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Preface
Researchers in scientifi c endeavors such as the life sciences frequently face 

 signifi cant concerns when looking for the most relevant or “right” information from 

the literature. For example, what happens when we fi nd too much information on a 

subject, cannot fi nd any information, or cannot access the full text documents when 

 interesting citations are found? These are concerns that most life science research-

ers face every day but rarely acknowledge. The magnitude of the problem is most 

commonly expressed as a growing interest in text extraction capabilities and our use 

of web search engines such as Google, and PubMed or PubChem to provide easy 

awareness of scientifi c life science information.

This book is about acknowledging concerns of information extraction, highlight-

ing solutions available today, and underscoring the value these solutions bring to 

both academic and commercial scientists alike. A special focus is on chemical infor-

mation extraction due to its importance in so many life science areas and to fi ll a 

gap in the literature that still exists at the time this book is being written. Chemical 

entity extraction is meant to complement the extensive literature on biological entity 

extraction. The ultimate goal, as described in this book, is to build relationships  

between chemical and biological entities—relationships that are at the heart of life 

science research.

 The intent of this book is also holistic: to look at both the technological details, 

in this case the development of chemical structure extraction capabilities, and to pro-

vide a possible road map for how researchers can best think about these technologies 

in their daily work. On one hand, a road map is meant to underscore to developers 

that the ability to provide a great chemical text extraction capability is most valuable 

when the scientists needing this capability are factored into the process. On the other 

hand, we want to underscore to researchers that the capabilities of chemical text 

mining present new opportunities in how researchers think about and manage their 

information, and this requires openness to new techniques and capabilities. Ideally, 

those developing these new capabilities and the researchers needing those capabili-

ties can collaborate on shaping the future of scientifi c information and knowledge 

management. This book is written with this vision in mind.
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Fraunhofer Institute for 

Algorithms and Scientifi c 

Computing (SCAI)

Sankt Augustin, Germany

corinna.kolarik@scai.fraunhofer.de

Bedřich Košata
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INTRODUCTION

The ironic proverbial saying that “a month in the lab can save you an hour in the 

library” is proving itself repeatedly and at a huge cost to both academic and commer-

cial institutions alike. Missed information in the literature costs time, money, and 

quality. Both the quality of decisions made and the quality of subsequent research 

output is compromised when the available information is not realized. In monetary 

terms, incorrect decisions along the drug pipeline lifecycle in the pharmaceutical 

area can cost millions to billions of dollars (Adams and Brantner 2006; Banik and 

Westgren 2004; DiMasi 2002; DiMasi et al. 2003; Gaughan 2006; Leavitt 2003; 

Myers and Baker 2001).

Substantial costs have been experienced in academia as well and seen as missed 

funding opportunities due to a combination of access limitations to the information 

together with the inability to fi nd and process the available information (Wilbanks 

and Boyle 2006). Access limitations are worse in academia than in industry. 

Lowering the barriers to access limitations has been the goal of individuals such 

as Paul Ginsparg, who in 1991 developed arXiv (Ginsparg 1991), the fi rst free sci-

entifi c online archive of non–peer reviewed physics articles that continues today 

(Ginsparg et al. 2004). Many groups have formed to increase the accessibility of aca-

demic information such as SPARC (Scholarly Publishing and Academic Resources 

Coalition), the Science Commons group (www.sciencecommons.org), and the World 

Wide Web Consortium (w3c.org).

The value of information mining the literature for knowledge has been illustrated 

repeatedly. In 1986, Donald R. Swanson, an information scientist, mathematician, 
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and professor emeritus at the University of Chicago, demonstrated the technique by 

using the literature to fi nd a possible treatment for Raynaud’s syndrome (Swanson 

1986, 1987, 1988). Swanson went on to clinically prove the hypothesis suggested by 

the literature to use fi sh oils as a treatment for Raynaud’s. This work set off a string 

of papers in an area coined as “literature-based discovery” or “literature-related 

discovery” (Smalheiser and Swanson 1994, 1996a, b, 1998; Swanson 1990, 1991; 

Swanson and Smalheiser 1999; Gordon and Lindsay 1996; Kostoff 2007; Weeber 

et al. 2001).

In fact, literature-based discovery and text mining of the literature are part of 

the same thing; they are both about extracting information from text to discover 

something new, novel, or not already known. Text mining and literature-based dis-

covery go beyond the simple analysis of text. Ideally they led to the recognition of 

interesting patterns not explicitly stated. The most recent and prominent example 

of this, at the writing of this book, is a January 2008 article by a group from Peking 

University (Li et al. 2008). These researchers asked the question, Is there a com-

mon molecular pathway in addiction? They fi rst identifi ed ~1,000 relevant articles 

on the subject and manually extracted 2,343 items of evidence. They kept only 

well-established evidence and extensively annotated and then stored this evidence 

in a searchable database for further analysis. Based on their meticulous extraction 

and analysis, they identifi ed fi ve molecular pathways common to four different 

types of addictive drugs. This included discovering two new pathways and clues 

to the irreversible features of addiction. They did this without conducting a single 

experiment.

A rigorous description of literature-based discovery was published by 

Kostoff in an earlier paper (Kostoff 2007) and followed later by a series of eight 

papers that detailed the techniques used and demonstrated these techniques 

for a variety of life science areas including cataracts, Raynaud’s, Parkinson’s, 

and  multiple sclerosis, and water purifi cation (Kostoff 2008a,b; Kostoff et al. 

2008a–f).

Other opportunities for knowledge discovery from the literature includes the 

area of drug repurposing, the development of novel uses for existing drugs. Most 

drug repurposing (also known as drug reprofi ling or repositioning) discoveries 

were the result of researchers connecting key information to generate a valid 

hypothesis that could be tested in the clinic (Wilkinson 2002; Lipinski 2006; 

Oprea and Tropsha 2006; Ashburn and Thor 2004). Repurposed drugs frequently 

have the advantage of having been previously tested in the clinic for safety and 

are simply being reapplied to a novel area. This is not a new concept: in 2004, 

84% of the 50 top-selling drugs had additional indications approved since their 

launch in the United States (Kregor 2007). For example, two drugs on the mar-

ket for Parkinson’s disease, Ropinirole/Requip (GSK) and Pramipexole/Mirapex 

(Boerhringer Ingelheim), were later repurposed for restless leg syndrome. 

Repurposing involves additional expense for phase IV trials to support the new 

indication, application, and marketing fees, but this is nothing compared to the 

cost of running phase I, II, and III trials.
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The bottom line is that in the hands of creative, experienced researchers, text mining 

of the literature or literature-based discovery can only serve to increase the  opportunities 

within drug discovery and enhance life science research. Turning the ironic proverbial 

phrase around to read “an hour in the library saves a month in the lab” would be a more 

advisable approach.

BARRIERS TO THE AUTOMATION OF THESE DISCOVERIES

Finding relevant information involves fi nding relevant documents, accessing those 

documents, and fi nding relevant information within those documents. Numerous 

barriers exist along each step of the way (Banville 2006 and references within, 

2008). For example, imagine that you are trying to fi nd all the bicyclic compounds 

known to be selective for a specifi c target. What are some of the issues you would 

encounter?

Too many sources to search• 

No structure searching capability available within most of these sources• 

Limited accessibility to all the necessary sources due to licensing costs• 

Limited rights to download and manage the citations and documents found • 

due to licensing restrictions

Getting a citation from PubMed, for example, does not mean that the scien-

tist has access to the full text document cited or the right to use a computer to 

mine a large set of full text documents. Controversies over the announcement that 

researchers supported by the National Institute of Health (NIH) will be required 

to submit all peer-reviewed articles to the NIH for public access within 12 months 

of publication has predictably drawn positive reviews from most researchers and 

negative reviews from most publishers (Morrissey 2008). Even if full text access is 

available, the logistics of downloading all 100 or 1,000 “must read” full text arti-

cles are tedious, to say the least. For example, the group from Peking University 

engaged many students over two years to read, extract, and annotate information 

from 1,000 documents relevant to drug addiction (Li et al. 2008 and correspon-

dence with L. Wei).

THERE HAS GOT TO BE A BETTER WAY TO 
DO THIS — SHIFTING PARADIGMS

A variety of technological advances including the advent of the Semantic Web and 

social networking are driving a cultural change in how information is found and 

presented back to the user (e.g., Murray-Rust et al. 1997; Rzepa 1998; Berners-

Lee et al. 2001; Luo 2007; Chang 2007; Dong et al. 2007). It is no longer about 

publishing information in print form; it is about ePublishing with the ability for 

communities of readers to comment on this information. This effectively captures 
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knowledge about information, a new paradigm in information sharing. It is also 

about automatic linking to related information as a form of knowledge sharing and 

knowledge building.

Publishers like the Royal Society of Chemistry have initiated Project Prospect to 

enhance articles prior to publication with chemical and biological concepts (see rsc.

org and The Alchemist Newsletter 2007 for details). Chapter 8 of this volume has a 

detailed discussion on publishing. The ability to fi nd chemical structural informa-

tion and its associated data is becoming much easier as the result of these endeavors 

and their many contributors (such as Rupp et al. 2007; Wilkinson 2002; Corbett 

et al. 2007; Batchelor and Corbett 2007; Corbett and Murray-Rust 2006; Nic et al. 

2002; Murray-Rust and Rzepa 1999; Zimmermann and Hofmann 2007 and refer-

ences within; Zimmerman et al. 2005; Williams 2005; Williams and Yerrin 1999; 

Rouse and Beckman 1998; Ibison et al. 1992, 1993a,b; Simon and Johnson 1997 and 

reference within).

Project Prospect endeavors to use and build acceptance of standards for chemical 

information by using the International Chemical Identifi ers (InChIs) created by the 

International Union of Pure and Applied Chemistry (IUPAC) as a way to provide a 

nonproprietary way to make chemical information more machine-readable. To illus-

trate the potential of this in the simplest way, an InChI for benzene (i.e., InChI=1/
C6H6/c1-2-4-6-5-3-1/h1-6H) was pasted into a Google search bar (www.google.

com), this resulted in 37 hits in the fall of 2007 and over 1,000 hits 6 months later 

in the spring of 2008. The top hits were directed at the IUPAC Gold Book as shown 

in Figure 1.1.

Similar searches on common drugs resulted in many highly relevant hits. In the 

case of aspirin, shown in Figure 1.1, the links were made to several open-access 

chemical databases such as The Carcinogenic Potency Project database (http://

potency.berkeley.edu/chempages/ASPIRIN.html), PubChem (http://pubchem.ncbi.

nlm.nih.gov/summary/summary.cgi?cid=2244), Drug Bank (http://www.drugbank.

ca/cgi-bin/getCard.cgi?CARD=DB00945.txt), and ChemSpider (http://www.chem

spider.com/RecordView.aspx?id=2157). While this search does not provide a defi ni-

tive capability and does not ensure a high degree of accuracy in the results found for 

these drugs, it does demonstrate the current ability we all have to perform a chemical 

structure search against a large body of information, the Internet, and retrieve highly 

relevant results.

Integration of select Internet resources, such as the public chemical databases 

mentioned above, provides a very practical approach to structure searching the 

Internet and internal resources (Dong et al. 2007). Chapter 8 elaborates on this 

concept. As summarized in Chapter 2, another facet of chemical structure mining 

involves fi nding information within full text documents that do not traditionally con-

tain identifi ers like InChI or SMILE strings. Chapter 5 contains an in-depth discus-

sion of these identifi ers.
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INTRODUCTION

Computer-assisted extraction or mining of chemical structural information from the 

literature requires special tools that address the various ways of encoding structures. 

Traditionally, in the literature, chemical structures are identifi ed by textual names 

or images of structures. Chemical images of structures are in general very explicit 

and can convey a great deal of information to a chemist, but they cannot be read 

by computers (Ibison et al. 1993). To make these images machine-readable would 

involve a chemical image recognition capability as described in Chapter 4. This is a 

challenging area, and Chapter 4 provides the reader with an excellent background on 

what to expect when using these capabilities.

Textual names have the advantage of being machine-readable, but many chemical 

compound names are derived in the absence of structural information. Common or 

trivial names were frequently given to compounds based on their properties or meth-

ods of extraction (because their structural information was originally an unknown). 

For example, mandelic acid was extracted from bitter almonds, and its name is 

derived from Mandel, the German word for almond (Merck 1989).

Rule-based or systematic nomenclature (e.g., International Union of Pure and 

Applied Chemistry [IUPAC] or CAS nomenclature) is based on a set of linguistic rules 

that apply to its structure. For example, the IUPAC and CAS names for mandelic acid 

are 2-phenyl-2-hydroxyacetic acid and benzeneacetic acid, α-hydroxy-, respectively. 

The number of possible systematic names is practically endless. A small, but not 

nearly exhaustive, set of other systematic names includes phenylglycolic acid, phe-

nylhydroxyacetic acid, (±)-α-hydroxybenzeneacetic acid, (±)-α-hydroxyphenylacetic 

acid, (±)-2-hydroxy-2-phenylethanoic acid, (±)-Mandelic acid, (RS)-Mandelic acid, 

DL-Amygdalic acid, DL-Hydroxy(phenyl)acetic acid, DL-mandelic acid, paramandelic 

acid, α-hydroxy-α-toluic acid, α-hydroxyphenylacetic acid, α-hydroxybenzeneacetic 
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acid, 2-hydroxy-2-phenylacetic acid, 2-phenyl-2-hydroxyacetic acid, and 2-phenyl-

glycolic acid. The application of these various linguistic rule sets and the multiple 

lexicons within each rule set makes conversion of a name to an actual structure very 

diffi cult for both computers and expert practitioners. Furthermore, chemical naming 

of compounds may defi ne the substance but not its form. For example, glucose can 

exist in an open chain form or two possible closed chain forms (alpha-glucose and 

beta-glucose). It is not always clear what form or forms were intended when simply 

mentioning “glucose.” In many cases the exact form or forms are not known. The 

implications of this during an automated name-to-structure conversion, are described 

in Chapter 3 along with a more detailed understanding of the chemical name-to-

structure process itself.

The use of computer-readable formats for chemical structures has become a 

compelling need to capture this information in databases or to simply annotate 

documents (Degtyarenko et al. 2007). Annotating full text documents with these 

machine-readable forms can make documents easier to search, and the intended 

structure can be visualized in context. The development of computer-readable for-

mats started in earnest around 1990 (Borkent et al. 1988; Weininger 1988; Contreras 

et al. 1990; Ibison et al. 1993).

The most commonly used identifi ers today include line notation identifi ers (e.g., 

Simplifi ed Molecular Input Line Entry System [SMILES] and International Chemical 

Identifi er [InChIs]), tabular identifi ers (e.g., Molfi le and Structure Defi nition [SD] fi le 

types), and portable mark-up language identifi ers (e.g., Chemical Markup Language 

[CML] and FlexMol). Each identifi er has its strengths and weaknesses as detailed 

in Chapter 5. Chapters 5 and 6 provide enough information to guide researchers in 

choosing the most appropriate formats for their individual use.

Chemical identifi ers can be packaged inside documents in a variety of methods 

including eXensible Markup Language (XML; see Chapter 6 for details). XML has 

become so widely used in tagging documents with key information, and especially 

chemical information (e.g., CML), that we have dedicated Chapter 6 to this topic. These 

chemical structure tags, through XML, enrich the document and allow researchers 

to fi nd documents tagged with their structures of interest and see how the compound 

is mentioned in the document. This contextual component can be a very simple and 

powerful research tool that paves the way for a new paradigm in chemical informa-

tion mining of the literature, using text analytical tools such as chemical name entity 

recognition (NER) together with natural language processing (NLP) (Weizenbaum 

1966; Jackson and Moulinier 2002). Chapter 7 provides clear coverage of this area.

Chemical NER can provide researchers with a very different experience when 

reading a tagged document. Some of these principles are captured in the Royal 

Society of Chemistry’s Project Prospect, where key terms, such as compound names, 

are highlighted. Project Prospect is an excellent example of how access to informa-

tion can be improved using a set of core noncommercial capabilities (Weininger 

1988; Murray-Rust et al. 1997; Rupp et al. 2007; Corbett et al. 2007; Batchelor and 

Corbett 2007; Corbett and Murray-Rust 2006; Copestake et al. 2006; Smith et al. 

2007; de Matos et al. 2006; Nic et al. 2002).

The ability to select a chemical name within the text, and view its structure, is 

starting to appear in a variety of tools and will most likely have a large impact in the 



Chemical Information Mining: A New Paradigm 15

area of patent searching. The application of this to patent documents has primarily 

come from the commercial sector from companies such as SureChem (http://www.

surechem.org), InfoChem with IBM (http://infochem.de/en/mining/annotator.shtml), 

TEMIS with Elsevier MDL (http://www.temis.com), and Mpirics (http://www.mpir

ics.com/). This is a sample list, not meant to be exhaustive and not meant to be an 

endorsement of these products. An illustration of chemical NER of patents is shown 

in Figures 2.1a and 2.1b.

FIGURE 2.1A Screen shot showing examples of chemical NER patent capabilities from 

InfoChem’s ChemAnnotator. “The extraction of chemically relevant entities from unstructured 

text sources is performed by software that recognizes and extracts systematic names, and triv-

ial and trade names, as well as standard identifi ers such as InChI’s or CAS Registry Numbers. 

InfoChem is cooperating with leading companies in this area to utilize sophisticated, fi nely 

tuned software tools. The IBM Chemical Annotator is able to process English text fi les within 

seconds” (quoted from http://infochem.de/en/mining/annotator.shtml). (Note: This is not an 

endorsement of these vendors; it is only an illustration of chemical NER tools.)
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When layered onto chemical NER, NLP can provide readers with a richer experi-

ence. Natural language processing (NLP) technology does not understand human 

speech, but dissects language into the parts of speech such as nouns, verbs, and 

noun phrases. When combined with NER, NLP can assist the researcher in fi nding 

important relationships between chemical entities and their attributes. For example, 

in evaluating toxicity issues, NER and NLP should be able to highlight relation-

ships between a compound of interest and a variety of liver toxicity biomarkers. The 

researcher still has to validate the relationships highlighted, but these types of capa-

bilities can reduce the time required to fi nd the relevant information within a large 

document set. Chapter 7 expands on these ideas.

Ultimately, the use of these capabilities has to enhance the ways in which research-

ers in both academics and industry work. Information overload is a major driver in this 

shifting paradigm, along with a variety of technological advances in other key areas. 

Recent developments in the Semantic Web are starting to bridge the gap in information 

overload. The techniques that are being used and developed to improve the ease of fi nd-

ing of information on the Internet are already having an impact on the mining of infor-

mation within the literature. Chapter 8 presents a balanced view of this topic, sifting out 

the hype from the reality of the situation while highlighting the gap that must be bridged 

to create a Semantic Web ecosystem for the life sciences. Finally, Chapter 9 elaborates 

on the typical workfl ows necessary today for academic and industrial researchers need-

ing to fi nd the “right” information. This chapter outlines a road map for improvement 

that developers of these capabilities could use to effectively “close the loop.”
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INTRODUCTION

Chemical names have been in use as textual labels for chemical moieties even 

since the days of the alchemist. With increasing understanding of chemistry and 

the graphical representation of chemical structures came the need for an agreed 

upon language of communication between scientists. Eventually, systematic nomen-

clature was established and then extended as deeper knowledge and understanding 
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of molecular structures grew. One would hope for a single agreed upon interna-

tional standard for systematic nomenclature adopted and understood by all chemists. 

Despite the efforts of the IUPAC,5 such an ideal still does not exist, exists in many 

variations, has changed over time, can be organizationally specifi c, is multilingual, 

and is certainly complex enough that most chemists would struggle with even the 

most general heterocyclic compounds. The application of nomenclature by scientists 

of different skill levels is far from pure, and chemical names for a single species are 

heterogeneous. This does not bode well for clear communication in chemistry.

Chemical nomenclature is a specifi c language for communication between people 

with an understanding of chemistry. The language facilitates the generation of chem-

ical names that are both pronounceable and recognizable in speech. The ability to 

communicate via systematic names collapses fairly quickly based on the complexity 

of the chemical structure and the associated name. Simple and short names are eas-

ily interpreted, but in general most systematic names are rather long, complex, and 

include nonlinguistic components such as locants and descriptors made up of obscure 

numbers and letters. A chemical nomenclature system must continuously follow the 

increasing complexity and diversity of chemical structures as new chemistries are 

pursued. The majority of chemical names are rather complex, and a chemist needs 

a reasonable knowledge of the nomenclature rules to interpret a chemical name and 

convert it back to a graphical structure representation. Chemical nomenclature rules 

and recommendations for the IUPAC are now captured online in a series of volumes 

with several thousand pages.6

Despite the limitations and challenges associated with chemical names, graphical 

chemical structure representations, on the other hand, can easily be interpreted by 

humans even with the most rudimentary chemistry knowledge. Chemical structure 

representations were in use well before the advent of software programs for the gen-

eration of such fi gures. Structure-drawing software was developed to provide a way 

to store, transfer, and homogenize molecular structure representations. The ability 

to both represent and transfer chemical structures electronically provided a signifi -

cant boost to communication between chemists, and structure images became the 

preferred medium for human recognition. Despite the availability of software tools 

for the graphical representation of chemical structures, chemical names, labels, and 

abbreviations are still required for us to converse. They remain as valuable terms of 

communication in patents and publications and are essential to the process of chemi-

cal registration for a number of bodies. The generation of appropriate systematic 

nomenclature remains a challenge to even the most skilled chemist, but because 

systematic nomenclature is rules-based, the development of software tools to speed 

the process has been possible. The opposite is also true, whereby the conversion of 

systematic names to the original chemical structures remains just as much of a chal-

lenge. By providing software tools for the conversion of differing chemical nomen-

clatures into universally recognized chemical structures, chemists can more easily 

review the chemical structure of interest, and the data can be migrated to database 

technologies. This facilitates the integration of disparate forms of chemical informa-

tion with the intention of enabling the discovery process.

There are numerous sources of chemical names. Commonly, chemical databases 

did not include chemical structures but were made up of lists of chemical names. 
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Nowadays, thanks to the availability, cost, and ease-of use of chemical structure data-

bases, many of these “text databases” have been converted into a structure format, 

and most chemical databases are now structure searchable. A simple search of the 

Internet will show that many databases still lack chemical structures and therefore are 

not searchable by structure in the original format, for example, an online HTML page. 

These pages, however, can contain valuable information and, with the application of 

the appropriate name-to-structure (N2S) conversion tools can be made searchable.

Electronic documents exist in a plethora of formats, the most common being 

Microsoft Word, portable document format (PDF), and web-based HTML for-

mats, as well as a number of others. Electronic documents in general do not embed 

information regarding chemical structures, but do include chemical names that are 

extractable. It is likely that nearly all modern documents of interest to chemists are 

now available in electronic format. Published both before and after the early stages 

of computerization, such documents might be considered lost for chemical informa-

tion. However, scanning and optical character recognition7 (OCR) into electronic 

fi les provides a means for conversion by software tools. Of course, even without such 

tools, scientists commonly read print documents and manually convert the chemical 

names to structures. It should be noted that it is also possible to identify chemical 

images and convert them to structure-searchable information using optical structure 

recognition (OSR). This is discussed in detail in Chapter 4 of this book.

 The conversion of chemical names and identifi ers into appropriate chemical 

structure representations offers the ideal path for chemists and organizations to mine 

chemical information. Because chemical names are not unique and a multitude of 

labels can map to a single chemical entity, the facile conversion of alphanumeric 

text identifi ers to a connection table representation enables superior data capture, 

representation, indexing, and mining. The industry’s need to mine more information 

from both the historical corpus as well as new sources is obvious, and a number of 

researchers have initiated research into the domain of chemical identifi er text min-

ing and conversion. Multiple efforts have been made in the fi eld of bioinformatics 

research,8 and, while interesting as a parallel, in this chapter we will focus the efforts 

to extract and convert identifi ers related to chemical entities rather than, for example, 

genes, enzymes, or proteins.

Our intention in this chapter is to examine the challenges of extracting identifi ers 

from chemistry-related documents and the conversion of those identifi ers into chem-

ical structures. The authors of this work each have well over a decade of experience 

in chemical structure representation and systematic nomenclature. We have been 

deeply involved in the development of software algorithms and software for the gen-

eration of systematic names and the conversion of chemical identifi ers into chemical 

structures.9 Although we have our own biases concerning approaches to the problem 

of N2S conversion, we have done our utmost to be objective in our review of the 

subject and comparison of approaches and performance.

EXISTING STRUCTURE MINING TOOLS AND PROJECTS

It is likely that ever since systematic nomenclature was introduced, chemists have 

wished for a simple way to convert a systematic name to a graphical representation 
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of the associated structure. A number of organizations have built business mod-

els around the extraction and conversion of chemical names from different materi-

als (e.g., publications, patents, and chemical vendor catalogs) to build up a central 

repository of chemical structures and links to associated materials. The Chemical 

Abstracts Service (CAS) is recognized as the premier database and presently contains 

over 33 million compounds.10 Other offerings include those of Beilstein,11 Symyx12 

(previously MDL), Infochem,13 and VINITI.14 These organizations manually curate, 

nowadays with the assistance of software tools, chemical structures and reactions 

from the respective publications and documents.

The delivery of new chemical entities of commercial value can clearly be con-

strained by the coverage of patent space. Chemical structure databases linked to 

patents are available (e.g., CAS,2 Elsevier,15 and Derwent16) and deliver high value 

to their users. Some of these organizations utilize both text-mining and N2S con-

version tools prior to manual examination of the data. Two free-access services 

utilizing text mining and conversion of chemical names to structures are those of 

SureChem17 and IBM.18

Both approaches use proprietary entity extraction tools developed and custom-

ized specifi cally for the recognition of chemical names.19,20 The chemistry-specifi c 

entity extractors use a combination of heuristics for systematic names and authority 

fi les for entities that are less amenable to rules-based recognition, specifi cally drug 

and chemical trade names. During the extraction and conversion processes, chemi-

cal entities are run through one or more N2S conversion tools to generate chemi-

cal structure data. A set of postprocessing routines are applied to remove spelling 

and formatting errors that often cause N2S conversion failure, but experience has 

shown that due to the poor quality of many chemical names in patents and other text 

sources, not all of the names can be converted by commercially available tools.

SureChem offers a free-access website for searching the world patent literature 

via text-based or structure and substructure searching,17 as well as commercial offer-

ings based on the same chemical patent data (for example, they supply the data in 

formats to allow importing of the data into organizational databases). They have uti-

lized a series of N2S conversion tools under their system, supplied by three commer-

cial entities: ACD/Labs,21 CambridgeSoft,22 and Openeye.23 They provide ongoing 

updates of the patent literature within 24 hours of release to the public and update 

their homepage accordingly with the latest statistics of extracted chemical names, 

details regarding each of the patent classes, and the number of unique structures 

extracted to date. SureChem reports the extraction of over half a billion chemical 

structures17 from various patent-granting bodies, and these have been de-duplicated 

to almost 9 million unique structures. They offer online access to various forms 

of patent literature including U.S.- and European-granted applications as well as 

WO/PCT documents24 and Medline.25 All of these sources are updated within a 

day of release of the updates from the patent offi ces to SureChem. N2S conversion 

results vary among the patent databases due to different levels of original text quality 

among the patent issuing authorities. SureChem reports26 that in their latest database 

build they observed improvements of as much as 20% in N2S conversion rates fol-

lowing application of new postprocessing heuristics and expect further incremental 

increases in future builds.
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IBM18 also has a free-access online demonstration system for patent searching via 

text or structure and substructure and presently exposes data extracted from U.S. pat-

ents (1976–2005) and patent applications (2003–2005). The work has been described 

in detail by Boyer et al.,27 and a brief overview of the technology is provided on the 

website.28 They report using the CambridgeSoft Name=Struct22 algorithms for their 

work. The IBM team has also analyzed both granted patents and patent applications 

to the present day for all sources listed above, but these data are not yet exposed at 

their website, and the exposed data are limited to U.S. Patent and Trademark Offi ce 

patents and Medline articles issued up to 2005. IBM reports the extraction of over 

4.1 million unique chemical structures. Caution should be used when comparing 

unique chemical structures reported by SureChem and IBM, as the methods of de-

duplication are not necessarily comparable and are not reported in detail. At present, 

SureChem is the most mature free-access online service, updated on a regular basis 

and covering a number of patent-granting bodies.

Accelrys29 has also developed text analytics capabilities for the purpose of 

extracting and converting chemical names. Using their Scitegic pipelining tools as 

the platform, they developed the ChemMining30 chemical text mining and conver-

sion system. This software uses text-mining algorithms to extract chemical names 

and then feeds these to one or more of the commercial N2S conversion algorithms 

licensed by the user. After one or more documents are processed, a report is created 

showing the examined document(s) highlighted with all of the found structures as 

live chemistry objects.

Murray-Rust et al.31,32 have examined the challenges associated with mining data 

from text and have encouraged the adoption of appropriate architectures, molecular 

identifi ers, and a shift toward more open data to facilitate information exchange in 

the sciences. They have appropriately espoused the virtues of their OSCAR sys-

tem,32 a chemical data checker in an Open XML architecture, in terms of its ben-

efi ts to authors, publishers, and readers. In this work, compounds were identifi ed 

by connection table links to open resources such as PubChem.33 Originally a part 

of the OSCAR system, OPSIN32,34 (Open Parser for Systematic Identifi cation of 

Nomenclature) has been released as an Open Source Java library for parsing IUPAC 

nomenclature. OPSIN is limited to the decoding of basic IUPAC nomenclature but 

can handle bicyclic systems and saturated heterocycles. OPSIN does not deal with 

stereochemistry, organometallics, or many other expected domains of nomenclature, 

but because the source code is open, it is hoped that this work can provide a good 

foundation technology for others to enhance and develop.

TEMIS and Elsevier MDL35 worked together36 to develop the Chemical Entity 

Relationship Skill Cartridge to identify and extract chemical information from text 

documents. The software identifi es chemical compound names, chemical classes, 

and molecular formulas and then translates them into chemical structures. They use 

an N2S translation service to match textual information with proprietary chemical 

libraries and provide a unique fi ngerprint for de-duplication purposes. The cartridge 

integrates chemical name recognition software developed and used by Elsevier 

MDL to identify chemical names and extract reaction schemes from scientifi c lit-

erature and patents. This software was proven for more than two years in the pro-

duction of the MDL Patent Chemistry Database, including processing a backlog of 
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more than 20 years of patents. Unfortunately, these authors cannot locate any further 

details regarding the software or performance. Research into text-mining continues 

to expand, and a national center of text mining, with a focus on the sciences, has been 

founded in the United Kingdom.37

The projects outlined above all focus on the extraction of chemical identifi ers 

from text, but there is a clear dependence on the N2S conversion algorithms for the 

overall output of the various approaches. The remainder of this chapter will review 

the challenges associated with the development of N2S algorithms and how these 

can be addressed.

THE GENERAL APPROACH TO MINING CHEMICAL 
STRUCTURES IN CHEMICAL TEXTS

The scheme by which chemical structures are mined from chemical documents is 

shown in Figure 3.1. The greatest hurdle associated with successful mining of chemical 

structures via chemical N2S conversion is the quality and complexity of the chemical 

names themselves. Thus, a signifi cant part of this chapter is devoted to the consider-

ation of the quality of names and its contributions to the procedure of conversion.

TEXT RECOGNITION IN IMAGES: OCR OF CHEMICAL TEXTS

Starting from the very beginning of OCR technologies, a huge amount of resources 

was invested in the development of computer-based systems. For general language-

based texts this problem has been effi ciently solved, and the success rate of rec-

ognition is higher than 99% for Latin-script texts.38 The basic challenges of OCR 

have been reviewed elsewhere and will not be repeated here.39 Although OCR can 

effi ciently handle generic text, it experiences fairly signifi cant limitations in the 

The derivatives of 5-(2-hydroxyethyl)pyridine-2-carboxylic acid have been  prepared

Optical character recognition-for text images1

2

3

...derivatives of 5-(2-hydroxyethyl)pyridine-2-carboxylic acid have been ...

... derivatives of 5-(2-hydroxyethyl)pyridine-2-carboxylic acid have been ...

Recognition and selection of chemical names

Name to structure conversion

N O

OH

HO

4
Creation of structure searchable documents, population of

databases, annotation of documents, etc.

FIGURE 3.1 General scheme for mining chemical structures from text.
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recognition of chemical names. In the same way that general OCR programs use 

language-specifi c dictionaries to assist in recognizing text, a chemically intelligent 

OCR program needs to use a dictionary of appropriate chemical text fragments and 

use a series of specifi c algorithms to recognize chemical names. Figure 3.2 illus-

trates the recognition of chemical name images captured with different settings. 

A standard software package was utilized for these test procedures.40 Each of the 

examples shows the graphical image of the chemical name as well as that extracted 

by the software.

Although it is clear that recognition of this example can be easily improved by 

enhanced resolution of the initial image, this example is given to demonstrate the 

most common problems associated with chemical name recognition and possible 

errors introduced in chemical names. The problems include:

Superscript and subscript recognition, especially in combination with italics• 

Introduction of additional spaces, often instead of paragraphs• 

Lost spaces, mainly at line breaks• 

Dashes often lost or mistaken as hyphens• 

Incorrect recognition of punctuation marks (e.g., comma versus period)• 

Misinterpretation of enclosing marks• 

Incorrect recognition of some letters and numbers (e.g., l, i, 1)• 

Lost formatting (e.g., normal text versus sub- or superscripted characters)• 

As a result of these considerations, we can conclude that OCR of chemical names 

can be improved by:

Utilizing higher-resolution text images• 

Usage of chemical dictionaries• 

Modifi cation of OCR algorithms for chemical name recognition and spe-• 

cifi cally for retaining dashes and avoiding added spaces

(2S,5R,6R)-6-{[(3-aminotricyclo[3.3.1.13,7]dec-1-yl)acetyl] amino}-3,3-
dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

(2S,5R,6R)-6-{[(3-aminotricyclo[3.3.1.13,7]dec-1-yl)acetyl] amino}-3,3- 
dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 

(2S,5R,6Rp6-{[(3-aminotricyclo[3.3.1.1??]dec-1-yl)acetylJamino}3,3
dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboocylic acid

(25,5R,6R)-6-[[(3-aminotricyclo[3.3.1.1V]dec-1-yl)acetyl]amino}3,3
dimethyl-7-oxo-4-Ihia-1-aza6icydo[320]heptane-2-car6oxylic acid

FIGURE 3.2 Problems with character recognition in chemical names.
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CHEMICAL NAME SELECTION AND EXTRACTION

When text analysis is required as a result of either OCR conversion or simply from 

direct electronic formats, the selection or recognition of chemical names becomes 

the challenge. As stated earlier, the nature of chemical names can vary widely and 

be represented either by single words or as sets of grammatically linked words. 

Another diffi culty is that text within a chemistry context can include terms derived 

from chemical names that serve as verbs, adjectives, or plural forms describing pro-

cesses, chemical relations, or groups of chemical substances. For example, in the 

phrase “acetylation of isomeric diethylnaphthyridines with acetic anhydride,” only 

one distinct chemical name can be selected (“acetic anhydride”), though clearly the 

conversion of “diethylnaphthyridines” as a class of compounds could lead a reader 

to a text of interest.

The fi rst publications in this area were from the 1980s and 1990s.41,42 This area of 

research now uses the general principles of natural language processing (NLP) and, 

specifi cally, named entity extraction (NER) enhanced with specifi c developments for 

chemical and biochemical name recognition.43,44 Chapter 7 of this book is devoted to 

NLP and NER approaches applied to the extraction of chemical information, and we 

will not discuss these approaches in more detail here.

The specifi c problems and potential solutions associated with chemical name rec-

ognition have been reviewed in a recent work describing the OSCAR3 software.32 

The general approach is the recognition of chemistry-related terms whereby chemi-

cal names are identifi ed by the appropriate algorithms. Chemical name identifi cation 

uses several steps and procedures that may include:

Splitting words with common separators such as spaces and punctuation • 

marks with spaces according to natural language and chemical name rules

Recognition of chemical words using dictionaries of chemical lexemes• 

Syntax and semantics analysis of relationships between words to recognize • 

chemical names that include spaces

Following the chemical name recognition process, annotated documents are cre-

ated with specifi c tags to provide a reference to the part of the document where the 

specifi c chemical is mentioned. The extracted chemical names are then provided as 

inputs to the N2S algorithms and form the basis of the next section of this work.

GENERATING CHEMICAL STRUCTURES FROM CHEMICAL NAMES

ALGORITHMIC N2S CONVERSION AND RELATED SOFTWARE APPLICATIONS

The fi rst publication about the computer translation of chemical names was published 

by Garfi eld in 1961. In that article, he described the conversion of names into chemical 

formulas and initiated the path toward N2S algorithm development.45 Developments 

in 1967 at CAS provided internal procedures for the automatic conversion of CAS 

names into chemical diagrams.46,47 The fi rst commercially available software program 

was CambridgeSoft’s Name=Struct released in 1999,48 now patented,49 which was 

followed shortly by ACD/Labs’ ACD/Name to Structure product released in 2000.50 

Two more commercial products are available: ChemInnovation’s NameExpert51 and 
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OpenEye’s Lexichem,23 and ChemAxon52 has announced the imminent release of 

their own product early in 2008. As mentioned earlier, an Open Source Java library 

for the interpretation of IUPAC systematic names,34 OPSIN, has also been made 

available. In this chapter, most examples are based on Name=Struct and ACD/Name 

to Structure. We judge these programs to currently be the most advanced products in 

this area, but all considerations are general in nature and relevant to all of the conver-

sion routines presently existing or still under development.

The vision for all N2S conversion algorithms is likely consistent. Convert as many 

chemical names as possible to the correct chemical structures. Whereas this is the 

general target, the approaches to arrive there can differ. ACD/Labs have maintained 

an approach of caution in terms of name conversion, initially focusing only on the 

translation of fully systematic names, controlling ambiguity to as high a level as 

possible yet supporting the conversion of trivial names using a dictionary lookup. 

CambridgeSoft has approached the problem with the intention of converting as 

many names as possible and being fairly neutral in terms of name format and strict 

systematic nomenclature format. For many test comparisons, both approaches have 

their failings. ACD/Labs’ product sometimes fails to successfully convert names, 

yet CambridgeSoft commonly converts a much larger proportion of the test set but 

with more inappropriate conversions. Many of the larger companies have chosen to 

support both approaches, licensing both tools and performing intersecting compari-

sons and examining the results outside of the intersection for appropriateness. This 

approach has been taken by the groups analyzing the patent literature as discussed 

earlier. SureChem uses three N2S products for their work as discussed earlier.

GENERAL SCHEME OF NAME TO STRUCTURE CONVERSION

The conversion of chemical names into chemical structures can be represented as 

two intersecting schemes: utilizing a lookup dictionary and using syntax analysis. A 

combination of these two approaches is defi nitely needed for the analysis of chemi-

cal names in the real world.

Figure 3.3 illustrates the simplest approach of using lookup tables. In this approach 

the N2S engine utilizes the relationship between a large database of chemical names 

and the corresponding chemical structures.

OO

NN

OH
OOH

OH

NH2

OH

H3C CH3CH3H3C
H H

Minocycline

Lexical analysis-single lexeme.
The structure is taken from look-up table3

FIGURE 3.3 Single-step conversion of trivial name.
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The rather restricted nature of this approach is obvious: The potential number 

of chemical structures and their associated chemical names is very large and can-

not be included in a computer program of a reasonable size. Clearly, signifi cant 

resources would be needed to create such a database of names and structures and 

keep it updated and distributed to users at the appropriate pace of chemical develop-

ment. When the diversity of name formatting resulting from human intervention is 

taken into consideration, then this factor alone will make N2S conversion essentially 

intractable. A lookup table approach is nevertheless very useful, and InfoChem uti-

lizes their in-house ICN2S program for the purpose of chemical structure mining 

from texts using an internal fi le of 27 million names.53 A lookup algorithm and 

associated databases are unavoidable for the treatment of trivial names and other 

structure identifi ers such as registry numbers.

For the conversion of systematic names, a more powerful and fl exible approach 

must be based on the parsing of the chemical names and the application of syntax 

analysis. Figure 3.4 illustrates the principle steps of this procedure. The fi rst step in 

the process, lexical analysis, splits the whole chemical name into a series of name 

fragments, known as lexemes, that have structural or grammatical meaning. Also 

5-(4-bromo-5-ethyl-1H-pyrrol-2-yl)-4-chloro-6-(2-hydroxy-ethyl)pyridine-2-carboxylic acid

5-(4-bromo-5-ethyl-1H-pyrrol-2-yl)-4-chloro-6-(2-hydroxyethyl)pyridine-2-carboxylic acid

N O
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* – 2HO
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H3C CH2

H3C CH2

Lexical analysis-recognition and selection of lexemes-
name fragments included in internal look-up tables

Syntax analysis-locants, enclosing marks, order and meaning
of lexemes. Assignment of structural fragments to lexemes

Structure assembling-connection of fragments and
assignment of coordinates

3-1

3-2

3-3

FIGURE 3.4 General steps of conversion of an unambiguous systematic name.
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split out from the name are the locants, the enclosing marks, and the punctuation 

marks. If any part cannot be recognized by the program, then structure generation 

will normally fail or an attempt to continue generation by applying a rules-based 

spelling correction or ignoring a part of the input name can be performed. The lexi-

cal dictionary used at this stage is related to that described earlier to fi nd the chemi-

cal names in the text.

The second step shown in the fi gure is the syntax analysis of the chemical name. 

At this stage the chemical name is analyzed according to chemical nomenclature 

grammar, each fragment is assigned its structural meaning, and attempts are made to 

derive a connection between the various structural fragments. In the simplest case of 

an unambiguous systematic name, all name parts can be interpreted in only one way, 

allowing the determination of a single chemical structure. This step is the primary 

component of an N2S engine. Many challenges and problems are associated with 

this engine, and these are discussed below for specifi c chemical names.

During the last step, all structural name fragments are assembled into a chemical 

structure, and atom coordinates are assigned to provide an attractive representation of 

the chemical structure for storage or exporting into various chemical formats includ-

ing line notations, such as InChI (International Chemical Identifi er) and SMILES 

(Simplifi ed Molecular Line Entry System). The basic principles and problems of 

N2S conversion have been discussed previously by Brecher54 in his description of the 

CambridgeSoft Name=Struct program. We will discuss further challenges of N2S 

conversion concerning specifi c types of chemical names in relation to the mining of 

chemical structures from texts.

CONVERSION OF TRIVIAL NAMES

As illustrated in Figure 3.1, the simplest N2S engine may be fully based on a lookup 

table and does not require the parsing of chemical names. As discussed above, 

although it is necessary to have large dictionaries of chemical names and structures, 

this approach is unavoidable for the conversion of names and structure identifi ers 

where parsing cannot help in the process of structure generation. Such an algorithm 

can be used to convert trivial, trade, and retained names together with registry num-

bers such as CAS, EINECS, and vendor catalog numbers.

One important aspect of this approach deserves mention: The support of stereoi-

somerism requires caution. In many cases in the literature and in many databases, a 

specifi c stereoisomer is represented without defi nition of the confi gurations, and the 

specifi c stereoisomer is simply implied. Figure 3.5 shows several examples of such 

cases.

The structures shown in Figure 3.5 can give rise to 32, 2,048, and 512 different 

stereoisomers, respectively, and do not accurately represent the chemical names dis-

played below. It is very common that the representation of stereochemistry for both 

amino acids and steroids is not reported in publications. Caution must be used with 

the generation of the N2S engine structure dictionary from representations that omit 

stereo confi gurations, for example, from nonstereo SMILES notation.

In most cases, the N2S conversion of indivisible or elementary identifi ers is safe, 

and the quality of conversion depends only on the internal dictionary quality. One 
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important exception is that of chemical abbreviations. Although they can be treated 

as “trivial names,” they are very context dependent and highly ambiguous because 

such a limited number of letters cannot be treated as a unique identifi er.

Figure 3.6 shows 12 structures that may correspond to the abbreviation “DPA.” 

Six of them can be output by the ACD/Name to Structure software package, and six 

more were found by browsing the Internet. Note that even a specifi c context cannot 

guarantee an exact meaning. For example, both structures 3 and 8 were found in 

publications about coordination compounds. In general, chemical abbreviations are 

not unique and can rarely be distinguished from other trivial names except for the 

rather weak criterion that all letters are capitalized. We can conclude that conversion 

of any trivial name shorter than about fi ve or six characters is not safe. A few rarer 

exceptions do exist, but this is a very short list. Examples include reserved abbrevia-

tions such as those for dimethyl sulfoxide (DMSO) and ethylenediaminetetraacetic 

acid, EDTA.

CONVERSION OF SYSTEMATIC NAMES

The lexical and syntax-based analysis of systematic names illustrated in Figure 3.2 

depends directly on the algorithms underlying the name conversion engine. The 

set of lexemes that can be recognized by an algorithm are a critical characteristic 

of the program because it defi nes what type of names can be treated. However, 

the number of elementary lexemes is not the defi ning limitation of the program. 

The integration of the appropriate set of lexemes with the appropriate treatments 

for handling complex nomenclature grammar are superior to an extended set of 

lexemes. For example, the treatment of all fused system names requires the sup-

port of specifi c nomenclature grammar and approximately 100 specifi c lexemes. 

This approach is far more powerful than the support of 1,000 fused system names 

represented as elementary lexemes such as furo[3,2-b]pyridine, cyclobuta[a]naph-

thalene, and so on.

Chemical nomenclature has a very large number of specifi c procedures to create 

chemical names, and many of these are not easily amenable to algorithmic represen-

tation, requiring signifi cant investments in both development and validation time to 

develop automated procedures. Software developers of N2S engines prefer to support 

just the basic operations for conversion, at least at the early stages of development.
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FIGURE 3.5 Stereoisomers represented without indication of confi gurations.
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One of the largest challenges is that many chemical names, even when generated 

appropriately and without errors, are created according to different nomenclature sys-

tems. Specifi cally, the two most common nomenclature systems, those of the IUPAC 

and CAS, have many differences and can lead to potential ambiguity of the names. The 

situation becomes even more complex when we take into account the fact that chemical 

names have mutated through history with the development of the nomenclature systems 

and so, for example, many chemical texts follow old nomenclature procedures, thereby 

signifi cantly expanding the number of nomenclature operations requiring support.

The conversion of systematic names to their chemical structures is a time-consuming, 

skill-intensive process, and is not a minor undertaking. Such a project is guaranteed to 

take many years of development to cover the most important nomenclature operations.
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1 DiPropylAcetic acid 7 2,6-DiaminoPimelic Acid

2 DiPicolinic Acid 8 Di(2-Pyridyl)Amine

3 Di(2-Picolyl)Amine 9 DichloroPropionic Acid

4 3',4'-DichloroPropionAnilide 10 DocosaPentaenoic Acid

5 DiPhenolic Acid 11 DihydroPhaseic Acid

6 9,10-DiPhenylAnthracene 12 DiPhenylAmine

FIGURE 3.6 Twelve structures that may correspond to the abbreviation “DPA.” The letters 

used in the abbreviation are bold and capitalized.
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QUALITY OF PUBLISHED CHEMICAL NAMES

The main problem of name conversion is the rather low quality of published sys-

tematic names. It may be considered one of the reasons for the appearance of N2S 

programs. The paper describing CambridgeSoft’s Name=Struct program has a very 

symbolic title: “Name=Struct: A Practical Approach to the Sorry State of Real-Life 

Chemical Nomenclature.”54 Most chemists have limited nomenclature knowledge, so 

resolving chemical names of fairly nominal complexity is a nontrivial task for them. 

The reverse is also true: The generation of systematic names for complex chemical 

structures can be a challenge, and as a result there has been a proliferation of incor-

rect structure–name pairs not only on the Internet but also in peer-reviewed publica-

tions. A recent review of systematic nomenclature of chemicals on Wikipedia by one 

of our authors (AJW) demonstrated signifi cant gaps in quality, to the point where the 

names represented very different structures than those discussed on the Wikipedia 

pages. The quality of published systematic names is rather low, and this is true not 

only of publications but also of patents. In a recent paper, Eller55 randomly selected 

about 300 names of organic chemicals cited to be systematic in nature. The names 

were extracted from four chemical journals and analyzed and compared to the cor-

responding names generated by a number of systematic nomenclature-generation 

software packages. The results of this comparison are given in Table 3.1.

Software for generating a systematic name from a structure has been available 

for well over a decade. Whether the issue is one of access to software or trust that 

software can produce high-quality systematic nomenclature, it is clear that papers 

still contain far too many errors in their systematic names. The data in Table 3.1 

refl ect the situation in 2006. Although this is not exactly a statistical sampling of data 

(only 300 names from four journals), the data suggest that about a quarter of pub-

lished chemical names do not accurately represent the associated structures. There 

are two specifi c issues: (1) The chemical name does represent the structure and can 

be converted back to the intended structure, but the name does not follow systematic 

nomenclature guidelines; (2) the chemical name does not represent the structure and 

when converted generates a different structure from that originally intended. The 

data in the table clearly demonstrate that algorithmically generated names are of 

dramatically higher quality and reliability than manually generated names and that 

wider adoption of software programs for this purpose will signifi cantly improve the 

quality of published nomenclature. The barriers to this shift are likely threefold: 

TABLE 3.1
Comparison of Computer-Generated Names with Published 
Names (Results of Analysis of 303 Systematic Names)

Unambiguous Intolerable No Name

Published names 74% 224 26% 79

AutoNom 2000 86% 260  1%  3 13% 40

ChemDraw 10.0 88% 267  1%  2 11% 34

ACD/Name 9.0 99% 300  1%  3  0%  0
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awareness of the availability of such software applications, price and technology 

barriers to accessing such applications, and trust in the ability of the software to pro-

duce an appropriate systematic name. Attention must be given to improved genera-

tion of systematic nomenclature as soon as possible because the proliferation of poor 

quality and the contamination of the public records can now occur at an outstanding 

rate with new software platforms.

Thielemann56 recently commented that the number of mistakes in systematic 

names is far higher than that of trivial names. He provided examples as a result 

of his examination of patents regarding the cholesterol-lowering drug Simvastatin. 

He observed that out of 141 patents examined, not one contained the correct 

IUPAC name of Simvastatin. He also pointed out what the correct IUPAC name, 

in his opinion, was: 6(R)-[2-[8(S)-(2,2-dimethylbutyryloxy)-2(S),6(R)-dimethyl-

1,2,6,7,8,8a(R)-hexahydronaphthyl]-1(S)ethyl]-4(R)-hydroxy-3,4,5,6-tetrahydro-2H-

pyran-2-one. Unfortunately this “correct name” is far from appropriate according 

to IUPAC rules, primarily due to the incorrect citation of stereodescriptors. Neither 

the CambridgeSoft Name=Struct nor the ACD/Labs Name to Structure software 

can convert the systematic name suggested by Thielemann back to the original 

Simvastatin chemical structure. In our judgment none of the commercially available 

N2S conversion algorithms can convert this name to the structure. The structure of 

Simvastatin with an appropriate IUPAC name is given in Figure 3.7.

This example demonstrates that one of the main challenges for an N2S con-

version algorithm applied to data mining is the conversion of chemical names 

that are not strictly systematic, are ambiguous, or include typographical errors or 

misprints.

AMBIGUOUS SYSTEMATIC NAMES

It is not diffi cult to identify many ambiguities in chemical names in chemical cata-

logs, publications, patents, and Internet pages. Even the simplest structures can be 

given ambiguous names and cause confusion. Figure 3.8 shows a series of examples 

of names with missing locants or parentheses that often, but not necessarily, lead to 

name ambiguity.

O

O
O

OHO

H3C CH3 CH3

H3C

H3C
H

(1S,3R,7S,8S,8aR)-8-{2-[(2R,4R)-4-hydroxy-6-oxotetrahydro-2H-pyran-2-yl]ethyl}-3,7-
dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl 2,2-dimethylbutanoate

FIGURE 3.7 Chemical structure and IUPAC name of Simvastatin.
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It should be noted that the name trichloromethylsilane is the correct CAS name 

for the framed structure that provides legal status to some ambiguous names. A 

more complex example of ambiguity introduced by missing parentheses is shown in 

Figure 3.9. In this case the recognition of ambiguity requires support of a specifi c 

nomenclature procedure: functional modifi cation of trivial acid names.

In an example such as this, there are a number of ways to proceed: (1) Convert 

the name to a single acceptable structure matching the ambiguous name; (2) do not 

convert the name to a structure but fail because of the ambiguous nature of the 

name; (3) convert the name to all possible structures to demonstrate potential ambi-

guity. For the example in Figure 3.9, the commercial software providers take differ-

ent paths. ACD/Name to Structure generates two structures for this name, whereas 

CambridgeSoft Name=Struct outputs only the second structure, because it is the 

most probable match, given that the correct systematic name of the fi rst structure is 

4-(methylthio)benzoic acid. For the >550 hits returned by a search in Google most, 

but not all, refer to the fi rst structure.

A similar example is “4-methylthiophenol.” This name also allows the generation of two 

structures, but here the situation is reversed and most cases refer to 4-methyl(thiophenol) 

(or 4-methylbenzenethiol according to current naming conventions).

This short overview with simple examples provides evidence for the need of warn-

ings regarding ambiguity in names. Clearly, the more complex a chemical structure 

is, the more potential there is for miscommunication. It is our belief that the recogni-

tion and reporting of ambiguities in chemical names and the associated structures 

generated by software programs must be implemented as part of any N2S engine to 

ensure some level of caution to provide reliable results.

AMBIGUOUS VERSUS TRIVIAL NAMES

One of the primary issues with systematic nomenclature is that some names can 

appear systematic in nature but, in fact, are not. They can have the expected structure 

of a chemical name generated according to a rules-based system but are false system-

atic names, at least in their specifi c context. When the N2S conversion algorithms 

dichloroacetone ambiguous unambiguous

H3C

O
Cl

Cl

O
ClCl

pentachlororoacetone

O
Cl

Cl
Cl

Cl

Cl

Si
ClCl

CH3

Cl
SiH

Cl

ClCl

SiH3

ClCl
Cl

trichloromethylsilane ambiguous

trichloro(methyl)silane (trichloromethyl)silane tris(chloromethyl)silane

FIGURE 3.8 Potential ambiguity of names with missing locants or parentheses.
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are too fl exible in their implementation, for example, when the name is not present in 

a lookup dictionary or ambiguity is not reported, then such labels can be erroneously 

interpreted as systematic.

Although the two names shown in Figure 3.10 are incorrect according to English 

IUPAC guidelines for the two structures on the left, they are only almost systematic. 

In fact, in German-language nomenclature where the terminal “e” is not cited, they 

are correct. However, both of them are listed as registered names for the structure 

shown on the right and can be found on the ChemIDplus website.57 Many such exam-

ples have spread this problem across the literature and other sources of chemical 

information. Thus, the support of trivial names is very important even in terms of 

helping to distinguish real systematic names from false systematic names. However, 

it would be highly desirable to discontinue the assignment of registered names that 

mimic systematic names and can therefore be misleading.

SPELLING CORRECTION AND TREATMENT OF PUNCTUATION

In previous sections we examined problems arising as a result of errors in nomen-

clature. Another signifi cant area is naming errors resulting from misprints or OCR 

misinterpretation as reviewed earlier in this chapter. Table 3.2 lists the most common 

naming errors and the reasons for their occurrence.

Tetrazol

PentazolN
NHN

NN

N
NHN

N
N

NN

N
Systematic but missing an “e” at the end Registered name

FIGURE 3.10 Alternative treatments of registered names.

4-methylthiobenzoic acid

4-methylthio--benzoic acid 

O 

OH 
S 

O 

SH 
H3C 

H3C 

Recognition of lexemes/tokens-fragmentation of name 

Syntax analysis: thio may serve as substituent or as modifier 

4-methyl--thio--benzoic acid 

4-methyl--thiobenzoic acid 

FIGURE 3.9 Different meanings of “thio” in an ambiguous name.
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Automatic recognition and correction of these errors is a very important com-

ponent of the chemical name conversion process. Based on available informa-

tion, this procedure is implemented in the most fl exible way in the CambridgeSoft 

Name=Struct program.48

Table 3.3 shows that Name=Struct supports four main types of errors inside 

chemical names: addition, deletion, replacement, and pair inversion. For the conver-

sion of names generated by OCR, the most common error is character replacement. 

For example, the name “heptane-2-car6oxylic acid” shown in Figure 3.2 and result-

ing from OCR cannot be converted to a structure.

Other common mistakes are due to the handling of punctuation and enclos-

ing marks. Although their presence is important, the replacement of one type 

by another generally does not affect the name analysis procedures. The same 

situation exists with the recognition of enclosing marks where the actual type of 

enclosing mark has no specifi c grammatical sense. A well-known exception is 

that a space is very important for the names of esters, as is shown in the simple 

example below.

 

O O

CH3

O

O–

Phenyl acetate Phenylacetate

The formatting of chemical names is generally not important. Whereas capitaliza-

tion or italicization are essentially senseless, both sub- and superscripts are helpful 

in name analysis, and in most cases the absence of formatting can be resolved simply 

by grammatical implementation. For example, Name=Struct successfully converts 

polycyclic names like Tricyclo[3.3.1.11,5]decane that according to nomenclature 

rules must be written as Tricyclo[3.3.1.11,5]decane. A good N2S engine therefore 

TABLE 3.2
Typical Name Errors and Their Reasonsa

Error Type Main Reason Example

Missed character Misprint Bnzene

Character replacement OCR, misprint Bcnzene

Addition of a character Misprint Benzene

Inversion of a pair of characters Misprint bnezene

Lost space or dash OCR, misprint 1chloropropane

Added space OCR, misprint 1-chloro propane

Punctuation replacement OCR, misprint 1.2-dichloroethane

a The errors in the examples are shown in bold.
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needs to be to be insensitive to both chemical name formatting and punctuation. 

This can generally be handled very effi ciently using name normalization procedures 

converting all punctuations into one type of separator and all enclosing marks into 

parentheses.

PROBLEMS ASSOCIATED WITH ASSEMBLING 
CHEMICAL STRUCTURES

It could be assumed that the conversion of chemical names to their associated struc-

tures would conclude the task to provide the necessary data to a chemist to peruse. 

Unfortunately, the output from N2S engines can be in various formats including 

SMILES strings, InChI strings, or one of a number of connection table formats. 

For a chemist to examine a structure, it must be represented in an interpretable 

graphical format with appropriate spatial confi gurations including bond angles, 

bond lengths, cis/trans displacements, and stereochemical centers. Although the 

majority of chemical structure drawing packages integrated with N2S algorithms 

do include a “cleaning” algorithm, this process is extremely complex, and there is 

no perfect procedure.58,59

One issue that should be noted is the problem of over-determination of a struc-

ture, a circumstance that can arise when the generated structure is more specifi c 

than the initial chemical name. Part of this problem was described previously in the 

discussion of the conversion of ambiguous names. A particular problem concerns 

the assembly of a chemical structure with the appropriate confi guration of double 

bonds. As shown in Figure 3.11, the confi guration of the nitrogen–nitrogen double 

bond is a trans-orientation, but the source name did not contain this information. 

Most N2S engines generate such structures in this situation. In many cases omit-

ted stereoconfi gurations in the chemical name mean that either the confi guration is 

unknown or the sample contains a mixture of isomers. The most appropriate result 

would be to follow the IUPAC guideline for display in the recommended way,60 but 

such a depiction is diffi cult for most procedures used to create “clean” structures. 

These algorithms remain an area of development for most drawing software develop-

ment teams.

TABLE 3.3
Supported and Unsupported Automatic Error Recognition in Name=Struct

Supported Errors Unsupported Errors

Benzioc acid Pair inversion Benzoic acdi Inversion – end or beginning

Benzxoic acid Letter addition Benzoic acide Addition – end or beginning

Benzooic acid Double letter Benzoic aci_ Missed – end or beginning

Benzoic a cid Space Benzoic acif Replaced – end or beginning

Bnzoic acid Missed letter Bennzoic accid Two errors in name

Benzoic acld Replaced letter
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CONCLUSIONS

In the near future we can be hopeful that the need to convert chemical names to 

chemical structures will be less important than we fi nd at present. The ability to 

encapsulate the majority of organic molecules into an internationally accepted string 

representing a chemical structure already exists (see Chapter 5 regarding the InChI 

identifi er), and publishers are starting to embed the InChI string directly into their 

articles to facilitate structure-based communication.61 Software tools from a number 

of the commercial vendors can already search across chemical structures embedded 

in electronic documents and generate either PDF fi les62 or image fi les with chemical 

structure information embedded directly into those fi les.63 As the InChI identifi er 

is extended to include other chemical structures of interest to the community (for 

example, polymers, organometallics, inorganics, and Markush), the opportunity to 

further structure-enable all electronic documents for searching is facilitated. As pub-

lishers initiate the inclusion of structure-based tags associated with either chemical 

names or chemical structure depictions, the future of data-mining will require the 

coordinated extraction of information from documents containing chemical entities 

in both textual and graphical formats.

Until that time there remains a real need to continue the efforts to convert chemi-

cal identifi ers, be they names or registry numbers, to their source chemical structures. 

As optical recognition performance improves, and supporting technologies such as 

RECAPTCHA64 contribute to the challenge of text digitization, the conversion of 

chemical names will be limited only by the quality of the conversion algorithms 

and the appropriateness of the chemical names. The available N2S conversion algo-

rithms have already demonstrated value and are maturing in capability. The choice 

of accuracy versus throughput is one for the user. What these algorithms cannot 
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configuration of double bond 

Common way that leads to specific
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FIGURE 3.11 Graphical representations of undefi ned versus defi ned double bond 

confi gurations.
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resolve, however, is the potential errors and ambiguities inherent to chemical names 

present in various documents, and it is the authors’ opinion that moving forward, 

future issues of this nature can only be resolved by adoption of structure identifi er 

embedding inside the document (the suggested format being the InChI identifi er), 

the unlikely development of improved nomenclature skills of all publishing chem-

ists, or, preferably, the adoption of electronic tools for the generation of high-quality 

systematic names.

While NTS algorithms and other structure mining tools continue to improve, 

there will likely be many opportunities for errors. Trusting the conversion of chemi-

cal names to a computer program without prior knowledge of the nature and quality 

of the input could be a recipe for disaster when handling publications and, based on 

our experience, especially when dealing with patents. N2S software is a very useful 

support aid at best, but quality and validation remain the responsibility of the users 

of the software, who are responsible for the generation of chemical information via 

application of the software.
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INTRODUCTION

Depictions of two-dimensional chemical structures published in the literature are 

stored as bitmap images in nearly all electronic sources of chemical information 

such as reports, journals, and patents. Although chemical structures for publication 

are usually created using chemical drawing programs that generate complete struc-

tural information, this information is lost in the publication process. The published 

structures are normally in the form of bitmap images that are easily interpreted by 

humans but lack the explicit structural information required for input to chemical 

analysis software packages or chemical databases. The reproduction of this informa-

tion by redrawing the structure with a computer program is time-consuming and 

prone to errors but nevertheless is still the norm for these purposes.

Clearly, there is a pressing need for an equivalent to optical character recognition, 

optical chemical structure recognition, that can automatically turn bitmapped struc-

tural diagrams into structure descriptions—connection tables or equivalent struc-

tural strings—that are suitable for input into chemical structure databases.

PROJECTS

Interest in optical structure recognition dates back to the early 1990s when four 

projects were developed and published: the Contreras system, by M.L. Contreras 

et al. (1990), Kekulé, by J.R. McDaniel and J.R. Balmuth (McDaniel and Balmuth 

1992; Borman 1992), the IBM system, by S. Boyer et al. (Casey et al. 1993), and 

CLiDE (Chemical Literature Data Extraction), by A.P. Johnson et al. (Ibison et al. 

1993, 1992; Kam et al. 1992). The Contreras, Kekulé, and IBM systems were mainly 

aimed at extracting information from chemical structures in the chemical literature. 

The CLiDE system was more ambitious in that; the long term goal was to process 

whole pages of chemical information from journals and books. This required the 

ability to deal not only with chemical structures in the literature, but also with reac-

tion schemes and other relevant chemical information in the text.
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A project called chemoCR (Algorri et al. 2007a, b; Zimmermann et al. 2005) 

was started in 2004 at the Algorithms and Scientifi c Computing Institute of the 

Fraunhofer Society. The validation of chemoCR on a large set of chemical images 

shows encouraging results. However, the system in its current stage has apparently 

only been tested on images directly produced by drawing programs, which means its 

performance on scanned documents, with all the distortion and restoration problems 

they include, has yet to be demonstrated. Also, the system does not accept as input 

complete document pages containing text, tables, and images, but rather just the 

images of chemical molecules on their own.

A new version of CLiDE, CLiDE Pro, was initiated in the beginning of 2006 by 

the software company Keymodule Ltd. The primary aim of the CLiDE Pro project is 

to overcome some of the limitations of CLiDE, and thus achieve a high recognition 

performance on a diverse set of structure diagrams, and to include additional recog-

nition capabilities, for instance, in the area of patents. This project is still in progress, 

and no results have been reported in the literature as yet.

Recently, two free open source programs, ChemReader and OSRA, were released. 

ChemReader*, developed at the University of Michigan, is based on a machine 

vision approach using empirically derived chemical intelligence to identify image 

features that are both accurately resolvable and highly informative for indexing a 

specifi c chemical database such as NCBI’s PubChem† database. Optical Structure 

Recognition Analysis (OSRA)‡ is the latest addition to the optical structure recogni-

tion tools. OSRA can read a document in any one of the over 90 graphical formats 

that can be parsed by ImageMagick,§ including GIF, JPEG, PNG, TIFF, PDF, and 

PS, and generate the Simplifi ed Molecular Line Entry System (SMILES) representa-

tion of the molecular structure images encountered within that document. Tests on 

OSRA have been conducted by Antony Williams, and the results are reported on 

the ChemSpider blog¶. Although OSRA appears to work reasonably well on clearly 

drawn structure diagrams, Williams identifi es problems with stereo bonds, crossing 

bonds, and metallo-organic structures. In conclusion, OSRA at its current stage is 

rated as a “work in progress,” but the general approach and the idea of a tool freely 

available to the chemistry community is appreciated widely in chemistry blogs and 

scientifi c forums.

PROBLEM OVERVIEW

Before optical structure recognition methods can be applied to a document, the 

chemical images in the document must be identifi ed and separated from the rest 

of the document so subsequent processing stages can operate exclusively on the 

* Michigan Alliance for Chemoinformatic Exploration (MACE), University of Michigan (http://www.

stat.lsa.umich.edu/~kshedden/MACE/).
† Information on biological activities of small molecules. National Center for Biotechnology Information 

(NCBI) (http://pubchem.ncbi.nlm.nih.gov/).
‡ SAIC-Frederick, NCI-Frederick, NIH, DHHS (http://cactus.nci.nih.gov/osra/).
§ Image manipulation library. ImageMagick Studio LLC (http://www.imagemagick.com/).
¶ Database of Chemical Structures and Property Predictions. ChemZoo Corporation (http://www.chem

spider.com/).
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chemical graphic information. The core problem in the fi eld of optical chemical 

structure recognition is the compilation of chemical graphs of individual molecules 

from chemical images. The retrieved chemical graphs are then used to interpret 

complex objects such as generic structures and reaction schemes, in conjunction 

with information related to the complex objects (e.g., reaction arrows in reactions, 

descriptions of substituents of R-groups of generic structures). Finally, extraction of 

bibliographic information (image caption, author, document title, abstract, journal 

name, page number, etc.) by logical document layout analysis (Simon and Johnson 

1997; Simon 1996) is desirable for automatic document handling, automatic retrieval 

of bibliographic information, and support for hierarchical browsing.

INDIVIDUAL STRUCTURES

A structure diagram conveys the exact structural nature of a particular chemical com-

pound through a drawing. Although the conventions for this type of description are 

not clearly defi ned (Loening 1988), chemists are able to correctly interpret the wide 

variety of drawing styles commonly found in the chemical literature. The informa-

tion contained in a structural diagram of a compound can be divided into three areas: 

atom information, bond information, and structural information. All three types of 

information have to be retrieved to extract a molecule from a structure drawing.

Atom information includes the chemical element’s name (e.g., N) of individual 

atoms as well as functional groups denoted by character strings (e.g., MeO) and 

representations of generic groups (e.g., R). Printed material also frequently contains 

ancillary information such as the vertex label of an atom. In addition, labels denot-

ing features such as atomic weight, charge, chirality, hybridization, and valency are 

sometimes part of the atom information in the image. Figure 4.1 shows some exam-

ples of structure diagrams that contain different types of atom information.

Bond information includes the bond order, that is, single, double, or triple bond, 

and bond style, such as simple straight-line bond, wedged bond, dashed bond, wavy 

bond, broken-line bond, bold bond, and so on. Bond information can also include 

some special bond types representing the aromatic bonds or bond stereochemistry, 

for example, wedged or dashed bond. Bond labels are also sometimes found in struc-

tures. Different types of bond information are illustrated in Figure 4.2.

Atoms and bonds connected to each other form a structure. Therefore, atom infor-

mation and bond information are also part of the structure information. Apart from 

this, a structure can have additional information that relates to the whole structure, 

such as overall charge or structure label (see Figure 4.3). The latter is routinely used 

as a means of referencing a structure in the main body of the text.

GENERIC STRUCTURES

A generic substance represents more than one substance or a set of specifi c sub-

stances. This set of substances can be represented by a generic or Markush structure. 

An important use of generic structures in the literature is that they provide a compact 

representation of a set of specifi c substances. They are also commonly used to show 

the way the value of a particular physical or biological property varies as a particular 
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substituent is varied. The large body of research carried out in this area includes 

methods for the storage and retrieval of generic chemical substances (Fisanick 

1990; Barnard et al. 1982), methods to automatically interpret the text concerning 

the generic structures of chemical patent abstracts (Chowdhury and Lynch 1992a,b), 

and the design of a formal language, GENSAL, to provide a concise and unambigu-

ous representation of generic structures from chemical patents (Lynch et al. 1981; 

Barnard et al. 1981).

A generic structure generally is composed of an invariant part together with asso-

ciated variable groups, or R-groups. The R-groups indicate the possible alternatives 

for the invariant part. In most cases, the structure lies inside a graphic region, and the 

R-groups lie inside a text region (see Figure 4.4). The R-groups attached to the invari-

ant part are marked with symbols, and their substitution values are given separately.

Markush structures from different sources tend to use different mechanisms 

for introducing variability. Combinatorial libraries are generally the simplest, 

having only substituent variation with a fi xed list of specifi c alternatives. Patents 

are the most complex, involving all types of variation. Position variation can be 

introduced by variation of attachment position in the core structure. Frequency 
variation can be used to vary the multiplicity of occurrence of a group. Homology 
variation involves the use of generic expressions, such as alkyl or aryl, which rep-

resent a potentially unlimited class of radicals, characterized by common structural 

features. Homology variation is the most diffi cult to deal with, because a single 

expression can encompass a potentially infi nite set of specifi c alternatives, render-

ing enumeration-based approaches unfeasible. Figure 4.5 shows a generic structure 

containing all variation types.
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REACTION SCHEMES

The key components of a chemical reaction are the reactants and products, and these 

are usually represented by their chemical structures. In some cases, the products 

or reactants might be represented by a chemical name or a number indicated in 

the related text. When there are several reactants or products in a reaction, those 

structures within such a group are usually joined by the symbol “+” (see Figure 4.6), 

which is called the “joiner.”

An arrow in a reaction is used as a separation symbol between the product and 

the reactant. Structures situated in front of the arrow head are products, and those at 

the rear of the arrow tail are reactants. An arrow’s presence indicates the existence 

of a reaction. Arrows can have different types (see Table 4.1). The most common 

TABLE 4.1
Arrow Types Most Frequently Used in Reactions

Simple arrow 

Bent arrow 

Failed reaction arrow 

Equilibrium arrow 
Crossed equilibrium
arrow

Complex arrow 

Resonance arrow 
Multistep arrow 
Retrosynthetic arrow 
Dashed arrow 

OH
R1

R2
(CH2)m

Cl

R3

Substituent variation:  R1 = Methyl or ethyl

Homology variation:  R2 = Alkyl

Position variation:  R3 = Amino

Frequency variation:  m = 1–3

FIGURE 4.5 A Markush structure illustrating the four types of variability of R-groups.

Cl
NaNH2 + NaCl + NH3

FIGURE 4.6 A chemical reaction with three products.
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one, which contains one head and one tail only, is called a simple arrow. An arrow 

is called a bent arrow if its head and its tail are not on one straight line. The type 

of arrow might also convey information, such as whether it is a multistep reaction, 

an unsuccessful reaction, or a retrosynthetic reaction. It might additionally indicate 

approximately how many reactions are represented by the arrow. A simple arrow 

represents just one reaction, whereas a complex arrow containing more than one tail 

or one head may represent more than one reaction.

In many reactions, reagents and conditions are indicated along reaction arrows. 

The reagents used in a reaction may be represented by their chemical names or 

chemical structures as shown in Figure 4.7.

The information required to fully characterize a reaction includes a list of con-

nection tables of the reactants, a list of connection tables of the products, the arrow 

type for the reaction, the reagent text, and any graphic reagents for the reaction. 

Other useful information might include reaction time, temperature, yield of product, 

quantities of reactants, apparatus, energy, atmosphere, and catalyst. This informa-

tion is usually written in the text, and the extraction of this kind of information 

involves interpretation of the text.

Reaction schemes are composed of several reactions. Once the information concern-

ing individual reactions is available, it should be simple to generate information for the 

complete scheme. Figure 4.8 shows a reaction scheme consisting of three reactions.

INPUT DATA

The most common input data to the systems introduced in “Projects,” above, is 

the two-dimensional digital raster images of chemical molecules and whole jour-

nal pages. Systems are often limited to handle bilevel images containing on-pixels 

(black) and off-pixels (white) because molecule diagrams are usually drawn with 

black ink on a white background. However, colors might be used in structure draw-

ings for various purposes, for example, for indicating atom types or for highlighting 

important structure parts. Furthermore, it is also possible for a color other than white 

to be used as a background color. To distinguish the individual elements of a molecule 

in a color-scaled image from the background, the image has to be binarized. During 

binarization (Tetsuo et al. 1996), a color-scaled image is turned into a bilevel image 

by classifying every pixel as an on-pixel or as an off-pixel. Two systems, CLiDE Pro 

and chemoCR, can handle color-scaled images, applying a threshold-based binariza-

tion technique and an adaptive histogram binarization algorithm, respectively.

Because the vast majority of published articles are available for download in 

PDF (portable document format) fi le format, the ability to feed PDF fi les into a 
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FIGURE 4.7 Reaction with reagent text and graphic reagent.
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 structure-recognition program is highly desirable. The PDF documents of old arti-

cles consist entirely of scanned images of text and graphics. However, recent PDF 

documents contain textual information, tables, and images separately and distin-

guish images from the rest of a journal page, which permits the extraction of text 

information directly, thus avoiding the need for optical character recognition (OCR) 

on the text or document image segmentation (see the following section).

IDENTIFICATION OF CHEMICAL IMAGES

To identify chemical diagrams, a digitized document page consisting of a mixture of text 

and graphics has to be segmented to apply the appropriate recognition technique to each 

part. Document image segmentation methods published in the literature can be divided 

into top-down and bottom-up techniques. The top-down methods look for global infor-

mation on the page such as black and white stripes, and on the basis of this split the page 

into blocks that are successively divided into subblocks, in an iterative fashion, to obtain 

the fi nal text and graphics segments (Ittner and Baird 1993; Baird 1994; Krishnamoorthy 

et al. 1993; Nagy et al. 1992; Pavlidis 1968). The bottom-up approach relies on a data-

driven technique that refi nes the data by layered grouping operations. In practice, sin-

gle pixels are gathered on the basis of a low-level analysis, to constitute blocks that can 

be merged into successively larger blocks (Fan et al. 1994; Fletcher and Kasturi 1988; 

O’Gorman and Kasturi 1993; Saitoh et al. 1994; Tsujimoto and Asada 1992).
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54 Chemical Information Mining: Facilitating Literature-Based Discovery

From the published data, it appears that only two of the systems, CLiDE and the 

IBM system, introduced in “Projects,” above, perform document image segmenta-

tion to automatically identify graphic regions in document pages.

The document segmentation method implemented in CLiDE (Simon 1996; Simon 

et al. 1995) builds up the tree structure of a page in a bottom-up manner; that is, it 

starts by processing the connected on-pixel regions or connected components of the 

image, and results successively in a list of words, text lines, text and graphic blocks, 

and columns. Once the image is loaded, the connected components of the page are 

found and the noise-like connected components are removed. The layout analysis 

starts with the calculation of the distances between the pairs of connected compo-

nents using the enclosing boxes around the connected components. If the connected 

components are considered as the vertices of the graph, and the distances between 

them as the weighted edges of the graph, then words, lines, blocks, and so on can be 

derived from the minimal-cost spanning tree, built with Kruskal’s algorithm (Aho 

et al. 1983).

In the IBM system (Casey et al. 1993), the scan array is resolved into connected 

components that are defi ned as many-sided convex polygons bounding the enclosed 

subimage. These bounding polygons are characterized by bands, that is, pairs of 

opposite parallel sides with each pair at one of a fi xed set of directions. Each polygon 

is the intersection of several such bands that are approximately equally spaced. The 

system searches for a connected component whose maximum dimension exceeds 

a threshold d. The parameter d is chosen to exceed the maximum character size 

expected on the page. Consequently, a subimage satisfying the threshold test can be 

assumed to be a section of a chemical structure. A search is then made for neighbor-

ing connected components within a specifi ed distance threshold from the selected 

component. The distance threshold is also a parameter of the system, chosen to be 

smaller than the white space that separates diagram elements from surrounding text. 

Any components satisfying this test are combined with the initial connected com-

ponent to defi ne an enlarged bounding polygon that contains the entire group. The 

search then iterates using the expanded region. This region-growing process termi-

nates when no further connected components are found within the margin deter-

mined by the distance threshold.

Document image segmentation merely discriminates the contents of graphi-

cal regions, without answering the question of whether a graphic region contains 

a chemical diagram. Gkoutos et al. (2003) report an approach that uses com-

puter vision methods for the identification of chemical composition diagrams 

from two-dimensional digital raster images. The method is based on the use of 

Gabor wavelets (Jain and Bhattacharjee 1992) and an energy function to derive 

feature vectors from digital images. These are used for training and classifica-

tion purposes using a Kohonen network for classification with the Euclidean 

distance norm.

KEY STEPS IN THE RECOGNITION OF INDIVIDUAL STRUCTURES

As described in “Individual Structures,” above, the recognition of a molecule from 

a chemical drawing requires the extraction of three kinds of information: the atom 
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information, the bond information, and the structure information. Generally, this 

involves the following four steps:

Classifi cation of components• 

Graphic recognition, including vectorization and dashed-line construction• 

OCR• 

Compilation of connection tables or chemical graphs• 

During component classifi cation, the connected on-pixel regions, or connected 

components, drawn in the image to represent a molecule in two dimensions are 

analyzed to determine that connected components are characters, which are lines 

or graphical shapes, and which are noise. The classifi cation means that regions 

in the structure diagram illustrating atom information using a string of charac-

ters are distinguished from regions containing bond information with lines and 

graphical shapes. Also, regions containing noise are separated and ignored in 

later stages.

During graphic recognition, all the basic elements of bond information, the ele-

mentary lines and curves, as well as dashed lines and wedges are extracted.

The process of decomposing line-drawing images into primitive graphic ele-

ments such as lines and curves is often called image segmentation, or vectoriza-
tion. Most methods for vectorization start by reducing the width of the line-like 

connected components from many pixels to just a single pixel. This process is 

called thinning (Naccache and Shinghal 1984; Smith 1987) or skeletonization. The 

skeleton of the image is then segmented into straight lines and curves by fi nding 

the dominant points. This method may not be the best choice for chemical dia-

grams because thinning algorithms are time-consuming, and during the process 

important information is lost about the diagram; for example, wedged and wavy 

bonds are important in chemical structures, and this information is not present in 

the skeleton of a drawing.

Dashed-line construction is performed on connected components recognized to 

have small dimensions or already classifi ed as dashes to convert them to single pic-

ture elements instead of unconnected small lines. Several techniques are available 

for fi nding elements of collinear lines, including Hough transforms (Duda and Hart 

1972; Illingworth and Kitter 1988). The theory behind the Hough transform is that 

points on a line, transformed from XY into r-θ space, will result in peaks that can be 

distinguished from noncollinear data.

OCR (Govindan and Shivaprasad 1990) is performed on connected components 

previously classifi ed as characters. At this stage, individual characters are assembled 

into character strings based on XY coordinates; that is, the XY positions of various 

individual characters are compared, and character strings are assembled based pri-

marily on adjacency of the coordinates.

The function of connection table building is to correctly identify the chemical 

context of the texts and graphics included in a chemical drawing and to create a con-

nection table or chemical graph from them.

The order of the four recognition steps and the set of connected components on 

which the steps are operated is not the same in all systems. For example, the fi rst 
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step of Kekulé (see “Kekulé,” below) is the vectorization performed on all of the 

connected components. Partial connected component classifi cation is performed 

during dashed-line construction to identify dashed-line connected components, and 

during OCR to identify characters. Connected components other than dashed lines 

and characters are treated as a set of vectors and subjected to the connection table 

building step.

The following sections describe the structure recognition methods implemented 

in the various systems.

KEKULÉ

The process of interpreting a chemical structure diagram in Kekulé (McDaniel and 

Balmuth 1992; Borman 1992) consists of four steps:

Vectorization• 

Dashed-line construction• 

OCR• 

Graph compilation• 

Vectorization
Vectorization reduces the scanned image to line elements only 1 pixel in width by 

thinning and then forming the straight line segments, called vectors, for the image. 

The results of this step is lists of vectors associated with the original pictorial ele-

ments by coordinates of the vector end points. An adaptive smoothing algorithm 

developed by the authors eliminates the fi ne, pixel-level detail inherent in a direct 

translation from pixels to vectors.

Dashed-Line Construction
Dashed-line construction is composed of an exhaustive search over the subset of 

features that might be possible constituents of a dashed-line or dashed-wedge fea-

ture. In general, all dashes that consist of at least two line segments are identi-

fi ed. This includes most cases where one of two line segments is attached to other 

bonds.

OCR
The characters are fi rst normalized by rotating the original scanned image to correct 

for scanning error and by combinations of scaling under sampling and contrast and 

density adjustments of the scanned characters. In operation, the normalized charac-

ters are then presented to a multilayer perceptron neural network for recognition; the 

network was trained on exemplars of characters form numerous serif and sans serif 

fonts to achieve font invariance. Where the output from the neural network indicates 

more than one option, for example “5” and “s,” the correct interpretation is deter-

mined from context.

Individual characters are assembled into character strings based on the adja-

cency of the coordinates. The implementation can also handle subscripts and 

superscripts.
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Graph Compilation
Graph compilation is the process of interpreting the remaining vector data—after 

eliminating vectors associated with characters or character strings identifi ed in the 

preceding step—into a connection table. It is divided into fi ve steps:

 1. Each character string resulting from the OCR processing is defi ned as a 

node.

 2. The remaining vectors, that is, those not belonging to a character string or 

dashed line, are assumed to represent bonds. The list of these remaining 

vectors is examined to determine whether either end of any vector is near a 

character string–defi ned node. If it is, then it is attached to that node; if not, 

a new node is created at the end of the vector.

 3. The pixels in the original image of a line indicate the line width. The line 

width at the end points of a line is used to determine whether it is a wedged 

bond. This is done when a new connection is made between nodes.

 4. When connecting vector ends to nodes, the connection is upgraded from 

a single bond (initial assumption) to a double bond and, fi nally, to a triple 

bond if two or three coincident connections between nodes are found.

 5. Dashed lines that have previously been interpreted are added to the graph.

The graph compilation ends with a postprocessing step that uses current graph 

information and the partially processed character string data, such as atom symbols 

with a charge or group formula, to determine the character string’s chemical mean-

ing. The group formula is interpreted into graph format. The existing graph is then 

analyzed to look for circles (and convert them to alternating single–double bonds), 

nodes that are really bond crossings, and large parentheses and brackets.

THE CONTRERAS SYSTEM

The recognition process implemented in the Contreras system (Contreras et al. 1990) 

is iterative, recognizing a subgraph during each iteration. After all of the regions of 

the image are processed, the system integrates the several subgraphs into the corre-

sponding structure. The following steps are performed during one iteration:

Component classifi cation based on contour search• 

Vectorization based on vertex determination• 

Subgraph recognition• 

OCR• 

Component Classifi cation
A left-to-right horizontal sweep is done on the digitized image. It starts from the 

upper-left part of the image until it fi nds the fi rst on-pixel. A counterclockwise con-

tour search algorithm is then applied to record the coordinates of every pixel of the 

contour until arriving back at the fi rst pixel. If the number of pixels of the contour 

is large enough, it is interpreted as a graph contour. Otherwise, it is considered a 

chemical symbol.
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Vectorization
In the case of graph contours, vertices are located by searching for defl ections of the 

linear trajectory of the external or internal contours around the objects. Vertices are 

found during perception, when a defl ection angle of the linear trajectory higher than 

a predefi ned parameter value is detected. The default defl ection angle is 18 degrees.

Trajectory is determined by the pixel’s neighborhood connectivity method of 

image processing, where the direction of displacement is described by a number 

from 0 to 7. This is in function of the relative position of any of the eight neighbors 

of a central point. The number chosen for the neighbor that is bonded to the central 

point describes a line coincident with the direction of the displacement.

External and internal borders of a graph arc are used to detect the type of bond 

associated with a molecular structure (wedge, dot, single, and multiple) as a function 

of the thickness of the bond and the number of lines joining the atoms.

Subgraph Recognition
Two or more vertices within a defi ned small space indicate the location of an atom in 

the structure (see Figure 4.9c). Atoms are numbered, and the neighborhood relation-

ship among them is kept. Any atom with only a single neighbor is considered a pos-

sible terminal atom. A linear projection of its previous bond up to a distance similar 

to the length of that bond is made (see Figure 4.9d). If no on-pixels are encountered, 

the atom is considered a default carbon atom in the structure. Otherwise, the con-

tour determination process is done over the newly found on-pixel. In this way, the 

detected chemical symbols are submitted to the OCR module.

Multiple bonds, internal rings, and other molecular substructures or subgraphs 

(see Figure 4.10a) are recognized through a circular inspection method. A circle of 

inspection centered on each detected atom is considered (see Figure 4.10b). Unknown 

border pixels found in this way are kept and used as the initial point for a new coun-

terclockwise contour search, and the perception of new vertices and probable new 

atoms is carried out as described earlier.

OCR
The OCR process is divided into two steps: separation of each character into a matrix 

and the recognition of each matrix. Character separation is performed because char-

acters are often overlapped, and therefore recognition is diffi cult or unreliable. Each 

separated matrix undergoes a noise fi ltration to eliminate isolated on-pixels. The 

character recognition is achieved by feature extraction of the refi ned matrix.

THE IBM SYSTEM

The system developed at the IBM Almaden Research Center (Casey et al. 1993) per-

forms the following steps to extract chemical structures from diagrams:

Vectorization• 

Component classifi cation based on vectors• 

OCR• 

Connection table building• 
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FIGURE 4.9 Vectorization and subgraph recognition in the Contreras system. (a) A molecu-
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Vectorization
Vectorization is done by the Graphical Image Formatting and Translating System 

(GIFTS), developed by IBM Tokyo Research Laboratory. The GIFTS algorithm fi ts 

lines to the given pixel array, producing as output a set of end point coordinates. End 

points of lines are labeled as free ends, junctions (where three or more lines meet), 

loop closures, or connections (two lines meeting).

Since the GIFT vectorizing algorithm is based on very general principles, vectors 

identifi ed as character vectors (see classifi cation of components, below) are analyzed, 

and errors detected in these vectors are corrected to obtain a proper representation 

of bond structure. This cleanup stage corrects two types of defects:

Breaking of lines in the region of a junction• 

Breaking of a single diagram line into two or more vectors at points away • 

from a junction

The fi rst objective is accomplished by detecting any vector with a length less than 

a specifi ed fraction of the median value of a diagram line. Such a vector is, in effect, 

shrunk to a single point, its midpoint. That is, the terminal of any vector connected to 

this one is relocated at the midpoint, and the short vector itself is deleted. The second 

case is treated by a procedure that measures the angle of intersection at vertices where 

exactly two vectors meet. If the angle is less than a predefi ned value (35 degrees by 

default), the vertex is removed. This correction phase is, however, incapable of solv-

ing bond–character touching problems and broken line detection problems.

Component Classifi cation
Vectors produced by the GIFTS vectorizer are assembled into connected groups. These 

groups are classifi ed as characters, bond structures, or other symbols such as circles 

representing aromatic rings. This is done using the size of each group as follows:

 

N NNH2
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Cl
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Subgraph 1

Subgraph 2 
Subgraph 3 

(a)   

k2
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(b)

x3x4

x1

k1

FIGURE 4.10 Circular inspection method in the Contreras system. (a) A molecular structure 

with three subgraphs. (b) Circular sweeping, where ki and xi represent known and unknown 

points, respectively.
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If the ratio of the maximum dimension of the group to the maximum • 

dimension of the diagram is less than a preset value, then that group is 

considered to constitute a symbol rather than a portion of the diagram line 

structure.

Small groups containing only a few vectors are classifi ed by position con-• 

text: If located close to another letter, they are classifi ed as characters. This 

rule accommodates the occurrence of lowercase l, as in the chemical sym-

bol for chlorine, Cl, which could be mistaken for a bond on the basis of 

shape alone.

If the group has at least • N vectors (N = 8 by default) and is circular, a prop-

erty measured in a special routine, then the group is classifi ed as a circle. A 

similar group with fewer vectors is processed as a bond structure.

If the group satisfi es none of the above classifi cations, then it is classifi ed • 

as a bond structure.

OCR
First, the image of the character is extracted from the page bitmap. This process also 

attempts to detect and separate touching characters. Extracted patterns are subjected 

to size normalization and sent to a single-font OCR process. The OCR function 

uses feature-based software as referenced in Itoh and Takahashi (1990) to interpret 

character images.

Building a Connection Table
A connection table is built by sequencing through the groups and adding each char-

acter to the table of atoms. The bond structures are also processed, and a carbon 

atom is associated in the table at any point where two lines connect. The procedure 

then fi nds any vectors that have not yet been connected and associates them to the 

nearest atom or letter.

The identifi ed character strings (e.g., CH3) are parsed to map them into connec-

tion tables and detect their points of attachment to the rest of the structure. If a string 

cannot be associated with a node of the structure, the process looks for another string 

located above or underneath it. A string with no connection table is ignored and 

deleted from the connection table.

For each object classifi ed as a circle, an aromatic-ring construction method is 

invoked during which bonds surrounding the circle are identifi ed and every second 

bond is converted to a double bond. Finally, there is a check for valency violation.

CLIDE

The CLiDE program (Ibison et al. 1993) establishes the connection table of a digi-

tized chemical structure in fi ve steps:

Component classifi cation based on contour search• 

Vectorization• 

Dashed-line construction using Hough transforms• 

OCR• 

Creation of a connection table• 
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Component Classifi cation
First, the bitmap image is segmented into connected components. A connected 

component is a connected on-pixel region of the image. Connected components are 

represented by their outermost and innermost on-pixel sequences, that is, by their 

external and internal contours (see Figure 4.11). The contours are defi ned as the 

coordinates of a starting point and a sequence of four directions (N, S, E, W).

Connected components are separated into fi ve basic groups: noise, characters, 

dashes, lines, and graphics. The separation is implemented as a stepwise algorithm, 

which separates one group from the others in each step. This separation is based on 

size, aspect ratio, and on-pixel density. The process uses several parameters (e.g., 

the average height of the connected components, the estimated maximum height of 

characters) that are set automatically during the processing phase and based on the 

statistical data extracted from the image (Venczel 1993).

This method usually works well for a wide range of character point sizes and 

graphic sizes. However, some confusion arises when a character touches a graphi-

cal component (bond) and hence they are classifi ed together as graphics or when a 

dash-like character (e.g., “l”) is classifi ed as part of a dashed line. These separation 

errors are corrected by component reclassifi cation at later phases of processing, for 

example, the dashed-line detection or the connection table building phases.

Vectorization
First, the contour fractions are extracted by cutting the contours of the image into 

straight and curved fractions (see Figure 4.11c). For each contour, a polygon is cre-

ated in such a way that each point of the original contour is within a certain distance 

of a side of the polygon. If this threshold value is well chosen, straight parts of the 

contour result in long polygon sides, whereas curved parts are approximated by con-

secutive short sides. A method similar to that of Sklansky and Gonzalez (Sklansky 

and Gonzalez 1980; Venczel 1993) is used to create the approximation polygon. Long 

polygon sides are selected as straight contour fractions, and consecutive short sides 

are merged into curved fractions. Individual short sides are not used henceforth.

Vectors are found by searching for pairs of fractions that are adjacent. In an 

ideal case, two fractions are created for each line-like object, which are the two 

borders. During this step, the errors of the fraction creation phase are corrected. If 

the image is noisy, the fraction detection phase can create more than two fractions 

for one line by incorrectly cutting one border at an internal point (see Figure 4.12). 

In such a case, both parts lie side-by-side, and an attempt can be made to join them. 

Alternatively, if the two parts cannot be joined, it indicates that they belong to dif-

ferent lines sharing the fraction on opposite sides, and the shared fraction is cut 

into two (see Figure 4.13). Finally, each vector is described by the two borders. The 

coordinates of the line end points, the line width, and the line shape are determined 

from these two borders.

Dashed-Line Construction
Dashed-line detection is based on the Hough transform. This method detects dashed 

lines by searching for sets of connected components, classifi ed as dashes, situated 

equally spaced along a straight line (Venczel 1993). At the end of this process, dash 
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components not belonging to any detected dashed line are reclassifi ed as characters, 

lines, or noise according to their size and location compared to their surrounding 

connected components.

OCR
To date, two different OCR methods were implemented in CLiDE. The fi rst one used 

a back-propagation neural network for classifi cation of the characters. The character 

features used as input to the neural network are determined by template matching 

(Venczel 1993). The second OCR implementation in CLiDE is based on topological 

and geometrical feature analysis, and it uses a fi ltering technique for the classifi ca-

tion of characters (Simon 1996).

(a)   (b)   (c)

FIGURE 4.13 Cutting of fractions during vectorization in the CLiDE system. (a) Connected 

component of a straight line and a wedged line. (b) Straight fractions detected; note that there 

is only one fraction for the bottom border of the line and the wedge. (c) Straight fractions after 

cutting the fraction belonging to both lines.

(a)   (b)   (c)

FIGURE 4.11 Contour determination in the CLiDE system. (a) Bitmap containing one con-

nected component. (b) Contour of the connected component where the starting point of the 

contour is marked with a circle and the fi rst few directions are displayed while following the 

contour in clockwise direction. (c) Straight fractions of the contour.

(a)   (b)   (c)

FIGURE 4.12 Joining of fractions during vectorization in the CLiDE system. (a) Connected 

component with three straight lines, with noise occurring in the center of the middle line. (b) 

Straight fractions detected; note that there are two fractions for the top border of the hori-

zontal line. (c) Straight fractions after joining the two fractions belonging to the same lower 

border of the horizontal line.
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Recognized characters are then grouped to form words based on their coordi-

nates. This method combines characters lying next to each other but also considers 

vertical relationships to handle vertically oriented atom labels.

Creation of Connection Tables
Connection tables are built from the recognized solid and dashed lines and atom 

labels (Kam 1994). A bond line is represented by its two end points and a free-
fl ag associated to each end. The free-fl ag is set to false if a bond line is touching 

another bond line with its end to which the free-fl ag is associated; otherwise, it 

is true.

First, it is determined that bond lines are connected to the atoms. A bond line end 

is joined to an atom if (a) the gap between them is smaller than a certain threshold, 

(b) the free-fl ag is true for the bond end in consideration, and (c) the bond points 

toward the atom label (see Figure 4.14). Next, bond ends not connected to any atom 

are joined together to form implicit carbon atoms. The main criterion for joining two 

bond ends is that they lie close to one another. There are potential diffi culties in the 

case of crossing bonds, but the algorithm deals successfully with those problems. 

Finally, this connection information is converted to a connection table.

Atom labels are identifi ed according to a superatom database that contains all the 

elements of the periodic table, the most frequently occurring functional groups and 

labels commonly used to represent R-groups in generic structures (e.g., R, R1, R2, R’, 
X, Y). The database provides information, such as the name, the nature, the atomic 

and id code, the connection table (for groups), and so on, for each item contained 

therein. Longer atom labels, that is, linear representations of structural formulas not 

found in the database (e.g., CF3CF2CH2) are parsed (Simon 1996).

CHEMOCR

The chemoCR system (Algorri et al. 2007a, b; Zimmermann et al. 2005) extracts 

molecules from an image via the following steps:

Preprocessing• 

OCR and component classifi cation into characters and noncharacters• 

Vectorization• 

Reconstruction of molecules using a library of chemical graph-based rules • 

and a set of chemical knowledge rules

O
OAc

a b
c

FIGURE 4.14 Example on joining between atoms and bonds in the CLiDE system. Although 

the atom label OAc is closer to the two solid bonds (b and c) than to the dashed bond (a), OAc 

is correctly joined to bond a.
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Preprocessing
First, the chemical image, which can be a color or grayscale image, is binarized. 

For this, the system fi rst eliminates the effects of any anti-aliasing fi lter that might 

have been applied to the image and then uses an adaptive histogram binarization 

algorithm. The user can choose to manually adjust the adaptation parameter of the 

binarization every time a new image corpus is being recognized in order to fi ne tune 

the degree of thinning allowed by the binarization. The image is then segmented into 

connected components using a nonrecursive connected component algorithm based 

on the technique of raster scanning the image and identifying connected RLE seg-

ments (Algorri et al. 2007c). An RLE segment is a set of adjacent on-pixels lying in 

the same row. A connected component is a set of neighboring RLE segments, none 

of which is touched by RLE segments of any other connected component.

OCR and Component Classifi cation into Characters and Noncharacters
This is done by a chemically oriented OCR (Akle et al. 2007) that identifi es isolated 

characters and symbols and gives a confi dence value to the recognition. The OCR 

analyzes the images of the connected components and extracts their features by cal-

culating their moments using wavelet functions. The fi nal identifi cation of characters 

and symbols is done with a support vector machine algorithm. The OCR is able to 

classify the connected components that constitute characters and discard those that 

constitute parts of the molecular structure. The support vector machine algorithm 

can dynamically increase its training corpus every time it fails to correctly identify 

a connected component, therefore avoiding repetition of classifi cation mistakes. The 

OCR can be trained to identify letters, numbers, and symbols of different sizes and 

fonts and is tolerant to some degree of rotation.

Vectorization
The connected components classifi ed as noncharacters by the OCR are vectorized 

to produce a graph of vectors. This is done using a custom vectorizer (Algorri et al. 

2007c) that takes as entry the connected components formed of connected RLE seg-

ments and assigns a local direction to every RLE segment based on the position of 

the RLE segment with respect to its neighboring RLE segments. The vectorizer then 

groups the directed RLE segments into patterns of local directions. The patterns of 

local directions have a very good correspondence with the vectors (global directions) in 

the image. The vectorizer results in a graph of vectors (edges and vertices) that includes 

ordered neighborhood information; that is, it contains information about which vectors 

share a common vertex and how they are positioned with respect to the vertex (orienta-

tion in degrees) and therefore which vectors are connected to each other.

Reconstruction of Molecules
The reconstruction of molecules is performed in two phases. The results of the previ-

ous two steps (the characters and the graph of vectors) are fi rst chemically annotated 

and interrelated to create a chemical graph that is turned into a chemical molecule 

in the second phase.

The chemical graph construction is governed by a library of rules that describe the 

chemical characteristics of the elements in a molecule in terms of their geometrical prop-

erties in an image. The library is constructed using a few basic geometric measurements 
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over the graph of vectors: length of the vectors, ordered neighborhood information, 

orientation, position, and geometric measurements over the characters: size, aspect ratio 

and position of the bounding box, and neighborhood with respect to the other characters 

and the vectors. The chemical graph is constructed in three steps: (a) bond annotation, 

(b) identifi cation of atom labels, and (c) construction of the chemical graph.

Bond annotation:•  Every vector is annotated as one of six allowable bond 

types: single, double, or triple bond; wedged or dashed wedged bond; and 

cross bond. The wedged bonds represented in the image as thick structures, 

a triangle or a rectangle, are the fi rst ones to be annotated. To identify these 

bonds, every vector in the graph is registered (superimposed) with the pixels 

from the image that generated it, and a statistic is created to see how every 

vector registers with its corresponding pixels. Using this statistic, vectors 

generated by lines are identifi ed as opposed to vectors generated by thicker 

geometrical forms. Next, vectors representing dashed bonds are annotated. 

To identify dashed bonds, all the vectors are selected that are not connected 

to any other vector and have no neighbors. These vectors are clustered using 

a quadtree clustering technique over the geometrical center of vectors. The 

vectors inside the resulting clusters are tested for parallelism and size coher-

ence, and, if accepted, the set of vectors is fused into one vector that is 

labeled as a dashed bond. Double and triple bonds are identifi ed from the 

vectors that are not connected to any other vector and that were not identi-

fi ed as dashed bonds. A region of interest around every bond (the bounding 

box of the vector dilated by a factor of two is defi ned, and any other vector 

intersecting the region of interest is tested for parallelism and size coher-

ence. Vectors annotated as double (triple) bonds result from the fusion of two 

(three) parallel vectors. More than three parallel vectors generate a dashed 

bond. The remaining bonds are annotated as single bonds, a subset of which 

form cross bonds. Cross bonds are annotated by identifying neighboring 

vectors (vectors that touch or intersect each other) that intersect each other 

along the center part of the vectors rather than at the endpoints.

Atom labels:•  In this stage, results of the OCR are analyzed to form atom 

labels. To form atom labels containing more than one character, characters 

are clustered by dilating the bounding box of every identifi ed character by 

a factor of two. Characters whose dilated bounding boxes touch each other 

are clustered together. The center points of the involved bounding boxes 

are tested to determine if the characters should be horizontally or vertically 

grouped. To solve any occurring ambiguities, for example, when two atom 

labels are too close together and all the characters are clustered into one 

group, a dictionary of valid atom and functional group names are used.

Chemical graph:•  Here, atom labels are associated to the vertices of the 

vector graph, thus creating a chemical graph. The vertices in the vector 

graph correspond to the end points of the vectors and can be shared by more 

than one vector. To bind the atom labels to the graph vertices, their center 

of mass is associated to its closest vertex in the graph. Vertices not bound to 

any atom label are associated to a default carbon atom.
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In the second stage of molecule reconstruction, the chemical graph is converted 

to a chemical molecular structure. The vertices in the graph become the atoms in 

the chemical molecular structure, and the graph edges become the bonds, and their 

chemical valences, charges, and properties are validated by a set of chemical knowl-

edge rules (Karl 2007).

RECOGNIZED PROBLEMS IN STRUCTURE RECOGNITION

With any of the systems discussed, it is very likely that an incorrect connection table 

will be built if there are no specifi c rules to detect that a structure diagram contains 

a feature that is unusual or conveys an ambiguous situation. Some of these diffi cult 

features that have been identifi ed are discussed below.

Crossing bonds are one of the kinds of diffi cult features of chemical drawings. 

They are often used to preserve some sense of the three-dimensional shape of the 

molecule in the drawing, particularly in bridged structures. A further reason for the 

presence of a crossing bond in a structure arises where the bond being crossed is 

a ring bond and the crossing bond indicates that the position of attachment of this 

bond to the ring is not specifi ed. In the bond crossing situation, one bond usually 

“cuts” another, although there is often no apparent gap in the bond that is crossed. 

Figure 4.15 illustrates the different types of crossing bonds that can be found in 

chemical structures. To successfully interpret a structure, one has to detect the bond 

crossing situations, identify the bond crossing types, and construct a connection 

table according to these types. The crossing bond interpretation method developed in 

CLiDE (Kam 1994; Kam et al. 1992; Ibison et al. 1993) uses a set of rules, including 

the proximity, length, collinearity, and ring membership of potential crossing bonds, 

to correctly detect and interpret all the crossing bond types. Test reports show that 

the method works on a wide range of structure diagrams containing crossing bonds.

It is also diffi cult to handle connected components that cause ambiguity in inter-

pretation. This mainly evolves from simple single lines. For example, a vertical 

(a) Bond crossing with a gap   (b) Bond crossing without a gap  (c) Ring crossing with a gap

(d) Ring crossing without a gap

FIGURE 4.15 Different types of crossing bonds.
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line can occur in several different kinds of chemical entities such as single and 

multiple bonds, dashed bonds, and character strings representing atom labels (e.g., 

Cl, I) and other information related to the structure. Similarly, a horizontal line can 

be part of a single or multiple bond or a dashed bond, or it can represent a negative 

charge for an atom. Such ambiguous situations can be resolved by analyzing the 

environment of the connected components and applying a set of rules with condi-

tions on chemical and spatial context. For instance, if a letter C is on the left side 

of a vertical line that is not part of a dashed bond, the vertical line represents the 

letter l of a chlorine atom.

Some bond formations can be easily misinterpreted, and postprocessing of 

the interpreted connection table is needed to get correct results. Merely rely-

ing on the end points of the vectors calculated for each bond line, a single bond 

and a triple bond joined together (see Figure 4.16a) can be recognized as a long 

single bond and a double bond half way over the single bond. Figure 4.16b shows 

another bond formation requiring special treatment. Here, a broken line directly 

attached to an implicit carbon atom of a ring can be misinterpreted as a broken-

line dashed bond and a short single bond with a carbon atom between the two 

bonds.

The performance of optical structure recognition is highly affected by the qual-

ity of the input image. Noise is one factor that can cause considerable deterioration 

of the image quality. One kind of noise, isolated small black spots often appear-

ing during the scanning of documents, can be easily separated from the connected 

components of normal image objects and ignored. Bigger isolated noise is harder to 

identify and exclude from the structure recognition process. Black spots touching 

one or more connected components have a big deleterious impact on the structure 

recognition because they change the shape and the number of the connected com-

ponents and they are very diffi cult to detect and isolate to retrieve the correct shape 

of the connected components. In some images, tiny white spots occur totally or par-

tially inside connected components. White spots lying entirely in the black area of 

connected components can be easily detected in images containing relatively big 

connected components. White spots fusing with the background are generally diffi -

cult to detect and handle. White spots, if they are untreated, have a deleterious effect 

on OCR and vectorization.

N
H

H
N

O

H

(a) Triple bond joined to a single bond

N

   

H 

H 

OH 
O 

(b) Broken-line bonds attached to solid bonds

FIGURE 4.16 Structure diagrams containing bond formations that can be easily misinter-

preted.
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RECOGNITION OF COMPLEX OBJECTS

RECOGNITION OF GENERIC STRUCTURES

Interpretation of generic, or Markush, structures is a very useful but nontrivial 

task, and from the published work, it appears that so far, CLiDE is the only system 

among the various structure recognition systems introduced in “Projects,” above, 

that addresses the problem of generic structure interpretation.

The extraction of generic information from structures can be divided into two 

parts. First, the generic text block needs to be identifi ed and extracted from other text 

blocks in the text region and its meaning interpreted. This is done by a generic text 

interpreter (Ibison 1992) whose task is to extract the generic information from the 

text. The stages involved in this task include determining the R-groups, the number 

and type of the substituents, and whether any label is present for each substituent. 

The generic text interpretation in CLiDE (Simon 1996) is performed in three phases: 

(1) lexical analysis or tokenization that isolates the individual words (or tokens) of 

the sentences, (2) syntax analysis that identifi es the parts of the sentence requiring 

contextual checking, and (3) semantic analysis that determines the meaning of the 

words. One of the limitations of the current CLiDE generic text interpreter is that it 

relies on the presence of special symbols such as an equals sign separating R-groups 

and substituents, and delimiters. A universal generic text interpreter is required, 

because the generic text block can appear in different formats. For instance, the 

alternatives of R-groups can be expressed in various ways, mostly by chemical sym-

bols and formulas, as well as chemical drawings (see Figure 4.17). When chemical 

drawings are used, they have to be identifi ed and interpreted by a graphical recogni-

tion module. Furthermore, R-groups and their substitution values can be listed in a 

table (without any equals signs) rather than in a linear text format.

After the information about each generic text block has been interpreted, the 

choice of the most suitable generic text block for a given structure has to be made. 

In CLiDE, this is done in two stages. First, a search is performed to fi nd the generic 

text blocks that best match the structure in terms of the number of R-groups present 

in both the structure and the generic text block. In the second phase, the generic text 

block lying closest to the structure is selected from those found in the fi rst phase. 

A match between a structure and a generic text block goes further than checking 

whether an R-group in a structure matches an R-group in the text. For example, in 

the structure, an atom label might be OR, whereas the R-group in the text might be 

N 

N 
R2 

CN 

CN 
R1 

O 

N 

9 R1  = CH3, R2 = N

10 R1 = CH3,  R2 = N

11 R1 = CH3, R2 = N

12 R1 = CH3, R2 = CN

FIGURE 4.17 Generic substitutions represented by chemical graphics.
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R, which is just part of OR. A simple comparison between R and OR is not enough; 

instead, it is the generic element in a generic type that is important. The generic ele-

ment in both OR and R is R. Therefore, “match” means that the generic elements in 

the generic atom labels of the structure and the generic elements in the generic text 

block are the same. Figure 4.18 depicts a generic structure that can be interpreted 

by the new version of CLiDE, CLiDE Pro, by successfully identifying the R-groups 

X, Y1, Z, and R in the text, recognizing the R-group substitution values N, CF, H, 

Boc, and Et, and detecting the generic elements in the text and in the generic atom 

labels of the structure (X, Y1, ZHN, CO2R) to fi nd a match between the text and the 

structure. However, this process heavily relies on the success of the individual steps 

performed; if one step fails, automatic error detection and recovery in the subsequent 

steps are diffi cult without human intervention.

EXTRACTION OF REACTION INFORMATION

Although reaction schemes containing graphical structures are frequently used in 

chemistry-related documents, CLiDE is the only system that currently attempts 

extraction of reaction information.

In CLiDE (Kam 1994), the interpretation of reactions is performed in two phases. 

In the fi rst phase, the reaction scheme primitives, arrows, the reagent text, and the 

joiner “+” are identifi ed. The lines in structures and the lines in arrows are initially 

gathered. During arrow extraction, this original set is divided into two groups of 

items: a structure lines set and an arrow lines set. The structure lines are interpreted 

as bonds during the compilation of chemical graphs. The arrow lines are consti-

tuted into arrows, and the arrow types are determined (see Table 4.1, which lists 

common arrow types). This process considers that all the arrows in the scanned 

image are reaction arrows and ignores the case where an arrow is part of a structure 

(see Figure 4.19). Once the arrows are found, the text groups in the image are then 

checked to see whether they constitute reagent text relating to an arrow. If they do, 

they are appended to the arrow and give more complete information about the reac-

tion. The method of fi nding reagent text for an arrow is divided into two parts. The 

fi rst part fi nds text strings that are directly next to the side of the arrow. The second 

part uses the positions of these text strings to fi nd other text strings that are near 

them. The reason for the second part is that a reagent text may contain more than one 

N 

X 

N 
Y1 

42a:  X = N, Y1 = H, Z = Boc, R = Et 
42b: X = CF, Y1 = H, Z = H, R = Et 
42c: X = CF, Y1 = F, Z = Boc, R =H 

O 
CO2R 

NHZ 
N S 

FIGURE 4.18 A generic structure interpretable by CLiDE Pro.
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line, and some lines are quite far from the arrow but should still be near the other 

reagent text of that arrow. After the detection of arrows and reagent text, the connec-

tion tables are constructed. Any positive charge “+” for an explicit atom or functional 

group or for an implicit carbon atom should already have been found; therefore, any 

+ sign left is assumed to be a potential joiner between structures.

In the second phase of reaction interpretation, reactants and products are 

extracted and their roles assigned. Based on the relative positions of the joiner “+” 

and the structures, it is fi rst determined whether the structures should be considered 

as one structure group. Next, the set of reactants and the set of products are allo-

cated for each reaction in a scheme by fi nding structures that lie behind an arrow 

tail or in front of an arrow head and are passed by the line going along the arrow. 

This process considers both single structures and groups of structures and can inter-

pret different reaction formats including situations where reactants and products are 

placed horizontally, vertically, or diagonally. Line breaks are also handled where 

an arrow is located at the margin of a page and because of the spatial limitation of 

a page, the products and reactants are not on the same row as the arrow. A reaction 

containing a complex arrow with a number of arrow heads or arrow tails is split into 

separate simple reactions by considering each arrow head and arrow tail like that of 

a simple arrow, and for each will be found its own set of products and its own set of 

reactants. Graphic reagents are identifi ed as additional reactants of a simple reaction 

by fi nding structures that are near the arrow and situated either above, below, left, 

or right of the arrow. Figure 4.8 shows a three-step reaction scheme containing a 

joiner “+” between the reactants of the fi rst reaction, two line break situations, and 

a graphic reagent.

OUTPUT DATA

The primary aim of optical structure recognition is to convert printed chemical 

structure diagrams into connection tables and other computer-readable formats 

suitable for chemical structure database updating and searching. Therefore, the 

output produced by the systems introduced in this chapter is available in stan-

dard chemical formats such as Molfi le and SMILES. However, these proprietary 

formats contain only the raw molecular structure information that their design 

allows. The SMILES fi le contains the connection table of a structure, so page 

numbers, titles, and associated text and images are lost in converting to this for-

mat. For this reason, all information that has been extracted by a recognition 

software tool is saved in its own internal fi le format, which can be much “richer” 

than the standard formats.
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FIGURE 4.19 Arrows as part of structure diagrams.
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CONCLUSION AND OUTLOOK

The prospects of automatic conversion of chemical structure images into computer-

readable format are quite attractive and, consequently, this fi eld has attracted computer 

scientists working on this problem since the early 1990s. However, the various sci-

entifi c challenges behind optical structure recognition are substantial, and the vision 

of large-scale automated interpretation of chemical information from large digital 

archives will require sustained research and development over a number of years.

The most signifi cant bottleneck of optical structure recognition is the high depen-

dency on the image processing algorithms. Errors in the image processing phase 

often result in failure of the recognition process to correctly identify a structure. 

Errors in the binarization process (see “Input Data,” above) impact all succeeding 

image processing steps. If a wrong binarization threshold is selected, too few border 

pixels of image objects are removed and two normally distinct objects will remain in 

one connected component. For example, the character O might be included in a con-

nected component representing a bond set, and the OCR cannot recognize the char-

acter, and the vectorized bond set holds strange vectors. Errors in the reconstructed 

molecule can also occur when characters are not recognized properly. Uncertainty 

about the correct classifi cation of character symbols is a common problem in the fi eld 

of OCR. Uncertainty often happens where characters cannot easily be distinguished 

based on their shape; for example, the characters l, 1, (,’), |, and I can cause confu-

sion in the classifi cation process. In ordinary text, an OCR tool would effectively 

address this problem by applying diverse postprocessing steps. A well-established 

technique is to verify the concatenated string by searching for the recognized word 

in a dictionary. It is accepted if the reference book contains it or a similar word is 

found. However, the strings in a molecular structure are usually very short (usu-

ally just one or two characters), so there is no contextual information like that seen 

in the recognition of normal text documents. Errors produced by the vectorization 

algorithm have a big deleterious effect on the construction of a connection table. A 

wrong identifi ed character does not change the overall appearance of the molecule, 

whereas a wrong bond can infl uence the entire topology. Both OCR and vectoriza-

tion can be improved by incorporating chemical knowledge into the recognition of 

characters and bonds. The number of errors can be reduced by extensive error check-

ing throughout the recognition process.

Though far from perfect, at least some of the various recognition methods 

described in this chapter can yield impressive recognition results. Figure 4.20 shows 

some structure diagrams that are correctly interpreted by optical structure recogni-

tion within a few seconds. Manual reproduction of these structures would require 

considerably more time and be error prone.

The optical structure recognition tool that has 100% accuracy in all situations has 

yet to be developed, and indeed is unlikely to be developed in the foreseeable future. 

This parallels the situation for text OCR, where despite decades of research, accu-

racy of recognition still falls short of 100%. However, this is perfectly acceptable 

as long as the extent of manual editing required is suffi ciently small that the overall 

process provides signifi cant time savings over manual transcription. This is also true 

of optical structure recognition. Some of the existing tools are capable of very high 
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accuracy when used with good-quality images and could be integrated into work-

fl ow processes, with minimal manual editing required at the end of the process, thus 

providing enormous time savings over manual redrawing. Poorer-quality images, 

particularly those from older volumes of journals where the structures were drawn 

manually, are likely to give rise to more errors, and improving accuracy for these 

cases is an important area of research in this fi eld.

It should be recognized that structure recognition on its own is only a part of the 

problem of extracting chemical information from documents. The data associated 
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with structures needs to be captured, as does the context of the structure, for exam-

ple, the reactant or product of a reaction or a Markush structure with associated 

values of R groups. The CLiDE system has already made considerable headway in 

this area, but there is still much to be done, and this fi eld is likely to be the focus of 

intense research effort in the next few years.

It should be recognized that automated name recognition provides a realistic 

alternative to optical structure recognition in many cases. Indeed, the two techniques 

are complementary; there are many cases where either no name is given (particularly 

common with complicated structures) or the name is insuffi ciently precise to convey 

the full structural information (including stereochemistry). The ideal system would 

incorporate both techniques and use either whichever is more appropriate in a given 

situation, or even both in parallel to provide an accuracy check.

Diverse text mining approaches have been successfully applied to the scientifi c 

literature in biology and medicine. The situation is less well developed for the chemi-

cal literature because of the focus on compound structures rather than text. The 

advent of optical structure recognition offers the promise that mining the chemical 

literature will be even more successful than it is in these other fi elds of scientifi c 

endeavor.
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Bedřich Košata

CONTENTS

Introduction .............................................................................................................. 78

Computer Representation of Molecules ................................................................... 78

Basic Overview of Chemical Formats ..................................................................... 79

Common Chemical Formats .................................................................................... 81

Molfi le and Related Formats ............................................................................... 81

Basic Characteristics ...................................................................................... 81

Format Overview ............................................................................................ 82

CML (Chemical Markup Language) ................................................................... 82

Basic Characteristics ...................................................................................... 82

Format Overview ............................................................................................ 83

SMILES...............................................................................................................84

Basic Characteristics ......................................................................................84

Format Overview ............................................................................................84

Basic Rules for Writing SMILES ...................................................................84

InChI (International Chemical Identifi er) ...........................................................86

Basic Characteristics ......................................................................................86

Format Overview ............................................................................................86

InChIKey ............................................................................................................. 89

Basic Characteristics ...................................................................................... 89

Format Overview ............................................................................................ 89

Other Formats ...................................................................................................... 91

Formats Used in the Protein Data Bank ......................................................... 91

SYBYL Line Notation (SLN) ........................................................................92

Conversion of Chemical Formats .............................................................................92

Online Publication of Chemical Data ......................................................................93

Publishing Data for Search Engines ....................................................................93

Publishing Data for Online Display ....................................................................94

Publishing Data for Sharing ................................................................................95

Storing Chemical Data .............................................................................................96

Data Storage ........................................................................................................96

Data Indexing ......................................................................................................97



78 Chemical Information Mining: Facilitating Literature-Based Discovery

Summary .............................................................................................................97

Conclusion ...............................................................................................................98

References ................................................................................................................98

INTRODUCTION

In this chapter, we will describe how computers store and process chemical struc-

tures. Our main goal will be to provide the reader with enough information to be able 

to choose from the variety of available chemical formats and implement the right 

methods for online publication of his or her data.

We will give an overview of the most commonly used chemical formats and their 

features, strengths, and weaknesses. We will also discuss several typical scenarios of 

online publication of chemical structural data and the closely related topic of storage 

of such data.

With a few exceptions, we will focus our attention only on the semantic part of 

the description of chemical structures and disregard the presentational aspects of a 

chemical drawing.

COMPUTER REPRESENTATION OF MOLECULES

The whole concept of modern chemistry is based on the usage of drawings or other 

visual models of molecular structures. These simplifi ed models of real molecules 

provide us with a framework that helps us understand the behavior of chemical com-

pounds. With the development of computers, scientists had to face the problem of 

transferring molecular models into computer language.

Even though it is possible to use the same kind of models in computers as humans 

use, the internal workings of a computer are very different from the human cognitive 

system. Whereas humans process a chemical drawing in a visual manner and are 

able to quickly identify important parts of a drawing, computers notoriously have 

big problems doing the same. In this sense, we can compare the task of visualizing 

a molecular structure by using its drawing to viewing a photograph. For humans it is 

a trivial task to recognize that a picture contains two children, one in red and one in 

blue jeans. However, for computers, such a task is immensely complicated (the topic 

of computer processing of chemical structures in the form of graphics is discussed 

in Chapter 4). Therefore, we cannot use pictures of chemical structures for effi cient 

computer processing, and we need to provide the computer with a much more explicit 

description—a description that represents the model itself, not its visualization for 

human convenience.

Thus, in conventional computer models, molecules are represented directly 

as networks of atoms connected by bonds. (Figure 5.1 demonstrates this 

approach.)

This is a very natural way to describe molecular structures because their most 

important feature for most applications, the connectivity of atoms, forms the basis 

of the internal representation. The big advantage of this model is that it transforms 

many problems of chemistry into problems of network topology.
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A general name for such a network as demonstrated in Figure 5.1 is a graph. 

Graphs are very well-studied objects that can be used to describe many nonchemi-

cal problems, for example, an electric grid, social connections of people, citations 

between scientifi c articles, and links between web pages. Because of this broad 

range of uses, graph theory, a branch of mathematics that studies graphs, is very 

well developed and has a solid mathematical background (for general introduction 

into graph theory see, for instance, Trudeau 1993 or Chartrand 1984; for an overview 

of graph theory in chemistry see, for example, Trinajstic 1992). Thus, many general 

graph algorithms can be used in treating chemical compounds, without the need to 

reinvent them for use in chemistry.

Because of the graphic nature of most molecular representations, the formats used 

to store such information are mostly oriented toward description of this graph. While 

this fact is more pronounced in some formats and less obvious in others, a graph is 

always hidden inside the format.

In the most general sense, a graph represents a network of nodes (called vertices, 
singular vertex) connected by links (called edges). As such, it can only describe the 

connectivity of atoms, not their other properties, such as the number of protons, 

electronic confi guration, and so on, or the properties of the molecule as a whole—its 

chirality and so on. These features have to be added on top of the graphic representa-

tion of the molecule.

The graphic representation also does not handle and is not infl uenced by the posi-

tions of atoms. This means that many basic algorithms for analysis and manipulation 

of molecular graphs work independently of the positions of atoms and even without 

the positions being specifi ed. This fact makes it possible to ignore molecular geom-

etry during processing and even in storage, thus enabling creation of very compact 

chemical formats, such as the Simplifi ed Molecular Line Entry System (SMILES) or 

International Chemical Identifi er (InChI).

Of course, many problems also exist for which the actual geometry of a molecule 

has to be taken into account. In such cases this information has to be added on top of 

the basic model, because graph theory itself is not concerned with it.

BASIC OVERVIEW OF CHEMICAL FORMATS

Before we deal with the most common formats in more detail, we will try to classify 

them according to several practical rules to discuss some general topics involved.

From the point of view of computer storage and user interaction, we can dis-

tinguish two basic types: linear (or inline) and fi le-based formats. The former are 

N
CH3

CH3

FIGURE 5.1 Model of a chemical structure as a network of interconnected nodes — a 

graph.
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designed to be used directly as part of text (an article, web page, etc.), and the latter 

use separate fi les for storage. This difference has a strong infl uence on the proper-

ties of corresponding formats. Linear formats tend to be compact so as not to clutter 

the actual text. Thus, they seldom store atomic coordinates and often omit other 

information about the structure. In contrast, fi le-based formats are not limited by the 

same factor and usually allow storage of the complete information about a molecular 

structure and often even have support for additional data storage. Thus, the decision 

to use either a linear or fi le-based format depends on the problem we face. Linear 

formats are simpler to use inside text and are much more space effi cient; they are, 

however, completely unusable for visualization of computed or measured geometries 

and other similar problems.

In the group of linear formats, we can distinguish two basic subtypes: canonical 

and noncanonical. Canonical formats always assign one molecule the same code, 

regardless of how it was drawn—upside down, from left to right or vice versa, in two 

different conformations, and so on. Noncanonical formats allow more transcriptions 

of one structure. Although this may seem to be a clear setback, it has the advan-

tage of allowing humans to write such formats by hand, without the need to under-

stand the very complex algorithms that are involved in producing canonical output. 

Creation of canonical representations is, however, always done with help of computer 

programs. The basic part of the canonization process lies in canonical numbering 

of atoms, followed by encoding of the structure based on the obtained numbers—

usually from the lowest one. The process may also optionally include a normaliza-

tion step that transforms several chemically equivalent forms of one compound to 

one normalized structure.

Even with today’s high availability of computers and specialized software, it is 

still important to distinguish between formats that are readable (and writable) by 

humans and those that can only be properly used with the aid of a computer. With the 

appearance of InChIKey, we now even have a widely supported format that is read-

able neither by humans nor computers because it contains only a “fi ngerprint” of a 

molecular structure. Such a format is in this respect similar to registry numbers (such 

as CAS RN or Beilstein RN) that cannot be deciphered without a database lookup. 

We will discuss this feature in more detail in the section describing InChIKey.

From yet another point of view, we can distinguish between formats that are 

designed only for the specifi c purpose of capturing chemical entities and formats that 

are capable of storing all aspects of a chemical drawing, such as line widths and font 

settings. Because of the need to share chemical information between scientists, there 

are already several standard and commonly accepted formats of the former kind. 

However, storage of complete chemical drawings including presentational aspects 

does not have such an important scientifi c value, even though it plays an important 

part in the publication process (where it can, however, be replaced by export to com-

mon graphical formats). The formats also need to be much more complex to allow 

for storage of all the necessary data. For these reasons, formats with support for pre-

sentation are usually limited to native formats of individual drawing programs, and 

there is no really widely accepted standard (even though some formats, such as the 

ChemDraw CDX and CDXML formats (http://www.cambridgesoft.com/services/

documentation/sdk/chemdraw/cdx/) are more common than others). Because our 
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interest in this chapter is in pure chemistry and in the most commonly used formats, 

we will discuss only those from the fi rst category.

COMMON CHEMICAL FORMATS

In the previous section, we showed that widespread chemical formats fall into the 

category of formats intended only for description of chemistry, not for presentational 

purposes. In this section, we will focus in more detail on several such formats. An 

overview of the selected formats is given in Table 5.1.

MOLFILE AND RELATED FORMATS

Basic Characteristics
Molfi le is a fi le-based format that:

Features a simple text based format• 

Contains molecular geometry• 

May contain other related data• 

Has very good software support• 

A format example (Molfi le of ethanol) is as follows:

 3 2 0 0 0 0 0 0 0 0999 V2000
 146.0000 116.7456 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
 168.9574 130.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
 191.9147 116.7456 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
 1 2 1 0 0 0 0
 2 3 1 0 0 0 0
M END

TABLE 5.1
Overview of Described Common Chemical Formats

Format
Linear or File 

Based Human Readablea

Computer 
Readable

Molfi le File based No Yes

CML File based No Yes

SMILES Linear Yes Yes

InChI Linear No Yes

InChIKey Linear No No (write only)

a By human readability, we mean if the format was designed to be easily read by 

humans. Most of the computer-targeted formats are readable by humans who have 

deep enough knowledge of the format and plenty of time on their hands.
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Format Overview
Molfi le is probably the most common chemical format found on the Internet. Even 

though Molfi le is in fact only the simplest member of a family of related formats 

known as CTFile formats (Dalby et al. 1992) developed by MDL (Molecular Design 

Limited), the name Molfi le is often used to refer to all the CTFile formats in general.

All these formats are based on a connection table (CT; from this comes the name 

CTFile formats) for description of a molecular structure and differ in their capabili-

ties and purpose. Table 5.2 gives an overview of the most commonly found CTFile 

formats.

While support for the other family members differs considerably from program to 

program, support for its simplest member, the Molfi le, is found in almost all chemical 

drawing software available and in many other chemistry-related programs. This fact 

makes Molfi le often the format of choice when chemical data are transferred, espe-

cially on the scale of individual compounds. On a larger scale and when additional data 

need to be attached, SDFiles or other more complex CTFile formats are often used.

CML (CHEMICAL MARKUP LANGUAGE)

Basic Characteristics
CML is a fi le-based format that:

Features an XML-based format• 

Contains molecular geometry• 

May contain other related data• 

Has moderate software support• 

TABLE 5.2
The CTFile Format Family

Name
Molecular 
Structure Reaction

More than 
One Structure 

or Reaction Description

Molfi le Yes No No Simple format for description 

of one molecule (which may 

be disconnected)

Rnxfi le Yes Yes No Format containing simple 

Molfi les describing one 

reaction

SDfi le Yes No Yes Multistructure format used for 

storage and transfer of data

RDfi le Yes Yes Yes Similar to SDfi le but may 

contain reactions

XDfi le Yes Yes Yes XML-based format for 

storage and transport of 

reaction and structure data 

with associated information
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A format example (CML of ethanol) is as follows:

<?xml version="1.0" ?>
<cml>
 <molecule id="m1">
 <atomArray>
 <atom elementType="C" id="a2" x2="146.0" y2="130.0"/>
 <atom elementType="C" id="a1" x2="169.0" y2="116.7"/>
 <atom elementType="O" id="a3" x2="192.0" y2="130.0"/>
 </atomArray>
 <bondArray>
 <bond atomRefs2="a2 a1" order="1"/>
 <bond atomRefs2="a1 a3" order="1"/>
 </bondArray>
 </molecule>
</cml>

Format Overview
CML (Murray-Rust and Rzepa 1999, 2003) is an XML-based format with basic char-

acteristics very similar to those of CTFiles when it comes to description of chemical 

structures. There are two main published versions of CML: CML 1 and CML 2. As 

the former one is already considered obsolete, we will describe only the properties 

of CML 2.

CML is most widely used to describe individual molecules, but is also capable 

of describing chemical reactions (Holliday et al. 2006), spectra (Kuhn et al. 2007), 

computational chemistry results and crystallographic data. Although only one speci-

fi cation of CML contains all the mentioned types of data, specifi c subsets of CML 

are informally referred to by a specifi c name (http://cml.sourceforge.net/wiki/index.

php/FAQ), such as CMLReact for reactions or CMLSpect for spectra.

The decision of CML’s authors to base a new chemical format on XML was very 

providential, even though at the time of CML’s creation XML did not have today’s 

general acceptance. In the meantime XML has become widely supported, and many 

other formats were based on its foundations.

One of the most important benefi ts that XML brought to CML is the existence of 

standard validation tools, which, equipped with defi nition of the language, can auto-

matically check the formal structure of a CML document and report possible incon-

sistencies. For XML, there is a wide variety of generic software tools and libraries that 

enable checking, reading, and transformation of documents. Even though these tools are 

not directly focused on CML, they represent a good foundation for manipulation of the 

format. More about the benefi ts of XML and CML itself can be found in Chapter 6.

Because CML is much more recent that CTFile formats, it does not have such a 

broad acceptance and software support. Another reason for this state is also probably 

the fact that CTFile formats suit their purpose very well and there is not much need 

to replace them with a new alternative.

However, XML is constantly penetrating farther into all fi elds of computer sci-

ence, and it is probably only a matter of time until CML or a similar format replaces 

Molfi le as the de facto standard format for molecular structure storage.
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SMILES

Basic Characteristics
SMILES is a linear format that:

Has human-writable and -readable format• 

Optionally may have canonical form• 

Has good software support• 

A format example (SMILES of ethanol) is as follows:

CCO

Format Overview
The name SMILES comes from Simplifi ed Molecular Input Line Entry System 

(Weininger 1988). It is a linear format for description of molecules and reactions 

developed by Daylight Chemical Information Systems, Inc. SMILES was designed 

with the intention to be both human readable and writable, which makes it unique 

among the other chemical formats described in this chapter.

Like Molfi le, SMILES is a member of a whole family of related formats. The 

other members are SMARTS (SMiles ARbitrary Target Specifi cation) for descrip-

tion of structural patterns and SMIRKS for description of chemical transformations. 

Of these, SMILES is by far the most commonly used.

Basic Rules for Writing SMILES
Because of the human-friendliness of SMILES, it is used as an input format in a variety 

of online databases and other chemistry-related websites. Therefore, it is useful to have 

at least basic knowledge of its properties and the rules for writing proper SMILES.

As a typical example of linear formats, SMILES does not include molecular geom-

etry and focuses only on molecular topology. By default, SMILES also omits hydro-

gen atoms; unless specifi ed otherwise, each atom is expected to bear hydrogen atoms 

to match its most natural valence. When we discard hydrogen atoms, SMILES bears 

very close resemblance to common linearized formulas as used by chemists around 

the world, such as CH3CH2OH. The corresponding SMILES of ethanol is CCO. 

However, because SMILES has to be able to express exactly all possible molecular 

structures, it has much more specifi c rules than the vague ones of linearized formulas. 

The following list summarizes some of the basic rules of SMILES notation.

Atom symbols are written normally; the fi rst letter should be capitalized • 

(usage of lowercase symbols is discussed below).

Bonds are specifi ed using hyphens (-) for single bonds, equals signs (=) for • 

double bonds, hash marks (#) for triple bonds, and colons (:) for aromatic 

bonds. Single bonds may be omitted and are implied between two following 

atom symbols. For example, both C-C=C and CC=C represent propene.

Atoms that follow immediately after each other (regardless of if a bond is • 

specifi ed or implied) are connected with a bond.
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Branching is achieved using brackets; for example, CCOCC means diethyl • 

ether, whereas CC(O)CC represents butane-2-ol.

Digits after atom symbols represent additional bonds between atoms with the • 

same digit. This way rings are created. For example, CCCCC means pentane, 

C1CCCC1 means cyclopentane, and C1CCC1C means methylcyclobutane.

To simplify encoding of aromatic compounds, special notation was devised. • 

When atom symbols are written in lowercase letters, aromatic bonds are 

implied between atoms (unless a different bond is explicitly given). For 

example, benzene can be written as c1ccccc1, whereas while C1CCCCC1 

means cyclohexane.

Atoms without implied hydrogens or with any specifi c properties, such as • 

charge, atomic mass for isotope specifi cation, and so on, are given in square 

brackets. Thus, C is methane and [C] is elemental carbon; C[13C](=O)O is 

acetic acid with 13C atom in the carboxyl group, and CC(=O)[O-] is acetate 

anion.

Double bond stereochemistry is encoded using slash (/) and backslash (\) • 

characters to specify relative positioning of substituents around the plane of 

a double bond in a manner similar to its common depiction in drawings: C\

C=C\C means (E)-butane, and C\C=C/C means (Z)-butane.

Tetrahedral stereochemistry is specifi ed in square brackets, together with • 

other atom properties, using one @ character for anticlockwise and two 

@ characters (@@) for clockwise layout of atoms around the chiral center. 

The orientation is given as perceived when looking from the fi rst atom that 

appears in SMILES in the direction of the chiral center at the other three 

atoms in the order of the SMILES string. Thus, the symbol used depends 

on the order in which individual substituents appear in the SMILES string, 

as demonstrated in Figure 5.2, which shows that (R)-butane-2-ol may be 

written either as C[C@@H](O)CC or as C[C@H](CC)O.

At the beginning of this chapter, we discussed the importance, advantages, and 

disadvantages of canonical encodings of chemical structures. Because SMILES was 

developed with human users as the primary audience, it cannot be canonical by 

default. However, because of the additional value that canonization brings, SMILES 

has a specifi cation for a canonical version (Weininger et al. 1989).

Even though InChI (discussed in the next section) is quickly gaining support as 

the linear format of choice, the fact that SMILES can be read and written by humans 
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FIGURE 5.2 Specifi cation of tetrahedral stereochemistry in SMILES.



86 Chemical Information Mining: Facilitating Literature-Based Discovery

without the need to use a computer, gives it its special place among other common 

chemical formats and makes it irreplaceable for some types of use.

INCHI (INTERNATIONAL CHEMICAL IDENTIFIER)

Basic Characteristics
InChI is a linear format that:

Has a computer-generated format• 

Is not human readable or writable• 

Is canonical• 

Has unique identifi ers for molecules based solely on their structures• 

Has moderate, fast growing software support• 

A format example (InChI of ethanol) is as follows:

InChI=1/C2H6O/c1-2-3/h3H,2H2,1H3

Format Overview
InChI is a very recent member of the family of chemical formats (McNaught 2006). 

It is a linear format that was developed in cooperation with NIST and IUPAC and has 

several important features that distinguish it from other formats. Unlike the other 

formats discussed above, it cannot describe reactions—only compounds.

The main intention behind the development of InChI was to create a new way of 

“naming” compounds that would enable computer programs to assign them unique 

identifi ers, regardless of how they are drawn and without the need for a central reg-

istration point for such identifi ers (as in the case of registry numbers and other simi-

lar identifi ers). This intent led directly to the fact that InChI cannot be created by 

humans, because they would not be able to reliably reproduce the steps needed to 

create such a unique identifi er. With this fact in mind, InChI was created to be writ-

ten and read by computers only. This is in strong contrast to SMILES, which was 

created specifi cally to be written and read by humans and even in its canonical form 

is at least human readable.

The intended use of InChI as an independent unique identifi er of compounds directly 

enforces canonization of the format. Unlike in SMILES, there is no noncanonical form. 

Also, the canonization of a structure in InChI goes much further than in SMILES, 

where it is mostly limited to canonical numbering of the atoms and following encoding 

of the result based on this numbering. In InChI the canonization process also involves 

very deep normalization of the structure, which transforms several types of drawing 

conventions (e.g., nitro group with double bonds versus with charged atoms) to one nor-

malized form and detects and normalizes some isomeric forms (tautomers etc.).

Similar to SMILES, InChI does not store atom coordinates. In contrast to SMILES, 

which by default omits hydrogen atoms that are then added implicitly to match the 

most common valency of an atom, InChI stores hydrogen atoms but does not store 

bond orders. These two techniques are just different approaches to the same prob-

lem; for a given molecular skeleton, the bond orders and number of hydrogen atoms 
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attached to each heavier atom are interdependent, and one can be used to compute 

the other. Because both of these formats are linear, they try to optimize for size by 

removing one piece of the redundant information. The approach taken in SMILES is 

closer to the praxis of chemists who usually omit hydrogen atoms from drawings, but 

omitting bond orders used in InChI gets very nicely around the problem of aromatic 

compounds without the need for a special syntax as used in SMILES.

Another important feature of InChI is its layered structure. Unlike in SMILES, 

where all data related to one atom are stored in one place, in InChI different proper-

ties of the structure are encoded in different parts of the identifi er. This organization 

of the data has one very important advantage: molecules with the same basic struc-

ture that differ only in some minor property, such as in stereochemistry or isotopic 

composition, have the same InChI, with only the exception of the corresponding 

layer. This makes it possible not only to compare two InChIs to fi nd if they represent 

exactly the same structure, but to use a more intelligent comparison of two InChI 

strings to reveal molecules with the same basic structure that differ only in some 

detail. It is then up to the user to decide which deviations in the InChI are signifi cant 

for his or her purpose and which are not.

The layer structure of InChI is demonstrated in Figure 5.3, and Figure 5.4 shows 

several similar structures and the infl uence different changes in the structure have 

on the resulting InChI.

The following list briefl y mentions all possible InChI layers and discusses some 

important facts that arise from properties of each layer:

Main layer• 

Chemical formula: Hill ordered summary (see the discussion of proto-• 

nation below for examples of unexpected results).

Connections: Connectivity of nonhydrogen atoms and assignment of • 

hydrogens to these atoms.

Charge layer• 

Component charge: Net charge of the molecule (or charges of individ-• 

ual components); no information about position of charge is stored in 

InChI. It is important to be aware of this; the same InChI will be gener-

ated for two structures that differ only in the position of charge.

NH2 H 

InChl=1/C9H13N/c1-8(10)7-9-5-3-2-4-6-9/h2-6,8H,7,10H2,1H3/t8-/m0/s1 

(S)-Amphetamine 

Summary 
formula 

Connections 

Non-hydrogen atoms Hydrogen atoms 

Stereochemistry 

FIGURE 5.3 Layer structure of InChI.
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Protons: Protonations (and deprotonations) are treated separately • 

from other types of charge changes. This makes InChI of acetic acid 

(InChI=1/C2H4O2/c1-2(3)4/h1H3,(H,3,4)) and acetate anion (InChI=1/

C2H4O2/c1-2(3)4/h1H3,(H,3,4)/p-1) identical in all layers but this one. 

The unexpected result of this feature is that the summary formula does 

not correspond to the described structure in such cases; acetate anion is 

C2H3O2, not C2H4O2. Like the component charge layer, no information 

about the position of protonation is given.

Stereochemical layer• 

Double bond and sp2 stereochemistry• 

Tetrahedral (sp3) stereochemistry• 

Isotopic layer• 

Fixed-H layer: This layer is optional, and its inclusion into InChI may be • 

switched on or off in the InChI software. By design, structures differing 

only in position of movable hydrogens are encoded with one InChI. This 

layer makes it possible to distinguish between these forms as demonstrated 

in Figure 5.5.

Even though InChI is a relatively new format (the fi rst stable version of the InChI 

software was published in 2005), it has already gained broad acceptance in the chem-

informatics world. It is supported by most of the major chemical drawing programs 

and is used in such databases as PubChem (http://pubchem.ncbi.nlm.nih.gov/) and 

NIST Webbook (Linstrom and Mallard 2005).

The features of InChI make it usable as a unique identifi er of a molecular struc-

ture as well as a format for data storage (with limitations implied by its design, 

such as the absence of atom coordinates and charge localization, or delocalization of 

hydrogen atoms, which makes it impossible to distinguish between individual tauto-

meric forms without the presence of the fi xed hydrogen layer).

1/C6H10/c1-3-5-6-4-2/h3-4H2,1-2H3 

OH 
1/C5H8O/c1-2-3-4-5-6/h6H,2,5H2,1H3 

1/C6H10/c1-6-4-2-3-5-6/h4H,2-3,5H2,1H3 

1/C6H10/c1-6-4-2-3-5-6/h2,4,6H,3,5H2,1H3 

FIGURE 5.4 Infl uence of chemical structure on individual InChI layers.
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In the following section we discuss InChIKey, a format derived from InChI, 

which may replace InChI in cases where a simple unique identifi er of a compound 

is needed.

INCHIKEY

Basic Characteristics
InChIKey is a linear format that:

Is a computer-generated format based on InChI• 

Serves as a “fi ngerprint” of a molecular structure• 

Has a fi xed length• 

Is not convertible back to the original structure• 

Has low software support that is expected to grow fast (it’s a very new format)• 

A format example (InChIKey of ethanol) is as follows:

LFQSCWFLJHTTHZ-UHFFFAOYAB

Format Overview
The most important property of InChI is that it provides a unique identifi er for a 

compound based solely on its structure. This feature would seem to make it ideal for 

purposes like database indexing, publication inside articles as a form of alternative 

chemical naming, online display, searching of chemical compounds, and so on. Even 

though InChI really is usable for the mentioned purposes, it has several features that 

make it less then ideal for these tasks. The main weakness of InChI in these cases 

is its length, which is proportional to the size of the encoded molecule. While this 

feature is natural and unavoidable for a complete format, it means that the larger the 

molecule is, the more space we have to reserve for its representation, either in a data-

base, in a printed publication, or on a website. Also, the content of the identifi er does 

not form one homogeneous string, which means it will be split into smaller parts by 

N OH N O

1/C5H5NO/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7)

No fixed hydrogens

Fixed hydrogens

1/C5H5NO/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7)/f/h7H
1/C5H5NO/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7)/f/h6H

FIGURE 5.5 Demonstration of the fi xed hydrogen layer infl uence on the fi nal InChI.
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search engines or in text processing programs that are designed to work with com-

mon text and are not aware of the notation of InChI. In this respect, registry num-

bers, such as CAS RN, have a big advantage of being short, usually of well-defi ned 

structure and limited length. However, such identifi ers are neither deducible from the 

structure nor convertible back to the structure without the need of database lookup.

The idea behind InChIKey is to bring the advantages of a fi xed-length registry 

number together with the computability of InChI. The decoding of the identifi er had 

to be sacrifi ced to its fi xed length.

Fortunately, in computer science there already exists a well-known and widely 

used solution to the problem of computation of a fi xed length fi ngerprint from a vari-

able arbitrary sequence of bytes; it is called hashing. This technique is used in many 

ways (for password storage, fi le content checks, digital signatures, etc.), and there are 

several strong and well-tested hash algorithms to choose from. The hash algorithm 

used in InChIKey is SHA-256 truncated to match the length selected for InChIKey.

The InChIKey has a fi xed length of 25 characters, divided into two groups (14 and 

10 characters long) by a hyphen. Both parts of the InChIKey include encoded hashes of 

different layers of the original InChI string. The second part also contains a checksum 

character (the last one), which enables checking of validity of the whole InChIKey after 

transcription or other transfer. Such a two-part arrangement of the InChIKey structure 

was selected to at least partly preserve the layered structure of InChI. Therefore, the 

most important data about a structure are contained in the fi rst part, and the second 

part is reserved only for information about isotopes, stereochemistry, and fi xed hydro-

gens. This fact means that, for example, stereoisomers will differ only in the second 

part of the identifi er.

InChIKey was carefully designed with online use and search engines in mind. It 

uses only uppercase letters, so there are no characters that would be considered as 

word-splitting by a search engine. This means the InChIKey should be processed as 

two words and be easily searchable on the Internet. Because only uppercase letters 

are used, false collisions based on case insensitivity of the search are avoided. It is 

a very compact form, and the presence of an internal validation mechanism makes 

InChIKey very resistant against possible errors introduced during transfer, such as 

wrong transcription, line-wrapping in an email client, and so on, which makes it in 

this sense superior to both InChI and SMILES.

Because of the nature of InChIKey (and every hash in general), collisions are 

possible. This fact comes directly from the limited number of possibilities a 25-char-

acters-long string can contain. Even though collisions of InChIKeys are inevitable 

in the future, it is not possible to say when the fi rst collision will occur. The offi -

cial InChI documentation (documentation published with the InChI source code, 

version 1.02-Beta; http://www.iupac.org/inchi/download/index.html) states that the 

probability of a collision in a set of 1 billion InChIKeys is 2.0 × 10–20%. However 

because the second part of the InChIKey is based on InChI layers that do not exist 

(are empty) for many structures (such as isotopic layer, stereochemistry layer, etc.), a 

more realistic estimate must be based on collisions in the fi rst part of the InChIKey 

alone. In this case the same source states that the probability of a collision in a set of 

1 billion structures increases to 2.7 × 10–9 %. However, even this means that unless 

we are extremely unlucky, InChIKey should remain unique for quite a long time. It 
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was tested against a set of 77 million structures (both existing and generated) and no 

collision was found.

The hash origin of InChIKey also means that it is not convertible back to the 

original InChI or molecular structure, because for each InChIKey there is an unlim-

ited number of possible matching input values. Although this might seem to be a 

drawback of the format, it is simply the price of the fi xed length of the identifi er. 

When a readable identifi er with no possible collisions is needed, InChI (or canonical 

SMILES) should be used.

At the time of writing of this chapter, InChIKey is a very new format. However, 

once it starts to gain support in chemical software and online databases, it will have 

the potential to replace conventional registry numbers and provide a standardized, 

easy to use chemical identifi er that is based solely on the molecular structure.

OTHER FORMATS

In this section we will briefl y discuss formats that were not mentioned previously but 

might be interesting to the reader, either because they offer some specifi c features or 

because they are used in specifi c fi elds.

Formats Used in the Protein Data Bank
The Protein Data Bank (PDB; http://www.pdb.org) is the worldwide repository of three-

dimensional structural data of biological macromolecules, such as proteins and nucleic 

acids (Berman et al. 2003). The Protein Data Bank uses several text fi le–based formats 

for data deposition, processing, and archiving. The oldest of these is the Protein Data 

Bank format (Bernstein 1977), which is used both for deposition and for retrieval of 

results. It is a plain-text format whose main part, a so-called primary structure section, 

contains the atomic coordinates within the sequence of residues (e.g., nucleotides or 

amino acids) in each chain of the macromolecule. Embedded in these records are chain 

identifi ers and sequence numbers that allow other records to reference parts of the 

sequence. Apart from structural data, the PDB format also allows for storing of various 

metadata such as bibliographic data, experimental conditions, additional stereochem-

istry information, and so on. However, the amount of metadata types available is rather 

limited owing to the age of the PDB format and to its relatively strict syntax rules.

The PDB format was created in the 1970s and has gained much software support 

since that time. The format is still being developed and new revisions of the format 

are published. Even though it is not as widely used in the area of general chemistry, 

it certainly deserves attention as the major format in the fi eld of structural biology.

Although the PDB format has served the community well since its inception, it is 

widely recognized that the current PDB format cannot adequately express the large 

amount of data (content) associated with a single macromolecular structure and the 

experiment from which it was derived in a way (context) that is consistent and permits 

direct comparison with other structure entries. Therefore, an alternative approach 

has been developed under the auspices of the International Union of Crystallography 

(IUCr), leading to another plain-text format: the mmCIF format (macromolecular 

Crystallographic Information File; Bourne et al. 1997). The mmCIF format repre-

sents an extension of the Crystallographic Information File (CIF) used for describing 
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structures of small molecules. Compared to the PDB format, mmCIF is more fl ex-

ible, allowing not only for storing data in predefi ned categories, but also for defi ning 

of users’ own categories. Also, the mmCIF format is more suitable for automated 

computer processing. Therefore, it is used internally in PDB as its primary storage 

fl at fi le format. The price for its fl exibility is its rather complex structure. Thus, 

among experimentally oriented structural biologists, the PDB format still prevails 

and won’t be replaced by the mmCIF format in the near future.

In accordance with the general trend in informatics to base fi le formats on XML, 

PDB has also created its newest fi le format in this way. The result is called PDBML 

(Westbrook et al. 2005), and even though the name would suggest some relationship 

to the old PDB format, it closely resembles the mmCIF format. Both mmCIF and 

PDBML formats are used internally in PDB, and their more complex nature will 

probably never make them as widely used as their older sibling. However, the impor-

tance of the PDB itself makes any format it uses worth knowing.

SYBYL Line Notation (SLN)
SYBYL Line Notation (Ash et al. 1997) is a linear format that to some extent resem-

bles SMILES. The most important feature that these two formats have in common is 

human readability. However, the authors of SLN have made several design decisions 

that make it different from SMILES in several important points:

Hydrogens must be given as part of the formula; no hydrogens are implied • 

based on standard valences of atoms.

Aromatic bonds are given explicitly using a colon (:); it is not possible to use • 

a lowercase letter for an atom symbol for specifi cation of aromatic bonds.

Stereochemistry is handled differently and can be used to express relative • 

stereochemistry, mixtures of enantiomers, and so on.

SLN includes support for substructure search queries. In the SMILES • 

world, this task is handled by other derived formats.

Additional information about an atom, such as charge, is given in square • 

brackets after the atom symbol, not together with the atom symbol. The types 

of additional information are not limited and may be even user defi ned.

SLN is able to store atomic coordinates.• 

Rings are encoded using a slightly different method that uses atom num-• 

ber references.

Even though SLN does not have the widespread support that SMILES has, it is 

used in several systems, and some of its properties mentioned above make it more 

advanced and general than SMILES.

CONVERSION OF CHEMICAL FORMATS

In this section, we will very briefl y discuss the topic of conversion between differ-

ent chemical formats. Even though every chemical editor can export its drawings 

into several external chemical formats and tools are available for batch conversion 

between different formats (such as the widely used open-source program Open 
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Babel [http://openbabel.sourceforge.net/]), it is important to keep in mind the limita-

tions of each format. For example, conversion from SMILES, which does not store 

atom coordinates, into Molfi le would result either in the molecule having undefi ned 

geometry or the geometry being supplied by the conversion tool, which might be 

completely different from the real one.

It is even more important to keep such limitations in mind when one format 

is used as an intermediary because the conversion is not possible in a direct way. 

Choosing a linear format for this task would inadvertently lead to loss of informa-

tion about geometry of the converted structure, even though both the original and 

the fi nal format it.

Keeping such limitations in mind, it might be said that for the widely supported 

formats discussed in the above sections, there is no problem converting data between 

any two of these, for example, using Open Babel.

ONLINE PUBLICATION OF CHEMICAL DATA

In this section, we will discuss which formats to use for online publication of chemi-

cal data. Because different publishers of data have different goals and demands in 

this area, we will concern ourselves with several typical scenarios of publication of 

chemical structures.

PUBLISHING DATA FOR SEARCH ENGINES

The goal here is to make chemical structures available for search engines. Typical 

deployment includes journal publishers, vendors of chemicals, individual scientists, 

and working groups.

On today’s Internet it is vitally important for a website to be visible in a search 

engine. In the following paragraphs we will discuss how to make chemical structures 

available to search engines so that the user can easily fi nd them. Although we will 

discuss only publication of structural data, it is important to mention that even with 

the development of new linear formats such as InChI and InChIKey, which may drive 

increased usage of general search engines for structural searches, most users would 

use chemical names to search for information about a compound. Therefore, whenever 

possible, it is very important to include chemical names of published structures.

When publishing chemical structures for search engines, all fi le-based formats 

are usually out of the question. The reason is simple: Search engines work on the 

scale of characters and words and are not prepared to compare whole fi les. Thus, we 

remain with the selection of available widespread linear formats: SMILES, InChI, 

and InChIKey.

The most important factor that determines the possibility of using a format for 

online searching is the existence of a canonical form of the format. Without canoni-

cal encoding, there are simply too many possibilities of search input (even just the 

most probable ones) that would have to be tried.

Both InChI and InChIKey are canonical by default, and there is no other option for 

them. The situation is different for SMILES, where both a canonical and a noncanoni-

cal form exists. For this reason InChI (or InChIKey) is probably better, because the 
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canonization must be done both on the side of the publisher and on the side of the user 

who performs the search. Because the latter is out of our control, it is safer to use a 

format that does not allow noncanonical forms. Also, the canonization algorithm used 

in InChI has stronger normalization, thus making the search even more effi cient.

One other thing we have to consider when selecting the right format for our pur-

pose is the compactness of the format. The problem here is that search engines are 

usually word based and ignore some characters, such as punctuation. Therefore, it 

is advantageous to have a format that does not “fall apart” when read by a search 

engine (e.g., SMILES for biphenyl c1ccccc1-c1ccccc1 will be almost surely read as 

two separate words,” and it would thus be impossible to effectively search for the 

biphenyl SMILES without many false hits where benzene is found). In this respect 

InChIKey is by far the best, because it is formed by two compact parts that contain 

only letters; thus, both parts will be treated as one word by search engines. Because 

the fi rst part of InChIKey contains most of the structural information, it is in this 

case advantageous that the two parts will be searched separately. The other two for-

mats, InChI and SMILES are often much longer than InChIKey and contain many 

characters that are treated as word splitting. SMILES has one additional problem: 

Because search engines usually do not distinguish between lowercase and uppercase 

letters, it is impossible to distinguish between benzene c1ccccc1 and cyclohexane 

C1CCCCC1.

Lastly, we should take into account the probability that the user will use our 

particular format for searching. This fact depends not only on how well established 

the format is, in which SMILES would probably win and InChIKey would be an 

outsider, but also on the user’s perception of which format is suitable for this task. 

Because InChI, and InChIKey even more, were marketed from the beginning as suit-

able for online searches, it is very likely that the user will use one of these formats for 

searching, rather than SMILES, which does not have such an association. Of course, 

we could solve this problem by simply publishing our data in all three formats. The 

decision should be made based on our resources, but it is in general very easy to 

convert between the formats automatically.

Taking all of the above into account, probably the best format for search engines is 

InChIKey. Its only disadvantage at this time is its lower penetration into the media, but 

we can expect it to gain popularity very quickly, especially in free online sources.

We should briefl y mention the possibilities of inclusion of the structural data into 

a web page. In many cases we would just place it somewhere in the text, below a 

picture that represents the structure of the corresponding molecule or in a separate 

table. However, it might not suit our purpose to place some strange and possibly 

several-lines-long identifi ers into our text. In this case, it is possible to make the 

identifi ers part of the page but use styling to hide the information from the user and 

still make it available to the search engine robot. We have successfully used this 

approach to invisibly add InChI into the online version of the IUPAC Compendium 

of Chemical Terminology (http://goldbook.iupac.org; Nic et al. 2006).

PUBLISHING DATA FOR ONLINE DISPLAY

The goal here is to display chemical structures online on a web page. Typical deploy-

ment includes educational websites and online databases.
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Direct online display of common chemical formats is not possible without use of 

specialized programs. Because of this fact, it is often advisable to convert them into 

a web-friendly graphical format, such as PNG (Portable Network Graphics) or GIF 

(Graphics Interchange Format). Although JPEG (Joint Photographic Experts Group) 

is also usable, its nature leads to development of undesired artifacts around sharp 

edges of text and lines. For this reason lossless formats, such as PNG, are more suit-

able. In specifi c cases or as an addition to a bitmap version of a drawing, a vector ver-

sion, such as SVG (Scalable Vector Graphics) or EPS (Encapsulated PostScript), may 

be used. The advantage is much better printout quality when such a format is used.

Sometimes, though, it is possible to use conversion to graphic formats to display 

all properties of a structure, especially three-dimensional structures. Even though it 

is possible to create two-dimensional renderings of such structures and even provide 

a stereo-view, three-dimensional structures are best visualized by direct manipu-

lation, such as rotation and magnifi cation. These features cannot be provided by 

simple bitmap graphics.

In such cases, it is possible to either use specialized software, designed for the particu-

lar purpose of chemical data display, such as Jmol (http://jmol.sourceforge.net/) or Chime 

(http://www.mdl.com/products/framework/chime/), or to convert data into a three-

 dimensional-friendly format, such as VRML (Virtual Reality Modeling Language).

The former approach gives the user an environment specializing in chemistry, 

with options and tools not found in general software (such as the ability to choose 

between ball and stick, wire-frame, and other representations of a molecule). The 

programs are usually able to work with many input formats, such as Molfi le or CML, 

and there is therefore often no need to convert the published data. Of the tools men-

tioned above, Jmol deserves special attention because it is an open-source program 

that works as a Java applet inside the browser, so the user does not need to install any 

special tools (of course, Java is mandatory).

Conversion to a three-dimensional format such as VRML has its advantages if the 

audience can be expected to have some experience with the software or the author 

has special needs not met by the above-mentioned chemistry software.

PUBLISHING DATA FOR SHARING

The goal here is to provide data in a way that makes them easy to download, possibly all 

at once. Typical deployment includes scientifi c organizations and free online databases.

There are several examples on the Internet of websites that are actively work-

ing toward providing free and unrestricted access to scientifi c data for the scien-

tifi c community and general public. One of the biggest examples that is also closely 

related to chemistry is PubChem (http://pubchem.ncbi.nlm.nih.gov/), an online data-

base of chemical compounds, their structures, and chemical and other related data. 

PubChem not only provides its data online on its webpages, but it also makes the 

chemical content easily accessible using automated tools (in this case, compressed 

SDfi les containing tens of thousands of structures each are used).

When publishing data for others to use, be it on a multimillion or a few dozen scale, 

it is important to evaluate which format will preserve the most of your data and still be 

as widely supported as possible. Although it is possible to simply put online the fi les 

that are natively used by your chemical editor, thus being sure that even coloring of 
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bonds and fonts are preserved, you will inadvertently limit the number of users who 

will be able to use your data. However, using a linear format might lead to loss of infor-

mation in cases where geometry matters, such as in results of theoretical calculations, 

X-ray measurements, and so on. For this reason it is advisable to use one of the widely 

adopted fi le-based chemical formats: CTFile formats (such as SDfi le) or CML.

Of course, when data are available in one of the above-mentioned formats, it is 

very easy to automatically convert them to other formats such as InChI or InChIKey 

to make the most of them and prepare the website for search engines.

STORING CHEMICAL DATA

In this section, we will briefl y discuss the advantages and disadvantages of the 

 above-described formats when it comes to storing chemical structures for personal, 

laboratory, or similar use. We assume that any large chemical database project will 

be based on a ready-to-use commercial solution and will therefore focus on small-

scale or occasional users  willing to preserve their data and make them searchable. 

Our goal will not be to create a fully working system for chemical structure storage, 

but rather to point out possible solutions and warn against common mistakes.

DATA STORAGE

When storing chemical drawings, we have to ask ourselves what kind of data we 

actually have. Are we dealing purely with well-defi ned chemical structures, or do 

we also need to store structures with variable substitution, additional text, or even 

related graphics? The reason for this question is that the formats discussed in the 

previous sections are all designed only for the purpose of storing chemical structures 

and cannot reliably describe all additional features of the drawing. Therefore, the 

following paragraphs pertain only to storage of “pure” chemical structures.

However, even if we work only with well-defi ned structures, it is always a good 

idea to store the source fi les (usually in the native format of the software that was used 

to create them), because in this way we can make sure no part of the drawing is lost 

in the conversion. However, native formats usually have the disadvantage of being 

bound to one specifi c program, and options for their automatic processing are limited. 

For this reason native data should be auxiliary, and the data for everyday use should 

be stored in some widely supported, well-documented format, probably one of those 

described above. This approach would also create a future-proof copy of our data, 

because proprietary formats tend to be problematic to use after 10 years or more.

Linear formats are usually not good candidates for primary data storage, simply 

because they do not contain the molecular geometry. Therefore, it is advisable to use one 

of the fi le-based formats for this purpose—either Molfi le or CML. These are very simi-

lar in their capabilities and have good support in various chemical software packages, 

with Molfi le usually having slightly smaller fi les and even wider support than CML.

However, fi le-based formats are not directly comparable when a search in a data-

base is performed and special chemistry-aware tools have to be used. For the pur-

pose of searching in the database, linear formats might be more useful. This topic is 

discussed in the following subsection.
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DATA INDEXING

Data storage is only one aspect of the problem of chemical structure handling. The 

other, at least as important, part is searching and, more importantly, fi nding of the 

right data. To perform a full-featured search in a chemical database, as we know 

from SciFinder or CrossFire, we need specialized software (and powerful hardware 

if we have larger amounts of data). However, in a personal catalog used in everyday 

laboratory praxis, people most frequently need to simply fi nd if a compound is some-

where in their cupboard or if someone from their group has its spectra measured. 

For the purpose of fi nding if a structure is or is not present in a database, any unique 

identifi er of the structure will do. If we discard the possibility of using some already 

used registration number, for which we would need to fi rst look up the appropri-

ate number, we have already described three alternatives that provide exactly this: 

canonical SMILES, InChI, and InChIKey. Each of these has advantages and disad-

vantages. All of them are computer generated based on a drawn structure and can be 

easily generated from either Molfi les or CML (which we already decided to use as 

primary formats for our data).

SMILES has the additional feature of being human readable, but this is not very 

important in our model case. InChI, and InChIKey by inheritance, features a much 

better and robust normalization of structures; for example, two different tautomeric 

forms have the same InChI, but different canonical SMILES. Also, the layered struc-

ture of InChI gives us the possibility of excluding some particularity of a structure, 

such as its stereochemistry, from the search when needed. This is not possible using 

InChIKey or SMILES.

The main advantage of InChIKey in this mode of use is its fi xed length and short, 

compact form. These features reduce the chance of possible errors being introduced 

when the identifi er is copied from an email or written by hand, which might be con-

siderable for larger structures for which InChI can easily span several lines of text. 

The simple format of InChIKey makes it even possible to use it as part of a directory 

or fi le name, thus creating a very simple database without the need for database soft-

ware. However, there is always the possibility of InChIKey collision, even though 

the chance is miniscule. Therefore, cautious users should augment it with some other 

kind of identifi er, just in case a collision occurs.

SUMMARY

The following list summarizes a possible setup of formats for a reliable, redundant 

chemical structure catalog based on the recommendations above:

InChIKey as the primary key for quick lookup into the database• 

InChI as auxiliary information to InChIKey (for the purpose of readability • 

and possible layer-by-layer comparison and as a safety precaution in case 

InChIKey collision occurs)

Molfi le or CML as the primary source of structural data that can be used to • 

create the above-mentioned identifi ers

Original native fi le as a safety precaution and for presentation purposes• 
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CONCLUSION

In this chapter we have described the most commonly used formats for chemical 

structure storage. We have discussed in detail their properties and suitability for 

various scenarios of online publication and data storage.

REFERENCES

Ash, S., M.A. Cline, R. Webster Homer, T. Hurst, and G.B. Smith. 1997. SYBYL Line 

Notation (SLN): a versatile language for chemical structure representation. J. Chem. Inf. 
Comput. Sci. 37:71–79.

Berman, H.M., K. Henrick, and H. Nakamura. 2003. Announcing the worldwide Protein Data 

Bank. Nat. Struct. Biol. 10:980.

Bernstein, F.C., T.F. Koetzle, G.J.B. Williams, E.F. Meyer, Jr., M.D. Brice, J.R. Rodgers, 

O. Kennard, T. Shimanouchi, and M. Tasumi. 1977. Protein Data Bank: a computer-

based archival fi le for macromolecular structures. J. Mol. Biol. 112:535–542.

Bourne, P.E., H.M. Berman, K. Watenpaugh, J.D. Westbrook, and P.M.D. Fitzgerald. 1997. 

The macromolecular Crystallographic Information File (mmCIF). Meth. Enzymol. 
277:571–590.

Chartrand, G. 1984. Introductory Graph Theory. New York: Dover.

Dalby, A. et al. 1992. Description of several chemical-structure fi le formats used by 

 computer-programs developed at Molecular Design Limited. J. Chem. Inf. Comp. Sci. 
32:244–255.

Holliday, G.L., P. Murray-Rust, and H.S. Rzepa. 2006. Chemical markup, XML and the 

Worldwide Web. 6. CMLReact; An XML vocabulary for chemical reactions. J. Chem. 
Inf. Mod. 46:145–147.

Kuhn, S., T. Helmus, R.J. Lancashire, P. Murray-Rust, H.S. Rzepa, C. Steinbeck, and E.L. 

Willighagen. 2007. Chemical markup, XML, and the World Wide Web. 7. CMLSpect, 

an XML vocabulary for spectral data. J. Chem. Inf. Mod. 47:2015–2034.

Linstrom, P.J., and W.G. Mallard (Eds.). 2005. NIST Chemistry WebBook, NIST Standard 
Reference Database Number 69. http://webbook.nist.gov/.

McNaught, A. The IUPAC International Chemical Identifi er: InChl: a new standard for molec-

ular informatics, Chem. Int. 28(6):12–14.

Murray-Rust, P., and H.S. Rzepa. 1999. Chemical markup language and XML. 1. Basic prin-

ciples, J. Chem. Inf. Comp. Sci. 39:928–942.

Murray-Rust, P., and H.S. Rzepa. 2003. Chemical markup, XML and the Worldwide Web. 4. 

CML schema. J. Chem. Inf. Comp. Sci. 43:757–772.

Nic, M., J. Jirat, and B. Kosata. 2006. Chemical terminology at your fi ngertips. Chem. Int. 
28(6):28–29.

Trinajstic, N. 1992. Chemical Graph Theory, 2nd ed. Boca Raton, FL: CRC Press.

Trudeau, R.J. 1993. Introduction to Graph Theory. New York: Dover.

Weininger, D. 1988. SMILES: a chemical language and information system. 1. Introduction to 

methodology and encoding rules. J. Chem. Inf. Comp. Sci. 28:31–36.

Weininger, D., A. Weininger, and J.L. Weininger. 1989. SMILES. 2. Algorithm for generation 

of unique SMILES notation. J. Chem. Inf. Comp. Sci. 29:97–101.

Westbrook, J., N. Ito, H. Nakamura, K. Henrick, and H.M. Berman. 2005. PDBML: the 

representation of archival macromolecular structure data in XML. Bioinformatics 

21:988–992.



99

6 Chemical XML 
Formatting

Miloslav Nic

CONTENTS

Introduction ............................................................................................................ 100

XML Technologies ................................................................................................ 100

XML Syntax ........................................................................................................... 101

XML Namespaces .................................................................................................. 103

Validation of XML Documents .............................................................................. 104

Document Type Defi nition (DTD) .................................................................... 105

W3C XML Schema ........................................................................................... 105

RelaxNG ............................................................................................................ 106

Schematron ........................................................................................................ 106

Processing of XML Documents ............................................................................. 106

SAX Processing ................................................................................................ 107

DOM (Document Object Model) ...................................................................... 107

XSLT Transformations ...................................................................................... 108

XML Databases ..................................................................................................... 108

XML Markup Languages ....................................................................................... 109

Versioning ......................................................................................................... 110

Flexibility .......................................................................................................... 110

Standards ................................................................................................................ 111

World Wide Web Consortium ........................................................................... 111

Organization for the Advancement of Structured Information 

 Standards (OASIS) ........................................................................................ 111

XML and Chemical Data Mining .......................................................................... 112

Chemical Structures and Reactions ................................................................... 112

Chemical Markup Language (CML) ................................................................. 113

Physical Measurements ..................................................................................... 114

ThermoML ................................................................................................... 114

AnIML (Analytical Information Markup Language) ................................... 115

UnitsML (Units Markup Language)............................................................. 115

Mathematical Expressions ................................................................................ 115

SBML (Systems Biology Markup Language)................................................... 116

Resource Description Framework (RDF) ......................................................... 116

Conclusions and Perspectives ................................................................................ 117

References .............................................................................................................. 118



100 Chemical Information Mining: Facilitating Literature-Based Discovery

INTRODUCTION

Data mining applications aim at the automatic discovery of new information in avail-

able data. Because extraction of data from unstructured text is very diffi cult, current 

applications usually work with data that is in some way structured.

In recent years, XML (eXtensible Markup Language) has become the technology 

of choice. It is extensible because it allows users to represent or defi ne their own ele-

ments while facilitating the exchange of semistructured data across different informa-

tion systems with different user-defi ned elements. It is not surprising that nowadays 

data are commonly stored in XML and that non-XML data are routinely converted 

to an XML format before further processing. Therefore, anybody interested in data 

mining applications should understand the fundamental aspects of XML technologies 

in order to follow modern trends and communicate with experts in data mining.

This chapter provides broad overview of relevant aspects of XML technologies 

and discusses XML usage in chemistry and other relevant fi elds.

XML TECHNOLOGIES

XML has become very popular in recent years. It is diffi cult to fi nd an area of com-

puting that does not use XML in some way. Software applications nowadays work 

with XML data, programming languages offer libraries specializing in XML pro-

gramming, and thousands of developers have gained experience with XML usage. 

Considering this phenomenal success, it is highly improbable that XML technolo-

gies will fade into oblivion in the near future. Neither material nor human invest-

ments in this area are therefore endangered by the potential disappearance of the 

underlying technology.

Because many diverse communities with different professional languages have 

adopted XML, terminology misunderstandings are common. Before focusing on the 

details of XML, it is important to defi ne basic terms and their mutual relations: 

XML documents are collections of letters, digits, and other characters that conform 

to a set of rules. Such documents can reside in fi les or databases or be transiently 

generated by a program and immediately processed further without leaving com-

puter memory.

XML syntax provides rules to which every document must conform. These 

rules specify which characters are permitted inside the document, how they can be 

ordered, and how this ordering provides structure to information present inside doc-

ument. If there is just a single violation of these rules, XML software—any software 

that can process XML documents in a way specifi ed by these rules—is required to 

stop processing and quit.

When a document is parsed (read) by a software application, the contained data is 

transformed into structures that can be further processed by computer. This resem-

bles the process of human reading, where the eyes see long rows of characters while 

the brain gives meaning to these rows. People are very good in discovering struc-

tures hidden inside texts, but computers need much more help.

Markup languages like XML provide formal ways how to present structured 

information to computers. They augment unstructured text with structural and 
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logical hints that simplify programming tasks to a manageable level. Many markup 

systems exist to augment the text with these hints, but XML syntax provides some 

clear advantages over these alternative systems. XML is a tool of choice for the 

markup of syntactically rich structures.

XML namespaces provide a mechanism for automatic recognition of markup lan-

guages. Several markup languages can be used in a single XML document without a 

dramatic increase in the complexity of processing software.

XML SYNTAX

The basic rules of XML syntax are straightforward and can be learned in a few 

hours. Some problematic areas require a much more thorough understanding, but 

such cases are usually not encountered in common practice. The following text pro-

vides a short overview and the rationale behind the syntactic rules. Interested readers 

will easily fi nd many materials of different complexity on the Internet.

The syntactic rules are specifi ed in the World Wide Web Consortium (W3C) stan-

dard, “Extensible Markup Language (XML).” The fi rst edition was issued in 1998 

(Bray et al. 1998); the currently valid forth edition was published in 2006 (Bray et al. 

2006b). If a document conforms to all rules given in this specifi cation, it is said to 

be “well formed.”

The basic structural units of XML documents are elements. With the help of ele-

ments, any document can be separated into parts that are logically connected. So if 

an XML document contains a list of molecules, each molecule can be completely 

described inside its own element without any reference to the rest of the text. This 

ensures that each element is safely and independently processed.

Molecules consist of atoms. The atoms represent a different logical entity from 

molecules, so it is natural to express their presence with the help of different ele-

ments. At the same time, it is necessary to express the notion that a molecule is a col-

lection of several atoms. In XML, some elements can be children of other elements, 

and with this hierarchical construction, the concept of a molecule consisting of a set 

of atoms is naturally expressed. Similarly, atom elements can contain children ele-

ments describing properties such as symbol, charge, and so on.

Although these hierarchic structures can be easily expressed with drawings, it is 

not easy to express them with plain text. Mathematicians encounter similar problems 

when writing mathematical expressions where ordering of different operations must 

be performed. Parentheses were invented to solve these problems, as they provide 

syntax to show the intended grouping of expression parts.

Whereas XML syntax is based on similar principles, usage of parentheses would 

not be practical. An XML document can be many thousands of pages long, and fi nd-

ing a matching parenthesis would be a nontrivial task. Thus, it is important to have 

some syntax for naming of the parentheses so that correct pairing of their starts and 

endings can be easily checked. In XML, such named parentheses are called tags; 

start-tags open and end-tags close logical parentheses.

Because the parentheses are commonly used in many different texts, pointed 

brackets (< >) are used instead. The start-tags are marked as “<molecule>.” The 

end-tags are similar, but they contain a slash character (/) before the name (e.g., 



102 Chemical Information Mining: Facilitating Literature-Based Discovery

</molecule>). Slash characters distinguish start-tags from the end-tags. If there are 

no elements or other text between start and end tags, the end tag can be replaced by 

a slash preceding the closing > of the start element, as in “<electron/>.”

Although it is not immediately apparent from mathematical notation, the paren-

theses never overlap. The inner parentheses are always closed before the outer ones; 

otherwise, their meaning would not be unequivocal. According to the same logic, if 

a start-tag of one element is followed by the start-tag of another element, the end-tag 

of the second element must precede the end-tag of the fi rst one. In short, elements in 

XML never overlap, a child element is always fully enclosed by its parent element. 

Thanks to this rule, a hierarchical structure can always be unequivocally understood 

from XML notation.

The hierarchical structure provides a unifying organizational theme inside a doc-

ument, but if several elements were without parents, it would be diffi cult to specify 

their mutual relations. Another rule was therefore added: In a well-formed document 

only one element is without a parent. Such an element is called the root element, and 

all other elements are either its children or descendants. Although the start-tag of 

this element is therefore the fi rst text in the document, and its end-element is the last 

text, special types of text called comments and processing instructions can appear 

anywhere. Comments are ignored by XML applications. Processing instructions are 

intended for processing software and do not provide any document data in a well-

designed language.

The range of characters that can be used for tag names is restricted. For common 

usage it suffi ces to remember that tag names can start only with letters or an under-

score character (_), followed by an unlimited number of other letters, digits, and 

characters: _, -, ., and : (with special meaning discussed below). The letters and digits 

are not restricted to the English alphabet; they can come from virtually any world 

language. The default encoding of XML documents is Unicode, which can express 

characters in virtually all existing languages.

Although any information can be expressed by elements, sometimes a simpler 

notation would be suffi cient. In XML, information without further internal structure 

can be provided inside start-tags as an attribute. The attribute syntax starts with its 

name and is restricted by the same rules as element names followed by an equal sign 

(=). The value of an attribute is given in text delimited by apostrophes (‘…’) or quotes 

(“…”). Names of elements are separated from attributes by white-space characters 

(spaces, tabulators, new lines). The same element is prohibited from having several 

attributes of the same name (<molecule name=‘benzene’ id=“i4”/>).

Element and attribute names starting with “XML,” “xml,” or any other case com-

bination are reserved for possible further usage. It is called a well formedness error if 

an element name starting with “xml” is used in a non-W3C defi ned name. For perfor-

mance reasons, some XML parsers do not check for this constraint, but nevertheless it 

is very imprudent to use such names. When searching for names of containers for some 

XML data, it is tempting to use such names, so this error is surprisingly common.

When a parser reads an XML document and encounters a < character, it automati-

cally assumes that it encountered either a start- or end-tag. This rule simplifi es the 

writing of XML reading programs and makes them very fast, but it also causes a 

serious complication: It makes inputting expressions like “1 < 3” nontrivial. Values 
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of attributes are surrounded either by apostrophes or quotes, so combined usage of 

both apostrophes and quotes causes similar problems in attribute values. Prohibition 

of such characters in XML texts is not an option. A special notation therefore had to 

be introduced that enables an alternative specifi cation of characters. If the < charac-

ter is used in text, it must be written as “&lt;”. Similarly, quotes and apostrophes can 

be replaced by “&quot;” and “&apos;” respectively.

XML NAMESPACES

Elements and attributes provide structure to the document data, allowing different 

parts of the document to be processed by different programs. Required software 

may be selected manually, but the selection can be automatized by systemic usage of 

fi le suffi xes or other hints. Unfortunately, an approach in which information about 

the markup language is external to the XML document is fragile. The fi les can be 

renamed or directories moved, and external information is lost forever.

A more robust system would incorporate markup language information inside the 

XML documents for selection purposes. The name of a root element is a convenient 

selection criterion, but only if every markup language uses unique root elements. If 

there were only several languages around, it would not be a diffi cult problem, but 

given the diversity of the Internet, such uniqueness is impossible to achieve.

The XML namespaces provide a mechanism for generation of unique names for 

each markup language without unduly restricting the choice of available names. The 

XML name of each element and attribute consists of two parts: the namespace part 

and the local part. The same local names can be used in many different markup lan-

guages, as the namespace part provides a means for disambiguation. If the namespace 

is truly unique worldwide, then there is no possibility of a name clash, as the name 

of an element is given by the combination of both parts. With such mechanism in 

hand, it is necessary to fi nd a process that would guarantee worldwide uniqueness of 

namespaces. A global repository of namespaces would provide a solution but unfor-

tunately a very impractical one. The Internet makes such a repository feasible, but 

the nightmare of setting up and running the database in the jungle of fi nancial and 

political considerations would result with high probability in disaster.

Fortunately, a centrally managed system is not the only solution. From a practical 

point of view, it is suffi cient to adopt some empirical rules that make creation of dupli-

cated namespaces highly improbable. The development of the Internet brought about 

such a device in the shape of unique human-readable addresses: URLs. Although 

namespace names are not required to have any specifi c form, it has become a com-

mon practice to create new namespaces that resemble absolute URL addresses. Both 

organizations and individuals with a need for their own namespace usually own a 

domain name. Because domain names are unique, if a namespace starts a domain 

name, then the probability of ambiguity is miniscule.

Usage of URLs causes some problems that do not stem from technical limitations 

but from human misunderstandings. Inexperienced users often believe that if some-

thing looks like a URL, it needs to be connected with the Internet. They express 

concerns about the necessity of Internet connection for XML processing and are sur-

prised that attempts to visit a page with addresses given in namespaces often fail.
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In fact, any namespace string is just an identifi er. “http://zvon.org/my/namespace” 

and “This-is-my-namespace” are equally valid namespaces; the fi rst is just visu-

ally similar to an Internet address. XML documents containing namespaces can 

be used without the Internet, and URL addresses that lead to the same location on 

the Internet would represent two different namespaces if they differ by just a single 

character.

An XML namespace standard (Bray et al. 2006a) specifi es the rules for proper 

namespace usage. These rules are not complicated, but they are often misunder-

stood, so erroneous use of namespaces is quite common.

Documents that use namespaces can be recognized by the presence of colons (:) in 

element or attribute names. The characters after the colon give the local name, whereas 

the characters before the colon are reserved for namespaces, as in “html:body.” Because 

namespace names can be very long and may contain characters prohibited in XML 

names, the string preceding the colon is not directly a namespace but a prefi x identifi er 

that is mapped to the particular namespace elsewhere in the XML document.

Prefi xes can be viewed as mathematical variables that represent real values. 

This means elements “<myNamespace:book>” and “<myNamespace:book>” can 

be different and “<htm:head>” and “<xhtml:head>” can represent the same ele-

ments. It depends on the assignment of the namespace to the prefi x, and this is done 

by namespace declarations. Namespace declarations resemble attributes, but their 

names start with “xmlns” followed by a colon and the prefi x name. The following 

value in quotes specifi es a namespace. So if the element “html:body” is used, the 

declaration xmlns:html=“http://www.w3.org/1999/xhtml” must be provided if the 

body element comes from the XHTML specifi cation. The number of namespace 

declarations in a single document is not restricted, so several markup languages can 

be used in one XML document without danger of naming collisions. Unfortunately, 

not every important XML markup language defi nes and uses its own namespace. If 

there is no namespace available, it is necessary to recognize the markup language 

by other means and in the context of data mining, where a huge collection of docu-

ments from many different sources may be processed, this becomes a challenging 

problem.

VALIDATION OF XML DOCUMENTS

The well-formedness requirements remove many problems that plague processing 

of other types of formats, so parsing of XML documents is relatively simple, but 

data processing does not end with the reading of data into computer memory. It 

includes other programming tasks. Any experienced programmer will attest to the 

fact that taking care of all possible errors in the input data can be time consuming, 

and sometimes the programming code addressing incomplete or erroneous data is 

several times longer than the processing one.

All XML documents consist of elements and attributes, so they look very similar. 

It is therefore not surprising that some sorts of errors, such as missing attributes and 

the wrong order of children elements, reoccur in many different usage scenarios. 

This regularity of errors opens a way for simpler discovery of common problems 

with the help of general software tools.
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These general tools are called schemas, and the process of checking XML docu-

ments against schemas is called validation. A valid XML document is a document 

that conforms to some schema. It is important to note that the validity concept is not 

as precise as the well-formedness concept. The XML document is either well formed, 

and then any XML processor is able to read it, or it is not well formed, and then any 

XML processor is required to reject it. However, an XML document can be valid 

according to one schema and invalid according to another schema at the same time.

There are many ways to write schemas for XML documents, but only a few are 

commonly used. XML designers usually select from this triumvirate of schema 

languages: Document Type Defi nition (DTD), W3C XML Schema, and RelaxNG. 

Sometimes they augment their validation with Schematron rules.

DOCUMENT TYPE DEFINITION (DTD)

DTD is the oldest XML schema language. Its rules are declared in the same standard 

as the XML language (Bray et al. 2006b), and many software tools support DTD. It 

is the only schema language that can be used directly inside XML documents. DTD 

declarations are used not only for validation purposes, but also as vehicles for pro-

viding names to uncommon characters or inclusion of external fi les.

An important advantage of DTD is its compact and relatively simple syntax, but 

DTDs also have several disadvantages. Their expressive power is rather limited, and 

the schema languages discussed below are much more powerful. Another serious 

problem is caused by the fact that DTDs are not namespace aware. Some methods 

exist to simulate namespace handling in DTDs, but such solutions are rather compli-

cated and prone to problems. Their syntax is not based on XML notation, so generic 

XML tools cannot be used for editing DTD documents.

In spite of these shortcomings, at least basic knowledge of DTD syntax is indis-

pensable for everyone seriously working in the XML fi eld. DTD was the only schema 

language used in the early XML years, and even nowadays it is commonly exploited 

both for validation and other purposes.

W3C XML SCHEMA

W3C XML Schema is a schema language defi ned by the W3C (Thompson et al. 2004; 

Biron and Malhotra 2004). The choice of name for this schema language was very 

unfortunate. As discussed above, several schema languages can be used for valida-

tion of XML documents, and W3C XML Schema is just one of them. Unfortunately, 

many people do not understand this nuance and often insist on W3C XML Schemas 

in situations where another schema language would be more suitable.

W3C XML Schema is a powerful validation language that is well supported by 

software tools, but it has some disadvantages that are important to keep in mind. Its 

specifi cations are very complex and diffi cult to thoroughly comprehend. This unfor-

tunate fact led to many corrections to the original specifi cations, and many problems 

are still not fully resolved. Although people are shielded from this complexity by 

schema-authoring software, they become hostages to their tools. If a tool does not 

offer some validation rule, it may be very diffi cult to write it correctly by hand; if 
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two validators return contradictory results, it takes a disproportionate amount of 

time to decide which one is right. W3C XML Schemas are also rather weak in some 

commonly encountered circumstances such as the handling of content without strict 

order found in many textual documents.

It is signifi cant that several fl agship W3C activities are not using W3C XML 

Schemas for their specifi cations but are using RelaxNG as the schema language 

of choice (e.g., Scalable Vector Graphics development, http://www.w3.org/TR/

SVGMobile12/schema.html).

RELAXNG

In contrast to the previous schema languages, RelaxNG is not a product of the W3C. 

It was originally developed independently, but later accepted by OASIS, and submit-

ted to a rigorous standardization procedure that resulted in standard ISO/IEC 19757-

2:2003 (ISO 2003). From a formal point of view, RelaxNG therefore has higher 

legal status then the W3C XML Schema, which is just a specifi cation issued by a 

voluntary industrial group. We are mentioning this fact explicitly because there still 

exists an unfortunate tendency to reject RelaxNG-based specifi cations because of 

the claim that it has spurious legal status.

RelaxNG is a very powerful schema language that is much simpler to use and 

comprehend then W3C XML Schema. It is particularly suitable for validation 

of fl exible data and for fast prototyping. This makes it the validation language 

of choice in data mining applications where diverse sources are processed and 

combined.

SCHEMATRON

Schematron is a schema language based on different computing principles than the 

ones discussed above. It can be combined with any previously mentioned language 

to provide further validation rules that are diffi cult or impossible to implement oth-

erwise. Schematron was standardized by an ISO standard (ISO 2006) and is gaining 

acceptance in many different user scenarios.

Before ending our discussion of schema languages, it is necessary to mention 

a very important point relevant to data mining. Although neither RelaxNG nor 

Schematron infl uence understanding of XML documents, W3C XML Schema 

and DTDs can cause unexpected surprises. These latter specifi cations enable 

attribution of default values to the XML document, so the result of processing 

an XML document with or without accompanying schema can be diametrically 

different.

PROCESSING OF XML DOCUMENTS

Any data processing must start with the reading of data into the computer memory. 

Thanks to rigid XML rules, a lot of programming code can be reused for reading 

diverse documents. Experience gained with such reuse evolved into standardized 

procedures for accessing document data.
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SAX PROCESSING

When speed is important or the memory requirements are high, SAX processing is 

usually used. SAX is not offi cially standardized, as it is a result of community effort 

(http://www.saxproject.org/), yet it is one of most commonly used XML technolo-

gies. In SAX processing, XML documents are continuously read from an external 

channel (fi le, database, web connection), and any time the SAX parser encounters 

element start-tags, end-tags, or textual data, it sends information about the event to 

the processing application. After sending the data, the parser immediately forgets 

about them (drops them from computer memory), so there is no limit on the size of 

documents that can be processed with SAX parsers.

SAX parsers also never return back to already processed data or look ahead for 

some value needed for current processing. The computation is therefore very fast, 

and the best parsers can read many megabytes of data in a few seconds, but there 

is a price to be paid for this speed and absence of memory limits. Programmers are 

required to create all necessary coding structures by themselves from information 

sent by SAX parsers, and this often requires a nontrivial programming effort. If ulti-

mate effi ciency is not a necessity, it is usually better to let a generic piece of software 

create more elaborate structures in computer memory—a data model.

DOM (DOCUMENT OBJECT MODEL)

XML data can be organized in computer memory in many different ways. XML is 

used for many purposes, and it is not surprising that there is no optimal organization 

that fi ts all circumstances. Yet all these data models share many similar features, so 

it is possible to create models that are applicable in many different scenarios.

The data model most commonly used is the Document Object Model (DOM) 

defi ned by the W3C in a series of standards (see http://www.w3.org/DOM/DOMTR). 

The W3C DOM model is both platform and language neutral. This means the model 

is specifi ed in abstract terms and can be translated to particular programming lan-

guages such as Java, Python, and JavaScript. The authors of these standards worked 

very hard to make such translations possible to many different languages of variable 

expressive power. The specifi cations therefore do not use possibilities offered by 

some modern programming languages, and this fact makes processing via W3C 

DOM quite cumbersome. Nevertheless, the universality of its usage makes up for 

this restriction. Large amounts of code for the processing of W3C DOM data struc-

tures were already written and can be reused in personal projects, and it is quite easy 

to fi nd programmers experienced in DOM programming.

Applications that require a lot of data in memory or have specifi c programming 

requirements may benefi t from custom-made data models. Data mining applications, 

with their large volumes of data, often belong to this class of software, but this does not 

mean W3C DOM is entirely unusable. Some implementations of the DOM model do not 

require all data to reside in memory and allow very large documents to be processed.

In real-world XML software applications, a SAX parser is commonly used to feed 

data into computer memory, where the data is organized into W3C DOM structures. 

In this standardized way many thousands of hours of programming work are saved 
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thanks to code reuse and the possibility of using familiar techniques. However, there 

is one particular area of XML processing where an even more general approach can 

be used, called XSLT transformations.

XSLT TRANSFORMATIONS

One of the most common tasks in XML programming is transformation of one data 

format to another. XML technologies hugely benefi t from the fact that a specialized 

language exists that is particularly suitable for this task: XSLT (eXtensible Stylesheet 

Language Transformations). In this language, an experienced programmer can write 

in a few hours quite complex translation software that would typically require days 

of work in other programming languages. The fi rst version of XSLT recommenda-

tions (Clark 1999) has been widely implemented, and XSLT 1.0 processing software 

can be found in modern Internet browsers. The power of XSLT was substantially 

increased in version 2.0 and recently approved (Kay 2007). The possibility of data 

transformation to a format suitable for the application in hand, and the option to 

change the format many times during development, without signifi cant program-

ming effort, is a very important selling point of XML technologies.

A large part of XSLT processing power lies in its usage of powerful tools for 

searching and selection of information from XML documents. These tools makes 

XML a very useful instrument for persistent storage of data.

XML DATABASES

When people are talking about databases they usually mean some complex software 

systems for storage and fast retrieval of huge amounts of data, but the meaning of 

term databases is much broader. It is a label for any structured collection of data in 

which big software systems represent just one, albeit very important, subcategory.

We have already discussed the capabilities of XML for handling semistructured 

data, and when considering the preceding defi nition it becomes obvious that in real-

ity almost any XML document is in fact a database. However, even if we consider 

databases in a more restricted sense, as collections of many records sharing a com-

mon structure, there are some scenarios where XML beats any competition.

The strength of XML in real-world applications becomes apparent when we leave 

the world of rigid information structures, where databases are commonly encoun-

tered in daily practice (ranging from bank accounts to basic bibliography databases), 

and we try to capture evolving and slightly fuzzy data, a very common scenario in 

science and other human endeavors. Anybody with some experience in database pro-

gramming will attest to the fact that continuous changes in the structure of relational 

databases and the creation of entry fi elds for data that occurs infrequently, represent 

both management and programming nightmares.

Introduction of a new data item into data stored in XML format is much easier. 

A new element or attribute can be introduced (possibly in a new namespace) with-

out diffi culty, provided that the processing code is written with this possibility in 

mind. Such software will not break after encountering an unknown element, and the 

processing of information containing this new element can be implemented in an 

appropriate time.
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There is no limit on the size of XML data. Many database vendors have imple-

mented XML support to their products. A new and very powerful language for que-

rying XML databases—XQuery (Boag et al. 2007)—has been adopted and for many 

tasks, and this language can be more expressive than SQL. XML databases are often 

implemented on top of established relational ones, so performance is not a problem.

XML MARKUP LANGUAGES

As the preceding text demonstrated, XML technologies offer a very powerful set of 

tools to simplify data processing, accelerate developments, and improve the qual-

ity of fi nal products. However, tools are just one, albeit important, requirement for 

selection of a particular technology. For successful data mining, it is particularly 

important to understand how well a document model captures the information pre-

sented in the data.

Knowledge of the strengths and weaknesses of individual languages is therefore 

very important for selection of a suitable strategy. XML documents can appear in all 

stages of data processing. The original documents may be written in an XML lan-

guage where programmers have to decide whether it is better to process them directly 

or if it is more expedient to transform them into some other format. XML is also suit-

able for capturing intermediate results and for the presentation of results. Hence, the 

importance of understanding XML data handling cannot be overstressed.

The expressive power of selected languages is of paramount importance. If a lan-

guage is not capable of capturing all available information, its usage is problematic. 

This is not a problem with formats used internally to a document, as new elements 

can be added when need arises, but when providing export formats, it is necessary 

to live with the fact that some information may be lost. Although achieving high 

expressiveness is an obvious design aim, it should be always kept in mind that the 

proposed XML format should be easy to parse. The language selected and its inter-

nal formats applied should be fi t for purpose and tailored to suit its specifi cations.

Development of a new language, both for internal and external use, is a very 

complicated task, and it pays to use functionality from existing languages. Many 

current XML languages are unfortunately monolithic and often diffi cult to reuse. 

The authors commonly implement afresh parts of the language that can be success-

fully borrowed from specialized domain-specifi c languages. XML namespaces offer 

the opportunity for natural inclusion of other languages without these complications. 

Before attempting to design a new language, everybody should read Tim Bray’s arti-

cle “Don’t Invent XML Languages” (Bray 2006) to get some realistic insight. Yet 

there are many legitimate cases for inventing your own languages, including a very 

typical case of development for internal prototyping. If a decision is made to start a 

new development, some useful general rules should be followed.

Many times during design of an XML language it is necessary to decide if ele-

ments or attributes should be used for given information. The choice may often refl ect 

personal taste without any deleterious effects, but sometimes the wrong choice can 

be detrimental to further development. Attributes are suitable for capturing simple 

information without internal structure. XML documents with attributes are usually 

easier to read by human readers, and SAX processing code for attribute parsing is 

simpler than for elements. However, the elements are easier to extend, and they can 
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be used to store multiple instances of particular data. Because of their greater fl ex-

ibility, elements should be preferred in case of doubt.

VERSIONING

Both data and requirements are evolving, and when writing data mining applications 

or designing a new markup language, this is necessary to bear it in mind. It is impos-

sible to get everything right at the fi rst attempt; experience brings new needs and the 

discovery of unexpected problems. Therefore, during development, the meanings of 

existing elements and attributes can change, or new ones may be introduced while 

others are simultaneously depreciated. The hierarchical relations can evolve as ele-

ments gain new children or move to other parts of an XML document.

It is therefore important to think early on about a versioning system to keep track 

of changes and indicate what kind of syntactic constructs can be expected. Version 

changes can be indicated either by namespace changes or by usage of an attribute 

or an element dedicated to the version specifi cation. Usage of namespaces for ver-

sion indication is not common, and there is a good reason for this. As discussed 

above, the element name consists of two parts: namespace and local name. If some 

namespace in a document is changed, then all elements from this namespace change 

their names. Software written for previous versions will not recognize any of these 

elements, even if a majority of them remain unchanged from the previous version. 

If, for example, the version change simply signals the introduction of a single seldom 

used attribute because of the insignifi cant change, the software become useless.

The naive solution of adding this attribute without indicating a change in ver-

sion is fraught with problems. Data processing often includes validation steps, and 

obviously if a document contains this new attribute, the whole document will be 

rejected as invalid. Switching the validation off may be dangerous. The program-

mer could make some assumptions because of effi ciency considerations (although 

usually without real need). If some programming code relied on a fi xed maximum 

number of attributes, addition of a new attribute might derail the computing logic 

with unpredictable consequences.

Because of these considerations, version numbers are usually provided by an 

attribute on the root element, and namespaces are kept unchanged between versions 

(or they change only if the language changes signifi cantly).

FLEXIBILITY

Some authors of XML languages feel that fl exibility contributes to the strength of 

the language, but fl exibility is not the same thing as expressiveness. If the same 

information can be encoded by several means, it usually adversely affects readability 

and causes a headache for programmers who must take care of all possible variants. 

If the syntactic variants are not easily convertible to some common basis, then a 

combinatorial disaster occurs, as almost any document written in the language may 

contain a combination of features that were not previously tested.

Flexible documents also restrict the usefulness of the tools used for editing of 

XML documents. If the order of elements is fi xed, editors can make suggestions about 
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expected input and provide appropriate entry fi elds. In fl exible formats a list of variants 

may be displayed, but as these lists are usually long, their usefulness is restricted.

STANDARDS

Standardization is obviously of paramount importance to data mining. Programming 

resources are scare, and data locked in unsupported formats can be lost forever. 

However, whereas the basic idea that standards are useful is generally shared, the 

real-world situation is far from ideal. In a perfect world, standards would be devel-

oped fi rst and agreed upon by all interested parties. With these standards in hand, 

interoperable products would be developed, but experience shows most standards 

created this way utterly fail. Standardization is a complex process, and experience is 

only gained through stepwise development and usage.

In reality several ideas compete for success, and companies that invested a lot of 

money in development of their own variant are reluctant to throw away that invest-

ment even if competing ideas are technically superior. The success of technology 

therefore depends on many reasons other than technical merit. Some understanding 

of the standardization process helps with estimation of potential risks and separation 

of technical merits from marketing hype.

Most standards used by the XML community are issued by the W3C and by 

OASIS, but many of them started as private activities of small groups without any 

offi cial ties (SAX, Relax, Schematron). Specialized markup languages are usually 

backed by professional organizations or by inventors of the language.

WORLD WIDE WEB CONSORTIUM

The W3C was founded in October 1994 by Tim Berners-Lee at the Massachusetts 

Institute of Technology, Laboratory for Computer Science in collaboration with 

CERN, but it was later transformed to a different and very powerful body. The con-

sortium issues many important standards that are available at http://www.w3.org/

TR/. The standardization process (Jacobs 2005) ends with voting, and because the 

voting rights are derived from fi nancial contributions, big companies dominate the 

voting. Fortunately, protection from patent litigation is provided because any rec-

ommendation accepted by the W3C can be implemented on a royalty-free basis 

(Weitzner 2004).

ORGANIZATION FOR THE ADVANCEMENT OF STRUCTURED 
INFORMATION STANDARDS (OASIS)

OASIS, a not-for-profi t consortium, plays an important role in XML standardiza-

tion. Although it does not have the same media visibility as the W3C, its processes 

are more democratic than the W3C and less dependent on the fi nancial strength of 

participants (http://www.oasis-open.org/who/policies_procedures.php). Because the 

OASIS standardization processes can produce ISO standards, their fi nal products are 

of a higher legal status than the W3C products. Both RelaxNG and Schematron are 

examples of such OASIS processes.
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XML AND CHEMICAL DATA MINING

XML is a young technology, and its basic infrastructure is still evolving, as witnessed 

by the number of recommendations published each year. Scientifi c XML publishing 

needs this infrastructure and at the same time requires specialist knowledge. Thus, 

it will take several years before scientifi c markup languages reach maturity and even 

longer before they become ubiquitous. Reliable prognosis of further developments 

concerning survival and future changes of languages is very diffi cult, so we will con-

centrate on general observations and provide links to relevant literature and Internet 

resources for readers interested in more details.

CHEMICAL STRUCTURES AND REACTIONS

Formats for the capture of molecular structures and reactions are obviously of para-

mount importance in chemical data mining. Fortunately, a lot of experience had 

been amassed before the invention of XML, so it was not necessary to start from the 

beginning. Computational chemists are used to using connectivity tables, and XML 

provides a very convenient syntax for their formal specifi cation.

One of the major setbacks of previously used text formats is their reliance on 

white-space characters as text separators and problems with extensibility if new 

demands call for format expansion. In properly designed XML languages, white-

space characters loose any formatting role, so accidental introduction or deletion 

of white-space characters during editing or programming is no longer problematic. 

Moreover, the hierarchical structure of XML documents provides a convenient mech-

anism for annotating individual atoms or bonds with different properties without sig-

nifi cant complications. In XML introduction of new attributes or elements (possibly 

in different namespaces) will not break properly programmed software applications. 

Many problems will be discovered by validation against a variety of schemas, and 

valid documents can be further processed with powerful software libraries.

Chemical reactions are straightforwardly described by the introduction of several 

elements and attributes. Because the hierarchical nature of XML enables the natu-

ral grouping of molecules, the separation of reactants and products is simplifi ed. 

The stoichiometry, yields, or reaction conditions can be conveniently expressed with 

additional attributes or elements.

This simplicity, unfortunately, vanishes when more vague concepts are intro-

duced. For example, the capture of all relevant information is an elusive aim when 

structures are not precisely defi ned, when dealing with electron delocalization, or 

when complex relations exist between reactants and products. Although current 

chemical formats provide mechanisms to address these problems, a general satisfac-

tory solution has not been yet found.

Graphical presentation of reactions and compounds represents another complex 

area. A markup language may attempt to provide some mechanisms for providing 

presentational hints, but as long as the presentational format is just an add-on of a 

chemical language, its expression power will be weak. Much broader possibilities are 

offered by synergistic use of a format directly targeted for graphics. Scalable Vector 

Graphic (SVG), a W3C XML format (Ferraiolo et al. 2003) for two- dimensional 

graphics, is gaining popularity and supported by an increasing number of applications 
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including Internet browsers. The power of expressing graphical data with SVG is 

demonstrated by an open-source chemistry editor BKChem (http://bkchem.zirael.

org/) that combines SVG with chemistry data in its native storage format.

CHEMICAL MARKUP LANGUAGE (CML)

Chemical Markup Language (CML) (Murray-Rust and Rzepa 1999, 2003) has 

played a prominent role in the early developments of chemistry markup languages. 

Its development started several years before the fi nal XML recommendation was 

offi cially issued (Murray-Rust et al. 1995), so CML was very important for XML’s 

evolution. CML creators and their collaborators have further expanded the original 

specifi cation. CMLReact (Holliday et al. 2006) extends the applicability of CML 

into chemical reactions, and CMLSpect (Kuhn et al. 2007) extends it into analytical 

techniques. Nevertheless, CML has several weaknesses that prevent it from becom-

ing a really powerful chemical syntax. Because the language is very fl exible, and 

provides several means for capturing chemical data, including methods external to 

the specifi cation, it is diffi cult to write fully compliant software. Although genera-

tion of a CML-compliant fi le is not diffi cult, it is an impossible task to properly read 

all possible CML fi les.

The CML convention attribute is especially pernicious. With this attribute, it can 

be specifi ed that a given notation should be understood according to rules given in 

some external specifi cation. Although some people consider this behavior to be an 

advantage, as it enables simple transformation from any format to CML, in reality this 

dramatically reduces the usefulness of the language. There are no predefi ned conven-

tions in CML, and there is no formal way to describe these conventions or to specify 

their locations. The seriousness of the problem can be demonstrated on this potential 

scenario: Today you save your compounds in CML format with a function offered by 

the structure editor. In 10 years’ time, you will try to mine your data, but the editor 

used 10 years earlier used its own conventions for bonding between atoms. These 

conventions are now hard to fi nd or lost forever. Even if they are found, you have to 

write specialized software to identify and interpret the notation. The same problem 

may occur with legacy chemistry databases or outputs of computational software.

CML has been tailored for use with the Java programming language. Some fea-

tures of CML could be more elegant and easier to implement if a more abstract 

approach was chosen. CML also offers the possibility of encoding information in a 

non-XML way. Whereas experienced programmers have no diffi culties writing code 

to parse white-space-separated fi elds or to handle x2 and x3 attributes as the same 

information (CML has different notations for the x and y axes in two-dimensional 

and three-dimensional contexts), such work is tedious and increases the chance of 

programming errors. Moreover, it severely limits the possibilities of performing data 

validation with standard XML tools.

CML is the best known of the XML notations for capture of structural data, but 

several other formats use XML-based syntax. The Protein Data Bank (PDB) (http://

www.wwpdb.org/) is the single worldwide repository for macromolecular structure 

data. A representation of the Brookhaven PDB is available in an XML format called 

PDBML (Westbrook et al. 2005). PDBML provides a way to export structures and 

information about them from a relational database. Another database that offers 
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download of its data in a native XML format is PubChem (http://pubchem.ncbi.nlm.

nih.gov/), which provides information on the properties and biological activities of 

small molecules, covering several million compounds.

PHYSICAL MEASUREMENTS

Nowadays any chemistry endeavor produces a massive amount of physical data. 

Measurements range from routine operations performed daily in synthetic labora-

tories to very sophisticated measurements with very expensive apparatuses. Only a 

very small part of the data is effectively used. Most individual data points are never 

published, and the published data are often provided in forms not suitable for auto-

matic processing.

Standardization of formats for capturing physical data would dramatically accel-

erate progress in the natural sciences, not only because of new discoveries stemming 

from mass processing of available data, but also because of the time saved by highly 

qualifi ed people, which could be more fruitfully invested elsewhere.

The creation of a useful language for physical data capture is a demanding 

endeavor. The format must deal with immense variability of apparatuses and mea-

surements, so expertise in many different fi elds is required. It is not easy to separate 

particularities of given measurements from more general features. It is therefore not 

surprising that the progress has been rather slow, but current developments in areas 

such as ThermoML and AnIML are very promising (as described below).

Special attention is required when handling units of measure. A standardized 

methodology for units would enable the writing of software libraries usable in many 

various scenarios and thus thoroughly tested for consistency and software errors. 

Because a single error in one unit conversion can lead to great fi nancial losses and 

safety concerns, this is an area that deserves the utmost attention. The recent devel-

opment of UnitsML by the National Institute of Standards and Technology (NIST) 

promises to bring much-needed unifi cation.

Handling of uncertainties is another important area that requires careful think-

ing. Measurements without uncertainty considerations lose most of their utility, and 

if a format does not provide a mechanism for their lossless capture, its usage is prob-

lematic. Some languages have an element or attribute for a basic uncertainty specifi -

cation, but ThermoML is the only language that deals with uncertainty seriously.

ThermoML
ThermoML (Frenkel et al. 2006) is a language for the storage and exchange of 

experimental, predicted, and critically evaluated thermophysical and thermochemi-

cal property data. The language aims to cover essentially all relevant properties, 

and it deals thoroughly with uncertainties (Chirico et al. 2003). The standard, which 

has been developed as an IUPAC project (2002-055-3-024) and become an IUPAC 

recommendation (Frenkel et al 2006), provides detailed controlled vocabulary for 

the fi eld. Several high-profi le journals already provide data in this format (http://trc.

nist.gov/ThermoML.html), and if this trend continues in the future, introduction of 

ThermoML may be rightfully considered as one of the milestone achievements in 

the rich history of thermodynamics research.
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Although ThermoML represents excellent work, it has several XML-related prob-

lems. For example, there are some differences between published schema and IUPAC 

recommendations (http://www.iupac.org/namespaces/ThermoML/update_061218.

html). In these cases the published schema provides the authoritative answer. It is also 

unfortunate that ThermoML documents do not use XML namespaces. The absence 

of thermodynamic namespaces makes recognition of ThermoML code needlessly 

complicated. Furthermore, ThermoML language could also benefi t by focusing on 

thermodynamics data and capturing associated data such as bibliographical citations 

in some established language.

AnIML (Analytical Information Markup Language)
The target area of AnIML (http://animl.sourceforge.net/) is the handling of ana-

lytical data. The teams participating in AnIML development, sanctioned by ASTM 

under subcommittee E13.15, have not published a fi nal recommendation yet, but the 

language promises to become one of the most important XML languages in the 

chemistry fi eld.

In the heart of the language lies a fl exible core applicable to many analytical 

techniques, as described by the W3C XML Schema. Specifi c needs of individual 

techniques are addressed in “Analytical Technique Defi nition Documents” that are 

XML fi les specifying particular parameters. The attempt to separate core features 

from particularities in a modular way is laudable. Other specifi cation authors would 

benefi t from using this approach.

UnitsML (Units Markup Language)
NIST has played a leading role in the development of both ThermoML and AnIML 

specifi cations. It is not surprising that people from the same organization stand behind 

the development of a common language for the expression of units—UnitsML. The 

language is still in development (http://unitsml.nist.gov/), and recently an OASIS 

technical committee has been created that will steer fi nal stages of standard develop-

ment. AnIML development will probably include UnitsML in the near future (Jopp 

et al. 2006).

Several languages are focusing on more specialized areas of physical measurements. 

MatML (http://www.matml.org/) has been developed for the exchange of materials infor-

mation. The HUPO proteomics standards initiative (http://www.psidev.info/) is develop-

ing several standards including mzML (http://www.psidev.info/index.php?q=node/257), 

a standard for encoding raw data from mass spectrometers that builds on the previous 

formats DataML (http://www.psidev.info/index.php?q=node/80) and mzML (Pedrioli 

et al. 2004). Another HUPO standard, PSI MI XML, provides syntax for the description 

of molecular interactions (http://www.psidev.info/index.php?q=node/31).

MATHEMATICAL EXPRESSIONS

Many areas of chemistry need some notation for the capture of mathematical expres-

sions and complex symbols. Representation of mathematics is very complex, and 

we strongly advise against individual development of these languages. Fortunately, 

there exists a mathematical XML language: MathML, by the W3C (Carlisle et al. 
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2003). MathML has mature specifi cations that meet most requirements for chem-

istry. It thoroughly addresses the capturing of both mathematical meaning and its 

graphical representation, including a sophisticated means for the handling of sym-

bols. Moreover, MathML is supported by several software packages including sev-

eral Internet browsers.

SBML (SYSTEMS BIOLOGY MARKUP LANGUAGE)

SBML (Hucka et al. 2003) is a machine-readable format for describing qualita-

tive and quantitative models of biochemical networks that use MathML for the 

specifi cation of mathematical formulas. It defi nes a subset of the language to 

be used in the SBML, using a widely applicable standard, without the need to 

implement all features of the MathML specifi cation. The excellent documenta-

tion provided for SBML provides an example worth following (http://sbml.org/

documents/).

The SBML homepage (http://sbml.org) provides an impressive list of software 

implementing the notation. The site offers downloads of software libraries that 

enable easy incorporation to several programming languages (C, C++, Java, Python) 

as well as mathematics packages (Matlab, Mathematica), and this accessibility has 

signifi cantly contributed to its success.

RESOURCE DESCRIPTION FRAMEWORK (RDF)

Introduction of XML formats was a very important step toward better intercomputer 

communication, but it is not a miraculous solution to all problems. Not every possible 

relation is easily expressed in XML (Wang et al. 2005), so specifi cations usually 

contain many implicit assumptions that are not properly formalized. The Resource 

Description Framework (RDF) provides a very powerful yet simple model for this 

formalization (Manola and Miller 2004). In this framework, any information is trans-

formed to basic units called triplets that are combined to map the available informa-

tion. This unifying mechanism can be used to express hierarchical vocabularies for 

domain knowledge description, as in RDF Schema (Brickley and Guha 2004) or its 

extension, Web Ontology Language (OWL) (Smith et al. 2004), both standardized by 

the W3C.

BioPAX (http://biopax.org/), the group developing a common exchange format 

for biological pathways data, uses OWL. BioPAX can capture molecular binding 

interactions and manage small molecules (represented by InChI). Another exam-

ple of RDF usage in chemistry is provided by the CombeChem project (Taylor 

et al. 2006).

Abstract models are very powerful, but at the same time, the abstractness is 

their Achilles’ heel. Many people have problems operating on such a high level 

of abstraction and have diffi culties grasping the concept. A middle ground where 

XML-based formats provide the scaffold for expressing the basics and RDF or 

other mechanisms are used to specify relations may provide more suitable practical 

applications.
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CONCLUSIONS AND PERSPECTIVES

XML has started the second decade of its offi cial existence, and already in its early 

years it has deeply infl uenced many areas of information processing. Its promise for 

scientifi c information exchange is only slowly being fulfi lled, but recent developments 

are very positive. XML formats are replacing their text predecessors, so an understand-

ing of XML technologies is a must for anyone interested in data mining applications.

Scientifi c XML formats are still rapidly evolving, and it will take some time 

before stability is reached, but this does not mean they are unusable today. XML 

already provides several advantages over its predecessors including the availability 

of tools that simplify conversion to newer versions of XML when necessary.

Science is diverse, and this is refl ected in the fragmentation of scientifi c XML 

formats that are independently developed for each fi eld of science. Hence, the same 

concepts are reinvented several times, with slightly different semantics, making it 

diffi cult to recycle software code across fi elds. The explosion of the number of ele-

ments and attributes introduced in scientifi c XML languages is staggering, making 

it is very diffi cult to gain a deeper understanding of relevant specifi cations. This 

unfortunate fact partially stems from the complexity of the problem. Much could be 

gained if development were more modularized in a concerted manner. XML offers 

mechanisms for seamless integration of small domain-specifi c formats to languages 

of high expressive power.

Research in chemical formats also suffers from a dearth of open communication 

channels. Unlike the bioinformatics fi eld, where there is a prevalent practice of open-

ness including open access to most literature articles, the chemistry fi eld is relatively 

insular. Limited availability of information experts restricted the development of the 

chemical format fi eld, where most contributors are much stronger in chemistry than 

in software architecture and programming.

Nowadays, Semantic Web is a much-hyped expression that is used (and misused) 

by many people from different areas of human endeavor. On Semantic Web com-

puters we will be able to autonomously search for different information items and 

process them and provide answers to questions that currently require many hours 

of effort by human experts. However, before we can connect the individual pieces 

of information, we have to fi nd and transform them to computer-readable form. 

Unfortunately, this is not a trivial task.

Progress achieved in natural language processing is amazing, but any average 

human being so far surpasses any natural language processing software capabilities. 

In a specialist fi eld, such as chemistry, that combines quantitative and qualitative 

textual and visual information with a lot of intuition, the appearance of software that 

would understand chemistry without external help is very improbable in the foresee-

able future. Partial understanding of information captured in some formalized way is 

much easier, and current computing hardware and software is capable of supporting 

evaluation of such information on a mass scale.

XML is not the only existing technology for such formalization, but it is a very 

suitable candidate. If data are captured in XML syntax, then it is much easier to fi nd 

software tools and people capable of using these tools. An XML-based format should 

be a primary consideration when choosing a way to annotate information. Unless some 
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serious defi ciencies are discovered, XML is currently the tool of choice. Choosing an 

XML-based approach does not automatically mean its syntax adequately captures the 

area of scientifi c interest. Although XML simplifi es programming tasks, and offers a 

myriad of existing tools, it does not substitute for careful thinking. The success of a 

language depends primarily on its ability to capture data from its domain and requires 

that a carefully designed language is not mutilated by inferior XML design.
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INTRODUCTION

One of the great challenges in natural language processing (NLP) for life sciences 

is the identifi cation and the extraction of relationships between chemical entities 

and biomedical entities with the goal of establishing links between chemical and 

biological information. The ability to do so would allow for systematic screening 

of the literature for biological activities of chemical compounds and thus is one of 
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the core aims of text mining activities in both the academic world and the pharma-

ceutical industry. However, biology and chemistry are still quite distinct worlds that 

communicate their results in very different ways. Biologists and medical research-

ers, for example, tend to describe chemical compounds by using brand names. In the 

world of chemistry we prefer the far more informative, unambiguous International 

Chemical Identifi er (InChI) descriptor or other suitable nomenclature-based desig-

nators for naming chemical entities.

However, a chemistry-centric view does not naturally favor a system-oriented 

interpretation of the biological (side) effects of a chemical compound. Therefore, 

dealing with the task of linking biological with chemical information also means 

dealing with quite different name spaces, scientifi c viewpoints, and communities. 

Automated analysis of the scientifi c literature for relationships that link biological 

or medical entities with chemical entities is an interdisciplinary scientifi c and tech-

nological challenge.

An automated system that analyzes the scientifi c literature for links between bio-

logical and chemical information should thus be able to support researchers in satis-

fying two fundamental information needs:

Finding relevant documents that contain information about chemical com-• 

pounds and biological concepts of interest (information retrieval task)

Finding specifi c information about chemicals that are related to biologi-• 

cal concepts by an explicit relationship from many documents (information 

extraction task)

Whereas in the fi rst task the focus is on the comprehensive identifi cation of bio-

logical and chemical entities in text, the second task deals with the identifi cation and 

extraction of explicit relationships between chemical and biological entities. These 

two tasks are relevant to both academic an industrial research.

At a more technical level, the task of linking biological and chemical information 

can be divided into at least four high-level subtasks:

Named entity recognition (NER)• 

Recognition of biomedical entities in text (genes, proteins, allelic vari-• 

ants, clinical phenotype descriptions, etc.)

Recognition of chemical entities in text (drug names, chemical descrip-• 

tors, registry numbers, common and brand names, etc.)

Information retrieval: From statistical analysis of full text indices to seman-• 

tic search based on entity classes defi ned by NER

Information extraction: Analysis of part-of-speech and identifi cation of • 

expressions that link biological and medical entities with chemical entities

Presentation of the retrieved results for supporting navigation and mining • 

in the scientifi c literature

The perspectives of such technology for the life sciences are quite promising, but 

as we will show in this chapter, the technology developed so far for linking chemical 

and biological information is still in its infancy.
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RECOGNITION OF BIOMEDICAL ENTITIES IN TEXT

SHORT METHODOLOGICAL OVERVIEW

Biological entities in scientifi c text comprise all named entities that represent genes 

(nucleic acid sequences), mutations (deletions and insertions), and allele variants of 

genes (e.g., single nucleotide polymorphisms [SNPs]), transcripts (mRNA), chromo-

somes, proteins, and protein complexes. In the medical literature, named entities 

encompass anatomical terms, disease names and disease classifi cations, clinical 

descriptors of diagnostic procedures, and clinical treatment descriptions including 

drug common and brand names. In the following, we will briefl y discuss the het-

erogeneous tasks faced by an automated system for the recognition of biomedical 

entities in scientifi c text.

In principle, four different basic approaches for named entity recognition can 

be distinguished:

Systems based on dictionaries• 

Systems based on (expert) rules• 

Systems based on machine learning• 

Systems combining two or all three of these approaches• 

Systems based on dictionaries rely on the availability of terminologies in a given 

domain. In biology, databases are a good source for gene and protein name termi-

nologies. The advantage of dictionary-based systems is that it is comparably simple 

to create lists containing synonyms and term variants. Rule-based approaches make 

use of rules generated by human experts that are aware of the specifi c syntax and 

name space used in a domain. A simple example for a rule-based approach is the 

identifi cation of enzymes based on the suffi x “-ase” (e.g., peptidase) or the identi-

fi cation of diseases based on the suffi x “-itis” (e.g., gastritis). Machine learning–

based systems are dependent on the availability of relevant text corpora annotated by 

experts. During a training phase, the computer program is taught how a certain class 

of entities “looks like” and “learns” the probabilistic rules required to identify other 

members of that class of entities.1 Both rule-based and machine learning–based sys-

tems have the intrinsic ability to discover new entities that were previously unknown 

and therefore are not present in dictionaries.

GENE AND PROTEIN NAME RECOGNITION

The name space of proteins and genes in higher eukaryotes is rather diverse. Some 

known human genes and proteins have more than 100 synonyms in the literature.2,3 

The situation is made even more complicated by the invention and use of acro-

nyms and spelling and permutation variants by biologists and medical researchers. 

Moreover, ambiguous use of acronyms and gene names that sometimes resemble 

common words adds to the already existing complexity of the named entity rec-

ognition task.4 Systems that identify those types of entities need to deal with all 

those challenges. Gene and protein name recognition is one of the most advanced 

text mining applications in the life sciences. The growing number of publications 
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in this scientifi c area supports this observation.5 The predominant role of gene and 

protein name recognition in biomedical text mining is also illustrated by the fact 

that gene and protein name recognition were central tasks in the two BioCreative 

critical assessments of text mining in molecular biology6 and in the JNLPBA 

workshop.7

An inevitable step to the correct identifi cation of protein and gene mentions is 

the mapping of the identifi ed proteins and genes to unique database identifi ers—a 

process called normalization.

Machine learning approaches for the recognition of gene and protein names have 

been improved signifi cantly over the past three years, but the identifi cation of syn-

onyms, the resolution of acronyms, and the handling of spelling variants remain 

signifi cant challenges to this kind of approach. Moreover, gene and protein names 

identifi ed with the help of machine learning approaches cannot easily map entities in 

text to entries in databases. Some groups have tried to overcome this by combining 

dictionary and machine learning approaches.8

Systems based on dictionaries and algorithms to deal with permutations, spell-

ing variants, and acronyms9 are well suited for normalization of named entities 

that is the mapping of entities in text to entries in databases. Through normaliza-

tion of textual entities to database entries, the number of attributes associated with 

a named entity in text can be signifi cantly increased; a gene name has a nucleic 

acid sequence in European Molecular Biology Laboratory (EMBL);10 a protein has 

a structure in Protein Data Bank (PDB).11 Of course, the ability to link back from 

database entries to Medline abstracts through the Gene2PubMed list available 

from National Center for Biotechnology Information (NCBI)12 may help establish 

this sort of relationship from the database side. In fact, Gene2PubMed has been 

used to generate gold standards for corpora containing relevant information on 

genes and proteins.13

The characterization as a target protein might become possible through the 

combination of textual information with entries from databases such as UniProt,14 

PubChem,15 or DrugBank.16 At ChEBI,17 the European Bioinformatics Institute’s 

database on bioactive small molecules, this integration of chemical information with 

biological entities is realized through expert curation of entries and introduction to 

referential links to databases such as UniProt and PDB.

Likewise, an automated approach to link chemical and biological information 

based on text mining will profi t largely from being able to normalize textual entities 

and to map them to nonredundant referential entries in databases.

RECOGNITION OF INFORMATION ON MUTATIONS

Gene mutations are tightly linked to biological phenomena such as the risk of devel-

oping a certain disease or the responsiveness to pharmaceutical treatment. The entire 

vision of personalized medicine in the pharmaceutical context is closely linked to 

the genetic makeup of the patient, and the relationship between genetic mutations 

and pharmacological responses is the subject of the new fi eld of pharmacogenomics. 

As a substantial portion of the biomedical literature is composed of information on 

mutations and their association with phenotypes, the identifi cation of information on 
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allele variations (e.g., single nucleotide polymorphisms [SNPs]) from text provides 

another challenge to information extraction technology.

Although public databases such as dbSNP18 do contain a large number of known 

SNPs including their gene and positional information, a signifi cant fraction of SNP 

mentions in scientifi c text cannot be mapped to dbSNP entries.19

Mentions of mutations can be automatically identifi ed using a combination of gene 

dictionaries and rule-based approaches for the identifi cation of such expressions.20 

Alternatively, a combination of dictionary-based gene and protein name recogni-

tion methods and machine learning–based identifi cation of expressions indicating 

information on mutations has been developed.19 Both approaches enable the identi-

fi cation of SNPs that are normalizable but also fi nd SNPs that are not normalizable. 

At present, it remains unclear to what extent these “non-normalizable” SNPs result 

from incorrect numbering of nucleotides, lack of submission to dbSNP, or simply 

referencing to outdated sequence information.

Rule-based approaches are predicated on the analysis of expressions that describe 

mutations in text; the rule set developed is based on patterns that have been ana-

lyzed by human experts. Learning of patterns is the basis for machine learning 

approaches for SNP detection. Similar to the human expert, the machine program 

makes use of features (attributes) that are used with different frequency and in dif-

ferent combinations when information on mutations is communicated in natural 

language.21

CONCEPT-BASED IDENTIFICATION OF FUNCTIONAL BIOLOGICAL ENTITIES

In the past years hierarchies such as MeSH22 introduced for article and book 

 indexing of the National Library of Medicine, the Gene Ontology (GO)23 and other 

bio-ontologies for the characterization and classifi cation of genes and gene products 

(e.g., Panther,24 TAIR,25 MapMan ontology for plants,26 and the Sequence Ontology 

Project27) have been developed. Concepts taken from these hierarchies and ontolo-

gies have been used in text mining approaches to map functions to entities.

GoPubMed,28 for example, provides tagging of Gene Ontology (GO) catego-

ries in Medline and allows for mapping of expressions to GO categories.29 Other 

 ontology-based text mining tools such as Textpresso30 developed their own catego-

rization  system for the analysis of biological knowledge in text. The concept-based 

identifi cation of biological entities has the advantage that generalizations are pos-

sible and similarities can be established at an abstract level without being bound to 

the instance of an entity.

The concept-based identifi cation of biomedical entities is now being offered by 

most commercial vendors of text mining solutions and by an increasing number of 

academic tools.31 Biomedical concept search is mainly based on publicly available 

thesauri such as MeSH or GO (see below).

Nomenclatures, terminologies, and controlled vocabularies established in molec-

ular biology, for example, GO, are a basis for NER, but when mining literature, we 

always have to keep in mind that the use of terms describing the functions of pro-

teins took place before GO was established, and the meaning of certain functional 

descriptions might have changed over time.32



128 Chemical Information Mining: Facilitating Literature-Based Discovery

RECOGNITION OF MEDICAL TERMINOLOGY

Medical terminology and thesauri can be detected in a similar fashion to that discussed 

in the context of biological entity recognition. Approximative search algorithms have 

been proven to be quite useful for dealing with the variability of expressions indicating 

the same concept. However, a couple of principle problems exist when trying to iden-

tify medical phenotype descriptions and using Medline abstracts as a data source:

Clinical phenotypes are predominantly described at a categorical level. • 

Clinical phenotypes as we can fi nd them in patient records are rarely found 

in scientifi c publications.33

Despite the availability of different coding systems, authors typically do not • 

indicate the referential information on a concept they use. This means refer-

ences to medical ontologies such as the Foundational Model of Anatomy34 

or a thesaurus such as the International Classifi cation of Diseases35 are not 

made explicit in the scientifi c literature.

Thus, a system for the recognition of medical entities in text has to offer functional-

ities beyond simple string matching—namely, context-dependent  disambiguation—to 

support the mapping of entities in text to concepts in medical ontologies.

RECOGNITION OF CHEMICAL ENTITIES IN TEXT

Chemical information is generally more proprietary than biological information. 

Whereas molecular biology and genome research profi ted immensely from the open 

access to sequence information and annotations, the world of chemistry—in par-

ticular, the chemistry of bioactive molecules—is much more restricted. Although 

chemistry as a discipline is much older than modern molecular biology, a signifi cant 

amount of knowledge on bioactive compounds is kept confi dential.

Only recently, initiatives have been started to create freely available data sources such 

as PubChem,36 ChEBI,37 DrugBank,38 and HMDB,39 to mention some of them. These 

public databases collect publicly available information on compounds, their structures, 

their physical formulations (e.g., PubChem Substance), their targets, and their effects on 

biological processes. However, these databases are far from covering the entire spec-

trum of chemical information that can be linked to biology and pharmacology.

Therefore, automated methods for the detection and extraction of chemical infor-

mation in scientifi c text are required. Although chemical named entity recognition 

is dealt with in detail in Chapter 3 of this book, we briefl y summarize the principles 

underlying chemical named entity recognition. We also briefl y elucidate on the need 

for reconstruction of chemical information from chemical structure depictions, as 

detailed in Chapter 4.

When discussing chemical named entity recognition, distinguishing between 

the different nomenclatures types used for chemical entities in text is inevitable. 

Basically, there are fi ve classes:

Common names used in communication between chemists• 

Common names used in marketing (brand names)• 
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Systematic names or nomenclature names (e.g., International Union of Pure • 

and Applied Chemistry [IUPAC])

Chemical structure representation formats (e.g., InChI, Simplifi ed Molecular • 

Line Entry System [SMILES])

Catalog and registry numbers• 

Similar to the identifi cation of information on gene mutations in text, we can dif-

ferentiate between chemical names that can be listed and enumerated in a dictionary 

(e.g., common names and brand names) and those cases where the potential name 

space is almost infi nite and thus cannot be enumerated (e.g., IUPAC expressions and 

terms with an IUPAC-like structure).

For brand names and other common names, dictionaries composed of reference 

names, synonyms, and brand names have been of great help for the detection of 

named chemical entities in scientifi c text. However, even though normalization might 

be possible for a signifi cant number of “important” compounds, these compounds 

are typically the ones that are known best, and therefore the link between chemical 

and biological information can be established readily. These compounds can also be 

found regularly in the public chemical databases such as PubChem or ChEBI.

A signifi cant fraction, however, of the documents in the scientifi c literature deal-

ing with chemical entities and their biological effects are not composed of trivial 

names for the compounds under investigation. For the automated analysis of the 

chemical named entities in these publications, we need to use other methods. In prin-

ciple, it should be possible to use rule-based approaches to identify IUPAC names 

(and other forms of IUPAC-like expressions), in particular, because the IUPAC name 

construction itself is based on rules. However, IUPAC names are neither unam-

biguous, nor can they easily be checked automatically for compliance with IUPAC 

nomenclature rules. In fact, most IUPAC-like expressions in patent literature seem 

to be not compliant with the IUPAC nomenclature, and cannot easily be converted 

into structures.40

IUPAC-like expressions, true IUPAC nomenclature names, and InChI and 

SMILES representations of chemical compounds are well suited for detection by 

machine learning approaches. Conditional random fi elds (CRFs)41 and support vec-

tor machines have been used for the detection of IUPAC expressions in scientifi c 

literature.42 Other approaches are based on rules sets43,44 or combinations of machine 

learning with rule-based approaches.45 All these approaches have in common that 

they face one signifi cant problem: the “name-to-structure” problem.

The three-dimensional structure is the most unique description of a chemical 

compound. That is why chemical entities should be compared on the basis of their 

structure as represented in a connection table, not on their common or nomencla-

ture name. Comparison of structures, however, requires that mentions of chemi-

cal entities in text are translated into connection tables; this is typically done by 

name-to-structure (N2S) tools. On a conference on chemical information in Sitges 

(International Chemistry Information Conference [ICIC]) 2007), preliminary data 

on attempts at benchmarking N2S tools were reported.46 Although this analysis is 

preliminary and care should be taken to avoid drawing conclusions that are not sup-

ported by the analysis, these data suggest that the N2S tools currently available are 

correctly converting only between 30% and 50% of all named entities.
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CHEMICAL ENTITY RECOGNITION IN CHEMICAL STRUCTURE DEPICTIONS

Research results about properties, reactions, and syntheses of chemical compounds, 

especially novel fi ndings, are mainly communicated through structure depictions 

placed into text (see Chapter 4). Because the machine readability of chemical struc-

ture information is lost during printing or electronic publishing without additional 

meta-information behind structure depictions, the chemical information is only read-

able for human experts. This problem poses a signifi cant challenge for automated 

mining of chemical information in scientifi c literature. Scientists from different 

organizations have been tackling the problem of reconstructing chemical structure 

information from depictions. Four approaches to chemical structure reconstruction 

have been reported at the time of writing this review:

Kékulé• 47

CliDE• 48

ChemoCR• 49

OSRA• 50

Because Chapter 4 of this book deals with the challenges of chemical structure 

reconstruction from images, we refer to this chapter for details on the technological 

and algorithmic basis for software dealing with this challenge.

Currently, there are no published reports on attempts at combining text informa-

tion with information extracted from chemical structure depictions. However, the 

CliDE tool is sold in a professional version together with a text mining module,51 

which indicates that the problem of data aggregation from textual and image data is 

being recognized. Preliminary work done in our group has demonstrated that chemi-

cal structure information reconstructed from chemical structure depictions can be 

used for the annotation of patents.52

FUNDAMENTALS OF NLP

Natural language processing (NLP) studies the problems of the automated under-

standing of natural languages and is a subfi eld of artifi cial intelligence and com-

putational linguistics.53 NLP systems basically analyze the structure (syntax) and 

semantics of text. In the process text is split into single units (tokens) as a fi rst step 

and then a certain grammatical category (i.e., noun, adjective, verb, etc.) is assigned 

to each, which is called part-of-speech tagging. To discover the meaning of text or to 

extract information of interest, it is necessary to identify the fundamental information 

carriers—nouns or noun phrases—which can be single words or multiword terms. 

For this process, called chunking, patterns are used that describe the general compo-

sition of such phrases. Domain-specifi c terms such as proteins, genes, or chemicals 

that are nouns often have a different morpho-syntactic structure compared to com-

mon nouns. The recognition of named entities by methods introduced in the previous 

sections supports the correct identifi cation of those nouns. At the same time, we have 

a mapping of terms to an entity class, such as protein or chemical compound. For 

example, the MetaMap54 software developed by NLM discovers noun phrases in text 

and maps them to concepts used in the UMLS Metathesaurus.55
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Finding relationships between chemical and biomedical entities by NLP methods 

requires the identifi cation of general grammar patterns (e.g., <nounphrase1> verb 

<nounphrase2>) being the basic syntactic structure used for the description of rela-

tions. Incorporating semantics provided by entity classes of interest allows for the 

defi nition of lexico-syntactic patterns (e.g., <drug> verb <protein>) for the relation-

ship extraction.56 The manual creation of such patterns is very labor intensive, so 

automated techniques for the learning of the pattern structure are used as support. 

Machine learning methods combined with statistical analysis of the syntax structure 

are used to extract general rules for a given set of manual annotated examples.57,58 

One of the challenges is the recognition and mapping of different variants describ-

ing the same type of relation, for example “azothymidin is an inhibitor of reverse 
transcriptase” and “azothymidin inhibits reverse transcriptase.” Here, the inhibi-

tion relationship between the entities is encoded either by a verb or a noun.

Another point is the position or the context in which a named entity or relationship 

occurs in text. It refl ects its importance for the information transported by the whole 

document. The analysis of the document structure itself (e.g., dividing it into title, 

abstract, introduction, results, etc.) helps weight and structure the found information.

IDENTIFICATION OF RELATIONSHIPS THAT LINK BIOMEDICAL 
ENTITIES WITH CHEMICAL ENTITIES

Methods that support the identifi cation of relations between entities can be divided 

into those that use statistical analyses of the occurrence of named entities in whole 

documents, paragraphs, or sentences and those that rely on a deeper analysis of the 

underlying syntactic and semantic structure at the sentence level of every document. 

Co-occurrence is the simplest type of relation between two named entities identifi ed 

by the previously described methods. It has the advantage that no effort has to be 

spent on analyzing its underlying syntactic structure. This is one of the reasons why 

co-occurrences have been widely used in academic and commercial text mining tools. 

Surprisingly, co-occurrence as a basic type of relationship already suffi ces to identify 

and to represent a signifi cant portion of the existing relationships in scientifi c text.59 

However, the method is not dedicated solely to getting the information about how 

the entities are related to each other (e.g., “effects of aspirin overdose include renal 

failure, pyrexia, ... ,” “aspirin inhibits cyclo-oxygenase1 and cyclo-oxygenase2”).

NLP techniques provide the basis to extract this kind of more detailed informa-

tion. In the past years approaches have been developed that are mainly focused on 

the biomedical domain to extract protein–protein interactions60 and gene–disease 

relations.61 They are based upon the correct recognition of the named entities taking 

part in the relationship. Dedicated patterns have to be developed to identify all the 

phrasal constructs that are indicative of relationships between chemical and bio-

medical entities available in text being of interest for academic researchers and the 

pharmaceutical industry.

Various types of relationships between biomedical and chemical entities can be 

distinguished by the grade of information they provide. We give some examples of 

the most important and—in our opinion—most informative classes of relationships 

that occur in biomedical text in the sense of their meaning. They can be divided into 



132 Chemical Information Mining: Facilitating Literature-Based Discovery

nonspecifi c relationships that describe loose associations between entities and those 

carrying very specifi c information.

The association type of relationships (“has something to do with”) contains inher-

ently vague information; it can only provide statistical evidence or phenomenological 

evidence, but typically this relationship does not provide a mechanistic explanation. 

We fi nd this type of associative relationship frequently in publications dealing with 

genetic epidemiology analyses (“Association between the CYP17, CYPIB1, COMT 

and SHBG polymorphisms and serum sex hormones in post-menopausal breast can-

cer survivors”) or reports on molecular and sometimes complex effects of drugs 

(“PKA-induced resistance to tamoxifen is associated with an altered orientation of 

ERalpha towards co-activator SRC-1”).

Relationships of higher specifi city (and most likely also higher expressivity) are 

often used to describe molecular interactions that are understood to a much higher 

level of detail. A class of relationships that can readily be identifi ed is the class 

of enzymatic reactions. Typical expressions used for this type of relationship are 

“glucuronidation_of” or “proteolytic_cleavage_of.” We found that relationships 

specifying enzymatic reactions are mainly used in the biological domain; in some 

cases we fi nd them in publications that belong to the pharmacological domain.

Another class of expressions with pharmaceutical relevance that can be identi-

fi ed by a rather simple pattern is the type of relationships that display the following 

structure “<drug / compound name>-induced…” or “<drug / compound name>-

mediated… .” This type of expression indicates a relationship between a chemical 

compound or drug and a biological or medical entity and thus represents a typical 

statement of pharmaceutical interest. However, biological entities must not be mixed 

up with drug and compound names. In many cases, we fi nd expressions such as 

“estrogen-receptor-mediated transcription …” or “PKA-induced resistance …,” and 

in both cases the acting entity is not a chemical entity (a drug or compound) but a 

biological entity (a protein).

Yet another class of relationships with relevance for pharmaceutical research is 

the induction, repression, or any other form of regulation of biological processes by 

chemical compounds such as natural ligands or drugs. Efforts need to be made to 

automatically extract such information and provide them well organized by visual-

ization tools as support for database curators and researchers.

STATE OF ACADEMIC RESEARCH IN APPLYING NLP TECHNIQUES 
TO LINK BIOLOGICAL AND CHEMICAL ENTITIES

One of the fi rst works that dealt with extracting information on chemical entities 

from text and relating this to another entity (in this case chemical structure simi-

larity) was published by Singh et al. in 2003.61a In contrast to the steep increase of 

publications dealing with biological entities, the growth of reports on chemical entity 

recognition systems is lagging behind in the literature. This fi nding is not paralleled 

by the development of commercial solutions, indicating that once again the propri-

etary nature of pharmaceutical chemistry information is delaying development in 

this sector. Our own group has adopted the ProMiner system, originally developed 

for biological entity recognition in text, to deal with chemical entities. This adapted 
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version of ProMiner has been used to search chemical trivial names in Medline 

abstracts and other sources of scientifi c text. Through co-occurrence analysis, we 

were able to identify relationships between proteins and drugs. However, in the area 

of pharmaceutical research, co-occurrence as a relationship seems not to be suf-

fi ciently informative, as pharmaceutically relevant relationships tend to be rather 

complex; just think of allosteric inhibition or cooperativity as concepts describing 

relevant pharmaceutical relationships at the molecular level.

More recently, in the course of the EU-integrated project ANEURIST,62 we have 

developed a data-mining environment that supports mining in various literature 

sources (Medline abstracts, full text scientifi c papers, and patents). The entity types 

that can be detected in text span from genes and proteins via mutations and chromo-

somal locations to medical terminology, ontology terms, and drugs names, as well as 

nomenclature names for chemical compounds (IUPAC-like expressions). The system 

maps the identifi ed entities of the classes protein, gene, chemical compound, and 

disease to respective databases or thesaurus or ontology entries (normalization). The 

system has been used for the identifi cation of genes associated with a disease (intrac-

ranial aneurysm) and benchmarked against a recently published expert review on 

genes involved in this disease.63 Figure 7.1 shows the interface in its version for the 

ANEURIST project with a search for SNPs of genes associated with breast cancer, 

which are mapped on their representation in the dbSNP database. Figure 7.2 shows 

the document view with the various tagged entity classes.

The EBIMED tool,64 developed at the European Bioinformatics Institute, allows for 

simultaneous analysis of biological, medical, and chemical entities and uses the drug 

dictionary of MedlinePlus.65 However, as with our early experiments with ProMiner, 

EBIMED is mainly based on co-occurrence as a rather basic relationship.

Regarding chemical named entity recognition, new momentum in the develop-

ment of technology to detect named chemical entities in text comes from the work 

of the groups participating in the OSCAR project. This team has allied with the 

UK Royal Chemical Society and is using the system for the analysis of chemical 

information in textual sources. However, so far, no evidence can be found from the 

OSCAR website or literature searches that this system is being extended to deal with 

biological or medical entities.66

In the area of pharmacogenetics and pharmacogenomics, two groups have reported 

on the successful application of text mining technology for linking biological and 

chemical information. Chang and Altman have demonstrated that a combination 

of a co-occurrence approach and a machine learning approach for the classifi ca-

tion of relationships is able to collect and classify information on drug–gene (and 

protein) relationships with satisfactory results.67 Thomas Rindfl esch’s group at the 

National Library of Medicine has recently published on the extraction of semantic 

predications or relations from Medline citations for pharmacogenomics.68 For the 

classifi cation of relationships, the group modifi ed the ontological representation of 

pharmacogenomics concepts in UMLS.

In an impressive body of work, researchers from IBM published on using the 

UIMA framework for the assembly of a complex workfl ow composed of services 

for biological, medical, and chemical entity recognition and relationship extraction. 

This publication is discussed in more detail in the following section.
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Our own group has recently published an approach to extract pharmacological 

property classes that are directly related to chemical compounds from Medline 

abstracts. The system is based on a commercial solution, the TEMIS platform for 

text analysis, using so-called Hearst patterns. Patterns indicative of information on 

the biological activity of compounds were identifi ed and used to analyze Medline 

abstracts and the unstructured text fi eld in DrugBank for drug classifi cation state-

ments. We identifi ed additional information not yet contained in DrugBank annota-

tion fi elds.69

A very interesting application of text mining technology for hypothesis genera-

tion in the area of toxicogenomics has been reported recently.70 In this work, text 

analysis of Medline abstracts was used to generate keyword “fi ngerprints,” which 

were then used to analyze patterns in microarray gene expression data. Dependent 

on treatment of cells in microarray experiments, keyword profi les of publications 

dealing with the substance or the substance class mentioned in text were correlated 

with gene expression data. The patterns detected gave raise to new hypotheses on the 

toxicogenomics regulation events caused by these compound classes.

UNSTRUCTURED INFORMATION MANAGEMENT 
ARCHITECTURE (UIMA)

In 2005, IBM released a framework for unstructured information management to the 

open source community: the Unstructured Information Management Architecture 

(UIMA) framework.71 UIMA is meant to be “an open, industrial-strength, scale-

able and extensible platform for creating, integrating and deploying unstructured 

information management solutions from combinations of semantic analysis and 

search components.” At the technical level, the UIMA framework provides a stan-

dardized format for the handling of annotations of unstructured information sources 

(including multimedia data) and a JAVA framework to that is distributed as a soft-

ware development kit (SDK). According to IBM, the goal of UIMA is “to provide 

a common foundation for industry and academia to collaborate and accelerate the 

world-wide development of technologies critical for discovering the vital knowledge 

present in the fastest growing sources of information today.” The underlying idea is 

that it is rather unlikely, that the requirements of application domains for text and 

multimedia analytics can be comprehensively addressed by monolithic solutions. An 

open, service-oriented architecture like UIMA is meant to provide a standardized 

framework that allows a broad community of industrial and academic developers 

to assemble complex workfl ows for text analytics by deploying individual tools as 

services in the UIMA framework.

Some academic initiatives in the area of text mining and natural language pro-

cessing have adopted the UIMA concept recently,72 and some commercial vendors 

of text mining solutions have done so, too.73 Of course, IBM itself is a major user of 

UIMA.74

IBM has delivered one of the early examples for usage of the UIMA framework 

to build a solution for biomedical NLP that is able to link biological and chemical 

information. The IBM BioTeKS (Biological Text Knowledge Services) system75 is 

composed of a large set of annotators for the analysis of biomedical text (Medline, 



Linking Chemical and Biological Information 137

patents, full text journals). BioTeKS provides solutions for the syntactic analysis of the 

documents, identifi es a variety of named entities belonging to previously described 

chemical and biomedical entity classes, and can extract relations between those.

Tokenization of the text (identifi cation of the smallest units forming an • 

expression; includes in this case lemmatization)

Part-of-speech tagging• 

Shallow parsing for the analysis of syntactic units (defi nes part of speech • 

as a noun or verb)

Dictionary lookups for lexical information (basically identifying word • 

stems that match an authority, in this case MeSH terms)

Dedicated annotation of UMLS concepts in text (dictionary lookup special-• 

ized for UMLS; comprises rule-based disambiguation of terms)

Recognition of chemical nomenclature names (rule-based approach for the • 

recognition of chemical fragment strings)

Recognition of drug names and associated dosage qualifi ers (combination • 

of dictionary and rule-based approach for the identifi cation of drug names 

and the extraction of dosages information)

Mapping of terms to ontology concepts (adding information about the hier-• 

archical position of a concept to the matching term in text)

Mapping of lexical terms and complex semantic categories to expressions • 

in text (this is a term categorizer based on machine learning)

Extraction of relations (based on shallow parsing, this annotator identifi es • 

syntactic clauses containing noun and verb phrases)

BioTeKS thus is composed of almost all functionalities to analyze biomedical 

literature including patents for mentions in text of chemical and biological as well 

as medical entities and the extraction of their relationships. The advantage of the 

implementation of this system as a UIMA-based, service-oriented architecture is 

that annotators can be added or replaced depending on the needs of the user of the 

system. In essence, the only service that is missing from the complex BioTeKS is an 

analysis service for the annotation of chemical structure depictions.

NAVIGATION TOOLS FOR NLP LINKING OF 
BIOLOGICAL AND CHEMICAL INFORMATION

A very important aspect of mining in unstructured data sources is the presentation 

of the results to the user, typically an expert in a given domain. A steadily growing 

number of tools for the presentation and navigation of results coming from informa-

tion extraction approaches is being made available; in this review we will focus on 

two of them: Cytoscape76 and AliBaba.77

Cytoscape is a bioinformatics software platform for visualizing molecular inter-

action networks and integrating these interactions with gene expression profi les and 

other state data. Cytoscape has been designed in a modular way, and one of the core 

features of the system is the extension of functionality through plugins. After about 

fi ve years of work by the open source consortium driving this project, plugins are 
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available for network and molecular profi ling analyses, new layouts, additional fi le 

format support, and connection with databases. Anyone can develop plugins using 

the Cytoscape open Java software architecture, and the development of new plu-

gins by the community is strongly encouraged. Cytoscape has become the standard 

environment for data analysis in systems biology projects; several commercial text 

mining solutions use Cytoscape as the visualization front end (see section on com-

mercial solutions below).

AliBaba is a visualization and querying front end for the analysis of text docu-

ments. Ali Baba parses PubMed abstracts for biological objects and their relations. 

The tool visualizes the resulting network in graphical form, thus presenting a quick 

overview over all information contained in the abstracts. For many relations, Ali 

Baba searches for simple co-occurrences in the same sentence. For protein–protein 

interactions and cellular locations of proteins, a more sophisticated strategy is used 

in addition.

COMMERCIAL SOLUTIONS FOR NLP-BASED LINKING 
OF BIOLOGICAL AND CHEMICAL INFORMATION

Over the past fi ve years a growing number of commercial NLP tools for the bio-

medical and chemical domain have reached the market. Some of these solutions are 

offered by companies such as SAS, IBM, and SPSS, using well-established statistical 

modeling and mining techniques. Other solutions have been developed by smaller 

software companies founded between 2000 and 2004 (e.g., BioAlma, Linguamatics, 

BrainWave, and TEMIS). In the following, we will briefl y introduce some com-

mercial solutions, which support mining strategies linking biological and chemical 

information. As a note of caution, the product presentations below have been sup-

plied by the vendors. The following is therefore by no means a critical review of the 

technology behind these tools.

According to what is discussed by users of commercial systems, open issues 

are the ability to handle huge numbers of documents and the processing of large 

amounts of full-text documents. Connected to these issues is the question of the 

performance of these solutions and their scalability. Complete analysis of documents 

by NLP systems is a rather computer-intensive task, as the systems need to analyze 

the structure of each sentence in a document, and, in particular, patent literature can 

be very demanding at the syntax level. Finally, we do not yet see any system appear-

ing at the horizon that would be able to combine text analysis with image analysis, 

something that is of high relevance for approaches that aim at linking biological and 

chemical information.

The following list introduces commercial vendors of text mining solutions in 

alphabetical order. The authors do not claim that the selection of vendors is compre-

hensive; the selection rather represents the willingness of vendors to provide infor-

mation upon request.

BioAlma (http://www.bioalma.com): Bioalma’s text mining tool is called AKS 

(Alma Knowledge Server). It identifi es and extracts a wide range of concepts, 

including biological and chemical entity types, from the scientifi c literature. 
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The system uses dictionaries, statistical methods, and very specifi c heuris-

tics for the identifi cation and extraction of each concept type; the combina-

tion of these approaches enables the system to distinguish between different 

entities. Information on genes and chemical substances is normalized to 

database entries wherever possible. Figure 7.3 shows how the BioAlma AKS 

identifi es drugs mentioned in the context of a target protein (COX2).

BrainWave (http://www.brainwave.in): BrainWave’s tool, Text Miner (see 

Figure 7.4), is composed of modules for both biology and chemistry. Text 

Miner can work with a variety of document formats (TXT, PDF, and HTML 

formats) as input. On the NLP side, Text Miner is composed of modules for 

named ntity  recognition, parts of speech tagging, rule-based entity rela-

tionship extraction, and a network builder. A specifi c gene–drug relation-

ship extractor module is part of Text Miner; the identifi cation of biological 

and chemical  entities and their relationships is based on a combination of 

 dictionary-based approaches, rule-based-approaches, and pattern-recogni-

tion methodologies. The system supports mapping of chemical entities in 

text to two- dimensional structures in public data sources.

FIGURE 7.3 A section of results obtained for the gene Cox2. Shown are the chemical com-

pounds related to the gene. The relevance gives an indication of the strength of the relation-

ship as it is found in the literature.
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Fraunhofer SCAI (http://www.scai.fraunhofer.de): Fraunhofer SCAI has 

developed a suite of tools for biomedical and chemical named entity recog-

nition based on dictionaries (ProMiner) and machine learning (IUPAC and 

SNP recognition tools). Recently, a tool for the reconstruction of chemi-

cal information from chemical structure depictions (ChemoCR) has been 

added. All these tools are enabled to work in distributed systems (clusters); 

their output is stored in a persistence layer with a web-based front end 

(SCAIview; see Figure 7.5). Named entities that can be recognized are gene 

and protein names, mutations (normalizable and nonnormalizable SNPs), 

chromosomal locations, genetic markers, MeSH terms, drug names, OMIM 

reference terms, any sort of controlled vocabulary (e.g., GO), and defi ned 

types of relationships of disease risk factors. SCAIview supports complex 

querying of Medline abstracts as well as full-text documents (e.g., patents). 

An integration of chemical structure reconstruction through ChemoCR for 

the analysis of patents is possible. The system accepts documents in ASCII, 

XML, HTML, TXT, and PDF format; ChemoCR accepts images in TIFF, 

JPG, and any bitmap format.

Linguamatics (http://www.linguamatics.com/): Linguamatics I2E (Interactive 

Information Extraction) uses NLP-based querying to extract relevant facts, 

relationships, and quantitative data from large document collections. 

Semantic search capabilities are enhanced by plugging in domain knowl-

edge in the form of taxonomies, thesauri, and ontologies. Query results are 

presented in a range of structured forms, including tables with highlighted 

hits and direct links to source documents. Linguamatics states that I2E is 

capable of searching millions of documents, for example, querying over 

the entire Medline corpus, and handles ontologies of millions of terms. I2E 

provides a technology platform, which is applicable to many domains and 

can reveal insights across different types of information. Figure 7.6 illus-

trates the ability of I2E to extract quantitative values associated with a drug 

(in this case IC50 values linked to Taxol).

SAS (www.sas.com): The text mining tool offered by SAS is called Text Miner 

(see Figure 7.7); the tool is part of the larger SAS Enterprise Miner sys-

tem. Following the general competence profi le of SAS, the tool is based 

mainly on statistical approaches in text analysis; dedicated domain knowl-

edge (e.g., proprietary pharma ontologies, gene and protein dictionaries, 

annotated corpora for training of machine learning tools) is not part of the 

solution but can be used by the system if available. Application areas for the 

text miner in the life science domain are composed of the “identifi cation 

of authors and co-authors for specifi c therapy” and approaches to optimize 

clinical studies.

TEMIS (http://www.temis.com/): Luxid (see Figure 7.8), the text mining 

 solution offered by TEMIS, is a service-oriented, modular architecture 

built on the UIMA78 framework. The identifi cation in, and extraction from, 

text of biological and chemical information is mediated by dedicated mod-

ules for biological and chemical entities. Relationships between biologi-

cal and  chemical entities are identifi ed through dedicated rule-based and 
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 pattern-based methodologies; Luxid provides an environment for the rapid 

generation of domain-specifi c grammar. The system supports the inclusion 

of competitive intelligence information in mining strategies that link chem-

ical and biological information. The system normalizes to database entries 

wherever possible.

SUMMARY AND CONCLUSION

Text mining in the life science literature currently envisages a growing interest from 

both the pharmaceutical and biotechnology industries, as well as from the academic 

research community. However, advancements in technology development seem to be 

confi ned to application domains. Named entity recognition in biology has reached a 

quality that now allows using text mining systems for database content production, 

whereas in the domain of chemistry we do see signifi cant challenges in the area of 

named entity recognition yet to be addressed.

The application of NLP technologies to link between the domain of biology and 

the domain of chemistry has just been started in the academic research communities. 

First reports on analyzing co-occurrences of biological and chemical entities in text 

have been published during the last two years. So far, most of the analyses published 

have been done on Medline abstracts. It remains to be shown whether and to what 

extent the analysis of full text documents enables linking between chemical and bio-

logical information at a higher degree of granularity. At this point, it is noteworthy 

to recall that one category of chemical information, namely the chemical informa-

tion residing in structure depictions, is only available from full-text documents. The 

combination of text mining with the automated analysis of chemical structure depic-

tions has not been demonstrated yet. We envision that this combined extraction of 

information will be nontrivial.

In the area of commercial information extraction systems, we observe a strong 

“pull effect” from the pharmaceutical and biotechnology industry. Automated meth-

ods of information extraction are regarded as tools for increasing productivity of 

human specialists in this industry. This increase of productivity can be achieved 

through improved retrieval of relevant information, combination of competitive and 

scientifi c intelligence, and extraction, aggregation, and presentation of factual state-

ments and relationships from heterogeneous unstructured text sources. In particu-

lar, the vision of automated mining of patents at a substantial degree of granularity 

is appealing to the industry. The ability to generate fl exible, customizable views 

of biological, chemical, and medical content extracted from the scientifi c literature 

(including patent literature) is one of the major aims of text mining activities in the 

pharmaceutical industry. In the ideal case, profi les of biological entities and net-

works, medical indication areas, and chemical structure spaces could be defi ned as 

individualized search patterns. Alerting services would inform the user about new 

information available on these entities and their relationships.

So far, commercial text mining systems that link biological and chemical infor-

mation through NLP seem to be ahead of academic developments. However, we have 

only limited information on the performance of these commercial systems. In partic-

ular, the rather sophisticated NLP approaches are computer-intensive, and currently 
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no reports are available on true large-scale analysis of relationships between chemi-

cal and biological entities in patents or other full-text corpora. We believe that at 

present the systems linking biological and chemical information using NLP have 

already demonstrated their potential, but they are not yet productive in the sense of 

the vision sketched in the beginning of this chapter.

The UIMA initiative launched by IBM has the potential to facilitate the construc-

tion of complex document analysis workfl ows. Services from academic laboratories 

as well as commercial tools could be integrated in one workfl ow as long as all tools 

can work with the standardized common analysis structure. A growing number of 

academic research groups and commercial development teams are adopting UIMA; 

we therefore expect to have a growing number of UIMA annotator services available 

in the public domain and in commercial solutions built on UIMA.

NLP approaches combining biological and chemical information have just been 

started during the past years; we should therefore feel encouraged to assume that the 

majority of work in this area still lies ahead of us.

NOTES AND REFERENCES

 1. Cohen, K.B., Hunter, L. 2008. Getting started in text mining. PLoS Computational 
Biology. 4(1):e20.

 2. Fundel K, Zimmer R. 2006. Gene and protein nomenclature in public databases. BMC 
Bioinformatics. 7:372.

 3. Liu, H., Hu, Z.Z., Torii, M., Wu, C., Friedman, C. Quantitative assessment of  dictionary- 

based protein named entity tagging. Journal of the American Medical Informatics 
Association. 13(5):497–507.

 4. Spasic, I., Ananiadou, S., McNaught, J., Kumar, A. 2005. Text mining and ontologies in 

biomedicine: making sense of raw text. Briefi ngs in Bioinformatics. 6(3):239–251.

 5. Zweigenbaum, P., Demner-Fushman, D., Yu, H., Cohen, K.B. 2007. Frontiers of bio-

medical text mining: current progress. Briefi ngs in Bioinformatics. 8(5):358–375. 

 6. See http://biocreative.sourceforge.net/

 7. Kim, J.-D., Ohta, T., Tsuruoka, Y., Tateisi, Y., Collier, N. 2004. Introduction to the 

Bio-Entity Recognition Task at JNLPBA. Proceedings of the International Workshop 
on Natural Language Processing in Biomedicine and its Applications (JNLPBA-04), 

pp. 70–75.

 8. Liu, H., Torii, M., Hu, Z.-Z., Wu, C. 2007. Gene mention and gene normalization based 

on machine learning and online resources. Proceedings of the Second BioCreative 
Challenge Evaluation Workshop, 135–140s.

 9. Hanisch, D., Fundel, K., Mevissen, H.T., Zimmer, R., Fluck, J. 2005. ProMiner:  rule- 

based protein and gene entity recognition. BMC Bioinformatics. 6(Suppl 1):S14.

 10. See http://www.ebi.ac.uk/embl/

 11. See http://www.rcsb.org/pdb/home/home.do

 12. See http://www.ncbi.nlm.nih.gov/entrez/query/static/help/LL2G.html

 13. Xu, H., Fan, J.-W., Hripcsak, G., Mendonça, E.A., Markatou, M., Friedman, C. 2007. 

Gene symbol disambiguation using knowledge-based profi les. Bioinformatics, 23(8): 

1015–1022. 

 14. See www.uniprot.org

 15. See http://pubchem.ncbi.nlm.nih.gov/.

 16. See http://www.drugbank.ca/

 17. See http://www.ebi.ac.uk.chebi/.

 18. See http://www.ncbi.nlm.nih.gov/projects/SNP/



148 Chemical Information Mining: Facilitating Literature-Based Discovery

 19. Klinger, R., Friedrich, C.M., Mevissen, H.T., Fluck, J., Hofmann-Apitius, M., Furlong, 

L.I., Sanz, F. 2007. Identifying gene-specifi c variations in biomedical text. Journal of 
Bioinformatics and Computational Biology. 5(6):1277–96.

 20. Rebholz-Schuhmann, D., Marcel, S., Albert, S., Tolle, R., Casari, G., Kirsch, H. 2004. 

Automatic extraction of mutations from Medline and cross-validation with OMIM. Nucleic 
Acids Research. 32(1):135–142.

 21. Zhou, G., Zhang, J., Su, J., Shen, D., Tan, C. 2004. Recognizing names in biomedical 

texts: a machine learning approach. Bioinformatics. 20(7):1178–1190.

 22. See http://www.nlm.nih.gov/mesh/

 23. See http://www.geneontology.org/

 24. See http://www.pantherdb.org/

 25. See http://www.arabidopsis.org/about/index.jsp

 26. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, 

L.A., Rhee, S.Y., Stitt, M. 2004. MAPMAN: a user-driven tool to display genomics data 

sets onto diagrams of metabolic pathways and other biological processes. Plant Journal. 
37(6):914–939.

 27. See http://www.sequenceontology.org/

 28. See http://www.gopubmed.org/

 29. Doms, A., Schroeder, M. 2005. GoPubMed: exploring PubMed with the Gene Ontology. 

Nucleic Acids Research. 33(Web Server issue):W783–W786.

 30. Müller, H.M., Kenny, E.E., Sternberg, P.W. 2004. Textpresso: an ontology-based informa-

tion retrieval and extraction system for biological literature. PLoS Biology. 2(11):e309.

 31. See, for example, http://www.gopubmed.org/

 32. Lisacek, F., Chichester, C., Kaplan, C., Sandor, A. 2005. Discovering paradigm shift pat-

terns in biomedical abstracts: application to neurodegenerative diseases. Proceedings of 
the First International Symposium on Semantic Mining in Biomedicine (SMBM) 2005, 

Hinxton, Cambridge, UK. See also http://ftp.informatik.rwth-aachen.de/Publications/

CEUR-WS/Vol-148/

 33. Dr. Philippe Bijenga, University Hospital Geneva, personal communication 

 34. See http://sig.biostr.washington.edu/projects/fm/AboutFM.html

 35. See http://www.who.int/classifi cations/icd/en/

 36. See http://pubchem.ncbi.nlm.nih.gov/

 37. See http://www.ebi.ac.uk/chebi/

 38. See http://www.drugbank.ca/

 39. See http://www.hmdb.ca/

 40. See http://www.infonortics.com/chemical/ch07/slides/thielemann.pdf

 41. Lafferty, J., McCallum, A., Pereira, F. 2001. Conditional random fi elds:  probabilistic 

 models for segmenting and labeling sequence data. In Proceedings of the 18th 
International Conference on Machine Learning, San Francisco: Morgan Kaufmann, pp. 

282–289.

 42. Corbett, P., Murray-Rust, P. 2006. High-throughput identifi cation of chemistry in life 

science texts. In Computational Life Sciences II, Lecture Notes in Computer Science 

series, Vol. 4216. Berlin/Heidelberg: Springer, pp. 107–118.

 43. Kemp, N., Lynch, M. 1998. The extraction of information from the text of chemical 

patents. 1. Identifi cation of specifi c chemical names. Journal of Chemical Information 
and Computer Sciences. 38:544–551.

 44. Anstein, S., Kremer, G., Reyle, U. 2006. Identifying and classifying terms in the life 

sciences: the case of chemical terminology. In N. Calzolari, K. Choukri, A. Gangemi, 

B. Maegaard, J. Mariani, J. Odijk, D. Tapias (Eds.), Proceedings of the Fifth Language 
Resources and Evaluation Conference, pp. 1095–1098.

 45. Corbett, P., Batchelor, C., Teufel, S. 2007. Annotation of chemical named entities 

BioNLP. Biological, Translational, and Clinical Language Processing. 57–64.



Linking Chemical and Biological Information 149

 46. See http://www.infonortics.com/chemical/ch07/slides/hofmann.pdf

 47. McDaniel, R., Balmuth, J.R. 1992. Kekule: Ocr-optical chemical (structure) recogni-

tion. Journal of Chemical Information and Computer Sciences. 32(4):373–378.

 48. Ibison, P., Jacquot, M., Kam, F., Neville, A.G., Simpson, R.W., Tonnelier, C., Venczel, 

T., Johnson A.P. 1993. Chemical literature data extraction: the CLiDE Project. Journal 
of Chemical Information Computer Science. 33(3):338–344.

 49. Fluck, J., Zimmermann, M., Kurapkat, G., Hofmann, M. 2005. Information extrac-

tion technologies for the life science industry. Drug Discovery Today-Technologies. 

2(3):217–224.

 50. See http://cactus.nci.nih.gov/cgi-bin/osra/index.cgi

 51. See http://www.simbiosys.ca/clide/

 52. See http://www.scai.fraunhofer.de/fi leadmin/download/vortraege/tms_07/Martin_Hofm 

ann-Apitius.pdf

 53. See http://en.wikipedia.org/wiki/Natural_language_processing

 54. See http://mmtx.nlm.nih.gov/index.shtml 

 55. See http://www.nlm.nih.gov/research/umls/

 56. Rindfl esh, T.C., Fiszman, M. 2003. The interaction of domain knowledge and linguistic 

structure in natural language processing: interpreting hypernymic propositions in bio-

medical text. Journal of Biomedical Informatics. 36:462—477.

 57. Greenwood, M.A., Stevenson, M., Guo, Y., Harkema, H., Roberts, A. 2005. Automatically 

acquiring a linguistically motivated genic interaction extraction system. In J. Cussens, 

C. Nédellec (Eds.), Proceedings of the Workshop on Learning Language in Logic 

(LLL05), pp. 46–52.

 58. Plake, C., Hakenberg, J., Leser, U. 2005. Optimizing syntax patterns for discovering protein-

protein interactions. ACM Symposium on Applied Computing (SAC), Bioinformatics Track. 

 59. Jelier, R., Jenster, G., Dorssers, L.C.J., van der Eijk, C.C., van Mulligen, E.M., Mons, 

B., Kors, J.A. 2005. Co-occurrence based meta-analysis of scientifi c texts: retrieving 

biological relationships between genes. Bioinformatics. 21(9):2049–2058 

 60. Hoffmann, R., Krallinger, M., Andres, E., Tamames, J., Blaschke, C., Valencia, A. 2005. 

Text mining for metabolic pathways, signaling cascades, and protein networks. Science 
STKE. 2005(283):pe21.

 61. Gonzalez, G., Uribe, J.C., Tari, L., Brophy, C., Baral, C. 2007. Mining gene-disease 

relationships from biomedical literature: weighting protein-protein interactions and con-

nectivity measures. Pacifi c Symposium on Biocomputing, pp. 28–39.

  61a. Singh, S.B., Hull, R.D., Fluder, E.M. 2003. Text Infl uenced Molecular Indexing 

(TIMI): a literature database mining approach that handles text and chemistry. Journal 
of Chemical Information and Computer Sciences, May-June, 43(3): 743–752.

 62. See http://www.aneurist.org

 63. Gattermayer, T. 2007. SCAIView Annotation and Visualization System for Knowledge 
Discovery, Bonn-Aachen International Center for Information Technology, University 

of Bonn, Germany, October 2007.

 64. See and Rebholz-Schuhmann, D., Kirsch, H., Arregui, M., Gaudan, S., Riethoven, M., 

Stoehr, P. 2007. EBIMed—text crunching to gather facts for proteins from Medline. 

Bioinformatics. 23(2):e237–e244.

 65. See http://www.nlm.nih.gov/medlineplus/druginformation.html

 66. Corbett, P., Murray-Rust, P. 2006. High-throughput identifi cation of chemistry in life 

science texts. Springer Lecture Notes in Computer Science, Vol. 4216, pp. 107–118.

 67. Chang, J.T., Altman, R.B. 2004. Extracting and characterizing gene-drug relationships 

from the literature. Pharmacogenetics. 14(9):577–586.

 68. Ahlers, C.B., Fiszman, M., Demner-Fushman, D., Lang, F.-M., Rindfl esch, T. 2007. 

Extracting semantic predications from Medline citations for pharmacogenomics. Pacifi c 
Symposium on Biocomputing. 12:209–220.



150 Chemical Information Mining: Facilitating Literature-Based Discovery

 69. Kolárik, C., Hofmann-Apitius, M., Zimmermann, M., Fluck, J. 2007. Identifi cation of 

new drug classifi cation terms in textual resources. Bioinformatics. 23 (13):i264–i272.

 70. Frijters, R., Verhoeven, S., Alkema, W., van Schaik, R., Polman, J. 2007. Literature-

based compound profi ling: application to toxicogenomics. Pharmacogenomics. 8(11): 

1521–1534.

 71. See www.research.ibm.com/UIMA/

 72. See http://uima-framework.sourceforge.net/ and http://www.julielab.de/content/view/122/179/

 73. See http://www.temis.com/?id=32&selt=14

 74. See http://www.research.ibm.com/journal/sj43-3.html and publications therein

 75. Mack, R., Mukherjea, S., Soffer, A., Uramoto, N., Brown, E., Coden, A., Cooper, J., 

Inokuchi, A., Iyer, B., Mass, Y., Matsuzawa, H., and Subramaniam, L.V. 2004. Text 

analytics for life science using the Unstructured Information Management Architecture. 
IBM Systems Journal. 43(3).

 76. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., 

Schwikowski, B., Ideker, T. 2003. Cytoscape: a software environment for integrated 

models of biomolecular interaction networks. Genome Research. 13(11):2498–2504. 

See also http://www.cytoscape.org/

 77. Plake, C., Schiemann, T., Pankalla, M., Hakenberg, J., Leser, U. 2006. Ali Baba: PubMed 

as a graph. Bioinformatics. 22(19):2444–2445.

 78. See http://domino.research.ibm.com/comm/research_projects.nsf/pages/uima.index.html



151

8 Semantic Web

Colin Batchelor and Richard Kidd

CONTENTS

Introduction ............................................................................................................ 151

The Semantic Web ................................................................................................. 152

Grammar ........................................................................................................... 152

Vocabulary ......................................................................................................... 153

Chemical Compounds and the Semantic Web .............................................. 155

Ontology IDs: The Case of OBO ................................................................. 156

BioRDF and Other Biological Identifi ers ..................................................... 157

Case Studies ........................................................................................................... 157

Web Services ..................................................................................................... 158

Databases: ChemBlast ....................................................................................... 159

Publishing: Semantic Eye ................................................................................. 159

Publishing: RSC Project Prospect ..................................................................... 159

History and Development Route .................................................................. 159

Semantic Content ......................................................................................... 160

Results and Applications .............................................................................. 161

Experimental Data Standards and the Semantic Web ............................................ 163

Future Directions ................................................................................................... 164

References .............................................................................................................. 165

INTRODUCTION

The Semantic Web is a vision of the World Wide Web where the pages can be, in a 

manner of speaking, understood by computers (Berners-Lee et al. 2001). What this 

requires is a consistent set of machine-readable identifi ers for concepts and a defi ned 

set of logical relations that can be used to draw inferences about them and reason 

over papers. This is to be distinguished from the natural language processing prob-

lem of question answering, where queries in natural language, such as “Where are 

the pubs in Richmond?”, are answered by parsing web pages themselves. As we shall 

see later on, natural language processing is a promising way of bridging between the 

human-readable and machine-readable web.

The technology of Web services is closely related. To process the information 

passed to them appropriately, Web services need to know what sort of information is 

being provided, and ontologies and identifi ers can play an important role in this.

The standards body for the World Wide Web as a whole, and hence for the 

Semantic Web, is the World Wide Web Consortium (W3C; www.w3.org), which is 
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based at ERCIM in Sophia-Antipolis in France, MIT in the United States, and Keio 

University in Japan.

The possibilities and application of the Semantic Web to chemistry were ini-

tially identifi ed by Murray-Rust and Rzepa (1999, 2000; Rzepa and Murray-Rust 

2001) and have been promoted in a number of papers since. The precondition to the 

Semantic Web, the maintenance of data within XML format, has become a reality, 

whereas the representation of the data within XML has been subject to evolution in 

the last few years. For example, the SVG format for holding graphics as XML was 

initially promising, but adoption never took off beyond a few examples. As Adobe is 

no longer developing and supporting the format, it can be regarded at present as an 

evolutionary dead end.

In this chapter we shall fi rst describe RDF and OWL, the grammar of the 

Semantic Web, and then move on to identifi ers, the vocabulary of the Semantic 

Web, and ontologies, which represent the real-world knowledge required to make 

use of the grammar and vocabulary. We will concentrate on practical chemistry- and 

 biochemistry-orientated deployments of Semantic Web technology rather than the 

computer science behind it. Then we will cover some case studies: Web services, 

databases, and semantic publishing in the forms of Semantic Eye and RSC Project 

Prospect. We will briefl y cover what the Semantic Web has to offer for experimental 

data before fi nishing up with some possible future directions.

THE SEMANTIC WEB

GRAMMAR

Resource Description Format (RDF) is a way of making statements about subject–

object–predicate triples. The subject, object, and predicate of each statement should 

each, at least in principle, have a Universal Resource Identifi er (URI). Much of this 

chapter will be devoted to describing existing schemes for assigning URIs to sub-

jects and objects. Rather less, and less rigorous, work has been done on predicates.

In a statement such as “caffeine is a diuretic,” “caffeine” is the subject, “diuretic” 

is the object, and “is a” is the predicate. The Semantic Web stands or falls not only on 

identifi ers but also on the consistent and well-documented use of predicates.

RDF itself says nothing about how these triples should be represented. We shall 

discuss one way of converting these triples into text, or serializing them, later on.

An ontology is a shared formal representation of knowledge. The strength of an 

ontology over a database, or a simple controlled vocabulary, is that it contains predi-

cates that enable it to be reasoned over. The word itself, from the classical Greek for 

being and discourse, describes the philosophical pursuit, going back to Aristotle’s 

Categories, of classifying what is, but has since come to mean a computational arti-

fact for representing real-world knowledge.

Then we can divide ontologies into upper-level ontologies, such as Suggested Upper 

Merged Ontology (SUMO) (Niles and Pease 2001) or Basic Formal Ontology (BFO) 

(Grenon et al. 2004), which attempt to provide a framework for describing everything 

in the universe, and domain ontologies, which are focused on knowledge in a particular 

area, such as transmissible diseases, zebrafi sh anatomy, or indeed chemical structure.
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It is important that upper-level ontologies do not attempt to be too ambitious in 

their coverage of domain-specifi c information. SUMO attempts to cover basic chem-

istry and gets it badly wrong. Molecule, for example, is defi ned as, “A molecule is 

the smallest unit of matter of a CompoundSubstance that retains all the physical and 

chemical properties of that substance, e.g., Ne, H2, H2O.” It manages to be inconsis-

tent because it then defi nes a CompoundSubstance in such a way as to exclude hydro-

gen molecules from the defi nition of Molecule. The defi nition of Metal is not only a 

sibling of Atom and SubatomicParticle, but excludes alloys. BFO has less ambitious 

aims than SUMO and is deliberately minimal in its scope.

Traces of the early ontology work are still apparent. The best practice enshrined 

by the OBO Foundry (Smith et al. 2007) involves a so-called Aristotelian specifi -

cation of how to write the defi nitions for the entries in an ontology. The defi nition 

should be written in terms of the genus, the “kind” of thing you are describing, and 

its differentia, what distinguishes it from its siblings. Hence “man is an animal that 

is rational,” or, to take an example from the Sequence Ontology (Eilbeck et al. 2005), 

a primary transcript (SO:0000185) is “a transcript that in its initial state requires 

modifi cation to be functional.”

It is worth mentioning that ontologies describe types of things, rather than things 

you would fi nd in the universe, which are instances of the types. A building ontology 

would have entries for “detached house,” “apartment,” and “shed,” rather than “23 

Acacia Avenue, Framley.” For chemistry, a type would be “water,” and its instance 

would be a particular molecule of water in the sea or in a cup of coffee.

The two foundational relationships between entries in an ontology are is_a and 

part_of. The is_a relationship is a taxonomic one; thus, a dog is_a animal, a spaniel 

is_a dog, and so forth. Likewise, the part_of relationship specifi es that a hinge is 

part_of a door, a door is part_of a room, and so on. However, there is a subtlety. Not 

all parts can be described with the part_of relationship, because if you say that type 

A part_of type B, that means that all instances of A are necessarily part of some 

instance of B. So hydrogen is not part_of methane. There are very few genuine cases 

of a part_of relationship that describes chemical compounds. It is better to use a 

reciprocal relationship, has_part, in which all type A has_part some type B, or all 

methane molecules have some hydrogen atoms as parts.

RDF Schema (RDFS) (Brickley and Guha 2004) is an extension of RDF to cover 

simple ontologies. It adds classes and resources and properties, such as rdfs:subClassOf, 

which allow arbitrary relationships to be defi ned, or rdfs:range and rdfs:domain, which 

allow the scope of relationships to be restricted. rdfs:label provides a human-readable 

name as an alternative to the URI, and rdfs:comment can be used for human-readable 

defi nitions. Web Ontology language (OWL) (McGuinness and Van Harmelen 2004) is 

a way of representing important ontological concepts such as disjointness that are not 

covered in RDF or RDFS, but it is outside the scope of this chapter.

VOCABULARY

Standardization of terminology is the fi rst problem to be solved, and in chemistry 

this can be broken down into several areas: substance identifi cation, reaction and 

experimental information, subject terminology, and relationships between them. In 
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some cases this is a case of unique identifi ers (in the case of substances), in some 

having an agreed set of terms and relationships (such as reaction types) and fi nally of 

having structured ways of describing experimental and property data.

A famous zoological classifi cation divides animals into the following:

 1. Those that belong to the Emperor

 2. Embalmed ones

 3. Those that are trained

 4. Suckling pigs

 5. Mermaids

 6. Fabulous ones

 7. Stray dogs

 8. Those included in the present classifi cation

 9. Those that tremble as if they were mad

 10. Innumerable ones

 11. Those drawn with a very fi ne camelhair brush

 12. Others

 13. Those that have just broken a fl ower vase

 14. Those that from a long way off look like fl ies

This fanciful classifi cation, attributed to a Chinese encyclopedia in Borges’s short 

story “The Analytical Language of John Wilkins,” and brought to the world’s atten-

tion by Foucault in his The Order of Things is clearly ludicrous, but perhaps not so 

different from the root classifi cation of chemical compounds in the Medical Subject 

Headings (MeSH), which is as follows:

 1. Inorganic chemicals

 2. Organic chemicals

 3. Heterocyclic compounds

 4. Polycyclic compounds

 5. Macromolecular substances

 6. Hormones, hormone substitutes, and hormone antagonists

 7. Enzymes and coenzymes

 8. Carbohydrates

 9. Lipids

 10. Amino acids, peptides, and proteins

 11. Nucleic acids, nucleotides, and nucleosides

 12. Complex mixtures

 13. Biological factors

 14. Biomedical and dental materials

 15. Pharmaceutical preparations

 16. Chemical actions and uses

Many, if not most, compounds of medical interest fall into many of the above 

categories, just as many if not most animals fall into many of Borges’s. Properly 

constructed ontologies obey the principle of pairwise disjointness, that is, no term 
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can belong to two sibling categories. One risk of not following this principle is that 

the ontology can end up containing cycles, which would cause a reasoner, a computer 

program that carries out inference over an ontology, to enter an infi nite loop.

The Crystallographic Information Format (CIF) developed by the International 

Union of Crystallography (IUCr) (Hall et al. 1991) is the best applied standard within 

chemistry and is an exemplar of the diffi culties of standardization. The CIF is well 

accepted and understood by the community, is supported by publishers, and easy-to-

use validation tools exist. However, ensuring that the resulting CIFs are valid and accu-

rate requires additional quality assurance; publishers of CIFs may carry this out (as, for 

example, the RSC does). So the development and adoption of standards is not suffi cient 

to ensure that accurate and unambiguous data will be presented within the standards.

In this section we will describe the three general identifi er strategies for objects 

of chemical discourse: InChIs (already introduced in Chapter 3), ontology IDs, 

and BioRDF.

The important and classifi able objects of chemical discourse include, but are not 

restricted to:

 1. Compounds of known structure

 2. Compounds of unknown structure

 3. Mixtures of compounds

 4. Classes of compound

 5. Parts of molecules

 6. Chemical elements in the pure state

 7. Chemical elements as measured by analytical chemistry techniques

 8. Biological sequences of naturally occurring nucleotides or peptides

 9. Gene products, that is, proteins and RNAs

 10. Organisms

Members of classes 1 to 7 are strictly defi ned by their constituent parts; members of 

classes 9 and 10, loosely so, so that they can lose parts and retain their identity.

Out of all of the above, only the InChI can unambiguously describe some com-

pounds of known structure. The rest have a variety of representations, many of which 

are keyed to entries in an ontology. BioRDF is a sort of wrapper for database IDs that 

describe biological entities.

Chemical Compounds and the Semantic Web
InChI strings can identify chemical compounds, class 1 in our classifi cation. The 

drawbacks to CAS numbers and Simplifi ed Molecular Line Entry System (SMILES) 

have been rehearsed elsewhere, so we shall briefl y mention that they are unsuitable 

for URI-fi cation. The URI for an InChI, as defi ned by the INFO registry, which 

is run by the National Information Standards Organization in the United States, 

is made by prefi xing the InChI with “info:inchi=” and URI-encoding contentious 

characters such as plus signs. The unique property of the InChI URI, as opposed to 

others, such as digital object identifi ers (DOIs) or PubMed IDs, is that it contains all 

of the information needed to reconstruct the chemical structure by referring only to 

an algorithm, rather than an external database. However, it is potentially long and 
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unwieldy, so the InChIKey has been developed. This is a hashed, fi xed-length ver-

sion of the InChI. Unfortunately, it is impossible to reverse the hashing process and 

extract the original structure from the InChIKey.

It is not necessarily clear whether a given chemical name indicates something 

that belongs to class 1, class 4, or class 5. To illustrate the diffi culty in determining 

whether a given chemical name refers to a compound, a class of compounds, or a 

part of a molecule, and how we would represent it if it did not represent a compound, 

let us consider the word imidazole. It can stand for a chemical compound, which can 

be described by an InChI. However, this is rare. Its two main uses are to indicate 

membership of a class of compounds or a part of a molecule. Generally, if a chemi-

cal compound name has a determiner, or is plural, for example, “the imidazole 10,” 

where 10 is the number of a structure in a fi gure, or “The imidazoles are. . . ,” the 

name will not refer to imidazole itself, but to a compound that contains the imidazole 

skeleton. Similarly, phrases like “the imidazole sidechain” refer to part of the amino 

acid histidine, which is distinguished from the other amino acids by containing the 

imidazole skeleton. The histidine in question is unlikely to be a free molecule, but 

would rather be an amino acid residue and itself part of a much larger system.

That a term in ChEBI refers to a class (our class 4) of compounds, if it is a 

class defi ned by structural characteristics, is indicated by its name being plural. 

There is no straightforward distinction in ChEBI between classes of which the 

instances are other classes and classes of which the instances are molecules, 

atoms, and so on.

Parts (our class 5) are more problematic. Only those parts that are substituents (in 

ChEBI called “groups”) have entries in ChEBI. These are typically clearly linguisti-

cally signaled in text—imidazolyl, pyrrolyl, methyl, and so forth. Those parts onto 

which the groups are substituted—benzene rings, cyclohexanone skeletons, and so 

forth—do not exist in ChEBI.

We have no framework for representing compounds of unknown structure (class 2 

in the above classifi cation), such as you will fi nd discussed in natural products chem-

istry, other than the name, but the name is not itself an unambiguous identifi er.

It might be thought that element names stand unambiguously for the elements 

themselves, mapping onto an InChI of the sort InChI=1/Au. However, in analytical 

chemistry and metallomics, the phrase “determination of copper” tells us little about 

the chemical environment of the copper atoms, whether they are bonded, and so 

forth. ChEBI does distinguish between “copper” (our class 7) and “elemental cop-

per” (our class 6), but this is poorly documented.

Ontology IDs: The Case of OBO
The OBO format for describing ontologies developed out of work on the Gene 

Ontology (Gene Ontology Consortium 2000) independently from the W3C’s work 

on OWL, the aim being to have a lightweight, human-readable, human-writable text-

based format. Moreira and Musen (2007) developed a non-lossy way of converting 

OBO to OWL and vice versa, and with it necessarily a URI-fi cation of OBO identi-

fi ers. They look like this:

http://purl.org/obo/owl/CHEBI:27899
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which is the ChEBI reference for the square-planar complex cisplatin [Pt(Cl)2 

(NH3)2]
2+, where like ligands are adjacent to one another. Transplatin, also [Pt(Cl)2 

(NH3)2]
2+, except that here unlike ligands are adjacent to one another, by contrast, is

http://purl.org/obo/owl/CHEBI:35852

The two molecules share the same InChI because it cannot represent non-sp2 or 

sp3 coordination environments, unlike SMILES.

As for our class 8, there is some ambiguity for very short biological sequences. 

Given an appropriately capped terpeptide GlyLysSer, the representations GlyLysSer, 

GLS, or the relevant InChI will all be equally meaningful, but there is no fundamen-

tal representation, given the limits on the length of an InChI, that could cope with a 

chiliapeptide (with 1,000 bases).

The Gene Ontology (Gene Ontology Consortium 2000) is not an ontology of 

genes, nor of gene products (our class 9), that is, proteins and RNAs, especially non-

coding RNAs. What it does provide identifi ers for, are the functions of a gene prod-

uct, the biological processes it may be involved in, and the locations in a cell where 

these gene products may act. These cellular components are sometimes themselves 

gene products, but we shall not consider them further here.

BioRDF and Other Biological Identifi ers
BioRDF (Ruttenberg et al. 2007) supports a variety of neurochemical databases, has 

RDF-ifi ed gene records, databases of receptor–ligand and protein–protein interactions, 

a directory of commercially available antibodies, Reactome, KEGG, the NCI metathe-

saurus, and UniProt (which is a collaboration between the SIB in Zurich and the EBI in 

Hinxton, UK), hence providing a Semantic Web representation of protein sequences.

However, gene products in general are trickier. We not only have to consider bare 

protein sequences, but also their three-dimensional structures, which are stored in the 

PDB and their family data in Pfam. All of these and many more sources are intended 

to be pulled together by the Protein Ontology (PRO) project (Natale et al. 2006), 

which has one component based on evolutionary relatedness and another component 

based on protein structure. The parallel RNA Ontology (RNAO) project (Leontis 

et al. 2006) is intended to do something similar for RNAs and their structures but 

does not cover family data, which is held by RFAM (Griffi ths-Jones et al. 2005).

As for organisms, our class 10, Linnaeus had this sorted out in the 18th century 

with his Systema Naturae. With some modifi cations (these days you and I are H. 
sapiens rather than H. diurnus—H. nocturnus was the orangutan!), his binomial 

system has survived to the present day, and of course is eminently well suited to 

being mined out with a simple regular-expression-based system. The options for 

(slightly) more machine-readable identifi ers are the NCBI Taxonomy and the Life 

Science Identifi er (LSID) project (see the LSID resolver at http://lsid.tdwg.org/).

CASE STUDIES

The main application areas of Semantic Web technology to chemistry so far have 

been in Web services, especially PubChem, chemical databases, and publishing. 
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Although there are a number of examples of the application of Semantic Web tech-

nologies to scientifi c publishing, for example, Ingenta translating parts of their pub-

lications database into RDF and keeping it in a triplestore (Portwin and Parvatikar 

2006), we shall concentrate on those relevant to chemistry.

WEB SERVICES

A Web service is a computer program that is accessible over the Web. There are 

two architectures for doing this: REST (Fielding 2000) and SOAP (Mitra and Lafon 

2007). Each SOAP Web service is described in terms of Web Service Description 

Language (Booth and Liu 2007), which is a specifi cation in XML. This enables data 

passed over the Web, say a sequence of characters such as CMRSGGCTRRYAC, 

to have its type specifi ed according to an ontology, thus telling the code that that 

sequence of characters is a consensus DNA sequence rather than an author name or 

a geographical location. A “RESTful” Web service works in terms of HTTP requests 

and thus has potentially a less constrained syntax.

PubChem provides examples of both sorts of Web service. To search PubChem 

for a particular chemical name, then, you can use the Entrez Programming Utilities 

(http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=coursework.chapter.eutils). 

Requests to these go via the URL and can be typed into a browser by hand. For 

more sophisticated requests, PubChem provides the Power User Gateway (http://

pubchem.ncbi.nlm.nih.gov/pug/pughelp.html). This uses a complicated XML format 

for requests, much of which is there for job control for large batches.

One important application of Web services is in distributing computational effort 

over many different machines, creating what in the UK is called a grid, or in the 

cases we are about to mention, a semantic grid. We shall briefl y describe two research 

projects in the UK that have applied this to the fi eld of chemistry, in Southampton 

and Leeds, respectively.

The UK National Crystallography Service (NCS) in Southampton has an 

e- science infrastructure for conducting small-molecule crystallography experi-

ments and disseminating them over the Web. This has developed from the 

Combechem project, which has also focused on capturing the entire experimental 

process with, for example, semantically rich electronic lab books (Hughes et al. 

2004). In their description of the eCrystals server, Coles et al. (2006) describe in 

detail how to authenticate users, control experimental apparatus, and organize job 

queues. However, what is most relevant to the Semantic Web is how the crystal 

data obtained is disseminated. Bibliographic metadata aside, the points of chemi-

cal interest are the chemical formula, InChI (as we have seen earlier), compound 

class, crystallographic keywords, and the stages of the experiment for which data 

fi les are present. These are disseminated through the Open Archives Initiative 

via qualifi ed Dublin Core terms (Hillmann 2005). The author describes the terms 

currently used (Koch and Duke 2006) as placeholders “until offi cial ones become 

available.”

Similar in spirit, but aimed at a very different community, is the work at Leeds, 

carried out jointly between the research groups of Peter Dew in computing and Mike 

Pilling in chemistry. One important focus here is on distributing the computational 

task of modelling chemical reaction processes in reaction kinetics, combustion, and 



Semantic Web 159

atmospheric chemistry (Pham et al. 2005, 2006). The other focus, and this is more 

of a desideratum than something that has been fully accomplished, is getting hold 

of useful reaction data, mechanisms, and models, which are often scattered between 

research groups and not necessarily published.

DATABASES: CHEMBLAST

Bhat and Barkley (2007) provide the most impressive case yet of integrating dis-

parate databases through the Semantic Web, these being the Protein Databank, the 

HIV structural database (AIDSDB), and PubChem. Their aim is to create a data-

base of AIDS inhibitor drugs and how these drugs bind to active sites of enzymes. 

They achieve this by a URI-fi cation of the InChI (Prasanna et al. 2005) both for 

whole molecules and, rather controversially, for parts of molecules, and a chemical 

taxonomy (Prasanna et al. 2006) that describes whole molecules, their constituent 

groups, and the “fragments” that might be used in structure searching with a care-

fully described, ontologically well-formed set of relationships between them.

A particularly innovative feature of this work is that it treats the InChI of the drug 

molecule as an invariant URI and provides rules for generating local, application-spe-

cifi c URIs (in their terms, semi-invariant or ontologically defi ned URIs: OURIs) for the 

different needs of, for example, molecular modelers, medicinal chemists, or biologists.

Their URI-fi cation of the InChI, and the URI-fi cation by the INFO registry, are 

not identical, so there is some standardization yet to be achieved. Likewise, their 

chemical taxonomy and ChEBI are not yet interoperable.

PUBLISHING: SEMANTIC EYE

Semantic Eye (Casher and Rzepa 2006) is a test-of-principle scheme for the seman-

tic enrichment of journal articles. Rather unusually, it treats the PDF as the locus of 

semantic enrichment. The identifi ers are mapped onto RDF triples that are then serial-

ized as XML using Adobe’s Extensible Metadata Platform (XMP) schema within the 

PDF. It uses InChIs as identifi ers for molecules and DOIs for the articles themselves. 

The idea is that the identifi ers derived from the PDFs can be stored locally on a user’s 

machine inside the PDFs, which are then mined by desktop indexing services, creat-

ing a sort of semantic intranet or semantic desktop. Exactly how the identifi ers are 

assigned to the papers in the fi rst place is left open to the user.

PUBLISHING: RSC PROJECT PROSPECT

History and Development Route
Project Prospect is at the time of writing the fi rst real application of semantic 

 enhancement to primary research literature. By using open standards such as the 

InChI and the Open Biomedical Ontologies, the aim was to remove the ambiguity 

of searching (this remains to be well integrated with the search engines), but the 

information is now held in a structured form that can make this happen. In this fi rst 

implementation, the information is used to add a layer of additional information 

(visualizations and defi nitions) and identify relationships between our own related 

HTML articles.
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Along with other publishers, RSC has sponsored summer students at the Unilever 

Centre of Molecular Informatics at Cambridge University (within Peter Murray-Rust’s 

group) for a number of years. Out of these projects evolved a number of software tools, 

such as the Experimental Data Checker (Adams et al. 2004), and a greater understand-

ing of the possibilities of using structured data within the publication process. The 

RSC internal development project started about a year before launch and had a number 

of aims: to use open standards for subject and chemical terms to allow better identifi -

cation of relevant content by search engines and, consequently, readers, to develop the 

display and reuse of structured experimental data within publication workfl ow, and to 

apply this across the RSC’s published content. The development of the IUPAC InChI 

identifi er as an open standard for representing a chemical substance also enabled many 

compounds to be dealt with in a sensible manner. The opportunities offered led RSC 

to set up this Project Prospect to both implement them in a sustainable form into the 

journal production workfl ows and to demonstrate the possibilities to readers. The pro-

duction route uses the OSCAR3 text mining package (part of the SciBorg [Copestake 

et al. 2006] collaboration between the Unilever Centre for Molecular Informatics and 

the Computer Laboratory, both at the University of Cambridge) to identify the com-

pounds and subject terms, open standards to keep the metadata within XML, and 

amendments to article publishing routines to display the data online.

Semantic Content
Scalable assignment of identifi ers to papers was one of the basic design criteria behind 

Project Prospect, which is signifi cantly more ambitious but as yet only semi-detached 

part of the Semantic Web. Here the RDF is embedded in the RSS feeds. Currently, 

the identifi ers in use are InChIs for InChI-fi able chemical compounds and OBO IDs 

for terms found in the Gene Ontology (Gene Ontology Consortium 2000), Sequence 

Ontology (Eilbeck et al. 2005), and the OBO cell-type ontology (Bard et al. 2005). 

The identifi ers are assigned to the articles by text mining and manual curation.

It will be useful here to show how the RDF of the RSS feeds are serialized as 

XML. This pulls together web feeds, metadata for publishing and chemistry, and 

human- and machine-readable information. Some knowledge of XML will be 

needed to understand what follows.

The fi rst thing to note is that in RSS 1.0, everything is wrapped up in an <rdf:RDF> 

element that defi nes the XML namespaces used throughout the document. Inside 

this is a <channel> element. This is the subject of the fi rst set of relationships. It is 

identifi ed by the rdf:about attribute.

The XML that defi nes the semantic content of each paper works like this: Each 

article is represented by an <item> element with an rdf:about attribute, indicating 

that the article is the subject of an RDF triple. It could be defi ned with a doi: URI, a 

pmid: URI (for those RSC articles that are abstracted by PubMed) or, as it is in prac-

tice, by a URL that points to the RSC’s DOI resolver. A <content:items> element, as 

defi ned by the “content” module of RSS 1.0, has within it an <rdf:Bag> element that 

contains <rdf:li> elements, and within each of those a <content:item> element whose 

rdf:about attribute is the URI of the entity mentioned within the article. This means 

<content:item> is the predicate, or the verb, of the relationship. Written without the 

XML, a relationship might look like this:
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doi:10.1039/b715455k content:item http://purl.org/obo/
owl/SO#SO:0001078

which in English says

(Chiovitti et al. 2008) mentions polypeptide secondary 
structure.

The publishing content is specifi ed using the Dublin Core and PRISM specifi -

cations. The <dc:publisher> element, for example, specifi es an as_publisher rela-

tionship between the article and the human-readable text “The Royal Society of 

Chemistry.” In time we may expect that this text could be replaced by a URI for the 

publisher.

The important question for how well this works as part of the Semantic Web is 

how well the resolution mechanisms work. IUPAC provides no resolution mechanism 

for InChI URIs. The OBO URIs themselves resolve to the ontologies themselves 

represented in OWL. The RSC’s implementation has to be considered incomplete 

because a DOI does not yet resolve to a page containing machine-readable informa-

tion about the paper. Only when this is achieved can Project Prospect be properly 

considered part of the Semantic Web.

Results and Applications
Currently, the included metadata are used to create additional functionality for 

the reader within an enhanced HTML view of an article. The ontology terms link 

to pop-up pages with the ontology defi nitions, further links, and related articles, 

whereas the compounds bring up a pop-up containing a two-dimensional structure, 

the InChI, and SMILES strings for the compound, names, synonyms, and related 

articles. This is best shown in Figure 8.1.

The enhanced RSS feeds, described above in the section about serialization, 

are a unique innovation and go beyond the bibliographic information and graphi-

cal abstracts that are now standard. They are also open to all readers, so anyone, 

subscriber or not, can put the RSC feeds straight into a database and get a very good 

idea of the compounds within a newly published article and, to some extent, their 

biological activity.

Project Prospect was launched in February 2007 and was the winner of the 2007 

ALPSP/Charlesworth Award for Publishing Innovation, which recognizes a signifi -

cantly innovative approach to any aspect of scholarly publication. The judging panel 

considered that Project Prospect “was the clear winner . . . with an elegant and intui-

tive on screen manifestation of the advantages of including . . . metadata. As a result, 

sophisticated and effective searching of the literature is greatly improved and the value 

gained from reading each article is signifi cantly enhanced. Project Prospect is delight-

fully simple to use and its benefi ts to authors and readers are immediately obvious.”

Although the additional metadata is not being signifi cantly picked up by the 

search engines, and this currently is a project restricted to RSC publications, it can 

be thought of as a contribution to the development of the Semantic Web rather than 

a real part of it. However, its development does give an excellent object lesson in  



162 Chemical Information Mining: Facilitating Literature-Based Discovery

the types of information that can usefully be identifi ed within chemical papers and 

the current limitations, but also that this information can provide real and useful 

enhancements to the accessibility of the published science. When the reader starts to 

expect this enhancement, and even takes this for granted like they do now with full-

text reference linking via CrossRef, this will be a step change in the way our science 

is published and accessed.

FIGURE 8.1 A color version of this fi gure follows page 146. Semantic mark-up of content 

linking to additional data sources.
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EXPERIMENTAL DATA STANDARDS AND THE SEMANTIC WEB

Chemistry is some way behind the biomedical sciences in standardization of research 

protocols. The MIBBI (Minimum Information for Biological and Biomedical 

Investigations) Project (MIBBI Consortium 2008) aims to bring the various 

Minimum Information protocols for different sorts of biomedical experiments into 

line with one another and oversees over a dozen protocols. The mapping of the proto-

cols themselves to stable Semantic Web identifi ers is achieved through an ontology.

The best example within chemistry so far has been the Crystallographic 

Interchange Format (CIF) (Hall et al. 1991) developed by the International Union 

of Crystallography as described above. No such similar standard exists for other 

machine-based techniques such as NMR, with the different instrument manufactur-

ers having their own mutually incompatible ways of specifying pulse sequences and 

experimental conditions.

In both inorganic and organic synthetic chemistry, experimental data (elemen-

tal composition, melting points, nuclear magnetic resonance, infrared, ultravio-

let spectra, and chromatograms) for synthesized molecules are summarized in 

a consistent and formulaic way. This can be identifi ed and parsed with a simple 

(although brittle) fi nite-state model, and the original spectra and chromatograms 

can be checked for internal consistency and to some extent reconstructed (Adams 

et al. 2004).

For the actual specifi cation of experiments themselves, two ontologies have 

grown up independently, one bottom-up and the other top-down. The Ontology 

for Biomedical Investigation (OBI) is a generalization of the Microarray and Gene 

Expression Data (MGED) ontology, which was developed to represent microarray 

experiments, to biomedical experiments in general. Conversely, EXPO (Soldatova 

and King 2006) was developed from a philosophy-of-science perspective and has 

been specialized to specifi c domains, for example, to support the yeast genetics 

experiments carried out by the Robot Scientist (King et al. 2004; Soldatova et al. 

2006). An ongoing project at the University of Wales Aberystwyth is applying 

EXPO to physical chemistry, and we expect the fi rst results from this project in the 

near future.

As this chapter is being written, Microsoft has announced a two-year eChemis-

try project, based on the application of OAI-ORE (Open Archives Initiative–Object 

Reuse and Exchange, http://www.openarchives.org/ore/) protocols for sharing 

scholarly information over the Web. Whereas the eChemistry project aims to use 

these to search and index with specifi c existing online databases and print archives 

and work out how best to record chemistry data captured in lab experiments, the 

development and adoption of new standards for experimental data offer an acces-

sible future for this data that currently is not generally available for readers to fi nd 

and reuse. Additionally, there is also funding to develop Word 2007 tools for authors 

to annotate their own papers with ontology and controlled vocabulary information 

(Bourne and Fink 2007). The authors hope and expect that the acceptance of new 

standards will offer real benefi ts to all creators, publishers, and users of chemi-

cal information, and the availability of structured experimental data will provide a 

means of keeping more of the laboratory data within the publishing and discovery 

workfl ow.
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FUTURE DIRECTIONS

Restricting ourselves to the short-term future, where will the Semantic Web be in 

two years with respect to chemistry?

Implementing semantic identifi cation is only the fi rst step; the second is the 

retrieval of this information, which allows the interpretation of the relevance of the 

subject matter in semantic terms. Although bespoke systems can be used to do this, 

we really need web-wide search engines to be able to do this interpretation and 

use the information returned from data sources to generate hit results based on the 

semantic content rather than full text.

As noted above, the length and composition of the InChI string makes it diffi cult 

for search engines to deal with it appropriately, so the fi xed-length hashed InChIKey 

has been developed. InChIs and InChIKeys have been identifi able via Google (with 

mixed success; see Coles et al. 2005), but currently the common search engines 

are highly developed for text searching and not developed to recognize identifi ers, 

ascribe meaning to them, and use this meaning to fi lter results. Although the devel-

opers of some search engines have shown interest in developments in this area, it is 

as yet uncertain how any development arc can apply to chemical data while stan-

dards and practice are still evolving rapidly.

Application of accurate subject metadata has long been a goal of publishers and 

information users, and it continues to be diffi cult; developments in natural language 

processing can be expected to increase the accuracy of classifi cations and chemical 

entity recognition after publication, but it is impossible in the short term to see that 

all contextual relevancy can be identifi ed by automated means, avoiding contextu-

ally incorrect markup. This effectively leaves the task to be carried out by authors 

or publishers of the data, unless some degree of inaccuracy proves to be acceptable. 

Authors are in theory the best placed to carry out and review automated markup, 

but this places an additional burden on the authoring process, and consistency is 

uncertain. We know as publishers that authors’ use of a fi xed Word template can be 

extremely variable, so it is possible that the addition of further sophisticated markup 

will only be willingly carried out by the most dedicated.

InChI is a promising start for a chemical identifi er, but it can only handle, and 

will only be able to handle in the near future, that slice of chemistry that is of inter-

est to the pharmaceutical industry. The next revision is expected to handle poly-

mers, but representing spin states (for gas-phase chemistry), different coordination 

environments, and non–Pauling-type bonding (for inorganic chemistry), and indeed 

ring–chain tautomerism or axial chirality, are years away. However, despite these 

limitations, it has been adopted by an increasing number of services. We expect 

that the burden of representation will be split between refi nements to InChI and the 

chemical ontologies. ChEBI (Degtyarenko et al. 2008) is also promising, but diffi -

cult to use for inference, as it does not follow the ontological best practice set out in 

the OBO Relations Ontology (Smith et al. 2005). We hope that the standardization 

efforts such as the OBO Foundry (Smith et al. 2007) will result in an ontology that 

can play a full role in the Semantic Web in future.

 Moving beyond the basics, it is also not yet possible to represent the role of a particu-

lar entity within the scientifi c argumentation. A representation such as the one in Project 
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Prospect can only distinguish degrees of relevance by inclusion or omission, and a more 

subtle vocabulary is required. Two approaches suggest themselves. The fi rst would be a 

URI-fi cation of the Argumentative Zoning (AZ) approach of (Teufel and Moens 2002), 

which classifi es parts of a paper according to whether they discuss work done by the 

authors or preceding work, and the rhetorical role of the part, whether it describes gener-

ally known background information, other people’s work described neutrally, contras-

tively, or as the basis for the current work, and within the current work, statements of 

the aim of the paper, or simply neutral descriptions of the new work. The second, com-

plementary, approach would be to assign entities to the experimental classes in EXPO 

(Soldatova and King 2006), though these do not necessarily cover the whole article.

As for representing scientifi c articles as a whole purely in terms of OWL, this is more 

complicated than might be supposed. Attentive readers of scientifi c texts will notice 

that there is a subtle and comprehensive system for making assertions in terms of pos-

sibilities and necessities rather than the simple subject–object–predicate triple of RDF. 

Authors use phrases such as “It is not impossible that” or “We can assume that” to dis-

tance themselves from absolute certainty and to weaken or strengthen their statements.

The impact of the Programmable Search Engine being developed by Google, 

described in several talks by Steve Arnold (2007), is obviously diffi cult to guess. In one 

interpretation it will be sophisticated enough to develop its own ontologies and classify 

corpora on the fl y, whereas in another it will allow Google to sensibly use additional 

metadata supplied by the webmaster. So in one scenario the classifi cation effort by the 

webmaster is unnecessary or irrelevant, and in the other it is crucial. However, it is 

diffi cult to see that effort spent classifying material on publication will be wasted, and 

although the Semantic Web required just too much effort for this to be widely applied 

across the Web as a whole, there are enough signs that use of InChI identifi ers, the devel-

opment of more widely used and accepted chemical ontologies, and the development 

of some of other experimental data standards offer a reasonable expectation that the 

Semantic Web ideals will grow, at fi rst in small pockets. As ever, we will see whether 

the increase in the ability to fi nd information when the semantic enrichment takes place 

is enough of an evolutionary advantage to change the chemical information ecosystem.
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INTRODUCTION

In the previous chapters, the problem of information overload was discussed, and a 

variety of technical methods of extracting, linking, and mining chemical informa-

tion were introduced. In this chapter, we discuss the mining of chemical informa-

tion from the researcher’s point of view, particularly how academic and industry 

researchers currently fi nd the information they need, diffi culties and unmet opportu-

nities in mining information, and, fi nally, some examples of how new technologies 

may help researchers manage the overload of information in the future.

In many ways, the fi eld of chemistry is extremely fortunate in having had pow-

erful, specialized searching tools like SciFinder Scholar, STN Express, and MDL 

Crossfi re (for Beilstein and Gmelin) available for many years. These tools permit 

a high degree of fl exibility in searching; for example, one can fi nd journal articles 

that refer to compounds containing particular substructures, search for physical 

properties of particular compounds, and so on. However, these are bounded tools: 
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They work on specifi c, curated databases. We are now entering an age in which one 

expects to be able to obtain relevant information in an instant and with minimal 

searching effort, and for this searching to be inclusive of all kinds of information. 

Ease of access and inclusiveness are often considered before quality and curation. 

Thus, we are in a situation where we have excellent, specialized tools that only work 

with limited data sources and an overwhelming mass of data sources on the Web that 

only have generic searching capabilities. We believe the next leap forward will come 

when quality, curation, and specialized searching are combined with the wealth of 

information that is becoming available on the Web and in other sources.

SURVEYING THE USE OF CURRENT TOOLS

To properly understand the likely future trends in searching, one must fi rst consider 

the current situation. Particularly, how do researchers of chemical information go 

about fi nding the information they need? What works well? What does not work 

well? How does their searching differ from searching of other kinds of scientifi c 

information or universal kinds of searching such as that provided by Google?

To answer some of these questions, we have drawn on our own experience (one 

of the authors, Wild, is a researcher in cheminformatics; the other, Beckman, is 

head of the chemistry and the life science libraries at Indiana University), as well as 

 conducting informal interviews with chemists in academia who have a wide range of 

backgrounds. Below we report on interviews with four academic chemists covering 

their current practices in fi nding the information they need, what they think works 

well at the moment, and, of particular interest for this chapter, what they would like to 

be able to do but currently cannot. We take the liberty of reporting our notes from the 

interviews in a rather verbatim fashion, in the hope that in doing so we will preserve 

the small insights that come from the details as well as the more general points.

SUBJECT 1

Our fi rst subject is an academic chemist with prior pharmaceutical industry experi-

ence. His scientifi c activities are focused on the relationship of protein structure and 

function, with a particular interest in novel methods of drug delivery. He works in 

a senior position with biochemists, bioorganic chemists, chemical biologists, and 

proteomics researchers. His characterization of the main difference between the 

pharmaceutical industry and academia is mostly in the patent area: Academics tend 

not to be concerned with searching patents, although a lot of information is buried in 

these documents. Particularly, one can look at the claims, and the order of the claims 

often gives a hierarchy of the importance of compounds. Currently, he searches the 

standard databases for published literature for authors or titles for his research. In 

teaching he has found that Google is useful, for example, to fi nd particular reagents 

in a less time-consuming fashion than fi ngering through textbooks. He maintains his 

own database of about 2,000 articles in EndNote. He considers that this is an “old 

fashioned” way to do this because it is redundant; that is, he could fi nd the full text of 

these documents on the Web. He has the hard copy of many of these articles, and this 
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is useful when articles in more “obscure” journals are not available electronically at 

Indiana University or are not yet digitized.

Due to his senior position, he has colleagues who run citation searches of several 

seminal publications on a regular basis. They alert him if he should take note of any. 

Generally, there is a lot of use of direct communication between researchers to share 

information on relevant articles, particularly using e-mail. This subject subscribes to 

12 to 16 print journals; interestingly, this is primarily to enable him to tear out good 

articles to read while traveling. He posts those he thinks are of general interest to his 

group on a bulletin board. He keeps articles he has torn out in a folder for a couple of 

years in case he needs an idea for a current topic. His goal is to get students to read 

the primary literature. He considers that current students have depth of knowledge 

but often lack breadth. Strikingly, his greatest fear is not being aware of what he isn’t 

able to do or what he doesn’t know. He would like to be able to take structural infor-

mation and organize it with conformational descriptors and to organize literature by 

study as well as structure: It might be possible to see the links of study A to study B, 

but the links from study A to C are not apparent.

Regarding his concerns, he asks whether the results are getting out there any 

quicker in the current electronic but still journal-centric environment. He feels that 

the situation is still based on the past and is conservative—a cultural problem and 

not a technical one. He feels that if blogs could be used to post fi ndings and bypass 

the traditional editorial process, it would allow results to be disseminated quicker 

and would allow “controversial” ideas to have a better chance of being brought for-

ward. There is the question of how to validate research in such an environment and 

how it would be retrieved. We asked him about the library’s role in curating datasets 

because this is a hot topic among library administrators. He says there is a difference 

in academia, where people work relatively independently, and industry, where a large 

number work together on a one project. Industry is forced to share more because of 

the nature of the project. He sees biology and chemistry speaking two different lan-

guages and does not see an easy way of bridging the gap.

SUBJECT 2

The focus of our second subject’s research is the use of organic synthesis to study 

problems of biological and medicinal interest. Almost all of the time, he fi nds the 

information he needs by searching SciFinder Scholar for authors, subjects, or com-

pounds. He does this kind of searching once or twice a week. He does not currently 

use Beilstein and thinks he should make use of PubMed too. Maybe 2% of the rest 

of his information comes from Google and Web of Science (WOS). He is usually 

looking for information by topic, and to a lesser extent he is looking for informa-

tion on a compound (just compound, as reagent, prep, or if compound is known). 

He searches by author the least. The information is used for classroom instruction, 

writing papers, and preparing grants. He has some paper references in his offi ce, for 

example, about six volumes of Houben-Weyl that deal with his research.

This subject does not consider that there is information available that he can-

not access. Partly, this is because he relies on and trusts the library searchers at 
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the university (he has previously been at institutions where expert searchers are not 

available and it is hard to fi nd out who to contact for help).

SUBJECT 3

Our third researcher covers the area of molecular nanoscience and nanotechnology. 

WOS is his primary, all-purpose way of fi nding chemical information. He can do 

this quickly and get an overview of a fi eld. Using WOS, he can create a “paper trail” 

and then mine the papers for the information he needs. He uses SciFinder Scholar 

only for structure searching. He sees its strengths as fi nding reactions, locating com-

mercial sources for chemicals, and fi nding how to make compounds. He sometimes 

uses the Cambridge Structural Database (CSD) and plans on using the Inorganic 

Crystal Structure Database (ICSD). Secondarily, he uses textbooks to fi nd informa-

tion. He does not use Google unless he is looking for something about industry. This 

subject reads the primary literature that supplies most of the information that he 

needs (such as property data).

His main current complaints are that he cannot look for structures in WOS. He 

would like to have a plug-in that would retrieve all the full text of articles that he has 

located in a WOS search. Currently it takes lots of effort and clicks to go from the 

citations discovered in a search to pull in all the articles, and when they are down-

loaded, they have cryptic fi lenames. He feels it would be useful to have available a 

history of his search activities along with the search terms that would be automati-

cally stored as the day went along. The ability to call up a previous search history 

in the rare instance that he would want to fi nd again something he had a hard time 

locating earlier would be useful.

Techniques get in the way. He asks whether DOIs (digital object identifi ers) can 

be downloaded into EndNote along with article citations without going through lots 

of steps. Having an online index to all textbooks would be useful whether he has 

access to the full text or not. He is often looking for something and needs to know 

in what book and on what page that term occurs. Such an index would need a good 

fi ltering ability and display of results.

Another way he approaches the literature is by research program. He fi nds this 

to be a good way to organize information. He knows the players in the fi eld or uses 

WOS if he does not to fi nd out who the major players or research labs are. For him, 

an ideal tool would be one that would give him the ability to drop PDFs on an inter-

active map of the world that showed the research labs. When he wanted information 

on a topic, he would be able to mouse over the map and get information on the vari-

ous labs’ research (probably the material he stored and additional information too). 

He thinks lots of researchers view the information world in this manner. He does 

not like the way SciFinder Scholar displays the bibliographic results from a keyword 

search, and that is one reason he uses WOS.

SUBJECT 4

Our fi nal subject is a synthetic organic chemist who focuses on the preparation of 

complex substances, for example, natural products of pharmacological signifi cance. 
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He does not search for information relevant to his fi eld himself but relies on the stu-

dents and personnel in his lab. They use the standard databases such as SciFinder 

Scholar and MDL CrossFire. They look by topic or by structure and search based on 

either an exact structure or a substructure. For substructures, it could be a family of 

compounds that are of interest; for example, they could be related in some way. If they 

are looking by starting material, it could give clues on related compounds of interest. 

If searching for a product (and many of these are unknown), they might look for clues 

on inherent reactivity or stability that apply to what they are trying to synthesize. 

This type of searching is very important to them. Other times they are looking for 

how variations are affected by temperature and other reaction variables. They also do 

reaction searching and name reaction searches. Searching by reagents is sometimes 

diffi cult because it is hard to narrow well since there are often lots of answers.

Usually they get too few hits; this is the nature of the discoveries they are working 

on. They are at the cutting edge, and the exact thing that they are working on is not in 

the literature. So they need to look for tangential information or get hints from related 

work. In searching for information, his past knowledge is often useful. He will often 

remember a researcher working in a similar area from many years ago. Then his 

students can look for it, and a citation search will identify newer articles that cite this 

work. Sometimes his favored technique is to broaden the search and then winnow out 

the useful information.

He cannot think of anything that they want to do but cannot. He does see a change 

in attitude of many students today from his education in the 1960s or even in the 

1980s. Modern-day students tend to be overly concerned that research they are doing 

might not be truly unique, to the extent that some may feel embarrassed or threatened 

on fi nding that aspects of their work has already been considered in the literature. 

He recalls in his own work fi nding a footnote from Faraday that related to a project 

of his, and he was pleased that it gave him a connection with the giants of the past; 

the words might be different, and it was exciting to try to understand how the earlier 

scientists thought about these things. He tries hard to get students to move beyond 

just looking for “recipes” as the answer and to consider the broader picture. The ease 

of publishing today may contribute to this attitude.

He also commented on the fi rst subject’s information-seeking situation. He said 

that in that case there are a large number of peptides, and Subject 1 is trying to fi nd 

those few gold nuggets with drug potential in a big resource pool. Informatics could 

be a help in that search. Subject 4’s situation is different. He is essentially like an 

architect, needing newly designed materials and techniques to achieve his vision, but 

on a molecular scale.

POINTS FOR CONSIDERATION

As we said before, we have reproduced our interview notes in a verbatim fashion 

in the hope that some useful insights can be found in the details. We also think that 

some general trends emerge from these interviews:

In the relatively “standard” areas of chemistry the traditional information • 

sources serve the informational needs of the researchers well. They seem to 
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choose a favorite source and then become profi cient at extracting the infor-

mation they need. Along with their favorite source or sources, they have 

developed informal information networks or communities and understand 

very well the fl ow of scientifi c information, so they know what they are 

looking for and have a good sense of how to go about fi nding it.

One shared worry that came out in our interviews is that students do not • 

understand the structure of scientifi c information enough and do not appre-

ciate its breadth. Many students have a limited and sometimes selfi sh view 

of the communication function of scientifi c information.

The roadblocks to the future are more technical or have to do with options • 

for access, rather than deriving from a basic lack of information. However, 

this seems to change as one gets away from the “standard” chemistry areas 

and into the interface of biology and chemistry. There the perceived road-

blocks are the inadequacies of the database interfaces; until the informa-

tion becomes more easily shared, major barriers will continue to exist. 

Commercial database creators want to protect their investments, so they 

restrict the number of records that can be downloaded, making it diffi cult 

to manipulate and mine hundreds of thousands of hits at once.

These interviews hint at one of our contentions, that this is in many ways the 

best of times and the worst of times for fi nding information. Curated databases 

have proved extremely useful, particularly when used in partnership with special-

ized librarians, and can be supplemented with Web searching. So much informa-

tion is available electronically, but the ease of fi nding “something” often leads 

to much information being overlooked, particularly for students who are poorly 

equipped for and inexperienced in fi nding the information they need. The trends in 

the academic world are increasingly toward end-user searching, which is certainly 

convenient and inexpensive, but bypasses the experience of librarians and the 

information depth and quality of specialized tools. Until the advent of SciFinder 

Scholar, structure searching on the Chemical Abstracts database was done using 

complex keyboard commands in the CAS Registry File or software such as STN 

Express that allowed the searcher to upload the search created offl ine. At that time, 

the cost of the search was determined by the time it took to complete and then 

by the number and types of answers. Users often requested help from an expert 

librarian. Those days are long gone: The vast majority of searching in academia is 

now done by chemists on their PCs. Expert searchers are often valued in industry 

because the result of missing something could be very costly; in the academic 

world the repercussions are not as extreme (maybe lost time or a lower grade in 

contrast to law suits or lost profi ts).

THE ADVENT OF ELECTRONIC ARTICLES AND 
BOOKS: THE LIBRARIAN’S PERSPECTIVE

Here are some observations from the librarian’s perspective at Indiana University. 

A relatively recent change is the number of journals that are available in electronic 

form: A chemist can have access to almost all the journal literature from the late 
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1990s to the present. Most large publishers are selling the back-fi les of their journals 

back to volume 1 for one-time prices. The journals of many publishers are avail-

able electronically back to issue 1. Users have an alternative search option and can 

search all a publisher’s journals for keywords from their web pages. Having all of 

these journals online leads to another powerful innovation: the ability to link from 

a bibliographic citation found in a database to the full-text article. ChemPort is an 

example, as is SFX (Livingston et al. 2006). Much of the work is behind the scenes in 

the technical services areas in libraries, along with pointing out errors from the staff 

working in public areas to keep the knowledge base of subscriptions up to date. The 

journal literature is available electronically in most libraries, and the trend is toward 

electronic only. The ability to browse a stack of journals to get ideas for a grant pro-

posal may soon be a thing of the past in all but the best-funded libraries.

There is also a slower but growing trend to move books to online only (Christianson 

and Aucoin 2005; Just 2007). Part of this is because a printed book is still easier to 

use for most people (Christianson 2006). There are also issues that impede users 

from knowing what electronic books are available in the local online catalog as well 

as poor interfaces for products that aggregate electronic books from many different 

publishers. Often these aggregators are restricted by publishers and impose a limit 

of printing or downloading one page at a time instead of presenting a PDF of a whole 

chapter. Often these products are more of a rental than permanent access as is the 

case for a printed book. In the future the way books are acquired either in print or 

electronic version could change. It might be more user-driven instead of collections 

built through approval plans and individual selection by librarians.

As mentioned above, it is diffi cult to know exactly what electronic books and 

journals an institution has access to because it is usually a mixture of “owned” 

items, “rented” items, and “freely-available” items. The online catalogs provided 

by institutions are often nonintuitive, particularly in comparison to the highly intui-

tive Web searching tools available, and this limits users from easily knowing what 

their institution makes available for them. The capabilities of most online catalogs 

are primitive in comparison to SciFinder Scholar. Even if one fi nds a reference in a 

database to a book chapter, the linking program often does a poor job determining 

whether a library owns the “book” or series title. The linking programs do a much 

better job with electronic journals, but our experience leads us to estimate that the 

success rate is around 95%. The success is very dependent on the quality of the 

“knowledge base” behind it. There are some new products such as WorldCat Local 

that include a library’s actual holdings along with an extensive collection of full-

text articles. These types of products would serve students more than researchers. 

With users used to Google-like searches that attempt to display the most relevant 

items fi rst, online catalogs can be frustrating. Title searches can include hits coming 

from records that contain search terms from the tables of content in addition to the 

book title. Often the display of records makes no sense to the user or the librarian. 

Maybe better metadata or allowing users to defi ne fi elds better would help. One step 

toward better access may be the concept of functional requirements for bibliographic 

records (FRBR) (Zhang 2007).

Somewhat related to this is the idea of federated searching. This might be the Holy 

Grail for users. Put a query for wanted information in a search box and then get all 
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relevant information back in a relevance-ranked list. This has led many libraries to 

offer federated searching so users can search many different web-based databases at 

once, although the searching is at a very basic level in comparison to using the native 

search interface. Many database venders provide the ability to search multiple data-

bases that they provide. Web of Knowledge is one example, as is Scopus. Federated 

searching is limited in the fi eld of chemistry because so many of the important 

resources are not web based but often run on software that has to be downloaded to 

a local workstation. The Indiana University Libraries (http://www.libraries.iub.edu/) 

are using the federated search model on the libraries’ web pages to provide users a 

resource discovery tool in addition to the standard links to known resources.

One potential drawback with something that is easy is that it does not always 

deliver the needed information unless the correct term is searched for, and often 

many results have to be examined to fi nd the answer, if it is available. However, a 

system that is complicated will frustrate many users. It is still important that users 

know the structure of information so they can select the appropriate search system 

or search strategy. The ideal of having everything in one big pot means there have 

to be adequate fi lters that will help the user winnow out what is sought. A recent 

example may help illustrate my point. I (Beckman) was looking for the melting point 

of a lipid but having no luck in the standard databases. When I consulted a lab that 

works on lipids, they directed me to a web page of a lipid supplier that they use for 

information on the lipids they work with. Sometimes something very specifi c is the 

best place to go.

So, some trends seem to be selection of a few systems (either by market consolida-

tion or users who rely on a database they are comfortable with) that include multiple 

databases or a combination of bibliographic and property and chemical data and 

linking programs that tie primary literature with other forms of data or secondary 

and tertiary literature.

It is highly probable that the future of the journal will be entirely electronic. 

Here at the Indiana University Chemistry Library and Life Sciences Library, the 

journal collections are rapidly heading toward online-only subscriptions. It is rare 

that we would subscribe to a print-only journal, and they make good targets when 

we need to cancel titles to balance our serials budgets. Some chemists still fi nd time 

to come to the library to browse the print journals, although they will fi nd few to 

browse in 2008. Several have told me that they like to browse through a pile of issues 

when looking for ideas as they are preparing grant applications. Most researchers 

receive tables of contents of their favorite journals as they are issued. One researcher 

reported that he looks at the paper issues of “second tier” titles or titles in journals he 

does not read on a regular basis. Browsing is still possible in the electronic environ-

ment, for example, going to a publisher’s website; SciFinder Scholar has an option to 

“browse my favorite” titles from one’s computer or retrieve citations from a journal 

from an article database that indexes journals cover to cover. At Indiana University 

the electronic book, at least in a version that is easy to read, print, and download, 

along with the electronic series, lags behind the electronic journal in moving away 

from the print version. Although open access will surely loom large in the future, it is 

unclear how much of the scientifi c literature will be open access and how effi ciently 

that information can be retrieved if it is deposited in multiple digital depositories. 
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The recently announced law that all articles resulting from NIH-funded research 

be accessible from PubMed will likely be a good test of the future of open access 

(Carroll 2008). A few publications hint at the uneven future ahead (Baker 2006; 

Borgman 2007; Drake 2006; Hangarter 2005).

WAITING FOR THE GREAT LEAP FORWARD

Coping with the large and increasing amounts and kinds of information available 

in a meaningful way will necessarily involve a degree of automation of some tra-

ditionally human activities. One only has to do a search with Google to reveal that 

technology has advanced to a point that it is possible to automatically aggregate 

and search large volumes of diverse kinds of information in a humanly manage-

able form. The search engine now spans very different kinds of data (online books, 

journal articles, news items, images, videos, and so on), and when one performs a 

search, it makes a reasonable attempt to present the results to highlight the items 

most likely of interest, and makes it very easy to restrict the search to particular 

domains or items. For example, if one searches for “William Shakespeare,” one is 

presented (at the time of writing) with a top hit that lists online scanned books by 

the author, then Wikipedia pages describing his life, and then other biographies, 

study notes, and so on. One can quickly modify the search to only include online 

books, or if one is really interested in pictures of “the Bard,” then one only has to 

click on the images link to restrict it in this fashion. One can dig deeper to fi nd vid-

eos, news items, and so on.

We believe that it is perfectly possible for searching for chemical and related 

information to be this simple. For example, one might be interested in information 

on quinazolinediones for a number of reasons: a desire to know the melting point of 

a particular compound, an interest in medicinal chemistry papers on the biological 

properties of these compounds, an interest in groups researching these compounds, 

and so on. At the moment, such a search on Google provides an overload of poorly 

ordered hits, but there is no reason why the same organization that is applied to more 

popular searches could not be applied in the chemical and life sciences. However, a 

number of serious hurdles have to be faced by the scientifi c community before such 

a tool would become feasible.

LIBERATION OF INFORMATION IN JOURNAL ARTICLES

As discussed earlier, the future of journals is clearly electronic. However, there are 

many reasons why journal articles are problematic in comparison to other docu-

ments such as web pages and databases. First, most chemistry journals (with the 

notable exception of Chemistry Central Journal, www.journal.chemistrycentral.

com) are not open access, and thus the content of articles is restricted by the pub-

lishers. Although most universities and large organizations have institutional sub-

scriptions to the popular journals, access usually requires validation on computer 

IP addresses or the use of private login credentials. Thus, automated access to this 

information by a computer is diffi cult. Further, it is unclear whether the terms under 

which journal articles are made available permit automated processing of the content 
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(for example, creating an index of terms used in the paper); the intent of permission 

terms does not seem to address these kinds of uses specifi cally.

Second, even if one can access the content of a journal article page, it is generally 

not in a format that makes it easy for a computer to process the information con-

tained in it. In particular, the PDF format is most commonly used, in which chemical 

structures and spectra become images, and data tables become plain text. Maybe a 

journal article refers to a melting point of a compound that would answer the query 

of a particular scientist, but how would a computer locate this information in the 

text? The cause of creating machine-readable versions of journal articles and other 

documents in the chemical sciences has been championed by Peter Murray-Rust and 

Henry Rzepa (2004), who have coined the term “datument” to refer to a document 

that is fully marked up in machine-readable form, so that meta-information about 

data is fully preserved.

Third, chemistry is a subtle art, and journal articles often contain all kinds of 

intricate information about compounds, reactions, and their properties in very con-

cise form. It is for these reasons that human curation of journal articles has been 

so important in the success of tools like SciFinder Scholar. For the information in 

journal articles to be freed to the world of uncurated searching, major policy changes 

have to be made in the way journal articles are assembled, formatted, and accessed. 

One assumes that open-access journals will lead the way in this. It is notable that 

Chemistry Central Journal does plan to include International Chemical Identifi er 

(InChI) format representations of compounds referenced in papers with the articles 

themselves. Additionally, the Royal Society of Chemistry is experimenting with the 

provision of articles that are marked up with both chemical structure information and 

highlighting of ontological terms (Gene Ontology and GoldBook) and is making some 

of these articles available through Project Prospect (http://www.projectprospect.org).

METADATA

This hurdle involves the ability to assign and retrieve meta-information pertain-

ing to quality, confi dence, curation level, and source of information. There are 

 straightforward technical ways of storing metadata (information about data) 

along with data and the content of documents: In particular, XML and microfor-

mats enable markup of web pages and documents by tagging parts of information. 

For example, to  represent a boiling point, one could surround the value with tags 

<BoilingPoint>100</BoilingPoint>. However, this is not as simple as it looks. How 

do we standardize the metadata names (BoilingPoint vs. BP vs. Boiling_Point, etc.)? 

How do we represent units (100 centigrade, Fahrenheit, kelvin)? How do we specify 

context and parameterization (conditions etc.)? The issue is even more complex if 

we want to express less tangible properties such as confi dence in a result, quality, 

amount of curation that has been applied, provenance, and so on.

STRONG SECURITY WHERE NECESSARY

Security is an issue in both academia and the pharmaceutical industry, although it 

is of greatest concern in industry, where a security lapse can in the worst case cause 
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a highly expensive loss of competitive advantage. In academia, the consequences 

are less onerous, although most scientists are eager to protect their own intellectual 

property, particularly in the fragile early stages of research. Thus, for searching sys-

tems to be widely used, security has to be addressed. While many security issues are 

generic, one specifi c to this community is the transport, storage, and use of chemi-

cal structure and derivative information. A researcher at a pharmaceutical company 

might itch to search public databases for compounds similar to a “hot” new one 

recently synthesized and found to be biologically active, but if this involves submit-

ting the structure to be (even temporarily) stored as a query on remote Web servers, 

company policy if not personal concern is likely to prohibit him or her from doing so. 

Pharmaceutical companies are thus used to closed systems, where most information 

is generated (or at least held) internally to the company, and searching systems span 

only servers behind the company fi rewall.

However, future drug discovery is clearly going to have to make use of informa-

tion that is public (or at least not proprietary to the company) and is only accessible 

outside of the company fi rewall. This may be achieved by either copying all per-

tinent information inside the fi rewall, updated on a regular basis, or by develop-

ing secure methodologies for searching outside sources without revealing structural 

information. The former strategy is not as diffi cult as it seems (disk storage is cheap, 

and internet bandwith wide enough to enable transfer of large volumes of informa-

tion daily), although it results in a signifi cant restriction in the kinds of searching that 

can be performed, as any new search tools or techniques also have to be imported 

into the company and modifi ed for use on the internal versions of the data. The 

latter approach may be tackled either by using secure (secure sockets layer) con-

nections with some method of validating deletion of query structures once searches 

are complete or by encoding the structural information in a way that it cannot be 

reverse engineered back into a chemical structure; for example, a carefully designed 

fi ngerprint might be used as a similarity search query without need to directly pro-

vide chemical structure information (although it is possible the structure could be 

estimated from the top hits from the search).

AN OPEN LAB CULTURE WHERE POSSIBLE

Unlike the security issue, which is technical, this is more of a cultural hurdle. Large 

amounts of useful information are generated by (particularly academic) chemistry 

laboratories but never published (or publication is delayed). This can be for a number 

of reasons: The information might pertain to negative information not considered 

useful to the research project; there might be intellectual property concerns; the 

information might be not considered publishable yet in journals. The problem of 

publication bias (the tendency to publish only positive results) is widely studied, and 

any solution goes beyond the scope of chemical information. Intellectual property 

concerns would likely require information privacy. Publishing key research fi ndings 

outside of journals may be considered prepublication by the journals. However, we 

do think there is scope for much more information being made available, particularly 

on the Web. Although some information is always going to be preferred to be kept 

private, not all information generated in a project or in a lab needs to be kept private. 
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Laboratories constantly generate pieces of information that do not make it to journal 

articles (or if they do, are incidental to the thrust of the paper), yet could prove use-

ful to other researchers. It is possible that the only reason this information is not 

provided by laboratories is that there is not a convenient venue for disseminating it 

(and for searching information provided by other groups and labs). For this reason, 

we fi nd emerging projects such as Open Notebook Science (http://precedings.nature.

com/documents/39/version/1) and O2HU (http://www.o2hu.com/) highly interest-

ing. We believe more study of lab culture associated with innovation in the use of 

the web is required.

If these issues can be addressed, then integrated searching becomes a fairly 

straightforward technical issue. Wild (2006) introduced a four-layer model of future 

life science information storage and use that is scalable to large volumes of informa-

tion and that tackles some of these points. The layers are, as follows, with the main 

connection point to the chemical researcher being in the fourth layer:

 1. Storage layer: Comprehensive information storage including semantics 

and metadata. May be in a single system or multiple systems.

 2. Interface layer: Common interfaces to stored information. There may be 

several for different kinds of information.

 3. Aggregation layer: Software, intelligent agents, and data schemas custom-

ized for particular domains, applications, and user.

 4. Interaction layer: Software for information access and storage by humans, 

including e-mail, browsing tools, and “push” tools.

The World Wide Web, in particular “Web 2.0” and Web services, are affording 

signifi cant improvements at layers 1 and 2. It is now possible to store vast amounts 

of information on web servers (and if one does not have the capacity for this on one’s 

own servers, it can be cheaply purchased through services such as Amazon’s S3 that 

can be quickly accessed over high-speed networks. Standardized databases includ-

ing Oracle, MySQL, and PostgreSQL (with network access made easy through JDBC 

and ODBC) and Web service interfaces permit direct access to the data in organized, 

searchable form (indeed, even specialized structure,  substructure, and similarity 

searching can be easily implemented in these databases with cartridge tools). XML, 

microformats, and Web service interface descriptions are beginning to enable stan-

dardized representations for data and means of access. However, little work has yet 

been done on layers 3 and 4; in particular, the aggregation layer is often skipped. The 

aggregation layer is the primary layer that provides scalability: Information is aggre-

gated and fi ltered so it can be delivered to the human in manageable quantities and 

forms. Without this layer, data deluge quickly ensues. Many journals already offer 

e-mail alerts that allow a researcher to receive e-mails if articles are published in 

journals that meet specifi c search criteria. However, these alerts require search terms 

to be strictly defi ned, and their scope is usually just to one publisher’s products. The 

use of intelligent agents, and intelligent ways of pre-organizing and fi ltering data, 

deserves much more attention than it currently receives.

Despite concerns about prepublication of scientifi c results and plagiarism, 

an increasing amount of chemical information is being placed on the Web, in 
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chemistry blogs, online documents, and web pages. The Useful Chemistry blog 

(http://usefulchem.blogspot.com/) encourages posting of chemistry problems and their 

solutions, under a creative commons license. At the time of writing, it has a fairly small 

number of contributors (16), but it is widely read. Other blogs such as Chem-Bla-Ics 

(http://chem-bla-ics.blogspot.com/), Noel O’Blog (http://baoilleach.blogspot.com/) and 

PeterMR’s Blog (http://wwmm.ch.cam.ac.uk/blogs/murrayrust/) are used for refl ec-

tion on the fi elds of cheminformatics and chemical information handling. A more 

ambitious development is the Open Notebook Science project at Drexel (http://drexel-

coas-elearning.blogspot.com/2006/09/open-notebook-science.html), which encour-

ages scientists to record their fi ndings in an openly accessible format, such as a Wiki. 

Interestingly, Wikipedia (http://www.wikipedia.org) has been used to document many 

common molecules, including properties, therapeutic uses, and machine-readable rep-

resentations of the two-dimensional structure (including SMILES and InChI).

The Semantic Web extends the current Web and aims to make web content 

machine-readable, thus allowing conveyance of meaning and integration of data 

objects in different formats, potentially enabling autonomous agents to carry out 

various automated tasks by discovering services and information required to com-

plete them. In the Semantic Web community, the Semantic Web Services Interest 

Group from W3C has taken the lead in developing specifi cations for this, perhaps the 

most widely applicable being OWL-S. OWL-S contains a set of generic ontologies to 

characterize what the Web services do, how they perform the task (including work-

fl ow descriptions), and how to access them. It also provides the option to extend the 

generic ontology with a specifi c domain ontology that describes entities and services 

particular to a given domain (in our case cheminformatics).

Once these ontological specifi cations are created, it is possible to apply reason-

ing tools to automatically create workfl ows of services that tackle tasks that require 

the involvement of multiple services. These are of particular interest, as they offer 

the possibility of on-the-fl y aggregation of services and information in response to a 

scientist’s (potentially complex) query, without the need for workfl ows to have been 

predefi ned. Such reasoning tools already exist, but they require exhaustive search 

of the Web services space (an NP-complete problem). Techniques and heuristics 

are being developed in the Semantic Web community to reduce the search spaces 

and effect effi cient searches. We will participate in these efforts while tailoring the 

searches to cheminformatics.

CONCLUDING REMARKS

We believe much is working well in the world of chemical information. We are for-

tunate to have highly effective specialized tools such as Scifi nder Scholar, a good 

supply of specialized librarians and chemical information–searching specialists in 

both academia and industry, and are now able to supplement this with web searching. 

This is refl ected in the general level of satisfaction (at least of academic chemists) 

with the current situation. However, the explosion of information available in journal 

articles, public databases, and the Web affords all kinds of opportunities that were 

not available previously. If some policy and technical barriers are crossed, special-

ized chemical information searching may in the near future be as straightforward as 

searching Google is today.
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10 Summary and Closing 
Statements

Debra L. Banville

This book was meant to provide a good starting place for life science researchers 

who rely on chemical information in their work. Each chapter introduced research-

ers to key concepts necessary to the understanding of chemical information mining 

without the need to understand all the technical information presented. For those 

interested in using chemical mining capabilities, Part II’s discussion of chemical 

semantics provided a good background of the available capabilities, with expert 

comparatives on the underlying technologies. Part III tied the chemical mining 

capabilities into the bigger picture of linking chemical information with biological 

information and the huge impact the Semantic Web is having on how we search for 

and look at information. Finally, Part IV looked at the current tools available and 

projected into the future of chemical information searching for both academic and 

commercial research areas, answering key questions about the unique needs of these 

different user groups. The experts assembled to write each chapter have presented 

an array of ideas and concepts that should provoke and challenge the way we look at 

information now and in the future.

 This book will certainly be outdated in some aspects before publication. For 

some it will provide too much detail in some areas and not enough in others, but it 

is hoped that this book provides a good initial overview with the necessary refer-

ences for a diverse set of needs. It is also hoped that this book will contribute to 

the momentum building toward improved annotation at the point of publication of 

scientifi c articles using universally adopted standards, and new business models that 

can improve the accessibility of research information while the providers of this 

information can cover their costs in ways that are mutually benefi cial to all. The 

issue of standards is not new to other industries such as in the aeronautics industry 

to promote improved air safety (Kohn et al. 2000). A similar argument can be made 

about the safety of pharmaceuticals (Banville 2008). Certainly, literature-based dis-

covery or text mining for the life sciences is here; technologies exist today that offer 

an improved ability to manage both chemical and biological information and offer 

researchers a road map to novel discovery.

Finally, this book will end with the words of Donald R. Swanson, professor emer-

itus at the University of Chicago:

More than 40 years ago the fragmentation of scientifi c knowledge was a problem 

actively discussed but without much visible progress toward a solution; perhaps people 

then had the consummate wisdom to know that no problem is so big that you can’t 
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run away from it (from Swanson’s 2001 ASIST Award of Merit acceptance speech 

[Swanson 2001]).
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Figure 8.1 Semantic mark-up of content linking to additional data sources.
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