks (coming from the previous
residue) of the HNCACB strip. These crosspeaks, weak in the HNCACB, are now strong
and can be unambiguously identified as coming from the previous residue’s Cα and Cβ res-
onances. Working with these two datasets, the HNCACB and the CBCA(CO)NH, it is rela-
tively straightforward to assign a double-labeled protein up to about 25–30 kD. The HNCO
dataset completes the backbone assignments by adding the carbonyl (C′) chemical shifts.

12.13 NEW TECHNIQUES FOR PROTEIN NMR: RESIDUAL DIPOLAR
COUPLINGS AND TRANSVERSE RELAXATION OPTIMIZED
SPECTROSCOPY (TROSY)

12.13.1 Residual Dipolar Couplings

Methods for biological NMR are constantly extending the limits of size and complexity of
proteins that can be studied, as well as simplifying the process of structure determination.
Until recently, determination of the 3D structure of proteins was dependant exclusively on
measurements of NOE distances and dihedral angles, relationships that are very short-range
(5 Å and three bonds, respectively). As we move from one part of a protein to another, the
errors in these local relationships begin to accumulate so that there may be serious overall
errors in the relationship of one end of a molecule to the other, especially if it is elongated.
To overcome this, we would like to be able to orient each part of the molecule relative to an
absolute frame of reference such as the Bo field. Consider, for example, an 15N–1H pair in a
15N-labeled protein (Fig. 12.72). We saw in Chapter 5, Section 5.7, that the nuclear magnet

Figure 12.72
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of one spin modifies the Bo field at the position of a nearby spin in a through-space effect
called the dipole–dipole interaction. The sign of the effect on Beff (increased or decreased)
depends on the orientation of the spin: α or β. The direct or dipolar coupling between a 15N
and its directly bound 1H is very large, on the order of tens of kilohertz, and it depends on
the orientation of the N–H vector with respect to the Bo field:

D = Do(1 − 3cos2�)

where � is the angle between the N–H vector and the Bo field and Do depends on the
distance (fixed by the single bond length) and the product γHγN. Of course, in solution
the protein is rapidly tumbling (reorienting) and samples all possible orientations in 3D
space equally (“isotropic” tumbling) so that the dipolar coupling is the average of D over all
these orientations. It turns out that the average value of cos2� over the surface of an evenly
populated sphere of vector orientations is exactly 1/3, so that the dipolar coupling averages
to zero and the only coupling left is the indirect or scalar coupling, J, which is about 90 Hz.

This is good because all of those enormous (∼10 kHz) couplings would really mess up
the spectrum, but it would be nice if just a tiny fraction of the dipolar coupling could be
“brought back” so that we could measure the angle � and orient each of the N–H vectors
in the protein with respect to the absolute laboratory frame. This would give us a third and
fundamentally different kind of NMR restraint based on reference to the fixed Bo direction
rather than the relative relationships of NOE distances and dihedral angles. What we would
like to do is to skew the molecule’s tumbling so that there is a very slight preference for
a particular orientation with respect to the Bo field direction, while keeping the tumbling
rapid so that T2 remains relatively long. A number of methods have been developed to do
this. A liquid crystal solution can be used, made up of “coin-shaped” lipid bilayers called
“bicelles” (Fig. 12.73, left). These orient in the magnetic field below a critical transition
temperature near room temperature, and are randomly oriented above that temperature. The
protein, unless it is perfectly spherical, tends to line up with the oriented bicelles simply
because of the restricted space it has available in solution. This is easier to visualize if the
protein is elongated, so that the long axis will tend to align with the long axis of the bicelles,
which is the direction of the Bo field (Fig. 12.74). Another method is to put the protein

Figure 12.73
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Figure 12.74

solution in a polymerized gel, such as SDS-polyacrylamide, which has tiny spherical voids
containing the protein solution. If the gel is stretched along the direction of the NMR tube
and inserted into the tube (Fig. 12.73, right), the spherical voids are stretched and become
elongated along the z axis. The protein, again assuming it is elongated along one axis, has
a slight tendency to put its longer axis parallel to the long axis of the voids. In either case,
the tendency to align may be only a small fraction of 1%, but this is enough to make the
average of (1–3 cos2�) deviate from zero so that the residual dipolar coupling (RDC) is
on the order of a few hertz. The exact value of the RDC gives us an idea of the orientation
of the N–H vector relative to the alignment axis (the long axis in Fig. 12.74) of the protein.
The RDCs are measured by recording a 2D {1H,15N} HSQC spectrum with the central
1H 180◦ pulse (in the center of the t1 evolution delay) removed so that the 1JNH coupling
appears in the F1 dimension as a doublet (Fig. 12.75). Each 1JNH value can be read by the
vertical separation in the pair of crosspeaks that appears for each residue in the protein. If
the experiment is performed twice, once without orientation (Fig. 12.75, center: above the
liquid crystal melting point or in the absence of the stretched gel) and then again with the
slight orientation (Fig. 12.75, right), the difference in the measured 1JNH value is the residual
dipolar coupling, which can be either negative (decreased J value) or positive (increased
J value). The challenge is to determine the orientation axis (basically, the long axis) of
the protein, a complex calculation involving all of the measured RDCs. Then limits can
be placed on the individual � angles for each N–H vector relative to this orientation axis.
This technique is still very new and the calculation methods are not standardized, but the
power to “refine” 3D protein structures using these absolute orientational restraints has been
clearly demonstrated. There have even been some structures determined with RDCs alone,
without any local dihedral or NOE restraints. This technique borrowed from the field of
solid-state NMR is blurring the boundaries between the solution-state and solid-state NMR
fields, just as pulsed field gradients have borrowed from NMR imaging (MRI) technology.

12.13.2 TROSY

Two problems limit the size of proteins that can be studied: the complexity problem (more
and more nuclei that must be identified uniquely by a fixed range or dispersion of chemical
shifts) and the linewidth problem (decreasing T2 due to slower molecular tumbling in
solution leads to broader NMR peaks). The complexity problem is dealt with by adding
NMR-active nuclei and using 3D and 4D experiments, and occasionally by the good fortune
of having molecular symmetry (symmetrical dimers, trimers, etc.). The linewidth problem
can be dealt with by replacing all but the N–H protons with deuterium (2H), which has one
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seventh of the γ of 1H and therefore is less effective at relaxing (reducing the T2) of nearby
nuclei, especially directly bonded 13C nuclei. This can be accomplished by replacing all of
the hydrogen in the growth medium with deuterium. It drastically reduces the number of 1H
nuclei that can be studied, resulting in far fewer NOE restraints, and it requires a hardware
capability of 2H decoupling in a way that will not interfere with the 2H lock channel. Another
even more promising approach to the linewidth problem is a new NMR experiment called
TROSY (transverse relaxation optimized spectroscopy). The core experiment is a modified
{1H,15N} HSQC in which no decoupling is done in either the F1 or the F2 dimensions.
This is accomplished in F1 by omitting the 1H 180◦ pulse in the center of the t1 evolution
delay (as we did for RDC measurement) and in F2 by turning off the 15N decoupling during
acquisition of the 1H FID. This turns each crosspeak, which represents a single amino acid
residue, into a “square” of four crosspeaks.

If we look at the 1D 1H and 15N spectra, we see that one component of the doublet is
broader and one is sharper. This is the result of the interaction of two separate mechanisms of
T2 relaxation: dipole–dipole relaxation, in which the proton’s magnetic field modulates the
field experienced by the nitrogen as the molecule tumbles, and chemical-shift anisotropy
(CSA) relaxation, in which the field experienced by the nitrogen is slightly modified by
the circulation of electrons around the nucleus. Because the 15N chemical shift at any in-
stant in time is dependent on the orientation of the molecule (“chemical-shift anisotropy,”
Chapter 2, Section 2.6) with respect to the Bo field direction, the chemical-shift perturbation
of the field experienced by the nitrogen oscillates as the molecule tumbles. Thus we have
two perturbations of the magnetic field experienced by the 15N nucleus in an N–H pair:
dipole–dipole from the 1H, which has a fixed magnitude determined by the bond distance
and the product γHγN, but a sign that depends on the spin state of the 1H nucleus (α or β

state); and CSA from the electrons around the 15N nucleus, which has a magnitude propor-
tional to Bo and a sign that is independent of the proton spin state (Fig. 12.76). Both of these
perturbations are the direct result of the molecular tumbling, so for an individual N–H pair
in one molecule they have a frequency equal to the tumbling rate. If the molecule tumbles
at the zero-quantum frequency (νH–νN) we have effectively a radio frequency oscillation of
the magnetic field that can induce spin exchange (αβ ↔βα) and bring about T2 relaxation. If
we look at the contributions of dipole–dipole and CSA to the effective field experienced by
the 15N nucleus in a particular tumbling molecule as a function of time, we see that for one of
the components of the 15N doublet (the 1H = β component in this example), the two effects
are opposite in sign and tend to cancel each other (Fig. 12.76). This leads to a reduction in
ZQ transitions and a longer T2 (sharper peak). For the other component of the doublet, the

Figure 12.75
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Figure 12.76

two effects add together to give an increased rate of ZQ transitions and a shorter T2 (broader
peak). The same thing happens to the 1H nucleus when we examine the effect of the 15N
dipole–dipole relaxation and the CSA relaxation of the 1H, so that one component of the
doublet is broad and one is narrow. The amplitude of the CSA perturbation is proportional
to Bo, so there is, in principle, a particular field strength where the CSA exactly balances the
dipole–dipole perturbation and we have essentially no T2 relaxation for one component of
the doublet (“immortal coherence”). Of course the balance is never quite perfect, and there
are other relaxation mechanisms besides dipole–dipole and CSA, but the result would be a
very sharp peak. This optimal field is predicted to be around 1000 MHz 1H frequency
(23.5 T), a field that has not yet been reached in commercial spectrometers, although
900 MHz is available. Thus the “TROSY principle” gives an impetus for pushing the
magnet technology to the 1 GHz level and beyond.

Figure 12.77
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Even at 600 or 800 MHz (14.1 or 18.8 T), for very large proteins, if we “turn off” decou-
pling in both dimensions of an HSQC experiment one of the four components of each cross-
peak will be a very sharp peak, with good signal-to-noise ratio (Fig. 12.77). The TROSY
experiment selects the pathway leading to this one component only and suppresses the other
three. Thus for each amino acid residue we still see only one crosspeak in the 1H,15N HSQC,
and we have to some extent overcome the linewidth problem in protein NMR. Since the
HSQC is the basis of all of the 3D experiments (the final step is an HSQC-type transfer
from 15N to 1H, or from 13C to 1H), all of these experiments can be converted to TROSY
versions with greatly improved linewidth for large proteins. One example of how large a
molecule can now be studied is the Gro-EL complex, an 800 kD symmetrical complex of 14
identical subunits. This is cheating a bit, of course, since the complexity level is the same as a
60 kD protein, but it shows how far TROSY can extend into the world of large biological
molecules. A 0.13 mM sample was prepared with uniform 15N and 2H labeling and studied
using a cryogenic probe on a 900 MHz spectrometer. A separate sample was prepared with
15N labeling only in the leucine residues to help with the assignment process. These large
proteins are enormously ambitious projects, and just completing the assignments is a huge
achievement, but it shows how far NMR has come as a tool in structural biology.
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APPENDIX A

A PICTORIAL KEY TO NMR
SPIN STATES

The following pages show the 15 Cartesian product operators for a spin system consisting
of two J-coupled protons I (Ha) and S (Hb) (Fig. A.1). Each operator is represented in six
ways: the product operator symbol, an energy diagram with transitions, a vector diagram,
a spectrum, a density matrix, and the coherence order.

1. Product Operator. For multiple-quantum coherences, the pure zero-quantum and
double-quantum states are shown with their Cartesian product operator equivalents.

Figure A.1

NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and
Structural Biology, by Neil E Jacobsen
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The sixteenth operator is the identity operator (zero net magnetization); it is not
shown.

2. Energy Diagram. The four energy levels are labeled according to the spin states of
the I spin (α or β) and the S spin (α or β). The S spin transitions are on the lower
right side and upper left side of the diagram; the I transitions are on the upper right
side and lower left side (Fig. A.1). Solid arrows indicate coherences between energy
levels with phase aligned along the x′ (real) axis; dotted arrows indicate coherences
with phase aligned along the y′ (imaginary) axis. Population differences are indi-
cated using open circles to indicate a slight deficit in population and closed circles
to indicate a slight excess, relative to an even distribution of N/4 spins in each spin
state.

3. Vector Diagram. Two vectors are shown, one representing approximately 50% of
spins whose coupling partner is in the α spin state and the other representing the other
half of the spins whose partner is in the β spin state. For multiple-quantum coherences,
there is no way to represent the spin state using vector diagrams.

4. Spectrum. If collection of the FID data begins with the system in the given spin state
and the FID is Fourier transformed, the diagram shows how the spectrum would look.
The normal spectrum (starting from Ix+ Sx, which would result from a 90◦

y pulse on
the equilibrium state Iz+ Sz) would consist of a doublet at νI and doublet at νS, both
with the same coupling constant J. The reference axis is x′: Absorptive phase is shown
for signals that are aligned along the x′-axis at the start of the FID, and dispersive
phase is shown for signals that start along the y′-axis.

5. Density Matrix. Each row and column is labeled with the spin state correspond-
ing to the energy diagram at the top. A coherence between two different en-
ergy levels appears as a complex number in the row and column corresponding
to the two levels. Coherences on the x′-axis are real and those on the y′-axis
are imaginary. Population differences (excess or deficit) show up in the diagonal
elements.

6. Coherence Order. The coherence order, p, is zero for z magnetization and zero-
quantum coherence, 1 or −1 for single-quantum coherence, and 2 or −2 for double-
quantum coherence. The coherence order is useful for diagraming the coherence
pathway in a pulse sequence and for predicting the effect of gradient pulses on the
sample magnetization.

The pure I (Ha) spin states (Fig. A.2) are the equilibrium state, Iz, which is not observable,
the in-phase single-quantum coherence Ix, which gives rise to an absorptive doublet at νI,
and the in-phase single-quantum coherence Iy, which gives rise to a dispersive doublet
at νI. The vector diagrams are labeled “I” to make clear that they represent I-spin net
magnetization only. The pure S spin states (Fig. A.3) are similar, except that they give
rise to peaks in the spectrum at νS instead of νI. For Sz, the population differences exist
only along the two S transitions (equilibrium difference = 1 − (−1) = 2). The antiphase
spin states for spin I (Fig. A.4) include the absorptive antiphase state, with vectors aligned
along the x′ and −x′ axes for the I spins with their coupling partners in the α and β spin
states, respectively, and the dispersive antiphase state, with vectors aligned along y′ and
−y′. Note that the density matrix elements in the lower left are 1 and −1 (x′ and −x′)
for the absorptive antiphase state, indicating that the two transitions (S = α and S = β)
have opposite sign. The dispersive antiphase state has matrix elements i and −i (y′ and −y′
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Figure A.2

Figure A.3
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Figure A.4

Figure A.5
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axes). The third state (Fig. A.4, right) is called two-spin order, which can be considered a
halfway-point in INEPT-type coherence transfer. Note that the population differences for
the I transitions are +2 (S = α, lower left) and −2 (S = β, upper right). The first two spin
states in Figure A.5 are the antiphase S spin states, with magnetization vectors pointing in
opposite directions depending upon the spin state (α or β) of the coupling partner (I spin).
The third state (Fig. A.5, right) is double-quantum coherence aligned along the x′ axis.
This is a coherence between the αα and the ββ energy levels that cannot be represented
in the vector model. It is not directly observable, so there is no spectrum shown. Note that
the density matrix elements connect the αα state to the ββ state, with matrix element 1
(x′-axis). The remaining three multiple-quantum states are shown in Figure A.6. Zero-
quantum coherences represent a superposition of the αβ and βα energy levels. Coherences
along the x′ axis are given real numbers for density matrix elements, and coherences along
the y′ axis are given imaginary numbers. The zero-quantum density matrix has nonzero
elements in row 2/column 3 and row 3/column 2, indicating a superposition of the αβ and
βα states. Note that the pure ZQ and DQ states must be represented as a sum or difference
of Cartesian product operators. For the homonuclear system, ZQ coherence has coherence
order 0 and DQ coherence has coherence order ±2.

Figure A.7 shows the time evolution of product operators as a result of chemical shift
only. Each “wheel” represents one full cycle of evolution (rotation in the x′–y′ plane),
starting on the right side and moving to the top (90◦ or π/2 rotation counterclockwise), to
the left side, and to the bottom. The center of the wheel is the rotation angle in radians: �I
is the I-spin offset (distance from the center of the spectral window in radians s−1) and �S
is the S-spin offset. I-spin SQC rotates at a rate �I; S-spin SQC rotates at rate �S; DQC

Figure A.6
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Figure A.7

rotates at the sum of these frequencies; and ZQC rotates at the difference. To write out the
general time course of chemical-shift evolution, simply multiply the starting spin state by
the cosine of the angle (value in the center of the wheel) and add the next spin state going
around the wheel times the sine of the angle. With chemical-shift evolution alone, in-phase
spins states remain in-phase and antiphase states remain antiphase.

Figure A.8 shows the time evolution of product operators as a result of J-coupling
evolution alone. In-phase coherence continuously progresses into antiphase and back to
in-phase as the two component vectors (α and β) counterrotate in the x′–y′ plane. The
angle of rotation in all cases is πJt in radians (where J is in hertz). This corresponds to
π/2 or one fourth of a full rotation for time equal to 1/(2J). To write out the general time

Figure A.8
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course of J-coupling evolution, multiply the starting spin state by cos(πJt) and add the next
spin state going around the wheel, multiplied by sin(πJt). Because in DQC and ZQC both
spins undergo a transition (“spin-flip”), the energy difference between αα and ββ levels (or
between αβ and βα) is not affected by J, so there is no J-coupling evolution due to JIS.
Coupling to a third spin (passive coupling), however, will lead to J-coupling evolution (e.g.,
2IxSx → 4IxSxI′

z).



APPENDIX B

A SURVEY OF TWO-DIMENSIONAL
NMR EXPERIMENTS

All two-dimensional experiments have the same general strategy: correlate one nucleus
to another nearby nucleus in the same molecule by a process of magnetization transfer.
Consider the transfer of magnetization from nucleus I to nucleus S:

1. Preparation: Create coherence on spin I.

2. Evolution: Let spin I coherence precess in the x–y plane for an incremented time delay
t1. This indirectly measures the frequency of precession, which can be converted into
the chemical shift of spin I.

3. Mixing: Transfer magnetization from spin I to spin S. This is the only part that is
different for different 2D experiments. Transfer may be by transfer of z magnetization
(NOE) or by transfer of coherence (J coupling).

4. Detection: The S spin coherence is measured by recording an FID in the normal way.
Fourier transformation of this FID gives a spectrum, and the S spin gives a peak in this
spectrum at its chemical-shift position. This peak varies in intensity in a sinusoidal
fashion as we step through the different FIDs recorded with gradually increasing
values of the t1 delay. The frequency of this oscillation in intensity is the frequency
of the I spin, which can be converted into its chemical shift.

The variety of 2D NMR experiments, each with its own acronym, can easily be understood
by knowing the nature of the I and S spins (e.g., 1H and 13C) and the type of mixing
used (e.g., coherence transfer via one-bond J coupling). Two general distinctions can be
made:

A. Homonuclear (I = 1H,S = 1H) and Heteronuclear (I = 1H,S = X), where X is any
nucleus other than 1H. Homonuclear 2D spectra have a diagonal that is a trace of the

NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and
Structural Biology, by Neil E Jacobsen
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1D 1H spectrum, and crosspeaks are arranged symmetrically around the diagonal.
There is only one radio frequency channel in a homonuclear experiment, the 1H
channel, so the center of the spectral window (set by the exact frequency of pulses
and of the reference frequency in the receiver) is the same in F2 and F1 (Varian tof,
Bruker o1). The spectral widths should be set to the same value in both dimensions,
leading to a square data matrix. Heteronuclear experiments have no diagonal, and two
separate radio frequency channels are used (transmitter for F2, decoupler for F1) with
two independently set spectral windows (Varian tof and dof, sw, and sw1, Bruker o1
and o2, sw(F2), and sw(F1)). Heteronuclear experiments can be further subdivided
into direct (HETCOR) and inverse (HSQC, HMQC, HMBC) experiments. Direct
experiments detect the X nucleus (e.g., 13C) in the directly detected dimension (F2)
using a direct probe (13C coil on the inside, closest to the sample, 1H coil on the
outside), and inverse experiments detect 1H in the F2 dimension using an inverse
probe (1H coil on the inside, 13C coil outside).

B. NOE (z magnetization transfer) and J coupling (coherence transfer) experiments.
If the mixing involves transfer of z magnetization through cross relaxation (NOE),
the correlation is based on a through-space distance between protons of less than
5 Å (2D NOESY). If the mixing involves transfer of magnetization in the x–y plane
(coherence) through a J coupling, the correlation is based on a through-bond separa-
tion of 1–3 bonds. Coherence transfer may occur by an INEPT sequence (antiphase
to antiphase) or by the TOCSY mixing sequence (in-phase to in-phase). Coherence
transfer can involve an intermediate state that is double-quantum or zero-quantum
coherence (DQC or ZQC) as in the DQF-COSY and HMQC/HMBC experiments,
but it is still essentially an INEPT transfer. One experiment that is difficult to classify
in this scheme is the 2D ROESY, which involves NOE transfer but not on the z-axis.
ROESY mixing occurs on the spin-lock axis, which is in the x–y plane, but the mech-
anism of magnetization transfer is by cross relaxation dominated by DQ transitions.
Essentially, ROESY mixing is just like NOESY mixing with the z-axis (Mz and B0
parallel) of the laboratory frame moved to the y′ axis (My and B1 parallel) of the
rotating frame. The effect is to reduce the B0 field by a factor of around 105 to the
strength of the B1 field, making DQ relaxation the dominant pathway for molecules
of all sizes.

In the following survey, the pulse sequence is shown for each experiment, along with a
diagram of the expected 2D spectrum and a structure fragment showing a typical interaction
that will lead to a crosspeak in the 2D spectrum. Positive crosspeaks are shown as filled
circles and negative crosspeaks are shown as open circles. In some cases the coherence
pathway is diagramed on a structure fragment, showing the sequence of events in the pulse
sequence.

B.1 HOMONUCLEAR (1H–1H) 2D EXPERIMENTS

B.1.1 Coherence-Transfer Experiments

COSY (correlation spectroscopy) is the first and the simplest 2D experiment. It correlates 1H
to 1H via a single J coupling that may be two-bond (geminal), three-bond (vicinal), or in rare
cases four-bond (long-range). Crosspeaks are antiphase in both F2 and F1 with respect to
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Figure B.1

the active coupling (the one that gives rise to the crosspeak). The pulse sequence (Fig. B.1)
consists of two 1H pulses separated by the t1 delay. Mixing is achieved by the second 90◦
pulse, which can be viewed as a simultaneous 90◦ pulse with respect to spins I (Ha) and
S (Hb). The antiphase state is achieved during the t1 delay to a varying extent depending
on J and t1. Thus, COSY uses an INEPT transfer without a specific 1/2J delay. One can
“walk” through a spin system by moving from diagonal to crosspeak vertically, back to the
diagonal horizontally, and repeating this process (Fig. B.2). The intense crosspeaks result
from geminal or vicinal couplings, and weak crosspeaks may be observed for long-range
(allylic, “W,” bis-allylic, meta, etc.) couplings.

A simple variant of the COSY experiment is COSY-35 (sometimes called COSY-45), in
which the second 90◦ pulse is reduced from a 90◦ pulse to a 35◦ or 45◦ pulse (Fig. B.3). The
result is that the fine structure of crosspeaks is simplified, with half the number of peaks
within the crosspeak. This makes it much easier to sort out the coupling patterns in both
dimensions and to measure couplings (active and passive) from the crosspeak fine structure.
A more important variant of the COSY experiment is the DQF (double-quantum filtered)—
COSY (Fig. B.4), which adds a short delay and a third 90◦ pulse. The INEPT transfer is
divided into two steps: antiphase I spin SQC to I,S DQC, and I,S DQC to antiphase S
spin SQC. The “filter” enforces the DQC state during the short delay between the second
and third pulses either by phase cycling or with gradients. DQF-COSY spectra have better
phase characteristics and weaker diagonal peaks than a simple COSY, so this has become
the standard COSY experiment.

TOCSY (total correlation spectroscopy) is an extension of the COSY experiment, in which
the coherence transfer is not limited to a single “jump” from one proton to another via a J
coupling. Instead, coherence is spread out over an entire “spin system” of coupled protons
via multiple J-coupled jumps. For example, in a string of carbons CHa–CHb–CHc–CHd,
coherence can be transferred by the TOCSY mixing sequence from Ha to Hc or from Ha
to Hd. Thus, crosspeaks will be observed at F2 = νa and F1 = νb, νc or νd (Fig. B.5).

Figure B.2
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Figure B.3

Figure B.4

Figure B.5

The TOCSY mixing sequence (Fig. B.6) is a spin lock that consists of a long sequence of
pulses of varying pulse width and phase without any delays (MLEV-17, DIPSI-2, etc.). The
B1 amplitude for the spin lock is about three times higher than that for ROESY and is not
continuous as it is with the ROESY spin lock. The goal of the TOCSY mixing sequence is to
reduce the chemical-shift differences to zero while retaining the J-coupling interactions. In
the spin-lock in the absence of chemical-shift differences (γB1 <<γB0), the protons within a
spin system behave as if they are all coupled together (“virtual coupling”), and the coherence
spreads throughout the spin system during the spin lock. The important parameters are
the duration of the spin lock (mixing time τm), which gives simple COSY-type transfer
(“one jump”) with a mixing time of about 35 ms, and maximum mixing throughout a
spin system with a mixing time of about 70 ms (“many jumps”), and the amplitude of the
spin-lock pulse (typically γB1/2π ∼ 8 kHz).

Figure B.6
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Figure B.7

B.1.2 NOE (z-Magnetization Transfer) Experiments

NOESY (nuclear Overhauser and exchange spectroscopy) is the simplest 2D NOE experi-
ment, consisting of three 90◦ pulses (Fig. B.7). The first pulse creates Ha coherence, which
then precesses during the t1 period to indirectly record the Ha chemical shift. The second
90◦ pulse flips the Ha magnetization back to the z axis, where the z magnetization can be
anywhere from +M0 to −M0 depending on the precession that occurred during t1. This
perturbed z magnetization (nonequilibrium population difference) propagates during the
mixing time τm to the nearby (<5 Å) proton Hb, so that its z magnetization is slightly
enhanced (a bit more than M0). The third 90◦ pulse flips the Hb z magnetization into the
x–y plane and the Hb FID is recorded. Normally, the diagonal peaks are phased to positive
absorptive lineshape so that the crosspeaks appear as negative peaks for small molecules
(relaxation is primarily DQ) and as positive peaks for large molecules (relaxation primarily
ZQ) or for chemical exchange (Fig. B.8). Chemical exchange (change of the chemical shift
of a proton due to conformational change or bond breaking and bond making) also leads
to an effective “transfer” of z magnetization during τm and thus gives a crosspeak in the
NOESY spectrum. Molecules of intermediate size (∼ 2000 Da.) can have very small or zero
NOE as the effect passes from negative to positive, and in these cases a ROESY spectrum
is preferred. The NOESY mixing time should be adjusted for molecular size, because the
timescale for both self-relaxation (T1) and cross relaxation (NOE) is dependent on molec-
ular size (shorter time for bigger molecules). The intensity of the transient NOE increases
linearly with τm (slope is proportional to 1/r6, where r is the direct through-space distance
between the two protons) and then levels off and falls to zero. A typical optimal mixing
time is 350 ms for small molecules (e.g., sucrose in D2O).

ROESY (rotating frame Overhauser effect spectroscopy) is a variant of NOESY, in which
the transfer of magnetization occurs on the spin-lock axis in the x–y plane rather than on
the z axis (Fig. B.9). A continuous low-power radio frequency pulse provides the mixing
by effectively reducing the field strength (B0 in the laboratory frame on the z axis to B1 in

Figure B.8



APPENDIX B: A SURVEY OF TWO-DIMENSIONAL NMR EXPERIMENTS 639

Figure B.9

the rotating frame on the spin-lock axis) by a factor of about 105 (e.g., from 600 MHz to
3300 Hz). At this field strength the Larmor frequency ν1 is so small that even very large
molecules have a significant population tumbling at 2ν1 (the DQ frequency), and relaxation
is dominated by DQ relaxation. Thus, the NOE is negative (negative crosspeaks when
the diagonal is positive) regardless of molecular size, and there is no null in the NOE at
intermediate molecular size (MW ∼ 2000). The optimal mixing time for a ROESY is about
half of the optimal mixing time for a NOESY, so a typical value of τm is 200 ms for small
organic molecules. TOCSY crosspeaks often show up in ROESY spectra, but because they
are positive they are easily distinguished from the negative ROESY crosspeaks.

B.2 HETERONUCLEAR (USUALLY 1H–13C) EXPERIMENTS

B.2.1 Coherence-Transfer Experiments

HETCOR (heteronuclear correlation) is the simplest heteronuclear 2D experiment. It corre-
lates a proton with the carbon it is bonded to, using the very large (125–180 Hz) one-bond J
coupling between 1H and 13C. The pulse sequence (Fig. B.10) is based on the simple INEPT
transfer from 1H to 13C. Coherence is created on 1H and then allowed to precess during the
t1 period, recording the 1H chemical shift indirectly. Then a delay of 1/(2J) is followed by
simultaneous 1H and 13C 90◦ pulses, which leads to INEPT transfer of antiphase 1H SQC
to antiphase 13C SQC. A refocusing delay allows the antiphase 13C SQC to evolve into
in-phase SQC, which is then detected during the FID with 1H decoupling. In the HETCOR
spectrum (Fig. B.11), 1H chemical shift appears on the vertical (F1) axis and 13C chemical
shift appears on the horizontal (F2) axis. For CH2 groups in chiral molecules, there are
usually two crosspeaks on the vertical line corresponding to the 13C chemical shift because
the two protons usually have different chemical shifts. For CH and CH3 groups, there is
only one crosspeak at each 13C chemical shift.

HETCOR has been largely replaced by the far more sensitive “inverse” experiments,
HSQC and HMQC. Because HETCOR is a 13C-detected experiment, it is called “direct”

Figure B.10
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Figure B.11

because this older way of doing 1H–13C correlation is by direct detection of 13C in the
t2 FID. HSQC (heteronuclear single quantum correlation) is similar to HETCOR, except
that the 1H chemical shift axis is F2 (horizontal) and the 13C chemical shift axis is F1
(vertical). Thus, it is called an “inverse” experiment because 1H is directly detected and
13C is indirectly detected, the inverse of the old way. Correlation is based on the one-bond
coupling (1JCH) between a 13C and the 1H directly bonded to it. The experiment uses an
“out and back” coherence transfer (Fig. B.12): 1H SQC is created, allowed to evolve into
antiphase with respect to its directly bonded 13C (1/(2J) ∼ 3.3 ms), and simultaneous 1H
and 13C 90◦ pulses lead to coherence transfer from 1H to 13C (INEPT transfer). The 13C
SQC, antiphase with respect to its directly bonded 1H, precesses at the frequency of the 13C
chemical shift during the evolution (t1) period, and a 1H 180◦ pulse in the center refocuses
any J-coupling evolution. Because the coherence is 13C SQC during t1, the experiment
is called HSQC. At the end of the evolution period, simultaneous 13C and 1H 90◦ pulses
transfer the coherence back to 1H SQC (INEPT transfer), antiphase with respect to 13C, and
a refocusing period (1/(2J)) allows J-coupling evolution from antiphase back to in-phase 1H
SQC. The FID is recorded with 13C decoupling to collapse the very wide 1H doublets (split
by 13C) into normal proton signals. The simultaneous 180◦ pulses on 1H and 13C in the
middle of the 1/(2J) delays prevent any 1H chemical-shift evolution, limiting evolution to
J-coupling evolution during these “dephasing” and “refocusing” periods. The HSQC signal
16 times stronger than HETCOR because it is proton detected, and proton is a much more
sensitive nucleus than 13C due to its four times higher “magnet strength” (γ). Gradients can
be used to select the coherence pathway (1H to 13C to 1H, all SQC), and an APT-like delay of
1/J can be inserted during the 13C SQC period to “edit” the crosspeaks, making the CH3 and
CH crosspeaks positive and the CH2 crosspeaks negative. The only significant parameter
that needs to be adjusted is the 1JCH value, which ranges from 125 to 180 Hz depending on

Figure B.12
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Figure B.13

the hybridization (sp3, sp2, sp) of carbon and the presence of bonds to electronegative atoms
(oxygen). The 1JCH value sets the J-coupling evolution delay 1/(2J), and miscalibration can
lead to difficulties in phasing the HSQC spectrum. The HSQC spectrum (Fig. B.13) is like
the HETCOR, only turned on its side with 13C chemical shift on the vertical axis and 1H
shift on the horizontal axis. The best resolution is obtained in the 1H dimension (F2), so
that horizontal slices contain 1H–1H coupling information for the stronger couplings.

HMQC (heteronuclear multiple quantum correlation) is a variant of the HSQC spectrum
that gives essentially the same results with a slightly different strategy (Fig. B.14). Instead of
converting antiphase 1H SQC into antiphase 13C SQC, a single 90◦ pulse on 13C alone con-
verts it into 1H–13C multiple quantum coherence (DQC and ZQC). DQC (I+S+) is selected
during the first half of t1, and it evolves at the rate of νH + νC in the x–y plane. A 180◦ pulse
on 1H then converts the DQC into ZQC (I−S+), which evolves during the second half of the
t1 period at the rate of −νH + νC, so that the net evolution during t1 is only due to νC, just as
in the HSQC experiment. The ZQC is then converted back into antiphase 1H SQC, which
is refocused by a 1/(2J) delay just as in the HSQC experiment. The 1H FID is then recorded
with 13C decoupling. As with HSQC, the only significant parameter to set is the 1JCH value.

HMBC (heteronuclear multiple bond correlation) is a variant of the HMQC experiment,
designed to focus on the long-range (multiple bond) J couplings between 1H and 13C: 2JCH
and 3JCH. These couplings are much smaller than 1JCH, in the range of 0–8 Hz typically
(Fig. B.15). The strategy is to maximize coherence transfer from 1H to the “remote” 13C (two
or three bonds away) and attempt to destroy any coherence transfer from 1H to the “direct”
(one bond away) 13C. 1H SQC is created as in the HMQC, but the 1/(2J) period is lengthened
from the 3.3 ms value (1JCH = Jd = 150 Hz) to a value of 50 ms (2,3JCH = J1r = 10 Hz)
to maximize the remote transfer (Jd is the “direct” coupling and Jlr is the “long range”
coupling). To minimize losses due to T2 relaxation (decay of coherence) during the much
longer 1/(2J) delays, the refocusing delay is left out and the FID records the antiphase 1H
SQC directly. This means that 13C decoupling cannot be used while recording the FID.

Figure B.14
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Figure B.15

The direct coherence transfer is destroyed by placing a 13C 90◦ pulse after a J-coupling
evolution time of only 3.3 ms (1/(2 × 150 Hz)) and phase cycling this pulse (x, −x) so as
to alternate the sign of any coherence created by the pulse in consecutive scans (Fig. B.15).
The FIDs are added together in the sum to memory, and this signal cancels because it is
alternating in sign. The remote coherence transfer is carried out after the full 50-ms delay
and is phase cycled in concert with the receiver so that the signals add together in the sum to
memory. An alternative method for destroying the 13C-bound 1H signal is to use a TANGO
sequence to selectively excite only the 13C-bound protons, and then kill this coherence with a
“spoiler” gradient. The relevant parameters to set in an HMBC experiment are the 1JCH value
(to block the direct correlations) and the 2,3JCH value (to optimize the remote correlations).
Inevitably, there will be some “bleed through” of the one-bond correlations, and these
artifacts will appear as wide antiphase doublets separated by the 1JCH coupling constant
(because there is no 13C decoupling during acquisition), and centered on the positions of
the HSQC crosspeaks (Fig. B.16).

HMBC data are normally processed in magnitude mode (magn = (real2+ imag2)1/2) so
that all the data values are positive. This can make it difficult to distinguish weak signals from
noise, so some newer sequences are designed to show HMBC data in phase-sensitive mode
(real part only displayed after phase correction). The long-range crosspeaks are narrow,
single absorptive peaks in the F1 (13C) dimension and wider peaks with alternating positive
and negative intensities in the F2 (1H) dimension. It is this regular alternation of sign,
due to the small antiphase 2,3JCH couplings, which helps to distinguish signals from the
noise. The three-bond couplings are sensitive to the H–X–Y–13C dihedral angle, with a
Karplus relation similar to the one for vicinal 1H–1H couplings. When the 3JCH is small
(gauche relationship of C and H), the HMBC crosspeak is weak or missing because the
J-coupling evolution into antiphase takes much longer than 50 ms. When the 3JCH is large
(anti relationship of C and H), the crosspeak is strong. In this way, HMBC data can be used
to determine stereochemistry in rigid systems.

Figure B.16
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3–9–19 sequence, 312

vector analysis, 313, 313f, 314
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3-heptanone, 374, 375f, 396, 503,

decoupled edited HSQC, 505, 506f
HMBC spectrum, 501–512
HMQC spectrum, 501, 502f

3JCH, 138
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90◦-shifted sine-bell, 403
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Acorn-NMR, 99
acqi window, 86
acqu file (Bruker), 119
Acquisition order, in 3D experiments, 605

Acquisition time, 103, 104, 126, 139, 146, 504
in t1 time domain, 401, 404

Active coupling, 284, 380, 500
ad180 adiabatic inversion pulse, 338
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Adiabatic inversion, 296, 337, 337f, 496
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phase-sensitive HMBC crosspeaks, 511
Alternating sampling, 98, 99, 102, 119, 399
AM Spectrometer, Bruker, 134
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398
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Amplitude modulation, in 2D NMR, 357
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572
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367, 523
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Angular momentum, 31, 156
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Annihilation, with gradients, 303, 311
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Anomeric equilibrium, in 1H spectrum of

glucose, 493, 493f
Anomeric proton, 184, 197, 340

stereochemistry, 493
anti relationship, 24, 493
Antidiagonal, 394
Antiecho mode, 606
Antiecho pathway, 465
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Antiphase coherence, 214, 247, 254, 317
Antiphase doublet, 215, 380, 386
Antiphase peaks,

in COSY, 389
in HMBC, 500

Antiphase relationship, of vectors, 217, 218,
234, 242, 243, 244f, 250
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Antiphase terms, in TOCSY mixing, 487
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342, 500
Antisymmetric state, 483
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Applications of NMR in biology, 551–553
Aprotic solvents, 423
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138, 255, 276, 278, 363, 504, 530
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Array, in Varian software, 119, 178, 184, 279,

366
Artifacts, removal, 264, 450
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Assignment, 39, 278, 360, 370, 575
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520f, 522

AT parameter (Varian), 105, 126, 144, 404,
504, 504, 509
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Attached proton, of CH group, 12
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68, 385
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Axial (Z axis) shims, 87
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B. subtilis HPr, 578
B1 field inhomogeneity, 290, 334, 334f, 393
B1 field strength, 208, 297, 430
B1 field, vector, 240, 450
Back transfer, in HSQC pulse sequence, 523
Backbone carbonyl groups, 575
Back-exchange of HN protons, 557
Band selective shaped pulse, 320
Bandpass, of audio filter, 111
Bandwidth test, for 13C decoupling, 496, 496f
Bandwidth,

of decoupling, 150
of RF pulse, 140, 296, 298, 338, 341

Baseline correction, 108, 118, 132, 406, 437
Baseline separation, of lines in multiplet, 49
bc(1) command, Varian, 133
Benzene, INEPT spectrum, 264, 265f, 271
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downfield shift, 521
Beta sheet, 575, 576f, 578
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Beta-carotene, 519, 520f

oxidation product, 519–522, 521f, 522f
bf2 parameter, Bruker, 183
Bicelles, 622
Bicyclo[2.2.1] system, 328
Bilinear rotation decoupling (BIRD), 363, 363f
Binomial water suppression techniques, 568
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Biological NMR spectroscopy, 551–626
Biomolecules, 551
Biopolymers, 135, 553
Biosynthetic studies by NMR, 137
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363f, 493, 537

Blanking, of gradients, 319
Bleaching, of HN peaks, 186, 311, 315, 568
B0 field strength,

effect on 1H spectrum, 40–45
effect on CSA relaxation rate, 625
effect on exchange, 418

Boltzmann condition, 409
Boltzmann population distribution, 34–36, 91,

159, 164, 165, 176, 187, 208, 240, 258,
324
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552
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Brick wall digital filter, 117
Broadband decoupling of 13C, 143, 495
Broadband shaped pulses, 294, 296, 320
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280
Bruker AMX spectrometer, 74, 89, 107, 119
Bruker DRX spectrometer, 42, 74, 89, 102,

119, 216, 281
Bruker Fourier transform, 120
Bruker WM spectrometer, 74
Buffers and pH, 568
Building blocks, of pulse sequences, 234
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421
Buildup, NOE, 322
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Calculated shift reference, based on
magnetogyric ratios, 565

Calibration,
of crosspeak volumes, in 2D NOESY, 436,

591
of RF pulse, 208, 301, 334, 351, 351f, 567
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in DQF-COSY phase cycle, 449–450
of dipole-dipole and CSA relaxation, 624

Candycanes, in phase-sensitive HMBC, 510
Carbohydrates, 13, 372
Carbon-14, in biosynthetic studies, 136
Carrier frequency, 291, 566
Carr-Purcell-Meiboom-Gill (CPMG), 232
Cartesian product operators, 443, 451

Categories, of amino acid spin systems, 572
Caveats, for distance measurement using

NOESY, 436
cawurst adiabatic inversion pulse, 338
CBCA(CO)NH 1D vector, 619f, 620
CBCA(CO)NH experiment, 620
CBCA(CO)NH,

coherence flow diagram, 620f
data cube, 620, 621f

Chemical environment, 3, 4, 33, 40, 56, 69
Chemical equivalence, 54, 55, 67, 71
Chemical exchange, 408, 414–425
Chemical kinetics, 164
Chemical reaction, 414
Chemical shift, 3, 32, 33, 39, 104, 105, 118,

127, 130, 156, 200, 297, 342
Chemical shift anisotropy (CSA), 60–61, 176,

358, 555, 624, 625
Chemical shift correlation, 39, 356
Chemical shift dependent phase correction, in
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Chemical shift dependent phase errors, 462,

529
Chemical shift deviation (CSD), 553, 576
Chemical shift evolution, 212, 216, 226, 228,

232, 233, 246, 247, 250, 270, 304–307,
312, 313, 354, 361, 458

Chemical shift index (CSI), 576, 576f, 587
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experiment, 368
Chemical shift reference, 76, 565
Chemical shift refocusing, 234
Chemical shifts,

of 13C in proteins, 610
of 1H in peptides and proteins, 570–577

Chirality, effect on NMR spectrum, 54–56
Cholesterol, 20, 220, 280, 282, 331, 331f

1H spectrum, 24–25, 24f
13C spectrum, 25–27, 26f
2D TOCSY spectrum, 396–397, 396f
600 MHz NOESY spectrum, 431f
biosynthesis 20, 21f
decoupled edited HSQC, 505–509, 506f
HMBC spectrum, 513–517, 513f, 517f
HMQC spectrum, upfield region, 503f
ROESY spectrum, 432–435
structure, 23, 25f

Chymotrypsin, 556
CIGAR experiment, 538
Classical model, 1, 3, 31, 33, 155
Clipping of FID, 94, 109, 569
Coalescence spectrum, 416f
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Coalescence time, 415
Coefficients, of pure energy states in wave

function, 441
Coherence, 157, 161, 166, 207, 237, 239–241,

252, 439
Coherence annihilator (gradient), 308
Coherence flow diagram,

2D HSQC, 498, 498f, 522
2D HSQC-TOCSY, 602f
3D HSQC-TOCSY, 603f

Coherence helix, 307, 311, 319, 343
Coherence level diagram, 451, 451f
Coherence order, 316–319, 408, 428, 443,

444, 450, 599
Coherence order change �p, in phase cycling,

452, 454
Coherence order pathway, 445
Coherence order, heteronuclear, 460, 613
Coherence pathway, 263
Coherence pathway selection, 316–319

using gradients, 446, 450–469, 465
Coherence transfer, 238, 241, 253, 254, 276,

319, 389
in TOCSY spin-lock, Hamiltonian

description, 487
Coherence, quantum mechanical definition,

441–443
Coherences, in density matrix, 472
Collective spin mode, in TOCSY mixing, 487
Column number, of 3D data matrix, 605
Combined twist, due to gradients, 450
Commutation of matrices, 474
Commutator, 484
Compass needle, 155
Complex conjugate, 441, 469, 472
Complex Fourier transform, 120, 210, 400
Complex pairs, 99
Complexity problem in NMR, 556, 623
Composite (sandwich) pulses, 294, 295
Composite pulse decoupling, 495
Computational chemistry, 592
Computer simulation, of TOCSY mixing

sequences, 341
Conformation of biomolecules, 197
Conformational averaging, 54
Conformational change, 175, 414, 552
Conformational space, in structure calculation,

590
Connectivity of monosaccharide units, 197
Connectivity, sequential, 581
Composite pulse decoupling, 144
Constant time evolution, 613–614

Context-dependent definition of coherence
order, 460

Continuous wave (CW) irradiation, 140, 193,
200, 322, 334, 341–342

Continuous wave (CW) spectrometer, 6, 36,
37, 40, 74

Contour interval or multiplier, 365
Contour map, 353
Contour plot, 365
Contour threshold, 365, 384, 406, 507
Contrast, in MRI, 552
Convolution, 114
Convolution theorem, 113, 115, 402f, 403
Coriolis forces, 202
Correlated crosshairs, 366
Correlation, chemical shift, 356
Cosine-bell window function, 403
Cost, xii, 8, 41, 468
COSY, 181, 242, 353, 354, 369, 370–393
COSY crosspeak, cancellation in DQF-COSY

phase cycle, 455
COSY spectrum, cartoon, 371f
COSY transfer, between 13Cα and 13Cβ in

HNCACB, 618
COSY vs. TOCSY, order of resonances in spin

systems, 374
COSY, coherence flow diagram, 371f
COSY-35, 143, 369

crosspeak fine structure, 383, 384f
product operator analysis, 391–393, 392f

COSY-45, 393
COSY-type 2D spectra, for 2D TOCSY, 345
Coupling constants, 4, 14, 15, 52, 125

measurement, 510, 538
measurement in 2D COSY, 379

Covalent force field, 592
cpdprg2 parameter (Bruker), 149
CPMG (Carr-Purcell-Meiboom-Gill), 229
Critical micellar concentration (CMC), 569
Cro protein from bacteriophage λ,

2D (15N, 1H) HSQC, 615, 615f
3D HNCO strip plot, 615, 615f
CBCA(CO)NH, 619f, 620–621
HNCACB, 618, 619f

Crosspeak fine structure,
in 2D NOESY, 429
of peptide Hα-Hβ in COSY, 383

Crosspeak volumes,
accuracy and baseline correction, 437
in 2D NOESY, 429

Crosspeaks, 19, 358
phase in DQF-COSY, 450
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Cross-relaxation, 168, 187–188, 194, 198,
253, 323–324, 408, 426

Cross-relaxation pathways, 411
Cross-relaxation rate, 327, 436
Crowded CH carbons, in steroids, 515
Cryogenic probes, 93, 95, 559
Crystal packing forces, 558
Crystallography, 553
Crystals, 551
CSA (chemical shift anisotropy), 60–61, 176,

357, 555, 624, 625
CSI (chemical shift index), 576, 576f, 587
Curvature, of NMR integral, 133
Cutoff tumbling frequency, 192
cvff force field, 590
CW (continuous wave) irradiation, 140, 193,

200, 322, 334, 341–342
CW (continuous wave) spectrometer, 6,

36–37, 40, 74
Cyclic octapeptide, 186

COSY-35 spectrum, 383–384, 385f
DQF-COSY, 382, 383f

Cycloheptanone, 13C spectrum, 4, 4f
Cyclohexane chair, 12, 508
Cyclohexane, axial vs. equatorial proton

chemical shifts, 508
Cyclopentadiene, 328
Cyrogenic probe, 626
Cysteine, 571

d0 delay, Bruker, 366
d1 parameter, 91, 175
d16 parameter (Bruker), 320
d2 parameter (Varian), 366, 401
D2O sample, of protein or peptide, 315
d6-benzene, 59
d6-DMSO, as solvent for hydrophobic

peptides, 569
Data cube,

of 3D CBCA(CO)NH, 620f
of 3D HNCACB, 618f
of 3D HNCO, 614f
of 3D HSQC-TOCSY, 604, 604f
of 3D spectrum, 605f

Data matrix, of 2D spectrum, 358, 364, 366
Data processing,

of 1D NMR spectra, 118–134
of 3D NMR spectra, 604–606

Data sampling in t1, 398–401
dconi command (Varian), 365
dcpd2 parameter (Bruker), 149, 150
DDQ oxidation of pristimerin, 538

dec2 parameter (Varian), 559
Decible scale (dB), of pulse power, 144, 301,

349
Decimation, 111–113, 116
Decimation factor, 111, 117
Decoupled refocused INEPT, 271
Decoupler, 11, 74–75, 142, 146, 148–150,

185, 559
Decoupler duty cycle, 509
Decoupler field strength, 140
Decoupler mode (dm) parameter (Varian),

149, 154
Decoupler modulation (dmm) parameter

(Varian), 149
Decoupler modulation frequency (dmf)

parameter (Varian), 149
Decoupler nucleus (dn) parameter (Varian),

149
Decoupler offset (dof) parameter (Varian), 149
Decoupler power (dpwr) parameter (Varian),

149
Decoupler pulses, 150
Decoupler,

90◦ 1H pulse, 279
a and b (Varian), 149

Decoupling, 11, 138, 140, 149, 152–153
during evolution period, 611
of 13C, 496
of antiphase signals, 270
of deuterium (2H), 557
viewed as exchange process, 423

Defocusing, from in-phase to antiphase, 270,
271, 525

Degenerate CH2 groups, 17, 55, 505, 571
Degree of overlap, of pure energy states, 442
Delay, 200–201, 212, 306

effect on spherical operators, 445
Delta (δ) scale of chemical shift, 3
Delta t1 (�t1), 398
Density matrix, 168, 243, 269, 408, 443,

469–478
for heteronuclear two-spin system, 472

DEPT, 18, 27, 119, 138, 150, 238, 242, 276,
504

DEPT spectrum, of cholesterol, 280, 280f,
281, 281f, 507f

DEPT, product operator analysis, 283–287
Deshielding, 57–59
Destination state, 273
Destroying coherence, 290
Detection, 343, 354, 357, 361, 522
Detector, 94, 95, 201, 399
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Deuterated proteins, 557
Deuterium decoupling, during 13C evolution

periods of deuterated proteins, 557
Deuterium exchange, in proteins, 553, 587
Deuterium gradient shimming, 564
Deuterium labeling of proteins, 623–624
Dewar, of superconducting NMR magnet, 8
dfrq parameter (Varian), 184
dg command (Varian), 149
Diagonal, 369
Diagonal appearance of HSQC/HMQC, 502
Diagonal peaks, 371

phase in DQF-COSY, 450
Diagonal symmetry, 369
Diastereotopic methyl resonances, of valine,

572
Diastereotopic protons, 56
Diaxial (1,3) relationship, NOE, 428
Diels-Alder reaction, 328
Difference experiment, 1D NOE, 333
Difference in population, 241
Difference spectrum, NOE, 194
Diffusion in gradient experiments, 302, 304,

468, 552
Diffusion-like process, of TOCSY mixing,

345
Digital filtering, 75, 110–114, 116
Digital resolution, 118, 122, 401, 581, 603
Digital-to-analog converter (DAC), 563
Digitizer (ADC), 98, 185, 201
Digitizer noise, 109
Dihedral angle, xi, 6, 12, 15, 52, 370, 491
Dilute nucleus, 135, 609
Dimethyl fumarate, 328
Dimethyl methylphosphonate, 61
Dioxane, 145
Dipolar (direct coupling) Hamiltonian, 479
Dipolar (direct) coupling, 138, 622
Dipole-dipole interaction, 171, 553, 556, 622
Dipole-dipole relaxation, 171, 176, 556, 624
DIPSI, 341
DIPSI-2, 394, 396
Direct (dipolar) coupling, 138
Direct (one-bond) C-H couplings, 497, 536
Direct probe, 89, 90, 147
Disaccharide, 419
Disadvantages,

of gradient selection, 468–469
of phase cycling, 466–468

Disequilibrium, 165, 327, 410
Disordered regions, of protein, 552, 595
Dispersion, of chemical shifts, 59, 557, 573

Dispersive lineshape, 79, 126, 127, 208, 212,
215, 402, 447

mathematical formula, 390
Display of 2D NMR data, 364–366, 365f
Distance geometry, 592
Distance measurement, from 2D NOESY, 370,

436
Distances, H to H in cholesterol, 331, 331f
Distortionless enhancement by polarization

transfer (DEPT), 276
Distribution of tumbling rates, 173, 173f, 192,

409
Ditches, on sides of NMR peak, 126, 404
Divergence of multiplets, by J coupling

evolution, 228
Diversity of starting conformations, 592
dm parameter (Varian), 149, 154
dmf parameter (Varian), 144, 149, 149, 150
dmm parameter (Varian), 149
dn parameter (Varian), 149
Dodecylphosphocholine, fully deuterated, 569
dof parameter (Varian), 149, 150, 183, 195
Double doublet, 6, 44, 45, 50
Double pulsed field gradient spin-echo

(DPFGSE), 309
Double quantum coherence (DQC), quantum

definition, 442
Double quantum filter, 447–450
Double triplet, 47
Double-double triplet, 49
Double-double-double-doublet, 51
Double-quantum (DQ) relaxation, 187, 189,

191, 198, 266, 429, 430
Double-quantum coherence (DQC), 266, 439

heteronuclear, in HMQC, 533
Double-quantum coherence, sensitivity to

gradients, 318
Double-quantum filtered COSY

(DQF-COSY), 267, 447–450, 448f
Doublet, 10, 14, 44

J coupling evolution, 223
Doublet-triplet, 508
Doubly-labeled (15N, 13C) proteins, 610
Downfield, 8, 37
Downfield handles for TOCSY transfer, 340,

345, 340f
DP parameter (Bruker), 144
dp parameter (Varian), 107, 134
DPFGSE, 309, 321, 343, 393
DPFGSE 1D NOE, 328, 333, 425
dps (display pulse sequence) command

(Varian), 154
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dpwr parameter (Varian), 144, 149, 150, 350
DQ artifacts, 375–376, 377f
DQ filter, in DQF-COSY, 448
DQ relaxation, 199, 323, 323, 324, 325, 335,

409, 324f
DQC, 357

effect of gradient on homonuclear, 458
DQC/ZQC, 266, 285

definitions, derived from spherical
operators, 446

DQF-COSY, 143, 242, 320, 369, 370, 376,
389, 404, 408

described using spherical operators, 461
gradient pathway selection, 460
peak phase vs. COSY, 391

DQF-COSY spectrum of sucrose,
600 MHz, 381, 382f
upfield region (300 MHz), 380, 381f

DQF-COSY vs NOESY, selection in phase
cycle, 454

Drawbacks, of phase cycling, 466
Drift,

of B0 field strength over time, 75, 78
of NMR integrals, 133

Droop, of excitation profile, 299
Drug discovery, 553
DRX spectrometer (Bruker), 134
Drying NMR tubes, 77
DS parameter (Bruker), 107
Dual address (15N/1H) of chemical shifts, 600
Dual broadband RF sources, 147
Dummy scans, 107
Duty cycle, of decoupler, 495, 504, 509
DW parameter (Bruker), 99–101, 107, 110
Dwell time, 99, 103, 104, 110, 398
Dynamic processes in NMR, 414–425
Dynamic range, 76, 94, 108–109, 111, 117

in phase cycling, 466
Dynamics, 137, 595
Dynamics simulation vs. B0, DMF, 417f
Dynamics simulation vs. temperature, DMF,

416f

E. Coli HPr, 598
Echo mode, 606
Echo pathway, in 2D experiments, 454,

464–465, 529, 534
Echo, in gradient imaging experiment, 561
Echo-antiecho phase encoding, 465, 529,

605
eda command (Bruker), 149
Edited HNCACB, 618

Edited HSQC, 618, 504–509, 530–531, 530f
Edited spectra, 220, 283
EF command (Bruker), 126
Effective field (Beff ), 156, 292, 292, 341
Efficiency of transfer of magnetization, 366,

368
TOCSY, 344

Eigenfunctions, 480
Eigenvalues, 480
Electron density map, from X-ray

crystallography, 553
Electronegative atoms, 8, 57
EM command (Bruker), 126
Embedding, in structure calculations, 592
Encoding, of chemical shift in t1 time domain,

356, 523
Energies, of two-spin system, 268
Energy diagram, 33, 189, 408
Energy gap (energy difference), 167, 169, 190,

269, 342, 477
Energy minimization, 592
Energy-minimized structures, 53, 54, 199, 332
Enhancement by polarization transfer, 255,

262
Enhancement, NOE, 198
Ensemble of calculated structures, 593
Ensemble of spins, 157, 158
Entanglement of two nuclei, in MQC, 533
EPT (enhancement by polarization transfer),

261
Equatorial position, in cyclohexane chair, 12
Equilibrium constant, for anomeric exchange,

419
Equilibrium population difference, 162, 180,

199, 261, 523
Equilibrium, lack of coherence at, 159
Equivalence, 9, 10, 52, 67
Ethanol, 201
Ethernet, 74, 108
Ethyl acetate, cartoon of 2D HSQC/HMQC

and HMBC spectra, 500–501, 501f
Ethyl group, 375
Ethylbenzene, 108
Ethylene glycol, temperature standard for VT

work, 425
Eukaryotic cell, 468
Evolution, 201, 203, 215, 219, 243, 245, 450
Evolution delay (t1), 354–355, 355f, 357, 361,

366, 387, 522
Evolution delay, in triple-resonance

experiments, 601, 611
Evolution of DQC and ZQC, 267
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Evolution of non-stationary states (density
matrix), 471, 484–485

Evolution,
during gradients, 462
J coupling, into antiphase state, 249

Exchange broadening, 417
compared to CSA broadening, 555

Exchange peak, in 2D NOESY of lactose, 439
Exchange rate, calculated from NOE buildup,

421
Exchange spectroscopy (EXSY), 437–439
Excitation bandwidth, 349
Excitation profile, 297, 299, 308, 349

Gaussian pulse, 309, 310f
Excitation pulse, shaped, 320
Excitation sculpting, 333, 308–309
Exercise,

RF power level settings, 350
SPT experiment, 262
transient NOE populations for large

molecules, 325
ZQ relaxation and NOE, 191

Exotic nuclei, 90
Experiment time for 2D, reduction using

gradients, 460
Exponential decay, 164
Exponential multiplier (window function), 126
Expression of proteins, in cell culture, 137,

596
EXSY (exchange spectroscopy), 437–439
Extended conformation (β sheet), 578
Extinction profile of Watergate, 314, 316, 316f

F1, 118, 357
F1, F2, F3 channels (Bruker), 149, 559
F2, 118, 357
F2 spectra, vs. t1, 356f
Failed magnetization transfer, 371

in 2D HSQC-TOCSY, 602
Fanning out, of individual spin vectors, 163
Fast exchange, 415, 422–424
Fast exchange spectrum, 416f
Fast Fourier transform (FFT), 7, 122
Fast TOCSY, for H-D exchange rate

measurement, 587
Feasibility, in biomolecular NMR studies, 558
Felix software, 99, 117, 120, 134, 406
Ferrocytochrome c2, Rhodobacter capsulatus,

2D {1H, 15N} HSQC, 606, 606f

3D TOCSY-HSQC, 607, 607f
3D TOCSY-HSQC vector plot, 607, 608f

Fictitious field (pseudofield), 291, 292, 334

Fictitious forces, 202
FID (free induction decay), 7, 8, 41–42, 75,

77–78, 88, 90, 92–94, 98, 103, 106,
108–110, 116, 118, 125–127, 134, 158,
185, 201, 207, 239, 241, 296, 353, 370,
439

interactive shimming on, 85
FID button (Varian acqi window), 86
Field gradient, 290, 301
Field setting (Bruker), 79, 80
Field strength (B0), in biological NMR, 558
File transfer protocol (ftp), 134
Filter function, of digital filter, 115
Fine structure, of COSY crosspeaks, 378–386
Fingerprint region, of COSY or TOCSY

spectrum of proteins, 573, 580
First-order (chemical shift dependent) phase

correction, 128–129, 130, 405, 505
First-order (exponential) decay, 164, 167, 411
First-order (weak) coupling, 45, 63, 67
First-order phase errors in F1, due to gradient

in t1 period, 462
Five-spin system, in amino acids, 571, 572
FLATT, program for baseline correction, 407
Flexibility,

effect on T1 and T2, 175, 180
in disordered regions of proteins, 552

Flip-back pulse, 569
Floor of the 3D cube, of 3D TOCSY-HSQC,

609
Flow of magnetization, diagram for HETCOR,

357f
Flow, studied by pulsed-field gradients, 552
Fluorobenzene, JCF couplings, 61
FM radio, 156
fn parameter (Varian), 123, 402
fn1 parameter (Varian), 402
Folded (native) proteins, 573
Folding (aliasing), 101, 102, 111, 129

in F1 dimension of 2D, 400
Folding motifs in proteins, 575
Folding problem, in proteins, 590
Footprint on a crosspeak, for volume

measurement, 437
Footprint, of a 1H resonance, 41, 135, 381, 554
Forbidden transitions, between states of

opposite symmetry, 483
Force constant, for NOE restraints, 591
Force field, in structure calculations, 590
Four channels, in triple-resonance

experiments, 611
Four step phase cycle, 537
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Four-bond W couplings, 330
Fourier pair, 86
Fourier transform, 37, 42, 108, 119, 126, 133,

201, 212, 299, 353
2D, 366, 367f
of the RF pulse envelope, 297

Fourth channel, for 2H decoupling, 559
Fragment analysis, of pristimerin oxidation

product, 545–548
Free induction decay (FID), 6, 74, 169
Frequency domain, 7, 79, 114, 116, 118, 119,

126, 298, 299
Frequency list (Bruker text file), 184
Frequency response curve, of analog filter, 111
Frequency-shifted laminar pulse, 309–311,

310f
Front end, of homonuclear 2D experiments,

426, 428
Fructose, 16
FT-80 spectrometer, 40
ftp (file transfer protocol), 134
Fumarate-cyclopentadiene adduct, 1D

transient NOE, 328–330, 329f
Furanose, 16

gain parameter (Varian), 94, 109, 568, 569
Galactose, in lactose structure, 419
Gamma (magnetogyric ratio γ), 155, 317
GARP sequence, for 13C decoupling, 496,

504, 568, 599
Gated decoupling, 153
gauche relationship, three bond, 22, 24
Gaussian function, 125, 300, 300f
Gaussian pulse, 308

calibration, 351f
Gaussian window function, 125
G-BIRD (pulse sequence building block), 494
Geminal relationship, of two protons, 17, 25,

28, 508
gf parameter (Varian), 126
Gigahertz (GHz), NMR magnets, 625
Gimbles, 157
Global minimum, in structure calculation,

593
Global relationships, in protein structure, 554
Glucose, 12, 496

13C-labeled, 1H spectrum, 493, 493f
Glutamate, 571
Glutamine, 571
Glycopeptide YTGFLS(Lactose),

2D ROESY spectrum, 435–436, 435f
2D TOCSY spectrum, 397–398, 397f

Glycosidic linkage, 13, 14, 19, 196
NOE across, 428

go command (Varian), 148
gpz1 parameter (Bruker), 320
Grab and drag, by adiabatic shaped pulse, 334
Gradient amplifiers, 319
Gradient coherence pathway selection, 460,

527
Gradient coils, in probe, 319
Gradient echo, 304–305
Gradient-enhanced experiments, 462
Gradient parameters, 320
Gradient pulse, 305
Gradient-selected experiments, 317, 319, 462
Gradient shimming, 87, 88, 559–564

pulse sequence, 560f
Gradient twisting, total for a pulse sequence,

446
Gradient-enhanced INEPT, 317, 317f
Gradients vs. phase cycling, definition of

coherence order, 457
Gradients, pulsed-field, 186, 316

during the acquisition of the FID, 552
effect on spherical operators, 444
practical aspects, 319–321

Gradient-selected HSQC, 528–530
Gradient-selected refocused INEPT, 318, 318f
Graphical list of chemical shifts, HSQC

spectrum as, 543
Gro-EL complex, 626
Group delay of digital filter, 113, 117
gs command (Bruker), 85
gstab parameter (Varian), 320
gt1 parameter (Varian), 320
gzlvl1 parameter (Varian), 320

Hα proton region, 315
H/D exchange experiments, 589, 589f, 600
Habitual violators of NOE restraints, 595
Half-life, of T1 relaxation, 177
Hamiltonian matrix, 409, 478–488
Handles,

for NOE difference, 197
for TOCSY, 340, 340f

Hard pulse, 145, 150, 182, 185, 192, 252, 291,
301, 321, 348–350

Hardware, 320
Hardware requirements, for biological NMR,

558–564
Hardware, for pulsed-field gradients, 319
Hartmann-Hahn match, 341, 394
HCCH-TOCSY experiment, 609
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Heartbeat, of the gradient experiment, 320
Heat exchanger, liquid nitrogen, 424
Heat flow analogy, 164, 167, 194, 194f,

325–326, 325f
Heater block, in cryogenic probe, 559
Heavy atoms, in structure calculation, 554
Helical coherence, after gradient pulse,

302–303, 306, 307
Helium gas refrigerator, in cryogenic probe,

559
Heme aromatic system of cytochrome c2, 609
Heregulin-α EGF domain,

1H chemical shifts, 573–574, 574f
2D 1H,15N HSQC, 599–601, 599f
2D HSQC-TOCSY, 602, 602f
2D NOESY, 600f
3D NOESY-HMQC, 600f, 601
assignment of major β-sheet, 582–586
D2O NOESY spectrum, 587, 588f

secondary structure, 576, 576f
secondary structure evidence, 589, 590, 590f

HETCOR experiment (2D), 242, 353, 369,
370, 390, 489, 354–364

coherence flow diagram, 357f
compared to HSQC/HMQC, 498

HETCOR pulse sequence, 361f, 362f, 364f
design of, 361–364

HETCOR spectrum of sucrose, 360, 360f
compared to HMQC spectrum, 503

HETCOR spectrum, diagram, 359f
Heteronuclear coherence order, 318
Heteronuclear decoupling, 139
Heteronuclear energy diagram, 258, 259f
Heteronuclear multiple bond correlation

(HMBC), 489
examples, 509–517
pulse sequence, 535–538

Heteronuclear multiple quantum correlation
(HMQC), 489

examples, 501–504
pulse sequence, 533–535

Heteronuclear NOE, 151, 153, 198, 228
Heteronuclear population diagram, 258, 259f
Heteronuclear single quantum correlation

(HSQC), 524
examples, 504–509
pulse sequence, 522–532

Heteronuclear spin echo, 232–237
Heteronuclear spin-echo, product operator

analysis, 524
High vacuum, in cryogenic probe, 559
Higher order shims, 560

Hindered rotation of the amide linkage, 572
Histidine, 571

pKa measurement by titration, 558
Histogram of tumbling rates, 172
HMBC, 19, 25, 27, 138, 143, 242, 354, 369,

489, 497, 533
phase sensitive, 537–538, 537f, 538f
sensitivity, compared to other 2D

experiments, 509
HMBC pulse sequence, 535–538
HMBC spectra, 509–517
HMBC spectrum of β-carotene oxidation

product, 521–522, 521f
HMQC, 138, 143, 369, 489, 497
HMQC pulse sequence, 533–535
HMQC spectrum of β-carotene oxidation

product, 519–520, 520f
HMQC vs. HMBC, 536
HMQC, spherical operator analysis, 534
HN(CO)CA experiment, 617
HN(CO)CACB experiment, 620
HNCA experiment, 615
HNCACB experiment, 617–620

1D vectors, 618, 619f
data cube, 618, 618f
strip plot, 618f, 619, 619f

HNCO data matrix (cube), 614, 614f
HNCO,

3D, 611–615
coherence flow diagram, 612f
correlations, 612f
pulse sequence and product operator

analysis, 611–614, 612f
HOHAHA (homonuclear Hartmann-Hahn),

341
Holes,

in center of HSQC methyl crosspeaks, 507
in coherence order mask, 454

homo parameter (Varian), 149
Homogeneity,

of B1 field, 290, 334, 334f, 393
of B0 magnetic field, 34, 41, 77, 79, 80,

82
Homonuclear (JHH) J-coupling evolution in

HMBC, eliminating, 538
Homonuclear decoupling, 142, 143, 148,

181–182, 184
Homonuclear front end, 386, 448, 455
Homonuclear Hartmann-Hahn (HOHAHA),

341
Homonuclear NOE, 198
Homonuclear product operators, 252
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Homonuclear splitting pattern in
HSQC/HMBC, 500

Homonuclear two-spin system, coherence
order, 445

Homospoil gradient, 529
Horizontal stacked plot, 178
Hot stone, in heat flow analogy, 325
House shape, in second-order splitting

patterns, 483
HPr,

B. subtilis, 3D structure, 579f
B. subtilis, NOESY spectrum, 578–580,

579f, 580f
E. Coli, 3D HMQC-NOESY, 598, 598f

HSQC, 18, 23, 25, 27, 138, 143, 242, 354,
364, 369, 489, 497

HSQC and HMQC, compared to HETCOR,
498–499

HSQC spectrum, 2D {1H-15N}, 598, 599,
599f, 606f, 615f

HSQC,
1H-13C pulse sequence, 522–532, 523–525f,

527–530f, 532f
1H-15N, and digital filtering, 117
1H-15N, pulse sequence, 601, 601f
coherence flow diagram, 498
product operator analysis, 525–532

HSQC-NOESY spectrum, 3D for sequence
specific assignment, 610

HSQC-TOCSY,
2D, pulse sequence, 601–602, 601f
3D, coherence flow diagram, 603f
3D, pulse sequence, 603, 603f

HSQMBC, 538
Hydrocarbon positions of chemical shift, 27,

572
Hydrophobic collapse, 573

i to i+1 NOEs (sequential), 435, 577
Ideal isotropic mixing, 394
Identity operator, 269, 474
IF (intermediate frequency), in receiver, 96,

108
ii command (Bruker), 148
Imaginary FID, 93, 96, 103
Imaginary part, of coherence, 442
Imaginary spectrum, 122, 405
Imidazole ring of a histidine residue, NMR

titration, 424
Immortal coherence, in TROSY experiment,

625
Impedance, 89

Improved APT, 234, 235f
in0 parameter (Bruker), 366, 401
Inclusion bodies, in protein expression, 596
Incremented delay (t1), 353
Independent time domains, in 3D NMR, 603
Indirect or scalar coupling (J), 622
Indirect second frequency domain, 353
Indirect time domain t1, 353, 356, 367
INEPT, 138, 238, 241, 253, 339, 342, 361,

610
advantages, 256
compared to COSY, 387
compared to SPT, 262
density matrix description, 476–478
refocused, 270–276
refocused, in 2D HETCOR, 362
with trim pulse, 335

INEPT coherence transfer, 242, 263, 354, 356,
357, 429, 523

INEPT-45, INEPT-90 and INEPT-135, 276
Informational biomolecules, 551
Inhomogeneity map, in gradient shimming,

560, 562
Inhomogeneity,

of B0 field, 230
of B1 field, 567

Initial slope, in NOE buildup, 322
Injectable contrast agents, 181
Inner coil, of probe, 89, 147, 148
Inner loop, of 3D experiment, 605
In-phase component, 250
In-phase COSY diagonal peak in F1, 390
In-phase doublet, 386
In-phase peaks, 375
In-phase relationship of vectors, 215, 236,

243, 244f
In-phase to in-phase transfer, 339, 342
Integrated area, 10

in exchange, 419
Integration, 9, 112, 118, 133
Intensity plot, of 2D data, 353, 365, 365f
Interferogram, 357, 358f
Interleaved data acquisition, 195
Intermediate frequency (IF), in receiver, 96,

108
Intermediate state, in coherence transfer, 257,

265–267, 283, 317, 389, 429, 529, 533
Intraresidue crosspeaks, in ROESY of peptide,

436
Intrinsic decay (T2 relaxation), 230
Inverse experiment, 147, 363, 489, 490,

489–550



INDEX 655

Inverse gated decoupling, 153
Inverse matrix, 470
Inverse mode, hardware setup, 148,

148f
Inverse probe, 89, 90, 148, 490
Inverse sixth-power rule, for NOE intensity,

198, 241, 591
Inversion of populations, analogy, 260
Inversion of spherical operators, with 180◦

pulse, 445, 463
Inversion profile, 294
Inversion pulse, 144, 207, 237, 320

vs. refocusing pulse, 228, 251
Inversion-recovery experiment, 176–181,

177f, 231, 266
sucrose 13C, 178, 178f
sucrose 1H, 179–180, 179f

Ionic strength and probe matching, 568
ipso position, in aromatic ring, 29
Isochromats, in spin-echo, 230
Isolated spin-pair hypothesis, 436
Isoleucine, 570
Isoprene, 20
Isopropyl group, mutual HMBC correlations,

516
Isotope companies, 131
Isotope effect on chemical shift, 491
Isotope filtering, 493

applied to NOE of protein-ligand complex,
494

using G-BIRD, 494
Isotopic labeling (enrichment), 32, 38, 62,

136, 551, 557
Isotopomer, 62, 136–137
Isotropic chemical shift, 60
Isotropic J coupling interaction, 479
Isotropic mixing (TOCSY), 341, 342, 396,

409, 486–488
Isotropic mixing Hamiltonian, 486–487
Isotropic tumbling, 622

J coupling, 135, 138, 156, 200, 208, 216, 218,
228, 342

J coupling evolution,
density matrix representation, 477
product operator representation, 248

J coupling vs. NOE for stereochemical
assignment, 519

J coupling, effect on ZQC & DQC, 268
J couplings,

systematic errors in measurement, 385–386,
386f

JCH value, dependence on chemical
environment, 495

J-coupling (ZQC) artifacts, in transient NOE,
328

J-coupling evolution, 232–233, 247
refocusing, 362

J-coupling patterns in F1 of 2D spectrum,
product operator analysis, 389–390

JPEG graphics format, 134
Jump, of coherence, 242
Jump-return (1,1), 312, 568
Jump-return NOESY spectrum, 582

Karplus relation, 53–54, 53f, 241, 330, 491,
510, 519

Laboratory frame of reference, 203, 213, 219,
241, 296, 335

Lactose, 419, 421, 438, 495
Lambda-Cro protein, see Cro protein from

bacteriophage λ

Laminar pulse, frequency shifted, 309–311,
310f

Large J couplings, in steroids, 331, 432
Larmor frequency, 1, 3, 31, 33, 35–37, 41, 56,

156–158, 161–162, 169–173, 190,
201–202, 204, 213, 216, 241, 291, 306,
337, 471

in exchange process, 420
Lattice, 167
Lattice temperature, 194
LB parameter, 123, 126
LC (tuned) circuit, 204
Leaning (second-order) multiplets, 64–65, 70,

481, 483
Least-significant digit (bit), 185
Lenz’s law, 57, 58
Leucine, 570
LGJC3 (pristimerin oxidation product),

538–550
Line broadening, by exchange in fast

exchange regime, 422
Linear gradient, 83
Line-broadening (LB) parameter, 123, 124f,

125f, 126f
Linewidth, 84, 142, 229

as indicator of disordered regions of a
protein, 573

vs. molecular size, 554
Linewidth problem, for large molecules, 556,

623
Linked differential equations, 338
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Lipid bilayers, 551
Liquid crystal solution, 622
Liquid nitrogen, 109
Local minima, in structure calculation, 593
Local oscillator (LO), 96
Local reporters, 552
Lock gain, 81
Lock level, 82, 85

effect of gradient, 320
Lock parameters, 80
Lock phase, 79, 83, 86
Lock power, 81
Lock shift (Bruker), 102
Lock switch, for 2H decoupling, 559
Lock, 2H feedback loop, 75, 78, 79, 80, 101,

185, 195, 320, 559
Logarithmic scale (dB), of pulse power, 301
Longitudinal (T1) relaxation, 166–167, 170,

171
Longitudinal spin order, 269, 474
Long-range couplings (C-H), 137, 489, 495,

497
Long-range couplings (H-H), 61
Long-range NOE correlations, 586–588

β-sheet cross-strand, 587, 588f
Lookup table for chemical shifts, 514
Lorentzian lineshape, 51, 229, 365, 386, 390,

554
Loss of sensitivity, in gradient experiments,

due to diffusion, 468
Lower cone, in vector model, 160
Lowering operators, definition, 444
Low-γ nuclei, 299
Low-pass filter,

analog audio, 112
in HMBC, 509, 511, 538

Low-power irradiation, 138, 181, 353
lp parameter (Varian), 130, 406
Lysine, 571

Macroscopic z magnetization, 269
Magic angle spinning, 551
Magnet leg (Varian), 95
Magnetic equivalence, 54, 71
Magnetic resonance imaging (MRI), xi,

301
Magnetic susceptibility, 565
Magnetic vector, 157
Magnetization transfer, 192, 214, 238, 241,

369, 427
Magnetogyric ratio (γ), 1, 30–31, 38, 46, 56,

141–142, 155, 318, 473, 528, 565

Magnitude mode, 362, 390, 402, 462, 500,
535, 537

Magnitude mode vs. phase sensitive, for
HMBC, 510, 510f

Map,
of all NMR interactions, 367
of binding sites on protein surface, 600

Mask, in selection of coherence order changes,
453, 468

Matching of the probe circuit, 88
and ionic strength (salt), 565

Matrix multiplication, 471
Matrix representation (density matrix), 243
MC2 parameter (Bruker), 401
m-chloroperbenzoic acid (mcpba), oxidation

of β-carotene, 519
Mechanical relays, 185
Medical NMR imaging (MRI), 181
Medium, category of NOE crosspeak volume,

437
Medium-range NOE correlations, 586–588
Membrane-bound biomolecules, 551
Memory overflow, in sum-to-memory, 107
Menthol, 20

1H spectrum, 21–23, 22f, 42f, 43f, 44f
13C spectrum, 23, 23f
for calibration of 90◦ 1H pulse in DEPT,

279, 282
structure, 20f

MestRec software, 99
meta positions in benzene ring, mutual HMBC

correlations, 516
Metabolic studies by NMR, 137

in cell cultures, 552
Metabolism of natural products, 553
Metabolites of testosterone, 517–519
Methanol, temperature standard for VT work,

425
Methionine, 571
Methyl group,

13C product operators and vectors, 272f, 273
in HMQC/HSQC, 503

Methyl iodide, 13C-enriched, 62, 217
Methylene group,

13C product operators and vectors, 271
J coupling evolution, 273

MI parameter (Bruker), 132
Micelles, 569
Microimaging, 552
Microscopic gas constant, 34
Microscopic spin state, 243
Microscopic z magnetization, 269
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Microscopy of plant or animal tissues, 552
Minimal media, in protein expression, 596
Minimum intensity, 132
Miscalibration of 1H pulse in DEPT, 279,

281f, 282f
Miscalibration of 90◦ pulse, 295
Mixed coherence order, for Cartesian

operators, 451
Mixer (phase sensitive detector, ring

modulator), in receiver, 95
Mixing, 343, 354, 357, 361, 369, 522, 601
Mixing time (τm), 193, 195, 198, 242, 322,

323, 330, 339
and spin diffusion in 2D NOESY, 436
random variation, in 2D NOESY, 429

Mixing,
for analog subtraction of frequencies, 95
in homonuclear 2D, product operator

analysis, 388
of pure quantum states, 441, 469

MLEV-17 TOCSY mixing sequence, 341,
345, 394, 396

M0 (equilibrium net magnetization), 160–162,
164–166, 169–170, 175, 177, 179, 195,
241

Modulator (phase-sensitive detector), 95
Molecular dynamics (motion), 170, 175
Molten globule state, of proteins, 573
Monosaccharide, 12
Monoterpene, 20
Moving pair, of 180◦ pulses, in constant-time

evolution, 613
Moving spin lock for adiabatic inversion, 496
MQC, see multiple quantum coherence
MRI (magnetic resonance imaging), xi, 83, 86,

87, 319
mult parameter (Varian), 279
Multiple jumps of magnetization, 339, 340,

369
Multiple-pulse experiment, 176
Multiple-quantum coherence, 251, 266, 267,

533, 534
from antiphase SQC, 440
heteronuclear, in HMQC, 533

Multiplicity, 1H, from F2 slices of HSQC, 543
Multiplier (window) function, 401, 403
multizg command (Bruker), 279

N,N NOE, 578
N,N-dimethylformamide (DMF), 415f, 422
Natural abundance, 11, 135, 136
Natural products, xi, 12, 55, 135, 137

n-butyl group, 375
nd0 parameter (Bruker), 401
Nearest neighbor shifts, in sorted assignment

list, 514
Negative absorptive, 208
Negative frequency, in rotating frame, 297
Negative NOE, 195, 198, 199, 325, 335, 409,

414, 429–430
Neighbors, in sorted chemical shift list, 542
Neopentyl alcohol, 507
Net chemical shift evolution, 234
Net magnetization, 34–35, 151, 157–158,

162–164, 168–169, 181, 238, 289,
439

Net magnetization vector, 159, 201, 206–207,
222, 240

Net magnetization, at equilibrium, 160
Net transfer of magnetization, in NOESY and

TOCSY, 429
Net z-magnetization, 151
Newman projections, 384
N-fold mask, positioning, in phase cycle, 454
ni parameter (Varian), 401–402, 404
Nicolet, 40
Nitrogen-15 natural abundance, 598
NMR imaging (MRI), 289, 551, 559
NMR restraint energy, 592
NMR time scale, 15, 60, 139, 176, 183, 338,

414, 415, 555
NMR-pipe software, 99
NOE (nuclear Overhauser effect), 6, 138,

150–152, 152f, 153–154, 162, 168, 171,
173, 175, 180, 219, 241–242, 408, 577

NOE buildup, 152, 193, 195, 198–199, 326
sucrose, 330–331, 330f

NOE difference, 148, 181, 192–198, 193f,
289, 321

heat-flow analogy, 194f
time course of z-magnetization, 195f

NOE enhancement, 152–153, 194, 335
NOE experiment, for detecting exchange, 420
NOE mixing time, vs. molecular size, 331
NOE transfer of magnetization, in spin-lock,

430
NOE transfer, efficiency compared to TOCSY,

347
NOE,

homonuclear, 187
of large molecules, 188
sign for small molecules vs. exchange, 421
vs. J coupling for stereochemical

assignment, 519
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NOESY, 181, 196, 242, 354, 369, 389, 406,
408

NOESY buildup study, 436
NOESY spectrum of heregulin-α EGF

domain, in D2O, 587, 588f
NOESY spectrum,

coherence flow diagram, 425
sign of crosspeaks relative to diagonal,

426–427
NOESY vs. DQF-COSY, selection in phase

cycle, 454
NOESY, gradient-enhanced, 426, 428f
Noise figure, 108
Noise-modulated decoupling, 144
Noncovalent interactions, 551
Nonlinear least-squares fit, 132
Nonobservable states, 252
Normal mode (vs. inverse mode), 490
Normalization factor, for product operators,

243, 247
Normalizing the peak areas, 133
NP parameter (Varian), 99, 104–105, 123,

134, 402, 504
n-propanol, 136, 137, 138
n-propyl benzoate, 339
NS parameter (Bruker), 537
NT parameter (Varian), 537
Nu-1 (ν1, precession rate around B1 vector),

206, 208, 292–293, 297, 334, 341
nuc2 parameter (Bruker), 149
Nuclear Overhauser effect, see NOE
Nuclear quadrupole moment, 31
Null in excitation, for soft rectangular pulse,

568
Number of attached protons, in 2D HSQC, 505
Number of contours, 365
Number of scans (transients) in selectivity of

phase cycle, 456, 526
Nyquist theorem, 398

O1 parameter (Bruker), 101–102, 150
O2 parameter (Bruker), 149–150, 183, 195
Observable operator, 252
Off-axis shims, 87–88
Off-diagonal terms of the Hamiltonian, in

strong coupling and TOCSY mixing, 487
Off-resonance, 219, 222, 349
Off-resonance effects, in spin-lock, 336
Off-resonance pulses, 291–292
Offset (rotating-frame frequency �), 201, 320
Offset parameter (Bruker O1 or Varian

TO/tof), 101

Offset, decoupler parameter (Bruker O2 or
Varian DO/dof), 150, 183

Ohm’s law, 88
Olefinic proton, olefinic carbon, 9
Oligosaccharides, 12
On resonance, 201–202, 206, 215, 219, 222,

225, 309, 349, 350
One-bond artifacts, in HMBC spectrum, 509,

514, 536
One-bond couplings, in labeled proteins, 557
One-bond INEPT transfers, in protein

assignment, 557, 610
On-resonance pulses, 291
Operators, 242, 478
Order of pulses, in INEPT transfer, 267
Order, of matrix multiplication, 471
Organic synthesis, 553
O-ring vacuum seals, 425
ortho positions in benzene ring, mutual

HMBC correlations, 516
Oscillatory behavior, in TOCSY transfer, 344
Out-and-back scheme of coherence transfer,

602, 611, 616
Outer coil, of probe, 89, 90, 147–148
Overexpressed protein, 137
Overlap, 554, 598

of pure quantum states, 441
Overpopulated state, 410
Oversampling, 74, 109–110
Overselectivity of gradients, 463, 468
Oxidation of β-carotene, 519–522
Oxygen substitution, effect on one-bond C-H

coupling constant, 502

p (coherence order), 317
p16 parameter (Bruker), 320
p3 parameter (Bruker), 150
Pairing of CH2 peaks, in 2D HSQC and

HMQC, 505
Pancake analogy, for 180◦ pulse, 226
Pandora’s Box (Varian program Pbox), 351
Paramagnetic molecules, 180
Parameters for 2D NMR, 407t
Parts per million (ppm), 3, 33, 201
Pascal’s triangle, 5, 132
Passive couplings,

in 2D COSY, 380
in multiple-quantum coherences, 285

pcpd2 parameter (Bruker), 144
Peak lists, 132
Peak phase, 209
Pedestals, in lineshape, 83–84, 108
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Penalty function, in structure calculation,
590–591

Peppermint oil, 20
Peptide bond,

HN proton exchange rate vs. pH, 423
NOE across, 428

Perturbations of chemical shifts, by
unsaturations, 552

PFG (pulsed-field gradient), 301
PFGSE (pulsed-field gradient spin echo),

307–308, 311
PFGSE, for calibration of 180◦ shaped pulse,

351, 351f
Phase coherence, 158, 161–164, 169–170, 439

quantum definition, 442
Phase correction, 102, 108, 126–130, 128,

218, 405
in two dimensions, 405–406

Phase cycling, 107, 209, 211, 263, 304, 427,
450, 501, 536

Phase cycling vs. gradients, definition of
coherence order, 457

Phase cycling,
combining for multiple pulse sequence, 456
in DPFGSE-NOE, 333
in DQF-COSY, 447–450

Phase encoding, in t1 time domain of 2D
experiment, 400f

Phase error, 117–118, 126
Phase error in F1, due to gradient in t1 period,

462
Phase factor, 445–446, 464, 471, 477
Phase labeling, in edited 13C spectra, 277
phase parameter (Varian), 401
Phase ramp, of frequency-shifted laminar

pulse, 310–311, 320, 337
Phase reference, 248
Phase rotation angle, in phase correction,

128
Phase-sensitive 2D NMR, 399–401, 462,

464
Phase-sensitive data presentation in HSQC,

528–530
Phase-sensitive detection (quadrature

detection), 211
Phase-sensitive detector, 95
Phase-sensitive HMBC, 500, 537–538, 537f,

538f
Phase twist,

due to chemical shift evolution, 307
due to gradient pulse, 304
due to improper phase correction, 129

Phase,
in time domain and frequency domain, 126
quantum definition, 442

phc0 parameter (Bruker), 406
phc1 parameter (Bruker), 130, 406
Phenetole, 140, 142, 153
Phenylalanine, 571
Phi (�) angle, vs. HN-Hα dihedral angle, 53,

580
Phospholipid micelle, effect on linewidth of

bound molecules, 556
Phosphotransferase, 578
pl17 parameter (Bruker), 149–150
Piano analogy, 7
PIN diodes, for RF power switching, 149
Pivot peak, in phase correction, 128–129, 405
pKa value, measurements by NMR, 424
pl1, pl2 parameters (Bruker), 150, 350
Planck’s constant, 3, 33–34
Polarization, 256, 261, 263
Polynomial baseline correction, 133
Population, 33, 91, 150, 239, 323
Population diagram, 190

4-state, 189
after selective inversion, 323, 323f

Population difference, 12, 34, 138, 151, 159,
170, 181, 191, 198, 207–208, 256, 269,
408, 410

Population, in α state, 159
Porches, in lineshape, 83, 84, 108
Position-dependent phase shift, 450, 458

mathematical form, for spherial operators,
459

Positive absorptive peak, 208, 210
Positive crosspeaks, in NOESY, due to

exchange, 437
Positive NOE, 195, 198, 199, 409, 414, 429
PostScript graphics format, 134
Power attenuation, 301
Power level, 348, 349
Power level for shaped pulse, calculation of,

351
pp parameter (Varian), 150, 279
pplvl parameter (Varian), 150
ppm (parts per million), 3
Preamplifier, 89, 94–95
Precession, 1, 31, 156–157, 159, 168, 201,

204, 212, 222, 245, 296
Precession frequency, 3
Precession rate, 156
Preparation, 343, 354, 357, 361, 370, 498, 522
Preparation pulse, 399
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Presaturation, 181, 186, 302, 311, 315, 383,
568

Preservation of equivalent pathways (PEP),
531–532

Pristimerin, 538, 538f
Pristimerin oxidation product,

13C spectrum, 540–541, 540f
1H spectrum, 539–540, 539f

assignment table, 544t
COSY spectrum, 546f
DQF-COSY spectrum, 546–547, 546f
fragment analysis, 545–548
HMBC spectrum, 545f
HSQC spectrum, 541–543, 541f, 542f
ROESY spectrum, 549f

Probability, in quantum mechanics, 441, 469,
472

Probe, 8, 75, 77–78, 92
Probe coil, 8, 77, 83, 89–90, 93, 95, 142,

169–170, 240–241, 299, 368, 370, 439,
446, 460

Probe matching vs. ionic strength, 568
Probehead, 77
procpar file (Varian), 119
Product operator, 168

analysis of COSY, 386–393
analysis of DEPT, 283–287

Product operator formalism, 242–253
Product operator representations of pure ZQC

and DQC, 440
Proline, 570

δ-CH2 analogy to HN, 572
Promotor, in protein expression, 596
Pro-R and pro-S protons in CH2 group, 385
Protease digestion, 558
Protection factor, for H/D exchange, 587
Protection of amide N-H groups from solvent,

553
Protein expression, in labeled media, 596
Protein NMR spectroscopy, 551, 570–626
Proteins and peptides, 315
Proton decoupling, 228, 362
Pseudo-atom, in protein structure calculation,

591
Pseudofield (fictitious field), 202, 293
Pseudorotation, of pentavalent phosphorus,

422
Psi (�) angle, 53, 581
pulprog parameter (Bruker), 154
Pulse (radiofrequency), 8, 37, 90, 105, 200,

203–206, 204f
Pulse calibration, shaped pulse, 351, 351f

Pulse phase, 92, 203, 205, 291
Pulse power, 299
Pulse sequence, 93, 204, 450

1D TOCSY, 343f

1D transient NOE, 321
2D NOESY, 427–428f, 455f
2D TOCSY, 394f
3D NMR, 601–610, 601f, 603f, 612f
APT, 228f
COSY, 370, 370f
DEPT, 276f
DQF-COSY, 448f, 454f, 461–465f
HETCOR, 361–364
HMQC, 533–535, 533–535f

HSQC, 522–532, 523–525f, 527–530f, 532f
improved APT, 235f
INEPT, 256f, 317–318f
inversion-recovery, 177f
NOE difference, 193f
ROESY, 430f
triple-resonance, 610–621
Watergate, 314f

Pulse sequence building blocks, 200
Pulse width, 88, 92, 104–105, 119, 203, 297
Pulse width calibration, 92, 92f, 208, 334

based on radiation damping, 567, 567f
Pulse width ratio, conversion to dB difference,

350
Pulse, (B1) amplitude, 205, 293, 297, 299
Pulsed field gradient spin echo (PFGSE), 307,

493
Pulsed field gradients, 74, 181, 196, 200, 263,

265, 289–290, 301, 308, 319, 450
for coherence pathway selection, 457–464

Pulsed Fourier transform, 6, 7, 37, 135
Pulse-FID sequence, 91
PulseTool program (Bruker), 351
Pure INEPT spectrum, 264
Pure subspectra, calculated from DEPT

spectra, 280
Pure-phase excitation, using PFGs, 301
Purge pulse, 334–335
Puzzle solving, with HMBC data, 512
PW parameter, 91
Pyranose sugar, 15, 340

Q factor of NMR probe, 567
Quadrature artifacts, 211–212
Quadrature detection, 93, 96, 100–102, 104,

111–112, 209–210, 398
Quadrature detection in F1, 399–401

using gradients, 464–465
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Quadrature image, 210
Quadrature phase cycling, 211
Quadrupolar Hamiltonian, 479
Quantum mechanical, 64
Quantum mechanics, xii, 157, 251, 439–443
Quantum model, 2, 155
Quantum view of coherence, 441–443
Quartet,

for methyl group 13C resonance, 12
J coupling evolution, 224

Quaternary carbon,
in HETCOR, 360
in HMBC, 511, 543

Quench, 425
Quintet, 47

R1 (longitudinal relaxation rate), 170, 176
R2 (transverse relaxation rate), 170
Radiation damping, 566–568
Radio frequency (RF) coils, of probe, 78
Radio frequency (RF) power level, 182,

208
Radio frequency (RF) pulse, 90–93, 133, 157,

170, 203, 206, 240
effect calculated using Hamiltonian, 485
effect on density matrix, 469
effect on product operators, 251

Radioactive decay, 164
Radioactivity, 137
Raging boil, analogy for decoupling, 152
Raising and lowering operators, 443–447
Raising operators, definition, 444
Random coil chemical shifts, 571–572
Random coil exchange rates for H/D

exchange, 588
Random isotropic molecular tumbling, 479
Rapid isotropic tumbling, 59, 138, 551, 553
Rate constant for NMR relaxation, 410
Rate equation for self-relaxation, 411
Rates of relaxation, ratios for small and large

molecules, 411
RD parameter (Bruker), 91, 175
Read pulse, 185, 192
Real and imaginary FIDs, 532
Real FID, 93, 96, 103
Real Fourier transform, 400
Real part, of coherence, 442
Real spectrum, 122, 405
Receiver, 8, 94–107, 201, 296, 304, 399
Receiver gain, 76, 94, 109, 185–186, 304

in HSQC, 528
in phase cycling, 466

Receiver gain as a measure of water
suppression, 568

Receiver gain imbalance, 211
Receiver gain setting, in 2D experiments in

90% H2O, 569
Receiver phase, 208–209, 211, 248, 333
Receiver phase cycle, 454
Receiver phase,

in DQF-COSY phase cycle, 448
routing of FID signals, 453

Recovery delay for gradient, 462, 529
Rectangular excitation profile, 300
Rectangular pulse, 92, 203, 297
Recycle delay, 504
Reduced coupling constant (JR), with

decoupling, 139–140, 183
Reducing sugar, 15, 419
Reference axis, 208, 210, 213, 217–218, 225

in DQF-COSY phase cycle, 448
Reference frequency (νr), 95, 100–102,

104–105, 185, 213, 296, 308
Reference peak, 118, 130
Referencing, chemical shift scale, in

biological NMR, 565–566
Reflected power, 89
Refocused INEPT, 270, 283,

product operator analysis (CH2), 273
product operator analysis (CH3), 275
vector analysis (CH2), 274, 274f
vector analysis (CH3), 275, 275f

Refocusing, 227, 248, 251, 271, 284, 304, 504
Refocusing delay, 270, 283

in HSQC pulse sequence, 525, 536
Refocusing pulse, vs. inversion pulse, 228
Refocusing,

of CH coherence, 270
of chemical shift evolution, 234
of J-coupling evolution, 235, 250

Regiochemistry by NOE, 434
Regiochemistry of hydroxylation of testerone,

519
Relaxation, 11–12, 26, 36, 60, 91, 107, 133,

138, 151, 162, 168, 170–171, 187, 241,
246

Relaxation after a 180◦ pulse, 166
Relaxation after a 90◦ pulse, 162
Relaxation compensated DIPSI (DIPSI-2rc),

396
Relaxation delay, 11, 90–91, 104–105, 107,

133, 138, 151, 175, 180–181
Relaxation rates, two-spin system, 410f
Relayed transfer, 602
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Relays, electrical, 277
Remote (multiple-bond) couplings in HMBC,

536
Remote proton, in HMBC, 509
Remote status unit (Varian), 320
Residual 1H peak, from solvent, 61, 76, 131
Residual dipolar couplings (RDCs), 558,

621–623
Residual field (Bres), 292, 296
Residue, of biopolymer, in TOCSY, 340, 346
Resolution, 41
Resolution enhancement, 22, 124, 132, 404
Resolution in 2D spectra, F1 vs. F2, 375, 508
Resolving power of 2D NMR, 377
Resonance offset, 201–203, 213, 226, 245, 293
Resonance structure of α,β-unsaturated

ketone, 521
Restrained molecular dynamics (rMD)

calculations, 593
Restraints, in structure calculations, 590
Retarding the receiver phase, 455
Reverse INEPT transfer, 498
RF, see radio frequency
RG parameter (Bruker), 94, 109, 568
RGA command (Bruker), 95, 569
Ribonuclease A, 411
Rich media, in protein expression, 596
Ring current, 328, 573, 609
RMSD (root mean square deviation), 593
Rnase, 556
ROESY, 199, 242, 290, 336, 369, 414

for detecting exchange in large molecules,
438

spin lock in, 338
TOCSY artifacts in, 394

ROESY mixing, 338
ROESY mixing times vs. NOESY mixing

times, 430
ROESY spectrum of cholesterol, 432–435,

433f, 434f
F2 slices, 432
compared to HSQC, 509

ROESY spectrum of glycopeptide
YTGFLS(Lactose), 435–436, 435f

ROESY transfer of magnetization, 354
Rolling boil analogy for decoupling, 150
Room temperature shim coils, 77, 81
Root mean square deviation (RMSD), 593
Rotating frame of reference, 92–93, 96, 142,

201–202, 206, 222, 240, 293, 297, 450
Rotating-frame angular velocity, 297
Rotating-frame NOE, 335

Rotation matrices, 470
Rotational correlation time (τc), 172, 180
Rotational diffusion rate, 552
Row number, of 3D data matrix, 605
rp parameter (Varian), 406
Rubber band analogy, for NOE restraints, 591

s2pul (simple 2-pulse) sequence (Varian), 154
Salts, effect on cryogenic probe sensitivity,

559
Sample concentration, in comparison of phase

cycling and gradients, 466
Sample heating, from TOCSY spin-lock, 341
Sample magnetization, 92
Sample preparation, in biological NMR,

564–565
Sample size, in biological NMR, 556
Sample spinning, 77
Sample-and-hold, lock, 320
Sampling limitations, due to Nyquist theorem,

398
Sampling of FID, by ADC, 91, 98
Sampling rate, 101, 110
Sampling rate in t1, 398
Sandwich (composite) 180◦ pulse, 294–295,

338
SAR by NMR (structure-activity relationships

by NMR), 552, 600
Satellites, 13C, in 1H spectrum, 62, 137, 490
Saturation, 36, 81, 91, 150, 152, 181, 185,

187–188, 194, 198, 241, 289, 322–323,
383

Saturation transfer from H2O to HN, in protein
samples, 568

sb parameter (Varian), 404
sb1 parameter (Varian), 405
sbs parameter (Varian), 404
sbs1 parameter (Varian), 405
Scalar (J) coupling evolution, 213–216
Scalar (J) coupling Hamiltonian, 479
Scans, 90, 91, 104–106
Schrödinger equation, 480
Screening, for protein ligands, 552
SCSI interface, 74, 108
SDS polyacrylamide, 623
Second order (strong) coupling in 1H spectra,

45, 52, 54, 63
Secondary structure, in proteins, 575, 587
Selection rule, for quantum transitions, 266
Selective 1D TOCSY, 181, 343
Selective 1D transient NOE, 181, 321, 321f
Selective annihilation, 311
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Selective excitation, 298, 308, 321, 340, 353
using rectangular pulses, 611

Selective heteronuclear decoupling, 142–143,
143f

Selective homonuclear (1H) decoupling, 148,
148f

Selective ID NOE, 328–333
Selective inversion pulse, 323
Selective one-dimensional (1D) experiments,

238
Selective population transfer (SPT), 257
Selective pulses, 186, 200, 299–301
Selectivity of CW irradiation, 182
Self-relaxation, 326
selfrq parameter (Varian), 321
selpw parameter (Varian), 320
selpwr parameter (Varian), 320
selshape parameter (Varian), 320
Send-receive switch, in preamplifier, 95
Sensitivity, 3, 7, 34, 37–38, 76, 93, 112, 466
Sensitivity enhancement, by preservation of

equivalent pathways (PEP), 531–532
Sensitivity improved experiments, 531
Sensitivity loss, due to short T2 in large

molecules, 556
Sensitivity of HMBC, 509
Sensitivity to twisting, by gradient, 317
Sequence specific assignments, of peptide

using ROESY, 436
Sequence-specific assignments, 553, 572, 577,

580–586
for 15N or 13C-labeled proteins, 610, 617

Sequential (alternating) data sampling, 120
Sequential assignment, 580
Sequential NOEs, 435, 577–580
Serial file (Bruker), 119, 366
Serine, 571
Shaka, A. J., 308
Shaped (selective) RF pulses, 257
Shaped gradient pulses, 320
Shaped pulse, 74, 181, 196, 289, 296, 308,

319, 337, 348, 353, 299–301
calculation of power level, 351
for decoupling, 497
practical aspects, 319–321

Shaped pulse capability, 559
Shielding, 57, 59, 328
Shielding constant, 33
Shigemi tubes, 565
SHIM button (Varian acqi window), 86
Shim coils, room temperature, 77, 81
Shim file, 87

Shim gradient, 81–82
Shim map, for gradient shimming, 88, 563
Shimming, 41, 44, 80–82, 84, 108, 131, 229,

302, 305, 334
and presaturation, 186

Short peaks in 13C spectrum (quaternary
carbons), 540

Shoulder,
due to Z2 shim error, 84
in 1H multiplet, 49

Shutter speed, 139, 414
Shutter time, 415
si in pulse sequence name (Bruker), 531
SI parameter (Bruker), 122
si(F1) and si(F2) parameters (Bruker), 402
Side-chain 13C and 1H assignments, 609
Side-chain HN resonances, 571
Sigmatropic rearrangements, 422
Sigmoidal shape of NOE buildup, in spin

diffusion, 436
Sign of crosspeaks in 2D NOESY, 426–427
Signal-to-noise ratio (S/N), 91, 93, 98,

106–109, 111, 123, 129, 136, 185, 222,
241, 278, 466, 528, 559

Signal-to-noise ratio (S/N) vs. molecular size,
555

Silicon Graphics (SGI), 74, 108
Simmering analogy, for saturation, 152
Simplex autoshimming, 87
Simulated annealing, in structure calculations,

593
Simulation of the transient NOE experiment,

327, 327f
Simultaneous 180◦ pulses, 255
Simultaneous 90◦ pulses, 242, 254, 523
Simultaneous sampling method for ADC,

98–99, 102, 119–120, 399
Sinc artifacts, 402
Sinc function, 86, 112, 114, 116–117, 297,

299, 349, 402
Sinc-shaped excitation profile, in 3D HNCO,

611
Sine-bell window function, 50, 125, 132,

403
Sine-shaped gradient pulse, 320
Single-quantum (SQ) transitions, 189, 252,

266
Single-quantum coherence (SQC), 266, 469

in HSQC, 525
Singlet, 10, 11, 223
Singlet methyl group, in HMBC, 503, 514,

543, 545f
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Size limitations in solution-state NMR,
553–558

Slow exchange, 415, 417, 418–422
Slow exchange of glucose anomers, 493
Slow exchange spectrum, 416f
Sodium azide, 565
Sodium d4-3-trimethylsilylpropanoate, 565
Soft pulse, 298, 301, 348–349
Solenoid, in superconducting magnet, 8
Solid sample, CSA, 555
Solid-phase synthesis, 596
Solid-state NMR, 60, 138, 167, 341, 551, 623
Soluble fraction, in protein expression, 596
Solvent 13C peak, 131
Solvent exposed HN, temperature dependence

of chemical shift, 585
Solvent peak,

13C, 131
residual 1H, 61

Solvent signal suppression, 185
Solvent-exposed side-chains, increased T2

values, 609
SOLVNT parameter (Varian), 102
Sorted chemical shift lists, in structure

determination, 542
sp1 parameter (Bruker), 320
Specific pulse excitation, using shaped pulses,

289
Spectral density function J(ν), 172, 173f, 175
Spectral editing, 270, 275–276

in 2D HSQC, 505
Spectral width (SW), 101–102, 104, 110, 122,

133, 298
Spectral window, 101, 111, 299

center, 201
Spherical product operator analysis of HMQC,

535
Spherical product operator analysis of HSQC,

526–527
Spherical product operators, 269, 408,

443–447
definition, 444
effect of 180◦ pulse, 445
effect of gradients, 444

Spin, 30
Spin-1, 31, 131
Spin-1/2, 2, 30, 33
Spin choreography, 532
Spin diffusion, 199, 433, 436
Spin echo, 200–237, 222, 226, 229, 276, 305,

342, 462, 468, 524, 529–530, 532
in evolution period of HSQC, 525

Spin kinetics, of relaxation, 409
Spin lock, 200, 289–290, 296, 333–338, 334f,

339, 341, 344, 348, 393, 602
Spin lock axis, 336

tilt in ROESY, 431
Spin lock field, analogy to B0 field, 335
Spin lock power levels, 334
Spin lock, continuous-wave in ROESY, 430
Spin system, 134, 184, 336, 339, 341, 375
Stacked plot, 134, 365
States-Haberkorn mode, 99, 400, 532, 605
States-TPPI mode, 599
Stationary state, 442, 480, 486

definition in terms of commutator, 484
Statistical mechanics, 157
Steady state, 91, 107, 180, 192–195, 322
Steady state NOE, 152, 192, 194, 198, 325
Steady state NOE difference, 196
Stereochemistry,

by HMBC crosspeak intensity, 519
by NOE experiments, 434
by transient NOE, 329

Steric crowding, effect on 13C chemical shifts,
9, 11, 27, 29, 221, 360, 502, 507, 610

Steroids, 20, 51, 281
doublet/triplet pattern in CH2 groups, 508

Stimulated emission, 36, 172, 181
Stochastic switching of chemical shift in

exchange, 418
Storing maganetization on the z axis, 395
Straight-chain hydrocarbon, 342
Strategy for coherence transfer, in

triple-resonance experiments, 611
Streaks, in COSY, due to dispersive lineshape,

390
Stretched crosspeaks in HMBC, due to nearby

13C resonances, 512
Stretched gel, for residual dipolar coupling

measurement, 623
Strip plot, 605, 605f

3D CBCA(CO)NH, 619f, 620–621, 621f
3D HNCACB, 618f, 619–620, 619f

3D HNCO, 615, 616f
3D HSQC-TOCSY, 604
3D TOCSY-HSQC, 608f

Strong (second-order) coupling, 45, 52, 54,
67, 69, 331, 336, 341–342, 409, 481–484

Strong, category of NOE crosspeak volume,
437

Structural biology, 353, 551
Structure calculation, 553

using NMR restraints, 590–596
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Structure determination by NMR, an example,
538–550

Structure determination using HSQC and
HMBC, 517–522

su command (Varian), 148
Subtraction artifacts,

in NOE difference, 195
in phase cycling, 304, 466, 501

Subtraction of artifacts, by phase cycle, 263,
466

Sucrose, 16, 153, 178, 183, 196, 200, 220, 256,
303–304, 308–309, 311, 316, 330, 345

13C satellites, 491, 491f
1H assignments, 184
1H assignments, from COSY, 377–382,

379f, 381f, 382f

DQF-COSY spectrum, 377–382, 379f, 381f,
382f

HETCOR spectrum, 360, 360f
HMQC spectrum, 502, 503f
NOE difference, 196f, 197f

Sudden perturbation, in transient NOE,
322

Sugar-phosphate backbone, 14
Sum-to-memory, 86, 91, 94, 106, 108, 211,

450, 466
addition and cancellation in phase cycle,

453
Sun Microsystems, 74, 108
Superconducting magnet, 8, 77, 156
Superconductivity, xii, 40
Superposition, of pure quantum states, 269,

441, 469, 472
Supression of one-bond correlations in

HMBC, 536
SW parameter, 98, 110, 111, 122, 298, 398
sw1 parameter (Varian), 398, 404, 523
Swapping the labels, in heteronuclear

spin-echo, 233
swh parameter (Bruker), 504, 504
swh(F1) parameter, Bruker, 401
Switching of 1H power level, in DEPT, 277
Symmetric state, 483
Symmetrically disposed crosspeak, 370
Symmetry of biomolecules, 556
Symmetry, molecular, and NMR, 4, 54–56
Synthetic methods, 553

t1 (evolution delay), 354, 357
T1 (longitudinal relaxation time), 91, 133,

152–153, 164–165, 167, 170–171, 173,
175–177, 179

compared to T2, 167
13C, effect of bound 1H, 178
effect of molecular size on, 173, 174f
effect on experiment time, 175
of quaternary carbons, 180
practical significance, 180

t1 FID, 357
t1 noise, 375, 429, 432
T1 relaxation, 194, 229, 326
t2 (FID time domain), 357
T2 (transverse relaxation time), 41, 44,

163–165, 167, 170, 173–175, 229
compared to T1, 167
effect of molecular size on, 174f, 554, 556t
effect on peak width, 175, 229–231,

230f

in solids, 174
T2 relaxation, 222, 230, 235

in gradient experiments, 468
in HMBC, 509

TANGO pulse sequence building block, 364,
537

Tau (τ) scale, for chemical shifts, 37
Taxonomy of 2D experiments, 369–370
TD parameter (Bruker), 99, 105, 123, 134,

402, 504
td(F1) parameter (Bruker), 401
Temperature dependence of H2O chemical

shift, 565
Temperature dependence of HN chemical

shifts, 585
Temperature standard, for VT work, 425
Temporary bad shimming (pulsed-field

gradient), 266
Terpenoids, 12, 20
Tertiary structure, of proteins, 575, 587
Test function, in Fourier transform, 120
Testosterone, 50, 281–282
Testosterone metabolite, structure

determination, 517–519
Tetramethylsilane (TMS), 76, 104–105,

130
th parameter (Varian), 132
Theory of NMR, Advanced, 408–488
Thermal equilibrium, 2, 34, 36, 90, 164, 166,

169, 190
Thermal noise, in probe coil and preamplifier,

95, 559
Third party software, for NMR data

processing, 366
Three gammas, contributing to FID intensity,

37
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Three-bond HMBC correlations in aromatic
rings, 547

Three-bond vs. two-bond ambiguity, in
HMBC, 514

Three-channel spectrometer console, 559
Three-dimensional fold, of biomolecule, 553
Three-dimensional NMR pulse sequences,

601–610
Three-dimensional structure, of biomolecules,

137, 552
Three-spin (AMX) system, in amino acids,

383, 398, 571–572
Threonine, 571
Threshold intensity, for peak picking, 132
Through-bond transfer of magnetization, 341
Tier number, of 3D data matrix, 605
TIFF graphics format, 134
Tight AB system, 67
Tilt of Beff vector for off-resonance excitation,

292
Time domain, 7, 79, 114, 118–119, 298–299
Time evolution, 471
Time for refocusing of antiphase coherence,

1H vs. 13C, 490
Time reversal, in spin-echo, 227
Timescale of the NMR experiment, 54
Titration curve, of chemical shifts, 423
TMS, see tetramethylsilane
TO parameter (Varian), 101–102
TOCSY (total correlation spectroscopy), 290,

336, 353, 369, 430, 610
2D, pulse sequence, 601
coherence flow diagram, 394f
distortion of peak shape, 395, 395f
for spin system identification in proteins,

572
mixing, 409
mixing efficiency, 344
spin lock in, 338

TOCSY mixing,
described using Hamiltonian, 486–487
product operator analysis, 394

TOCSY spectrum of 3-heptanone, 375, 376f
TOCSY spectrum of cholesterol, 369f
TOCSY spectrum of glycopeptide

YTGFLS(Lactose), 397f
TOCSY spectrum of heregulin-α EGF

domain, 582f, 585–586f
TOCSY transfer, 354

efficiency compared to NOE, 348
TOCSY vs. COSY, for resolving ambiguous

assignments, 373, 374f

TOCSY-HSQC spectrum, 3D, of
ferrocytochrome c2, 607–609, 607–609f

TOCSY-HSQC,
3D, coherence flow diagram, 604f
3D, pulse sequence, 603–604, 604f

tof parameter (Varian), 150
Total energy function, in structure

calculations, 592
Total z-magnetization in transient NOE, 327
tp (pulse duration), 292, 293, 297
TPPI (time proportional phase

incrementation), 99, 103
tpwr parameter (Varian), 350
trace parameter (Varian), 406
Train of pulses, 334
trans-diaxial relationship, in cyclohexane

chair, 15
Transfer of magnetization, 323–324, 354, 370

in spin-lock, 334
Transient nuclear Overhauser effect (NOE),

196, 198, 321–322, 354, 388, 425
time course of z magnetization, 326, 326f

Transients, 90, 91, 104, 106
Transmitter, 8, 36, 74–75, 142, 146, 148–149,

185, 279, 559
Transverse relaxation, 167, 170–171
Transverse relaxation optimized spectroscopy

(TROSY), 556, 623–626
Transverse relaxation rate (R2), 173
Transverse relaxation time (T2), 164
Trap, to spoil one-bond correlations, in

HMBC, 537
Trifluoroacetic acid, 61
Trifluoroethanol, 569
Trim pulse, 335
Triphenylphosphine oxide, 61
Triple axis (x,y,z) gradients, 319, 559
Triple axis gradient probe, 88, 564
Triple-resonance (1H, 15N and 13C)

experiments, 553, 557, 577, 610–621
Triple-resonance inverse probe, 90, 559
Triplet, 5, 44–45, 47

J coupling evolution, 223
Triple-triplet, 48
Triterpene, 20
Triterpenes, doublet/triplet pattern in CH2

groups, 508
TROSY (transverse relaxation optimized

spectroscopy), 553, 623–626
TROSY principle, 625
Trunction of t1 FID, 402f
Tryptophane, 571
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TSP (2,2′,3,3′-d4-3-trimethylsilylpropionate),
131

Tumbling, 138, 157, 163, 170
rates, 172

Tune interface (Varian), 89
Tuning knob, 90
Tuning rods, 89
Tuning the probe, 88, 204
Turbine, spinner, 77
Turbo vacuum pump, for cryogenic probe, 559
Turning off the B0 field, in TOCSY mixing,

342
Twist (position-dependent phase shift), 302,

446, 450, 458, 528
of artifact coherences, 466

Two-dimensional (2D) NMR, 18, 24, 221,
242, 353

Tyrosine, 571

Uncrystallizable proteins, 558
Underpopulated state, 410
Unfolded proteins, 572
Uniform labeling of biomolecules, xi, 32, 38,

137, 553, 557, 596
UNIX operating system, 74–75, 134
Unresolved splitting, 22
Unsaturated groups, effect on chemical shift, 8
Unscrambling of coherence helix, 304
Unshifted sine-bell, 403
Untwisted magnetization, 304

in gradient HSQC, 528
Unwinding the antiphase relationship, 275
Unwinding the coherence helix, by final

gradient, 460, 468
Upfield, 8, 37
Upper cone of individual vectors, 160
Upper limits of distance, in structure

calculations, 591

ν1, see nu-1
Valine, 570
Variable capacitance, in probe circuit, 204
Variable temperature (VT) operation, 424–425
Variable temperature study, 418
Varian A-60 instrument, 40
Varian EM-390 instrument, 40
Varian Gemini instrument, 3, 74–75, 95, 103
Varian Inova instrument, 74, 95
Varian T-60 instrument, 37, 40
Varian Unity instrument, 95, 107, 145,

147–178
Varian Unity-Plus instrument, 74

Varian VXR instrument, 74
Varian XL-100 instrument, 40
Vector diagrams, of antiphase states with 3 or

more spins, 272
Vector dot product, 479
Vector model, 91, 155, 222, 242–243, 247,

269, 408
summary, 168–170

Vector,
from 3D data matrix, 605
in density matrix representation, 478
net magnetization, 168

Vertical streak in 2D HSQC/HMQC, 499
Vicinal (3-bond) relationship, 12, 14, 28, 52,

242, 372
Violation, of NMR restraints, 590, 595
Virtual coupling, 70, 336, 341–342
VNMR software (Varian), 401
Voxel, 552

W coupling, 330, 377, 377f
W0, W1, W2 relaxation rates, 410
Walk along backbone of peptide, 578

using 2D ROESY, 436
using coherence transfer only, 617

Walk, through each spin system, 372,
372f

Waltz-16 heteronuclear decoupling, 144–145,
149, 182, 200, 338, 496

Water suppression, 302, 320, 566–569
Water suppression probe, 90, 558
Water suppression, by jump-return, 312
Water-friendly water suppression methods,

568
Watergate, 181, 186, 311–316, 568

simulation, 315, 315f
Wave function, 441, 469
Waveform generator (Varian), 320
Waves, in baseline of spectrum, 505
wdw parameter (Bruker), 405
Weak (first-order) coupling, 45, 63, 67,

71
Weak, category of NOE crosspeak volume,

437
Weighting (window or multiplier) functions,

108, 398
wft command (Varian), 126
White powder unknown, 538, 553
Whitewash, in stacked plots, 365
Wiggles, sinc, 299, 402, 402f, 403f
Wilmad, 77
Winding up the antiphase state, 275
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Window (weighting or multiplier) functions,
118, 123

for 2D, 404, 404f
Varian parameters, 404

Wobble tuning (Bruker), 89
WURST (adiabatic shaped pulse), 337, 568
WURST-40, compared to GARP for 13C

decoupling, 497, 497f

X nuclei, 149
X-ray crystallography, xi, xii, 151, 332, 551

Z filter, 395
Z magnetization, 239, 241
Z0 (field) coil, in room temperature shims, 79
Z0 setting (Varian), 79, 80
Z-axis pulse, 296, 313
Zeeman energy, 342
Zeeman Hamiltonian, 479

Zero audio frequency, 398
Zero filling, 118, 122, 401
Zero-order phase correction, 128, 130, 218,

405
Zero-quantum (ZQ) artifact,

in 1D transient NOE, 328, 330
in 2D NOESY, 428
removal with variable mixing time, 395

Zero-quantum (ZQ) relaxation, 188–189, 192,
198, 199, 266, 409, 429

Zero-quantum coherence (ZQC), 266, 357,
395, 439, 440

effect of gradient on homonuclear, 458
heteronuclear, in HMQC, 533
sensitivity to gradients, 318

zg command (Bruker), 148
Z-magnetization transfer, 338
ZQC and DQC, 283, 389

product operator definition, 268




