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Preface 

These two introductory texts provide a sound foundation in the key 
mathematical topics required for degree level chemistry courses. While they 
are primarily aimed at students with limited backgrounds in mathematics, 
the texts should prove accessible and useful to all chemistry undergraduates. 
We have chosen from the outset to place the mathematics in a chemical 
context - a challenging approach because the context can often make the 
problem appear more difficult than it actually is! However, it is equally 
important to convince students of the relevance of mathematics in all 
branches of chemistry. Our approach links mathematical principles with the 
chemical context, by introducing the basic concepts first, and then 
demonstrates how they translate into a chemical setting. 

Historically, physical chemistry has been seen as the target for 
mathematical support; however, in all branches of chemistry -- be they the 
more traditional areas of inorganic, organic and physical, or the newer areas 
of biochemistry, analytical and environmental chemistry - mathematical 
tools are required to build models of varying degrees of complexity, in order 
to develop a language for providing insight and understanding together with, 
ideally, some predictive capability. 

Since the target student readership possesses a wide range of mathematical 
experience, we have created a course of study in which selected key topics are 
treated without going too far into the finer mathematical details. The first 
two chapters of Volume 1 focus on numbers, algebra and functions in some 
detail, as these topics form an important foundation for further mathemat- 
ical developments in calculus, and for working with quantitative models in 
chemistry. There then follow chapters on limits, differential calculus, 
differentials and integral calculus. Volume 2 covers power series, complex 
numbers, and the properties and applications of determinants, matrices and 
vectors. We avoid discussing the statistical treatment of error analysis, in part 
because of the limitations imposed by the format of this series of tutorial 
texts, but also because the procedures used in the processing of experimental 
results are commonly provided by departments of chemistry as part of their 
programme of practical chemistry courses. However, the propagation of 
errors, resulting from the use of formulae, forms part of the chapter on 
differentials in Volume 1. 
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Power Series 

In Chapter 2 of Volume 1 we saw that a 7 P(x), of 
degree n in the independent variable, x, is a finite sum of the form: 

Such polynomial functions have as the set of all real (finite) 
numbers; in other words, they yield a finite result for any real value of the 
independent variable x. For example, the polynomial function: 

P ( x )  = 1 + x + x2 + x 3  ( 1 4 
will have a finite value for any real number x because each term in the 
polynomial will also have a finite value. 

is very similar in form to a polynomial except that it 
does not terminate at a particular power of x and, as a result, is an 
example of a 

An 

One important consequence of this lack of termination is that we need to 
specify a domain which includes only those real numbers, x, for which 
p(x) is finite. For example, the power series: 

p(x) = 1 + x + x2 + x3 + * * * ( 1 -4) 

does not yield a finite result for x > 1, or for x < - 1, because in the 
former case the summation of terms increases without limit, and in 
the latter it oscillates between increasingly large positive and negative 
numbers as more and more terms are included. Try this for yourself by 
substituting the numbers x = 2 and x = -2 into equation (1.4) and then 
x = 0.5 and x = -0.5 and observe what happens to the sum as more and 
more terms are included. 

Power series are useful in chemistry (as well as in physics, engineering 
and mathematics) for a number of reasons: 

1 



2 Maths for Chemists 

Firstly, they provide a means to formulate alternative representations 
of transcendental functions such as the exponential, logarithm and 
trigonometric functions introduced in Chapter 2 of Volume 1 .  
Secondly, as a direct result of the above, they also allow us to 
investigate how an equation describing some physical property 
behaves for small (or large) values for one of the independent variables. 

For example, the radial part of the 3s atoniic orbital for hydrogen 
has the same form as the expression: 

R ( x )  = N(2x' - 18x + 27)e-"'3 (1.5) 

If we replace the exponential part of the function, e-ni3, with the 
first two terms of its power series expansion ( 1  -x /3 ) ,  we obtain a 
polynomial approximation to the radial function given by: 

R ( x )  = N(2x2 - 18x+ 27)( 1 - ~ / 3 )  N(8x2 - 2x3/3 - 27x+ 27) ( I .6) 

We can see how well equation (1.6) approximates equation (1.5) by 
comparing plots of the two functions in the range 0 6 s < 20, shown 
in Figure 1.1, 

Figure 1.1 
the 3s radial function, R(x), of 
the hydrogen atom with (b) an 
approximation obtained by 
substituting a two-term expan- 
sion of the exponential part of 
the function 

A comparison of (a) 

In this example, the polynomial approximation to the form of 
the radial wave function gives an excellent fit for small values of x 
(i.e. close to the nucleus), but it fdils to reproduce even one 
[a value of x for which R(s)  = 01. 

Thirdly, power series are used when we do not know the formula of 
association between one property and another. I t  is usual in such 
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situations to use a power series to describe the formula of association, 
and to fit the series to known experimental data by varying the 
appropriate coefficients in an iterative manner. For example, the 
parameters a, p, y in the polynomial expression: 

Cp = g ( T ) ,  where g(T)  = a + PT+ y? 

describing the temperature dependence of the specific heat capacity of 
a substance at constant pressure, C,, may be found by fitting 
measured values of C, over a range of temperatures to this equation. 

Much of this chapter is concerned with a discussion of power series, but 
before we go into detail we consider the general concepts of sequences and 
series, both finite and infinite. 

I .I Sequences 

A is simply a list of terms: 

each of which is defined by a formula or . The sequence may be 
finite or infinite, depending on whether it terminates at u,, or continues 
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indefinitely. Furthermore, the sequence u1, u2, 243, . . . represents a func- 
tion, with a domain specified either as a of the positive integers or 
all positive integers. 

I .I .I Finite Sequences 

The Geometric Progression 

The numbers: 

1 ,2 ,4 ,8  ,..., 256 

form a finite sequence generated by the 

u, = 2", where r = 0,1,2,3, .  . . , 8  ( 1 -8) 

Here, the formula is just 2 raised to a power, the value of which is defined 
by each element of the domain. Notice that the use of Y as a 
is arbitrary: any other appropriate letter (with the exception of u which we 
have used already) would do. A counting index such as Y is often termed 
a . An alternative way of generating this sequence is 
accomplished using a as the prescription, where each 
successive term is obtained from the previous term. For example, the 
sequence given in equation (1.8) can alternatively be expressed as: 

u r = l "  2u,-l, r = o  Y =  1,2,3 , . . . ,  8 

which simply means that, starting from 1 as the first term, each successive 
term is obtained by multiplying the previous term by 2. 

The finite sequence in equation (1.8) is an example of a 
, having the general form: 

(1.10) 2 3  8 a, ax, a x ,  a x ,  . . .  , ax 

In the case of the geometric progression defined by equation (1.8), a = 1, 
x = 2 and u, = axr for Y = 0, 1 ,  2, . . . 

Arithmetic Progression 

Consider the sequence of odd positive numbers 1 ,  3, 5 ,  7, . . . , 3 1 ,  which 
can be expressed either in terms of the general term: 

~ , = 2 r -  I ,  Y =  1,2,3 , . . . ,  16 ( 1 . 1 1 )  
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or as a recurrence relation expressed in prescription form: 

(1.12) 

This 
each 

finite sequence is an example of an 
successive term is given by a sum having the general form: 

, because 

a, a + d 7  a + 2 d ,  a + 3 d ,  ... , a + n d  (1.13) 

where, in this example, a = 1, d = 2. 

I =I .2 Sequences of Indefinite Length 

In the sequence given in equation (1.13), the magnitudes of successive 
terms progressively increase. Some sequences, however, have the property 
that as the number of terms increases, the values of successive terms 
appear to be approaching a limiting value. For example, the terms in the 

1 
n 
- 

1 1 1  I - - -  
7 y 3 7  4 ’  - - .  7 7 - - -  , (1.14) 

where u, = 1/r, r = 1 , 2,3, . . . , decrease in magnitude as r increases, and 
approach zero as r tends to infinity. Thus, we can define the of the 
sequence as: 

(1.15) 
1 

lim (u,.) = lim - = 0 
r - m  r+m y 

I f  the limit of a sequence is a single finite value, say m, then: 

lim (u,) = m (1.16) 

and the sequence is said to to the limit rn; however, if this is not 
the case, then the sequence is said to . Thus, for the arithmetic 
progression defined in equation (1.13), the magnitudes of successive 
values in the sequence increase without limit and the sequence diverges. In 
contrast, the geometric progression in equation (1.10) will converge to a 
limiting value of zero if - 1 <x < 1. 

r-00 
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1 A.3 Functions Revisited 

In our discussion of algebraic manipulation in Chapter 1 of Volume 1, we 
used the three-spin model for counting the various permitted orientations 
of three spin- nuclei. If we focus on the number of arrangements where I' 

nuclei are in the spin-up state, then we see that there is only one 
arrangement where none of the nuclei has spin up; three where one 
nucleus has spin up; three where two nuclei have spin-up; and one where 
all three nuclei have spin up. Thus, we can define the sequence 1, 3, 3, 1, 
where the general term is given by u,. = where I -  = 0, 1,  2. 3. 
In general, the number of ways of selecting r specified objects from n 
objects is given by the expression "C,. = In this example there 

are three nuclei and so 17 = 3, and there are 3C,. (where I *  = 0, 1 ,  
2, 3) ways in which 0, 1, 2 and 3 nuclei have spin up. 

3! 

n! 

(3 - r)!r!' 

(17 - I ' ) ! I ' ! *  

1.2 Finite Series 

For any sequence of terms 141, u?, 113, . . . , we can form a by 
summing the terms in the sequence up to and including the nth term: 

For example, the sum of the first n terms in the series obtained from the 
sequence defined by equation (1.8) is given by: 

s,, = 1 + 2 + 2' + - * * + 2 I 7 - l  (1.18) 

Evaluating this sum for n = 1 ,2 ,3 ,4 ,5  yields the sequence of 

If we now look closely at this new sequence of partial sums, we may 
be able to deduce that the sum of the first n terms is SII = 2"- 1. In 
general, for a obtained by summing the members of 
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the geometric progression, defined by equation (1.  lo), the sum of the first 
n terms is given by: 

(1.20) 

1.3 Infinite Series 

We can also form an 
of the dummy index to an infinite number of terms: 

from a sequence by extending the range 

(1.21) 

The summation of a finite series will always yield a finite result, but the 
summation of an infinite series needs careful examination to confirm that 
the addition of successive terms leads to a finite result, i.e. the series 
converges. It is important not to confuse the notion of as 
applied to a series with that applied to a sequence. For example, the 
harmonic sequence given by equation (1.14) converges to the limit zero. 
However, somewhat surprisingly, the 

S=Z-=l+-+-+-+.  " 1  1 1 1  
r 2 3 4  

1'= 1 
(1.22) 

does not yield a finite sum, S ,  and consequently does not converge. In 
other words, the sum of the series increases without limit as the number of 
terms in the series increases, even though the values of successive terms 
converge to zero. We can see more easily how this is true by breaking 
down the series into a sum of partial sums: 

(1.23) 

Here, each successive sum of terms in parentheses will always be greater 
than 2. 1 For example: 
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(-+-) 1 1  > (-+-) 1 1  and (!+A+!+!) > (!+!-+!+!) (1.24) 
3 4  4 4  5 6 7 8  8 8 8 8  

and, because this is an infinite series, it follows that the sum increases 
without limit: 

1 1 1  
2 2 2  

s >  1 + - + - + - + * * -  (1  -25) 

1.3.1 T Revisited: the Rate of Convergence of 
an Infinite Series 

In Chapter 1 of Volume 1 we saw that the irrational number, n, can be 
calculated from the sum of an infinite series. One example given involved 
the sum of the inverses of the squares of all positive integers: 

1 -=&-  6 22 32 42 52 n2 
1 1 1 1  n2 " 1  - I f  -+-+-+-+. . .+-+. . .  

r= 1 

( 1.26) 

This series converges extremely slowly, requiring well over 600 terms to 
provide precision to the second decimal place; in order to achieve 100 
decimal places for n, we would need more than lo5' terms! However, the 
alternative series: 

71 1 1 x 1  1 x l x 2  1 x l x 2 x 3  
-=-+-  + + + . . .  
2 1 1 x 3  1 x 3 ~ 5  1 x 3 ~ 5 ~ 7  

(1.27) 

converges more rapidly, achieving a precision to the second decimal place 
in a relatively brisk 10 terms. 

1.3.2 Testing a Series for Convergence 

The non-convergence of the harmonic series, discussed above, highlights 
the importance of testing whether a particular series is convergent or 
divergent. For a series given by: 

the first, and necessary, condition needed to ensure convergence is 
that lim u, = 0. If this condition is satisfied (as it is in the series above 
for determining n), we can then proceed to test the series further 
for convergence. It should be emphasized, however, that satisfying this 
first condition does not necessarily imply that the series converges (i.c. we 

r-00 
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say that the first condition is not sufficient). For example, although the 
harmonic sequence is an example of one for which ur tends to zero as 
r -+ 00, the corresponding harmonic series is not convergent. 

The Ratio Test 

A number of tests are available for confirming the convergence, or 
otherwise, of a given series. The test for is the 
simplest, and is carried out using the 

For successive terms in a series, u,. and ur + 1, the series: 

converges if lim u,+1< I 
r + J  ur I 

diverges if lim w >  1 
r + J  ur I 

(1.29) 

(1.30) 

If, however, lim rfl = 1, then the series may either converge or diverge, 
and further tests are necessary. 

r + m I u U r  I 

The Infinite Geometric Series 

The form of the geometric series in equation (1.20) generalizes to the form 
of equation (1.21) where, now: 

r= 1 

and ur = ax'-- '. On using the ratio test in equation (1.29), we find that the 
series converges if 

That is, when Ix< 1 I .  This constraint on the permitted values of x ,  for 
which the series converges, defines the 
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n 

r = l  
Table 1.1 Numerical summation of the geometric series x'-' 

n 1 2  3 4 5 6 7 a 
Sn 1.0 1.27 1.3429 1.3626 1.3679 1.3693 1.3697 1.3698 
AS,, - 0.27 0.0729 0.0197 0.0053 0.0014 0.0004 0.0001 
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In general, it may not be possible to specify the value of the sum, S, in 
terms of x. Instead, we chose a value of x, and compute the sum to a given 
number of significant figures or decimal places. 

I .4 Power Series as Representations of Functions 

We have seen above that, for a geometric progression of the type given in 
equation (1. lo), the sum of the first n terms is given by equation (1.20). 
Furthermore, for a = 1, we can see that: 

(1.31) 

This is an important expression because it allows us to see how a function 
such as can be represented by a polynomial of degree n - 1. 
However, if we now extend the progressionindefinitely to form the infinite 
geometric series 1 + x + x2 + - . . + xi’-’ + a  - ., we obtain an expansion of a 
function lim ~ which converges only for values of x in the range 
- 1 < x < 1 (see Worked Problem 1. I ) .  If we now evaluate the limit as 
n -+ 00, for any x in the interval of convergence - 1 <x < 1, we obtain: 

1 -x 

1 - xi7 
/1-w 1 - x 

(1.32) 

Note that in the limit n -+ 00, the term xi’ -+ 0 because we are restricting 
the values of x to the interval of convergence - 1 < x < 1. We now see that 
the function f ( x )  = & can be represented by the infinite series expan- 
sion 1 + x + x2 + .  - + x“-’ + - . a , which converges for - 1 < x <  1. 
For all other values of x the expansion diverges. 

because it 
contains a sum of terms involving a systematic pattern of change in the 
power of x.  In general, the simplest form of a power series is given by: 

The infinite geometric series is an example of a 

(1.33) 
where co, cl, c2, . . . are coefficients and successive terms involve an 
increasing power of the independent variable, x. Such series involving 
simple powers of x are termed . The more general 

3 . f ( X )  = co + C I X  + c2x2 + c3x + * * * + c,,x” + - * - 

are similar in form, but involve powers of (x - a): 

f(x) = CO + CI(X - a )  + C Z ( X  - a)’ + q ( x  - a)3  + * * . 

+ c,(x - a)” + - * * (1.34) 
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where a is any number other than 0 (in which case, we revert to a 
Maclaurin series). The significance of the value of a is that it represents 
the point about which the function is expanded. Thus the Taylor series 
are expanded about the point x = a, while the Maclaurin series are simply 
expanded about the point x = 0. Maclaurin and Taylor series are used 
most frequently to provide alternative ways of representing many types 
of function. In addition, such series in truncated polynomial form pro- 
vide an excellent tool for fitting experimental data, when there is no model 
formula available. 

There are two important features associated with the generation of 
power series representations of functions. First, a value of x lying in the 
domain of the function must be chosen for the expansion point, a; second, 
the function must be infinitely differentiable at the chosen point in its 
domain. In other words, differentiation of the function must never yield a 
constant function because subsequent derivatives will be zero, and the 
series will be truncated to a polynomial of finite degree. The question as 
to whether the power series representation of a function has the same 
domain as the function itself is discussed in a later subsection. The next 
subsection is concerned with determining the coefficients, ci, for the two 
kinds of power series used to represent some of the functions introduced 
in Chapter 2 of Volume 1.  

1.4.1 The Maclaurin Series 

Expansion About t h e  Point x = 0 

Let us start by using equation (1.33) as a model expression to generate a 
power series expansion for a function , f ( x ) ,  assuming that the require- 
ments given in the paragraph above are satisfied. In order to obtain the 
explicit form of the series, we need to find values for the coefficients c0, el ,  
c2, . . . . This is achieved in the following series of steps. 

The original function, and its first, second and third are: 

(1.35) 2 f ( x )  = CO + c1x + c2x + c3x3 + c4x4 + - * . + c,xn + * * . 

(1.36) p y x )  = c1 + 2c2x + 3c3x 2 + 4c4x 3 + * * - + nc,,x"-' + * * . 

f 2 ) ( x )  = 2c2 + 2 x 3c3x + 3 x 4c4x2 + * - - + n(n - 1)cnx'z-2 + . * .  (1.37) 

f .(3) ( X )  = 2 x 3c3 + 2 X 3 X 4 ~ 4 . ' ~  + . . . + n ( n - 1 ) ( ~ 2  - 2 )  C,?-Y"- + . . . ( 1 .38) 
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If we now substitute the expansion point, x = 0, into each of the above 
equations we obtain: 

(1.39) 

(1.40) 

(1.41) 

(1.42) 

and, by inspection, the nth derivative has the form: 

If we now substitute the coefficients obtained from each of the expressions 
(1.39)-( 1.43) into (1.39, we obtain the Maclaurin series for f ix ) :  

+- f ' " ' ( 0 )  xn + . . . (1.44) 
n ! 

This series, which is generated by evaluating the function and its 
derivatives at the point x =  0, is valid only when the function and its 
derivatives exist at the point x = 0 and, furthermore, only if the function 
is infinitely differentiable. 

The Maclaurin Series Expansion for ex 

The exponential functionflx) = e-' is unique insofar as the function 
and all its derivatives are the same. Thus, sincef(n)(x) = ex, for all n, we 
have: 

and, using equation (1.44), we obtain: 

(1.46) 

in which the nth term is given explicitly. 
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Truncating the Exponential Power Series 

For any power series expansion, the accuracy of a polynomial truncation 
depends upon the number of terms included in the expansion. Since it is 
impractical to include an infinite number of terms (at which point the 
precision is perfect), a compromise has to be made in choosing a sufficient 
number of terms to achieve the desired accuracy. However, in  truncating 
a Maclaurin series, the chosen degree of polynomial is always going to 
best represent the function close to x = 0. The further away from x = 0, 
the worse the approximation becomes, and more terms are needed to 
compensate, a feature which is demonstrated nicely in Figure 1.2 and 
Table 1.2. 

Figure 1.2 A comparison of 
the accuracy of polynomial 
approximations to the function 
y = ex ( x  2 0) ,  using polynomials 
of degrees 2 - 1 0 

Table 1.2 The accuracy of first, second and third degree polynomial approxi- 
mations to the function f(x)=e" 

X 

0 
0.0001 
0.001 
0.01 
0.1 
0.2 
1 .o 

1 + x  1 + x + $  1 + x + $ + $  

1 1 1 
1.0001 1.000 1 00005 1.000100005 
1.001 1.0010005 1 .OO 1 0005 
1.01 1.01005 1.01 005017 
1.1 1.105 1.1051 67 
1.2 1.22 1.22133 
2 2.5 2.6667 

ex 

The Maclaurin Expansions of Trigonometric Functions 

1 
1.000100005 
1.001 0005 
1 .O 10050 17 
1.1051 709 
1.221403 
2.718282 

The trigonometric functions sin x, cos x, tan x have derivatives which 
exist at x = 0, and so can be represented by Maclaurin series. 
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The Problem with Guessing the General Term: A Chemical 
Cou n ter Exam p I e 

In our discussion of the geometric series and the Maclaurin series for sin x, 
we made the assumption, from the pattern emerging from the first few 
terms, that we could predict how the series will continue ad injznitum. In 
most cases, this confidence is justified, but sometimes we encounter prob- 
lems where finding the general term requires a knowledge of the physical 
context of the problem. An example of such a problem in chemistry 
involves the computation of the ion--ion interaction energy in an ionic 
solid, such as NaC1. If we compute the interaction energy arising from the 
interaction between one ion (positive or negative) and all the other ions in 
the NaCl lattice structure, then we obtain the Madelung energy in the form: 

Here A is the Madelung constant for the NaCl structure, and R is the 
distance between any adjacent Na' and C1- ions. If we inspect the terms 
in the series, we can see not only that the sign alternatives but also what 
appears to be a pattern in the square root values given in the 
denominators of successive terms. However, in contrast, it is very difficult 
to see any pattern to the values of the numerators, the reason being that 
there is none: we can only determine their values from a knowledge of the 
NaCl structure. In this example, the first term arises from the interaction 
between a N a +  ion and the 6 nearest neighbour C1- anions at a distance 
f i R ;  the second term arises from the interaction of nearest-neighbour 
ions of the same charge, which in this case involves an Na' ion and 12 
second nearest-neighbour N a +  ions at a distance &R; the third term is 
then the interaction between an Naf and 8 Cl- at a distance A R ,  and so 
on. The general term in this case is &, where m is the number of nth 
neighbours a t  a distance of R f i .  The next term in the series is, somewhat 
unexpectedly, +u, because the number of 7th nearest neighbours at a 
distance R f i  is zero! 

JiT 

1.4.2 The Taylor Series 

Power Series of Functions Expanded About Points Other Than Zero 

In many situations, we need to find the power series expansion of a 
function in terms of the values of the function and its derivatives at some 
point other than ZC = 0. For example, in the case of a vibrating diatomic 
molecule, the natural choice of origin for describing the energy of the 
molecule is the equilibrium internuclear separation, Re, and not R = 0 
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(where the nuclei have fused!). We can determine the expansion of a 
functionfix) about an origin x = a (where a is now, by definition, generally 
not zero) using the Taylor series which is given by the expression: 

f (x )  =f (a)  +f"'(a)(x - a )  + f ' * ' (a )  - (x - a)2  + . . . 
2! 

( I  .48) 

Here, f'"'(a) is the value of the nth derivative offlx) at the point x = a. 
The special case where a = 0, as discussed above, generates the Maclaurin 
series. 

Figure 1.3 An illustration of the 
improved accuracy achieved 
with the Taylor series expansion 
of f(x)=e" about x=l , compared 
with the Maclaurin series 
(expanded about x=O) 
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Figure 1.4 Schematic plot of 
the Morse potential energy 
function (full line). The minimum 
energy is at R = Re. The harmonic 
approximation (see text) is shown 
as a dashed line 
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1.4.3 Manipulating Power Series 

Combining Power Series 

If two functions are combined by some operation (for example, addition, 
multiplication, differentiation or integration), then we can find the power 
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series expansion of the resulting function by applying the appropriate 
operation to the reference series; however, the outcome will be valid 
only within a domain common to both power series. So, for example, if 
the Maclaurin series for ex (interval of convergence: all x in R) is 
multiplied by that for In( 1 + x) (interval of convergence: - 1 < x < l), the 
resulting series only converges in the common interval of convergence 
-1 < x <  1. 
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A Shortcut for Generating Maclaurin Series 

Sometimes we can generate Maclaurin series for a given function by a 
simple substitution. For example, the Maclaurin series for the function 
e-.'. can be found as in Problem 1.5; however, an alternative, and much 
less labour intensive, approach involves writing X =  --s and then using 
the existing series for ex, with X replacing s. 

I .4.4 The Relationship between Domain and 
Interval of Convergence 

We saw earlier that the Maclaurin series expansion of the function 
(1 -x)-' takes the form 1 + .t' + s2 f .  . -. Although the domain o f , f [ s )  
includes a//  .Y values, with the exclusion of .Y = 1, where the function is 



Power Series 23 

undefined, the domain of the Maclaurin series, determined by applying 
the ratio test, is restricted to - 1 < x < 1. The point x = 1 is excluded from 
the domains of both the function and the series. However, although the 
point x = -1 is clearly included in the domain of the function, since 
f(-1) = 5, it is excluded from the domain of the series. We can further 
illustrate this by comparing a plot of the function p' =,fix) = (1 - x)-' 
with the MacLaurin series expansion of this function up to the third, 
fourth, fifth and sixth terms (see Figure 1.5). Clearly the three plots 
match quite well for - 1 < x < 1 but differ dramatically for all other values 
of x .  We also see at x= -1 that the series representation oscillates 
between zero and + 1  as each new term is added to the series, thus 
indicating divergence at this point. 

Figure 1.5 A plot of f ( x )  = 
(1 -x)- '  (fullline), compared with 
plots of the polynomial trunca- 
tions of the Maclaurin series ex- 
pansion 1 + x +  x2 + . . . +x"-' + 
for n = 3-6 

1.4.5 Limits Revisited: Limiting Forms of Exponential and 
Trigonometric Functions 

In Chapter 3 of Volume 1 we discussed the behaviour of a function close 
to some limiting value of the independent variable. Some of the examples 
concern finite limiting values, but more often we are interested in how 
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functions behave for increasingly small or large values in the independent 
variable. It is usually straightforward to evaluate the limit of simple 
functions for increasingly large or small values of x, but for some of the 
transcendental functions we need to use power series expansions to probe 
their asymptotic behaviour. 

Exponential Functions 

The behaviour of the function err.'-, as x tends to large or small values, 
depends upon the signs and magnitudes of x and u. Thus: 

For x = 0, eCi-' = 1,  irrespective of the value of u. 
For large positive x, eux increases without limit as x increases for 
u > 0, but e"" becomes increasingly small as x increases for u < 0. 
Regardless of the signs of x or a, el"- approaches 1, for increasingly 
small values of x, according to the MacLaurin power series expansion 
(as seen in Problem 1.9a): 

( a x ) 2  (ax)' (m)'l-' + +-+-+ ...- e'.' = I + ax + ~ 

2! 3! 4! ( n  - l ) !  
(1.54) 
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Trigonometric Functions 

In an analogous way, the series expansions for the sine and cosine 
functions have the forms: 

(ax) 
; c o s a x =  1 ----+... sin ax = a x  - - + - - - (1.55) (.XI2 

2! 3! 
as x-0. For very small values of x, cos ax and sin ax may be 
approximated by 1 and ax,  respectively. However, as x increases without 
limit, in both positive and negative senses, the values of the sine or cosine 
functions oscillate between 1. 
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Numbers Revisited: Complex 
Numbers 

In Chapter 2 of Volume 1 we saw that the solution of a 
of the form: 

can yield up to two real roots, depending on the values of the coefficients, 
a, b and c. The general solution to quadratic equations of this form is 
given by the formula: 

-b & db’ - 4ac 
2a 

X =  

where the quantity b2 - 4ac is known as the (see Section 2.4 
in Volume 1). If the discriminant is positive, then the equation has two 
real and different roots; if it is zero, then the equation will have two 
identical roots; and if it is negative, there are no real roots, as the formula 
involves the square root of a negative number. For example, the equation: 

x2 - 4x + 3 = 0 

yields two real roots, x = 3 and x = 1, according to: 

A = 2 + - = 2 * 1 = 3 , 1  4 + J 1 6 - 0  
2 2 

X =  

We can represent this solution graphically (see Figure 2.1) in terms of 
where the function y = x2 - 4x + 3 cuts the x-axis, where y = 0. 

However, if we use equation (2.2) to find the roots of the quadratic 
equation: 

we find that the solution yields: 

27 
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Figure 2.1 Plots of the two 
functions y =  x2 - 4x + 3 and 
y = x2 - 4x + 6, showing the 
presence of two and zero 
real roots of the respective 
equations x2 - 4x + 3 = 0 and 
x2 -4x  + 6 = 0  

which requires us to find the square root of - 8. Graphically, we see in 
Figure 2.1 that a plot of the function y =  s’ - 4s + 6 does not cut the 
x-axis at all. Logic would seem to dictate that any solution to the second of 
these two equations is nonsensical, and that the result cannot possibly be 
real - especially when we view the plot of the function, which clearly does 
not cut the x-axis! However, there is a way of circumventing this problem 
by simply extending the number system to include so-called 

as a legitimate number. This concept can 
naturally seem somewhat bemusing but, once we get over the shock, we 
find that the treatment of complex numbers is really quite straightforward 
and, more importantly, we find that they allow us to tackle real problems 
in chemistry in a way that would otherwise be impossible. 

, which incorporate 
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2.1 The Imaginary Number i 

As we saw above, the solutions to algebraic equations do not always yield 
real numbers. For example, the solution of the equation x2 + 1 = 0 yields 
the apparently meaningless result: 

x =  *d-1 
because the square root of a negative number is not defined in terms of a 
real number. However, if we now dejine the i = a ,  
then the two roots may be specified as s = i. In general, an imaginary 
number is defined as any real number multiplied by i. Thus, for example, 
the number J-8, which emerged from the solution to equation (2.3) 
above, can be written as &a= f i i .  

2.2 The General Form of Complex Numbers 

In the answer to Worked Problem 2.1, we obtained the required roots of 
the quadratic equation in the form of a sum of a real number (-1) and an 
imaginary number (2i or -2i). Such numbers are termed 

, and have the general form: 

z = x + i y  
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where x and y are real numbers, termed the and of z ,  
respectively. Clearly, if x=O, y # 0, then z is an imaginary number 
(because the real part vanishes); likewise, if x # 0, y = 0, then z is a real 
number (because the imaginary part vanishes). 

2.3 Manipulation of Complex Numbers 

The algebraic manipulation of pairs of complex numbers is really quite 
straightforward, so long as we remember that, since i = a, it follows 
that 1 = - 1. - 2  

2.3.1 Addition, Subtraction and Multiplication 

For addition or subtraction of complex numbers, the appropriate 
operation is carried out separately on the real and imaginary parts of 
the two numbers. 

(real number) is 
achieved by simply multiplying the real and imaginary parts of the 
complex number by the scalar quantity. Multiplication of two complex 
numbers is performed by expanding the expression (u  + ih)(c + id) as a 
sum of terms, and then collecting the real and imaginary parts to yield a 
new complex number. 

Multiplication of a complex number by a 
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2.3.2 The Complex Conjugate 

The , z*, of the complex number z = x + ij?, is obtained 
by changing the sign of the imaginary part of z to yield z* = x - ij7. Thus, 
for example, the complex conjugate of the number z2  = - 1 + i, given in 
Problem 2.3, is z2* = - 1 - i. 

The two numbers z and z* have the properties that their sum and 
product are both real, but their difference is imaginary: 

z + z* = 2.x (2.6) 

(2.7) 
2 2  zz* = (x + iy)(x - iy) = x + y 

z - z* = 2iy (2.8) 

2.3.3 Division of Complex Numbers 

As we have seen, addition, subtraction and multiplication of complex 
numbers is generally quite straightforward, requiring little more than the 
application of elementary algebra. However, the division of one complex 

number by another requires that a quotient such as -=- 
z2 x2 + iy2 

transformed into a complex number in the form of equation (2.5). 
The solution to this conundrum is not immediately obvious, until we 
remember that the product of a complex number with its own complex 
conjugate zz* is a real number (see equation 2.7); this suggests that we 
could achieve the required form for the quotient by multiplying both 
numerator and denominator by z2*: 

'1 +iyl be 

This has the same effect as multiplying by unity since zT/zT = 1, but it 
allows us to express the quotient in the required form. Thus, multiplying 
out the numerator and denominator on the right side of equation (2.9), 
and collecting terms, gives: 

(2.10) 21 - x1x2 + Y1Y2 + iYlx2 - XlY2 

z2 -xi + y; x; + .v; - - 
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The net result is that the original quotient is transformed into the form of 
x1x2 ' Y l Y 2  and a complex number with real and imaginary parts, 

1'1 .V? - x: + yf 
-y:J'2, respectively. 

x; + J'5 

2.4 The Argand Diagram 

Since a complex number is defined in terms of two real numbers, i t  is 
convenient to use a graphical representation in which the real and 
imaginary parts define a point (x,~) in a plane. Such a representation is 
provided by an , as seen in Figure 2.2. 

Figure 2.2 An Argand diagram 
displaying the complex number 
z = 1 +I, in terms of the Cartesian 
coordinates ( 1 , l )  or, alternatively, 
in terms of the polar coordinates 
( r  = Jz. f3 = n / 4 )  
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The location of z in the Argand diagram can be specified by using either 

(r,O), where r b 0 and - 7c < 8 < n. The reason for choosing this range 
of 8 values, rather than 0 < 8 < 27c, derives from the convention that 8 
should be positive in the first two quadrants (above the x-axis), moving in 
an anticlockwise sense from the Re z axis, and negative in the third and 
fourth quadrants (below the x-axis), moving in a clockwise sense. The 
quadrant numbering runs from 1 to 4, in an anticlockwise direction, as 
indicated in Figure 2.2. 

(x,y), where x = Re z ,  y = Im z ,  or 

2.4.1 The Modulus and Argument of z 
The polar coordinates r and 8 define the (alternatively known as 
the and sometimes denoted by 121) and 9 

respectively, of z .  From Pythagoras’ theorem, and simple trigonometry, 
the modulus and argument of z are defined as follows (see Figure 2.2): 

(2.11) 

1 (2.12) Y tan0 = - + 0 = tan- ( y / x )  

Great care is required in determining 8, because it is easy to make a 
mistake in specifying the correct quadrant. For example, although the 
complex numbers z = 1 - i and z = - 1 + i both have tan 8 = - 1, they lie 
in the fourth and second quadrants, respectively, as seen in Figure 2.3. 

X 

Figure 2.3 An Argand diagram 
showing the complex numbers 
zl= - 1 + i and z2=1 - i with 
modulus 4 and arguments 3n/4 
and -n/4, respectively 
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If we evaluate tan - ' (  - l) ,  using the tan function on an electronic 
calculator, to determine 6, we obtain - 0.7854 rad, which is equivalent to 
- 0.7854 x 180/n = - 45". This places z in the 4th quadrant, which is 

correct for z = 1 - i but incorrect for z = - 1 + i. In the latter case, we 
need to look at the values of x = Re z and y = Im J and choose the more 
appropriate value for 6, recognizing that tan(n + 13) and tan 6 have the 
same value. Whether we use or when evaluating the 
argument of a complex number is largely a matter of taste or context. 
However, you may find it more convenient to work with degrees when 
referring to an Argand diagram because it is easier to associate a complex 
number with a given quadrant in this case. 
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2.5 The Polar Form for Complex Numbers 

So far we have assumed that a complex number takes the form z = x + iy, 
where x and y are the values of Re z and Im -7, respectively. However, 
from trigonometry (see Figure 2.2) we see that x = r cose and y = r sine. 
Consequently, z may be expressed in terms of r ,8  as: 

z = ~ ( C O S  Q + i sin Q )  (2.13) 

Equation (2.13) is not yet in a form that is fundamentally different from 
the Cartesian form expressed in equation (2.5). However, we can obtain 
an alternative, more compact, and far more powerful way of writing the 
polar form of a complex number by re-visiting the Maclaurin series for 
the sine, cost3 and exponential functions. The Maclaurin series for cosine 
and sine are: 

C O S Q =  1 - -+ -+ . * .+  Q* e4 (kl)n-l  Q2n-2 + . . . 
2! 4! (2n - 2)! 

(-1)'Z-1 
Q2n-1 + . . . Q~ e5 

sin8 = 8 - - + - + . . + 
3! 5! (2n - l)!  

(2.14) 

(2.15) 

If we substitute each of these into equation (2.13) we obtain: 

Q2 iQ3 e4 iQ5 
2! 3! 4! 5 !  

z = r ( c o s Q + i s i n Q )  = r  1 + i Q - - - - + - + - + . . .  

and on re-writing the right side in terms of powers of if3 using i2 = - 1, 
1 = - i, i4 = 1, etc., we obtain: a 3  

f (2.17) 

The braces in equation (2.17) contain the Maclaurin series for e", and so 
we can rewrite the polar form for z more compactly as: 

(2.18) id z = re 
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2.5.1 Euler's Formula 

If we equate equation (2.18) with equation (2.13) we obtain: 

z = yeie = ~ ( c o s  e + i sin e) 
which on cancelling Y yields: 

eie = cos 8 + i sin 6 

This important result is known as 

The Number ein 

Using Euler's formula to evaluate eln we see that: 

e'x - - cosn + i sinn 

(2.19) 

(2.20) 

(2.22) 

However, as cosn = -1 and sinn = 0, we obtain the extraordinary and 
elegant result that: 

- - -1 (2.23) 

which rearranges to a single relationship: 

eln + 1 = 0 (2.24) 

containing the irrational numbers e and n, the imaginary number i, as well 
as the numbers zero and unity. 
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2.5.2 Powers of Complex Numbers 

The advantage of using the polar form for z is that it makes certain 
manipulations much easier. Thus, for example, we can obtain: 

The modulus of z directly from the product of z and z*, using 
equations (2.18) and (2.21): 

Positive and negative powers of z: 
id n n in0 

-11 = (re ) = r e ( n  = +1, +2, +3, +4, ...) (2.26) 

where, for a given value of n, zn is seen to be a complex number, with 
modulus rn and argument no. 
Rational powers of z ,  where n = p / q  (q  # 0): 

zP/q = yP/qei(P/q)e (2.27) 

2.5.3 The De Moivre Theorem 

We have seen from equation (2.26) that the nth power of a complex 
number can be expressed as: 

(2.28) ii in0 z n = r e  
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with modulus and argument I-'' and ii0, respectively. Using Euler's 
formula, equation (2.28) becomes: 

(2.29) zn = r n e in8 - - r'(cos no + i sin no) = ~'''(cos 8 + i sin 0)" 

After cancelling the P factors in equation (2.29), we obtain the 

(COS 8 + i sin 8)" = cos n0 + i sin i?O (2.30) 

2.5.4 Complex Functions 

So far we have been concerned largely with the concept of the complex 
number, but we can see from our discussion of Euler's formula that 
the general form of a complex number actually represents a complex 
mathematical function, say A@), where: 

f ( 0 )  = cos 8 + i sin 8 (2.3 1)  

This function comprises a real part and an imaginary part, and so in 
general we can define a complex function in the form: 

f ( x )  = g ( x )  + ih(x> 

where the complex conjugate of the function is given by: 

(2.32) 

.f(s)* = g ( x )  - ih(x) (2.33) 

Thusf(x)f(x)* is a real function of the form: 

. f O f ( X ) *  = m2 + w2 (2.34) 

The property of complex functions given in equation (2.34) plays a very 
important role in quantum mechanics, where the wave function of an 
electron, $, which may be complex in form, i s  related to the physically 
meaningful probability density through the product $$*. I f  + is a 
complex function, then, from equation (2.34). $$* is a real function. 
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The Periodicity of the Exponential Function 

It may seem odd to think of the exponential function, z = eiH, as periodic 
because it is clearly not so when the exponent is real. However, the 
presence of the imaginary number i in the exponent allows us to define a 
modulus and argument as 1 and 0, respectively. If we represent the values 
of the function on an Argand diagram, we see that they lie on a circle of 
radius, r =  1, in the complex plane (see Figure 2.4). Different values of 0 
then define the location of complex numbers of modulus unity on the 
circumference of the circle. We can also see that the function is periodic, 
with period 2n: 

( 2 . 3 5 )  

Figure 2.4 The function z=e" is 
periodic in the complex plane, 
with period 271 
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The Eigenvalue Problem Revisited 

The three 2p orbitals resulting from the solution of the 
for the hydrogen atom can be written as: 

,/, - Nle-"/'(10rsinOe14; ,/, - N - l . / ~ ~ / ~ ~ c o s o ;  $-, = ~ ,e - - " /~ ' i~1~ . s in0e - ' 4  
1 -  0 - 2e 

where N 1  and N2 are constants, a. is the Bohr radius, I' is the distance of 
the electron from the nucleus, and the suffix attached to each $ indicates 
the value of the orientation quantum number 1721. The Schrodinger 
equation, I?$ = E$, is an example of an (see Sections 
4.3.1 and 7.4.3 in Volume 1) where, in this case, H is an operator known 
as the (corresponding to the energy of the 
system) and I) is the (or wave function). As we saw in 
Volume 1,  if two functions are both solutions to an eigenvalue problem, 
and associated with the same eigenvalue, then a linear combination of 
the functions will also be a solution. We can use this property to construct 
real orbital functions that we can visualize more easily. We explore this 
idea a little further in the next problem. 

; E i s  the 
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Structure Factors in Crystallography 

The intensity of the scattered beam of X-rays from the (hkl) plane of a 
crystal is proportional to FF", where F, the structure factor, is given by: 

(2.36) 

The summation runs over the appropriate number of atoms in the unit 
cell with (fractional) coordinates (xj,yj,zj) and scattering factor f/. 

2.5.5 Roots of Complex Numbers 

The polar form of a complex number, z ,  raised to the power n is given in 
equation (2.28) as: 

Zn = ( y e j o y  = rneino (2.37) 

De Moivre's theorem allows us to express zn in the form: 

zn = Y'(COS no + i sin no) (2.38) 

It follows that one square root of a complex number (where n = f) is given 
by: 

(2.39) 



42 Maths for Chemists 

The method used to retrieve the second square root is now described in 
Worked Problem 2.7. 

This method can be extended to find the rith roots of a n y  number. 
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Working with Arrays I: 
Determinants 

In all areas of the physical sciences we encounter problems that require 
the solution of sets of simultaneous . These range from 
seemingly mundane everyday problems to highly complex problems in 
quantum mechanics or spectroscopy requiring the solution of hundreds 
of simultaneous linear equations. For small numbers of such equations, 
the solutions may be most straightforwardly obtained using the methods 
of elementary algebra. However, as the number of equations increases, 
their alegbraic solution becomes cumbersome and ultimately intractable. 
In this chapter we introduce the concept of the determinant to provide 
one of the tools used to solve problems involving large numbers of 
simultaneous equations. The other tools required for solving systems of 
linear equations are provided by matrix algebra, which we discuss in 
detail in Chapter 4. 

45 



46 Maths for Chemists 

3.1 Origins: the Solution of Simultaneous 
Linear Equations 

We begin our discussion of linear systems by introducing the determinant 
as a tool for solving sets of simultaneous linear equations in which the 
indices of the unknown variables are all unity. Consider the pair of 
equations: 

(3.1) 
(3.2) 

where ~ 1 1 1 ,  a12, 421, 4 2 2 ,  b l  and b 2  are constant coefficients and x and y are 
the “unknowns”. We can determine the unknowns using elementary 
algebra as follows: 

Multiply equation (3.1) by N~~ and equation (3.2) by u12 to give: 

(3.3) 

(3.4) 

Subtract equation (3.4) from equation (3.3) to yield: 

which we can rearrange to give an expression for x in terms of the 
constant coefficients: 

h a 2 2  - b 2 4 1 2  x = 
4 1 1 4 2 2  - 412421 

( 3 . 5 )  

Now, multiply equation (3.1) by clzl and equation (3.2) by a1 I and 
subtract the resulting equations to yield: 

(3.6) 

The denominators in equations (3.5) and (3.6) are the same, and can 
be written alternatively as: 

(3.7) 

The symbol on the left side of equation (3.7) defines a of 
order 2, the expansion of which is given on the right. We can similarly 
express the numerators as determinants of order 2, and we see that the 
value of the two unknowns is then given by the ratio of two 
determinants: 
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The purpose of introducing this notation is that it readily extends to n 
linear algebraic equations in n unknowns. The problem then reduces 
to one of evaluating the respective determinants of order n. 

This type of problem arises in a chemical context quite frequently. For 
example, the activation energy of a chemical reaction can be determined 
by measuring the rate constant for a particular reaction at two different 
temperatures. The relationship between rate constant and temperature is 
given by the 

where E, is the activation energy for the reaction, and A is the so-called 
pre-exponential factor. We can convert the Arrhenius equation to a linear 
form by taking logs of both sides: 

(3.12) Ea Ink = 1nA - ~ 

RT 
If we now measure the rate constant at two different temperatures, T I  and 
T2, we obtain a pair of simultaneous linear equations which we can solve 
for the two unknowns, E, and In A :  

E a  In k2 = In A - - 
RT2 

(3.13) 

(3.14) 
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3.2 Expanding Determinants 

In general, a determinant of 
elements arranged in n rows and n columns: 

n is defined as a square array of n2 

(3.15) 

The of this determinant are denoted by a, or b,, where i denotes 
the row and j the column number. Note that the letter used commonly 
derives from the label applied to a related square matrix - a consequence of 
the common definition of a determinant as an operation on a square matrix 
(see Section 4.1 in Chapter 4). We have seen above in equation (3.7) that a 
determinant of order 2 is evaluated in terms of the elements uij which lie at 
the intersection of the ith row with the j th column of the determinant. 

A determinant of order 3, which might result from a problem 
involving three simultaneous equations in three unknowns, is expanded 
as follows: 

a12 a13 

a21 a22 a23 

a31 a32 a33 

(3.16) 
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a l l  a12 a13 

a21 a22 a 2 3  

a31  a32 a33 

This proceeds by taking the elements of the first row in turn, 
and multiplying each one by the determinant of what remains on crossing 
out the row and column containing the chosen element, and then 
attaching the sign (-l)i+j. The signed determinants of order 2 in equation 
(3.16) are known as the first-order A l l ,  A 1 2  and A 1 3  of the three 
elements a l l ,  a 1 2  and a13 ,  respectively. 

In general, the n2 cofactors of any determinant of order n are obtained 
by deleting one row and one column to form a determinant of order n - 1, 
the value of which is multiplied by an odd or even power of -1, depending 
upon the choice of row index and column index. Thus, if the ith row and 
j th column of a determinant of order n are both deleted, then the ijth 
cofactor, A,, is formed from the value of the resulting determinant of 
order n - 1, multiplied by (-l)? For example, the cofactor A12 of the 
determinant of order 3 in equation (3.16) is obtained by deleting theJirst 
row and the second column of the determinant, and multiplying the 
resulting determinant of order 2 by (- 1)' +2: 

= a11a22a33 - a11a23a32 - a12a21a33  -k a12a23a31  

f a13a21a32 - a13a22a31 (3.20) 

(3.17) 

Rewriting equation (3.16) in terms of the three cofactors: 

yields: 
a l l  a12 a13 1::; a 3 2  a33  1 a22 a23 = a l l A l l  f a12A12 f a13A13 (3.19) 

In this example, the determinant is initially expanded from the first row, 
but in fact we could just as easily expand from any row or column. 
Thus, for example, expanding from column two gives the alternative 
expansion: 

a l l  a 1 2  a 1 3  

a21 a22 a23 = a12A12 -k a22A22 -k a32A32 (3.21) /ujl a32 a33 I 

If we now expand each of the cofactors (all determinants of order 2) 
according to equation (3.7), we obtain the full expansion of the 
determinant, given in equation (3.20), expressed as a sum of three positive 
and three negative terms: 
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which, upon expanding the cofactors, yields: 

(3.22) 

Expanding each of the determinants of ordcr 2 in equation (3.22) yields 
equation (3.20), but with the six terms on the right in a different order. 

A slightly quicker route to ensuring the correct signs in the sum of the 
cofactor values is obtained by remembering the general rule for expansion 
from any row or colunin in pictorial form: 

+ - + - + ... - + - + -  ... + - + -  ... ... - + -  . . . . . . . . . + -  . . . . . . . . . . . . 

(3.23) 

We shall discuss cofactors again when we meet matrix inverses in 
Chapter 4. 
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3.3 Properties of Determinants 

(1) A determinant is unaltered in value if all rows and columns are 
interchanged, e.g.: 

(3.24) 

(2) A determinant changes sign if two rows or columns are inter- 
changed: 

(3.25) 

(3) A factor can be removed from each element of one row (or column) 
to give a new determinant, the value of which when multi- 
plied by the factor gives the original value of the determinant. For 
example: 

(3.26) 

Here, the factor 2 has been removed from column 2. Conversely, 
when a determinant is multiplied by a constant, the constant can be 
absorbed into the determinant by multiplying the elements of one row 
(or column) by that constant. 
The value of a determinant is unaltered if a constant multiple of one 
row or column is added to or subtracted from another row or column, 
respectively. For example, if we subtract twice column 1 from column 
2, we obtain: 

(4) 

(3.27) 
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3.4 Strategies for Expanding Determinants 
where n > 3 

We can take a number of different approaches for evaluating 
determinants of higher order: 

(a) For determinants of 3 or lower order, it is easiest to expand in full 
from the row or column containing the greatest number of zeros (for 
example, see Problem 3.3). 

(b) For determinants of order 4 to about 6, it is best to introduce as 
many zeros as possible to the right (or left) of the leading diagonal 
using properties (1)-(4) (Section 3.3). If all the elements to the right 
or left of the leading diagonal are zero, then: 

and the expansion of the determinant is given by the product of the 
elements lying on the leading diagonal. 
When expanding determinants of high order (n  > 5 ) ,  it is best to use 
one of the widely available computer algebra systems (Maple, 
Mathematica, etc.) or a numerical computer algorithm. There are 
many chemical situations in which we have to expand determinants 
of large order. For example, in computing the vibrational 
frequencies of ethene, it is necessary to expand a determinant of 
order 12 (for a non-linear molecule containing N nuclei, the order 
will be 3 N  - 6). 

(c) 
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Working with Arrays 11: 
Matrices and Matrix Algebra 

In the previous chapter we saw how determinants are used to tackle 
problems involving the solution of systems of linear equations. In general, 
the branch of mathematics which deals with linear systems is known as 

, in which matrices and vectors play a dominant role. In 
this chapter we shall explore how matrices and matrix algebra are used 
to address problems involving coordinate transformations, as well as 
revisiting the solution of sets of simultaneous linear equations. Vectors 
are explored in Chapter 5.  

are two-dimensional arrays (or tables) with specific shapes 
and properties: 

Their key property is that they give us a formalism for systematically 
handling sets of objects - called - which, for example, can be 
numbers, chemical property values, algebraic quantities or integrals. 
Superficially, matrices resemble determinants, insofar as they are con- 
structed from arrays of elements; however, as we shall see, they are really 
quite distinct from one another. The most important difference is that 
while a determinant expands to yield an expression (and a value, when its 
elements are numbers), a matrix does not! 

55 
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4.1 Introduction: Some Definitions 

A is an array of , comprising 1.2 rows and I?? columns, 
enclosed in parentheses (round brackets). By convention. matrices are 
named using bold typeface letters of upper or lower case, such as A or b, 
so we could, for example, label the matrices above as: 

The elements of the matrix are usually denoted aj, or bji (depenc ing on the 
letter used to label the matrix itself), where i denotes the row and , j  the 
column number. Thus, for example, the matrix B above has two rows and 
two columns, and is said to be a 2 x 2 matrix; however, as the matrix is 
square, it is sometimes named a of n,  with elements 
assigned as follows: 

Sometimes, it is more convenient to use the notation (B) ,  to indicate 
the ijth element of matrix B. Similarly, the 3 x 1 matrix c is called a 

. The general 
matrix, A, having order (n x m), is called a with 
elements: 

, and the 1 x 3 matrix d is called a 

Two matrices A and B are equal if, and only if, aij= b,j for all iJ. This 
also implies that the two matrices have the same order. 
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4.2 Rules for Combining Matrices 

In this section we explore the matrix analogues of addition, subtraction 
and multiplication of numbers. The analogue for division (the inverse 
operation of multiplication) has no direct counterpart for matrices. 

4.2.1 Multiplication of a Matrix by a Constant 

The multiplication of a matrix, A, by a constant c (a real, imaginary or 
complex number) is achieved by simply multiplying each element by the 
constant, resulting in the elements changing from aij to tau, for all i, j .  

4.2.2 Addition and Subtraction of Matrices 

If two matrices have the same order, then addition and subtraction are 
defined as: 

C = A + B ,  with cq = a i j f b i i ,  for all i , j  (4.2) 

Neither addition nor subtraction is defined for combining matrices of 
different orders. 
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4.2.3 Matrix Multiplication 

Given an n X m matrix, A, and an y7? x p matrix, B, then the ijth element, 
cii, of the resulting n x p product matrix C = AB, is found by selecting the 
i,.j values and then, for each choice, summing the products of the elements 
in row i of A with those in column j of B (Figure 4.1): 
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ail ai2 ai3 .......... a .  im 

A number of features relating to matrix multiplication are worthy of note: 

If the number of columns in A is not equal to the number of rows in B, 
then multiplication is undefined. 
In general, even if AB is defined, then BA may not be defined. 
If AB and BA are both defined, their orders may differ. 
Even if AB and BA have the same order, the two product matrices 
may not be equal. In these circumstances, matrix multiplication is 
non-commutative, i.e. AB # BA. 

Figure 4.1 The product of an 
n x M matrix, A, and an m x p 
matrix, 6, is an n x p matrix, C, 
whose ijth element, c,,, is found 
by summing the products of the 
elements in row i of A with those 
in column jof 6 



60 Maths for Chemists 

Properties of Matrix Multiplication 

You may have observed from your answers to Problem 4.4 that 
multiplication of matrices follows similar rules to that of numbers, 
insofar as it is: 

(AB)C = A(BC) 

A ( B + C )  = AB+AC 

(4.4) 

(4.5) 
One exception is the 

Non-commutative: 
. In general, matrix multiplication is: 

AB # BA (except in certain special situations) (4-6) 

As we suggested earlier, there is no general way of defining matrix 
division; however, for some square matrices we can define an operation 
that looks superficially like division, but it is really only multiplication 
(see Section 4.6). 

4.3 Origins of Matrices 

4.3.1 Coordinate Transformations 

Matrices have their origin in , where, in two 
dimensions, for example, a chosen point, with coordinates (xJ), is 
transformed to a new location with coordinates (x’J’). For example, 
consider an anticlockwise rotation of the point P in the xy-plane, about 
the z-axis, through an angle 8, as shown in Figure 4.2. 
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Figure 4.2 Rotation about the 
z-axis of the point P (x,y), through 
an angle 8 to Q ( x ' , y ' ) ;  a is the 
angle between OP and the x-axis 

We can use simple trigonometry to relate the coordinates of Q to those 
of P by expressing the Cartesian coordinates in terms of polar coordinates. 
Thus, the (x,y) coordinates of point P become: 

(4.7) x = r c o s a  and y = r s i n a  

and those of point Q become: 

x' = rcos(0 + Q) and y' = rsin(8 + a)  (4.8) 

If we now use the addition theorems for cosine and sine (see Volume 1, 
Section 2.3.3), we obtain the expansions: 

x '= rcos(B+a)=rcosOcosa-rs inCIsina=xcosB-ysinO (4.9) 
y ' =  rsin(0+a) =rs inOcosa+rcosOsina=xs inO+ycosO (4.10) 

which allows us to express the coordinates of Q (x', y') in terms of those of 
p (x,y): 

x' = x cos 8 - y sin 0 
y' = xsin O+ycos 0 (4.11) 

Equation (4.1 1) describes the transformation of coordinates under an 
anticlockwise rotation by an angle, 0. This coordinate transformation is 
completely characterized by a square matrix, A, with the elements cos 8 
and +sin 8, and the column matrices, r and r' , involving the initial and 
final coordinates, respectively: 

(4.12) 
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We can now use matrix notation to replace the two equations (4.11) by 
the single matrix equation (4.13): 

cos 8 -sin 8)(  ;) (It:)=( sin8 cos8 (4.13) 

We can confirm that equation (4.13) correctly represents the coordinate 
transformation by evaluating the product matrix Ar on the right side: 

xcos 8 - ysin 8 
xsin 8 +ycos 8 (4.14) 

Since r' and Ar are both 2 x 1 matrices, we can equate the elements 
in rl with those in Ar, to restore the original equations, which 
confirms equation (4.13) as the correct matrix representation of 
equations (4.1 1). 

Figure 4.3 Reflection of the 
point P (x,y), in the y-axis to 
obtain the point Q (- x,y) 
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Sequential Coordinate Transformations 

The effect of applying two sequential coordinate transformations on a 
point, r, can be represented by the product of the two matrices, each one 
of which represents the respective transformation. We need to take care, 
however, that the matrices are multiplied in the correct order because, as 
we saw above, matrix multiplication is often non-commutative. For 
example, in order to find the matrix representing an anticlockwise 
rotation by 8, followed by a reflection in the y-axis, we need to find the 
product CA (and not AC as we might initially assume!). 
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4.3.2 Coordinate Transformations in Three Dimensions: 
A Chemical Example 

In preparation for the discussion of group theory in Section 4.9, let us 
consider how we might use matrix representations of coordinate 
transformations to characterize the shape of a molecule - something of 
vital importance, for example, in describing the vibrational motions in a 
molecule. In order to  accomplish this objective, we need to consider only 
those linear transformations in three dimensions that interchange 
equivalent points in a molecule. One example of such a transformation 
involves the interchange of coordinates defining the positions of two 
fluorine nuclei in the planar molecule BF3. We can achieve this result 
by extending the rotation and reflection coordinate transformations in 
Figures 4.2 and 4.3 to three dimensions. For BF3, there are four mirror 
planes, but, for the moment, let us focus only on the yz mirror plane, 
which is perpendicular to the plane of the molecule and contains the 
boron and the fluorine nucleus F1 (Figure 4.4). 

Figure 4.4 The nuclear con- 
figuration for BF3 in the xy-plane. 
The z-axis is perpendicular to 
the paper, and passes through B. 
Three of the mirror planes are 
perpendicular to the paper, and 
contain the boron and one of 
the fluorine nuclei, respectively, 
the fourth mirror plane is lies in the 
plane of the molecule and con- 
tains all of the nuclei 
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The matrix C, defined in Worked Problem 4.3, describes reflection in 
the y-axis of a point defined by the two coordinates (xJ). We can rewrite 
matrix C in terms of all three coordinates as follows: 

(4.15) 

where we note that the z-coordinate is unchanged by the coordinate 
transformation. Thus, a reflection in the yz-plane interchanges points 
located at the nuclei F2 and F3. 

If we now rotate an arbitrary point (x,y,z) about the z-axis, the x- and 
y-coordinates are transformed according to matrix A, defined in equation 
(4.12), but the z-coordinate is unchanged; thus: 

cos 0 -sin8 0 
( z ) = ( s i ; 8  c;so :)(!) 

(4.16) 

An anticlockwise rotation of 0 = 2 n / 3  (equivalent to 120") about the 
z-axis described in equation (4.16) transforms a point located at either F1, 
F2 or F3 to an equivalent point located at F2, F3 or F1, respectively. 

The important point here is that if the coordinates of points are 
represented in matrix form, then the geometrical actions involved in 
carrying out a rotation or reflection may also be represented by matrices, 
which enables us to mimic problems in geometry using matrix algebra; 
that is, geometrical operations on points can be replaced by 

acting on column matrices containing the coordinates of 
points. We shall re-visit these ideas in Section 4.9, where we develop a 
brief introduction to the principles of symmetry theory. 

4.4 Operations on Matrices 

4.4.1 The Transpose of a Matrix 

Given an n X m matrix, B, we can construct its 
interchanging the rows and columns. Thus the ijth element of B becomes 
thejith element of BT according to: 

7 BT, by 

(4.17) 
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4.4.2 The Complex Conjugate Matrix 

Taking the complex conjugate of every element of a matrix, A, yields the 
, A*; that is, (A*),= (A),*. If all the elements of 

A are real, then A* = A. 

4.4.3 The Complex Conjugate Transposed Matrix 

The transpose of the complex conjugate matrix (sometimes termed the 
), is written as A' and defined such that: 

At = (A*)T (AT)* + (At)ij = (A*),i. (4.18) 

If A* = A  (a real matrix) then Af = AT 
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4.4.4 The Trace of a Square Matrix 

The 
the sum of its diagonal elements: 

of a square matrix, A, of order n, denoted by trA, is defined as 

n 

trA = (A)ii (4.19) 
i= 1 

For example, the matrix A = , has trA = 1 - 3 + 0 =-2. 

Since the transpose of a square matrix leaves the diagonal unchanged, we 
see that trA = trAT. 
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4.4.5 The Matrix of Cofactors 

The cofactor of a determinant, which we first defined in Section 3.2, is 
characterized by a row and column index, in much the same way as we 
characterize the elements in a matrix. Thus, we can form the matrix of 
cofactors by accommodating each cofactor in its appropriate position. 
For example, the determinant: 

(4.20) 

gives rise to the four cofactors A l l ,  A12,  A 2 ,  and A22,  which may be 
collected together in the matrix of cofactors, B: 

(4.21) 

4.5 The Determinant of a Product of Square Matrices 

For two square matrices, A and B, of order n, the determinant of the 
product matrix AB is given by the product of the two determinants: 

det(AB) = det(BA) = det A x det B (4.22) 

We now return to a further discussion of some special matrices that arise 
in a chemical context. 

4.6 Special Matrices 

So far, we have met matrices of different orders, but we have not been 
concerned with the properties of their constituent elements. In this 
section, we introduce the and matrices, and then present a 
catalogue of important kinds of matrix that are common in developing 
mathematical models used, for example, in the calculation of vibrational 
frequencies of molecules, distributions of electron density and other 
observable properties of molecules. 

4.6.1 The Null Matrix 

The general 
If the matrix is: 

is an n by m matrix, all of whose elements are zero. 

Rectangular, it is named as O,,,. 
Square (n  = m) it is named as 0,. 
A column matrix, it is named On,, or more commonly as 0. 

Given an m x n matrix X: 

(4.23) 
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4.6.2 The Unit Matrix 

The is a square matrix of order n, denoted here by En, whose 
leading diagonal elements are all unity (i.e. have value 1) and whose 
off-diagonal elements are zero. Thus, for example: 

(4.24) 

The elements of E, may be denoted eg, but in practice they are usually 
specified using the , which is written as: 

(4.25) 

where i = j  designates a diagonal position and i # j a non-diagonal 
position. 

As E,, is an n x n matrix, E,A (pre-multiplication of A by En) is equal to 
A if A has order (n x p ) ;  likewise, AE, (post-multiplication of A by En) 
yields A if A has order (p x n).  
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4.7 Matrices with Special Properties 

4.7.1 Symmetric Matrices 

A square matrix, A, is said to be 
(A);, = (A)ji; that is: 

A = AT 

For example, 

as reflection 
unchanged in 

the following matrix is symmetric: 

if it has the property 

(4.26) 

in the leading diagonal leaves the array of elements 
appearance. 

For any n by rn matrix X, both XTX and XXT are symmetric matrices. 

4.7.2 Orthogonal Matrices 

An matrix, A, is a square matrix of order M with the property: 

A ~ A  = A A ~  = E,, (4.27) 

It follows from Property (1) of determinants (see Section 3.3), that 
det A=detAT, since the value of a determinant is unchanged if all 
columns and rows are interchanged. It also follows from equation (4.22) 
that det(AAT)=detA x detA=(detA)* and from the property of an 
orthogonal matrix given in equation (4.27) that (detA)’ = detE, = 1. 
Consequently, since (detA)2 = 1, it follows that, for an orthogonal matrix, 
detA = 1 .  However, it does not necessarily follow that an arbitrary 
matrix satisfying this criterion is orthogonal, since it  must also satisfy 
equation (4.27). 
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(c) Find the value(s) of k for which the matrix A = 

satisfies the condition det A = & 1. Check your answer against 
equation (4.27) and comment on whether the matrix A is orthogonal 
or not. 

As we shall see in later sections, orthogonal matrices play an important 
role in defining the coordinate transformations that are used in 
characterizing the symmetry properties of molecules. 

4.7.3 Singular Matrices 

A square matrix, A, for which detA=O, is said to be . Such 
matrices usually arise when the number of variables (or degrees of 
freedom) is over-specified for the chosen model, as would occur, for 
example, in: 

Using the same atomic orbital twice in constructing molecular 
orbitals in the Linear Combination of Atomic Orbitals (LCAO) 
model. 
Solving an inconsistent set of equations. 

4.7.4 Hermitian Matrices 

A complex sqilare matrix, that is equal to the transpose of its complex 
conjugate, is called an 

A = At (4.28) 

matrix; that is: 

(a) Verify that the matrix A = ( . i, is Hermitian. 
3 - 1  

(b) If x is the 2 by 1 column matrix 
matrix in part (a), show that xtAx = 

, and A is the Hermitian 

4.7.5 Unitary Matrices 

A square matrix U, of order n,  is said to be i f  

UtU = UUt = E,, (4.29) 
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Symmetric A =A' 

, (: ;) 

It follows from the definition of a unitary matrix that detU = +_ 1. 
As for orthogonal matrices, an arbitrary matrix having the property 
detU = 1 is unitary only if the requirements of equation (4.29) are 
satisfied. 

Hermitian and unitary matrices play the same role for matrices with 
complex elements that symmetric and orthogonal matrices do for 
matrices with real elements. These features are summarized in Table 4.1. 

~ 

OrthogonalATA = AAT = En Unitary U+U =: UU+ = E, 

Table 4.1 A summary of special square matrices 

~ ( c o s ~  -sin0 )( cost) sin0 
sin8 cost) -sin8 cos8 

Matrices with real elements Matrices with complex elements 

Transpose, AT Complex conjugate transpose, A~ 
2 3+1 

(- i  4 ' ) * ( 3 2 i  i) 
Hermitian A = At 

( 3 2 i  ' T i )  

A consequence of the above is that 
detA = +1 detU = T1 

A consequence of the above is that 

Symmetric, Hermitian, orthogonal and unitary matrices all arise in the 
quantum mechanical models used to probe aspects of molecular structure. 

Classify each of the following matrices according to whether they 
are symmetric, Hermitian, orthogonal or unitary: 

We now proceed to identify the last of the special matrices that are 
important to us. 
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4.7.6 The Inverse Matrix 

The 
property: 

of a square matrix A, of order n, is written A-' and has the 

AA-I = A - ~ A  = E,, (4.30) 

and exists only if detA # 0. If detA = 0, then A is singular and A-' does 
not exist. We saw in Problem 4.12(a) that the transposed matrix 
of cofactors, BT, is related to A and detA - irrespective of the order of 
A - according to the formula: 

BTA = E,detA (4.31) 

Rearranging equation (4.3 I )  gives: 

T En B =- 
det A A 

E n  but we know from equation (4.30) that A-' = -, and so: 
A 

(4.32) 

(4.33) 

which provides us with a formula for obtaining A-' from BT and det A. It 
should be remembered, however, that A- exists only if A is non-singular. 

(; -;) Q Find the inverse of the matrix A = 

A First, det A =  1 + 1 =2. The matrix of cofactors of A is: 

+ BT=( -1 ') 1 

Thus the inverse of matrix A is given by: 

Check: use the definition of the matrix inverse to confirm that 
AA-' =A-~A=E, :  (I -;)(-! i)=Co 1 0  J'E2 

2 3  
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Find 
strate 

the inverse of the matrix A = -1 -1 1 , and demon- 
that AA-' = A-'A = E3. ( : -: :) 

The inverse matrix has many uses, but of particular relevance to us as 
chemists is the role they play in: 

The solution of sets of simultaneous linear equations. 
Developing the concept of a group which, in turn, underpins the basis 
of symmetry theory. 

4.8 Solving Sets of Linear Equations 

Suppose we have a set of three equations, each of which is linear in the 
unknowns x l ,  x2, x3: 

where the ay and b, (ij= I ,  2, 3) are constant coefficients. If all the h, are 
zero, then the equations are called , but if one or more of the 
b, are non-zero, then the equations are called 

We can write the three linear equations (4.34) as a single matrix 
equation: 

and then check that equations (4.35) and (4.34) are equivalent, 
by evaluating the matrix product in the left side of equation (4.35) to give: 

We now have two 3 x I matrices, which are equal to one another; because 
this implies equality of the elements, we regenerate the original linear 
equations given in equation (4.34). If we now rewrite equation (4.35) in a 
more compact form as: 

AX = b (4.37) 
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and pre-multiply by A-' ,  the matrix inverse of A, we obtain: 

A-'Ax  = A - ' b  (4.38) 

Since A - ' A = E ,  and E,x=x, it follows that the unique solution is 
given by: 

x = A - ' b  (4.39) 

However, this solution is meaningful only if det A is non-singular. If  A is 
singular, the equations are inconsistent - in which case, no solution is 
forthcoming. 

Q (a) Confirm that the following equations have a single, unique 
solution: 

x1 - x2 + x3 = 1 
--XI -x2+x3 = 2  

x1 f X 2  +x3 = -1 
(4.40) 

(b) Find the solution. 

A (a) Rewriting equation (4.40) in matrix form gives: 

1 -1 1 

(-; -; ;)(::)=(:) 
A X b 

The set of equations has a unique solution as det A = -4 (see 
Problem 4.16), indicating that the equations are consistent. 
(b) Following the procedure in Worked Problem 4.5, and 
with reference to the answer to Problem 4.16, we find 

A-' = (-! i). Thus, the solution, according to equation 
1 1  

(4.39), is given by: 

1 -1 

2 2  

(;;)=( -i - 1 1  -- p !)( ;)=(I[) 1 

-1  z z  
from which we see that x1 = -4, x2 = -1, x3 = 4. 
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Find the values of x, y, z that satisfy the equations: 

~ + 2 ~ + 3 ~ = 1  
8y + 22 = 1 

- 2x + 4y + 22 = 2 

So far we have considered only the solutions to sets of inhomogeneous 
linear equations where at least one of the bi is non-zero. If, however, we 
have a set of homogeneous equations, where all the bj are zero, then we 
may define two further possible limiting cases: 

If det A # 0 and b=O (all bi are zero), then this approach will only 
ever yield the solution x = 0, i.e. x1 = xy! = s3 = 0. since x = A-  0 = 0. 
If det A = 0, and b = 0, then, again, A-'  will be undefined. However, 
although the solution may yield the so-called trivial result x=O, 
other solutions may also exist. 

1 

4.8.1 Solution of Linear Equations: A Chemical Example 

In Problem 3.6, we saw how the molecular orbital energies for the ally1 
system are determined from the solution of a determinantal equation. 
At this point, we are now in the position to understand the origin of 
this equation. 

In the Huckel model, the result of minimizing the energy of the 
appropriately occupied IT molecular orbitals results in the following set of 
linear equations in the unknown atomic orbital coefficients, c,., together 
with the molecular orbital energy, E :  

q ( a  - E )  + c*p = 0 

c2p + c3(a - E )  = 0 
c l p  + c2(a - E )  + c3p = 0 (4.41) 

Equations (4.41) may be more succinctly expressed as a single matrix 
equation: 

[ p ( a - t ; )  p )( '?) = o  (4.42) 

or in more compact form as Ac = 0, where 0 is a null column matrix, 
Equations (4.41) provide an example of a set of homogeneous equations, 
because the right-side constant coefficients, equivalent to hi in equation 
(4.34), are all zero (and hence the appearance of the null column matrix 0 

( -4  P 0 

0 P (a  - 4 c3 
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in the equivalent matrix equation 4.42). The trivial solution to equation 
(4.42), where c1 =c2=  c3 = O  (c=O) is of no physical significance, as 
the molecular orbitals do not then exist - another example of how 
important it is to use physical intuition to interpret the significance of 
a mathematical result! A more detailed study of the mathematics indi- 
cates that equation (4.42) has a non-trivial solution if det A = 0 ,  the 
solution of which yields the orbital energies E = a, T &?, as seen in 
Problem 3.6. 

The three molecular orbitals for the ally1 system are obtained by 
solving the set of simultaneous equations (4.41) for each value of 
E, in turn, to obtain the atomic orbital coefficients, ci. 
(a) For E = a, show that c3 = -c1 and that c2 = 0. 
(b) For E = a + fib, show that c2 = &cl and c3 = c1. 
(c) For E = a - a#l, show that c2 = -&cl and cg=cI. 
(d) For each of the three orbital energies, construct the column 
matrix, q, where each element is expressed in terms of c1. 

4.9 Molecular Symmetry and Group Theory 

One of the key applications of matrices in chemistry is in the char- 
acterization of molecular symmetry. In Section 4.3 we saw how it was 
possible to represent the coordinate transformations associated with 
rotation and reflection, in terms of matrices. These notions are now 
explored in the next section, where we develop some of the basic ideas of 

4.9.1 An Introduction to Group Theory 

A consists of a of (e.g. numbers or square matrices), for 
which there is a specified mode of combination (for example, addition, 
subtraction, multiplication), subject to the four following requirements: 

(a) For any R, S in the set, the combination RS is a member of the 

(b) For any R, S and T in the set, the must be 
associative, i.e. R(ST) = (RS)T. 

(c) There is an element E such that, for any element, R, in 
the set, RE = ER = R. 

set ( 1. 
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(d) For each R, there is an 
R - ~ R  = E. 

R-I ,  such that R R - ' =  

The number of elements in the group is termed its 
finite or infinite. 

, which may be 

Q Investigate whether the set of integers forms a group under each 
of the following modes of combination: 
(a) addition; (b) subtraction; (c) multiplication. 

A (a) Addition: the sum of any two integers is an integer (closure 
satisfied); addition of integers is associative; the identity element 
is zero (e.g. 2 + 0 = 0 + 2 = 2 ) ;  the inverse of any integer n is -n 
[e.g. 2 + (-2) = 0, the identity element], and -n is an integer which 
is in the set. Since all four criteria are satisfied, the set of integers 
forms a group of infinite order under addition. 
(b) Subtraction: the difference of any two integers is an integer 
(closure satisfied); subtraction of integers is not associative, e.g. 
(3 - 4) -2 = -3, while 3 - (4 - 2) = 1, and so the set of integers does 
not form a group under subtraction. 
(c) Multiplication: the product of any two integers is an integer 
(closure satisfied); multiplication is associative; the inverse of any 
non-zero integer n is the rational number l/n, which is not an integer 
and so the set of integers does not form a group under multiplication. 

Demonstrate that the set of numbers GI = (1, - 1, i, -i] forms a 
group of order 4 under multiplication. 

4.9.2 Groups of Matrices 

Groups of non-singular (square) matrices are of special interest in 
chemistry, because they are used to characterize molecular and solid- 
state structures according to their symmetry properties. This is vital when 
determining: 

Whether spectroscopic transitions of all kinds are forbidden or 
allowed. 
The most likely mechanisms of some classes of organic reaction, 
where symmetry controls the outcome. 
The arrangement of species in the unit cell of solid-state structures. 
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When deciding whether a given set of matrices of order n forms a group 
under multiplication, we can disregard associativity as one of the criteria 
because multiplication of matrices is always necessarily associative - and 
so we only need to check for closure, the presence of E,, and identify all 
inverses. 
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4.9.3 Group Theory in Chemistry 

Molecules are classified in terms of their symmetry properties by 
constructing groups of matrices that describe coordinate transform- 
ations, resulting in the interchange of chemically equivalent points. For 
any given molecule, these coordinate transformations form the elements 
of a particular that describes its symmetry properties. For 
example, the water molecule is bent in its ground state, with a bond angle 
of approximately 105" (see Figure 4.5). If we rotate an initial point lying 
above the plane of the molecule, directly over one of the hydrogen nuclei, 
through 180", about the principal axis passing through the oxygen 
nucleus in the molecular plane (the z-axis in Figure 4 .9 ,  the transformed 
point will lie below the other hydrogen nucleus. Likewise, reflection in the 
plane perpendicular to the molecular plane, and containing the principal 
axis of rotation (the sz-plane), transforms the initial point to an 
equivalent point lying uhow the other hydrogen nucleus. However, 
reflection in the plane of the molecule (the yz-plane) transforms the initial 
point to one lying directly below the original hydrogen nucleus. Clearly, 
the identity operation leaves the initial point unmoved. These three 
symmetry operations are known as the C?, a, and (T,' , respectively, and 
together with the identity element, E, constitute the four elements of the 
C2" point group to which water belongs. 

Figure 4.5 The nuclear con- 
figuration for H20 in the yz-plane. 
The x-axis is perpendicular to the 
paper, and passes through 0. 
One of the two mirror planes lies 
in the plane of the paper, whilst 
the second is perpendicular to 
the paper and contains the 0 
atom. The principal axis of 
rotation is the z-axis 
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If the location of one of the nuclei is taken as the initial point, then we see 
that each symmetry operation just exchanges (or leaves unmoved) the 
coordinates of chemically equivalent nuclei. It transpires that if we follow 
the procedure of physically moving the nuclei, rather than a representa- 
tive point in space, then each matrix generated is the inverse of the one 
associated with the appropriate coordinate transformation, although the 
traces of the respective matrices are the same. This is helpful because in 
most applications of group theory we work with the traces rather than the 
elements of the transformation matrices. 

How many symmetry operations can you list that interchange chemi- 
cally equivalent nuclei in the planar molecule BF3 (see Section 4.3.2)? 
Hint: how many mirror planes and axes of rotation are there? 

In this chapter we have introduced the matrix as a means of 
handling sets of objects and discussed the key aspects of matrix 
algebra. A great deal of this chapter has involved a cataloguing of 
the properties and types of matrices, but we have also tried to 
emphasize the chemical importance of matrices, in particular in the 
vital role they play in the classification of molecular symmetry and 
the development of group theory. The key points discussed 
include: 

1. An introduction to matrix notation. 

2. Rules for combining matrices through addition, subtraction and 
multiplication. 

3. 
and hence to characterize the symmetry properties of molecules. 

How matrices are used to represent coordinate transformations, 

4. Operations on matrices containing real and complex elements. 

5. Special matrices, including the unit matrix and the null matrix. 

character 

6. Matrices with special properties. 
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7. The matrix of cofactors and the definition of the inverse matrix. 

8. The application of matrix algebra for solving sets of simul- 
taneous linear equations - homogeneous and inhomogeneous 
equations. 

9. An introduction to molecular symmetry and group theory. 

10. Elucidating the characteristic electronic structures associated 
with molecules. 

11. Introducing some of the concepts necessary in the study and 
use of vectors. 



Vectors 

Many of the physical quantities which we deal with from day to day, such 
as mass, temperature or concentration, require only a single number (with 
appropriate units) to specify their value. Such quantities are called 
quantities, specified exclusively in terms of their value. However, we 
frequently encounter other quantities, called , which require us 
to specify a (a positive value) and a direction. Velocity is an 
example of a vector quantity, whereas speed is a scalar quantity (in 
fact speed defines the magnitude of velocity!). This is why we say that 
an object travelling on a circular path with constant speed (such as an 
electron orbiting a nucleus in the Bohr model of the atom) is accelerating: 
its velocity changes with time because its direction is constantly changing, 
in spite of the fact that the speed is constant (see Figure 5.1). 

Figure 5.1 The velocity and 
position vectors of an electron at 
two points P and Q in a circuJar 
Bohr orbit 

In the example shown in Figure 5.1, we define both the position and 
velocity in terms of vectors. The position of the electron at any given time is 
given by a position vector, referenced to an origin 0. So, when the electron 
is at point P, its location is defined by the vector a, whereas when it has 

83 
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moved to point Q, the position is defined by a different position vector, b. 
We can also represent the velocity at points P and Q by the two vectors, v, 
and vb, both of which have the same magnitude (length) but whose 
direction is different. 

In chemistry, we meet many physical quantities and properties that 
require us to specify both magnitude and direction, These include: 

Forces between molecules. 
The magnetic and electrical properties of atoms, molecules and solids. 

Velocity of a molecule in the gas phase. 
Angular momentum (associated with rotational and electronic spin 
motions) . 

In order to qualify properly as a vector, a quantity must obey the 
rules of vector algebra (scalar quantities obey the rules of arithmetic). 
Consequently, we need to describe and define these rules before we can 
solve problems in chemistry involving vector quantities. Linear algebra 
is the field of mathematics that provides us with the notation and rules 
required to work with directional quantities. 

In this chapter, we discuss the concept of the vector from a number 
of perspectives, ranging from the graphical description to a presen- 
tation of vector algebra and on to examples of how we can apply 
vector algebra to specific chemical problems involving directional 
properties. By the end of the chapter, you should understand how: 

0 Vectors are defined geometrically in terms of direction and 
magnitude 
Vectors are defined algebraically, using base vectors 
Vectors are combined using addition or subtraction 
The scalar and vector products are defined and used 
The triple scalar product is defined and used for calculating the 
volume of a parallelepiped 
Matrix representatives of vectors are formulated and used 

0 

0 

5.1 The Geometric Construction of Vectors 

A is represented mathematically by a 7 

the length of which corresponds to the magnitude of the vector, whilst 
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its orientation, taken together with an attached arrow, indicates its 
direction. To simplify matters, we first consider vectors in two dimensions 
(2-D space), and then extend the concepts to dealing with vectors in three 
or more dimensions. 

5.1.1 Vectors in Two Dimensions 

Consider the three directed line segments representing the vectors shown 
in Figure 5.2: all three have initial and final points, which may or may not 
be labelled, whilst the arrow indicates the direction. In each case the 
position of the initial point is of no significance. The magnitudes (lengths) 
of the left-most and right-most vectors are the same, but their directions 
are opposite; the middle vector has the same direction as the left vector, 
but twice its magnitude. 

Figure 5.2 Representations of 
the vectors a, 2a and - a  as 
directed line segments 

5. I .2 Conventions 

1. Vectors are represented by symbols such as a, b , .  . . and their 
respective magnitudeLare given by JaJ, 161,. . ., or just a, b , .  . . An 
alternative notation, OP, is sometimes used when we wish to describe a 
displacement in space between two points (in this case, points 0 and P). 
2. The vectors a and b are said to be equal if their magnitudes and 
directions are the same, irrespective of the locations of their respective 
initial points. Hence, any directed line segment with the same length and 
direction as a is represented by a. 
3.  A is a vector A having unit magnitude (or length). Unit 
vectors are symbolized by Ci, b, . . ., and correspond to the vectors a, 6 , .  . . 
divided by their own magnitude. For example: 

4. A 
defined. 

, 0, has zero magnitude and consequently no direction is 
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5.2 Addition and Subtraction of Vectors 

5.2.1 Vector Addition 

Consider the two vectors a and b shown in Figure 5.3: 

Figure 5.3 Vectors a and b 
with initial points 0 and S, 
respectively 

The sum of a and b is given by the vector c, which is found in the 

(a) Translate the vector b until its initial point coincides with that of a: 
following series of steps: 

(b) Construct a parallelogram as indicated in Figure 5.4: 

Figure 5.4 The parallelogram 
formed in the addition of the two 
vectors a and b 

--f 

The directed line segment OQ represents the vector c, defined as 
the sum of a and b. Furthermore, as OQ = OP+ PQ = OR + RQ, it 
follows that c = a  + b =  b + a, from which we see that addition is 

; in other words, a displacement OR followed by RQ clearly 
leads to the samefinal point as a displacement OP followed by PQ. 

Since OR and PQ are equivalent, and represent the same vector 6 ,  we 
can use a triangle to summarize the relationship between a, h and the 

- - . - - t + - - - - f - +  

---i __t 

+ -----f 
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resultant vector c (see Figure 5.5). For this reason, the equality c = a + b 
is often known as the 

Figure 5.5 The triangle rule, 
in which c=  a + 6 

5.2.2 Vector Subtraction 

The subtraction of two vectors can be thought of as the addition of 
two vectors that differ in their sign. If we think of this in terms 
of displacements in space, then the first vector corresponds to a 
displacement from point P to point Q, for example, whereas a second 
identical vector with opposite sign will direct us back to point P from 
point Q: 

The net result is the null vector - we end up where we started: 

a +  -a = a - a  = 0 

It follows that subtraction of two vectors, a and 6, is equivalent to adding 
the vectors a and - b, and so we can define vector subtraction in a general 
sense as: 

d =  a +  (-6) = a -  b (5 .3)  
which can be expressed in terms of a variant of the triangle rule, as seen in 
Figure 5.6. 

Figure 5.6 Vector subtraction 
represented in terms of the 
triangle rule 

It also follows from Figure 5.6 that if a + b = c,  then c - a = 6, which 
we represent graphically in two ways in Figure 5.7: 
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Figure 5.7 Two alternative 
representations of the subtrac- 
tion of two vectors 

Note that both representations are equivalent, in spite of the fact that 
the initial and final points of vector b are located at different points in 
space in the two representations. Thus, since the vector is fully defined 
simply by its direction and magnitude, the locations of the initial and final 
points are unimportant, unless we define them to act in specific locations. 

5.3 Base Vectors 

Any kind of operation on a vector, including addition and subtraction, 
can be somewhat laborious when working with its graphical represen- 
tation. However, by referring the vectors to a common set of unit vectors, 
termed , we can reduce the manipulations of vectors to 
algebraic operations. 

In three-dimensional space, a convenient set of three unit vectors is 
provided by l, 3 and i, which are directed along the x, y ,  and z Cartesian 
axes, respectively (Figure 5.8). 

Figure 5.8 Base vectors in 
three dimensions for the 
Cartesian coordinate system 
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In this system of coordinates, if a point P has the coordinates (x,y,z), 
then the directed line segment OP, extending from the origin 0 to point P, 
corresponds to the vector Y. If we apply the triangle rule twice, we obtain: 

_f 

+ - - t  

r = O Q + Q P  (5.4) 

4 - d  

= O R + R Q + Q P  ( 5 . 5 )  
A A A  

+ r = x i + y j + z k  (5 .6)  
A A  A 

Equation (5.6) expresses Y as a sum of the vectors xi, vj and zk ,  which are 
called the of Y in the direction of the x-, y- and z-axes. The 
magnitudes of each projection are given by the x-, y- and z-values, 
respectively, defining the location of P; however, in the context of vectors, 
these values (coordinates) are known as the of Y; if the 
components are all zero, then this defines the null vector. Note that for 
problems in two dimensions, only two base vectors are required, such as, 
for example, and 

4 

The Magnitude of OP 

If we apply the Pythagoras’ theorem, first to triangle ORQ in Figure 5.8, 
and then to triangle OQP, we obtain an expression for the of Y 

in terms of its components: 
2 112 

IYI = (x2 + y 2  + z  ) 

5.3.1 Vector Addition, Subtraction and Scalar 
Multiplication using Algebra 

(5.7) 

The algebraic approach to vector addition and subtraction simply 
involves adding or subtracting the respective projections, xi, y j  and zk, of 
the two (or more) vectors. requires each projection 
to be multiplied by the scalar quantity. 

A A  A 
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Figure 5.9 The planar complex 
ion Co(CN)Z-, where the carbon 
atoms are represented by black 
spheres and the nitrogen atoms 
by coloured spheres 
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5.4 Multiplication of Vectors 

In algebra, as we saw in Chapter 2 of Volume 1, the act of multiplication 
is an unambiguous and well-defined operation indicated by the sign x .  
In the algebra of vectors, however, multiplication and division have no 
obvious conventional meaning. Despite this drawback, the two kinds of 
multiplication operation on pairs of vectors in widespread use are defined 
in the following subsections. 

5.4.1 Scalar Product of Two Vectors 

Consider the vectors a and b in Figure 5.10, in which the angle between 
the two vectors is 8: 

Figure 5.1 0 Two vectors a and 
b, inclined with respect to one 
another at an angle 8 

The scalar product is defined as: 

The right side of equation (5.8) indicates that the result is a scalar 
(number), and not another vector, because it involves the product of the 
magnitudes of the two vectors, with the cosine of the angle between them 
(a positive or negative number, depending on the angle). Thus, since 141 
and Ibl are, by definition, positive numbers, the sign of the scalar product is 
determined by the value of the angle 0. In particular, the scalar product is: 

Positive for an acute angle (8 < 90"). 
Zero for 8 = 90". 
Negative for an obtuse angle (90" < 8 < 180"). 

By convention, the angle 8 is restricted to the range 0 < 0 < 180". If 0 = 
90", then a.b = 0, and a and b are said to be . On the other 
hand, the scalar product of a vector with itself (8 = 0"; cos 8 = l), yields 
the square of its magnitude: 

a a = (a (2 ,  implying that (a (  = fi (5.9) 



92 Maths for Chemists 

Furthermore, if a is of unit magnitude, then a a = 1, and a is said to be 

Specifying the Angle 8 

In some situations, it is important to be aware of how the sense of 
direction of the two vectors a and b affects the choice for the value of the 
angle between them. For example, the angle 0 between the vectors in 
Figure 5.10 constitutes the correct choice, because the two vectors are 
directed away from the common point of origin. However, if vector a (or 
vector b)  is directed in the opposite sense (the dashed directed line 
segment in Figure 5.1 l), then we determine the angle between a and b by 
realigning the two vectors to ensure once again that they are directed 
away from the common origin point. The angle is then defined as 180" - 8 
(Figure 5.1 1). 

Figure 5.1 1 The relationship 
between vector direction and 
angle 

The Scalar Product in the Chemical Context 

Scalar products arise in a number of important areas in chemistry. For 
example, they are involved in: 

Determining the energy, W, of a molecular electric or magnetic dipole 
interacting with an electric or magnetic field, W =  - -pe.E or 
W = -pm - H, respectively. 
Evaluating the consequences of the intermolecular dipole-dipole 
interactions in molecular crystalline solids. 
Crystallography, where the (see Section 5.5.3) is 
used to evaluate the volume of a crystallographic unit cell. 

Scalar Products of Vectors Expressed in Terms of Base Vectors 

The scalar product of two vectors a and 6, expressed in terms of base 
vectors, is obtained by taking the sum of the scalar products of each base 
vector pair, together with the appropriate product of components. 
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Finding the Angle Between Two Vectors 

In the previous section we saw that, in spite of appearances, we do not 
need to know the angle between two vectors in order to evaluate the scalar 
product according to equation (5.8): we simply exploit the properties of 
the orthonormal base vectors to evaluate the result algebraically. 
However, we can approach from a different perspective, and use the 
right side of equation (5.8) to find the angle between two vectors, having 
evaluated the scalar product using the approach detailed above. The next 
Worked Problem details how this is accomplished. 

orthonormal 
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Simple Application of the Scalar Product: the Cosine Law 
for a Triangle 

If the sides of the triangle OPQ in Figure 5.5,  formed from the vectors a, b 
and c have magnitudes a, b and c, respectively, and B is the angle opposite 
b, then we can use equations (5.8) and (5.9) to find a useful relationship 
between a, b, c and B. 

The triangle rule c = a + b may be rewritten as b = c - a, from which 
we form the scalar product b * b: 

be b = ( c  - a )  - ( c  - a )  = a .  a -?- c -  c - 2 a .  c (5.13) 

However, since we know that the scalar product of a vector with itself 
yields the square of its magnitude (equation 5.9), and that the angle 
between a and c is B (and not 180" - B), it follows that: 

(5.14) b . b = b - = a  + c  -2accosB 

This can be extended to construct analogous expressions involving the 
angles A and C, opposite vectors a and c, respectively. 

' 2 2  
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Figure 5.12 The complex ion 
CoCIz-, where the coloured 
spheres represent a CI- species 
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5.4.2 Vector Product of Two Vectors 

In the previous section we defined the scalar product as a vector operation 
resembling the act of multiplication, which results in a scalar (or number, 
with or without units). We can now define a second type of vector 
multiplication known as the , which results in another 
vector rather than a number. The vector product is defined as: 

a x  b = -b x a = lallbl sin 8 h (5.15) 

where h is the unit vector orthogonal (perpendicular in 2-D or 3-D space) 
to the plane containing a and 6.  Since there are two possible choices for h 
(up or down), the convention for selecting the appropriate direction for 4 
requires the vectors a, b and h to form a right-handed system of axes, as 
shown in Figure 5.13. 

Figure 5.13 The axis conven- 
tion for determi2ing the sign of 
the unit vector n directed per- 
pendicular to the plane contain- 
ing the vectors a and b 

If we imagine the action of a right-hand corkscrew, in which a is 
rotated towards 6,  in an anticlockwise sense when viewed from above, the 
corkscrew moves in the direction of 4; it follows that the analogous 
corkscrew motion taking b to a (clockwise) yields a movement in the 
direction of -4. Consequently, the vector products involving the base 
vectors p and k, or, by suitable changes, any other pair of base vectors, 
are determined by forming a right-hand clockwise system, as seen in 
Figure 5.14. 
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Figure 5.14 ForTatFn of the 
vectpr pnrodict (a) k x j = -;and 
(b) j x k = i determined by look- 
ing down the x-axis and irnagin- 
ing the action of a right-handed 
corkscrew motion (see text for 
details) 

Although analogous results can be derived for other pairs of base 
vectors, the simplest aid for obtaining the appropriate result is to use the 
diagram shown in Figure 5.15. The vector product i x j ,  for example, is 
verified by moving in a clockwise manner from to 3 to the next base 
vector k .  However, j x i yields - k because anticlockwise circulation 
introduces a negative sign. 

A A  

Figure 5.15 The vector pro- 
duct of any two base vectors, 
moving in a clockwise or anti- 
clockwise direction, yields resul- 
tant vectors of positive or 
negative signs, respectively 

In forming the vector product of two vectors a and b, we should 
remember that: 

The order of operation is very important: the operation is not 
commutative (equation 5.15). 
The resulting vector is orthogonal to both a and 6,  implying that: 

a * ( a x b )  = O  and b * ( a x b )  = O  

The operation is not generally associative: 

( a x b ) x c # a x  ( b x c )  

Vector Products in a Chemical Context 

Vector products arise when: 

Working with the angular momentum, 1 (a vector property), 
associated with the circular motion of a particle of mass, m, moving 
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under a constant potential about a fixed point with velocity and 
position described by the vectors: 

In this instance the angular momentum I = I” x i w v  = I’ x p .  where 

is the linear momentum. Such model systems have particular relevance 
when considering the orbital motion of an electron about a nucleus 
in an atom, or about the internuclear axis in a linear molecule. 
Evaluating the volume of a crystallographic unit cell through the 
scalar triple product (see Section 5.5.3). 

5.4.3 Area of a Parallelogram 

The vector product of a and b provides a route for calculating the area of 
a parallelogram. We explore this method in Worked Problem 5.5. 
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Figure 5.16 The area of the 
parallelogram OPQR is given by 
la x b ( ,  where the vectors a and b 
represes the directed line seg- 
ments OR and OP, respectively 
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5.5 Matrices and Determinants Revisited: 
Alternative Routes to Determining 
Scalar and Vector Products 

5.5.1 The Scalar Product 

If the components of the vectors a and b in Problem 5.9 form the elements 

of the column matrices v1  = (i:) and v2 = (il). then the scalar 

product a * b takes the form: 

giving the same result as in Problem 5.9(a). 

5.5.2 The Vector Product 

If we compare the form of the vector product given in the answer to 
Problem 5.9(b) with the expansion of a determinant of order three, given 
in equation (3.20), we see that, if the correspondences: 

A A A 

all = i ,  a12 = j ,  a13 = k 
a21 = bl, az2 = b2, a23 = 63 
a31 = a32 = c27 a33 == c3 

are made, then: 

(5.16) 

Using the properties of determinants, we see that exchanging rows two 
and three results in a change of sign of the determinant: such a change 
corresponds to the vector product c x b and is consistent with equation 
(5.15) and b x c = -c  x b. 
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5.5.3 The Scalar Triple Product 

If we define three vectors a, b and c, as in Problem 5.9, the expression 
a - (b x c), known as the , yields a scalar quantity, 
the magnitude of which provides the formula for the volume, V ,  of a 
parallelepiped with adjacent edges defined by vectors a, b and c (an 
example in chemistry being a crystalline unit cell). If the determinantal 
representation of b x c is used, then, on expanding the determinant from 
the first row, and evaluating the three scalar products, we obtain: 

which, in turn, may be converted back into determinantal form: 

a1 a2 a3 
(5.19) 

Thus, the volume (a positive quantity), V,  of the parallelepiped formed 
from a, b and c has the formula: 

I/= la. ( b x c ) I  (5.20) 

We explore the application of the scalar triple product for evaluating 
the volume of a crystallographic unit cell in the final two problems of 
this chapter. 
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